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Electricity infrastructure has become a critical element of modern industrial society. In order to model and analyse this
infrastructure, identify weaknesses, and optimize performance, one needs to take into account its distributed nature. Rather
than modelling a single system, energy production and distribution systems consists of many more or less autonomous
subsystems working together and trading with each other. Analytical models could perhaps be used to describe a single
subsystem. However the complexity related to the interactions between the subsystems soon becomes unmanageable.
Even establishing a simulation model for such phenomenons is a non-trivial task, especially if the model is required to be
easily scaleable. In this paper we consider the problem of optimizing a simplified energy system with respect to supply
stability. This is done using both deterministic methods and Monte Carlo methods. The system is broken into smaller
units. These units may trade energy between them in order to maintain a stable supply covering the demand. An important
element in the model is the ability to store energy within the unit. For some units, e.g., hydroelectric power plants, the
energy can be easily stored in the form of a water reservoir. For other units, like wind power plants, storing energy is
usually not feasible. By using an object oriented software framework, we can compare different production units, and
study how these can interact in order to facilitate a stable total production.

1 INTRODUCTION

Electricity infrastructure has become a critical element of
modern industrial society. In order to model and analyse
this infrastructure, identify weaknesses, and optimize per-
formance, one needs to take into account its distributed na-
ture. Rather than modelling a single system, energy pro-
duction and distribution systems consists of many more
or less autonomous subsystems working together and trad-
ing with each other. Explicit analytical models can often
be used to describe a single subsystem. However the com-
plexity related to the interactions between the subsystems
soon becomes unmanageable. Even establishing a simula-
tion model for such phenomenons is a non-trivial task, es-
pecially if the model is required to be easily scaleable. Var-
ious types of modelling tools have been introduced in order
to simulate such complex systems. See (Axelrod 1997) and
(Kremers 2013).

In this paper we consider a simplified system consisting
of a set of energy production units. For a related problem
see (Palensky and Dietrich 2011). For some units, e.g., hy-
droelectric power plants, the energy can be easily stored
in the form of a water reservoir. For other units, like wind
power plants, storing energy is usually not feasible. Our
main goal is to study how the different producers and con-
sumers can interact in order to facilitate a stable total pro-
duction. We start out by considering a simplified version
of the problem where an optimal production strategy can
be derived analytically. Using this as a starting point we
proceed to a more general setting, and study the robustness
of the derived strategy. It turns out that the simple solution
behaves very well in a wide range of cases.

2 BASIC CONCEPTS AND RESULTS
The approach used in this section is similar to the method-
ology introduced in (Huseby and Haavardsson 2009) in the
context of oil production. See also (Huseby and Haavards-
son 2010). We consider the energy production from a set of
n producers serving a common set of consumers. The en-
ergy demand from the consumers at time t ≥ 0 is constant
K(t) > 0, expressed in some suitable unit, e.g., TWh.

Each producer has a reservoir where energy can be
stored in some alternative form, e.g., as potential energy
of water in a reservoir. Let R(t) = (R1(t), . . . ,Rn(t)) de-
note the vector of stored energy for the n producers, and
let f(t) = (f1(t), . . . , fn(t)) be the corresponding vector
of potential production rate functions, which we refer to as
the PPR-functions. We assume that the potential produc-
tion rate from a producer can be expressed as a function of
the stored energy at the same reservoir. More specifically,
we assume that for i = 1, . . . n the ith PPR-function can be
written as:

fi(t) = fi(Ri(t)) = min(aiRi(t), bi), t ≥ 0. (1)

Here the factors a1, . . . , an are numbers between 0 and
1 representing restrictions on the productions imposed in
order to prevent the reservoirs from being emptied too
quickly. The constants b1, . . . , bn, on the other hand rep-
resent limitations in the production facilities.

Under normal operational conditions the amount of en-
ergy stored in a reservoir will of course vary both up and
down. Production of energy to the consumers will reduce
the amount of energy in the reservoir, while the inflow of
energy, e.g., through precipitation, will increase the amount
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of energy. While the production can be controlled by a pro-
duction manager, the inflow of energy is typically uncer-
tain. For longer or shorter periods the inflow may even be
zero. A sensible production strategy should take this un-
certainty into acount and minimize the risk of an energy
shortage.

In general the actual production from the n producers
depends both on the PPR-functions and how the production
is distributed between the producers. Whenever the total
availabel production capacity is greater than the demand,
the total production rate from the producers will be less
than the sum of their potential rates.

The actual production rates from the reservoirs, after the
production is adjusted to satsify the demand K(t), are rep-
resented by the vector r(t) = (r1(t), . . . , rn(t)).

A production strategy is defined by a vector valued func-
tion w =w(t) = (w1(t), . . . ,wn(t)), defined for all t ≥ 0,
where wi(t) represents the adjustment factor, i.e., the frac-
tion of the potential production rate of the ith producer that
is actually produced at time t, i= 1, . . . , n. Thus, we have:

0 ≤ wi(t) ≤ 1, i = 1, . . . , n, t ≥ 0. (2)

The actual production rates can then be expressed as:

ri(t) = wi(t)fi(Ri(t)), i = 1, . . . , n. (3)

The adjustment factors must be chosen such that the con-
straint (2) is satisfied, and such that:

n∑
i=1

wi(t)fi(Ri(t)) ≤K(t). (4)

LetW denote the class of production strategies that satisfy
these constraints. We refer to production strategies w ∈W
as valid production strategies.

Obviuosly, the production should be adjusted so that the
demand is satisfied whenever possible. An admissible pro-
duction strategy is defined as a production strategy w ∈W
where the total production rate from the n producers satis-
fies the following constraint for all t ≥ 0:

n∑
i=1

wi(t)fi(Ri(t)) = min{K(t),
n∑

i=1

fi(Ri(t))}. (5)

Moreover, we let W ′ ⊆ W denote the class of admissible
strategies.

We observe that by applying an admissible production
strategy, the total production rate is kept at the maximum
level K(t) as long as this is possible. Moreover, when it is
not possible to satisfy the demand, we have wi(t) = 1, i =
1, . . . , n. When trying to find the best production strategies,
only admissible strategies will be considered.

3 ZERO INFLOW – CONSTANT DEMAND
In this section we consider a simplified problem where we
assume that K(t) = K for all t ≥ 0. That is, the total en-
ergy demand from the consumers is constant. Moreover,
we assume that for an indefinite periode, starting at time

t = 0, the energy inflow to the reservoirs is zero. Finally,
we assume that the total production capacity at time t = 0
satisfies:

n∑
i=1

fi(Ri(0)) > K. (6)

Thus, at least in the beginning of the period under consid-
eration, the total production capacity satisfies the demand.
In this case we can introduce the concept of the plateau
length for a given production strategy w ∈ W ′ defined as

T = T (w) = sup{t ≥ 0 :
n∑

i=1

fi(Ri(t)) ≥K}. (7)

The objective is to find a production strategy which maxi-
mizes T .
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Figure 1: Energy production illustrated as a path.

In order to analyse this problem, we introduce the fol-
lowing set:

M = {R ∈ (R+)n :

n∑
i=1

fi(Ri) ≥K}. (8)

Thus, the setM is the set of reservoir states where the de-
mand can be satisfied by the total potential production rate.
The situation is illustrated in Figure 1 in the 2-dimensional
case, i.e., where n = 2. The gray region in the figure is the
setM.

By combining (1) and (8) it follows that any point R ∈
M satisfies the following equation:

n∑
i=1

min(aiRi, bi) ≥K. (9)

This inequality can be expanded to a set of (2n − 1) non-
trivial linear inequalities, each of which defines a halfspace
in Rn, and the setM is an n-dimensional convex polytope
obtained as the intersection of all these halfspaces.
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We illustrate this for the case where n = 2 and where
we have simplified the model so that a1 = a2 = a. In this
case the condition (9) can be expanded to the following
four inequalities:

aR1 + aR2 ≥K, (10)

aR1 + b2 ≥K, (11)

b1 + aR2 ≥K, (12)

b1 + b2 ≥K. (13)

Here the last inequality, (13), which do not depend on the
states of the reservoirs, is trivially satisfied by the assump-
tion (6). Moreover, the inequalities (10), (11) and (12) can
be rewritten as:

R1 +R2 ≥
K

a
, (14)

R1 ≥
K − b2
a

, (15)

R2 ≥
K − b1
a

. (16)

In Figure 1 the border of the setM is composed by three
straight lines corresponding to the inequalities (14), (15)
and (16). In particular, the condition (14) corresponds to
the halfspace on the upper right-hand side of the diago-
nal line through the points (K/a,0) and (0,K/a). More-
over, the condition (15) corresponds to the halfspace on
the right-hand side of the vertical line through the point
((K − b2)/a,0), while the condition (16) corresponds to
the halfspace above the horizontal line through the point
(0, (K − b1)/a). The setM is the intersection of all these
halfspaces.

At time t= 0, it follows by (6) that the state of the reser-
voirs, given by the point R(0) is somewhere in the interior
ofM. As the energy is produced, the state of the reservoirs
moves along a path towards the origin. This path is illus-
trated in Figure 1 by the dashed line. As long as the state
is insideM it possible to satisfy the energy demand. How-
ever, eventually, at the point of time T , the path reaches the
border ofM, and then leaves this set. At time T we know
that the total produced energy is equal toKT . On the other
hand this energy can also be expressed as the sum of re-
duction in energy stored in the n reservoirs. Thus, we have
the following equation:

n∑
i=1

Ri(0)−
n∑

i=1

Ri(T ) =KT. (17)

By (17) it follows that maximizing the time T is equiv-
alent to minimizing the remaining energy at time T , i.e.,∑n

i=1Ri(T ). Finding a candidate for the optimal point
R(T ) can be found by solving the following linear opti-

mization problem:

Minimize:
n∑

i=1

Ri,

subject to:
n∑

i=1

min(aiRi, bi) ≥K

and: Ri ≥ 0, i = 1, . . . , n.

Note that if bi ≥K for some i, all linear inequalities involv-
ing bi are trivially satisfied, and can be eliminated form the
set of inequalities. In particular, if bi ≥K for i = 1, . . . , n,
the only non-trivial inequality is:

n∑
i=1

aiRi ≥K

In this case it can easily be shown that the optimal strategy
is to use a socalled strict priority rule where we allocate as
much demand as possible to the producer with the lowest
ai. Then we move on to the producer with the second low-
est ai and allocate as much of the remaining demand to this
producer, and so on.

Another special case of interest is the one where a1 =
· · · = an = a. As the ais are chosen according to some
perhaps common policy, this case is not as unrealistic as
it may seem. In this case one of the inequalities can be
written as:

n∑
i=1

Ri ≥K/a. (18)

Since the objective is to minimize
∑n

i=1Ri, it follows that
any point inM such that

∑n
i=1Ri = K/a is optimal. By

(6) it follows thatM must contain at least one such point.
In fact there will in general not be a unique optimal solution
in this case. Moreover, for this case we get by using (17)
that:

n∑
i=1

Ri(0)−
n∑

i=1

Ri(T ) =
n∑

i=1

Ri(0)−K/a =KT.

Thus, the maximal plateau length is given by:

T =K−1
n∑

i=1

Ri(0)− a−1 (19)

Note that the expression for T does not depend on the bis.

Now, it should be emphasized that the solution to the
linear optimization problem only results in possible candi-
dates for the optimal solution. Due to all the restrictions on
the production it may not be possible to find a path which
hits the optimal point R(T ) on its way out of the setM.
Thus, the best one can do is to manage the production so
that the point where the path leaves the setM is as close
as possible to an optimal point.

We illustrate this by considering the example shown in
Figure 1. In this case the set of optimal points consists of

3



the line segment between the points A and B. By (6) it
follows that b1 + b2 >K. However, if b1 + b2 =K + ε for
some small number ε > 0, the points A and B will be very
close to each other. Depending on the initial state R(0), it
may or may not be possible to reach a point betweenA and
B.

It is easy to see that the coordinates ofA andB are given
by:

A = (
b1
a
, max(0,

K − b1
a

)),

B = (max(0,
K − b2
a

),
b2
a
).

In particular, if we assume that bi <K, i = 1,2, we obtain
the following simplified coordinates:

A = (
b1
a
,
K − b1
a

),

B = (
K − b2
a

,
b2
a
).

We now argue heuristically, and consider a point C in the
middle of the line segment between A and B. Thus, C has
coordinates:

C = (
K − b2 + b1

2a
,
K − b1 + b2

2a
).

In order to maximize the chance of hitting the line segment
between A and B, we aim at the point C. This done by
partitioning the space using the straight line through the
origin and the point C. The slope of this line, denoted ρ, is
given by:

ρ =
K − b1 + b2
K − b2 + b1

.

At any point of time t ∈ [0, T ], we consider the state of the
reservoirs, (R1(t),R2(t)). If R2(t)/R1(t) < ρ, this means
that the state is below the line trough C. Thus, in order to
get closer this line, we need to prioritize Producer 1. That
is, we allocate as much of the energy demand as possible
to Producer 1. If on the other hand R2(t)/R1(t) > ρ, this
means that the state is above the line through C. Thus, in
order to get closer this line, we need to prioritize Producer
2. Thus, this case we allocate as much of the energy de-
mand as possible to Producer 2.

We now consider a specific numerical example where
we let K = 14, a = 0.1, b1 = 14 and b2 = 10. We notice
that b1 =K. Thus, as long as aR1(t) ≥K, Producer 1 can
actually produce enough to satisfy the demand. We then
calculate the ratio ρ as:

ρ =
14− 14 + 10

14− 10 + 14
=

10

18
≈ 0.556.

The initial states of the reservoirs are assumed to be
R1(0) = 400 and R2(0) = 350. Thus, R2(0)/R1(0) =
350/400 = 0.875 > ρ. According to the heuristic strategy,
we should start out by giving priority to Producer 2, at least
initially.
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Figure 2: Total production using correct strategy (green
curve) and incorrect strategy (red curve).

In Figure 2 we have plotted the total production rate as
a function of time given that the heuristic strategy is used.
As a comparison we have also plotted the corresponding
results given that we use a strategy where the priorities are
reversed. Thus, using the reversed strategy we will start out
by giving priority to Producer 1 instead. The green curve
represents the correct strategy, while the red curve repre-
sents the incorrect strategy. We observe that by using the
correct strategy, we are able to satisfy the demand for a
much longer period. By using the formula for the plateau
length (19), we get that:

T =
1

14
(400 + 350)− 1

0.1
≈ 44

It turns out that by using the correct strategy the plateau
length is indeed exactly 44. Thus, we know that this strat-
egy is optimal in this case. If on the other hand the incorrect
strategy is used, the plateau length is just 31.
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Figure 3: Production from Producer 1 (red curve) and Pro-
ducer 2 (green curve) using incorrect strategy.

In Figure 3 we have plotted the production from the two
producers using the incorrect strategy. The red curve repre-
sents Producer 1 while the green curve represents Producer
2. As a consequence of using the incorrect strategy, Pro-
ducer 1 is given priority in the beginning. Since b1 = K,
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Figure 4: Production from Producer 1 (red curve) and Pro-
ducer 2 (green curve) using correct strategy.

Producer 1 is initially able to satisfy all the demand. Thus,
in this phase Producer 2 is completely idle. However, as the
reservoir of Producer 1 is reduced, it eventually becomes
necessary to activate Producer 2 as well. This happens at
about t= 20. This way it is possible to statisfy the demand
for some time. However, at t = 31 Producer 2 reaches the
maximum production b2 = 10, and then it becomes impos-
sible to satisfy the demand.

In Figure 4 we have plotted the production from the two
producers using the correct strategy. Again the red curve
represents Producer 1 while the green curve represents Pro-
ducer 2. According to the correct strategy, one should start
out by giving priority to Producer 2, and let Producer 1
cover the remaining demand. As a result the state vector R
approaches the straight line from the origin and through C.
As soon as the stat vector hits this line, the strategy fluc-
tuates between giving priority to Producer 1 and Producer
2. This way the state eventually approaches the point C,
which results in an optimal performance.

Note that the fluctuations in the production is a result of
alternating between two extreme priorities. When the state
is close to the straight line through C, one would normally
use a more balanced approach and thus avoid these fluctua-
tion. Still from a consumer’s point of view, the result is the
best one could hope for.

4 INFLOW AND DEMAND MODELS
In this section we introduce some possible models for rep-
resenting the inflow of energy to the producers and the
changing demand from the consumers. In a real-life appli-
cation these models should of course be fitted using avail-
able data. Statistical methods, however, are not within the
scope of the present paper. Instead we focus on models
which capture the essential aspects of energy systems. All
models are expressed as discrete time models, where the
discrete time unit is a day.

4.1 Inflow models
We introduce two inflow models, one for rain and one for
wind. The rain inflow model takes into account that there
will be many days without any rain at all. Moreover, for a
given rainy day, the amount of rain varies a lot. In order

to capture these aspects we use a compound Markov chain.
That is, we introduce a time-homogenous Markov chain
{Xm}m>0, with state space {0,1}, and where Xm = 1 if
it rains on the mth day, and zero otherwise, m = 1,2, . . ..
The transition matrix of the chain is:

P =

[
p00 p01
p10 p11

]
,

where pij = P (Xm+1 = j|Xm = i) ∈ (0,1), i, j = 0,1.
The steady state probabilities of this very simple chain, de-
noted π0 and π1 respectively, are easily found as:

π0 = P (Xm = 0) =
p10

p01 + p10
,

π1 = P (Xm = 1) =
p01

p01 + p10
.

In order to model the amount of rain we introduce the
process {Ym}m>0, where Ym denotes the potential amount
of rain on the mth day, given that Xm = 1, m = 1,2, . . ..
The actual amount of rain on the mth day can then be ex-
pressed as the product Xm · Ym, m = 1,2, . . ..

The {Ym}m>0-process is modelled as a transformation
of a Gaussian process. That is, for suitable non-negative
and non-decreasing functions φ1, φ2, . . ., we may write
Ym = φm(Vm), m = 1,2, . . ., where {Vm}m>0 is a se-
quence of standard normally distributed variables such that
Cov(Vm+1, Vm)) = c, m = 1,2, . . .. Such a Gaussian pro-
cess is easily constructed as follows: LetU1,U2, . . . be a se-
quence of independent standard normally distributed vari-
ables. We then define:

V1 = U1,

Vm+1 = cVm +
√
1− c2Um+1, m = 1,2, . . . .

More specifically, in cases where there is no seasonal
variations in the potential amount of rain, we may e.g.,
choose:

φm(Vm) = φ(Vm) = exp(µ+ σVm), m = 1,2, . . . .

As result Ym becomes lognormally distributed with:

E[Ym] = exp(µ+ σ2/2),

SD[Ym] = exp(µ+ σ2/2)
√
exp(σ2)− 1,

for m = 1,2, . . ..

The wind inflow model can usually be expressed in a
simpler fashion as it rarely happens that there is no wind
at all on a given day. Thus, for the wind inflow model we
simply use another transformation of a Gaussian process.

4.2 The demand model
In most locations a demand model needs to incorporate
some degree of seasonal effects. An easy way to do this is
to use a multiplicative model where the demand on themth
day, denotedDm is expressed as a productDm = Sm ·Zm,
m = 1,2, . . .. Here {Sm}m>0 is a deterministic periodic
process, while {Zm}m>0 is another transformation of a
Gaussian process.

5



5 NUMERICAL EXAMPLES
In this section we will illustrate the proposed approach by
some numerical examples. We start out by extending the
example considered in Section 3. That is, we consider the
example with the two producers, Producer 1 and 2 where
the parameters of the PPR-functions are a = 0.1, b1 = 14
and b2 = 10. We also use the same initial reservoir states,
i.e., R1(0) = 400 and R2(0) = 350.

As in Section 3 we start out by considering a case with
a constant demand of K = 14. In this case, however, we
include inflow for the two producers using the models de-
scribed in Subsection 4.1. We assume that both producers
have water reservoirs, and that the rain inflow model will
be used in both cases.

We let the transition matrix for the Markov chain asso-
ciated with both producers be:

P =

[
0.9 0.1
0.5 0.5

]
.

Thus, the steady state probabilities for both Markov chains
are:

π0 = P (Xm = 0) =
p10

p01 + p10
=

0.5

0.1 + 0.5
=

5

6
,

π1 = P (Xm = 1) =
p01

p01 + p10
=

0.1

0.1 + 0.5
=

1

6
.

Thus, the reservoirs are on average exposed to rain one out
of six days.

The covariance parameter c, representing the correlation
between the Gaussian variables, is chosen to be 0.7. Note
that this implies that the logarithmic correlation between
the amount of rain in two consecutive days with rain is 0.7.
In cases where there are several days without rain between
two days with rain, the logarithmic correlation between the
amount of rain is much lower.

Concerning the transformed Gaussian processes, we let
{V r

m}m>0 denote the gaussian process associated with the
rth producer, r = 1,2. Moreover, we let φr denote the
transformation for the rth producer, and assume that:

φr(V r
m) = exp(µr + σrV r

m), m = 1,2, . . . ,

where µ1, µ2, σ1 and σ2 are chosen such that:

E[Y 1
m] = 45.0 and SD[Y 1

m] = 9.0

E[Y 2
m] = 30.0 and SD[Y 2

m] = 6.0.

In a situation with inflow, we also need to include restric-
tions on the maximum amount of energy that can be stored
in a reservoir. Whenever the amount of energy stored in
a reservoir reaches this level, the surplus energy needs to
be removed. Typically this implies that the water is let out
into a river without running through the power plant. Dur-
ing the simulations we will keep track of this energy loss.
We letM r denote the maximum amount of energy that can
be stored in the reservoir of the rth producer, r = 1,2, and
assume that M1 = 600 while M2 = 500.

While the production strategies considered in Section 3
were intended to be used in systems with zero inflow, we
will still use the same strategies in the case with positive
inflow as well and compare the results.

We are now ready to run a simulation using the speci-
fied models. Since the inflow models include uncertainty
we need to run a Monte Carlo simulation where the same
model is simulated many times. More specifically, we run
N = 10000 simulation of the system. In each simulation
we monitor the system over a period of 3600 days.
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Figure 5: Average total production using correct strategy
(green curve) and incorrect strategy (red curve).
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Figure 6: Average missing energy production using correct
strategy (green curve) and incorrect strategy (red curve).

The resulting average production using the two strate-
gies are shown in Figure 5. We observe that using the cor-
rect strategy the average production appears to stabilize
around 13.7 per unit time which is about 98% of the total
demand. On the other hand if the incorrect strategy is used,
the average production appears to stabilize around 13.1 per
unit time which is about 94% of the total demand. In Figure
6 we have plotted the average missing energy production
for the two strategies. We see that the curve for the incor-
rect strategy is significantly higher than the curve for the
correct strategy. Thus, we conclude that the best strategy
for the case with no inflow appears to perform best in the
case with inflow as well.
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Figure 7: Average total energy loss using correct strategy
(green curve) and incorrect strategy (red curve).

In Figure 7 we have plotted the average total energy loss
as a result of surpluses in the reservoirs. Again the correct
strategy performs better with an average loss of about 1.3
per unit time compared to the incorrect strategy with an
average loss of 1.9 per unit time.
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Figure 8: Average reservoir levels for Producer 1 (red
curve) and Producer 2 (green curve) using incorrect strat-
egy.

The difference between the two strategies is also very
evident when we compare the average reservoir levels for
the two producers. See Figure 8 and Figure 9. We see that
by using the incorrect strategy, the average reservoir levels
for Producer 1 and 2 are respectively 94 and 325. The cor-
responding average levels using the correct strategy are re-
spectively 370 and 260. We recall that the incorrect strategy
gave priority to Producer 1. As result the average reservoir
level for Producer 1 is much lower compared to the level
using the correct strategy. We also observe that the correct
strategy tends to obtain a much better balance between the
reservoir levels for the two producers.

We now extend this example further by including a
stochastic demand. This is done by using the multiplica-
tive model described in Subsection 4.2. More specifically
we let process {Sm}m>0 follow a sine curve with period
360 days, mean value equal to the constant K = 14, and

0 600 1,200 1,800 2,400 3,000 3,600

450

410

370
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290

250

Figure 9: Average reservoir levels for Producer 1 (red
curve) and Producer 2 (green curve) using correct strat-
egy.

amplitude 6. Moreover, for the process {Zm}m>0 we use a
transformation of a Gaussian process with correlation 0.7.
Again we use an exponential transformation so that the re-
sulting process is a sequence of lognormally distributed
variables with mean value 1 and standard deviation 0.2.

0 600 1,200 1,800 2,400 3,000 3,600
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Figure 10: Average total production using correct strategy
(green curve) and incorrect strategy (red curve).

The results are shown in Figure 10 and Figure 11. We see
that the correct strategy performs significantly better than
the incorrect strategy in this case as well. The average total
production is higher using the correct strategy compared to
the incorrect strategy, at least in periods where the demand
is high. Similarly the average missing energy production is
lower using the correct strategy compared to the incorrect
strategy.

Finally, we include an example where we add a third
producer based on wind power. For this producer the in-
flow is modelled using the wind inflow model applying an
exponential transformation of the Gaussian process. Thus,
we again get a sequence of lognormally distributed vari-
ables. For this producer the mean value is 4.0 and the stan-
dard deviation is 1.0. Since wind energy cannot easily be
stored, we assume that there is no reservoir for this pro-
ducer. Due to the lack of a reservoir, we assume that this
producer is given priority before the other producers. In or-
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Figure 11: Average missing energy production using cor-
rect strategy (green curve) and incorrect strategy (red
curve).

der to prioritize between the producers with reservoirs, the
strategies from the previous examples are used once again.

0 600 1,200 1,800 2,400 3,000 3,600

20

16.5

13

9.5

6

2.5

Figure 12: Average total production using correct strategy
(green curve) and incorrect strategy (red curve).
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Figure 13: Average missing energy production using cor-
rect strategy (green curve) and incorrect strategy (red
curve).

The results are shown in Figure 12 and Figure 13. With

a third producer available, the average available produc-
tion capacity is almost equal to the average demand. When
the correct production strategy is used, the average missing
energy production is almost zero. Thus, we conclude that
the correct strategy performs much better than the incorrect
strategy in this case as well.

6 CONCLUSIONS
In the present paper we have introduced various models
for producers and consumers in an energy system. By con-
sidering a simplified problem with zero energy inflow and
constant demand we have identified a reasonable produc-
tion strategy. For the simplified case this strategy is in fact
optimal. In the more realistic case with energy inflow and
stochastic demand, the strategy still performs very well.
The same holds true if we introduce a third producer with
no reservoir. Finding an exact optimal production strategy
in the general case is a very difficult problem. Thus, having
a reasonable candidate is always useful.

All the calculations are carried out using software imple-
mented in java where all the producers and consumers are
implemented as independent objects interacting with each
other. This methodology is very well suited for analysing
the complexity of large scale energy systems.

Future work in this area includes a closer investigation of
the performance of the identified strategy in more general
settings, as well as models where energy prices and power
grid infrastructure is taken into account.
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