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ABSTRACT

The Next Generation Transit Survey (NGTS) is an ongoing wide-field exoplanet transit survey at ESO
Paranal Observatory, Chile. It is searching for Neptune and super-Earth size planets around nearby
stars using 12 robotic telescopes covering a total field of view of 88.8 deg2 on the sky. The instruments
are optimised for sensitivity to stars of spectral type K and early-M, and the experiment will provide
prime targets for further characterisation with current and future instruments. We have analysed NGTS
photometry from 30 fields observed during its first year in operation to assess the achieved photometric
precision. We build a white noise model to estimate the level of systematic (red) noise in the photometry,
and find a median red noise level of 0.82±0.10 mmag in our fields over their full observing season. We
develop an automated way of detecting variable stars using our noise model, and find 1245 (1.31%)
variable stars at high confidence. Their periods are found with an implementation of the generalised
Lomb-Scargle periodogram, and we find a 71% matching rate with known variables in our fields from
variable star catalogues. Excluding known variables, we discover ∼900 new variable stars that include
rapid pulsators (δ Scuti, RR Lyrae), short-period eclipsing binaries, Cepheids, and semiregular variables.
We also find an overdensity of variables at periods of 10–30 days at amplitudes of less than 1%, which
we find is consistent with main sequence rotation periods for our target stars. If confirmed in future
studies, this would be the first time a wide-field survey has been able to detect these signals, opening up
new studies on stellar evolution of low-mass stars from the ground.
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Thesis overview

This thesis is structured in the following way:

Chapter 1 We give a brief historical introduction to transiting exoplanet surveys in the context of
NGTS. Next, we go through important considerations to take into account when designing a transit
survey. We give an introduction to charge-coupled devices (CCDs) and noise sources in astronomical
images. Finally, we introduce some types of variable stars that will be important for the remainder of this
work, and show their example lightcurves.

Chapter 2 We introduce the Next Generation Transit Survey (NGTS), which is is the experiment that
this thesis is built on. We present its characteristics, science goals, and important pipeline data reduction
steps. Finally we give a brief summary of the status during its first year of operations.

Chapter 3 The data processing and analysis techniques that were used in this work are introduced and
explained in detail. We present our noise model, and our method of using our noise model to identify
variable stars. We further describe our method of finding the dominant period in these variables, and
compare our results to catalogued variable stars with known periods.

Chapter 4 Here we present our results from analysing the noise levels from 30 fields observed with
NGTS durings its first year and a half. We discuss noise-related issues , and present numbers and
parameters on our variable star findings. Finally, we present some example lightcurves from our identifed
variable stars to showcase the precision of NGTS photometry.

Chapter 5 We discuss the overall results and issues that we faced throughout this study. In particular,
we review limitations of our methods and the data, and suggest solutions for improvements. We connect
our noise findings in the context of planet yield simulations for NGTS. Finally, we suggest future avenues
that can build on this work, before concluding with our findings.
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CHAPTER 1

Wide-field astronomy

We are the middle children of history. Born too late to explore
the Earth, born too early to explore the Galaxy.

Unknown

1.1 Introduction

Astronomy is truly a unique science, being one of few sciences that naturally sparks an interest and
curiosity in the general population. One reason for this is the important role astronomy has played
throughout human history. Needing only eyes to observe the heavens, humans have, for as long as we
can remember, gazed upon the stars and found themselves contemplating our existence. Prompting such
questions as: “How did we come to be?” and “Are we alone?”. In addition to inspiring philosophical
discussions, astronomy was a major driving force behind the scientific revolution in the 16th century,
fuelled in particular by historical people such as Copernicus, Kepler, Tycho Brahe, Newton, and Galileo.
These scientists were behind deriving some of the most fundamental theories used in astronomy and
astrophysics today which describe the interplay between planetary motion in elliptical orbits and the law
of gravity. In particular, Galileo built a high-magnification refracting telescope with which he observed
Venus. He discovered that the planet has phases similar to the Moon, which depend on Venus’ orbit
around the Sun, delivering a big blow to the geocentric model.

With his state-of-the-art telescope, Galileo also studied Jupiter and discovered four of its largest moons.
Through systematic observations, he made great contributions to our knowledge of the Solar System,
and most importantly laid the foundation for observational astronomy. The next several hundred years,
humans developed better and bigger telescopes and raised observatories in most major cities in Europe.
The invention of photographic plantes in the 19th century made it possible for astronomers to record the
images they were seeing. However, these early detectors suffered from low quantum efficiences (QE) of
roughly 10%. A new revolution in observational astronomy began with the invention of charge-coupled
devices (CCDs) in 1969. Unlike photographic plates, early CCDs could detect over 90% of near-infrared
to ultraviolet light that reached the chip, which was a major improvement. Furthermore, the CCD converts
measured voltages to digital numbers on a computer, which greatly simplified astronomical observations.
Advancements made in technology and computers enabled astronomers to observe larger patches of the
sky at once instead of doing targeted observations. These wide-field observations would generate much
more data than was previously thought possible, and opened up the concept of time-domain astronomy.
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Chapter 1 Wide-field astronomy

These advancements would be important for a new research field in astronomy that was just about to
emerge.

Approaching the mid 90s, a Swiss graduate student at Geneva Observatory was observing a sample of
stars to measure their radial velocity (RV) from observing the Doppler shift of stellar absorption lines.
For one particular star, Peg 51, the signal was varying periodically at low amplitudes. Convinced there
was an error in his computer code or some systematic noise in the experiment, Didier Queloz set out
to scrutinise every part of the coralie spectrograph and his computer code. Still after double and triple
checking everything, the signal persisted. He had found the first extrasolar planet around a Sun-like
star, with the signal being consistent with a Jupiter-mass object at a 4.2 day orbital period (M. Mayor
and D. Queloz, 1995). The presence of such a planet unlike anything we have seen in our Solar System
baffled planet formation theorists, and was difficult to accept in the scientific community. The findings
were confirmed by a different group, and in the following years, radial velocity surveys were carried out
to look for other worlds. At the turn of the millenium, dozens of giant planets in short orbits around their
star had been found. Astronomers had become more accepting of the idea these strange worlds, and the
research area of exoplanets (short for extrasolar planets) was born.

Towards the end of the 90s, astronomers had realised that if a giant planet was to transit the disc of the
star as seen from the observer, it would slightly dim the brightness of the star, enough to be detected with
current technology. They began the search for these transit signals around planet-hosting systems known
from RV measurements, and the first transiting planet was found to be a 1.27RJup around a 1.1RSun star,
which produced a 1.5% signal in the lightcurve. Knowing the transit detection method had worked,
astronomers began to plan wide-field surveys that could detect them efficiently. From geometrical
considerations, they knew that the probability of a transit in a planet-hosting system was around 5%,
depending star-planet separation, which meant they had to monitor thousands of stars simultaneously for
it to be efficient. Several pioneering transit surveys are worth mentioning in this regard. One was the
Hungarian-made Automated Telescope (HAT; G. Bakos et al. 2004), which later extended to a network of
telescopes (HATNet). By September 2016 it had discovered 60 giant planets in close orbits to their star.
The Wide Angle Search for Planets (WASP; D. L. Pollacco et al. 2006), later extended to SuperWASP,
followed in the same footsteps of detecting giant planets and has found 132 giant planets since the start of
its science observations in the early 2000s. The first space telescope that was partly focused on exoplanets
was the CoRoT mission, which made the first discovery of a super-Earth sized planet (A. Léger et al.,
2009).

Across the Atlantic at NASA, astronomers wanted to build a space telescope to look for Earth’s twin,
and get a statistical census of the occurence rates of small planets, since observations from the ground
were limiting detection of sub-Jupiter size planets. The Kepler spacecraft (W. J. Borucki et al., 2010)
was launched in 2009, and has since then become the most successful exoplanet mission. By February
2017 it has 2330 confirmed planet detections, with another 4706 planet candidates. The Kepler mission
found that giant planets are not that common in our Galaxy, while Neptune and super-Earth sized planets
are found around more than 50% of stars. Furthermore, planets were preferentially found around smaller
stars than our Sun. Despite its enormous success, one problem with the Kepler planets was that most of
them were orbiting host stars that were several hundred and even thousand light years away, thus being
very faint. This makes a large fraction of Kepler planets ineligible for radial velocity follow-up to get the
mass of these planets. Most of these planets are also difficult to characterise by studying their atmosphere
during transit (transmission spectroscopy), as the signal-to-noise ratio can be unforgiving.

After Kepler, the exoplanet community had realised that if they want to study these foreign planets in
more detail and potentially address questions regarding habitability, they would have to focus on bright,
nearby stars that were suited for follow-up observations. The Transiting Exoplanet Survey Satellite
(TESS; G. R. Ricker et al. 2014), scheduled launch in early 2018, is an all-sky transit survey space

2



1.2 Transit survey design

mission designed to find planets around nearby stars that make follow-up and atmospheric characterisation
possible. However, some astronomers believed that this can be achieved from the ground, which would
keep the costs at a fraction of what sending a telescope to space would cost. The scientific outcome
from Kepler allowed astronomers to re-design transit surveys, optimised to look for smaller planets
around smaller stars that are bright enough for follow-up radial velocity and atmospheric characterisation.
These would be near-ubiquitous, given that their sub per-cent signal could be detected. Building on
the experience from previous ground-based transit surveys, astronomers from universitites in the UK,
Geneva, and Berlin, designed an exoplanet experiment that would be optimised for these targets, and
would be capable of detecting signals less than 1/1000 from the ground. With these principles in mind, the
Next Generation Transit Survey (NGTS) was built. NGTS is currently in its second year of operations,
observing with 12 telescopes from the Chilean Paranal desert. Each telescope is observing a field for 3–4
months, covering a total sky area of 88.8 deg2. The survey has already gathered several terrabytes (TB)
of end-product data, which has been the subject of study in this work.

Wide-field surveys with long-term observations of stars in search for exoplanets opens up possibilities
for exciting secondary science, for example focused on variable stars or asteroseismology. The bulk of
this work is focused on the photometric performance of NGTS during its first year of science observations,
while a smaller part is focused on exploring some early science on variable stars observed with NGTS.
This Chapter will give an overview of what drives the design of transit surveys, explain key challenges, and
review common noise sources in photometric experiments. Finally we will briefly review the taxonomy
of variable stars, which will provide a context for new variable star discoveries in this work. The bulk
of the derivations and results in this Chapter follows the book Transiting Exoplanets by C. A. Haswell
(2010).

1.2 Transit survey design

The idea behind the transit technique is rather simple; when a planet passes in front of the disc of a star
along our line of sight, it will block out a fraction of the light of the star as seen from the observer. The
search for transiting exoplanets thus refers to the search for periodic dips in the brightness of a star. As we
will see later, there are several false alarms that can produce similar brightness dips, both astrophysical
and noise-related, and the real challenge becomes vetting the transiting candidates for bona fide planets.

Although there is a surprising amount of science one can extract from transiting planets alone, a planet
can never be fully characterised without follow-up observations through radial-velocity measurements
of the host star. Wide-field observations also require targeted photometric follow-up to rule out false
planetary signals. Transit surveys are also inherently biased towards larger planets in close orbits around
their host star, as will be shown below.

1.2.1 General considerations

Transit depth

One of the fundamental properties one can extract from a transiting planet is an estimate of its size
relative to its host star. The dip in brightness of the star during the transit can be estimated as the fraction
of the disc covered by the planet:

∆F
F

=
R2

p

R2
∗

, (1.1)
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where F is the out-of-transit flux from the star, ∆F is the change in flux during transit, and Rp and R∗ are
the radii of the planet and star, respectively. Let us for a moment imagine aliens observing our own Sun,
looking for transiting planets. Earth transiting the Sun would cause a dip

∆F
F

=
R2
⊕

R2
�

=

(
6.4 × 103 km
7.0 × 105 km

)2

= 8 × 10−5,

a signal less than 0.1%. A transit of Jupiter, on the other hand, would produce a dip

∆F
F

=
R2

J

R2
�

=

(
7.0 × 104 km
7.0 × 105 km

)2

= 1 × 10−2,

a signal of 1%. Signals such as the latter are easy to detect with current technology. In fact, the first
transiting exoplanet, around the star HD 209458, was observed already in 1999 (D. Charbonneau et al.
2000; G. W. Henry et al. 2000); a gas giant with Rp = 1.27 RJ (at the time) around a Sun-like star with
{R∗,M∗} = {1.1 R�, 1.1 M�}, producing a transit signal of about 1.5% in an approximate Johnson R band.
As a rule of thumb, giant planets will cause a ∼1% signal, while a terrestrial planet will cause a ∼0.1%
signal.

It is clear then that in order to search for Earth-like planets around Sun-like stars, one needs a higher
precision than what is achievable from the ground. Even at the best observatories in the world with the
most favourable seeing, the varying transparency of the atmosphere will simply smear out the signal
before reaching the needed precision. Thus the rationale behind the Kepler mission; an attempt to
probe the occurence rates of Earth-size planets from space, escaping the problem of Earth’s atmosphere.
Perhaps the most significant result from the Kepler mission was occurence rates of exoplanets of various
size, which helped shape the design of current and future transit surveys (F. Fressin et al., 2013).

From Eq. 1.1 we also notice that we can decrease the size of the host star in order to create a larger,
detectable signal for smaller planets. Indeed, the limitation of detecting smaller planets from the ground
can be circumvented by observing stars of spectral type K and early M. This is the type of stars that
NGTS is targeting to search for Neptune-sized planets and smaller. Focusing on these targets allows
NGTS to reach a precision of <1 mmag; the first wide-field survey to reach that kind of precision from
the ground. Thinking further along these lines sparked the idea of observing even lower-mass stars for
transiting planets, such as ultra-cool dwarf stars of spectral type late M and L, found at the bottom of
the main sequence. This sparked the SPECULOOS experiment (Search for Habitable Planets Eclipsing
Ultra-Cool Stars; M. Gillon et al. 2013), which is scheduled to start science observations in the second
half of 2017. The TRAPPIST-South telescope (Transiting Planets and Planetesimals Small Telescope)
at La Silla observatory in the Chilean Atacama Desert has observed a few dozens such stars, and already
from a very small sample found a planetary system with seven Earth-size planets around the M8 type star
TRAPPIST-1 with mass 0.08 M� (M. Gillon et al. 2016; M. Gillon et al. 2017, in press). The discovery
led to the first atmospheric characterisation of Earth-sized exoplanets in the habitable zone (J. de Wit et al.
2016), and opened up the study of a whole new population of exoplanets around ultra-low mass stars.

Transit probability

Another aspect that shapes the design of transit surveys is the probability of observing a transit. For a
transit to occur from an observer’s point of view, the orbital inclination, i, must be close to 90°, as shown
in Fig. 1.1. From Fig. 1.2 one can see that for the planet to transit the stellar disc the orbital inclination, i,
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a

i

ib

Figure 1.1: The distant observer views a transit with orbital inclination i. The distance a is the semi-major axis of
the orbit, which we assume to be circular.

a

a cos i
d(t)

R∗

Figure 1.2: Transit geometry from an observer’s point of view.

must satisfy

a cos i ≤ R∗ + Rp. (1.2)

In the case of the unit vector normal to the orbital plane, we notice that its projection onto the sky plane
is cos i, and is equally likely to take any value between 0 and 1. To find an expression for the transit
probability we need to integrate over all orbital inclinations that satisfy Eq. 1.2, divided by all possible
values of cos i. We substitute x = cos i and have that the geometric probability of transit is

P(transit) =

(R∗+Rp)/a∫
0

dx

1∫
0

dx

=
R∗ + Rp

a

≈
R∗
a
. (1.3)

Equation 1.3 thus highlights the strong bias of close-in planets around large host stars in transit surveys.
Note that expression above is the geometric transit probability, and does not take into account the
frequency of planets of a certain size. If we imagine an alien civilisation observing our Sun, applying
Eq. 1.3 to our own Solar System planets we have that the geometric transit probability is less than 1% for
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all our planets except Mercury (1.2%).

1.2.2 Scaling laws for the discovery of transiting exoplanets

At the end of this sub-section we would like to arrive at an expression that describes how the expected
planet yield scales with various factors that depends on the survey, planet, and star. The derivation of
these calculations are not important for the current work, but their result provides a relevant context to
the design of NGTS. Therefore we only include the important results, and refer the reader to Transiting
Exoplanets (C. A. Haswell, 2010) for details of the calculations.

Number of sources brighter than limiting flux

Astronomical equipment, such as the telescope design in transit surves, will have a limiting flux, S ,
below which sources are undetectable. We will then generally detect sources in the field of view with a
flux, F ≥ S . Considering a uniformly distributed population of stars with number density n0, all with
luminosity, L, there is a limiting distance, dmax, out to which the sources are detectable, given by

dmax =

( L
4πS

)1/2
. (1.4)

The number of sources brighter than the limiting flux, S , is then

N(S ) =
4πn0

3

( L
4πS

)3/2
∝ S −3/2. (1.5)

Transit duration

We need an expression for the transit duration, which can be calculated by considering the orbital period
and the fraction of the planet’s orbit for which the planet is in front of the star. We define two points,
V and W, in the planet’s orbit where the planet is passing in front of the disc, and leaving the disc,
respectively. Assuming that the radius of the planet’s orbit, a, is much larger than the radius of the star,
R∗, the arc from V to W, can be approximated as the distance between the two points, which is just 2R∗.
Further assuming a circular orbit, the transit duration is

Tdur = P ×
DV→W

arc

2πa
≈

P × 2R∗
2πa

=
PR∗
πa

, (1.6)

where DV→W
arc is the length of the arc from V to W, and P is the planet’s orbital period.

The signal-to-noise ratio

Whether detecting a transit or not is possible for an instrument depends mainly on the signal-to-noise
ratio (SNR) of the data. For faint star, the dominant source of noise is from the sky background. The
number of sky photons can written as

nsky = AQ ∆λσ2
FWHM lsky ∆t,

where ∆t is the duration of the observation; A is the light collecting area of the telescope (mirror area); Q
is the quantum efficiency (fraction of photons that actually excites electrons); ∆λ is the bandpass of the
instrument; σFWHM is the the point spread function (PSF) at FWHM; lsky is a property of the sky at the
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telescope location that describes the number of sky photons per pixel per unit area per unit wavelength
interval.

The PSF is a property of the instrument and describes how detected photons from a point source are
spread out on the CCD. Generally, a cross-section through the PSF is close to Gaussian, and it is therefore
quantified by the width of the best-fitting Gaussian function, σFWHM. The width of the PSF strongly
depends on how much the light is refracted on its path through the atmosphere. How much the light is
refracted is referred to as the seeing, which is usually less than 1′′. For transit surveys in particular, it is
more important to have a large sky coverage than to fully resolve the PSF of the seeing disc.

The statistical uncertainty in the number of photons, N, is determined by Poisson statistics, with
statistical fluctuation

√
N (see Section 1.3). The in-transit flux will dominate the uncertainty, as most of

the time is spent observing the flux out of transit. The noise is then

N ≈
√

nsky

≈

√
AQ ∆λσ2

FWHM lsky ∆t

≈

√
AQ ∆λσ2

FWHM lsky
PR∗
πa

. (1.7)

The signal we receive from the star during transit can be expressed as

S =
R2

p

R2
∗

AQ ∆λη
L∗

4πd2

λ

hc
PR∗
πa

exp (−Kd). (1.8)

Combining Eqs. 1.7 and 1.8 we have that the signal-to-noise ratio for one transit is

S
N
≈

R2
p

R∗

AQ ∆λ
ηλ
hc

PL∗
4π2ad2 exp (−Kd)√

AQ ∆λσ2
FWHM lsky

PR∗
πa

≈
R2

p

4(πR∗)3/2

(
AQ ∆λ P

lskya

)1/2
ηλL∗ exp (−Kd)

hcd2σFWHM
. (1.9)

Here λ is the mean photon wavelength; K is the interstellar extinction coefficient; d is the distance to
the star; η is an efficiency parameter that takes into account that some of the star’s flux falls outside the
bandpass, ∆λ. However, a requirement for a transiting planet candidate is repeated transits. If Nt transits
are observed, the noise is reduced by a factor

√
Nt. For ground-based observations, a minimum of three

transits are required to determine the orbital period due to being able to observe only during night. The
number of transit observed can be expressed as

Nt =
ξt
P
,

where ξ is the duty cycle: the fraction of time the survey is collecting data, and t is the elapsed time.
Finally we can write the signal-to-noise ratio for a given instrument and star with Nt transits:

S
N
≈

R2
p

4(πR∗)3/2

(
AQ ∆λ ξt

lskya

)1/2
ηλL∗ exp (−Kd)

hcd2σ2
FWHM

. (1.10)
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Survey volume and number of stars searched

In Eq. 1.4 we found the distance, dmax, to which a survey can detect sources. We only search a fraction of
this sphere, which is our field of view. Our field of view is the solid angle θ2, thus the volume we observe
is

V =
θ2

4π
4πd3

max

3
=
θ2d3

max

3
.

The sum of inidivdual shells within this volume is

V =

dmax∫
0

dV =

dmax∫
0

θ2

4π
× 4πr2 dr = θ2

dmax∫
0

r2 dr. (1.11)

In Eq. 1.5 we assumed that the density of sources was uniform. In our Galaxy, the stellar density varies
with Galactic longitude and latitude. The Galactic plane is at latitude b = 0. If we assume that the stellar
density is n0 in the Galactic plane, we can express the spatial variation in density as

n = n0 exp
(
−

h
H

)
= n0 exp

(
−

d |sin b|
H

)
, (1.12)

where h is the distance above the Galactic plane, and H is the scale-height of the density distribution of
stars. Bringing Eqs. 1.11 and 1.12 we have that the total number of stars surveyed is

Nstar = θ2

dmax∫
0

n(r) r2 dr

= θ2

dmax∫
0

n0 exp
(
−

r |sin b|
H

)
r2 dr. (1.13)

The number of transiting planets per star

One of the most important results from the Kepler mission was a statistical cencus of the occurence rates
of planets around stars. In particular, the mission sought to find ηEarth; the number of Earth-like planets
in the habitable zone per star in our Galaxy. From Kepler and other successful exoplanet surveys we thus
have an approximate function, αp(a,Mp), that describes the distribution of planet frequency as function
of semi-major axis, a, and mass, Mp. The average number will depend on the properties of the star. For
example, Jupiter-mass planets are found to be preferentially around metal-rich stars. The total number of
planets per star, ηp, will be an intergral over the two-dimensional (a,Mp) space:

ηp =

"
αp(a,Mp) da dMp. (1.14)

Note that only a fraction of these planets will transit their host star from our line of sight, as described in
Eq. 1.3.
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Bringing it all together

Now we can bring together the results from this subsection and look at how survey design affects the
number of planet discoveries. We have that the number of planets within our survey volume for stars of a
particular type is

Np = θ2ηpη0

dmax∫
0

exp
(
−

r |sin b|
H

)
r2 dr.

To obtain the number of transiting planets from these, we have to factor in the dependence of the geometric
transit probability on the semi-major axis. We therefore use the distribution of planet frequency, αp(a,Mp)
instead of the total number of planets per star. To simplify, we ignore the density variation and just
assume an average stellar density of a particular type, n. We then have

dNp,transit

da dMp
=
θ2d3

maxn
3

R∗
a
αp(a,Mp). (1.15)

Here we have assumed that the distribution of planet frequency is independent of distance.

We can define a limiting signal-to-noise ratio for which transits can be detected. The SNR decreases
with distance, so we are limited by a maximum distance, dmax, for stars of each spectral type. If we
denote the limiting SNR by LSN, we have

LSN ≈
R2

p

4(πR∗)3/2

(
AQ ∆λ ξt

lsky a

)1/2
ηλL∗ exp (−Kdmax)

hcd2
maxσFWHM

. (1.16)

From Eq. 1.16 we can get an expression for d3
max:

d3
max ≈

R3
p

8(πR∗)9/4

(
AQ ∆λ ξt

lsky a

)3/4  ηλL∗
hcσFWHMLSN

3/2

exp
(
−

3Kdmax

2

)
.

Substituting for d3
max in Eq. 1.15 we finally have

dNp,transit

da dMp
≈

θ2

24π9/4

(
AQ ∆λ ξt

lsky

)3/4  ηλ

hcσFWHM LSN

3/2

×
R3

p

a7/4αp(a,Mp) ×
nL3/2
∗ exp (−3Kdmax/2)

R5/4
∗

,

(1.17)

where the terms are dependent on the survey, the planet, and the star, in order. This equation can be
used to quantify the trade-offs between the various equipment choices. On the survey side, we notice
that the number of detected planets depends on θ2A3/4, meaning it is more important to have a larger
sky coverage than mirror size. On the other hand, high photometric precision is harder to achieve with
wider sky coverage. The WASP survey (D. L. Pollacco et al., 2006) was built for wide sky coverage
since the required photometric precision was just 1%, while NGTS is focused on high precision at the
cost of smaller sky coverage. The terms for the dependence on the planet and star also reinforce what
we discussed in Section 1.2.1; that we find more planets in close-in orbits around the host star, and
preferentially around smaller stars. These principles drove the design of NGTS.
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Planet haul

However, when evaulating the expected number of planets that a survey will discover, it is easier to take
a different approach. One such approach is to work from the limiting magnitude of a particular survey.
This further corresponds to a limiting signal-to-noise ratio for detecting a typical transit of the planet
sizes one is interested in. One can then simulate then simulate the expected planet yield by populating a
Galaxy with stars, following stellar models and statistics on spectral type distributions and binary systems.
These stars can further be populated with planets, following planet statistics mostly uncovered by Kepler
(F. Fressin et al. 2013; C. J. Burke et al. 2015; and references therein). Such yield simulations for NGTS
were carried out by M. N. Günther et al. (2017), finding that the small-planet yield of NGTS over its 4
year mission depends strongly on the level of systematic (red) noise that NGTS would ultimately be able
to reach. Another important factor in planet yield simulations is the detection of false positive planet
candidates. These are signals that mimick transit lightcurves, but originate from other astrophysical or
noise-related phenomena. Proper vetting criteria to identify bona fide planets are then important to not
waste telescope time on follow-up observations. As we will see in Section 1.4.3, there are a number of
astrophysical phenomena that can mimick a planetary transit.

1.3 Noise

1.3.1 CCD images

A charge-coupled device (CCD) is the most commonly used detector in visible and near-infrared light
astronomy. A CCD is made up of an insulator and silicon semiconductor. During an exposure, where the
chip is illuminated, a photon is absorbed by the silicon and will excite an electron to the conduction band,
which is localised in what we refer to as a “pixel”. The number of electrons accumulated in each pixel is
therefore (theoretically) linear with the number of photons multiplied by the quantum efficiency of the
CCD, which is usually very close to unity. Fig. 1.3 shows the structure of a CCD pixel viewed from the
side.

The electrons are captured in potential wells during exposure. After the exposure has ended, the
voltage in the pixels along a row of the CCD are varied using the three gates, which has the effect of
moving the electrons from one pixel to the other until it reaches the readout area, where it goes through
a preamplifier, amplifier, and finally an analogue-to-digital converter which converts the number of
electrons to analogue-to-digital units (ADU), related by the gain, G, which is in units of ADU/e−. The
charge transfer process is illustrated in Fig. 1.4.

By tracking the timing of reading out each pixel, the two-dimensional array can be reconstructed after
each row has been read, effectively forming an image of the sky that was observed. The raw image,
however, needs to be processed before any science can be done from it. There are several sources of noise
that will introduce electrons in the pixels that are not from the source itself, affecting the overall signal.
These are described further in Section 1.3.3. Many of these signals can be partially removed or mitigated.
Bias frames are taken at short exposure and subtracted from the science image. The science image is also
corrected for pixel sensitivity differences across the chip by dividing by an image taken while the CCD is
uniformly illuminated by white light, referred to as flatfield correction. Once the data has been properly
reduced, one can extract the flux from each individual star, referred to as aperture photometry. Circular
apertures of a few pixels in radius are placed at the centre of the star. The point-spread function (PSF)
of the system describes how photons from a point source are spread on the detector. The PSF is then
used to measure the total number of electrons that fall within the circular aperture, essentially giving the
flux of the star in the photometric band of the detector. A natural next step is to translate the positions
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Pixel 1 Pixel 2

A B C A B C

Gate

Silicon

Doped
silicon

Insulator

Electrons collect
at insulator-silicon
junction

Figure 1.3: An overview of the structure of a CCD pixel and the accumulated charge after an exposure.

of the pixels on the CCD to sky coordinates, which is done by fitting the image to a reference image of
the sky with astrometric position standards. The image needs to be corrected for the sky background
level by implementing an algorithm that estimates the photon count from the sky itself. Once a smooth
sky background level is found, it is typically subtracted from the science image. Several tools have been
developed to do this automatically, one such example being casutools from the Cambridge Astronomy
Survey Unit.

However, noise values that are subtracted from the science images in the data reduction are mean
values, and will have an uncertainty. This uncertainty is not removed in the data reduction, and is
propagated to the science image. These will contribute to the noise level of the data.

1.3.2 Statistical noise

After an observation, our data is in its simplest form

data = true signal + noise,

where the level of noise depends on various factors and originates from various sources. The statistical
fluctuation (error) from the counting of discrete independent events, such as the arrival of individual
photons on the CCD, or the number of electrons they excite, is determined by Poisson statistics. The
standard deviation from this counting of events is just

σ =
√

N,

where N is the number of detected photo-electrons.
Statistical (white) noise is typically characterised as following Gaussian statistics and will bin down

with the square root of the number of frames (observations) averaged together. White noise is typically
well understood and can originate from the object, instrument, sky background, and atmosphere. In
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Figure 1.4: Illustration of the charge transfer process during readout.

addition to white noise, any experiment may suffer from systematic noise with unknown origin. This
is commonly referred to as red noise, and can come from various systematic errors from the software,
instrument, or environment.

1.3.3 Statistical noise sources in CCD images

Read noise

Read noise is introduced into the image during the readout process after an exposure. The read noise is
usually found from bias images, where several averaged bias frames are subtracted from a target bias
frame, and the remaining noise is taken to be the readout noise. CCD manufacturers usually quote the
read noise level as a number of e− RMS, effectively giving the standard deviation around the mean pixel
value. Given a rms value R2

read, and aperture radius r, the read noise is

σread =

√
πr2 × R2

read =

√
npixR2

read, (1.18)

with npix being the number of pixels within the aperture.
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Dark current

Dark current frames are taken at the same cadence as the observations, but without the CCD being
illuminated. The temperature in the instruments themselves will sporadically introduce electrons into the
pixels. Dark current noise is typically negligible in most modern experiments as the detectors are kept
in a cold environment. However, for CCDs operating at near-IR wavelengths, dark current can still be
significant.

If the dark noise level is D, in units of e−/pixel/s, then the noise due to dark current is

σdark =

√
πr2 × D × texp =

√
npix × D × t. (1.19)

Shot noise

The uncertainty in the detected photons from the source itself is referred to as shot noise, or source
noise. If the source provides Rstar photo-electrons per second, then the total number of electrons collected
during an exposure is Rstar × texp. The error is then

σstar =

√
Rstar × texp. (1.20)

Scintillation noise

Scintillation, or twinkling, is the term for variations in the brightness of a star because the light is passing
through different layers of a turbulent atmosphere. The rms error due to the low-frequency component of
scintillation can be approximated as (D. Dravins et al., 1998)

σscint = 0.09 D−2/3 (sec Z)7/4 exp (−h/h0)
(2T )1/2 , (1.21)

where D is the aperture diameter in centimeters; sec Z is the airmass at the site; h is the observatory’s
height above sea level; h0 is the atmospheric scale height, h0 ' 8 000 m; T is the exposure time during an
observation. However, Eq. 1.21 was found after doing experiments in La Palma. J. Osborn et al. (2015a)
found correction factors for various locations of astronomical observatories.

Sky background noise

The sky background has an intrinsic brightness that will contribute to the image. The sky background is
typically subtracted from the final image, but the noise of the sky estimate will remain in the reduced
image. Given the photo-electron rate from the sky background, Rsky in units of e−/pixel/s, the statistical
uncertainty in the background level is

σsky =

√
πr2 × Rsky × texp =

√
npix × Rsky. (1.22)

1.4 Variable stars

Variable stars are stars that undergo brightness changes over time. Fig. 1.5 shows a non-exhaustive
variability tree for variable stars. There are generally two groups of variable stars, referred to by whether
the reason behind their variability is intrinsic to the star itself, or due to extrinsic factors.

13
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Pulsating variable stars change their brightness periodically due to continuous expansion and contrac-
tion of the star. These classes of variable stars mainly inhabit the instability strip on the Hertzsprung-
Russell (HR) diagram, as shown in Fig. 1.6. While pulsating, they will move up and down the strip,
changing spectral types periodically. The pulsation comes from variations in the rate at which the
radiation from the core of the star can escape. These stars are harmonic oscillators and can have more
than one period at which they oscillate. Eruptive variables are transient are typically massive stars with
high activity.

For extrinsic variables, eclipsing binary stars are a big class. The orbital planes of these double-star
systems can be oriented in such a way that they will periodically eclipse each other as seen from the
observer. Rotating stars generally encompass stars with high magnetic activity and strong magnetic fields.
Here we can also talk about regular main sequence stars that have spot-covered surfaces that lead to
low-amplitude brightness variations, which with NGTS’ precision, we will be able to pick up.

Variable stars

Extrinsic Intrinsic

Pulsating EruptiveEclipse Rotation

Figure 1.5: Variability tree showing the general groups of variable stars.

Here we present a few classes of variables that will be useful for this work. Their types follow
classifications from the General Catalogue of Variable Stars1.

1.4.1 Pulsating variables

Cepheids (CEP)

Cepheids are a type of radially pulsating, high luminosity variables. Their periods range from 1–135 days,
and amplitudes from 1–10 per-cent. While pulsating, their spectral type range from F at minimum to G-K
at maximum. Cepheids follow a strict relationship between the period of pulsation and its luminosity.
Because of this reason, Cepheids and other similar variables are used as distance indicators in our Galaxy,
as well as in other nearby galaxies. Classical Cepheids are young, massive supergiants with periods from
a few days to months.

RR Lyrae (RR)

These stars are less luminous than Cepheids, and have periods ranging from several hours to about a
day, with high amplitudes similar to Cepheids. These stars can have variable lightcurve shapes and
periods, referred to as the Blazhko effect. RR Lyrae stars are generally subclassed into RR(B), RRAB,

1 http://www.sai.msu.su/gcvs/gcvs/vartype.htm

14

http://www.sai.msu.su/gcvs/gcvs/vartype.htm


1.4 Variable stars

Figure 1.6: The Hertzsprung-Russel diagram showing the locations of common pulsating variables. Credit:
Australia Telescope National Facility.

and RRC. The first showing two pulsation modes with the dominant period P0 and its first harmonic P1.
RRAB have asymmetric light curves with steep ascencion to maximum and longer recovery descent, with
periods from 0.3–1.2 days. RRC have close to symmetric lightcurves resembling a sinusoidal pattern,
with periods from 0.2–0.5 days and lower amplitude than RRAB. See Fig. 1.7 for reference.

δ Scuti (DSCT)

Delta Scuti type are pulsating variables of spectral types A0-F5 with short periods and small amplitudes.
Periods are generally from 0.01–0.2 days, with amplitudes ranging from 1–80 per-cent. Their shape,
amplitude, and periods usually vary greatly, making them difficult to classify. See Fig. 1.8, upper panel,
for reference.

Semiregular variables (SR)

Semiregular variables are giants or supergiants up to late spectral types showing periodicity interrupted
by irregularities. Periods are generally ≥ 20 days. These are divided in several subclasses based on
whether their periodicity is persistent (SRA) or poorly defined (SRB), and amplitude ranges. See Fig. ??,
lower panel, for reference.
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1.4.2 Eclipsing binary stars (E)

Eclipsing binary stars (EBs) are a type of extrinsic variables. They are binary systems with orbital planes
close to our line of sight, i.e. the inclination i is close to 90°, so we view the system edge-on. In this
configuration the two components will periodically eclipse each other, blocking a fraction of the light
of the other every half period, producing dimming in the lightcurves. EBs can be found at a range of
periods, from shorter than one day, to several years. Eclipsing binary stars are generally subclassed into
EA, EB and EW systems. The following classifications are based on lightcurve characteristics alone,
while other classifications can be based on the level of Roche lobe filling. See Fig. 1.7 for reference.

Detached binaries (EA)

Algol-type binaries that are detached systems with their Roche lobe not significantly filled. They can
have spherical or slightly ellipsoidal components, but it is possible from their lightcurves to specify the
ingress and egress of the eclipse. Periods can range from 0.2–10 000 days, and secondary minima can be
absent.

Contact/semi-detached binaries (EB)

These are Beta Lyrae-type eclipsing systems that have significant ellipsoidal components that makes
it impossible to specify the exact time of beginning and end of eclipses due to a continuous, smoothly
varying change in brightness throughout the lightcurve. Secondary eclipses are always observed, and
periods are generally larger than 1 day. Not to be confused with a general eclipsing binary (EB).

Contact binaries (EW)

Binary systems with periods shorter than 1 day with ellipsoidal components almonst in contact. These
systems have their Roche lobe completely filled, and the depths of the primary and secondary minima are
very similar. Their depths are usually less than 10 per-cent.

1.4.3 False positive planet candidates

Some variability types will have lightcurves that can mimick planetary transits. Most notable of these are
eclipsing binaries, as they produce transit signals the same way that a planet would. Often these signals
are much deeper than one would expect from a transiting planet. If the difference between the primary
and secondary eclipse is also large, it is easy to distinguish an eclipsing binary system from a transiting
planet. However, the situation gets slightly more complicated when the two binary stars are of similar
size, as they both produce close to identical eclipse depths. Furthermore, if their orbital plane not viewed
edge on, but slightly tilted, the eclipses will not be full and the transit depth will be closer to a planetary
signal. The transit signal from these grazing eclipses will be V-shaped (Fig. 1.7, top), and in many cases
it is easy to distinguish the V-nature of the transit from the traditional U-shape with varying degrees of
flat bottom due to limb-darkening effects of the star.

The situation worsens if there is an eclipsing binary system within the aperture of the target star that
is not spatially resolved. These are referred to as background eclipsing binaries (BEBs). The aperture
receives the combined light from both systems, and if the eclipsing binary in the background undergoes an
eclipse, the eclipse signal will be diluted by the foreground star. Because of the dilution, it will manifest
as a potentially U-shaped transit signal at a depth consistent with a planet. These systems would often
be uncovered in the follow-up radial velocity measurements of the star. However, in order to minimise
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Figure 1.7: 5 short-period variable lightcurves from the AAVSO catalogue with NGTS data. From top to bottom:
EA, EB, EW, RRAB, RRC.
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Figure 1.8: Top: δ Scuti (DSCT) variable from the AAVSO catalogue. Bottom: Likely Cepheid variable identified
from NGTS lightcurves. δ Scuti variables as sometimes referred to as dwarf Cepheids due to their similar shape,
but classical Cepheids have longer periods.

wasting telescope time on false-positives, it has become paramount to vet these systems. One way of
doing this is to look at the centroid shift of the target star. The centroid shift is the difference between the
centre of the aperture, and the centre of flux in the aperture. During an eclipse, the background system
will undergo a loss of light, which will shift the centre of flux away from the system during the transit
signal. If this shift is seen, it is a good indicator of a background system contaminating the aperture.
This method requires very high precision on the photometry and aperture position, but has been done
successfully for Kepler (N. M. Batalha et al., 2010), and recently also for NGTS for the first time from
the ground (Günther et al., in prep.).
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Next Generation Transit Survey

The Next Generation Transit Survey (NGTS) is a wide-field photometric survey designed to discover
transiting Neptune-sized and smaller exoplanets around bright stars (V < 13) (P. J. Wheatley et al., 2013;
B. Chazelas et al., 2012). The facility is located at Paranal Observatory in Paranal, Chile, and is the first
telescope project hosted, but not operated, by the European Southern Observatory (ESO) at the site. The
excellent photometric conditions at the site, combined with state-of-the-art instruments, allows NGTS to
reach 0.1% photometric precision over a wide field. This is the first telescope project to achieve such a
precision from the ground. NGTS achieved its first light with one telescope in early 2015, and with all 12
telescopes in early 2016.

The NGTS project is a partnership between several UK universities (Warwick, Cambridge, Leicester,
Belfast), Observatoire de Genève, DLR Berlin, and Universidad de Chile.

2.1 Design

Figure 2.1: The NGTS telescopes on their mounts withing their enclosure at Paranal Observatory. (Credit: ESO/R.
West)
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Table 2.1: Characteristics of NGTS.

Site ESO Paranal Observatory
Number of telescopes 12
Diameter 20 cm
Aperture f /2.8
CCD 2048×2048 deep-depleted red-sensitive
Mount Equatorial
Bandpass 600–900 nm
FOV 88.8 square degrees (7.4 × 12)
Lifetime ∼4 years
Cadence 10 s

2.1.1 Telescope and survey design

The design of NGTS builds on the experience from the Wide Angle Search for Planets (WASP; D. L. Pol-
lacco et al. 2006), a successful wide-field survey for hot-Jupiters, with more than 132 such exoplanets
confirmed to date1. NGTS is comprised of an array of twelve independent fully robotic 20-cm f /2.8
telescopes mounted on fork equatorial mounts. The optical design is a Newton reflector with a hyperbolic
primary and a corrector. The cameras are 2048×2048 pixel red-sensitive deep-depletion CCDs designed
for optimal sensitivity in the 600–900 nm range, thus targeting K and early-M spectral type stars. Each
telescope has a field of view of 7.4 square degrees, giving a total field of view of 88.8 square degrees.
The NGTS characteristics are summarised in Table 2.1.

The nominal survey lifetime is about four years. NGTS covers a new field every few months, and will
at the end of its life have covered an area of about 8 times the size of the Kepler field. The photometric
band is most sensitive to K and early-M stars, and together with sub-mmag red noise levels, NGTS can
detect transit signals from Neptune-sized planets and smaller for stars of magnitude V < 13. NGTS thus
aims to provide prime targets for radial velocity follow-up and characterisation of planetary interiors and
atmospheric composition.

2.1.2 Science goals

The orientation and inclination of the orbital plane of a planet orbiting its host star follows a uniform
distribution. The geometric probability of a Neptune-sized planet transiting a target star is about 5%.
Occurence rates from Kepler shows the planet occurence of Neptunes with periods less than 10 days is
also about 5%. Thus NGTS needs to observe a minimum sample of about 40 000 stars to observe about
100 transiting short-period Neptunes. Furthermore, the host stars should be bright enough to allow radial
velocity follow-up, placing an upper limit around V=15. However, smaller host stars have larger reflex
motions from the orbiting planet, thus increasing the upper limit for M stars.

Yield simulations of the planets and false positives for NGTS over its 4 year mission show that NGTS
expects to find 4±3 super-Earths, 35±9 Neptunes, 55±8 Saturns, and 150±10 Jupiters, for a red noise
level of 1 mmag (M. N. Günther et al., 2017). Eclipsing binaries (EBs) and background eclipsing binaries
(BEBs) can produce signals that mimic that of a transiting planet, and are as such the most common
astrophysical false positives in wide-field surveys for transiting planets. However, EBs can introduce
other effects to the transit light curve that can be used to distinguish them from a planet. The transit depth
is usually much deeper than that of a planet, and binaries orbiting close to each other have a distorted
shape which introduces ellipsoidal variations in the light curves. One can also detect secondary transits

1 http://www.exoplanets.eu (Oct 2016)
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Figure 2.2: The expected yield for planets and false positives (EBs and BEBs) for NGTS from M. N. Günther et al.
(2017). The light blue areas are the number of objects producing a transit event in the line of sight with P < 20
days. Blue is the number of objects that can be detected with a red noise level of 1 mmag. The dark blue areas are
the number of planetary candidates after vetting against astrophysical false positives. The blue lines indicate the
possible yield for a red noise level of 1 mmag.

(the occulation of the smaller star from the larger star), giving rise to different depths for odd and even
eclipses. Transiting candidates can thus be vetted against these effects to identify the false positive nature
of some of the transiting candidates. Before false positive vetting, NGTS expects to find 4688±45 EBs
and about 843±75 BEBs as false positive planet candidates, compared to about 180 ± 12 and 439 ± 37
after vetting, for a red noise level of 1 mmag. A large number of EBs are expected to be diluted by
foreground stars, given that the aperture radius is 3 pixels. The yield results are summarised in Fig. 2.2.

2.2 Pipeline

2.2.1 Data reduction and data flow

The NGTS observations are taken with 10 s cadence and are bias-subtracted, corrected for shutter travel
time, and inter-pixel sensitivity variations and vignetting using flatfield exposures. The bias and flatfield
correction frames used are master frames constructed from a couple of months of data. Dark frames are
currently not used in the reduction as the dark current is negligible. The reduced images then go through
the input catalogue, which defines where the apertures are placed. The input catalogue is constructed
from a pre-survey of each field, where around 100 images are taken and stacked together and searched
for sources using imcore from CASUTools2. The source list is then cross-matched with the 2MASS
and APASS catalogues to cut sources with I > 16 are filtered out. A custom version of the wcsfit
tool computes an astrometric solution based on the input catalogue. The tool imcore_list then uses
the astrometric solution computed by wcsfit to compute the detector coordinates of the sources in the

2 http://casu.ast.cam.ac.uk/surveys-projects/software-release
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NGTS input catalogue for the field, and the apertures are placed at the detector coordinates. At this
stage, aperture photometry is carried out on the output from imcore_list, measuring the fluxes within
an aperture using an rcore of 3.5 pixels. The resulting photometry files are next sent to a flagging tool
that flags for e.g. saturation, CCD edge proximity, and apertures that are affected by the Very Large
Telescope’s (VLT) guide star lasers.

2.2.2 Systematic error removal

The reduced data from the pipeline inevitably contains systematic errors that can originate from a variety
of sources, such as instrumental effects, pointing drift, PSF changes over the detector, environmental
effects and atmospheric extinction. These low-level errors can be corrected for by noting that any
systematic error should be present in a large sample of targets. The sysrem algorithm of O. Tamuz,
T. Mazeh, and S. Zucker (2005) was developed for the purpose of removing systematic errors in large sets
of photometic light curves, and the NGTS pipeline uses an implementation of the sysrem algorithm that
is similar to that used in the WASP survey (A. Collier Cameron et al., 2006; D. L. Pollacco et al., 2006).

2.2.3 Sky background correction

The sky background correction algorithm is the standard correction tool used by imcore for the source
extraction. The CCD is divided into cells of size 64 × 64 pixels. The raw background values are then
derived in each cell using MAD iterative k-sigma clipping from the median to filter away stars. The cells
undergo further filtering to produce a low-resolution background level, then a local background for each
pixel is defined using bilinear interpolation. A global sky level and noise level are also estimated after
the varying component is removed, and stored under the SKYBKG HDU name in the final data product.

2.2.4 Transit search and candidate vetting

BLS

Following the data reduction and correcting for systematic effects, all photometry is passed on to the orion
tool that performs a transit search on a grid of trial periods using an implementation of the Box-Least-
Squares algorithm (BLS). The lightcurves are phase folded on different periods and a least-squares fit on
a transit box model is carried out. The best 5 periods are extracted, as well as the corresponding transit
widths, depths, and epochs. A range of parameters is further extracted from the lightcurve and nearby
lightcurves to assess whether the identified period is likely to be a systematic period or astrophysical.
Typically, orion can identify up to 25% BLS candidates in a field. These are mostly from variable stars,
such as eclipsing binaries, background eclipsing binaries, other variable stars, or from systematic periods.

Vetting tools

Candidates from BLS are further processed with CANVAS (Candidate Vetting and Analysis), which
generates a list of parameters and criteria that rejects most candidates. Some parameters that are evaluated
are reduced proper motion of the star to exclude possible giants, reduced flux density points that may
cause a false transit signal, isochrone for the star to assess the stellar radius, and the stellar density.
Other tools were developed to check other aspects, such as difference between odd and even transits to
exclude eclipsing binaries, proper transit modelling, likelihood of transit given the noise in the data, and
nights with individual transits given the model. One of the most significant false-positives that are the
most difficult to rule out are background eclipsing binary systems, see Section 1.4.3. A centroiding tool
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Table 2.2: The structure of the NGTS data format in the FITS files with names and types as shown in the files. For
the dimensions, Nstars × Nobs are the number of stars and number of observations, respectively. The CCD positions
are the positions calculated from the astrometric solution from wcsfit. Centroid is the position of the centre of flux
of the star.

HDU Name HDU Type Dimensions Description

PRIMARY PrimaryHDU
CATALOGUE BinTableHDU Nstars × 16 Information per star (ID, mean flux, coordinates, . . . )
IMAGELIST BinTableHDU Nobs × 197 Information per observation (camera, PSF, seeing, . . . )
HDJ ImageHDU Nobs × Nstars Heliocentric Julian Day, time of observation
FLUX ImageHDU Nobs × Nstars sysrem-corrected flux (ADU per second)
FLUX_ERR ImageHDU Nobs × Nstars Error in flux
FLAGS ImageHDU Nobs × Nstars Photometric quality flags (bad weather, light contamination, . . . )
CCDX ImageHDU Nobs × Nstars CCD position of star in x-direction
CCDY ImageHDU Nobs × Nstars CCD position of star in y-direction
CENTDX_ERR ImageHDU Nobs × Nstars Centroid error in x-direction
CENTDX ImageHDU Nobs × Nstars Centroid in x-direction
CENTDY_ERR ImageHDU Nobs × Nstars Centroid error in y-direction
CENTDY ImageHDU Nobs × Nstars Centroid in y-direction
SKYBKG ImageHDU Nobs × Nstars Sky background (ADU per second per pixel)

was developed to rule out these false-positives, being able to reach 1/1000 pixel precision for our data
(M. Günther et al. 2017, in prep.).

2.2.5 Data product

The end data products are stored in Flexible Image Transport System (FITS) format, with one file per
field. FITS files are comprised of segments of Header/Data Units (HDUs) that contain a Header Unit
with metadata in human-readable ASCII format, followed by a Data Unit. The first HDU is called the
Primary HDU, and any number of additional HDUs may follow the primary. The additional HDUs can
have three types of extensions:

• Image Extension: 0-999 dimensional array of pixels.

• ASCII Table Extension: Tabular information stored in ASCII format.

• Binary Table Extension: Tabular information stored in binary format.

The NGTS FITS files contain 14 HDUs of varying dimensions, as shown in Table 2.2, with the Primary
HDU being empty.

Given a crowded field (∼20 000 stars) observed over a period of four months, the resulting FITS files
can have sizes of up to 90 GB. Thus reading some of the bigger files to memory should be done on
a computer cluster with enough memory available. For the purpose of working with NGTS data, the
python3 package ngtsio4,5 was developed for memory efficiency and ease of use.

3 https://www.python.org
4 https://pypi.python.org/pypi/ngtsio (available through pip)
5 https://github.com/MNGuenther/ngtsio
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2.3 Operations

2.3.1 Start of science observations

Science operations of NGTS started on 21 September 2015 with 4 cameras. Six weeks later, two more
cameras were installed, followed by another two a fortnight later. These 8 telescopes observed ∼400
hours per week with little downtime. The final 4 cameras were installed at the end of February 2016.
since.

2.3.2 Downtime and issues

Shortly after the installation of the remaining cameras, the facility had to shut down for one month due to
rats (!) having gnawed through cables that promptly had to be replaced. Upon resuming observations, the
Chilean winter was upon Paranal with El Niño and bad weather. During a period of 12 weeks the facility
averaged around 250 hours of observations per week. As the bad weather passed the facility had to shut
down for two weeks due to an issue with the roof. After this, normal observations resumed with little
downtime, averaging at 600 hours per week. One camera was not able to observe due to a shutter failure,
which took some time to replace, resulting in some sustained downtime until the end of 2016. Shortly
after all telescopes became operational, there were issues with stray light coming into the telescope, upon
which longer baffles were installed to limit the amount of non-target light that entered the telescope.
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Data processing and analysis

This Chapter describes the general procedure that was followed when working on the data. In Section 3.1
we introduce the dataset that we used for this work, and how it has been processed in the NGTS standard
pipeline. In Section 3.2 we match our targets to known catalogues. Section 3.3 describes the software
that was written to analyse our photometry and noise in our fields, and finally Section ?? describes how it
can be used to identify variable stars.

3.1 Observations and data reduction

The data used in this work is tagged as TEST16A, and was released in summer 2016. As of January 2017,
new data under the tag TEST18 has been released, but for consistency we continued using TEST16A
data for most of our analysis, with the exception of a few cases where we compare with TEST18
data. An overview of the observations are given in Table 3.1. The TEST16A data include observations
from 30 fields, with coordinates (α, δ) in the range 03h04m to 23h46m and −66°41′ to +08°26′ and
include ∼280 000 stars. The nightly observations were taken between 21 Oct 2015 – 3 Jul 2016 and
were reduced by the NGTS standard pipeline, which has been described in Section 2.2, but we will
reiterate the most important steps here. The pipeline outputs 10 s cadence data that is bias-subtracted,
flatfield-corrected, and corrected for shutter travel time. The data is further corrected for systematic
effects with an implementation of the sysrem algorithm (O. Tamuz, T. Mazeh, and S. Zucker, 2005),
which searches for common flux variations in a subset of stars based on their rms level and brightness.
The algorithm identifies four such features that are described by their basis functions, which are used to
correct for the systematic effects.

3.2 Catalogue cross-matching

At the time of this work, the NGTS fields had not officially been cross-matched with existing catalogues
(other than the input catalogues for the positions in the pipeline). Catalogue matching gives access to
important stellar information useful for further work, so we include a quick summary of the process.

The TEST16A dataset was cross-matched with the catalogues below. For each NGTS star we searched
catalogues for entries within a 10′′ radius of the NGTS coordinates, and chose the closest one as a match.
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Table 3.1: Field names and characteristics used in the TEST16A dataset, sorted by right ascension coordinate. The
name of each field starts with the letters “NG” followed by four digits that denote the right ascension at the centre
of the field in units of hour angle, followed by a sign and four digits that denote the central declination in units of
degrees.

Field Camera Date range Span (days) Nnights Nimages Napertures

NG0304−1115 809 20151104–20160301 118 94 114 663 3 691
NG0313−2230 810 20151104–20160225 113 80 118 880 3 838
NG0348−3345 811 20151104–20160201 89 77 128 415 3 568
NG0409−1941 812 20151118–20160317 120 90 122 125 4 860
NG0522−2518 802 20150922–20160503 224 150 212 092 8 505
NG0531−0826 806 20150924–20160421 210 134 183 210 11 194
NG0612−2518 805 20150922–20160514 235 158 218 974 15 092
NG0618−6641 801 20150922–20160515 239 158 233 945 11 362
NG1135−2518 809 20151127–20160515 170 99 128 919 6 870
NG1213−3633 810 20151129–20160525 178 89 106 302 10 181
NG1253−1941 803 20160418–20160703 76 23 31 456 6 700
NG1315−2807 812 20160106–20160515 170 99 96 291 8 371
NG1318−4500 811 20151219–20160623 187 72 91 497 23 620
NG1340−3345 808 20160418–20160703 76 33 50 976 11 596
NG1349−1115 804 20160419–20160703 75 22 31 434 5 172
NG1416−2518 806 20160106–20160515 130 68 84 404 12 032
NG1421 +0000 805 20160106–20160515 130 66 66 257 3 999
NG1428−2518 802 20160106–20160518 133 66 75 433 9 217
NG1444 +0537 801 20160114–20160515 122 61 59 483 3 612
NG1947−4200 806 20150922–20151201 70 44 36 999 14 551
NG2028−2518 802 20150921–20151201 71 47 45 415 13 952
NG2047−0248 810 20160421–20160622 62 17 8 701 20 313
NG2058−0248 803 20160421–20160627 67 20 12 955 18 656
NG2126−1652 804 20160421–20160627 67 23 22 748 6 357
NG2132 +0248 805 20160421–20160627 67 22 18 543 7 516
NG2142 +0826 801 20160421–20160627 67 21 13 835 8 069
NG2145−3345 808 20160421–20160627 67 18 10 460 5 324
NG2150−3922 812 20160421–20160623 63 20 15 399 5 210
NG2152−1403 811 20160421–20160622 62 17 10 487 6 012
NG2346−3633 802 20160504–20160627 54 18 14 057 3 498

Tycho-2

The Tycho-21 catalogue (E. Høg et al., 2000) contains proper motions and magnitudes (B and V) for
2.5 million of the brightest stars (V < 12), collected by the Hipparcos satellite of the European Space
Agency. Proper motions are precise down to about 2.5 mas yr−1, and components of double stars down
to 0.8′′ are included in the catalogue. We find ∼10 000 Tycho-2 stars in our fields, or about 4% of our
current sample of stars.

Gaia

The first data from Gaia (DR12) was released on 14 September 2016 and contains the full five-parameter
astrometric solutions for 2.5 million stars from Tycho-2, as well as positions and single-band G magni-
tudes for 1 billion stars brighter than G=20.

1 http://cdsarc.u-strasbg.fr/viz-bin/Cat?I/259
2 http://www.cosmos.esa.int/web/gaia/dr1
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3.3 Data quality

Table 3.2: Results from catalogue cross-matching with our sample of stars.

Catalogue Number of matches % of our stars Number of fields

Tycho-2 ∼ 10 000 3.7 30
Gaia ∼260 000 94 30
GCVS 142 0.05 15
AAVSO 453 0.15 30
ACVS 226 0.08 30

GCVS

The General Catalogue of Variable Stars contains ∼48 000 entries of variable stars with periods, ampli-
tudes, magnitudes, and variability classification based on both photometry and spectroscopy. We find
142 matches with our sample of stars.

AAVSO

The American Association for Variable Star Observers maintain a variable star catalogue with ∼400 000
entries of variable objects with period, magnitudes, and variability type. The catalogue is however mostly
supported by amateur observations, therefore being prone to misclassifications. We find 453 matches for
our sample of stars, most of them being classes that are easily recognised from photometry alone, e.g.
various types of eclipsing binary stars and RR Lyraes. It is worth noting however that AAVSO contains
variable stars from GCVS as well, and likely a number of these matches are from GCVS.

ACVS

The variable star catalogue from the All Sky Automated Survey (ASAS) holds ∼50 000 variable stars,
surveyed in the V and I bands. We find 226 matches with our stars, most of which are short-period
high-amplitude variables such as RR Lyraes and eclipsing binaries.

The matching results are summarised in Table 3.2. Here we note that only about 4 per-cent of our
objects are brighter than the Hipparcos faint limit (V = 12). The NGTS CCDs saturate at V∼9, and is
sensitive to V∼15. Due to a non-negligible number of mis-matched NGTS objects with the Gaia, 2MASS,
and APASS catalogues that provided wrong magnitudes for our targets, the author decided to solely work
in electron units for the remainder of the work.

3.3 Data quality

3.3.1 Fractional rms

One common way of assessing the overall data quality of a photometric survey is to study so-called
flux-rms diagrams. The stars are plotted by their brightness and root-mean-square (rms) level. A slightly
modified version is the fractional rms diagram, which shows the inverse signal-to-noise ratio instead,
as shown in the upper panel in Fig. 3.1. The curved shape of the fractional rms plot is determined
from the total noise of the observations, which comes from various sources which will be introduced in
Section 3.3.2.

The data is read on a per field basis. The data contains Nframes flux values at 10 s exposure from
NLC light curves, one per aperture on the CCD. The data spans the whole observing season for a given
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field, which is up to ∼4 months. In every field some apertures contain inconsistent data, which can
be due to apertures being placed on stars that are close to the edge of the CCD, or because the star
in question is close to the brightness limit, or other spurious effects. These frames are flagged in the
pipeline by setting the flux values to zero. We therefore mask all flux data that are zero, and their error.
Next, the data is averaged together (binned) to reduce white (Gaussian) noise. We find that binning
the data to tbin = 10 min exposures provide a good balance between reducing most unwanted white
noise, while preserving rapid astrophysical variability from some variable stars such as δ Scutis. We
compute a weighted average of the masked flux from Nbin = tbin/texp frames, weighted by the individual
errors on the texp=10 s data that are output from the pipeline. It is worth noting, however, that any errors
introduced in the pipeline processing (e.g. by sysrem) are not propagated forward. The binned data is then
sigma-clipped at 5σ to remove strong outliers that are likely environmental in nature. The sigma-clipping
is done only once, as an iterative approach could possibly clip strong astrophysical variability from
variable stars. At this stage the median flux of each light curve is computed. We further calculate the
median absolute deviation from the median (MAD) per light curve. We use the (theoretical) error of
the MAD divided by the median flux value to calculate the fractional rms, Frms, of each light curve.
Calculating Frms in this way has the advantage that it is more robust to outlier effects, and can give a
better idea of the typical flux variability of the light curves. The result is then a measure of the median
noise level per star over the whole period it was observed with NGTS.

3.3.2 Noise model

In order to explain the flux-rms curve in Fig. 3.1 we need to build a noise model. Being able to characterise
and understand the noise of our instruments and survey is fundamental for the NGTS experiment, as we
are looking for transit signals at the mmag level.

White noise

White noise comes from the statistical uncertainty in the counting of photons, as previously described in
Chapter 1. The various flux values in the data files are given in units of ADU s−1. The conversion back to
physical units (e−) requires one to know the characteristics and settings of each camera at the time of
processing. For the camera settings that NGTS uses, the characteristics are tabulated in Table 3.3. We
multiply all flux values with the gain, G, specific to the camera used, and our cadence, texp. Our data is
then the number of e− after a texp = 10 s exposure.

The sources are independent sources of noise and have to be added in quadrature to get the total white
noise. We adopt a white noise model that includes noise from the source, sky background, readout,
scintillation, and dark current. Adding these sources together, we get that the total white noise for our
10 min binned (nbin = 60 frames) data is

σwhite =

√
σ2

read + σ2
star + σ2

sky + σ2
dark + σ2

scint
√

nbin
, (3.1)

where the noise terms are described in more detail below.
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Figure 3.1: Frms with white noise model for the field NG0304-1115.
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Table 3.3: Camera characteristics for the NGTS CCDs, measured from lab tests at the University of Leicester.

Camera Gain Readout rms Dark current rms
(e−/ADU) (e−/pixel) (e−/pixel/s)

801 2.05 12.9 0.012
802 2.93 12.8 0.028
803 2.79 12.7 0.028
804 1.89 13.1 0.012
805 3.04 14.9 0.040
806 2.08 14.1 0.004
807 1.94 13.0 0.005
808 2.07 13.0 0.004
809 2.05 18.4 0.005
810 2.07 13.2 0.007
811 1.99 13.8 0.005
812 2.04 14.2 0.005

Read noise

If we denote the number of readout electrons in a pixel as R2
read, and our aperture radius is 3 pixels, we

have from Eq. 1.18 that the read noise in our model is

σread =

√
πr2 × R2

read =

√
9πR2

read. (3.2)

The readout electron rms for each camera is shown in Table 3.3

Dark current

If we denote the dark current values in Table 3.3 as Rdark with units e− pixel−1 s−1, Eq.1.19 then says

σdark =

√
πr2 × D × texp =

√
90πD. (3.3)

Shot (source) noise

If the source provides Rstar ADU s−1, then we have from Eq. 1.20 that the noise from the source is

σstar =

√
Rstar × texp × G =

√
10Rstar × G. (3.4)

Scintillation noise

We include atmospheric scintillation in our white noise model, following Eq. 1.21 in Chapter 1, using
texp = 10 s. We apply a correction factor of 1.56 for the Paranal site (J. Osborn et al., 2015b).

Sky background noise

For the sky background we use the skybkg HDU in the FITS files. Given the rate, Rsky ADU pixel−1 s−1,
from the sky background, the noise is

σsky =

√
Rsky × πr2 × texp × G =

√
90π × Rsky × G. (3.5)
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Red noise

From Fig. 3.1 we see that our white noise model can explain the noise for faint to intermediate stars, but
can not explain the noise levels for the brighter stars. This is due to systematic noise that is unknown in
origin, but can be due to e.g. instrumental effects or errors in the data processing in the pipeline. The
systematic (red) noise does not bin down like statistical noise does, and the red noise can vary when
looking at different timescales. We update Eq. 3.1 and have that our total noise model is

σtotal =

√
σ2

white + σ2
red. (3.6)

Using Frms diagrams we now describe how the red noise can be estimated.
We can look at the ratio between the fractional rms and the white noise model, which we denote R, so

R ≡ Frms/σtotal. This is a measure of the rms of each star independent of brightness. The lower panel of
Fig. 3.1 shows this ratio. From this, we look at two populations of stars: the faint population consists of
stars that are virtually unaffected by red noise, while the intermediate to bright population are red noise
dominated. We define the faint population as stars with a flux level, F ≤ 104 e−/10 s, and the bright stars
with flux level 104 < F ≤ 105 e−/10 s, as shown in Fig. 3.2. The overall distribution in R is expected

103 104 105 106

Flux (e−/10 s)

100

101

F r
m

s/
σ w

hi
te

1 2 3 4 5 6 7
Frms/σwhite

0.0

0.2

0.4

0.6

0.8

1.0

E
C

D
F

Bright
Faint

Figure 3.2: Left: Comparing R for two populations of stars. The faint and bright population of stars are dominated
by different sources of noise and are used to estimate the red noise. Right: The empirical cumulative distribution
function (ECDF) for the two populations.

to have a Gaussian component for the non-variable stars, with a separate variable star population that
adds to the high-end Gaussian tail. To get to the underlying Gaussian population we therefore iteratively
remove stars with high values of R until the change in the standard deviation is sufficiently small. We
choose our cut-off at 5%, as shown in Fig. 3.3. To estimate the red noise floor, we add a base red noise
level of 0.1 mmag, iteratively increment this value by 0.01 mmag and calculate the Kolmogorov-Smirnov
(KS) test statistic comparing the two populations. The KS test statistic calculates the maximum distance
between the two empirical cumulative distribution functions (ECDF) at a given R. When the test statistic
reaches a minimum, we stop the iteration, and choose that value as our red noise level. The fractional
rms plot with the red noise model included is shown in Fig. 3.4, and can now fit the noise at the bright
end. We take note of the red noise level showing some brigthness dependence, as the noise on the bright
end is overestimated.
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Figure 3.3: The standard deviation is found by iteratively removing the stars with highest R until the change in
standard deviation is less than 5% (red horizontal line).

3.4 Identifying variable stars

Given an accurate noise model that properly accounts for both white and red noise, we can now in a
global, statistical way identify stars that are of variable nature from the fractional rms plots. We show the
probability density distribution of the ratio R in Fig. 3.5. We have a population that looks Gaussian, and
the next step is to choose an appropriate cut-off for R, where we say that everything to the right of this
value are variable stars. We assume that the distribution is Gaussian, and can choose to discard e.g. the
97th percentile and regard the remaining stars as variable. We look up the corresponding z-score in a
normal distribution table and make our cut based on this. By this method can choose how strict we want
our selection to be, and following our example of discarding the 97th percentile, we ensure that only
approximately 3% of the non-variable stars are included in our variable population. Fig. 3.5 shows the
probability distribution function (PDF) of R and indicates where we select our cut, and Fig. 3.6 shows
our identified variable stars.

3.4.1 Lomb-Scargle periodogram

To find the period of the variable stars we use an implementation of the Lomb-Scargle (LS) periodogram
with floating mean (M. Zechmeister and M. Kürster, 2009; N. R. Lomb, 1976; J. D. Scargle, 1982). The
LS method is a least squares fit of sinusoids to the data, and is widely used for finding periodicity in
irregularly sampled data, such as nightly observations with NGTS. While the LS periodogram is not the
only choice of algorithm, it is known for ease of implementation and use. Other examples of algorithms
are the autocorrelation function (ACF), that has been shown to be quite robust to measure rotation periods
of stars for Kepler M-dwarfs (A. McQuillan, S. Aigrain, and T. Mazeh, 2013) with continuous data, and
conditional entropy on sparse data (M. J. Graham et al., 2013).
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Figure 3.4: Frms with R for the full noise model for the field NG0304−1115.
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Figure 3.5: The probability density distribution of R for NG0304-1115, showing where we selected the variable
threshold for this field.

We use a Python-based implementation3 of the fasterO(N log N) periodogram developed by W. H. Press
and G. B. Rybicki (1989). We use an oversampling factor of k = 20 for the frequency spacing
δ f = 1/(k T ), where T is the total time period over which the observations were taken. Periods are
searched in the range 1 hour up to half the time of the observing span, placing a limit at around 120 days
for our longest observed fields in TEST16A. An example of the LS periodogram is shown in Fig. 3.7.

Mitigating systematic periods

The data has strong 1-day periodic signals, as well as its 1/5, 1/4, 1/3, 1/2 and 2/3 aliases, as shown in Fig. 3.7.
To avoid picking these periods, we remove the 1-day periodic signal and its harmonics by fitting the
best-fitting sinusoid of the form

s = a sin (2π f t) + b cos (2π f t) + c,

where a, b, c are free parameters, f = 1/P is the frequency removed, and t and s are time and flux. We
extract the remaining dominant period following the systematic period removal. We proceed to remove
the dominant period and find the next, selecting a total of three periods.

In many stars we also see power at period of the lunar cycle (28 d), and its half period. This is due to
the sky background level likely not being treated in a sufficient manner, which will be discussed more in
Section 5.1.1. We have not attempted to remove this signal since these targets show variability due to

3 http://www.astroml.org/gatspy/
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Figure 3.6: Field NG0304−1115, where the identified variable lightcurves are coloured in red, counting 205.
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Figure 3.7: The Lomb-Scargle periodogram for an NGTS transiting planet candidate. The gray areas are the 1-day
false period and its and aliases ±5% that show strong power in our lightcurves. The green line denotes the 2.6 day
period found for the planet candidate. Here the M-dwarf in question shows a dominant periodic signal at ∼40 days
which could be due to rotation, or related to other systematic periods.
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erroneous background subtraction, and it is not certain that they have other astrophysical variability, in
which case they would just contribute to the population of noisy lightcurves.

Eclipsing binary stars

A significant fraction of the identified variable stars will be various types of eclipsing binary stars. The
LS periodogram will often show the highest power at half the period. To tackle this we perform an EB
test on each lightcurve. The lightcurve is binned to 10 min bins and phase folded on the dominant period.
The phase folded lightcurve is further binned in 48 points between phases φ = [0, 1], and the minimum
value is shifted to φ = 0. We perform a test on each light curve by phase folding at double of the dominant
period. If the object is an eclipsing binary, there should be an eclipse at φ = 0 as well as φ = 0.5. We
perform two tests to check for eclipsing binary stars. We first check if the absolute value of the difference
in the flux at these two points is greater than three times the standard deviation of the binned minimum
flux between phases φ = 0.45 and φ = 0.55. Second, we check that the doubled period is less than P = 20
days. The second test is implemented because many long-period variables are identified as variable stars,
where the difference in the flux between each period can be greater than the threshold from the first
test due to amplitude modulation. Most eclipsing binary stars will not have periods above P = 20 days.
If both these criteria are met, the dominant period is doubled. This is only done for the first extracted
period. From the binned phase folded light curve we further calculate the semi-amplitude of the variation,
A = ( fmax − fmin)/2. The maximum and minimum flux values, fmin and fmax, are chosen by taking the
median of the three maximum and three minimum flux values to avoid picking outliers to estimate the
period. Similar adjustments have been done in D. J. Armstrong et al. (2016).

To test the efficacy of our period-search algorithm we compare our periods with known variable stars
in our fields from our cross-matches with the AAVSO, GCVS and ACVS catalogues, see Table 3.2. For
the AAVSO and ACVS catalogues, their entries are mostly dominated by eclipsing binaries (EA, EB,
EW), RR Lyraes (RRAB, RRC), DSCT, SR and Mira variables, most of which have been described in
Section 1.4. The GCVS matches are mostly various types of eruptive variable stars, in particular Orion
variables (IN, INA, INB). In Fig. 3.8, left plot, we show our periods compared to those in the catalogues.
Here we have excluded our targets from fields with sparse data and red noise levels higher than 1.2 mmag
(see Chapter 4). After the filtering we have 293 matching variable stars that we compare against. We
find a matching rate of 40.0 per-cent on the same period, 71.7 per-cent when including double and half
periods, and 77.5 per-cent when including all three periods that are extracted. The vertical dotted lines
indicate the positions of the 0.33, 0.5, 0.66, 1 and 2 day periods, which show strong periodic signals in
our lightcurves. Most of our mis-matched objects are found to lie at these periods. For the stars that
have these systematic periods, we find that about half (∼15) have catalogue periods higher than 100
days, belonging to Mira or semiregular variables. Our periodogram searches for periods up to half the
observing span for a given field, which sets a maximum limit around 120 days, but most fields in our
sample will have their maximum period lower than this. For these stars we find that our lightcurves phase
folded on the catalogue period show no significant variability. Because of this the highest periodic signal
is found to be at one of our systematic periods.

For the remaining lightcurves (∼15) with catalogue periods less than 100 days, we looked at the phase
folded lightcurves to investigate the reasons for finding systematic periods. In about half of the cases
the lightcurves folded on the catalogue period shows a variable lightcurve. In removing the systematic
periods with a sine fit, we only remove the exact period and its aliases. This removes most of the power
around these periods, but there is still some power in the wings, which can be higher than other periodic
signals (see Fig. 3.7). It can also be related to the sidereal day, which NGTS team members have shown
to produce strong peaks in our data. For the remainder of the lightcurves, there are varying reasons for
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Figure 3.8: The performance of our Lomb-Scargle periodogram when comparing to catalogues with known variable
stars in our field. In the left figure the x, plus and star markers are from AAVSO, ACVS and GCVS, respectively.
The diagonal solid gray line indicates perfect agreement with the catalogue period, dashed lines are 1/2 and double
periods. We achieve an acceptance rate of 40.0 per-cent with the same period, 71.7 per-cent when including double
and half periods, and 77.5 per-cent when including the second and third extracted periods. The vertical dotted
lines mark the position of 0.33, 0.5, 0.66, 1 and 2 day periods, which are the strongest systematic periods. A large
number of our mis-matched periods are due to picking up these systematics.

selecting the wrong periods. In some cases we find no indication of variability at the catalogue period. In
others the lunar period was selected because it produced a higher peak, while in others the variable star is
of a type that does not produce sinusoid-like signals, for which Lomb-Scargle finds higher power at our
systematic periods which are more sinusoidal.

We further investigate the reasons for other non-matching periods that are not due to systematics. In
the right plot of Fig. 3.8 we compare the ratios of our dominant period and the the from the catalogue
against the amplitude we find. For the mis-matched targets in-between the 1:1, 1:2, and 2:1 period
ratios, we find that for a number of them our period is a better estimate after inspecting some lightcurves.
This may be due to period-modulation is some of these stars, or we pick up a lower amplitude signal
since the catalogue observations do not have as good a precision as NGTS. Period changes in eclipsing
binaries often indicates the presence of a third body in the system. In Fig. 3.9 we shows an example
of a catalogued δ Scuti variable folded on its period. We show that our period is more likely, and that
the variability is more reminiscent of a close-in binary star with strong ellipsoidal variation and some
beaming. In Fig. 3.10 we show two more examples of detached eclipsing binaries that we have found
more precise periods for. These cases are typical of variables from the AAVSO and ACVS catalogues.
Most of our mis-matched periods from GCVS are due to the variables being eruptive in nature, thus
being difficult to identify any periodicity. The same is true for semiregular variables from ACVS and
AAVSO for which we have non-matching periods.

We also note that our period-check intended to double the periods for eclipsing binaries has the
unwanted effect of doubling the period a large fraction of RR Lyrae variables. This can be mitigated in
the future by e.g. also checking for symmetry in the phase region φ = [0.45, 0.55].
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Figure 3.9: Upper panel: A catalogued DSCT from AAVSO phase folded on the catalogue period. Lower panel:
Same object phase folded on our period, showing that it is likely an EW due to the different depths between primary
and secondary eclipse. The different levels of out-of-eclipse flux also suggests a beaming effect.
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Figure 3.10: Two EA systems compared by their catalogue periods vs. our period. In both cases the variability type
is correct from the catalogue, but the periods are wrong, likely due to period modulation since the observations
were taken for the catalogue. The first system (upper two panels) shows beaming effects, while the second system
(lower two panels) shows some ellipsoidal variation as well as beaming.
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CHAPTER 4

Results

In this Chapter we report the results from our analysis, as described in Chapter 3. We ingested the full
TEST16A dataset (Table 3.1) into our data quality pipeline, which generated empirical and expected
noise levels for each star, flagged variable stars, and calculated their period and amplitude from our
period-search algorithm. In Appendix A we provide a summary figure per field of the various output
from our codes, which will be referred to throughout this Chapter.

In Section 4.1 we report our findings on the limiting noise levels and data quality, while in Section 4.2
we report the numbers on the identified variable stars, their parameters, and show some example
lightcurves.

4.1 Noise

4.1.1 Fractional rms plots and noise models

Overall, our noise model performs well in explaining the flux-rms curve for the data in most of our fields.
In some cases the model underestimates the noise throughout, leaving a small gap between the total noise
curve and the Frms population, as shown in Fig. 4.1. This could be due to various reasons. One possibility
is the sky background being underestimated, as will be discussed in Section 5.1.1. It could also be due to
the read noise values being slightly wrong. The readout rms values in Table 3.3 are taken from lab tests
done by Andor, and could possibly be different by some non-negligible amount compared to what NGTS
team members at Leicester University found in their camera testing. However, the latter results proved
to be difficult to find, and so the Andor values were used. A third reason for the model discrepancy
could be due to something that was discovered at the time of writing. For the TEST16A dataset, the gain
setting for cameras 808, 809, 810, 811, and 813, changed from PAG21 to PAG1, but this change was not
reflected in the FITS data files, so some of the gain values that were used could be for the wrong CCD
gain setting. Some of these cameras were reverted back to PAG2 at a later stage. Field NG1318−4500 is
an example where the camera gain setting was changed mid-season that the code did not account for,
which produces the erratic rms curve that is shown in Fig. 4.2. However, the difference between the
PAG1 and PAG2 gain values is a factor of ∼2, which would produce a larger model discrepancy than we
observe. Therefore it is unlikely that this is a problem for all other fields except NG1318−4500.

1 The PAG setting is used to determine the conversion factor between measured electrons and ADU.
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Figure 4.1: Frms curves for NG0612−2518 (left) and NG2058−0248 (right).

Extra faint end noise

In some fields we notice a sharp noise increase for the faint end that our model cannot reproduce, as
seen to the right in Fig. 4.1 for field NG2058−0248. These effects are present in fields with less than a
month of observations. It could be due to the increased sky background from the full moon, as our model
takes the mean sky background as an estimate. For observations less than a cycle of the moon the mean
will underestimate the increased background level during full moon, but will average out as the field is
observed for longer, as seen in other fields with several months of observations.

Diluted stars

For fields with more than ∼15 000 stars having their flux extracted by aperture photometry we should
start to see effects of dilution, where flux from a nearby star is entering the aperture of another star. This
introduces extra noise that is not taken into account by our model, possibly producing the larger spread
that is seen in some crowded fields. Due to this we expect to pick up a larger fraction of “false” variables,
i.e. noisy stars, in our variable star filtering. A solution to this would be to filter away stars that are
diluted. At the time of writing, dilution parameters per star were not implemented properly in the data
files, and so was not taken into account.

4.1.2 Scaling with bin width

We have also looked at how the noise per field scales with the bin width of the data. For this we selected
a sample of 10 stars from three regions of brightness corresponding to V∼14, V∼12, and V∼102, for a
total of 30 stars. The stars in each bin were chosen according to the lowest R value in those bins. We
computed their Frms for bin widths up to tbin∼3.3 h, and choose the median Frms value of the 10 stars in
each magnitude bin as the noise level at each iteration. We compare it to our white noise model at each

2 Formally, this corresponds to flux values 3 × 103 < f < 4 × 103, 2 × 104 < f < 3 × 104, and 1 × 105 < f < 2 × 105,
respectively
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Figure 4.2: Frms curves for NG2047−0248 (left) and NG1318−4500 (right), both with ∼20 000 apertures each. The
two fields have red noise levels of 0.11 and 11.2 mmag, respectively. For NG1318−-4500, the camera PAG setting
was changed mid season.

bin, which follows 1/
√

n behaviour as shown in Fig. 4.3 for three magnitude bins. The circle points are
the calculated Frms at each win width, and the dotted lines are the calculated white noise from our model,
in each magnitude bin. Our noise bins down with increased bin width, but not as one would expect for
complete white noise behaviour. This can point to the nights binning down differently, possibly due to
varying flux levels around full moon.

4.1.3 Red noise levels

The red noise levels found for each field by our algorithm is tabulated in Table 4.1. For the TEST16A
data we detect red noise levels in the range 0.1–1.5 mmag, with an additional outlier at 11.2 mmag
for NG1318−4500. Seventy per-cent of our fields reach sub-mmag red noise levels on the data with
tbin = 10 min. We reach a median red noise level of 0.82±0.31 for our fields. There does not seem to be
any cameras that are consistently performing poorly. Fields NG2047−0248 and NG2058−0248 are stated
to reach a 0.11 mmag red noise levels. In reality the red noise is zero (< 0.1) for these fields. In the red
noise estimation, the initial red noise value is set to 0.1, and incremented by 0.05 mmag until a minimum
of the Kolmogorov-Smirnov test statistic is reached, which happens already at the first iteration. It is also
clear from Figs. A.22 and A.23 that the white noise model provides a good fit to the data. Both of these
fields have less than 20 days of data, which demonstrates the full potential of NGTS when not limited by
long-term effects that add systematic noise to the photometry.

We have also processed TEST18 data to compare with TEST16A levels. TEST18 data contains 6
months of more data for our TEST16A fields with short observating duration. find that the red noise
levels are in the range 0.48–1.28 mmag, with a median 0.82±0.10 across fields. This level is consistent
with the TEST16A dataset, and the smaller error indicates that the red noise level is more consistent for
each field because the number of observations in each field are comparable. For the TEST18 dataset we
were unable to process data from some fields due to software issues with the data extraction that could
not be resolved in time. The fields in question are represented by havng missing values in Table 4.1.
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Table 4.1: Red noise levels and variable numbers per field from the TEST16A and TEST18 datasets. TEST18 data
contains 6 months of more data for our short fields. At the bottom of the table, the uncertainty on the mean is the
standard deviation, while the uncertainty on the median is the MAD error.
†Fields tagged as “bad”, due to high (>1.2 mmag) red noise levels in TEST16A, or sparse data without enough
observations (downtime). NG1349−1115 is tagged as a bad field because a significant fraction of the identified
variables are due to a saturated star contaminating a the whole pixel column (Fig. 4.7, middle panel). Its red noise
is still included in the calculations.
∗Field suffers from processing error and is not included in any final numbers at the bottom of the table.

TEST16A TEST18

Field Camera σred Nvar Nreal
var f real

var σred Nvar Nreal
var f real

var
(mmag) (%) (mmag) (%)

NG0304−1115 809 0.81 205 85 2.43 0.77 208 72 2.06
NG0313−2230 810 0.95 176 54 1.47 0.92 202 49 1.33
NG0348−3345† 811 1.28 169 56 1.59 1.08 179 66 1.88
NG0409−1941 812 0.81 203 74 1.56 0.65 231 84 1.77
NG0522−2518 802 0.84 293 99 1.19 0.75 301 90 1.08
NG0531−0826† 806 1.2 466 200 1.82 – – –
NG0612−2518† 805 1.46 515 195 1.45 – – –
NG0618−6441† 801 1.25 290 136 1.22 1.28 273 121 1.08
NG1135−2518 809 0.82 254 107 1.59 – – –
NG1213−3633 810 1.22 354 78 0.79 – – –
NG1253−1941 803 0.49 237 120 1.84 0.48 227 97 1.49
NG1315−2807 812 1.06 348 88 1.11 1.04 303 75 0.95
NG1318−4500†,∗ 811 11.2 866 4 0.02 8.0 820 24 0.11
NG1340−3345 808 0.72 395 111 0.97 0.79 290 84 0.74
NG1349−1115† 804 1.08 234 62 1.23 0.9 164 69 1.37
NG1416−2518 806 0.71 342 118 1.00 0.71 391 142 1.21
NG1421 +0000 805 0.76 156 55 1.41 0.84 128 – –
NG1428−2518 802 0.92 315 148 1.63 1.07 302 99 1.09
NG1444 +0537 801 0.99 215 83 2.35 0.94 206 93 2.64
NG1947−4200† 806 1.26 505 106 0.74 – – –
NG2028−2518 802 0.75 280 103 0.76 0.61 337 93 0.68
NG2047−0248† 810 0.11 577 135 0.69 0.9 581 109 0.56
NG2058−0248† 803 0.11 492 95 0.52 0.77 375 126 0.69
NG2126−1652† 804 0.87 203 52 0.83 0.96 214 82 1.32
NG2132 +0248† 805 0.61 294 64 0.88 0.89 241 83 1.14
NG2142 +0826† 801 0.78 233 84 1.11 0.85 260 120 1.58
NG2145−3345† 808 0.94 209 68 1.32 0.76 237 93 1.81
NG2150−3922† 812 0.4 192 38 0.76 1.14 173 47 0.94
NG2152−1403† 811 0.38 190 34 0.71 0.73 180 68 1.43
NG2346−3633† 802 0.3 198 50 1.49 0.77 248 130 3.88

Total 7976 2698 1.12 5792 2116 1.04
Mean 0.82 ± 0.34 1.26 ± 0.47 0.85 ± 0.18 1.37 ± 0.75
Median 0.82 ± 0.31 1.22 ± 0.37 0.82 ± 0.10 1.26 ± 0.32

Only good fields

Total 3174 1245 1.31
Mean 1.49 ± 0.49
Median 1.47 ± 0.36
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Figure 4.3: Noise scaling with bin width for a sample of non-variable stars of mag V∼10 (red), V∼12 (blue), and
V∼14 (green). The triangles shows the white noise level from our model.

4.2 Variable stars

4.2.1 Detection

Across our 30 fields our algorithm detects 7 976 variable lightcurves for our threshold of 97%. A large
fraction of these, around 2/3, are found to be false detections due to systematic noise. These often have
a dominant period at one of the systematic periods related to 1-day effects. We perform a vetting of
the fields to estimate the true fraction of astrophysical variable stars. We exclude fields with sparse
observations, as stars from these fields often present with systematic periods. We also exclude fields with
a red noise level higher than 1.2 mmag. Finally, we also exclude NG1349−1115, as most of its identified
variables are due to contamination from a saturated star (Fig. 4.7). After making our cut we further mask
objects with a dominant period at one of the systematic periods. We are then left with 1245 variable
stars at high confidence. The fraction of true variable stars is then found to be 1.31%. The fraction of
variables in each field is in the range 0.52–2.43 %, with median 1.47±0.36. The numbers are summarised
in Table 4.1.

It is clear that the result of our variable star filtering heavily depends on the general scatter in the
rms curves due to systematics. In figures where there is an increased scatter for the faint end stars, our
algorithm will mostly pick up these lightcurves only, without ever probing the intermediate to bright
targets where the noise is lower. These effects are illustrated in Fig. 4.4, where we compare two fields
where the algorithm picked up mostly noise with systematic periods (left), and variables stars (right).
Our red noise estimates have a tendency to raise the total noise level enough to cut through the stars at
the low Frms end. This leads to an overestimation of the noise at the low end compared to the rest of the
rms curve, which means the algorithm does not pick up as many bright variable light curves. The reason
for the overestimation is that the red noise is found from comparing faint stars with stars up until flux
levels of 105 e−/10 s. This is to avoid having saturation effects from the brightest stars affect the red noise
estimate.
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Figure 4.4: The variable star identification performance between a field where most of the identified variables have
systematic periods related to 1-day effects and moon correlations (left), and a field where there are fewer false
variables (right).

4.2.2 Parameters

Our code flags stars with variable lightcurves, and a period is searched with an implementation of the
generalised Lomb-Scargle periodogram. Once the dominant period is identified, following some criteria
described in Section 3.4.1, the lightcurve is folded on its period. The semi-amplitude of the signal is
found from the phase-folded lightcurve. After taking a look at a large sample of variable lightcurves from
all our fields, it was noted that some of our fields, mainly with α≥ 20h have poor data coverage due to
issues explained in Section 2.3.2, which is also reflected in Table 3.1 in the observing span versus actual
nightly observations. The poor time coverage leads our LS periodogram to pick up a large fraction of
systematic periods. Short period variables ≤1 day, such as RR Lyrae variables, are sometimes correctly
picked up even with the sparse observations, as seen in Fig. 4.8, which demonstrates the robustness
of the Lomb-Scargle periodogram for sparsely sampled data. By filtering away fields with that have
obvious poor time coverage with red noise levels σred ≥ 1.2 mmag, we improve the matching rate of our
periodogram. We show all our identified variables in period-amplitude phase in Fig. 4.5 for all fields
(top), and fields with a red noise level of less than 1.2 mmag and excluding sparse fields (bottom). The
points are colour-coded by field, and in the upper panel we notice various streaks of systematic periods.
Most of these are due to harmonics of the 1-day signal. We see strong line clustering at 2, 1, 2/3, 1/2, 1/3,
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Figure 4.5: All our identified variables in period-amplitude phase coloured by field. Triangles are objects that had
their dominant period doubled from the period check for eclipsing binaries. Top: All fields. Bottom: Fields with
σred≤ 1.2, without sparse data, and masked common systematic periods ±4%.

1/4, 1/5, 1/6, and 1/7 days. There are also systematics specific for some fields, such as the cluster of green
points at max period around 110 days.

In the lower panel we have excluded fields with sparse data and high red noise levels, and have masked
systematic periods at 1 day and factors 1/n, for integers n up to 7, as well as 2/3. After masking we notice
a streak of periods just below 0.4 days, which is likely connected to our window function. We see another
streak of yellow points at 35 days, which looks like a systematic period specific for that field.

We notice several populations of variable stars here. To the left, for periods less than 0.04–0.2 days,
there are roughly two populations of stars. One has higher periods and amplitudes around 10%, while the
other has low periods and amplitudes ranging from a few mmag to 10%. It is likely that both of these
populations are mostly δ Scuti variables, as the amplitudes are consistent with this type. In the period
regime 0.2–1 day we have a large population of RR Lyraes and close eclipsing binaries. The cluster of
high-amplitude stars with doubled periods at ∼1.2 days is likely to have a number of RR Lyrae stars that
erroneously had their period doubled by our algorithm, since most of the points are triangles. The same
can be true for other variables with lower amplitudes in this regime. Variable stars in the range 1–10 days
are very often affected by the period doubling, most of it likely erroneously. Variables in this regime can
be Cepheids or similar pulsators. For periods >30 days we expect to see semiregular variables, and some
Mira variables at >90 days.

The most notable cluster in this plot is for 10–30 days at low amplitudes, most around 1%. This
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shows a clear peak in the period histogram in Fig. 4.6. The main stellar targets of NGTS are G, K, and
early M stars, which are expected to have rotation periods in this regime. A. McQuillan, T. Mazeh, and
S. Aigrain (2014) showed for the full sample of Kepler main sequence stars that the expected amplitudes
from brightness variations due to rotation of spot-covered stars is 0.2–30 mmag. We find that this is
consistent with our data, which can imply that we are indeed picking up the upper envelope of these stars.
We investigated their lightcurves in more detail to rule out systematic effects, and found that they have
astrophysical variability. A large fraction of these stars do in fact show brightness variations that are
consistent with spot-covered rotating stars. Some number of them do have periods at half the period of
the moon phase, but no clear indication of systematic effects was present.

We show the period and amplitude distrbutions in Fig. 4.6. For the period we clearly see the peak in
the 10–30 day regime. We also notice a peak around 2 days. In our period masking we mask periods
±4%, which would be too narrow for this period as it still has an overdensity. We found that for the
other period, increasing past ±4% had a negative effect. The structures leftwards of 1 day are a result
of our frequent masking of periods less than one day, which will produce artifical overdensities and
underdensities. In the amplitude diagram, to the right, we note an apparent bimodal distribution. We do
not expect any such feature for the amplitude, and find that it is not of importance. The peak around ∼1%
is due to the abundance of low-amplitude signals that can be from rotating spot-covered stars.
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Figure 4.6: Histograms of period and amplitude for our final sample of high confidence variable stars.

Notwithstanding the few remaining systematic periods in the bottom panel of Fig. 4.5, we notice that
a significant fraction of the variable stars have sub per-cent amplitudes. It is indeed reassuring that we
are able to pick up (likely) non-systematic periodic signals down to a few mmag. This highlights the
potential for NGTS to detect low-mass transiting planets.

4.2.3 Variables on the CCD

In Fig. 4.7 we show the positions on the CCD for identified variable lightcurves with colour-coded
periods for three fields. For a well-behaved field not dominated by systematic noise we expect a random
distribution across the CCD. To the left are the variables for NG2047−0248, following non-systematic
behaviour, as is also shown in Fig. 4.2. Just below the middle region we note an apparent underdensity,
but find that it is likely not significant. In the middle plot we show the CCD positions for NG1349−1115
where most of the identified variable lightcurves are due to contamination from a saturated star in the
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lower right corner. The effect of the saturation is noticable in Fig. A.15 where there are small clusters of
stars with similar brightness sharing the same noise level. The figure to the right shows the variables
from NG1318−4500 with gain-related systematics.
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Figure 4.7: Variable objects on their CCD for fields NG2047-0248, NG1349-1115, and NG1318-4500, in order
from left to right.

4.2.4 Variable lightcurves

Here we show some example lightcurves of newly discovered variable stars identified by our algorithm.
By eyeballing several hundred lightcurves, we note that we very often identify the correct period for
eclipsing binary stars, which suggests the modification we made to the period search is working as
intended. An unfortunate consequence is that the period of most RR Lyrae stars are doubled as well.
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Figure 4.8: RR Lyrae (RRAB) variable star with the correct period identified from only 17 nights of data spanning
54 days. To the right is the 10 min binned light curve with individual nights. To the left the lightcurve folded on its
period, showing the phase variation.

In Fig. 4.10 we show several variable stars with intermediate periods. These are not catalogued variable
stars, thus it is difficult to be sure what types they are. Based on lightcurve characteristics alone, the top
panel can be a γ Doradus variable, showing oscillation at two frequencies. The upper middle and bottom
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panel could variable due to spots on the stellar surface as the star rotates. We take note of the photometry
showing clear variations at less than a per-cent. The lower middle panel is likely a classical Cepheid
variable, showing a flare at 750 days.

In Fig. 4.11 we show a few long-period variables. The top could be a semiregular variable (SR).
The upper middle panel shows a periodic variable star with very low amplitudes, maximum difference
being around 1%. This example shows the excellent photometry that NGTS can achieve for long-period
observations. The two bottom lightcurves look very much opposite of each other, and have the same
amplitudes, which is suspicious. Both of these stars are from the same field, but some quick investigation
found that they are not in proximity of each other on the CCD. Due to time restrictions, we did not pursue
this further and are still unsure about the nature of these stars.

Systematic periods

In Fig. 4.9 we show two examples of systematic effects in our lightcurves. The upper panel shows a
typical example of a lightcurve affected by moon correlations. The dominant period coincides with the
lunar cycle at ∼28 days. In this example the effect induces a dip in the lightcurve at full moon from
oversubtraction. In other lightcurves the correlations manifest as brightness peaks at the phase of full
moon. In the lower panel we show an effect specific to the field NG0313−2230. A number of lightcurves
show a trend where the brightness increases towards the middle of the season, then falls down towards the
end of the observing season, with a total amplitude of about 1%. It is not clear why this is happening, and
given time restrictions, no further investigation was done. Some possible scenarios involve bad weather
at Paranal, or sysrem is not detrending the shorter nights towards the end of the season as well as full
nights earlier in the season.
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Figure 4.9: Two examples of systematic effects seen in lightcurves. Top: Photometry from NG0304−1115 affected
by the Moon’s phase. This is seen in many lightcurves and is thought to be the limiting systematic noise NGTS
currently has. Bottom: Lightcurve from NG0313−2230 showing a ramp up, then down at the end of the observing
season. This is seen in other lightcurves from this field as well.
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Figure 4.10: Variable stars from fields NG0531−0826 and NG0618−6441. Top: Possible γ Doradus (GDOR)
variable oscillating at two periods. Upper middle: Possibly star with spots. Lower middle: Likely Cepheid variable,
displaying a flare at HJD = 750. Bottom: Not clear. Shows variations reminiscent of spots, but amplitudes are very
high.
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Figure 4.11: A series of long-period variables from fields NG0531−0826, NG1135−2518, and NG0522−2518. In
the upper middle panel we notice the slow variation at sub per-cent amplitudes that NGTS is able to pick up, with a
combination of long observations and high precision. These variations truly show the excellent photometry that
NGTS is capable of.
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CHAPTER 5

Discussion

In this Chapter we discuss our results further, and well as some broader implications of what we have
found in Chapter 4. We mention problems with the data, suggest solutions, and discuss some future
avenues of work.

5.1 Systematic noise

5.1.1 Moon phase correlations

In early stages of this work it became evident that some light curves have periodic signals of ∼28–31 days
correlated with the phase of the Moon due to an improper sky background estimation. Affected light
curves can show a brightness increase (moon peaksTM) or brightness dimming up to a ∼2% level. These
effects were first suspected to only affect faint stars. In their case, the effect would manifest as a brightness
decrease over some days, mimicking a very long duration transit. However, later it was discovered that
that the Frms curve per field will vary between nights at the period of the moon phase, becoming a global
problem that affects our long-term photometry and is ultimately limiting our precision and possibly
inhibiting planet detection. In Table 4.1, the red noise level for all our fields with less than ∼30 days of
observations are generally 0.5 mmag lower than for other fields with several months of data. In some
cases the red noise level for these fields is negligible, and the data can be fully explained by the white
noise model. This goes to show that adding more data adds red noise to the long-baseline photometry,
which is likely driven by the moon correlations. By applying simple corrections to the sky background
algorithm, it may be possible to reduce the mean global red noise level of NGTS to 0.5 mmag, or even
beyond.

The sky background correction algorithm is described in Section 2.2.3. The background levels are
estimated from cells of 64×64 pixels. In crowded regions this could be a too small of an area to get a
good background level. Further, the pixel cells undergo iterative k-sigma clipping to remove the stars. It
is possible that this process stops prematurely, or one uses a too high number, k, that does not completely
remove the stars, which will affect the background estimation. Possible improvements to the algorithm
could be to increase the pixel grid sizes in which the background level is estimated, or change the k factor
in the sigma clipping.

The pixel cells are treated completely independent of each other in the algorithm above. Each
cell will have different estimates of the background level, which is attempted to be smoothed by
interpolating between pixels between neighbouring cells. However, this will not pick up other variations
in the background level in a different region of the CCD. Other algorithms take this into account,
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such as nebuliser1. This algorithm was developed to estimate the background level in regions with
nebulosity. It will estimate the background by iterative sliding median and mean filters applied to both
axes simultaneously, thus sampling a larger region of the CCD in the shape of a “plus” sign, reaching a
more global estimate of the sky background that is less affected by locality.

5.1.2 Crowded fields

Dilution from overlapping apertures in crowded fields is a limiting factor in the number of true variable
stars that we identify. This mainly affects fainter stars because they are more numerous, manifesting in
an increased rms scatter at the faint end. Diluted stars can be identified by a catalogue cross-matching
process, taking into account the magnitude limits of NGTS and looking for sources close enough together
for their apertures to overlap. Given their distance from each other, a dilution factor can be computed.
This has been done by NGTS team members and is in the process of being included in the final data files.
It is expected that a re-analysis of the variable star identification process, excluding diluted stars, will
have a substantial effect in identifying real astrophysical variability.

5.1.3 Brightness-dependent noise

In Fig. 3.1, lower panel, we showed the ratio R as function of flux after including the red noise level
found for NG0304−1115. For a perfect noise model we would expect the floor of the population to
follow a straight line around R = 1, where the rms scatter for the most quiet stars is described by the
total noise model. Instead, we see that the red noise overestimates the total noise at the bright end, which
curves the population of bright stars downwards. This indicates that the true red noise level is dependent
on brightness, and not at a constant level. The source of this brightness dependence is difficult to identify,
but a possible reason could be non-linearity in the CCD.

5.1.4 Airmass effects

Each NGTS telescope will observe a given field for a duration of 3–4 months. Throughout this period,
the number of hours per night that the field is visible in the night sky will vary. At the start of an observing
season, as the field rises above the horizon, it may be observable for a couple of hours, reaching about
8 hours mid-season, before the field starts setting again and becomes observable only for a few hours
per night. Adding to this, as Earth rotates the altitude of the field will also vary throughout the night.
At the beginning of the night the field will be close to the horizon where the light has to pass through
more atmosphere than when the field is observered at a higher altitude on the sky. The change in airmass
throughout the night adds a varying level of scintillation noise in the lightcurve, and manifests as “ramps”
at the beginning and ends of nights in some lightcurves. These ramps are a common source of false
transit detections by the BLS algorithm, and contributes to the overall systematic noise in the photometry.
Some investigation was carried out to quantify the effect of these ramps, but nothing conclusive was
found due to the dominating systematic noise level being from moon correlations.

5.2 Implications for planet detections

Red noise is the limiting factor in the search for small planets around bright stars. The planet yield
estimates for NGTS M. N. Günther et al. (2017) was shown to be heavily dependent on the red noise

1 http://casu.ast.cam.ac.uk/surveys-projects/software-release/background-filtering
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level that NGTS ultimately achieves. The simulated yield for NGTS over its full mission (4 years) for
1 mmag red noise is 4±3 super-Earths, 19±5 small Neptunes, 16±4 large Neptunes, 55±8 Saturns, and
150±10 Jupiters. Detection of large planets is not very affected by red noise at the mmag level. WASP
(D. L. Pollacco et al., 2006) had a limiting noise level around 1%, which was enough for the science
case of detecting Jupiter-sized planets. Achieving a 0.5 mmag red noise level was therefore shown to
mainly increase the planet yield for smaller planets: 10±3 super-Earths, 60±10 small Neptunes, 38±4
large Neptunes, 76±10 Saturns, and 158±11 Jupiters.

In Table 4.1 we show that the mean red noise level for the TEST18 dataset is 0.87±0.17 mmag, which
places the expected planet yield somewhere between the two results above. The level of red noise that
the moon correlations induce are thought to be of the order 0.5 mmag, based on the red noise levels of
the short fields. It is believed that a correction to the sky background subtraction will at the very least
bring us closer to the 0.5 mmag red noise level, which will greatly enhance the detection capabilities of
Neptune-sized planets. Decreasing the red noise also has the effect of increasing sensitivity to detect
small planets at longer orbital periods.

5.3 Variable stars

5.3.1 Detection fraction

The number of detected variables in a survey depends on the stellar populations surveyed, magnitude
limit, length and sampling of observations, instrument methods, and analysis tools. Excluding fields
with sparse data, and fields that suffer from high red noise, we find that the fraction of stars we are
confident are astrophysically variable across all our fields is 1.4±0.65 per-cent. We can compare these
numbers to what has been found from other surveys, as reviewed in L. Eyer and N. Mowlavi (2008).
From the Hipparcos mission it was found that 2.26% of stars were periodic variable stars, i.e. pulsating
variables and eclipsing binaries. Another 4.62% were non-periodic/not classified, while 2.79% were
not investigated. The Hipparcos magnitude limit was 12 in the V band, while NGTS is sensitive to 15.
The number of stars increases sharply for fainter limits, which makes it unsurprising that we find more
variable stars. The third data release from ASAS (G. Pojmanski, 1997) contains results from a survey of
7 300 000 stars at V < 15, of which 0.34% of stars were found to be variable. Our precision with NGTS
is about an order of magnitude better, which means that we are sensitive to low-amplitude variations
from e.g. spotty stars with periods ∼10–30 days, which are numerous in our sample (Fig. 4.5). OGLE-I
and II (A. Udalski et al., 1992) surveyed the Galactic bulge at I < 18 and found a variable fraction of
0.67%. NGTS observes strictly away from the Galactic bulge due to higher stellar densities that increases
the number of false positive detections due to blended eclipsing binaries. It is not clear whether, or how,
the variable star population changes as a function of Galactic latitude, which also makes comparisons
difficult.

5.3.2 Detection potential

Due to the nature of the variable lightcurve filtering, we will only find lightcurves with consistent variation
– enough to affect the median flux level of the full observing duration. With a small modification to the
code, it is possible to do variable lightcurve filtering on a nightly basis. This has the benefit of picking
up transient astrophysical effects, such as stellar flares, which was shown in early stages of this work,
but has not been explored further because the motivation behind the work was to assess the long-term
photometric quality of NGTS. However, it is possible to build further on this by identifying stars with
nightly variations and cross-match with those filtered by the full observing duration. Stars that are found
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in common can be discarded, as short-period variables such as δ Scuti, RR Lyrae, and EBs will also
be picked up by this method. A population of the remaining lightcurves should be transients/eruptive
variables that can be studied further.

Flare stars are particularly interesting in the context of exoplanet science for various reasons. The
prime targets of NGTS are K and M-dwarf stars. These, in particular M-dwarfs and even more loss mass
stars, are known to have high surface activity with turbulent atmospheres, high rate of flares and XUV
emission, which has sparked some discussion on the habitability potential near these stars. Planets around
low-mass stars will undergo strong irradiation which could destroy a potential atmosphere (P. J. Wheatley
et al., 2017; E. Bolmont et al., 2017), but it is not clear what effect high-energy irradiation would have on
habitability. The activity on these stars also make exoplanet hunting more difficult with radial velocity
measurements. Stars with high rates of flares typically have high chromospheric activity and turbulent
atmospheres, which can have limiting effects on the detection of planet-induced reflex motions of the star.
Studying flares may help us understand these stars and their activity, thus aiding in exoplanet detection.

5.3.3 Systematic periods

Finding a way to correctly deal with systematic periods is important for any future work on NGTS
variable stars. Throughout this study we experimented with various ways of doing this. A first approach
consisted of only masking commonly known systematic periods, as well as periods ±5% within these. It
was later found out that this had a profound effect on the efficacy of our period-search algorithm when
comparing with known variable stars from catalogues. Upon investigating the reasons for our low number
of matching periods, it was found that in most cases a harmonic of the period was selected due to the
dominant period being in viscinity of the masked periods. A large number of our identified variable
stars are indeed RR Lyraes, short-orbit eclipsing binaries and δ Scutis, which are quite often found close
to these periods. To mitigate this, we tried to model the periodic variations with a simple sum of a
sine and cosine term without masking, which is the approach used in the current study. The catalogue
period matching exercise yielded better results, but from Fig. 4.5 we see the systematic periods persist.
A solution, which was tried in early stages of this work, would be to also remove ±5 of frequencies
close to the systematic periods. Similar adjustments have been done in D. J. Armstrong et al. (2016).
However, it was found that this was computationally demanding due to the fine frequency spacing we use.
While the study progressed we found that at this stage we do not require a highly accurate period-finding
algorithm, but note that future studies on e.g. automated classification would benefit greatly, and demand,
an improved algorithm.

However, the systematic periods can be used to our advantage. Most lightcurves that have a dominant
systematic period are likely to be non-variable, or variable at a very long period, as any quasi-variability
on the timescale we use will probably show a dominant LS signal. One could then simply remove these
lightcurves and take the remaining stars as true variable stars to continue with the analysis. This may
work as a simple solution if the goal is to do quick variable star science, but for this work it was more
important to understand what causes the systematic noise in the first place, and perhaps identify possible
solutions.

5.3.4 Choice of periodogram

The autocorrelation function (ACF) was also explored as a means to identify periods in our lightcurves.
ACF works by calculating the correlation of the lightcurve with itself while shifting the signal in time.
Given a periodic lightcurve, the ACF will show a peak every integer multiple of the period. The period is
then typically found from an averaged distance between the first three peaks in the periodogram. This
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periodogram is more robust for detecting correct periods of eclipsing binaries, as a correlation at half the
binary period will always be smaller than for the full period for binaries of unequal sizes. Additionally,
ACF is less sensitive to long-term trends in the data, which can sometimes show strong peaks in LS
periodograms. In the literature, ACF has also proven to be very robust for measuring rotation periods
of Kepler M-dwarf stars (A. McQuillan, S. Aigrain, and T. Mazeh, 2013; A. McQuillan, T. Mazeh, and
S. Aigrain, 2014). However, ACF generally requires better treatment of the data, and is more affected by
un-even sampling than LS periodograms.

Due to general noise and systematics in data, the ACF periodograms will often show spurious peaks,
making it difficult to compare the peaks alone. A smoothing of the periodogram, typically with a Gaussian
kernel, is required. The width of the smoothing kernel will depend on the periodic signal that one searches
for, and is typically found from trial-and-error. For this work we were interested in searching a range of
periods and variable stars, most of which resemble sinusoid signals, which LS is more sensitive to. The
LS periodogram, with its versatility and ease of implementation was found to be better suited for our
purposes.

5.4 Future steps

5.4.1 Rotation periods of NGTS stars

The concentration of stars with periods 10–30 days in Figs. 4.5 and 4.6 are consistent with rotation periods
of G, K and M stars, assuming they are main sequence, as shown for the full sample of Kepler main
sequence stars by A. McQuillan, T. Mazeh, and S. Aigrain (2014). Furthermore, their study showed that
the expected amplitude of brightness variations from their rotation with spot-covered surfaces are in the
range of 0.5–30 mmag, with a downwards trend towards low-mass stars. Our amplitudes (5–15 mmag)
are consistent with the upper envelope of their sample. Further study needs to be done to rule out
systematic effects related to moon correlations, but if confirmed that they are rotation periods of main
sequence stars, it would open up new avenues for studies of stellar evolution from the ground with NGTS.

5.4.2 Pipeline variable filtering

Assuming that dilution effects in crowded fields are properly accounted for and the sky background
correction is changed to behave more adequately – as is being worked on by other team members – the
software should perform remarkably better in identifying bona fide variable stars. At this stage it could
be ingested into the NGTS pipeline in filtering variable lightcurves. Variable star filtering in the pipeline
is useful for several reasons. Before transit searches are performed on the lightcurves, the data undergo
systematic error corrections, as described in Section 2.2.2. Although the sysrem algorithm uses an rms
cut-off for its reference star selection, low-amplitude stars may still pass the filtering and affect the global
detrending of lightcurves. A reliable variable star filter would result in better detrending, which in turn
may help uncover planetary signals.

For NGTS data and most transit surveys, transits are searched for with the highly efficient BLS
algorithm (G. Kovács, S. Zucker, and T. Mazeh, 2002), which attempts to fit a transit box model to the
data phase folded on trial periods. This has the unwanted effect of catching a range of variable stars, most
notably eclipsing binaries (Section 1.4.3). Time spent on follow-up vetting of these false positives can be
minimised if the data undergo an accurate variable filtering prior to the transit search.
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5.4.3 Automated classification

The onset of large volumes of data from various astronomical surveys (WASP, LSST, TESS, HAT, find
more) has pushed astronomers to use automated tools to analyse data that can no longer be done manually.
In the context of automated variable star classification, machine learning techniques have gained traction
and have proven to be efficient and accurate for both evenly sampled space data as well as sparse
ground-based data. The idea is to extract a number of “features” from the lightcurve based on various
noise characteristics, periods, amplitudes, and more, that is used as input to a machine learning classifier
that will put the lightcurve in the most probable variable class based on its inputs. The classifier is first
trained on a sample of stars with known classes, but based on inputs from new lightcurves, the classifier
can automatically evolve and learn. J. W. Richards et al. (2011) applied a Random Forest (RF) classifier
to OGLE and Hipparcos data and showed a 22.8% error rate on 25-class dataset. For pulsational variables
alone, the discovery efficiency was at 99.1%, and 98.2% for eclipsing systems. For the classification, they
used 32 periodic features extracted from the generalised Lomb-Scargle periodogram, as well as 20 other
non-periodic features extracted from the lightcurve. The selection of a high number of features introduces
an ambiguity, as a number of these features may or may not be descriptive of all variable classes. In an
attempt to minimise the selection of features, D. J. Armstrong et al. (2016) applied a Self-Organising
Map (SOM) on K2 data prior to an RF classifier. The SOM is a type of clustering algorithm that – based
on the shape of the lightcurve – will group similar variables together in a two-dimensional space. This
method proved to be very efficient in separating close binaries from detached binary stars, as well as
other pulsators such as RR Lyraes and δ Scutis. The position of each variable (SOM Index) is then
used as a feature in the RF classifier. When comparing the importance of each feature in classifying a
lightcurve, it was shown that the SOM index was the second most important feature in the classifier, next
to the dominant period, which potentially holds more information than a number of other features would
combined.

The original intent of this work was to identify variable stars through Frms diagrams and building a
noise model, then perform automated machine learning classification of the identified periodic variable
lightcurves using an RF classifier with the SOM as an input. However, upon completing the variable star
identification process, subsequent period search unveiled that a large fraction of the variable lightcurves
were noise and/or dominated by systematic periods due to issues previously discussed in this Chapter,
namely moon correlations, dilution, window function effects, sidereal day correlation, airmass effects,
and likely other hitherto undentified effects. To perform an adequate classification, most of these issues
need to be addressed and improved on so that astrophysical variability will dominate the signal. Most of
the issues are currently being worked on in the NGTS team, and future data quality will significantly
benefit from these efforts. For these reasons it was decided that automated classification at this stage was
premature, and more effort was put into investigating the sources of noise that is limiting the experiment,
which constitutes the bulk of this work.

5.5 Conclusion

In this study we have carried out a global assessment of the noise level for NGTS’ long time-series
photometry from its first year of observations. We have built a white noise model for NGTS taking into
account survey and camera characteristics, and from this estimated the level of systematic noise in the
data. We found that the median red noise level across the 30 fields we analysed is 0.82±0.10 mmag,
demonstrating that NGTS indeed is able to reach sub-mmag noise levels over the 3–4 months that each
camera is observing a given field. Further investigation was carried out in an attempt to identify possible
sources of systematic noise, and we found that an incorrect sky background subtraction leads to a
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global ∼28 day periodic variation in the noise level for all our fields. This is currently in the process of
being corrected by NGTS team members. Addressing this problem may bring the red noise level below
0.5 mmag, which will have a great effect on the number of super-Earth size exoplanets NGTS can detect.

We used our noise model to develop a robust, automated way of identifying periodic/semi-periodic
variable stars using a brightness-independent rms threshold. Assuming a Gaussian distribution in
brightness-independent rms (R) of non-variable stars, we find 7976 variable lightcurves outside the 97th
percentile. We find that a high fraction (∼66%) of these are lightcurves with high noise and dominant
systematic periods. After applying vetting critera on systematic periods and noise levels for, we find
1245 stars that we believe are astrophysically variable at high confidence. This constitutes 1.31% from
our reduced sample of stars. About 900 of these are new variable stars, including δ Scutis, RR Lyraes,
various types of eclipsing binaries, Cepheids, and semiregular variables. There is also indication that
we are picking up rotation periods of spotted main sequence stars, which would be the first time for a
ground-based wide-field survey. Efforts are currently being made to address issues with systematic noise
by NGTS team members, and we expect that this will lower the number of non-astrophysical variables,
in turn greatly increasing the efficiency of our algorithm in detecting bona fide variable stars. For future
work, we expect that this can be ingested into the data pipeline to optimise systematic detrending, and the
sample of identified variable stars can be used for automated classification using e.g. machine learning
techniques.
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APPENDIX A

Field summary plots

Here follows summary plots for each field that we have analysed. The figure contents are the same for all
subsequent figures.

Top left: Frms plot for the field including data from the whole observing season, with noise model.
Middle left: The selected variable stars in that field (red). Grey points in coloured regions are stars with
less than 20% data than the median number of observations in the field and are excluded. Middle right:
Noise scaling with bin width for a typical V=10 star from the field. The circular points are the binned
data, and the dotted line is the 1/

√
n white noise behavour, using the unbinned data as reference. Lower

left: Identified variables plotted by their positions on the CCD, colour-coded by their dominant period.
Lower right: Identified variables plotted in period-amplitude space. The dotted lines indicate positions
of common aliases of the 1-day systematic period, suggesting those targets do not have astrophysical
variability.
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Appendix A Field summary plots
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Figure A.1: Field summary for NG0304−1115.
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Figure A.2: Field summary for NG0313−2230.
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Figure A.3: Field summary for NG0348−3345.
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Figure A.4: Field summary for NG0409−1941.
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Figure A.5: Field summary for NG0522−2518.
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Figure A.6: Field summary for NG0531−0826.
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Figure A.7: Field summary for NG0612−2518.
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Figure A.8: Field summary for NG0618−6441.
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Figure A.9: Field summary for NG1135−2518.
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Figure A.10: Field summary for NG1213−3633.
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Figure A.11: Field summary for NG1253−1941.
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Figure A.12: Field summary for NG1315−2807.
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Figure A.13: Field summary for NG1318−4500.
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Figure A.14: Field summary for NG1340−3345.
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Figure A.15: Field summary for NG1349−1115.
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Figure A.16: Field summary for NG1416−2518.
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Figure A.17: Field summary for NG1421+0000.
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Figure A.18: Field summary for NG1428−2518.
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Figure A.19: Field summary for NG1444+0537.
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Figure A.20: Field summary for NG1947−4200.
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Figure A.21: Field summary for NG2028−2518.
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Figure A.22: Field summary for NG2047−0248.
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Figure A.23: Field summary for NG2058−0248.
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Figure A.24: Field summary for NG2126−1652.
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Figure A.25: Field summary for NG2132+0248.
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Figure A.26: Field summary for NG2142+0826.
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Figure A.27: Field summary for NG2145−3345.
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Figure A.28: Field summary for NG2150−3922.
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Figure A.29: Field summary for NG2152−1403.
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Figure A.30: Field summary for NG2346−3633.
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