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Background: A visualization referred to as rainfall plot has recently gained popularity in genome data analysis. The
plot is mostly used for illustrating the distribution of somatic cancer mutations along a reference genome, typically
aiming to identify mutation hotspots. In general terms, the rainfall plot can be seen as a scatter plot showing the
location of events on the x-axis versus the distance between consecutive events on the y-axis. Despite its frequent
use, the motivation for applying this particular visualization and the appropriateness of its usage have never been

critically addressed in detail.

Results: We show that the rainfall plot allows visual detection even for events occurring at high frequency over very
short distances. In addition, event clustering at multiple scales may be detected as distinct horizontal bands in rainfall
plots. At the same time, due to the limited size of standard figures, rainfall plots might suffer from inability to
distinguish overlapping events, especially when multiple datasets are plotted in the same figure. We demonstrate the

consequences of plot congestion, which results in obscured visual data interpretations.

Conclusions: This work provides the first comprehensive survey of the characteristics and proper usage of rainfall
plots. We find that the rainfall plot is able to convey a large amount of information without any need for
parameterization or tuning. However, we also demonstrate how plot congestion and the use of a logarithmic y-axis
may result in obscured visual data interpretations. To aid the productive utilization of rainfall plots, we demonstrate
their characteristics and potential pitfalls using both simulated and real data, and provide a set of practical guidelines

for their proper interpretation and usage.
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Background

The rainfall plot (RP) can be seen as a scatter plot showing
the location of events on the x-axis versus the distance to
their respective preceding event on the y-axis.

The plot is mostly used for detecting mutation hotspots
in cancer genomics by visualizing the distribution of
somatic point mutations (SPMs) along a reference
genome. In this case, each event is a mutation. The x-
coordinate shows the genomic position of the mutation,
while the y-coordinate represents the base pair distance
between consecutive mutations on a logarithmic scale.

To our knowledge, the RP was first used to visualize
SPMs in a paper by Nik-Zainal et al. in 2012 [1]. It has
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since been widely used for studying patterns of genomic
mutations (e.g., [1-5]).

However, the interpretation of the RP is not fully intu-
itive, and several challenges need to be overcome to allow
its productive use. The first challenge is to correctly
read out the density of mutations in the various genomic
regions of interest.

The second challenge is to take into account poten-
tial congestion in the plot, i.e. that multiple mutations
share the same x-y-coordinate and thus appear as a single
mutation.

A third and related challenge concerns the usage of mul-
tiple colors for highlighting subsets of the displayed data.
The (in principle arbitrary) order in which the mutation
subsets are plotted may affect the resulting color at a given
x-y-coordinate due to congestion. The plotting order may
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in this way strongly affect the visual impression of which
subsets are the most frequent.

We here aim to guide researchers in correctly utilizing
and interpreting RPs by explaining its characteristics and
pitfalls. Our conclusions are based on a careful inspection
of RP properties and illustrated using real mutation data.
We also critically evaluate when the RP may be the best
means of visualizing mutational patterns along a genome,
and when a visualization like a traditional frequency plot
would be preferable.

Results and discussion

We first provide a formal definition of the RP, and then
present the challenges of visualizing mutations of a large
(e.g. human) genome. We discuss how RPs offer a partial
solution to some of these challenges, what the limita-
tions of the RP are, as well as some particular caveats that
should be kept in mind when creating and interpreting an
RP of mutation data.

Formal definition of rainfall plot

We define the RP for a strictly monotonically increasing
sequence of integers (pi1,...,pn) as a scatterplot of the
points S = {(x;, ;) | i € {1,2,...,N — 1}} where each y; is
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and each x; is given by:

xi=pis1 Vie{l,2,...,N—1}

When making an RP for mutations within a single chro-
mosome, the chromosome offsets of mutations can be
used directly in the above formula. When making an RP
for a whole genome, mutations across chromosomes need
to be combined into a single plot. Also, in order to fit a
grid of a specific size (to have full control of how a plot
will be displayed on a screen or printed on paper), the x-
and y-values need to be scaled in accordance with the grid
size. Full details are provided in Additional file 1.

Visualizing the distribution of mutations along a genome
Human SPMs are determined as individual genomic posi-
tions having different alleles in somatic cells compared
to the germline of a particular individual. SPMs can be
represented as a set of mutations occurring at particular
point locations along the ~ 3 billion base pairs of a human
reference genome.

Figure 1a shows a ~ 20 kbp long region of chromosome

given by: 3 enriched with SPMs in the cancer tissue of a pancre-
yi=log(pir1 —p) Vie{l,2,...,N—1} atic cancer patient (data taken from [2]). Due to the large
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Fig. 1 Visualization of SPMs in a pancreatic cancer patient. SPMs (marked with vertical black lines) at location 145,800,000 — 146, 100, 000 of
chromosome 3 of the hg19 human reference genome (a). A frequency line plot (b) and RP (c) showing kataegis regions at location ~ 150 Mbp in
chromosome 3 (corresponding to whole-genome location ~ 650 Mbp in the figure) and at location ~ 35 Mbp in chromosome 11 (corresponding
to whole-genome location ~ 1850 Mbp in the figure). Data taken from [2]
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size of the human genome, a figure of standard dimen-
sions cannot capture a high resolution view of locations of
individual mutations along a single axis.

One natural possibility for visualizing mutations at such
a broad scale is to make a line plot of mutation frequency
for a selected bin size along the genome, i.e. showing the
number of mutations in each of 3 Mbp bins along the
x-axis (Fig. 1b), rather than just a binary indication of
presence. Such a plot shows how the overall frequency
of mutations is distributed across the genome, but does
not indicate anything regarding the internal distribution
of mutations within each 3 Mpb bin. From such a plot, one
has no information of whether the given number of muta-
tions within a 3 Mbp bin are distributed uniformly across
the bin, or are mainly restricted to one or more local
hotspots, such as kataegis [2] or artifacts [3] within the
bin. Indeed, the highly specific (non-uniform) distribution
that can be seen in Fig. la represents only 10% of a sin-
gle bin (300 kbps), and is thus only visible at a resolution
much higher than that of a genome-scale line plot.

An RP is an attempt to provide some high-resolution
location information along with the global overview of fre-
quency information that is otherwise shown by a line plot.
The indication of inter-mutation distance, and the use of a
logarithmic scale to demonstrate it, provides a way to visu-
alize hotspots of mutations at a resolution far beyond what
is afforded by the resolution provided by the segmentation
into 3 Mbp bins along the x-axis.

Figure 1c shows a genome-scale RP of the pancreatic
mutation data. From this RP one can also see that many of
the mutations are falling very closely together - mostly at
a distance of ~ 10 — 1000 bp between consecutive events,
as seen from the values at the y-axis. Still, for a single x-
value (typically corresponding to a region of ~ 3 Mbps in
case of human genome), the RP is only able to visualize
the distribution of pairwise distances between consecu-
tive mutations (along with various limitations as discussed
in following sections). It is thus not able to provide the
full high-resolution view of events as can be seen from a
zoomed-in view of locations, as in Fig. 1a.

Although an RP requires some care and insight in order
to make appropriate interpretations, the plot itself can be
generated without the need to specify any parameters. In
contrast, a line plot of frequency is trivial to interpret,
but successful detection of patterns of interest may be
highly dependent on the selection of bin size for which the
frequencies of mutations are counted.

Figure 2 shows how the same kataegis region as dis-
cussed above would be represented with different bin sizes
in a frequency plot. At small bin sizes, the very high inten-
sity of mutations will cause the kataegis region to stand
out clearly. At large bin sizes however (and even despite
high mutation intensity), the limited extent of the kataegis
region will not contribute sufficiently to the aggregate
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point count to make the corresponding bin stand out in
context of the general variability.

Interpreting density and frequency of mutations along the
genome

A main motivation for the use of RPs is to visualize
localized regions of hypermutation. As discussed in the
previous section, visualizing such regions in the context
of a whole genome is challenging, since their extent may
be minuscule relative to the genome size. In order to
relate appropriately to mutation density, region extent and
total number of mutations, it may be helpful to think of
mutation locations in light of a conceptual model, such as
a point process.

If mutations were independently and uniformly dis-
tributed across the genome, the points could be consid-
ered the result of what is called a homogeneous Poisson
point process (HPP). An HPP is a stochastic process used
in many fields of science as a way of modelling ran-
dom events along a single dimension that represents a
reference variable (generally it is time, in our case it is
genome location) [6, 7]. However, the intensity of muta-
tions is not uniformly distributed along the genome, and
a generalization of the HPP needs to be considered.
The non-homogeneous Poisson point process (NHPP), an
extension of a standard HPP, allows the intensity of stud-
ied random events (typically referred to as a parameter
A) to be a function of the reference variable, e.g. to vary
along the genome. The expected distance between muta-
tions follows directly from the intensity of an HPP/NHPP
(the expected value for distance is given by 1/).

In the absence of full high-resolution information, a
natural interpretation is that the locations of individual
mutations are distributed without any particular structure
within the bounds provided by the visualization setup.
The NHPP represents such a natural baseline assump-
tion. The overall intensity varies along the genome, while
individual events are assumed to fall uniformly and inde-
pendently (as in an HPP) within regions of stationary
intensity. According to such a baseline, a line plot of fre-
quency in ~ 3 Mbp bins along the genome indicates the
average intensity (1) for such an NHPP in each bin. Since
the frequency only indicates the average intensity (area
under the intensity curve) for a given bin, it is based on
a heightened frequency value for a particular bin. There-
fore it is not possible to distinguish between a small region
of high intensity and a larger region of lower intensity
(as long as the region of heightened intensity is occurring
within a single bin).

In contrast, the inter-event distances provided as y-
values on the RP provide a direct indication of intensity
level, since the intensity of an HPP directly corresponds
to the expected inter-event distances. The presence of
several close points (having the same x- and y-values
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Fig. 2 The same kataegis region with different bin sizes. Individual mutation locations within the bin containing a kataegis region for bin size 30Kbps
(@), 3Mbps (€) and 30Mbps (e), as well as line plots showing the average density of mutations along those same regions in (b), (d) and (f), respectively.
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within a limited range) thus indicate one or more (approx-
imately) stationary regions of the corresponding intensity
within that bin. In Fig. 1c, the cluster of points in chro-
mosome 3 at (logarithmic) y-values of around 2 thus
indicates the presence of a region of average inter-event
distance around 10> = 100 within the bin corresponding
to that particular x-value (corresponding to intensity (1)
of 1/100 = 0.01.

In principle, the extent of such a stationary region of
heightened intensity (or total extent in case of multiple
regions) could also be approximately derived by looking
at the number of distinct points on the plot, but due to
issues with congestion (as discussed in a later section),
the extent of the heightened region and the total num-
ber of mutations within a bin can not be robustly read
out.

Figure 3 shows a simulated data set containing four
hotspot regions (regions of heightened event density),
each having a distinct combination of intensity and extent.
The line plot here only allows distinction between hotspot
regions containing a different number of events, while the
RP only allows robust distinction between hotspot regions
of different peak intensity.

Table 1 summarizes the plot abilities to distinguish
regions based on either peak event intensity or area under
the event intensity curve.

Detecting recurrent enrichment of mutations at a
particular scale

In addition to specific exceptional events that give rise
to marked local hotspots, there may also be tendencies
for SPMs to follow general patterns of varying intensity
at specific scales. Such patterns might be associated with
biological mechanisms affecting the true distribution of
SPMs, or may reflect technical artifacts of sequencing and
variant detection. Since RPs use the y-axis to denote inter-
mutation distances on a logarithmic scale, mechanisms
leading to recurrent enrichment of mutations at a partic-
ular scale (clustering) may be spotted as horizontal bands
in the plot (enrichment of dots within a restricted range
of y-values, across x-values). Figure 4 shows an example
of such enrichment at particular inter-mutation distances,
based on simulated data.

A challenge in detecting and correctly interpreting such
enrichments of particular inter-mutation distances is that
visual patterns for a specific data set and region of interest
need to be contrasted with what would be a baseline distri-
bution of inter-mutation distances (and with correspond-
ing visual appearance in an RP). What is crucial to note
here, is that a uniform and independent distribution of
mutations within a region (i.e. a homogeneous/stationary
Poisson process) will not result in anything like a uni-
form distribution of inter-mutation distances (neither on
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Fig. 3 Density and frequency of mutations along the genome.
Simulated data with four hotspot regions. The first and second region
have the same inter-mutation value, equal to 0.001, while the third
and fourth inter-mutational value is in both cases equal to 0.01. The
first and third region share the same genomic regions, and so do the
second and fourth region

a linear nor on a logarithmic scale), but rather in an expo-
nential distribution with mean value of 1/A. Viewed on a
logarithmic scale (as on the y-axis in a RP), such a distribu-
tion of distances would show a markedly increased density
of points around the y-value corresponding to the mean

Table 1 Summary of the frequency line plot and RP abilities to
distinguish regions based on either peak event intensity or area
under the event intensity curve

Frequency line plot  Rainfall plot

Intensity (density No
of mutations in
hotspot regions)

Directly

Integral (number
of mutations in
hotspot regions)

Directly To some degree through point

counting

Extent (length of No
hotspot regions)

To some degree by deriving
from integral and intensity

Intensity here refers to the average distance between events within a genomic
region (density of mutations within a hotspot region). Integral refers to the total
number of events within a genomic region (number of mutations within a hotspot
region). Extent refers to the length of the genomic region of heightened event
frequency (length of hotspot region)
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distance value (1/1), without this denoting any tendency
for clustering (recurrent enrichment of mutations at a par-
ticular scale). Indications of clustering can thus only be
correctly detected as horizontal bands that are not a mere
consequence of a general baseline intensity.

To correctly delineate enrichments at specific scales, it
may again be useful to consider a conceptual model. By
contemplating which patterns of inter-mutation distances
are to be expected from such a model, one may more accu-
rately detect the presence of such patterns in real data, as
well as connecting the patterns to underlying processes.
A hidden Markov process (HMP) may serve as such a
conceptual model, as it is capable of producing recurrent
distance enrichments and are based on a small number
of parameters that are easy to interpret. It would in our
setting consist of two or more states: one state where
mutations are occurring at a baseline level, and one or
more additional states where mutations are occurring at
increased intensity due to some particular (biological or
technical) mechanism.

Figure 4 shows such a simple HMP consisting of two
states (4a), as well as the rainfall pattern that such a
process would give rise to (4b) and a corresponding his-
togram of inter-event distances (4c). Note that such vari-
ation in intensity could also be represented by an NHPP
with intensity varying between these levels. However, the
NHPP would not be bound to the recurrent switching
between the same limited set of specific intensity levels
and would thus be a less informative model of what is
assumed to be an underlying general mechanism. Note
also that while a single short region of increased intensity
would result in an enrichment of rainfall dots at y-values
distinct from the baseline, this would be limited to a single
x-value, and thus not form a band in the plot.

Congestion and saturation in rainfall plots

When illustrating the distribution of events within the
human genome, every point on a modestly-sized RP figure
(i.e., a standard journal figure) will correspond to a range
of genomic locations, as well as a range of inter-event dis-
tances, rather than a single genomic location and a single
distance value. As a consequence, multiple distinct events
may share the same coordinates and overlap on the plot,
creating misleading impressions of event density or the
lack thereof. Figure 5 shows the possible extent of conges-
tion on a RP of a particular size. The linear scale of the
x-axis leads to each x-value uniformly representing a given
number of base pairs of the human genome (typically sev-
eral million bases). The number of inter-event distances
represented by a single y-value greatly changes based on
the vertical position on the plot, however. As the y-values
decrease, individual distances become increasingly easier
to distinguish from each other, a feature that is conve-
nient when small distances are of most interest. On the
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Fig. 4 Clustering of mutations as an HMP. HMP consisting of two states (a), with a corresponding rainfall pattern that such a process would give rise
to (b) and a corresponding histogram of inter-event distances (c). In this example of a hidden Markov process, there is a high probability (P=0.8) of
being in or moving to the state with low intra-hotspot distance (A = 0.01), which generates closely spaced events. A more seldomly occurring state
(P=0.2) with large inter-hotspot distance (A = 0.0001) generates events with large distance to their preceding neighbors. The process defined by
these two states generates several distantly spaced hotspots of events, giving rise to two quite distinct horizontal bands in the RP. The same pattern
can also be seen as two distinct peaks in the histogram of inter-event distances

other hand, the congestion is scaled in an inverse man-
ner along the y-axis, with the possibility of event-overlap
quickly growing as inter-event distances decrease.
Whether congestion represents a problem in practice
depends on the nature of the plotted events. In kataegis
examples as given by Alexandrov [2], the variety of inter-
event distances prevents saturation from being problem-
atic. (Figure 6a and b show that at most 6 events are
ever projected into identical coordinates on 1000x351-
point RP representations of the original figures. In both

cases, enough unique projections remain in order to cre-
ate apparent ,rainfalls”) However, potentially interesting
clusters of events may not be apparent on an RP if only
small numbers of events form such clusters (e.g., as few
as six events indicating a kataegis region according to [2],
which would correspond to 5 plotted distance-values with
possible overlaps). In addition, several independent event
clusters might appear as a single cluster if they fall within a
single x-value on the RP. In general, the standard RP is not
suitable for illustrating situations in which the events of
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Fig. 5 The extent of possible event congestion on a human genome RP with dimensions of 1000x351 pixels. The number of distinct represented
inter-event distances and the number of possibly overlapping events are displayed for selected RP y-coordinates. RP pixels with low y-coordinates
represent few or even no inter-event distances (as seen for y-coordinates 0, 25, 50). At the same time, the distances represented by low
y-coordinates are short and allow therefore for a high number of events to share the same x-coordinate. On the other hand, individual pixels with
high y-coordinates can represent groups of many distinct inter-event distances (i.e., hundreds, thousands or millions of distances at a time). At the
same time, higher y-coordinates represent longer distances, which increasingly limits the number of events that could possibly share the same
x-coordinate (with only a single event fitting onto any x-coordinate at the highest y-values). Changing the plot dimensions will influence which
distances and which genomic locations will be distinguishable from each other

interest are expected to appear close to each other and at
distance intervals with little or no diversity, e.g. recurring
mutations in a group of patients.

Plotting every event irrespective of the others seems
to be the standard approach when creating an RP. Not
taking the congestion into account has an additional side-
effect if subsets of the plotted data are assigned different
colors: the order in which the individual events are plot-
ted becomes important. Figures 7 and 8 show the same
pancreatic cancer data as used in [2]. In Fig. 7a, the vari-
ants were plotted in an order based on their genomic
location, while Fig. 7b highlights sites of congestion in
an RP with dimensions of 1000x351 pixels. In Fig. 8a
and b, the variants were plotted in an order based on
the substitution type (8a follows the order in which the
substitution types are listed in the legend, with C > A
variants plotted first and T > G variants last; while Fig. 8b
follows a reversed order, with T > G variants plotted
first and C > A variants last). Interestingly, 8a seems to
be the order used in [2], even though this ordering cre-
ates a misleading impression of some substitutions being
more common than others by obscuring the events that

were plotted first (besides congestion as described above,
the size of the points on a plot can contribute to this
problem).

One way to alleviate plot congestion could be through
zooming, i.e. making an RP of the same resolution for a
smaller part of the genome. Such zooming may be offered
interactively, or based on manually re-creating a plot for
a specified subpart of the genome. It can certainly be
useful to make plots for each chromosome separately, or
even for very small genomic regions of particular inter-
est. However, part of the strength of the RP is its abil-
ity to convey patterns across multiple scales in a single
overview plot. Reliance on multiple zoomed-in views does
not allow this same degree of summarization or possibility
for direct visual contrasting of patterns seen throughout
the genome.

Guidelines for using and interpreting rainfall plots

As described in the previous sections, the RP is able to
show a variety of information related to the distribution
of mutations along the full scale of a genome. In order to
recognize this information, it is crucial to read the plotin a
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precise manner (and not merely rely on intuition), beeing
aware of caveats of the plot that could potentially distort
the presented information. The following is a simplified
guide to creating and interpreting RPs (all explicit values
are based on the human genome):

1. Intuitively, a low-intensity region will be seen as a
thinly populated band of dots in the upper part of the
plot (since low density implies high average inter-
mutation distance), while a high intensity region
(mutation hotspot) will be seen as a dense collection
of points lower in the plot (,rainfall”). Remember that
since the x-axis spans a huge number of individual
values (~ 3 billion bases), a single x-value represents
many megabases, and mutations plotted proximally
along the x-axis may thus still be megabases apart.
Also remember that while the y-value shows the
distance to the previous mutation along the genome,
this previous mutation needs not to be located closely
in the plot (since it can have a very different y-value).

2. To read out the intensity of a given region more
precisely, consult the y-axis to get an impression of
the typical inter-mutation distance. Remember that
since the y-axis is logarithmic, the middle y-value of a
set of points does not represent the average
inter-mutation distance of these points (mind the
difference between the average on the underlying
linear scale and the logarithmic scale of the plot).

3. To get an impression of the number of mutations in
a given region, consider the number of distinct dots
in the plot. Remember that there can be congestion
in the plot, meaning that multiple mutations are
assigned the same (x, y)-value and thus are
represented by a single dot. Due to stochasticity, this
is not likely to be the case as long as a part of the plot
in question is not close to being saturated (if there is
more unoccupied space than dots in a region of
interest in the plot).

4. When multiple datasets are represented by unique
colors in the same plot, (x, y)-values associated with
more than one dataset should be marked by a neutral
color (e.g. black), rather than being arbitrarily
assigned the color corresponding to the dataset that
is plotted last. If using an existing rainfall plotting
functionality that violates this recommendation, be
cautious in concluding about which datasets (colors)
are the more prevalent (in a particular region or in
the genome as a whole). Preferably, create the plot
again after permuting some of the characteristics of
the data (e.g., variant order or types) to see if some
aspects of the plot unexpectedly change.

5. In case there is any strong recurrent enrichment of
mutations at a particular scale, this would show as a
horizontal band of dots that comes as an addition to
a main distribution of dots (at a separate level of
y-value). The scale at which such recurrence occurs

° CA
. CG
o CoT
o T>A
T>C
6

Genomic distance
N

26409
Genomic position

a

1e+09

higlighted sites of congestions (b)

Substitution

Genomic distance

>

Congestion
* absent

~

* present

26409
Genomic position

b

16+09

Fig. 7 Pancreatic cancer variants. Variant are plotted in an order based on their genomic location (a) and projected on a 1000x351 pixel RP grid with
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Substitution
° CoA
. GG
* C>T
* T>A
T>C
G

Genomic distance

30409

26400
Genomic position

06400

is the most prevalent one

Fig. 8 Pancreatic cancer variants. Variants are plotted in an order based on the substitution type, with either C > A variants were plotted first (a) or
last (b). Although based on the same data and using a shared color scheme, the two plots give very different impressions of which type of mutation

Substitution
* C>A
. GG
. CT
* T>A
TC
TG

Genomic distance

20409 36409

Genomic position

0e400

could be read out as the rough y-value at which the
band is positioned.

Conclusions

The RP is a curiously defined plot that has recently gained
a lot of popularity for visualizing the distribution of muta-
tions across a large genome. It combines a global indi-
cation of relative genome location (x-axis) with a local
indication of density (y-axis). The RP may appear to sim-
ply be an exotic and inefficient visualization of frequency
(which could be conveyed more efficiently through a stan-
dard line plot). However, a careful analysis shows that
its use of a logarithmic y-axis to display inter-mutation
distances allows the plot to e.g. capture very short high-
intensity regions that would not be detectable in a binned
frequency plot.

At the same time, the RP has certain weaknesses. Some-
thing as basic as the number of mutations within a given
region (which can be read off directly at the y-axis of a
standard frequency plot) is from the RP only indicated
indirectly and imprecisely (evaluating frequency requires
counting of dots, and even this is not necessarily precise
due to potential congestion issues).

The advantage of a visual approach, like the creation of
an RP, is that a broad range of patterns may be detected
and communicated. The RP is thus well suited for explo-
rative analyses. When searching for a limited set of
patterns with well-defined formal representations, autom-
atized detection approaches will in general be preferable.
In conclusion, the RP allows patterns across a broad range
of scales to be detected visually, without the need for any
parameterization. At the same time, a deep understand-
ing of the plot is needed in order to read the contained
information precisely and for appreciating its potentially
misleading aspects.

Methods

We here provide in the first subsection a formal defi-
nition of the stochastic processes, i.e. HPP and NHPP,
which are used in the paper as conceptual models of

the distribution of mutations along the genome. Further
mathematical details can be found in [6]. In a second sub-
section, we describe tools which can be used to reproduce
the majority of results presented in the paper.

Stochastic process

A stochastic process x = {X(£),t € T} is defined as a
collection of random variables [6]. Let us denote with ¢
the time and with X(¢) the state of the process x at time
t,t € N, for each ¢ in the time set 7, X(¢) is a random
variable.

The process x is said to be a discrete-time stochas-
tic process and a continuous-time stochastic process if
the index set T is a countable set and a continuum set
respectively.

Let {N(¢),t € T} be a discrete-time stochastic process
(counting process), representing the number of events
N (t) that have occurred up to time t. The counting process
{N(?),t > 0} must satisfy the following conditions [6]:

e N(t) >0,teN,
e N(t) €N,
e ifs < tthenN(s) < N(¢).

If s < ¢t then N(¢) — N(s) is the number of events that
have occurred in the interval (s, ].

The counting process has independent and station-
ary increments if the numbers of events that occur
in two non-overlapping intervals are independent i.e.
N(t1),N(ty) — N(t1),... for t1 < t5... < t, and the
distribution of the number of events that occur in any
interval of time depends only on the length of the time
interval; the number of events in the interval (¢; +s, £, +5],
that is N (¢, + s) — N(#1 + s), has the same distribution
as the number of events in the interval (¢1,£;], that is
N(&) — N(t) [6].

Homogeneous poisson process

The homogeneous Poisson process [6, 7] is defined as a
counting process {N(¢),t > 0} with rate A, A > 0, if the
following conditions are satisfied:
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e N =0,

o the process has independent increments,

e the number of events in any interval of length t is
Poisson distributed with mean At,
P{N(t+5) —N(s) = n} = 0%, —0,1.. . for

s,¢t > 0. The Poisson process has stationary
increments and E[ N (¢)] = At.

Non-homogeneous poisson process

A non-homogeneous Poisson process (NHPP) is a gener-
alization of the HPP, where the rate parameter X is not
constant, but is a function of time ¢, A(¢). Let {N(¢),t >
0} be a counting process representing the cumulative
number of mutations occurred in the interval (0, £]. Then
the expected value of mutations N (¢) is defined by (),
which is called a mean value function of the NHPP. The
model can be formulated as follows [8, 9]:

()"
2w
n!

P{N(t) = n} = ¥ =0,1...fort>0

Given the above NHPP, let X; denote the time when
the first mutation occurs, let X, be the time between the
first and second mutation, then for n > 1, let X, be the
time between the (n — 1)st and nth mutation. Then, the
sequence of random variables Xi, Xy, ..., X, represents
the inter-arrival times between mutations and each ran-
dom variable is independent from each other and follows
an exponential distribution with mean 1/A(¢).

Tools

Figures 1a, 2b, d and f were generated using the UCSC
Genome Browser. Figures 1b, ¢, 2a, ¢, e, 3 and 4b
were generated using the webtool ,Create a dynamic
rainfall plot with corresponding frequency plot” in The
Genomic Hyperbrowser (GHB) [10]. Data for Fig. 3 was
calculated using the tool ,Generate synthetic datasets
with Poisson distribution” in GHB. Other data were
taken from [2] (direct link: ftp://ftp.sanger.ac.uk/pub/
cancer/AlexandrovEtAl/) for pancreatic cancer patient
APGI_1992 and breast cancer patient PD6043a and trans-
form into 'bed’ format file using tool ,Convert data from
paper [2] into bed file”. Figure 4c was plotted using the tool
»Create event distribution density” in GHB. Figure 5 can
be reproduce using tool ,Reproduce figure with extent of
possible event congestion”. Tool ,,Generate a static rainfall
plot with per-pixel event-counts” is used to create Fig. 6.
Figures 7 and 8 were generated using tool ,Generate a
static rainfall plot”

All plots and the information necessary for their repro-
duction can be found at https://hyperbrowser.uio.no/
rainfall. Plots generated by GHB webtools can be repro-
duced using the redo-functionality provided by the under-
lying Galaxy system. Plots generated in R are accompanied
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by their respective R code and the data files used to gener-
ate them. Plots generated by the UCSC Genome Browser
are accompanied by URLs and form inputs required to
generate similar plots in the current version of UCSC.

Additional file

Additional file 1: Supplementary material. The file includes two
definitions. The first defines how to formally provide a rainfall plot for the
whole genome. The second defines how to discretize a whole genome
rainfall plot (how to formally transform values in order to fit a grid).

(PDF 32 kb)

Abbreviations

GHB: The Genomic Hyperbrowser; HMP: hidden Markov process; HPP:
Homogeneous Poisson point process; NHPP: Non-homogeneous Poisson
point process; RP: Rainfall plot; SPMs: somatic point mutations
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