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Abstract 
 

This thesis summarizes atomic layer deposition (ALD) of thin films of a set of alkali metal niobates and 

tantalates with technologically important physical properties. 

ALD of LiNbO3 is presented first, where we showcase the possibility of epitaxial integration of complex 

oxide thin films containing alkali metals. LiNbO3 is a high performance ferroelectric, and these properties 

are studied to show that ALD can be utilized to obtain highly oriented films with piezo- and ferroelectric 

activity. 

The thesis continues with investigating the feasibility of growing sodium- and potassium containing 

materials with ALD. Prior to the work leading to this thesis, no reports of Na/K-deposition by ALD have 

been available. Several precursors are screened for self-limiting growth under typical ALD-conditions, 

and two optimal precursors are used to carry out deposition of sodium- and potassium aluminate. These 

precursors, both alkali metal t-butoxides, offer the possibility to grow sodium- and potassium containing 

materials, with water as the co-reactant, at temperatures between 250 and 300 °C. 

Using the results from general deposition of Na/K-containing materials and the experience from LiNbO3-

deposition, four alkali metal niobates and tantalates; NaNbO3, NaTaO3, KNbO3 and KTaO3, were 

deposited. These materials have interesting intrinsic properties, such as ferroelectricity (KNbO3) and 

photocatalytic activity (NaNbO3). More technologically interesting, however, are the solid solutions 

KxNa1-xNbO3 and KTaxNb1-xO3, which are desirable for their strong ferroelectric and electrooptical 

responses, respectively. 

Proof-of-concept on the intermixing of these solid solutions by ALD is presented, displaying remarkable 

compositional control and reproducibility. KxNa1-xNbO3 thin films are deposited for investigation of its 

electric properties, and piezoelectric activity is studied using piezoelectric force microscopy. The films 

are epitaxially integrated on a range of substrates, thereby controlling the orientation and direction of the 

polarity. 

Finally, some general notes on atomic layer deposition of alkali metal containing complex oxides are 

made, in light of what has been achieved in this work. 

Three main papers form the basis for this thesis. One on deposition of LiNbO3, a second on Na/K-

deposition and a third on alkali metal niobate/tantalate-deposition. 
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1. Introduction 

Carrying out the work that led to this thesis, I have come to recognize how nearly everything we do in 

day-to-day life is connected to progress in materials science. Contemplate, for example, on the fantastic 

technological advances that have made it possible for me to pick up my phone to check my e-mail. 

Billions of bits of information are sent and received in a complex array of microelectronics, allowing me 

to stay up to date on the events of the world by a simple touch on a screen.  

Or, what about the pages on which this thesis is written? A collection of a million ink dots per page 

accurately placed on a sheet of paper by tiny nozzles that are moved around by incredibly accurate 

stepper motors. It’s easy to forget the brilliance of an ink jet printer when you buy one for $50 at the local 

electronics dealer. 

At the university, I use instrumentation like the atomic force microscope, which has been an important 

part of this work. This lets me study nanometre size features on a sample surface, all made possible by 

piezoelectric actuators and oscillators that are precise down to fractions of a micrometre. 

Microelectronics has become an integral part of everyday life and modern science alike. The nearly 

infinitely accelerating progress in materials technology is hard to fathom, and has given us means of 

communication, transport and energy harnessing that were unimaginable just ten years ago. 

This progression does not come without cost. We are all aware of the growing environmental concerns, 

both on local and global scale. In the world of electronics, for example, local pollution by disposal of 

devices containing high amounts of toxic heavy metals is a challenge. One of the key perpetrators is the 

element lead, found in almost all electronic devices. The society is very aware of and knowledgeable 

about lead pollution, but slow progress in finding replacement materials has caused billions of devices 

containing hazardous amounts of lead to be produced; and they are still in production. There are different 

uses of lead in modern electronic devices, and one of the most common culprits is in the form of lead 

zirconate titanate (PZT). This is a perovskite piezo- and ferroelectric material with outstanding 

performance that is found in transducers, capacitors and actuators. 

The functionality of PZT is perfect. High Curie temperature, very high dielectric constant, extreme 

tunability and straightforward preparation renders it ideal for industrial use. Containing more than 60 wt% 

lead, however, it is a true environmental monster. Millions of tons of electronic waste around the globe 

see lead leaking to the surroundings, and getting rid of it when the damage is done is far from easy. 
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The only logical conclusion to be drawn from this is that lead containing materials must be outright 

removed from electronic devices. This, however, is not done in an instant. Society is not interested in 

letting go of comforts it has become used to. Simply removing dangerous materials will not be accepted 

by the public if replacements with the same or better function do not already exist. In other words, we are 

in high need of replacement materials that are cheap and easy to process, with just as good performance 

as its lead counterparts. 

Obtaining these materials is not a farfetched goal, and viable candidates already exist. Alkali metal 

niobates are one group of materials that is proposed to challenge the PZT-hegemony. It is specifically two 

compounds; lithium niobate (LiNbO3) and potassium sodium niobate (KxNa1-xNbO3) that have electric 

properties in the same order of magnitude as PZT, and are believed to be true contenders. 

For many of the presented applications, it is crucial that the material can be made as a thin film. These are 

nanometre thick, pinhole free and conformal layers with controlled domain morphology and crystal 

structures. Producing alkali metal containing thin films has proven to be quite challenging, and this is one 

of the reasons as to why these materials are not already in widespread use. 

This thesis is a part of materials science rising to the challenge. Thin films of LiNbO3 and KxNa1-xNbO3 

are here grown by the atomic layer deposition (ALD) technique, yielding high performance ferroelectric 

materials with high conformality and thickness control. A viable route to replacing lead in electronic 

devices is the ultimate impact of this work. 

On the way to this result, several lesser obstacles and challenges have been overcome. This often carries 

with it some positive side-effects, with impact on a more scientific level. A relevant example is the lack of 

any reported ALD-processes involving sodium or potassium before this work was initialized. Building on 

knowledge from lithium processes a pathway was found, and by now, several other research groups 

around the world are using these results to make other alkali metal containing thin films. In other words, 

the work has impact on the thin film community by enabling deposition of two elements that was 

previously not possible. 

Some sidesteps on the way have also produced results, among them deposition of other materials in the 

same class. Examples are sodium tantalate (NaTaO3) and sodium niobate (NaNbO3), which are 

investigated as high efficiency photocatalysts, and potassium tantalate niobate (KTaxNb1-xO3), which has 

brilliant electrooptical properties. In addition to this, ALD can be used to create multilayer 

heterostructures with new exotic effects that is believed to revolutionize materials science. 
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This work is a small step towards a more environmentally friendly world, a step towards better 

understanding of alkali metal containing thin films in general, and a big step in the world of complex 

oxide deposition by ALD.   
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2. A+B5+O3 Perovskite and Perovskite-like Materials 
 

Perovskite is originally the name of a specific mineral, calcium titanate, discovered in 1839 in the Ural 

mountain range and named after the Russian mineralogist Lev Perovski in 1839. The crystallographic 

structure was described for a similar mineral, barium titanate, in 1945, revealing how the barium cation is 

12-fold- and titanium is 6-fold coordinated to the oxygen anions.[1] A large group of minerals with ABX3 

composition, where A is a large cation, B is a small cation and X is a small anion, has subsequently been 

found to adopt the same structure. Because of these structural similarities, the word perovskite is now 

most commonly used to describe the whole range of materials with identical or similar structures, 

including the new organic- inorganic hybrid materials that have come to challenge the silicon solar cell 

hegemony. 

Perovskites and perovskite-like structures have been widely studied over the years, as the versatility of the 

structure permits a wide range of electric and magnetic effects. Examples are multiferroic bismuth ferrite 

(antiferromagnetic and ferroelectric at room temperature) and colossal magnetoresistance in lanthanum 

strontium manganite.[2-5] High structural tolerance for substitution on the A- and B-sites also allows for 

engineering of these effects. As an example; STO is an incipient ferroelectric, a material where the 

ferroelectric phase transition is suppressed by some effect (in this case ionic quantum fluctuations).[6] 

Gradual doping of bismuth on the A-site induces three separate electric modes, turning the structure first 

into a relaxor dielectric, then a mixed relaxor dielectric and ferroelectric, before finally reaching a pure 

relaxor ferroelectric state.[7] In addition, interfaces between different perovskites may exhibit exotic 

effects on their own, such as the superconducting 2D-electron gas created at the LAO||STO-interface.[8, 9] 

The possibilities of intelligent functional design are close to limitless. 

The ideal cubic perovskite structure exists in minerals such as STO and calcium rubidium fluoride 

(CaRbF3), but is relatively uncommon. The perovskite group of structures typically also include slightly 

distorted versions of the structure, lowering the symmetry and altering the coordination of the cations. 

The distortion can be triggered by size effects, stoichiometric variations or electronic effects such as the 

Jahn-Teller effect.[10, 11] An indication on the possibility for an ABO3-compound to form a perovskite 

structure can be found by assuming pure ionic bonding and looking at the size of the cations. To form a 

perfect cubic cell with a 12-fold coordinated A-site, also assuming identical ionic radii of A and X, it can 

be shown that the length of an X-A-X line (2RX + 2RA) must equal  

(2RX + 2RB), which corresponds to the cubic cell edge. Using this, we can introduce the Goldschmidt 

tolerance factor:  
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where RX, RA and RB are the ionic radii of X, A and B respectively.[12] The typical cubic perovskites have 

tolerance factors close to unity, whereas high or low tolerance factors indicate that the structure tends to 

be distorted. As an example; SrTiO3 have a tolerance factor of 1.002 and adopts a perfect cubic perovskite 

structure (space group Pm-3m).[13] 

The classification of perovskite structures is not in the scope of this thesis, but the tolerance factor can be 

used as a tool to understand the structures that are important in this work. Simple alkali and group V 

perovskites are the main focus, with limitations to lithium, sodium and potassium on the A-site and 

niobium and tantalum on the B-site. Figure 1 summarizes the tolerance factors of the six relevant 

structures at room temperature. Note that no compounds with 12-coordinated Li+ have been reported. The 

lithium ionic radius used for calculation on LiNbO3 and LiTaO3 is estimated by using trends in ionic radii 

for different sodium- and potassium coordination (Figure 1, right).  

 

 

Figure 1, left: Table summarizing the tolerance factor and structure types for the alkali metal niobates and tantalates. 

Right: Estimating the size of a theoretical 12-coordinated lithium cation. 

 

The small size of the lithium ion does not favour the formation of a perovskite-like structure, but rather 

formation of an ilmenite related structure. The sodium counterparts both take orthorombically distorted 

perovskite structures, whereas the potassium versions are cubic and monoclinic. The monoclinic 

  Eq. 1 
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potassium niobate is in reality very close to a tetragonal structure, which is what was reported in literature 

when the phase transitions were first described.[14] 

Understanding the basis of these structures is important to relate structure to functional properties, and a 

more detailed venture into the world of these structures follows below. 

 

Functional Properties of A+B5+O3 Compounds 
 

A major goal in this work has been to investigate and tailor functionality in the six A+B5+O3 compounds 

of interest. Functionality in this sense is typically represented by magnetic or electric response of some 

kind, originating from breaking time-reversal or inversion symmetry respectively. Materials can exhibit 

spontaneous magnetization or polarization (ferro-behaviour), or temporarily respond to an external 

permutation such as a magnetic- or electric field. In this thesis, it is the spontaneous or permanent (but 

switchable) behaviour that is of highest interest. 

Ferromagnetism is collective spontaneous alignment of spins that adds up to a net magnetization. It is 

found in a handful of d- and f-metals, and in some oxides and alloys. Ferromagnetic complex oxides, 

however, are rare.  This is due to the super-exchange phenomena that results in anti-parallel ordering of 

spins, rendering the materials anti-ferromagnetic (Figure 2).[15-17] Exceptions exist. Net magnetization can 

either arise through mixed-valence states, such as in (Ca,La)MnO3 or through compounds with itinerant 

metallic magnetic character, such as SrRuO3.[18, 19] These phenomena are discussed in detail in a recent 

review paper discussing functional perovskites deposited by ALD.[20] In the A+B5+O3 compounds 

specifically, magnetic interactions are not feasible, as neither the A- or B-site ion have partially filled d- 

or f-orbitals. 

 

Figure 2: Example of the super-exchange phenomena, here in AMnO3, leading to antiferromagnetic ordering of spins and 

no net magnetic moment. 
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Ferro- and piezoelectric compounds, as opposed to ferromagnetic perovskites, are among the most widely 

applied perovskite structures. The first ferroelectric perovskite, BaTiO3, was described in 1949 and adopts 

a tetragonal structure (P4mm).[21] Perhaps the most technologically important perovskite ferroelectric was 

described only a few years later; the infamous lead zirconate titanate (PZT). PZT has, in different forms, 

has been the go-to material for transducers, capacitors and actuators for many years.[22-26] It is important to 

note, however, that the high lead content of PZT renders its use environmentally malignant. Because of 

this, finding environmentally friendly alternatives to PZT, while maintaining function, is one of the major 

goals of materials science today.  

Polarization is strictly related to breaking inversion symmetry in the crystal structure, and this is achieved 

by a translation of one of the metal ions away from its central position. In terms of energy, this is often a 

result of a double-well potential where an off-center position is slightly more energetically favourable 

than the center position (Figure 3). This is the case for a major share of the perovskite-like and ilmenite-

like ABO3 ferro- and piezoelectrics. Among the A+B5+O3 compounds, we find this behaviour for LiNbO3 

and LiTaO3 in their polar R3c structure, in addition to monoclinic (close to tetragonal) KNbO3.[14, 27, 28] 

There is renewed interest in these materials, as they are environmentally benign and consist of relatively 

common elements. Doped variants or AIBO3:AIIBO3
 solid solutions can be used to tailor the polarizability 

of these materials like in PZT, making them viable options in many applications.[29] 

 

 

Figure 3: Unit cell of the Pb(Ti,Zr)O3 structure, showing the non-polar structure above the Curie temperature (left) and 

the polar structure below the Curie temperature (right). 
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Many uses of polar materials in modern applications require that the materials can be deposited as thin 

films. This is especially true for RF-devices and non-volatile memory, where ferroelectric thin films have 

been in use for some years. Thin films are also preferable in designing very small sensors and actuators, 

and for integrated SAW-devices in microwave electronics.[30] These possible applications for thin polar 

films have resulted in increased interest in the field, and a variety of deposition techniques have been used 

to achieve as thin and conformal films as possible without sacrificing functionality. 

The following text details the structure and properties of the six compounds that have been investigated in 

this work. Special features of thin films of these structures are introduced, including the techniques that 

have previously been used to deposit them. 

 

LiNbO3 and LiTaO3 
 

In 1949, Matthias and Remeika reported dielectric hysteresis loops for two materials thought to take the 

ilmenite structure: lithium niobate and lithium tantalate.[31] The saturation polarization was found to be 

among the highest in any system reported. This sparked a lot of interest in these compounds, and 

substantial work has been invested in describing the origin of the polarization that causes the ferroelectric 

response. 

Both LiNbO3 and LiTaO3 exhibit only one phase transformation, paraelectric trigonal (R-3c, SG #167) to 

ferroelectric trigonal (R3c, SG # 161) at 1140 and 610 °C, respectively (Figure 4).[27, 32, 33] The phase 

transformation is caused by hybridization between the b-site atom and surrounding oxygen atoms. This 

effectively produces a double-well potential for the Li-atom at ±0.37 Å away from the centrosymmetric 

position, giving rise to its spontaneous polarization. The response is oriented along the c-axis. The wells 

are energetically quite deep, resulting in a very high coercive field in these structures. The theoretical 

intrinsic coercive field for LiNbO3 is as high as 5420 kV/cm-1, while typical experimental values are ~210 

kV/cm-1 due to polarization gradients at the 180 °C domain walls.[34, 35] 

The high value ferroelectric properties of LiNbO3 and LiTaO3 in addition to the high Curie temperature 

have increased the attention of these materials. This is especially true for applications in temporary or 

permanent data storage, in which they can be used to make rapidly switchable and stable states. LiNbO3 

has already been used for ferroelectric random access memory devices.[36, 37] 

For several of the mentioned applications, it is crucial that LiNbO3 and LiTaO3 can be prepared as a thin 

film. This offers the possibility to make step-index profiles for surface acoustic wave devices, and allows 
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for more straightforward dopant introduction. It is also easier to achieve higher electric fields at lower 

voltage over thin films compared to bulk crystals. As will be introduced in chapter 3, chemical deposition 

of lithium containing compounds is often difficult due to the volatility and temperature stability of the 

precursors. The mobility of lithium ions in the structure also creates some challenges that have to be 

overcome. In addition to this, the thin films have to exhibit c-axis orientation so that the polar axis points 

out from the surface of the film. 

At present, LiNbO3 has been deposited using pulsed laser deposition, molecular beam epitaxy and sol-gel-

routes.[38-40] For some of these routes c-axis orientation has not been achieved, and others struggle with 

the conformality of the films. In main paper 1 of this thesis, we introduce a viable route for deposition of 

c-axis oriented LiNbO3 thin films using atomic layer deposition. 

LiTaO3 thin films have been deposited using pulsed laser deposition, RF-sputtering, molecular beam 

epitaxy and sol-gel routes, in addition to a recent report using atomic layer deposition[41-44]. 

 

 

 

Figure 4: Phase transition in LiNbO3 from the rhombohedral ferroelectric (left, SG #161) to the rhombohedral 

paraelectric (right, SG # 167) structure, at the Curie temperature. The same phase transition is found for LiTaO3. 
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NaNbO3 
 

Sodium niobate, NaNbO3, is a well-known anti-ferroelectric at room temperature, with an orthorhombic 

perovskite structure (Pbcm, SG: #57). Unlike lithium niobate, NaNbO3 undergoes a large set of phase 

transitions until it finally reaches the cubic perovskite structure at 913 K.[45] Upon heating at 753 K it 

transforms from the antiferroelectric Pmnm structure to the paraelectric Pnmm structure. Cooling to below 

liquid nitrogen temperatures has been reported to yield the LiNbO3 structure (R3c), but the exact 

temperature where this happens is heavily debated.[46] At least six polymorphic phase transitions are 

found for the NaNbO3 system, and the driving force for all these is not clearly understood. The complex 

set of transformations that NaNbO3 undergoes, and the lack of polar states at room temperature, has 

rendered it more or less useless in modern applications. It is, however, heavily studied in solid solution 

with KNbO3, where the morphotropic phase boundary between the ferroelectric and antiferroelectric 

states at room temperature is used to tune the piezoresponse. 

Thin films of NaNbO3 have been deposited using pulsed laser deposition, CVD, RF-sputtering and sol-gel 

routes.[47-50] Studies of the unstrained congruent compound have mainly focused on photocatalytic activity, 

where the orientation of the films is not crucial.[51] Although bulk NaNbO3 is not spontaneously polarized 

at room temperature, thin films can be designed to become ferroelectric through strain or doping. As an 

example, polar films of NaNbO3 have been reported on (110)-oriented rare earth scandate substrates.[52] 

This creates a compressive in-plane strain of the NaNbO3 lattice that facilitates spontaneous polarization. 

In main paper 3 of this thesis, an ALD route producing oriented NaNbO3 thin films is reported.  

 

NaTaO3 
 

Sodium tantalate, NaTaO3, is an incipient ferroelectric; a material that never reaches its polar structure 

even if such a structure is expected.[53] It undergoes three phase transitions between 903 and 720 K, but all 

are paraelectric cubic, tetragonal or orthorhombic structures (Figure 5). Quantum fluctuations inhibit the 

transformation to a polar phase at lower temperatures. This does not, however, make it an unimportant 

material, as it is investigated as an effective photocatalyst for water splitting.[54] Especially lanthanide-

doped variants are found to exhibit a remarkable splitting rate. 

Thin films of stoichiometric NaTaO3 have gained very little interest from the community due to its 

incipient ferroelectric nature. Doped variants, especially lanthanum-substituted, has on the other hand 
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been thoroughly studied due to their photocatalytic activity. High surface area structures with La:NaTaO3 

coating have been shown to exhibit a much higher water splitting rate than its bulk counterpart. 

Deposition of NaTaO3 thin films has currently been achieved by sol-gel, CVD, hydrothermal and 

sputtering routes.[55-57]  

In main paper 3 of this thesis, an ALD route producing oriented NaTaO3 thin films is reported. Conformal 

coating on high aspect ratio substrates is really the sweet spot of ALD, so this is believed to be of high 

interest to the community. 

 

Figure 5: The orthorombic room temperature structure of NaTaO3. Quantum fluctuations hinder the transition to an 

expected ferroelectric state. 

KNbO3 
 

Potassium niobate, KNbO3, is a room temperature ferroelectric, exhibiting a phase transition between the 

cubic paraelectric (Pm-3m) phase to the tetragonal ferroelectric (Amm2) phase at 708 K.[14] The relatively 

high Curie temperature makes it a lead free alternative in many applications. Low tunability in the 

undoped congruent system is one of the key limitations, but this can be overcome by using it in solid 

solution with NaNbO3 along the morphotropic phase boundary. 
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Another important solid-solution is the combination of KNbO3 and KTaO3, providing ferroelectric 

character and excellent electrooptical response. As an example, K(Ta0.65Nb0.35)O3 has a very high 

quadratic electrooptical coefficient, and is used in high accuracy band filters, IR detectors and electrooptic 

modulators.[58] 

Growing congruent KNbO3 bulk crystals with high structural quality and low defect concentration has 

been a goal for material scientists for many years.[59] This is due to the order of magnitude higher 

electromechanical coupling coefficient as compared to LiNbO3, which is the most widely applied lead 

free material in SAW-devices. Obtaining these bulk crystals have proven to be intrinsically difficult and 

currently most work is put into growing thin films where the structural quality is often easier to control. 

Thin films of KNbO3 has been deposited using pulsed laser deposition, chemical vapour deposition, ion 

beam sputtering and through sol-gel routes.[60-63] These techniques require high temperatures, and the 

films are thus prone to interfacial reactions towards the substrate and to substrate cracking upon cooling 

due to residual thermal stress. In addition, potassium ions are volatile and very mobile at high 

temperatures. A hydrothermal epitaxy route has been reported for deposition of films down to 200 °C.[64] 

This route led to tower-like structures with different out-of-plane orientations through nucleation and 

island growth, making ferroelectric functioning difficult. 

In main paper 3 of this thesis, ALD is used to deposit oriented KNbO3 thin films at temperatures down to 

250 °C. This maintains ferroelectric functionality while avoiding cracking, while still preserving the 

possibility to tune the composition. 

 

KTaO3 
 

Potassium tantalate, KTaO3, is the only compound of the six to take the perfect cubic perovskite structure 

at room temperature.[65, 66] It is, as the sodium counterpart and SrTiO3, an incipient ferroelectric where the 

onset of a ferroelectric phase is inhibited by quantum fluctuations. The nature of this inhibition is 

interesting from a fundamental point of view, but limits the usefulness of the material on its own, as the 

cubic symmetry does not allow polarization. As mentioned, however, KTaO3 in solid solution with 

KNbO3 has attracted a lot of interest for its electrooptical properties. 

Thin films of KTaO3 have not been widely studied, as it does not intrinsically possess very interesting 

functional properties and deposition routes are few. Reports have been made of thin films deposited by 

pulsed laser deposition and hydrothermal epitaxy.[65, 67] In the latter case, KTaO3 was studied as a buffer 
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layer towards superconductors, as it has a dielectric non-linearity close to the critical temperature of many 

high Tc superconductors. It also has a very close lattice match to KNbO3, making it a viable buffer layer 

for growth of oriented ferroelectric films of KNbO3. 

In main paper 3 of this thesis, ALD is used to deposit oriented KTaO3 thin films. 

 

Important Solid Solutions 
 

Two very important solid solutions have already been briefly mentioned, but are of so great importance 

for modern applications that they deserve a more thorough introduction. 

The solid solution between ferroelectric KNbO3 and the antiferroelectric NaNbO3 (KNN) is one of these. 

This system exhibits three morphotropic phase boundaries, at 52.5, 67.5 and 82.5 mole % NaNbO3 at 

25 °C respectively, all of them separating different orthorhombic structures.[68] Piezoelectric performance 

is typically reported by the piezoelectric coefficient (d33) and the electromechanical coupling coefficient 

(kp), and these values are always found to be highest near a morphotropic phase boundary. Out of the 

three boundaries in KNN, the one at 52.5 mole % NaNbO3 is found to exhibit the highest piezoelectric 

coefficients and tunability around the boundary composition. Although the coefficients are high for the 

KNN system, they still cannot compete with the values around boundaries in the PZT system. To find a 

viable lead free alternative to PZT, efforts have been made to increase performance by doping the KNN 

matrix. State-of-the art alkali niobates are today close to PZT in performance, with one of the highest 

performing examples being (1-x)(K1-yNay)-(Nb1-zSbz)O3 – xBi0.5(Na1-wKw)0.5ZrO3, where x = 0.04, y = 

0.52, z = 0.05 and w = 0.18.[29] 

Thin films of KNN have also gained much attention over the last decades. The challenges reported for 

deposition of congruent KNbO3 and NaNbO3 is of course also true for KNN, with further 

complexification due to the mixing of two hard-to-deposit systems. Current deposition techniques include 

RF-sputtering, pulsed laser deposition, aerosol deposition and chemical solution deposition, all resulting 

in (100)-oriented films on most substrates.[69-74] Alkali metal loss resulting in oxygen vacancies is often 

reported, leading to large unwanted leakage currents. In addition, complex domain wall structures in the 

thin films are often detrimental to the piezoelectric properties. Nonetheless, reports have been made of 

KNN thin films outperforming its bulk counterpart, underlining the need of robust deposition routes for 

these structures. 
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In main paper 3 of this thesis, ALD is used to deposit oriented KNN thin films at low temperatures, 

minimizing the challenges of alkali metal loss. 

The second very important solid solution is the combination of KTaO3 with KNbO3 (KTN). Phases in this 

solid solution cannot compete with the piezoelectric properties of KNN, but have striking electrooptical 

properties for selected compositions. The most studied is KNb0.35Ta0.65O3, a paraelectric cubic structure 

with a very high electrooptical coefficient and photorefractive effect.[58, 75, 76] This large change in 

refractive index as a response to permutation by an external field can be used to make high performance 

optical modulators, where phase or intensity of light is modulated by an electric signal.[77] In KTN, the 

electrooptical effect is quadratic, giving rise to much larger variations than in the current workhorse of 

electrooptics, LiNbO3, where the response is linear. Theoretically, the electrooptical effect in KTN is 

orders of magnitude larger than in LiNbO3, but challenges in synthesis of perfect crystals results in 

diminishing coupling. This has delayed the onset of KTN employed in modern applications. 

Deposition of KTN thin films faces the same challenges as that of KNN. Current techniques include 

pulsed laser deposition and sol-gel routes, but again performance is inhibited by high temperature 

treatment causing cracking and alkali metal loss.[78, 79] 

In main paper 3 of this thesis, ALD is used to deposit oriented KTN thin films at low temperatures. 

 

Interfaces with Exotic Functionality 
 

A very recent addition to the world of alkali metal niobates and tantalates is investigating the properties of 

interfaces towards other materials. This had its onset in 2004 when Ohmoto and Hwang reported 

superconductivity at the interface between the two insulators LaAlO3 and SrTiO3.[8] This system is 

thoroughly described in supporting paper 1, where this interface was prepared by ALD.[80] The 

LaAlO3||SrTiO3 interface has later been shown to exhibit a range of exotic properties, including interfacial 

ferromagnetism and conductivity created by a 2D electron gas.[9, 81, 82] Although this system is not yet 

fully understood, the properties arise from the polar discontinuity at the interface between neutral TiO2
0-

layers and LaO+-layers. This type of effect is of course not limited solely to LaAlO3||SrTiO3, and a lot of 

effort is now put into finding other systems exhibiting similar effects. 

One set of systems that is theoretically predicted to exhibit such effects utilizes the polar KO--, NbO2
+-, 

and TaO2
+-layers of KNbO3 and KTaO3 to obtain the same type of discontinuity towards other 

perovskites (Figure 6).[83, 84] Examples include KTaO3||CaSnO3, KNbO3||ZnSnO3, KTaO3||PbTiO3 and 
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KTaO3||LaTiO3, the latter being the only experimentally verified system.[84-86] KTaO3 and LaTiO3 are both 

insulators (band and Mott, respectively), but the interface exhibit metallic conductivity from 2 K to room 

temperature. 

The lack of experimental verification is mainly due to difficulties in preparation of alkali niobate and 

tantalate structures. In the case of the reported KTaO3||LaTiO3-system, a thin film of LaTiO3 was 

deposited on a substrate of KTaO3. By using a thin film technique that can facilitate deposition of both 

components, multilayer systems with more explicit functional properties can be obtained. Relatively 

straightforward multilayer deposition is one of the other advantages of the atomic layer deposition 

technique. 

With the onset of low temperature deposition of KTaO3 and KNbO3 thin films with good orientation and 

low alkali loss, many more systems should be possible to investigate. 

 

Figure 6: 2-dimensional electron gas at perovskite interfaces between KTaO3 or KNbO3 and stannates.[85] Reused with 

permission from PLOS One, under a CCA license.  

 

In main paper 3 of this thesis, proof of concept of deposition of epitaxial films of KNbO3 and KTaO3 on 

SrTiO3 and LaAlO3 substrates is reported. 



21 
 

3. Atomic Layer Deposition 
 

Atomic layer deposition is a chemical vapour deposition technique for synthesis of thin films on the 

nanometer scale. The idea was conceived by Kol’tsov in 1952, but was first properly formalized 25 years 

later by Suntola et al. with a working reactor to deposit zinc sulphide thin films for flat panel displays.[87] 

Interest in the technique has grown massively over the last 25 years, and today processes for several 

hundred compounds have been reported. The instrumentation, chemistry and history of the ALD 

technique have seen many reviews, and will only briefly be discussed here to give the work some 

perspective.[88-91] 

ALD instrumentation comes in many flavours, and the geometry, size, type of precursor delivery etc. vary. 

The basic idea is, however, always the same: Layer-by-layer, self-limiting growth of thin layers by 

alternately pulsing precursors and purging the excess, before pulsing a second precursor with another 

subsequent purging step. This is repeated until the desired thickness of the resulting film is reached. The 

amount of different precursors, and the pulsed ratio between the precursors, varies depending on what 

composition that is wanted in the product. 

Precursors that can be used in ALD growth need to have some important traits. They must have a 

sufficient vapour pressure below the reaction temperature, they must adsorb to or react with the surface 

without condensing and they cannot react with themselves or decompose under the working conditions 

applied. As a result of this, every precursor has an ALD-window, a temperature region in which growth is 

self-limited and linear. A traditional ALD-window is shown in Figure 7. 

 

Figure 7: A typical ALD-window with uncontrolled growth regimes for low and high temperatures. 
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Precursors working as cation sources are typically one of two types: 

- Metal-organic compounds. Simple molecules like trimethyl aluminium (Al(CH3)3) or diethyl zinc 

(Zn(CH2CH3)2), or molecules with larger ligands like thd (2,2,6,6-tetramethyl-3,5-heptanedionato)  

or hfac (hexafluoroacetylacetonate). 

- Metal-halide compounds. TiCl4 or AlCl3 are typical examples. 

Precursors working as anion sources are often simple inorganic molecules such as H2O or O3 (for oxide 

deposition), or NH3 (for nitride deposition). Pure organic precursors, such as amino acids or dicarboxylic 

acids for depositing hybrid inorganic-organic films, can also be used. 

The purging step typically involves an inert gas (N2 or Ar), that helps remove any excess precursor. 

Failure to remove any unreacted precursor will lead to uncontrolled growth when the next precursor is 

introduced to the reaction chamber. Figure 8 shows a simple sketch of the ALD growth principle, 

exemplified by growth of Al2O3 by TMA and water. 

 

Figure 8: Simple sketch of ALD Al2O3 growth by TMA and water. The figure is reused from Ingrid Vee’s master thesis.[92] 
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In addition to traditional molecular precursors, assisted growth by some perturbation is also more and 

more common. This can, among other things, be plasma-assisted growth, radical-enhanced growth or 

photo-assisted growth.[93-95] 

The self-limiting nature of ALD gives rise to a set of advantages and drawbacks that are important to 

consider. Primarily, a working process allows the user to deposit extremely conformal films, even on 

substrates with complex morphology and on high aspect ratio surfaces. As long as the precursors have 

enough time to reach all active sites before the purging step, they will uniformly cover the substrate 

surface. An ideal process with true layer-by-layer growth will also facilitate a sub-nanometer thickness 

control of film growth, only limited by the growth rate (growth per cycle). As an example, for growth of 

alumina by TMA and water, the growth rate is 1.3 Å/cycle and the thickness can be controlled thereafter.  

A third advantage is the chemical versatility that the ALD technique claims. Oxides of more than 50 

metallic elements have been grown, and pure elemental films are reported for more than 20. Routes for 

depositing nitrides, sulphides, fluorides and hybrid films for many of these elements also exist. 

Finally, the low deposition temperature in an ALD-system compared to e.g. MBE or PLD, allows for 

deposition of compounds that are not available by physical techniques. 

The layer-by-layer growth that facilitates the important advantages of the technique also creates some 

disadvantages that are important to consider. First of all: ALD is relatively slow. A single deposition is 

rarely performed in less than an hour, and often several hours are needed to deposit a film in the 10 – 100 

nm thickness range. Furthermore, the chemistry governing the reaction mechanisms leave little room for 

control of oxidation state. The metal in a metal oxide will very often be in its highest possible oxidation 

state, and finding feasible routes for depositing reduced variants is non-trivial. 

For industrial applications, it is also important to note that ALD is an expensive technique. This is due to 

the rate of growth, but often also high costs of the precursor. The purge step ensuring self-limiting growth 

means that some of the precursor will go to waste when flushed out of the system. This challenge can 

often be overcome, or its implications reduced, as pulsing parameters can be tuned to minimize the 

precursor loss. 
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ALD of complex oxides 
 

The simple reaction mechanisms described in the introduction to ALD is often limited to a two-precursor 

process, in which a metal precursor and an oxidizing agent lead to a film with binary composition. These 

mechanisms are typically only limited by the ALD-window of the metal precursor. In the 1990’s, 

attempts were made to widen the possibilities of ALD growth by adding a second metal precursor to form 

ternary oxides. This opened up for deposition of a wide range of functional materials with e.g. perovskite 

or spinel structure that are important for modern applications. 

The basic idea is to combine two processes for binary oxides to form a ternary oxide. An early example of 

this was ALD of LaNiO3 thin films by combining processes for La2O3 and NiO.[96] As introduced for the 

general case, both metal-precursors exhibit an ALD-window, in which the growth rate is constant over a 

certain temperature range. When combining the two metal precursors, the ALD-window for the whole 

system will be more complex as temperature stability will be a superposition of the two binary systems. 

Some systems will in fact be impossible to combine, if there is no overlap in temperature between the two 

binary windows. The mechanisms governing the growth may, however, drastically change in a ternary 

system, facilitating growth even if there is no overlap in the ALD-windows. The growth of LaMnO3 is an 

example of this.[97]  Going back to the early example of LaNiO3, Figure 9 shows the ALD-windows of the 

binary processes as compared to what is reported for the combined system. Ni(thd)2 is known to not have 

a well-defined window, however, the growth rate is relatively constant between 225 and 250 °C. La(thd)3 

on the other hand has a proper ALD-window in the 225 to 275 °C temperature range.  

 

Figure 9, Left: Growth rates for the binary oxides NiO (black) and La2O3 (red). Right: Thickness (after 100 supercyles) as 

a function of reactor temperature for thin films in the combined La-Ni-O-system. Reused with permission from Royal 

Society of Chemistry.[96] 
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For the combined growth of the two binary systems to form LaNiO3, constant growth rate is observed 

between approximately 220 and 250 °C. This coincides very well with an effective narrowing of the 

ALD-window by choosing a temperature region where both metal precursors show constant growth rate. 

This simple approach can be an effective guideline when choosing precursors for a working complex 

system. For many systems, life is not this simple. Several side-effects can occur when combining two 

mechanisms, and this can be either a curse or a blessing. Increased or decreased growth of one or more of 

the precursors is common, seen for example in the growth of LaPO4.[98] Stabilization of an increased 

temperature range expanding the ALD-window of the complex oxide is also observed, for example in the 

CaMnO3-system.[99] True non-compatibility leading to uncontrolled growth when combining two 

precursors is known to happen, even inside their binary ALD-windows. An example of this is deposition 

of ZnO/Al2O3 alloy films, where high ZnO-ratios lead to Zn-etching.[100] This ultimately means that even 

if two binary processes have a matching ALD-window this is not a guarantee for success. 

Upon finding two precursors that can be used together for ALD of ternary or higher compounds, other 

challenges also emerge. Obtaining films with some arbitrary amount of the desired metals is not sufficient, 

the ratio between the two metals is essential to form the wanted composition. If one of the binary systems 

grows much faster than the other, more of the element comprising that binary structure will be 

incorporated in the film. To obtain the correct stoichiometry, the pulsed ratio between the metal 

precursors often has to be tuned.  

A straightforward approach for doing this was proposed by Lie et al.[101] Since the concentration of an 

element in a thin film is directly proportional to the growth rate, the pulsed ratio between the metal 

precursors should be the same as the ratio between the growth rates of the binary systems. This approach 

is found to work well for many systems, especially when the metal-precursors of the different binary 

systems have similar chemistry, e.g. in Lie’s case where all metal-precursors have thd-ligands. 

In more intricate ALD mechanisms, comprising precursors with very different ligands exhibiting complex 

growth behaviour, the method can only be used as a first guess for the pulsed ratio. An example of this is 

discussed for growth of LaAlO3 by La(thd)3, TMA and ozone (Figure 10).[80]  

The red dotted line shows the theoretical ratio between La and Al as calculated by Lie’s method. The goal 

in this work was to deposit films of the perovskite LaAlO3, obviously having a 1:1 ratio between the 

metals. By following the dotted line this should correspond to a pulsed ratio of about 9:4, La:Al. What is 

observed, however, is that the pulsed and stoichiometric ratios follow an almost linear relationship. Work 

was done to determine the reason behind this growth, but strictly solving the growth rate equations was 

not possible. It was evident that Al-O-terminated surfaces has a higher number of active sites and offer 
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better growth conditions for further growth than La-O-terminated surfaces. This is not surprising, as the 

thd-ligands are larger than the methyl groups. This observation was not enough to explain the growth, as 

it seemed that also the second and third preceding layer influenced the growth. A more detailed 

explanation can be found in supporting paper 1, but this goes to show that reaction mechanisms in 

complex oxide growth are often difficult to fully understand. 

 

Figure 10: The growth rate (black) and stoichiometric composition (blue) of the La-Al-O-system. The red dotted line 

shows the expected composition as calculated by Lie’s method.[101] 

 

A final issue that should be raised in conjunction with this thesis is the crystallinity of ALD thin films. 

Growth of complex oxide systems very rarely lead to films that are epitaxial as deposited, this is related to 

the varying size of precursors.[102] Even if the substrate to film lattice match is very good, the steric 

hindrance from the precursors does not allow proper layer-by-layer single crystal growth. As a result of 

this, post-deposition annealing is usually applied to crystallize the films. There has been a productive 

debate in the community whether this leads to a film crystal quality and substrate-film interface quality 

that can facilitate the desired functional properties. 

Several reports have been made, especially over the last 10 years, on functional perovskites by ALD. This 

research is summarized in the review paper that is referred to in the beginning of this thesis, and a more 

detailed discussion can be found there.[20] What is important to note is that most, if not all, complex oxide 

systems are either amorphous or polycrystalline to some degree as deposited. With a post-deposition 

annealing step, however, typically 600 – 800 °C, it is possible to obtain samples with proper epitaxy with 
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a near perfect interface region. The structural integrity will depend on many parameters, including 

annealing temperature and ramp rate, cooling rate, chemical quality of the film, structural quality of the 

substrate surface and substrate to film lattice mismatch. 

Two very illustrating examples are shown in Figure 11. One is taken from the LaAlO3||SrTiO3-system 

reported in supporting paper 1, the other on BiFeO3-deposition by Akbashev et al. In the BiFeO3-system a 

near perfect epitaxy is observed.[103] Akbashev et al. studied the epitaxial relationship in detail and 

determined the quality to be close to, if not as good, as that observed for films grown by PLD or MBE. 

The lattice match is very good, and the substrate quality is impeccable. In the LaAlO3-system, an evident 

interfacial region with structural defects can be observed near steps on the substrate surface. This leads to 

incommensurate growth of a structure with severe defects, which relaxes and turns into the proper 

LaAlO3-structure further away from the interface. At interface regions where the substrate is smoother, 

this effect is much less pronounced. 

 

 

Figure 11, Left: Near perfect epitaxy of a BiFeO3 thin film grown by ALD on a SrTiO3-substrate. Reused with permission 

from the American Chemical Society. [103] Right: LaAlO3 thin film grown by ALD on a stepped SrTiO3-substrate leading 

to incommensurate crystal domain growth. 

 

These recent reports underlines that ALD is not a technique limited to high-k materials and films where 

crystal structure is not of high importance. It can most definitely be used to deposit conformal films of 

functional materials with magnetic and electric properties that are highly sought after. 
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ALD of thin films containing alkali metals 
 

The final part of this introduction to ALD will briefly introduce current research on deposition of alkali 

metal containing thin films. This is a very new field of ALD-research and first reports of lithium 

deposition were published as late as in 2009, in Putkonen et al.’s pioneering paper.[104] Several precursors 

were tested for ALD growth in this report, and self-limiting growth of Li2CO3 was observed for Li(thd) 

and Li(OtBu). This research led to several reports on lithium containing materials in the following years, 

all focused on materials used for solid-state lithium batteries. This research was summarized in a recent 

review by Nilsen et al.[105] 

Alkali metal deposition involves some challenges that are not found for most other metals. Ions of alkali 

metal elements are small and often very mobile in a solid matrix. They have a large affinity towards water 

and CO2, which makes investigation of pure binary systems very difficult. Testing alkali metal precursors 

are often done by depositing aluminates or similar compounds to overcome this challenge. The affinity 

for reaction with CO2 can lead to carbon contamination that may quench desired functional properties. 

Affinity for water is detrimental in ALD-processes, as water is often used as an oxygen source. This can 

lead to formation of hydroxides and storage of crystal water, which again can influence further growth. 

This is known as the “reservoir effect” and was discussed at length in Erik Østreng’s Ph.D.-thesis, and 

will not be discussed further here.[106] 

Furthermore, characterization is often difficult. This is especially the case for lithium, as its interaction 

with x-rays is very small. Traditional methods for determining metal-to-metal ratios in thin films, like 

XRF, are not sensitive to lithium. XPS is sensitive, but depth resolution is limited without ion-etching. 

Ion etching is not applicable as this will see lithium migrating towards the interface between the film and 

the substrate, and the concentration will subsequently be misinterpreted. Time of flight elastic recoil 

detection analysis (TOF-ERDA) is routinely used, but infrastructure is expensive making instrumentation 

hard to come by. 

Before the work leading to this thesis was commenced, no route for depositing sodium- and potassium 

containing films existed. All the challenges related to lithium deposition are also found for sodium- and 

potassium, and without the driving force of battery research, this has been left unexplored by the ALD 

community. Developing new processes for these elements was needed to be able to deposit important 

functional compounds containing sodium and potassium. 

With all these challenges, why care about ALD of alkali metal containing compounds? Many of the 

proposed applications for these thin films require conformal structures on high-aspect ratio systems, and 
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other techniques cannot match ALD in this context. Examples are 3D solid-state batteries and devices 

utilizing surface acoustic waves. Thermal stability of many alkali metal compounds is also an issue, as 

many physical techniques require temperatures these structures cannot withstand. ALD processes work at 

much lower temperatures, opening for thin film deposition of structures that are not readily available by 

PLD, MBE or other technqiues. ALD of alkali metal compounds is in other words highly anticipated, and 

the challenges related to it must be overcome. 
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4. Methods of Characterization 
 

An integral part of materials science is characterisation of the intrinsic properties of materials. These can 

be structural, mechanical, chemical, physical or functional properties. Without surveying the inherent 

traits of the materials made, the value of the research is reduced to superficial significance. This chapter 

covers briefly the essential characterization tools that have been employed in this work, with some more 

elaborate discussion on selected critical techniques that are not treated as well in literature. 

 

X-ray Based Techniques to Study Thin Films 
 

X-ray radiation has been the most widely applied probe for characterizing materials since their discovery 

by Röntgen in the late 19th century.[107] Like all light, x-rays interact with matter in one of two manners; 

through scattering or absorption. Scattering is an elastic event, in which the energy of the incoming 

photon, and thus the wavelength of the light, is unchanged. Absorption, on the other hand, is an inelastic 

event, in which some or all of the photon energy is transferred. X-rays are typically defined to have an 

energy of 0.1 – 100 keV, corresponding to a wavelength of 0.01 – 10 nm. This coincides well with both 

electron binding energies and atomic distances in solids, giving rise to a large variety of characterization 

techniques that utilizes x-rays as the probe. Studying thin films with these techniques involves some 

special considerations and constraints that should be introduced. 

X-ray diffraction (XRD), x-ray reflectivity (XRR), x-ray photoelectron spectroscopy (XPS) and x-ray 

fluorescence (XRF) have routinely been used to study thin films in this work. 

 

X-ray Scattering Techniques 
 

X-rays are scattered from matter, either through elastic interactions with the regular array of atoms found 

in crystals, or through reflection from surfaces and interfaces. This is the basis of the two main scattering 

techniques in hard thin film materials science; XRD and XRR respectively.  

XRR has been routinely applied to study the thickness, density and roughness of thin films and buried 

layers throughout the work leading to this thesis. This gives invaluable information on the structure of 

surfaces, interfaces and buried layers that are crucial for understanding the material properties of the thin 

films and multilayers. 
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XRR is a thin layer specific technique. The propagation of light in a medium, and the way it behaves on 

the interface is directly related to the refractive index n, which for x-rays is given as: 

 
 

 
Eq. 2 

  Eq. 3 

 

where re = 2.82 x 10-15 m is the classical electron radius, ρe is the electron density of the material and μx is 

the absorption length of the system. Since δ must be larger than 0, the refractive index of x-rays is slightly 

less than unity. This gives rise to total reflection of x-rays below a critical angle, , which is 

often in the vicinity of 0.2°-0.5°. Also note that β is a very small value, and is often ignored. Higher 

electron density in the thin film leads to higher critical angle for total reflection. 

Traditional utilization of x-ray reflectivity deals with specular reflection, where the incident (αi) and 

reflected angle (αf) are the same.  

 

Figure 12: Reflection geometry of x-rays on a flat sample, showing the equal incident and outgoing angles. 

 

The momentum transfer in Q-space along the surface normal z, is found to be: 

 

  Eq. 4 

 

Where  is the standard basis vector in z-direction. For a perfect sharp surface, the reflection coefficient 

was described by Fresnel and reads: 
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  Eq. 5 

 

Where kz and k’z are the vertical components of the incident and transmitted waves. The intensity of the 

reflected wave is found by taking the square of the reflection coefficient. Now, close to the critical angle 

of total reflection, k’z is governed by reflection as: 

  Eq. 6 

 

giving a purely imaginary component at angles below the critical angle. Above the critical angle the 

intensity of the reflected beam will drop drastically, proportional to αi
4. Roughness is also detrimental to 

reflection, and for any real sample this will play a role. This can be taken into account by a roughness 

coefficient given as: 

  Eq. 7 

 

where σ is the surface roughness. The reflection can now be described in full by r = ridealR. 

A thin film on a substrate does not consist of a perfect surface, but rather of at least one additional 

interface in addition to the surface. When this is the case, scattering from all of the interfaces must be 

taken into account, increasing the complexity of the reflection. This was formalized by Parratt, when he 

related the reflected and transmitted amplitude as: 

  Eq. 8 

 

where rj is the Fresnel coefficient of interface j. Note that this formalism can handle an unlimited amount 

of interfaces. This is a recursion formula which can be solved by taking T1 = 1 and RN+1 = 0, which 

translates into normalizing the incident wave to unity and disregarding reflection from the substrate itself 

respectively. 

The reflected waves will now interfere, giving rise to what is known as Kiessig fringes with periodicity 

2π/d, where d is the thickness of the thin film. Again, roughness can be taken into account with the same 

roughness coefficient as for a single surface, as long as the roughness is small compared to the thickness 

of the layer. 
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Using Parratt’s formalism to solve the reflection from a real system is near impossible. The way around 

this is to use what has been called the Master-formula, which by a kinematical approximation is given by: 

  Eq. 9 

 

Where RF is the reflected intensity and ρe is the electron density profile of the system. The Master-formula 

is rarely applied to solve systems directly, but is used together with software algorithms to fit a theoretical 

curve to real data. Fitting parameters are typically layer thickness, density and roughness, related to the 

period of fringes, critical angle for total reflection and intensity drop-off, respectively. Figure 13 shows 

how a typical XRR-dataset may look, and how fringes are formed as the thickness of the film increases. 

 

Figure 13: In situ XRR data collected during ALD growth of a ZnO thin film. Reused with permission from AIP 

Publishing LLC.[108] 
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XRD is one of the most widespread characterization tools to study atomic arrangements in solid samples. 

It differs from XRR in that it does not look at reflection from interfaces, but constructively interfering 

waves scattered events from planes in the crystal lattice itself. Discussion of the mathematical formalism 

behind x-ray crystallography is left to the literature, but it is important to understand the results of this 

formalism. 

When the path length of incident and scattered waves differ by a multiple of the wavelength, the waves 

add up in phase and result in constructive interference. For scattering in a crystal, this means that the extra 

path length the wave travels between two lattice planes is proportional to the distance between the planes 

and the incident and diffracted angle of the x-ray wave. This can be summarized simply by Bragg’s law: 

  Eq. 10 

 

where λ is the wavelength, θ is the incident angle and d is the plane distance. By varying the incident 

angle of x-ray light on a crystal, and recording the intensity of the scattered light, planes in the crystal 

structure can be identified. Depending on the crystal lattice, the intensity of the scattering can be 

determined by the structure factor: 

  Eq. 11 

 

which uses symmetry arguments set forth by the atomic positions (u,v,w) and the Miller indices of the 

lattice planes (hkl) to describe the scattering from the crystal. The intensity of the diffracted wave is taken 

as the square of the structure factor. By using collected data and the structure factor in reverse, a lattice 

and its atomic positions can be uniquely identified.  

In addition to the peak position in a diffractogram, corresponding to the incident angle of the x-rays, 

information can be gathered from the shape of the peaks coming from the scattered intensity. Features 

such as crystal strain, particle size and shape, disorder, mosaicity and concentration gradients affect the 

shape of the intensities, typically by broadening. The broadening may in other words be used to derivate 

properties of the samples at hand. 

The above results are general and apply to all crystalline systems. Diffraction from thin films follow the 

same rules, but some limitations and constrains applies that are not found for bulk single crystals or 

powders. Studying powders in a thin capillary will for example allow for transmission geometry, where 
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the x-ray beam travels through the sample. This is very rare for thin films, which are typically deposited 

on substrates that are too thick to allow transmission. In this case, reflection geometry (θ-2θ) is used, 

where the sum of the incident and outgoing angle forms the scattering angle. 

Reflection geometry constrains the part of the reciprocal space that can be reached by diffraction, as the 

sample cannot be rotated freely around all axes. For a polycrystalline sample, this will usually be 

unproblematic, as the crystallites are randomly arranged in all directions and will scatter the incoming x-

rays as a powder sample. The random orientation of planes in a powder leads to formation of scattered 

rings in reciprocal space, where the radius of the ring corresponds to plane distances in the sample. By 

coupling the source and detector arm angles, performing a symmetric scan, a slice through these rings in 

reciprocal space is measured and the respective plane distances can be identified.   

Very thin films often have very low scattered intensity, making it hard to identify reflections from the 

sample. This can be overcome by locking the x-ray source to a low incident angle, and only scanning the 

detector arm. This makes the path length of the x-rays in the sample longer, increasing the scattered 

intensity, as well as decreasing the scattering from the substrate. This type of geometry is called grazing 

incidence (GIXRD), and is routinely applied to thin polycrystalline films without any preferred 

orientation. 

Oriented or single crystalline films provide a different challenge. The scattering from a single crystal does 

not come about as rings in reciprocal space, but as points. A symmetric scan will only slice through points 

along the surface normal, corresponding to scattering from planes that are parallel to the sample surface. 

This does indeed lead to information about orientation perpendicular to the surface, and may be used to 

identify the crystal structure of the film, but does not yield any information about the orientation in plane. 

This information can be obtained by tilting and rotating the sample to slice through a part of the reciprocal 

space in which asymmetric reflections are found. This is often termed a reciprocal space map, and by 

investigating the position and broadening of these peaks, a proper determination of the epitaxial 

relationship between the thin film and the substrate can be carried out. A phi-scan, rotating the sample 

360° around an asymmetric peak can also be performed to confirm the epitaxial relationship. 

Figure 14 shows the various types of important data that can be obtained by the different modes of x-ray 

diffraction measurements, exemplified by the LiNbO3-system. A more rigorous and detailed explanation 

of the geometry and measurement modes of x-ray diffraction that have been utilized in this work can be 

found in supporting paper 2.[109] 
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Figure 14, a): Traditional symmetric θ-2θ-scan of LiNbO3 thin films on a range of substrates. This shows how an epitaxial 

film can have different orientation on different substrates. b) A phi-scan of an asymmetric reflection showing the four-

fold rotational symmetry of this plane. c) Reciprocal space maps of two LiNbO3 reflections (one symmetric and one 

asymmetric), showing how the film orientation is related to the substrate. 

 

X-ray Absorption Techniques 
 

Atoms can absorb electromagnetic radiation in a variety of ways, depending on the energy of the radiation. 

This has been used to construct a broad range of characterization techniques utilizing absorption of light, 

such as IR-spectroscopy, UV-VIS-spectroscopy and microwave rotational spectroscopy to name a few. 

X-rays have energies that correspond well with electron binding energies in solid systems. If the x-ray 

energy is higher than the ionization potential of an electron, excitation to vacuum may occur and the atom 

is ionized. Such an event will lead to an unfilled electron position in the atom, immediately causing de-

excitation of an electron of higher energy. The excess energy of the de-excited energy must be distributed 

somewhere, often in the form of a photon. 

Two techniques that have been important in this work both use x-rays to ionize the sample, but are 

different in terms of what is detected. 

X-ray photoelectron spectroscopy (XPS) directly measures the number and kinetic energy of the 

electrons that are ejected from the sample. A monochromatic x-ray source (typically Al Kα, E = 1486.7 
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eV) is directed onto the sample surface. This causes ejection of electrons from the top-most layer of the 

sample. Note that this constrains XPS to being a surface sensitive technique, as the mean free path length 

of electrons in a solid sample is limited to a nanometre length scale. An energy dispersive detector is 

scanned over discrete energies, and records the number of electrons with these discrete energies. The 

concentration of an atom in a specific chemical state is proportional to the relative intensity of ejected 

electrons at unique binding energies. The binding energy of the electrons is found by: 

 

  Eq. 12 

   

where Φ is the work function determined by the sample and instrument. By using known photon energy 

and measuring the kinetic energy of the electrons, the binding energy can be determined. 

The binding energy is not only unique for every element, but also unique to different oxidation states and 

binding states of the atoms. This means that XPS can be used not only to determine the relative 

composition of elements in a sample in the top 10 nm, but also to qualitatively describe chemical and 

electronic states in the system. By using ion etching, it is also possible to obtain depth profiles, but extra 

care needs to be taken when doing this, as many samples are prone to change upon ion etching. Also, note 

that ion etching cause changes in chemical state, so information about bonding is always lost after etching. 

XPS is in theory sensitive to all elements. In practice, however, laboratory instruments cannot detect 

hydrogen and helium, and is limited to lithium or heavier elements.  

 

X-ray fluorescence (XRF) does not detect the ejected electrons themselves, but rather the photons that 

are emitted upon de-excitation of an electron from a higher energy level when a core electron is excited. 

X-rays travels much easier through solid samples, thus XRF can be used also for bulk samples. XRF is 

theoretically limited to elements with electrons in two shells (Z ≥ Li), but due to low fluorescent yield for 

elements in the second period, most laboratory instruments are not sensitive to second period elements.  

Composition is determined by collection of the x-rays over a broad range of energies corresponding to 

unique de-excitation energies for the different elements. The relative concentration of an element is 

proportional to the emitted intensity of its unique spectral line. Care must be taken to avoid overlapping 

spectral energies if the sample consist of elements where this may be a challenge. 
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XPS and XRF have been routinely used throughout this work to study the composition and chemical state 

of thin films. The techniques have often been used in conjunction to confirm data from each source, or to 

study difference in top layer versus bulk composition.  

 

 

Figure 15: Example data that can be collected by XPS, exemplified by a KTaO3 thin film sample. The survey spectrum 

(top) gives an indication on what elements are present in the sample, whereas the high resolution single peaks can be used 

to obtain chemical and stoichiometric information. 
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Atomic Force Microscopy 
 

An important feature of any thin film system is the surface morphology and topography, both for the 

underlying substrate and for the thin film itself. The shape of the substrate is a key factor for controlling 

the structure of the thin film that is grown on top. The shape and surface area of the thin film itself have 

direct impact on the activity of the sample. 

Atomic force microscopy (AFM) is a method for direct imaging of surface topography of solid samples. It 

was invented by IBM physicists Binnig, Quate and Gerber as a complimentary technique to the scanning 

tunnelling microscope (STM).[110] While STM is limited to conducting samples through electron 

tunnelling between a tip and the surface, AFM has no such constraints. The sample is placed on a table 

controlled by piezoelectric actuators that move it parallel to the sample surface with sub-micrometre 

precision. A cantilever with a nanometre size tip mounted on it is lowered onto the sample, with z-control 

on the sub-nanometre level. A laser beam is pointed towards the top of the cantilever where it is reflected 

towards a detector. The sample is now scanned in x- and y-direction, and the tip follows the topography 

of the sample surface. When the cantilever moves in response to the sample surface contours, the laser 

spot moves on the detector and this is recorded and used to reconstruct an image of the surface.  

  

Figure 16: Schematic of an AFM instrument showing the how a laser beam is deflected off a cantilever that traces the 

sample, and subsequently hits a photodetector. Adapted version of AFM schematic created by GregorioW and distributed 

via Wikimedia Commons. 
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Different modes of recording and scanning the tip exist. Flat, hard samples are often imaged by direct 

contact between the tip and the sample, termed contact mode. Here, the tip is “dragged” across the surface 

and the surface morphology is imaged by recording the deflection of the cantilever. The lifetime of the tip 

is often short when applying contact mode, and softer samples can be damaged. To conserve the tip and 

make sure the surface is not altered, the tip is often set to vibrate with a constant amplitude and oscillation 

just below or at its resonance frequency. When the tip is scanned over the sample surface, the amplitude 

changes and its value is fed back to tip motor which in turn drives it back to the set amplitude. This 

indirectly measures the tip-to-sample forces in play, and is used to reconstruct the sample surface. Note 

that changes in sample hardness and polarity will affect this interplay, making it possible to map domains 

in the sample. This mode is termed tapping, and causes less damage to the tip and surface compared to 

true contact AFM while maintaining the quality of the imaging. Softer samples, such as hybrid materials, 

may be damaged by tapping as well. This calls for use of true non-contact mode, where the cantilever is 

set to vibrate at its resonant frequency or just above. When the tip gets close to the surface (1 – 10 nm 

away), van der Waals forces come into play and decrease the resonant frequency of the cantilever. This 

change is fed back into the system and the average distance from the tip to the surface is shifted to get 

back to the set resonance frequency. The z-value is recorded, and the surface morphology can be 

reconstructed. 

Choosing what AFM mode to use for a specific sample is important, as the best imaging is achieved with 

the hard modes if the samples are not altered by the forces involved. It is harder to obtain a good image 

with non-contact mode, but using this one can make sure that the sample surface is not changed. Tapping 

mode is typically a good trade-off between the two, and has become the most used mode in later years. If 

not otherwise specified, all AFM-images presented in this thesis have been recorded in tapping mode. 

 

Piezoelectric Force Microscopy 
 

By altering the standard AFM imaging technique, other parameters can be imaged indirectly. This 

includes imaging of magnetically and electrically active domains. One such alteration, important for 

electrically active thin films such as in this thesis, is applying a bias over the tip to study piezo- and 

ferroelectric activity. This is called piezoelectric force microscopy (PFM). 

This technique was pioneered by Güthner and Dransfeld in 1992, and has become a standard technique to 

map piezoelectric domains.[111] PFM makes use of the converse piezoelectric effect, in which an applied 

electric field will result in a change in the lattice parameters of a piezoelectric material through strain. 
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Mathematically, the coupling can be described via the piezoelectric tensor, dki, which is unique to the 

different crystal systems. As an example, the coupling in the common piezoelectric tetragonal space 

group (P4mm) is given as: 

 

  Eq. 13 

 

where Si is the strain tensor, dki is the piezoelectric tensor and Ek is the electric field in direction k. 

In PFM, a sharp conductive probe is lowered onto the sample surface in the same manner as for 

traditional AFM. By applying an electric field through an alternating current bias to the tip, a piezoelectric 

material will be deformed as a result of the converse piezoelectric effect. The field is only applied in one 

direction (z), which will result in three strain components: d31Ez, d32Ez and d33Ez. The strain causes 

deformation that will deflect or attract the cantilever, and this is subsequently recorded as a morphology 

change at the detector. Typically, a high frequency AC-bias is applied for fast scanning, and the signal 

must be demodulated by a lock-in amplifier on the detector side. 

In theory, the change in lattice parameter can be quantified and used to find the elements of the 

piezoelectric tensor. This requires samples with a known number of unit cells out-of-plane, and is not 

feasible for thin films with the thicknesses investigated in this thesis.  

More directly, however, PFM makes it possible to image piezo- and ferroelectric domains in the sample, 

generating information about domain size and morphology, which are important parameters considering 

the performance of a piezo- or ferroelectric. The technique has been used throughout this thesis to 

investigate piezoelectric activity and domain shape. An example of a typical map is shown in Figure 17. 

Also notable is the possibility to use a magnetized tip to record magnetic domain structures in the sample. 

This is termed magnetic force microscopy (MFM), but has not been utilized in this work as the samples 

do not exhibit any interesting magnetic phenomena. 
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Figure 17: PFM amplitude contrast image of an ALD BiFeO3 thin film on a Nb:SrTiO3-substrate exhibiting patterned 

domains following successive writing of two square shaped regions. Reused with permission from the American Chemical 

Society.[103] 

 

Other Techniques 
 

A range of other characterization techniques have been used to a lesser degree or by a third-party, and 

will not be introduced in detail. A review paper discussing the technique and its use in thin film 

characterization is listed for all techniques.  

- Spectroscopic Ellipsometry:[112] Measures change of polarization upon reflection from a thin 

film and its substrate. Used for determination of thin film thickness and refractive index. Films 

are considered transparent for the wavelengths used in this work, enabling use of simpler 

characterisation models such as the Cauchy function. The transparency approximation can be 

applied without concerns for all thin films in this work. 

 

- Time-of-flight Elastic Recoil Detection Analysis (TOF-ERDA):[113] A directed ion beam 

bombards the surface and is scattered due to an elastic nuclear interaction between the probing 

ions and the atoms of the sample. The sample ions recoil towards a detector that collects and 

measures the relative concentration in the sample. The recoil of sample atoms from the surface 

causes ion etching, so TOF-ERDA will automatically give a high resolution depth profile. The 
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technique is sensitive to all elements, including hydrogen. In this work it was used to study 

lithium content and distribution in the films. Carbon and hydrogen sensitivity also allowed depth 

profiling of unwanted contamination. TOF-ERDA measurements in this thesis were performed by 

Timo Sajavaara at the University of Jyväskylä. 

 
- Thermogravimetric Analysis (TGA):[114] A small amount of a powder sample is placed in a 

crucible. The sample is heated while continuously measuring the mass of the sample in the 

crucible. The mass will decrease upon vaporization or gaseous decomposition of the sample. This 

has been used to study the thermal properties of the possible precursors in ALD-systems.  

 
- Fourier Transform Infrared Spectroscopy (FT-IR):[115] Infrared light has energy that 

corresponds to molecular vibrations through stretching, rocking or twisting of covalent bonds. 

These vibrations have discrete energies that are unique for different kinds of bonds. In infrared 

spectroscopy the absorption of infrared light over a broad spectrum is measured. Absorption at 

different energies can be attributed to existence of certain types of bonding in the material, such 

as O-H-bonds, C-O bonds or C=O-bonds. In this work, this has been used to identify possible 

contaminants, especially in the form of carbonates in the sodium- and potassium aluminate 

samples. 

 
- Transmission Electron Microscopy (TEM):[116]  Transmission electron microscopy uses the 

wave-properties of electrons to image electron density in the sample. An electron beam is focused 

onto a thin slice of a sample where it interacts and is collected on a detector on the other side, 

directly imaging the sample. The short wavelength of high energy electrons allows imaging on 

the angstrom level, meaning that it is possible to image single rows of atoms and their 

arrangement in a solid sample. Some of the electrons will inelastically scatter form the sample, 

losing energy in the process. The energy loss can be recorded and used to identify elements in the 

sample, which has given rise to the electron energy loss spectroscopy (EELS) technique. 

Variations of TEM exist, most notably the scanning TEM (STEM) where the focusing takes place 

before the electron beam hits the sample, and the beam is raster scanned to provide a full image. 

TEM and subsidiary techniques are crucial tools in thin film- and interface studies, as it allows 

direct imaging of the epitaxial relationship between a thin film and its substrate. TEM has been 

used to investigate interface structure in selected thin film-substrate systems in this work. TEM 

imaging was performed by the Structure Physics group at the University of Oslo. 
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5. Atomic Layer Deposition of A+B5+O3 Perovskite-like Thin Films 
 

In this, the central chapter of the thesis, results dealing with the most important findings of the work are 

discussed in a holistic manner. Experimental details and minor results are therefore mostly left to the 

selected papers. The results are presented chronologically, starting with the deposition of LiNbO3 as the 

first epitaxial alkali metal complex oxide deposited by ALD. This was summarized and published in main 

paper 1. The second part deals with finding working precursors for the deposition of sodium- and 

potassium containing thin films. The work was based upon results from work with lithium precursors, and 

lead to the first ever reports of Na- and K-processes for ALD. This was summarized and published in 

main paper 2. The third, final and quintessential part of this chapter summarizes the work done on 

sodium- and potassium niobates and tantalates. Deposition of the four corner-systems (NaNbO3, KNbO3, 

NaTaO3 and KTaO3) and of the two important solid solutions (KxNa1-xNbO3 and KTaxNb1-xO3) is 

presented in detail, based on the summarized and published results in main paper 3. 

 

Atomic Layer Deposition of LiNbO3 
 

ALD of lithium containing thin films was pioneered by Putkonen et al. in the 2009 paper introducing two 

working precursors (Li(thd) and LiOtBu).[104] One of the concerns raised here is the monovalency of the 

alkali ions, challenging the conventional way of thinking self-limited growth mechanisms in ALD. 

Experimental results do, however, point towards self-limitation. This received notable attention, and in 

the following years, processes for deposition of e.g. lithium titanate, lithium aluminate, lithium manganite 

and lithium tantalate were reported.[117-120] Other precursors were also investigated, among these lithium 

silylamide (LiN(SiMe3)2), which exhibit excellent growth for lithium carbonate, lithium silicate and 

lithium nitride to name a few. All the systems currently mentioned had a common denominator in that 

they were primarily focused on applications in battery technology, where orientation of growth and 

crystal quality is not necessarily as crucial as for complex oxides with properties originating solely from 

structural relation. 

As a result of this, four major challenges were identified for the growth of LiNbO3: 

- Precursor compatibility with well-known niobium precursors 

- Control of lithium loss upon heat treatment 

- Control of carbon contamination, possibly detrimental to electric properties  
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- Control of growth orientation and epitaxy 

Growth of niobium oxide was reported by Kukli et al. back in 1998.[121] Nb(OEt)5 was used as niobium 

source and reported to exhibit ALD-growth at temperatures between 150 and 350 °C, with water as the 

co-ractant. To limit the complexity of the mechanism, it was decided to use a Li-process that does not 

need introduction of ozone. In addition, Li-growth using Li(thd) and ozone is reported to result in what is 

believed to be detrimental amounts of carbon for some systems, especially at low temperatures.[122] 

The two remaining viable precursors, LiOtBu and LiN(SiMe3)2, could possibly both have been used. With 

prior knowledge of the silyl amide in the research group, it was decided to use this for the first 

investigation of LiNbO3 growth. This precursor was also shown to exhibit self-limiting growth from 150 

up to around 250 °C, which corresponds fairly well with the Nb(OEt)5/H2O ALD-window. In an effort to 

limit the amount of carbon contamination a temperature in the upper regime of the window was chosen, 

and all films in the LiNbO3-investigation were deposited at 235 °C. 

The traditional way of depositing a ternary system is by investigating the binary systems and then 

combing them. The binary lithium oxide is not possible to deposit due to the air- and humidity sensitivity 

of the films after breaking vacuum. Because of this, principal investigation was carried out directly on the 

ternary system. Pulsing water-sensitive niobium ethoxide was also believed to limit the water reservoir 

effect that had been described for many lithium processes, possibly avoiding any misinterpretation of the 

lithium growth. 

From previous use of the niobium and lithium precursors a 1 s pulse and purge duration for all precursors 

were deemed sufficient. The first investigation confirmed this, as controlled and gradient free films were 

obtained for a pulsed Nb:Li-ratio > 1. At the 1:1 limit severe non-uniformity was observed, and for higher 

lithium concentration powder-like films pointed towards uncontrolled growth. Figure 18 (left) shows the 

correlation between the pulsed ratio of Li:Nb and the resulting concentration in the film as measured by 

TOF-ERDA. This confirms that problems arise when approaching the 1:1 limit. Figure 18 (right) shows 

the depth profile of a film with 2:1 Nb:Li pulsing ratio. Three important characteristics are important to 

note: 

1. Lithium tends to slightly migrate towards the surface of the films, but the net amount of Nb:Li 

incorporated in the films is relatively equal for this pulsed composition. 

2. Carbon contamination in the film is very low, with amounts in the 0.1 % regime. Sodium 

contamination, most probably from the precursor, is around 2 %. The sodium contamination is 

thought to be relatively unproblematic in terms of electric performance. 
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3. The amount of silicon in the films is negligible, confirming that cleavage of the precursor during 

growth is at the Li-Si bond. 

 

Figure 18, left: Correlation between the pulsed Li:Nb-ratio and the deposited elemental content as measured by TOF-

ERDA. Right: TOF-ERDA depth profile of a LiNbO3 thin film deposited with a 2:1 Nb:Li ratio. 

  

As the net Nb:Li ratio was very close to 1:1 for the 2:1 pulsing ratio, this was used to deposit films for 

evaluation of piezo- and ferroelectric performance. The slight non-uniformity as a function of film depth 

was not considered a big problem as it was believed that post-deposition annealing and high mobility of 

the Li-ions would result in proper mixing. 

The first diffraction experiments confirmed this assumption, as shown in Figure 19. At 2:1 pulsed ratio, 

films on Si(100)-substrates annealed at 650 °C  for 10 minutes in oxygen atmosphere only show 

reflections from LiNbO3, no signs of Nb2O5 as for the films with Nb:Li-pulsing ratio higher than 2. Also 

note the lack of any reflections from the 1:1 pulsed ratio system.  

A thorough investigation of controlled orientation was performed, showing that different substrates could 

be used to achieve different orientations. Reciprocal space mapping and φ-scans were performed to show 

orientation both in and out of plane. As an example, LiNbO3 on LaAlO3(012) had a preferred (012)-

orientation, whereas on Al2O3(001) a near perfect Al2O3(001)|Al2O3[100]||LiNbO3(001)|LiNbO3[100] 

epitaxial relationship was seen. This control of orientation is important as c-axis orientation of the 

pseudo-cube normal to the film plane is necessary for out-of-plane piezo-response. Interesting is also the 

lack of preferred orientation on SrTiO3(100)-substrates, which is believed to stem from lattice mismatch 
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on the (100)-plane. It is possible that different heat treatment would result in other results for some of the 

systems.  

 

Figure 19: XRD patterns of Li-Nb-O thin films with different pulsed ratio after annealing at 650 °C. The %-value 

indicates the Li:(Li+Nb) ratio. Vertical lines indicate theoretical reflections of the rhombohedral LiNbO3 phase. 

 

Finally, investigation of the piezo- and ferroelectric properties of LiNbO3 thin films on Si with silver 

contacts was performed. Piezoelectric force microscopy images show a 180° polar response domain 

regime, with complex domain structure. Silicon is not the ideal substrate for oriented growth, and the 

complex polar domain structure could be a result of this. However, even with some small domains 

exhibiting no polarity, most of the film is piezo-active upon perturbation from the PFM-tip. 

 

Figure 20, left: Tapping mode AFM image showing LiNbO3-crystallites with some inclusions of smaller grains thought to 

be Nb2O5. Right: PFM image showing the pizeoelectric activity of the film. The piezoelectric domains have a complex 

shape, which may cause issues with domain wall pinning. 
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Ferroelectric activity was confirmed by measuring a coercive field of approximately 220 kV/cm (Figure 

21), which is very consistent with experimental values from bulk LiNbO3.[123] Also note that this is almost 

a factor two higher than previous reports of LiNbO3 on Si-substrates. The high coercive field could be a 

feature of the complex domain structure, as the remanent polarization of ~0.4 μC/cm2 is consistent with 

other reports of congruent LiNbO3 thin films. 

 

Figure 21: Polarization as a function of applied electric field, with a remanent polarization of ~0.4 μC/cm2 and a coercive 

field of ~220 kV/cm. 

 

This was the first report of LiNbO3 thin films by ALD. It paved the way for more research, as it also 

proved that excellent crystallinity and controlled orientation is possible for complex alkali oxides by ALD. 

To be viable for replacing PZT in all applications, however, a high degree of tailoring the electric activity 

is needed. This is not feasible for LiNbO3, but is possible for the related KxNa1-xNbO3 (KNN). With the 

alkali niobate ALD mechanism proof-of-concept forLiNbO3, depositing KNN was thought to be possible. 

To achieve this, however, a venture into Na- and K-containing thin films by ALD had to be carried out. 
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Atomic Layer Deposition of Na- and K-containing thin films 
 

When the work with this thesis started, no reports of processes for Na- or K-containing thin films existed. 

This was somewhat a “hole” in the periodic table of ALD, as most other non-radioactive metals had seen 

deposition routes for either the pure metal or for oxides.[102] The absence of routes for other alkali metals 

than lithium can probably be attributed to two factors; difficulty and lack of interest, or perhaps a 

combination of the two. Sodium compounds have received new interest as a result of trying to find novel 

battery systems, as these can be used to make new and inexpensive alternatives to lithium batteries. 

Sodium is also found in some thermoelectric and superconductive materials, but these are fields where 

ALD is not typically applied. Potassium compounds of interest for functional materials are scarce, with a 

few exceptions for piezo- and ferroelectric materials, such as KNbO3. 

Equipped with the experience from complex oxide lithium compounds with ALD, the search for viable 

precursors naturally began with the known and tested lithium precursor ligands. Many precursors were 

preliminarily screened, including β-diketonates, tert-butoxides, silylamides and silanolates. As the goal 

was to find a water-only reaction pathway to be combined with niobium growth, the β-diketonates were 

abandoned after initial screening. Three types of precursors (Figure 22) were believed to be suitable, and 

were tested for thermal properties through thermogravimetric analysis (TGA). This analysis showed 

promising results for all sodium variants, but only the tert-butoxide for potassium (Figure 23). Potasssium 

trimethyl silanolate (KTMSO) and potassium hexamethyl disilazane (KHMDS) decomposed in several 

steps, and do not evaporate as a molecule. This can probably be attributed to the more ionic type bonding 

in KTMSO and KHMDS in comparison to the more covalent character of NaHMDS and NaTMSO. 

 

Figure 22: Structure of the organic ligand for AOtBu (left), ATMSO (center) and AHMDS (right). Carbon atoms are 

coloured grey, oxygen atoms are red, silicon atoms are purple and nitrogen atoms are blue. 
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NaHMDS also seemed to have a strange linear loss of mass up to 225 °C, and was not deemed ideal as an 

ALD precursor. It was tested in the reactor with both water and ozone as oxidizing agents, both for 

deposition of Na2CO3 but did not give reproducible results. At this stage both silylamides had to be 

abandoned, which was surprising given that this was the ligand of choice for deposition of LiNbO3.  

 

 

Figure 23: Thermogravimetric analysis of the six precursors that were believed to facilitate self-limiting growth at typical 

ALD-temperatures. 

 

The precursor screening process resulted in three viable precursors, two for sodium and one for potassium. 

The TMSO-type ligand was previously unexplored, and was investigated using both ozone and water as 

oxidizing agents. The initial thought was that using ozone would lead to sodium silicate growth, whereas 

water combined with a second metal subcycle would lead to deposition of sodium metalates. Thin films 

grown with either of the two oxidants produced relatively large gradients in both thickness and refractive 

index over a large span of temperatures and pulse lengths. Gradients were not instrument specific, as they 

were reproduced in two reactors with different geometry. Investigation of composition over the gradient 

showed that the differences of thickness and refractive index most likely were a result of varying silicon 

inclusion along the flow direction. Post-annealing x-ray analysis showed signs of sodium silicate in films 

deposited with both water and ozone. Even though deposition of NaTMSO could possibly be used to 

deposit controlled layers of sodium silicate after more stringent fine-tuning, it was abandoned as silicon 

contamination cannot be accepted in the tantalate and niobate films. 
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The toolbox of sodium- and potassium precursors were now reduced to only two compounds; the tert-

butoxides. Given the TG-analysis and former success of deposition of lithium compounds using lithium 

tert-butoxide, there were high hopes for these precursors. Due to the air-sensitivity of a theoretical 

sodium- or potassium oxide film, both systems were investigated together with the TMA + water process, 

thereby depositing aluminates. 

Initial deposition using sodium tert-butoxide was performed at 250 °C with 0.5 and 0.15 second pulses of 

the sodium precursor. A 1:1 pulsed ratio between sodium and aluminium with 200 super cycles were used 

to investigate the working temperature of the precursor. Surface saturation was reached at a precursor 

temperature of 140 °C under these conditions. At lower temperatures, severe thickness gradients and an 

increase in refractive index was observed (Figure 24). As a result of this, all subsequent depositions with 

sodium tert-butoxide were carried out using a precursor temperature of 140 °C. 

 

Figure 24: Growth per supercycle and refractive index as a function of the precursor temperature. The reactor 
temperature was maintained at 250 °C for all these depositions.  

 

To identify an ALD-window for the process, depositions were performed in the 225 to 375 °C 

temperature range (Figure 25). A traditional ALD-window was difficult to determine, but a relatively 

constant GPC, Na:Al-ratio and refractive index was found for temperatures between 250 and 300 °C. 
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Figure 25: Growth per cycle and sodium composition as a function of the reactor temperature. The sodium content is 

relatively constant over the whole temperature regime, but the growth decreases rapidly at temperatures above 300 °C. 

Inset: Refractive index as a function of reactor temperature.  

 

It was concluded that sodium tert-butoxide is a favourable precursor for ALD of sodium containing thin 

films, with a working temperature range from 250 to 300 °C, a precursor temperature of 140 °C and down 

to 0.15 s pulse duration in the reactor used. The working temperature range overlaps sufficiently with that 

of the niobium- and tantalum ethoxides, and low pulse duration facilitates relatively fast film growth. 

Investigation of composition also showed low carbon contamination for the NaOtBu + H2O + TMA + 

H2O process, making it ideal for use in deposition of thin films with functional electric properties. 

The potassium tert-butoxide exhibits very similar temperature stability as its sodium counterpart. It was 

found, however, that a slightly higher precursor temperature (170 °C) and longer pulse duration (0.5 s 

minimum) had to be applied to achieve saturated growth. In addition, a 1:1 pulsing ratio for K:Al resulted 

in films with high gradients because of a high potassium surplus. To overcome this, a 1:4 pulsed ratio was 

applied for initial tests. With these parameters, growth of potassium aluminium oxide was very similar to 

that of sodium aluminium oxide. GPC and K:Al-ratio have a plateau between 250 and 300 °C (Figure 26). 
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At these temperatures the gradient over an 8” silicon wafer was as low as ~1%. Low carbon 

contamination was also found for the KOtBu + H2O + TMA + H2O process, and the composition could be 

tuned to about 30 % potassium. At higher potassium concentration severe gradients were seen, and this 

was attributed to formation of surplus KOH that reacts with air after breaking of vacuum or through 

reservoir effects. This was not considered a problem in the formation of niobates or tantalates, in which 

1:1 potassium to metal is easier to achieve than in the aluminium oxide matrix. 

 

Figure 26: Film thickness and composition as a function of reactor temperature. The growth and composition is relatively 

constant in the same temperature regime as for the sodium counterpart. At higher temperatures, however, the growth 

rate and potassium content increases dramatically. 

 

In conclusion, out of the screened precursors only sodium and potassium tert-butoxide were deemed to be 

viable precursors for deposition of complex oxides. They can be used to deposit conformal films in a very 

compatible temperature regime, and it is possible to easily tune the composition by changing the pulsed 

precursor ratios. Growth is achieved with water as the oxygen reactant, and relatively fast growth 

parameters can be used. 
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Atomic Layer Deposition of (KxNa1-x)(NbyTa1-y)O3 
 

With the discovery of precursors for ALD of sodium and potassium containing compounds, and existing 

routes for niobium and tantalum oxides, realization of the (KxNa1-x)(NbyTa1-y)O3, 0 ≤ x,y ≤ 1 was thought 

to be feasible. Bear in mind that the ultimate goal was stoichiometric control of the ferroelectric solid 

solution KxNa1-xNbO3, and that the congruent corner-systems and the solid solution KNbyTa1-yO3 is 

studied in parallel as they have interesting inherent properties of their own. 

The first step in depositing a quaternary system is to control the ternary processes and then combining 

them. In the KNNT-system this means that four ternary systems; NaNbO3, NaTaO3, KNbO3 and KTaO3 

had to be investigated first. K, Na and Nb processes had all been utilized in the earlier stages of this work, 

whereas deposition of Ta2O5 using Ta(OEt)5 was reported in 1999.[124] The tantalum ethoxide + water 

system is very similar to the niobium ethoxide + water system, both in regards to growth rate and 

temperature stability. To minimize the number of variables, all depositions that are presented here are 

carried out with many coinciding parameters, which are presented in the table below (Table 1). 

Table 1 

Parameter Abb. Value 

Reaction chamber temperature TR 250 °C 

NaOtBu source temperature TNa 140 °C 

KOtBu source temperature TK 150 °C 

Nb(O-Et)5 source temperature TNb 68 °C 

Ta(O-Et)5 source temperature TTa 70 °C 

Working pressure P 3 mbar 

Water pulse duration tH2O 250 ms 

(Na/K)OtBu pulse duration tNa/K 3000 ms 

(Nb/Ta)(O-Et)5 pulse duration tNb/Ta 2000 ms 

Purge duration tp 1000 ms 

Substrate - Si (100) 

 

TR was chosen to be in the working area of all precursors, and had shown to be a temperature that 

facilitated self-limiting growth of all precursors. The potassium bubbler temperature had to be decreased 
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with 20 °C compared to what was reported in main paper 2, to avoid gradients. This may have slightly 

affected the amount of K that is incorporated in the film per pulse, as a lower potassium inclusion rate is 

seen in this system. The pulse durations also had to be increased compared to deposition of the binary 

compounds, which is a common feature when increasing the complexity of the deposited system. 

The four corner-systems exhibit remarkably similar growth characteristics (Figure 27). This is of course 

expected and due to the similarity of the precursors and metal ions incorporated in the film. Note, for 

example, that the ionic radii of Nb5+ and Ta5+ are almost identical (both reported as 0.64 Å in 6-fold 

coordination). All deposited films in the Na/K:Nb/Ta < 1 pulsed ratio regime were nearly gradient free 

(less than 5 % thickness and/or refractive index difference over the chamber), and they were all x-ray 

amorphous as deposited on silicon. They were atomically flat (roughness average less than 0.5 nm as 

measured by AFM). An effort was made to increase the pulsed sodium or potassium ratio, but this 

resulted in large gradients after breaking vacuum. This is most probably again a result of a reservoir effect 

causing post-deposition reactions with air. 

 

Figure 27: Growth rate as a function of the pulsed cation ratio. All films deposited at 250 °C. 

 

The growth rates of the potassium-containing films were slightly higher than for sodium in the low alkali 

metal content regime, but increased more slowly and in the end, the growth rate goes down with 

increasing pulsed ratio of potassium. This is seen both for the niobate and tantalate system. The 
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composition as a function of the pulsed ratio between the metal precursors were studied and also found to 

be very similar for the four systems (Figure 28). 

 

Figure 28: Cation ratio in the NaNbO3, NaTaO3, KNbO3 and KTaO3 thin films as a function of the pulsed cation ratio. All 

films deposited at 250 °C. 

 

An important feature to note here is the very rapid increase in alkali metal content for low pulsing ratios. 

For a 1:9 alkali metal to group V metal pulsed ratio, a deposited ratio of between 1:3 and 1:4 was found. 

This probably means that the small alkali metal does not only saturate the top layer, but migrates into the 

bulk part of the film to some extent during deposition. 

This is very similar to the growth characteristics of LiNbO3. Also note that the 1:1 congruent 

stoichiometry in the films is found very close to 1:2 pulsed ratio for all systems. 

Growth rate for the congruent compositions were found to be 0.63 ± 0.03, 0.62 ± 0.02, 0.56 ± 0.03 and 

0.58 ± 0.02 Å/binary cycle for NaNbO3, NaTaO3, KNbO3 and KTaO3, respectively. With the deposition 

parameters used this corresponds to 100 nm per hour, which should be acceptable for many possible 

applications of these films. The rate of growth as a function of time could be increased even further if 

precursor temperature and pulse and purge duration are optimized. 
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To investigate the temperature stability of the systems, the chamber temperature was varied between 200 

and 350 °C for a set of depositions (Figure 29). All systems were found to have stable self-limited growth 

between 225 and 275 °C, with a possible extension to 200 and 300 °C. At these limits, however, 

uniformity and composition start to change drastically. A notable difference between the potassium and 

sodium systems is found in the high TR region. The growth rate for the sodium systems drop drastically, 

while it increases for the potassium system. This feature was also observed for growth of sodium- and 

potassium aluminates. A possible explanation for this can be found in the differences in iconicity for the 

two precursors. KOtBu is found to be predominantly ionic, whereas NaOtBu has a more covalent 

character. As a result of this it is thought that NaOtBu will desorb as a molecule at higher temperatures 

(yielding lower growth rate), while KOtBu will be more strongly bond and eventually decompose on the 

surface (yielding higher growth rate).  The potassium containing films deposited at high temperatures 

exhibit severe carbon contamination, believed to be a result of the described decomposition. 

 

Figure 29: Growth rates for the NaNbO3, NaTaO3, KNbO3 and KTaO3 thin films as a function of reactor temperature. All 

films were deposited using a 1:3 alkali vs group V metal pulsing ratio. 

 

With growth control of the ternary systems in place, combining them to form quaternary systems was the 

natural next step. This was carried out without problems, a result of the large similarities between the 
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ternary systems. Four solid solutions were investigated, and all showed remarkable mixability (Figure 30). 

This is an expected result, as these solid solutions are found to exist over the whole compositional regime 

in bulk systems. The ions that are substituted are also of very similar sizes, facilitating the possibility of 

full mixing. 

Only very slight deviations from a linear response were found, most likely due to the slightly faster 

growth of tantalates vs. niobates, and potassium vs. sodium compounds. The technologically interesting 

K0.5Na0.5NbO3 ratio was for example found for a K:Na pulsed ratio of 48:52. As a proof-of-concept for 

the versatility of this deposition system the quinary K0.5Na0.5Nb0.5Ta0.5O3 was also deposited, with pulsed 

ratios K:Na = 48:52 and Nb:Ta = 51:49. 

 

 

Figure 30: Intermixing on the cation and anion site for the four end member systems to form quaternary compounds. The 

dotted red line indicates a 1:1 linear intermixing; uncertainties within the size of symbols.  
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If these solid solutions, especially KNN and KTN, are to be used in technological applications, a coarse 

mixability is not sufficient. The compositions must be tunable around the morphotropic phase boundaries 

that facilitate large variation in physical properties. The most interesting boundary for ferroelectric 

applications is the K0.475Na0.525NbO3 composition, where the piezoresponse has a maximum.[125] To 

investigate this tunability in the ALD-system, 11 films with very slight differences in pulsed ratio 

between the alkali metal precursors was deposited (Figure 31). A near linear (slightly banana shaped) 

correlation is seen, just as for the full range. It is definitely possible to tune the composition around the 

MPB, but it is difficult to determine if small-scale tuning at a fraction of a percent is possible. A proper 

investigation of this would have to be carried out with characterisation equipment with lower margin of 

error. 

 

Figure 31: K:Na compositional ratio as a function of pulsed alkali cation ratio close to the 1:1 composition, including 

compositions near the morphotropic phase boundary (dotted blue). 

 

The important question to ask now is: Is the compositional control in this ALD system good enough? 

There is more than one possible answer to this question, as requirements will vary with application. 

However, looking at variations in parameters such as the piezoelectric coefficient, d33; the physical 

properties do not vary much with compositional changes of a few percent, (Figure 32).[126] This means 

that at least for some applications, the achieved control in the ALD system should be more than sufficient. 
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Just as important as the fine tuning is the reproducibility of the system. This is a challenge for many 

complex oxide ALD systems, especially those involving alkali metals. A common issue is that the first 

few depositions deviate from the general case. This is also seen for the alkali niobates and tantalates, 

where the two first depositions have an off stoichiometry of 2-5 %. The subsequent depositions vary less, 

but if these films are to be used in applications, the variation must not be detrimental to physical 

properties. 

 

Figure 32: Piezoelectric coefficient as a function of sodium content in KNbO3:NaNbO3 solid solution. Reused with 

permission from John Wiley and Sons.[126]  

 

To investigate the reproducibility, 10 depositions with exactly the same parameters were performed 

(Figure 33). All these films were deposited using a 1:1 pulsing ratio between potassium- and sodium t-

butoxide. The first two data points are not shown in the figure, as these are off by ~5 and ~3 % 

respectively. Films 3-10 vary only slightly, and are all inside an average compositional distribution of less 

than 1 %. The x-axis distribution in the red dotted box in Figure 33 shows what would be the result of 

changing 1 out of 100 Na/K-pulses in the experiment, showing that the reproducibility is really on the 

limit of what is achievable by ALD. In conclusion, it is clear that not only can the composition be tuned, 

but the reproducibility is also very high.  

Depositing films with the right composition is crucial, but just as important is the structural properties. As 

previously mentioned, all films are x-ray amorphous as deposited. Crystallization of the films was studied 

in situ. The films were placed on a goniometer under a carbon dome that allows for variation of the 

temperature from ambient to 1100 °C, while continuously performing diffraction experiments. All the 

different systems exhibit very similar characteristics when heated, and this is exemplified by the NaNbO3-

system in Figure 34. 
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Figure 33: Uncertainty in the composition of 8 films deposited with exactly the same parameters. The x-axis shows 

compositional distribution in the flow direction on 2 cm long substrates as measured by XPS. The y-axis shows the 

uncertainty in the composition as a result of the XPS fitting model that is utilized. The red box shows how changing a 

single pulse out of 100 will theoretically affect the composition. 

 

 

Figure 34: Crystallization upon heating for the NaNbO3 on Si (100) thin film system. The films are amorphous as 

deposited, and start to crystallize at 500 °C. Heating to more than 700 °C is detrimental. 
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At temperatures below 500 °C the films remain amorphous, but at 500 °C they rapidly snap into a 

perovskite-like structure without any apparent ordering (on Si(100)-substrates). This structure is kept up 

to about 750 °C, where the intensity of the reflection rapidly drops. The composition of the films after 

heat treatment is unchanged for films that have been kept under 700 °C, but for higher temperatures the 

alkali metal content decreases. Thin films heated to more than 750 °C exhibit detrimental loss of alkali 

metal. This loss is attributed to vaporization of alkali metal oxide, which is found to be common in thin 

films of alkali metal complex oxides. This leads to an irreversible structural change that is accompanied 

by total loss of functional properties. In conclusion, it is important to limit the temperature for the post-

deposition annealing step to avoid loss of alkali metal.  

Selected NaNbO3 films were also deposited on single crystal substrates of LaAlO3 and SrTiO3 to facilitate 

a preferred orientation in the crystalline films. As for LiNbO3, LaAlO3-substrates give a preferred 

epitaxial relationship, with a strong (110)-ordering of the films on LaAlO3 (012)-substrates (Figure 35). 

Asymmetric reflections were studied to confirm in-plane orientation, the (11.12) NaNbO3-reflection is 

shown in Figure 36. The in-plane broadening is quite significant, indicating that in-plane orientation is not 

as stringent as the out-of-plane orientation. This broadening can also be a result of the relatively small 

crystallite size. It was, however, found that a NaNbO3|NaNbO3[110]||LaAlO3(012)|LaAlO3[012] epitaxial 

relationship is present. The three other corner-systems showed similar ordering of the perovskite units on 

LaAlO3-substrates. 

 

Figure 35: Symmetrical θ-2θ XRD showing the out-of-plane peaks for the thin film and the substrate. LAO-indices are 

given for a pseudocubic cell. 
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Figure 36, left: Reciprocal space map of the NaNbO3 (110) reflection below the (100) reflection of LaAlO3.  Note the split 

LaAlO3 reflection due to annealing. Right: Reciprocal space map of the NaNbO3 (11.12) reflection. 

 

To study the piezoelectric activity of the films, a film with 1:1 K:Na-ratio was deposited on platinum 

coated silicon and heat treated at 500 °C for 10 minutes. This film was subsequently tested for 

piezoresponse using PFM. PFM mapping clearly shows piezoactive domains with complex shape (Figure 

37), with some inclusions of small inactive domains that are believed to be Nb2O5. 

 

Figure 37: PFM map showing piezoresponse in complex domains in a K0.5Na0.5NbO3 thin film sample on Pt-Si. 
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The response in the active areas show domains with parallel response. Electric characterization was 

performed to measure any hysteresis, but this did not bear fruits. This can most probably be attributed to 

domain wall pinning, which is probably very strong in a system with incommensurate domain borders 

such as these. There is no doubt piezoelectric response in these films, but the current data is inconclusive 

whether the films are, indeed, ferroelectric. 

The next natural step here would be to deposit a narrow range of compositions around the MPB’s and try 

to measure changes in electric activity. This does, however, require a feasible way of measuring subtle 

changes in the electric characteristics. It also requires control of domain shape and interface morphology 

towards the Pt(111)-surface. This would be a very comprehensive study that would form an interesting 

research project on its own, and has not been included in this work. 

In conclusion, this work provides proof that epitaxial thin films of complex oxides containing alkali 

metals, with strong compositional control can be deposited by ALD. Proof-of-concept of deposition of the 

important KxNa1-xNbO3 and KTaxNb1-xO3 is provided, as well as deposition of the congruent corner-

systems.  
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6. Conclusion and Future Outlook 
 

One of the “rules” of modern science is that a research project often leads to more questions than answers. 

This is true for the work leading to this thesis as well, and in this final text I will try to contemplate on 

what has been achieved, and where to go from here. 

The deposition of LiNbO3 is the closest to a finalized work we have come in this work. Uniform films 

with a high degree of compositional, morphological and orientational control have been achieved, and the 

electric properties match those of previous reports on films deposited by other techniques. LiNbO3 thin 

films are already in use in a variety of applications, most importantly in devices utilizing surface acoustic 

waves. One of the challenges with the traditional techniques has been to uniformly deposit LiNbO3 on 

patterned substrates with high aspect ratio. This is an intrinsic advantage of the ALD technique 

(beautifully shown for example in growth of Ge2Sb2Te5 by Pore et al. [127]), and with this report of a 

LiNbO3 ALD route, this challenge can been overcome. 

There is still a way to go, however, before ALD LiNbO3 can find a place in mass production. The 

domains of the films reported here have a complex shape, and to obtain a uniform electric response the 

films must be poled. This process involves heating the material above the Curie temperature and cooling 

it down under perturbation of a strong electric field, effectively achieving uniform alignment of the polar 

domains. This has not been attempted in the current project, and is one of the issues that must be 

addressed. In addition, LiNbO3 thin films should ideally be deposited on more relevant substrates. These 

should be conductive substrates still facilitating epitaxial and oriented growth. A possible candidate is 

platinum (111), which is highly conductive and has a close lattice match (approximately 3.5 % mismatch). 

Furthermore, the films must be implemented on a working device. Industry will not be interested in using 

a relatively slow and expensive technique before a significant gain in functionality is achieved on a 

working prototype. Should this be successful, history has shown that mass-production of thin films is 

completely feasible, in particular due to the possibility of depositing on a large amount of devices 

simultaneously. Implementation of ALD HfO2 on Intel’s smallest transistor technology is one of the 

success stories showing that this is possible. 

Deposition of LiNbO3 by ALD has also lead to more indirect progress in the world of ALD and thin films 

in general. It is the first report of deposition of an epitaxial complex oxide containing an alkali metal. This 

paved the way for the continuation of the work leading to this thesis, but it also showed that ALD can be 

used to obtain conformal coatings of materials that have been previously unexplored. Another interesting 

lithium complex oxide, LiTaO3, was for example reported shortly after publication of the LiNbO3 process. 
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Doping of LiNbO3 should also be straightforward. This opens up the possibility to deposit films of 

technologically interesting electrooptical variants such as Fe:LiNbO3 and (Ce,Cu):LiNbO3 which are 

highly anticipated for use in non-volatile holographic devices.[128, 129] Lithium complex oxides by ALD are 

also finding their way into future high performance batteries.[130] 

The success of LiNbO3 deposition had us venture into complex oxides with other alkali metals. The 

reported route for deposition of sodium and potassium containing materials have no direct implications 

other than expanding the possibilities of ALD, but was a directed step towards deposition of anticipated 

functional complex oxides. A very important feature is the very low carbon contamination, which is often 

a challenge in chemical deposition routes. 

There is still work needed to better understand the mechanisms involved in deposition of sodium and 

potassium by ALD. The monovalency of the precursors does not hinder ALD growth, and exploring the 

basic chemistry and kinetics behind this is a pressing issue. It would be interesting to study the 

mechanism by in situ characterization, for example by using a quartz crystal microbalance, mass 

spectrometry or optical techniques such as FT-IR or quasi in-situ using reflection high energy electron 

diffraction. In combination with theoretical calculations and modelling, one might come closer to 

understanding the driving force behind the self-limiting growth. 

Sodium and potassium deposition is also still limited to one type of precursor, which might raise a 

compatibility issue when combined with other metals than what is done in this project. Work should be 

continued to investigate other precursors, as this will increase the amount of system to which sodium and 

potassium can be introduced. 

For this project, however, fundamental understanding of the deposition mechanism was not necessary to 

continue with obtaining functional complex oxides. Although the mechanism is still somewhat of a black-

box, it is obvious that we have provided a route for implementation of sodium and potassium in ALD thin 

films.  

The ultimate goal of this work was to show that thin films of functional complex oxide solid solutions 

such as KxNa1-xNbO3 and KTaxNb1-xO3 can be achieved by ALD, and that they exhibit functionality that 

can be used to replace environmentally hazardous materials. Combining the work on with LiNbO3-

deposition and Na/K-precursors paved the way for this, and as a first attempt the four corner-systems 

NaNbO3, NaTaO3, KNbO3 and KTaO3 was successfully deposited. While this was primarily a step 

towards obtaining the important mixed phases, it also has some intrinsic value. 



69 
 

All these four systems are technologically interesting, either in their congruent composition or doped with 

various metals to facilitate functional electrical, optical or chemical properties. This is furthermore the 

first complex oxides containing sodium or potassium that have been reported by ALD, and it goes to 

show that epitaxial films of alkali complex oxide compounds can be achieved. I can see many ways 

forward that would possibly lead to interesting materials systems. Lanthanide doped NaNbO3 on textured 

surfaces for high output water-splitting is one, electrooptical devices based on KNbO3 or doped versions 

of it is another.[47, 61, 63] 

In addition to the direct applications, a new field of functional engineering on interfaces has emerged over 

the last 10 years. The I-V-perovskites are theoretically predicted to facilitate exotic effects in interfaces 

with III-III- and II-IV-perovskites such as LaAlO3 or SrTiO3. In this thesis, we have provided proof that 

epitaxial integration of I-V-perovskites is definitely possible by ALD. With the thickness and 

conformality control the technique offers, ALD should find its place among the go-to deposition 

techniques when these systems are to be studied. The relatively low deposition temperature is also an 

advantage, avoiding alkali metal loss and cracking of substrates. 

KxNa1-xNbO3 was deposited as a proof-of-concept that quaternary complex oxides with functional 

properties can be obtained by ALD. In contrast to LiNbO3 there is still a long way to go before this can be 

considered an ultimate success. It is obvious that the composition can be fine-tuned, and that the 

reproducibility of the system is high. Piezoelectric response has been shown by PFM mapping, but more 

work needs to be done to quantitatively determine the quality of the functionality. Ferroelectricity has not 

been confirmed, and there is doubt towards what quenches this effect. Domain wall pinning has been 

mentioned, but it could just as well be an effect of the orientation or the way the electric response is 

probed. Tuning the composition around the morphotropic phase boundary and examining the variation of 

electric properties as a function of the composition is one very interesting way forward. When all this is 

sorted out, the system must, just as for LiNbO3, be tested in a device to see if its use is viable in mass-

production. 

Finally, proof-of-concept of deposition of the technologically important electrooptical KTaxNb1-xO3 is 

presented. The non-linear electrooptical coefficient of KTN is very high close to the Curie temperature of 

the ferroelectric to paraelectric phase transition (~300 K). The Tc can furthermore be tuned by varying the 

Ta:Nb-ratio, thus also tuning the temperature for the high electrooptical activity. This makes it a viable 

material for use in spatial light modulators or second-harmonic generation devices. Electrooptics were not 

in the core focus of this work, and KTN was not explored further in terms of electrooptical properties. 
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However, a facile route for depositing epitaxial thin films of KTN is highly anticipated, as bulk crystals 

are inherently difficult to synthesize, and come at a very high cost.  

It has nonetheless become clear that ALD definitely can be used to obtain the wanted phases, which was 

really what we set out to prove (Figure 38). 

 

Figure 38: A cartoon showing what has been achieved in this work, from LiNbO3 all the way to the important  

KxNa1-xNbO3 and KTa1-xNbxO3. Orange arrows point to future research and engineering. 
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