STRONG SOLUTIONS OF SDE’S WITH GENERALIZED DRIFT AND MULTIDIMENSIONAL FRACTIONAL BROWNIAN INITIAL NOISE

DAVID BAÑOS, SALVADOR ORTIZ-LATORRE, ANDREY PILIPENKO, AND FRANK PROSKE

ABSTRACT. In this paper we prove the existence of strong solutions to a SDE with a generalized drift driven by a multidimensional fractional Brownian motion for small Hurst parameters $H < \frac{1}{2}$. Here the generalized drift is given as the local time of the unknown solution process, which can be considered an extension of the concept of a skew Brownian motion to the case of fractional Brownian motion. Our approach for the construction of strong solutions is new and relies on techniques from Malliavin calculus combined with a “local time variational calculus” argument.

1. INTRODUCTION

Consider the d–dimensional stochastic differential equation (SDE)

$$X_t^x = x + \alpha L_t(X^x) \cdot 1_d + B^H_t, \quad 0 \leq t \leq T, \quad x \in \mathbb{R}^d,$$

(1.1)

where the driving noise B^H_t of this equation is a d–dimensional fractional Brownian motion, whose components are given by one-dimensional independent fractional Brownian motions with a Hurst parameter $H \in (0, 1/2)$, and where $\alpha \in \mathbb{R}$ is a constant and 1_d is the vector in \mathbb{R}^d with entries given by 1. Further, $L_t(X^x)$ is the (existing) local time at zero of X^x, which can be formally written as

$$L_t(X^x) = \int_0^t \delta_0(X^x_s)ds,$$

where δ_0 denotes the Dirac delta function in 0.

We also assume that B^H is defined on a complete probability space (Ω, \mathcal{A}, P).

We recall here for $d = 1$ and Hurst parameter $H \in (0, 1)$ that $B^H_t, 0 \leq t \leq T$ is a centered Gaussian process with covariance structure $R_H(t, s)$ given by

$$R_H(t, s) = E[B^H_t B^H_s] = \frac{1}{2}(s^{2H} + t^{2H} - |t - s|^{2H}).$$

For $H = \frac{1}{2}$ the fractional Brownian motion B^H coincides with the Brownian motion. Moreover, B^H has a version with $(H - \varepsilon)$–Hölder continuous paths for all $\varepsilon \in (0, H)$ and is the only stationary Gaussian process having the self-similarity property, that is

$$\{B^H_{\gamma t}\}_{t \geq 0} = \{\gamma^H B^H_t\}_{t \geq 0},$$

in law for all $\gamma > 0$. Finally, we mention that for $H \neq \frac{1}{2}$ the fractional Brownian motion is neither a Markov process nor a (weak) semimartingale. The latter properties however...
complicate the study of SDE’s driven by B^H and in fact call for the development of new construction techniques of solutions of such equations beyond the classical Markovian framework. For further information about the fractional Brownian motion, the reader may consult e.g. [42] and the references therein.

In this paper we want to analyze for small Hurst parameters $H \in (0, 1/2)$ strong solutions X^x to the SDE (1.1), that is solutions to (1.1), which are adapted to a \mathcal{P}-augmented filtration $\mathcal{F} = \{\mathcal{F}_t\}_{0 \leq t \leq T}$ generated by B^H. Let us mention here that solutions to (1.1) can be considered a generalization of the concept of a skew Brownian motion to the case of a fractional Brownian motion. The skew Brownian motion, which was first studied in the 1970ties in [23] and [50] and which has applications to e.g. astrophysics, geophysics or more recently to the simulation of diffusion processes with discontinuous coefficients (see e.g. [55], [29], [14]), is the a solution to the SDE

$$X^x_t = x + (2p - 1)L_t(X^x) + B_t, \quad 0 \leq t \leq T, \quad x \in \mathbb{R},$$

(1.2)

where B_t is a one-dimensional Brownian motion, $L_t(X^x)$ the local time at zero of X^x and p a parameter, which stands for the probability of positive excursions of X^x.

It was shown in [22] that the SDE (1.2) has a unique strong solution if and only if $p \in [0, 1]$. The approach used by the latter authors relies on a one-to-one transformation of (1.2) into a SDE without drift and the symmetric Itô-Tanaka formula. An extension of the latter result to SDE’s of the type

$$dX_t = \sigma(X_t)dB_t + \int_{\mathbb{R}} \nu(dx)L^x_t(X)$$

(1.3)

was given in the work [28] under fairly general conditions on the coefficient σ and the measure ν, where the author also proves that strong solutions to (1.3) can be obtained through a limit of sequences of solutions to classical Itô-SDE’s by using the comparison theorem.

We remark here that the Walsh Brownian motion [50] also provides a natural extension of the skew Brownian motion, which is a diffusion process on rays in \mathbb{R}^2 originating in zero and which exhibits the behaviour of a Brownian motion on each of those rays. A further generalization of the latter process is the spider martingale, which has been used in the literature for the study of Brownian filtrations [54].

Other important generalizations of the skew Brownian motion to the multidimensional case in connection with weak solutions were studied in [45] and [7]: Using PDE techniques, Portenko in [45] gives a construction of a unique solution process associated with an infinitesimal generator with a singular drift coefficient, which is concentrated on some smooth hypersurface.

On the other hand Bass and Chen in [7] analyze (unique) weak solutions of equations of the form

$$dX_t = dA_t + dB_t,$$

(1.4)

where B_t is a d-dimensional Brownian motion and A_t a process, which is obtained from limits of the form

$$\lim_{n \to \infty} \int_0^t b_n(X_s)ds$$
in the sense of probability uniformly over time t for functions $b_n : \mathbb{R}^d \rightarrow \mathbb{R}^d$. Here the ith components of A_t are bounded variation processes, which correspond to signed measures in the Kato class K_{d-1}. The method of the authors for the construction of unique weak solutions of such equations is based on the construction of a certain resolvent family on the space $C_b(\mathbb{R}^d)$ in connection with the properties of the Kato class K_{d-1}.

In this context we also mention the paper [17] on SDE’s with distributional drift coefficients. As for a general overview of various construction techniques with respect to the skew Brownian motion and related processes based e.g. on the theory of Dirichlet forms or martingale problems, the reader is referred to [30]. See also the book [43].

The objective of this paper is the construction of strong solutions to the multidimensional SDE (1.1) with fractional Brownian noise initial data for small Hurst parameters $H < \frac{1}{2}$, where the generalized drift is given by the local time of the unknown process. Note that in contrast to [22] in the case of a skew Brownian motion we obtain in this article the existence of strong solutions to (1.1) for all parameters $\alpha \in \mathbb{R}$.

Since the fractional Brownian motion is neither a Markov process nor a semimartingale, if $H \neq \frac{1}{2}$, the methods of the above mentioned authors cannot be (directly) used for the construction of strong solutions in our setting. In fact, our construction technique considerably differs from those in the literature in the Wiener case. More specifically, we approximate the Dirac delta function in zero by means of functions φ_{ε} for $\varepsilon \searrow 0$ given by

$$
\varphi_{\varepsilon}(x) = \varepsilon^{-\frac{d}{2}} \varphi(\varepsilon^{-\frac{1}{2}} x), x \in \mathbb{R}^d
$$

where φ is e.g. the $d-$dimensional standard Gaussian density. Then we prove that the sequence of strong solutions X^n_t to the SDE’s

$$
X^n_t = x + \int_0^t \alpha \varphi_{1/n}(X^n_s) \cdot 1ds + B^n_H
$$

converges in $L^2(\Omega)$, strongly to a solution to (1.1) for $n \rightarrow \infty$. In showing this we employ a compactness criterion for sets in $L^2(\Omega)$ based on Malliavin calculus combined with a "local time variational calculus" argument. See [6] for the existence of strong solutions of SDE’s driven by B^H, $H < \frac{1}{2}$, when e.g. the drift coefficients b belong to $L^1(\mathbb{R}^d) \cap L^\infty(\mathbb{R}^d)$ or see [37] in the Wiener case. We also refer to a series of other papers in the Wiener and Lévy process case and in the Hilbert space setting based on that approach: [35], [21], [48], [16], [4], [5].

Finally, we mention that the construction technique in this article may be also used for showing strong solutions of SDE’s with respect to generalized drifts in the sense of (1.4) based on Kato classes. The existence of strong solutions of such equations in the Wiener case is to the best of our knowledge still an open problem. See the work of Bass, Chen [7].

Our paper is organized as follows: In Section 2 we introduce the framework of our paper and recall in this context some basic facts from fractional calculus and Malliavin calculus for (fractional) Brownian noise. Further, in Section 3 we discuss an integration by parts formula based on a local time on a simplex, which we want to employ in connection with a compactness criterion from Malliavin calculus in Section 5. Section 4 is devoted to
the study of the local time of the fractional Brownian motion and its properties. Finally, in Section 5 we prove the existence of a strong solution to (1.1) by using the results of the previous sections.

2. FRAMEWORK

In this section we pass in review some theory on fractional calculus, Malliavin calculus for fractional Brownian noise and occupation measures which will be progressively used throughout the article. The reader might consult [34], [33] or [12] for a general theory on Malliavin calculus for Brownian motion and [42, Chapter 5] for fractional Brownian motion. For theory on occupation measures we refer to [18] or [24].

2.1. Fractional calculus. We start up here with some basic definitions and properties of fractional derivatives and integrals. For more information see [48] and [31].

Let \(a, b \in \mathbb{R} \) with \(a < b \). Let \(f \in L^p([a, b]) \) with \(p \geq 1 \) and \(\alpha > 0 \). Introduce the left- and right-sided Riemann-Liouville fractional integrals by

\[
I_a^\alpha f(x) = \frac{1}{\Gamma(\alpha)} \int_a^x (x - y)^{\alpha-1} f(y)dy
\]

and

\[
I_b^\alpha f(x) = \frac{1}{\Gamma(\alpha)} \int_x^b (y - x)^{\alpha-1} f(y)dy
\]

for almost all \(x \in [a, b] \) where \(\Gamma \) is the Gamma function.

Further, for a given integer \(p \geq 1 \), let \(I_a^\alpha L^p([a, b]) \) (resp. \(I_b^\alpha L^p([a, b]) \)) be the image of \(L^p([a, b]) \) of the operator \(I_a^\alpha \) (resp. \(I_b^\alpha \)). If \(f \in I_a^\alpha L^p([a, b]) \) (resp. \(f \in I_b^\alpha L^p([a, b]) \)) and \(0 < \alpha < 1 \) then define the left- and right-sided Riemann-Liouville fractional derivatives by

\[
D_a^\alpha f(x) = \frac{1}{\Gamma(1 - \alpha)} \frac{d}{dx} \int_a^x \frac{f(y)}{(x - y)^\alpha}dy
\]

and

\[
D_b^\alpha f(x) = \frac{1}{\Gamma(1 - \alpha)} \frac{d}{dx} \int_x^b \frac{f(y)}{(y - x)^\alpha}dy.
\]

The left- and right-sided derivatives of \(f \) defined as above can be represented as follows by

\[
D_a^\alpha f(x) = \frac{1}{\Gamma(1 - \alpha)} \left(\frac{f(x)}{(x - a)^\alpha} + \alpha \int_a^x \frac{f(x) - f(y)}{(x - y)^{\alpha+1}}dy \right)
\]

and

\[
D_b^\alpha f(x) = \frac{1}{\Gamma(1 - \alpha)} \left(\frac{f(x)}{(b - x)^\alpha} + \alpha \int_x^b \frac{f(x) - f(y)}{(y - x)^{\alpha+1}}dy \right).
\]

Finally, we see by construction that the following relations are valid

\[
I_a^\alpha (D_a^\alpha f) = f
\]

for all \(f \in I_a^\alpha L^p([a, b]) \) and

\[
D_a^\alpha (I_a^\alpha f) = f
\]

for all \(f \in L^p([a, b]) \) and similarly for \(I_b^\alpha \) and \(D_b^\alpha \).
2.2. **Shuffles.** Let \(m \) and \(n \) be integers. We denote by \(S(m, n) \) the set of **shuffle permutations**, i.e. the set of permutations \(\sigma : \{1, \ldots, m+n\} \to \{1, \ldots, m+n\} \) such that \(\sigma(1) < \cdots < \sigma(m) \) and \(\sigma(m+1) < \cdots < \sigma(m+n) \).

The \(m \)-dimensional simplex is defined as

\[
\Delta^m_{\theta,t} := \{ (s_1, \ldots, s_m) \in [0, T]^m : 0 < s_1 < \cdots < s_m < t \}.
\]

The product of two simplices then is given by the following union

\[
\Delta^m_{\theta,t} \times \Delta^n_{\theta,t} = \bigcup_{\sigma \in S(m,n)} \{ (w_1, \ldots, w_{m+n}) \in [0, T]^{m+n} : w_{(m+n)} < \cdots < w_1 < t \} \cup \mathcal{N},
\]

where the set \(\mathcal{N} \) has null Lebesgue measure. Thus, if \(f_i : [0, T] \to \mathbb{R}, \ i = 1, \ldots, m+n \) are integrable functions we obtain that

\[
\int_{\Delta^m_{\theta,t}} \prod_{j=1}^m f_j(s_j) ds_m \cdots ds_1 \int_{\Delta^n_{\theta,t}} \prod_{j=m+1}^{m+n} f_j(s_j) ds_{m+n} \cdots ds_{m+1} = \sum_{\sigma \in S(m,n)} \int_{\Delta^n_{\theta,t}} \prod_{j=1}^{m+n} f_{\sigma(j)}(w_j) dw_{m+n} \cdots dw_1. \tag{2.1}
\]

We hereby give a slight generalization of the above lemma, whose proof can be also found in [6]. This lemma will be used in Section 5. The reader may skip this lemma at first reading.

Lemma 2.1. Let \(n, p \) and \(k \) be integers, \(k \leq n \). Assume we have integrable functions \(f_j : [0, T] \to \mathbb{R}, \ j = 1, \ldots, n \) and \(g_i : [0, T] \to \mathbb{R}, \ i = 1, \ldots, p \). We may then write

\[
\int_{\Delta^m_{\theta,t}} f_1(s_1) \cdots f_k(s_k) \int_{\Delta^n_{\theta,t}} g_1(r_1) \cdots g_p(r_p) dr_p \cdots dr_1 f_{k+1}(s_{k+1}) \cdots f_n(s_n) ds_n \cdots ds_1 = \sum_{\sigma \in A_{n,p}} \int_{\Delta^n_{\theta,t}} h^\sigma_1(w_1) \cdots h^\sigma_p(w_{n+p}) dw_{n+p} \cdots dw_1,
\]

where \(h^\sigma_1 \in \{ f_j, g_i : 1 \leq j \leq n, 1 \leq i \leq p \} \). Here \(A_{n,p} \) is a subset of permutations of \(\{1, \ldots, n+p\} \) such that \(\# A_{n,p} \leq C^{n+p} \) for a constant \(C \geq 1 \), and we use the definition \(s_0 = \theta \).

Proof. The proof of the result is given by induction on \(n \). For \(n = 1 \) and \(k = 0 \) the result is trivial. For \(k = 1 \) we have

\[
\int_{\theta}^t f_1(s_1) \int_{\Delta^p_{\theta,s_1}} g_1(r_1) \cdots g_p(r_p) dr_p \cdots dr_1 ds_1 = \int_{\Delta^{p+1}_{\theta,t}} f_1(w_1) g_1(w_2) \cdots g_p(w_{p+1}) dw_{p+1} \cdots dw_1,
\]

where we have put \(w_1 = s_1, w_2 = r_1, \ldots, w_{p+1} = r_p \).

Assume the result holds for \(n \) and let us show that this implies that the result is true for \(n+1 \). Either \(k = 0, 1 \) or \(2 \leq k \leq n+1 \). For \(k = 0 \) the result is trivial. For \(k = 1 \) we
Remark 2.2. We remark that the set \(A_{n,p} \) in the above Lemma also depends on \(k \) but we shall not make use of this fact.

2.3. Fractional Brownian motion. Denote by \(B^H = \{ B^H_t, t \in [0, T] \} \) a \(d \)-dimensional fractional Brownian motion with Hurst parameter \(H \in (0, \frac{1}{2}) \). So \(B^H \) is a centered Gaussian process with covariance structure

\[
(R_H(t, s))_{i,j} := E[B^H_{t,i} B^H_{s,j}] = \delta_{i,j} \frac{1}{2} (t^{2H} + s^{2H} - |t-s|^{2H}), \quad i, j = 1, \ldots, d,
\]

where \(\delta_{ij} \) is one, if \(i = j \), or zero else. Observe that \(E[|B^H_t - B^H_s|^2] = d|t-s|^{2H} \) and hence \(B^H \) has stationary increments and Hölder continuous trajectories of index \(H - \varepsilon \) for all \(\varepsilon \in (0, H) \). Observe that the increments of \(B^H \), \(H \in (0, \frac{1}{2}) \) are not independent. As a matter of fact, this process does not satisfy the Markov property, either. Another obstacle one is faced with is that \(B^H \) is not a semimartingale, see e.g. [42, Proposition 5.1.1].

We give an abridged survey on how to construct fractional Brownian motion via an isometry. We will do it in one dimension inasmuch as we will treat the multidimensional case componentwise. See [42] for further details.

Let \(\mathcal{E} \) be the set of step functions on \([0, T]\) and let \(\mathcal{H} \) be the Hilbert space given by the closure of \(\mathcal{E} \) with respect to the inner product

\[
\langle 1_{[0,t]}, 1_{[0,s]} \rangle_{\mathcal{H}} = R_H(t,s).
\]
The mapping \(1_{[0,t]} \mapsto B_t\) has an extension to an isometry between \(\mathcal{H}\) and the Gaussian subspace of \(L^2(\Omega)\) associated with \(B^H\). We denote the isometry by \(\varphi \mapsto B^H(\varphi)\). Let us recall the following result (see [42, Proposition 5.1.3]) which gives an integral representation of \(R_H(t, s)\) when \(H < 1/2\):

Proposition 2.3. Let \(H < 1/2\). The kernel

\[
K_H(t, s) = c_H \left[\left(\frac{t}{s} \right)^{H-\frac{1}{2}} (t-s)^{H-\frac{1}{2}} + \left(\frac{1}{2} - H \right) s^{\frac{1}{2}-H} \int_s^t u^{H-\frac{1}{2}} (u-s)^{H-\frac{1}{2}} du \right],
\]

where \(c_H = \sqrt{\frac{2H}{(1-2H)(1-2H+1/2)}}\) being \(\beta\) the Beta function, satisfies

\[
R_H(t, s) = \int_0^{t\wedge s} K_H(t, u)K_H(s, u)du. \quad (2.2)
\]

The kernel \(K_H\) also has the following representation by means of fractional derivatives

\[
K_H(t, s) = c_H \Gamma \left(H + \frac{1}{2} \right) s^{\frac{1}{2}-H} \left(D^{\frac{1}{2}-H}_{t^{-}} u^{H-\frac{1}{2}} \right)(s).
\]

Consider now the linear operator \(K^*_H : \mathcal{E} \to L^2([0, T])\) defined by

\[
(K^*_H\varphi)(s) = K_H(T, s)\varphi(s) + \int_s^T (\varphi(t) - \varphi(s)) \frac{\partial K_H}{\partial t}(t, s)dt
\]

for every \(\varphi \in \mathcal{E}\). We see that \((K^*_H1_{[0,t]})(s) = K_H(t, s)1_{[0,t]}(s)\), then from this fact and (2.2) one can conclude that \(K^*_H\) is an isometry between \(\mathcal{E}\) and \(L^2([0, T])\) which extends to the Hilbert space \(\mathcal{H}\). See e.g. [11] and [1] and the references therein.

For a given \(\varphi \in \mathcal{H}\) one proves that \(K^*_H\) can be represented in terms of fractional derivatives in the following ways

\[
(K^*_H\varphi)(s) = c_H \Gamma \left(H + \frac{1}{2} \right) s^{\frac{1}{2}-H} \left(D^{\frac{1}{2}-H}_{T^{-}} \varphi(u) \right)(s)
\]

and

\[
(K^*_H\varphi)(s) = c_H \Gamma \left(H + \frac{1}{2} \right) \left(D^{\frac{1}{2}-H}_{T^{-}} \varphi(s) \right)(s)
\]

\[
+ c_H \left(\frac{1}{2} - H \right) \int_s^T \varphi(t)(t-s)^{H-\frac{1}{2}} \left(1 - \left(\frac{t}{s} \right)^{H-\frac{1}{2}} \right) dt.
\]

One finds that \(\mathcal{H} = L^2_{T^{-}}(L^2)\) (see [11] and [1, Proposition 6]).

Using the fact that \(K^*_H\) is an isometry from \(\mathcal{H}\) into \(L^2([0, T])\) the \(d\)-dimensional process \(W = \{W_t, t \in [0, T]\}\) defined by

\[
W_t := B^H((K^*_H)^{-1}(1_{[0,t]})) \quad (2.3)
\]

is a Wiener process and the process \(B^H\) can be represented as follows

\[
B^H_t = \int_0^t K_H(t, s)dW_s, \quad (2.4)
\]

see [1].
We also need to introduce the concept of fractional Brownian motion associated with a filtration.

Definition 2.4. Let \(\mathcal{G} = \{ \mathcal{G}_t \}_{t \in [0,T]} \) be a right-continuous increasing family of \(\sigma \)-algebras on \((\Omega, \mathcal{F}, P) \) such that \(\mathcal{G}_0 \) contains the null sets. A fractional Brownian motion \(B^H \) is called a \(\mathcal{G} \)-fractional Brownian motion if the process \(W \) defined by (2.3) is a \(\mathcal{G} \)-Brownian motion.

In what follows, we will denote by \(W \) a standard Wiener process on a given probability space \((\Omega, \mathcal{A}, P) \) equipped with the natural filtration \(\mathcal{F} = \{ \mathcal{F}_t \}_{t \in [0,T]} \) which is generated by \(W \) and augmented by all \(P \)-null sets, we shall denote by \(B := B^H \) the fractional Brownian motion with Hurst parameter \(H \in (0,1/2) \) given by the representation (2.4).

In this paper, we want to make use of a version of Girsanov’s theorem for fractional Brownian motion which is due to [11, Theorem 4.9]. Here we recall the version given in [40, Theorem 2]. However, we first need the definition of an isomorphism \(\tilde{K}_H \) from \(L^2([0,T]) \) onto \(I_{0+}^{H+\frac{1}{2}}(L^2) \) associated with the kernel \(K_H(t,s) \) in terms of the fractional integrals as follows, see [11, Theorem 2.1]

\[
(K_H \varphi)(s) = \int_{0+}^{s} s^{-\frac{1}{2}-H} I_{0+}^{\frac{1}{2}-H} \varphi, \quad \varphi \in L^2([0,T]).
\]

It follows from this and the properties of the Riemann-Liouville fractional integrals and derivatives that the inverse of \(K_H \) takes the form

\[
(K_H^{-1} \varphi)(s) = I_{0+}^{\frac{1}{2}-H} I_{0+}^{\frac{1}{2}-H} \varphi(s), \quad \varphi \in I_{0+}^{H+\frac{1}{2}}(L^2).
\]

The latter implies that if \(\varphi \) is absolutely continuous, see [40], one has

\[
(K_H^{-1} \varphi)(s) = s^{\frac{1}{2}-H} I_{0+}^{\frac{1}{2}-H} I_{0+}^{\frac{1}{2}-H} \varphi(s). \tag{2.5}
\]

Theorem 2.5 (Girsanov’s theorem for fBm). Let \(u = \{ u_t, t \in [0,T] \} \) be an \(\mathcal{F} \)-adapted process with integrable trajectories and set \(\tilde{B}_t^H = B_t^H + \int_0^T u_s ds, \quad t \in [0,T] \). Assume that

(i) \(\int_0^T u_s ds \in I_{0+}^{H+\frac{1}{2}}(L^2([0,T])), \ P \)-a.s.

(ii) \(E[\xi_T] = 1 \) where

\[
\xi_T := \exp \left\{ -\int_0^T K_H^{-1} \left(\int_0^s u_r dr \right) \, dW_r - \frac{1}{2} \int_0^T K_H^{-1} \left(\int_0^s u_r dr \right)^2 \, ds \right\}.
\]

Then the shifted process \(\tilde{B}_t^H \) is an \(\mathcal{F} \)-fractional Brownian motion with Hurst parameter \(H \) under the new probability \(\tilde{P} \) defined by \(\frac{d\tilde{P}}{dP} = \xi_T \).

Remark 2.6. As for the multidimensional case, define

\[
(K_H \varphi)(s) := ((K_H \varphi_1)(s), \ldots, (K_H \varphi_d)(s))^*, \quad \varphi \in L^2([0,T]; \mathbb{R}^d),
\]

where * denotes transposition. Similarly for \(K_H^{-1} \) and \(K_H^2 \).

In this paper, we will also employ a crucial property of the fractional Brownian motion which was shown by [44] for general Gaussian vector fields. The latter property will be a helpful substitute for the lack of independent increments of the underlying noise.
Let \(m \in \mathbb{N} \) and \(0 =: t_0 < t_1 < \cdots < t_m < T \). Then for all \(\xi_1, \ldots, \xi_m \in \mathbb{R}^d \) there exists a positive finite constant \(C > 0 \) (not depending on \(m \)) such that
\[
\text{Var} \left[\sum_{j=1}^{m} \langle \xi_j, B_{t_j} - B_{t_{j-1}} \rangle_{\mathbb{R}^d} \right] \geq C \sum_{j=1}^{m} |\xi_j|^2 \text{Var} \left[|B_{t_j} - B_{t_{j-1}}|^2 \right].
\]
(2.6)

The above property is referred to in literature as the (strong) local non-determinism property of the fractional Brownian motion. The reader may consult \cite{44} or \cite{52} for more information on this property. A stronger version of local non-determinism is also satisfied by the fractional Brownian motion. There exists a constant \(K > 0 \), depending only on \(H \) and \(T \), such that for any \(t \in [0, T] \), \(0 < r < t \) and for \(i = 1, \ldots, d \),
\[
\text{Var} \left[B_t^{H,i} \mid \{ B_s^{H,i} : |t - s| \geq r \} \right] \geq K r^{2H}.
\]
(2.7)

3. AN INTEGRATION BY PARTS FORMULA

In this section we recall an integration by parts formula, which is essentially based on the local time of the Gaussian process \(B^H \). The whole content as well as the proofs can be found in \cite{6}.

Let \(m \) be an integer and let \(f : [0, T]^m \times (\mathbb{R}^d)^m \to \mathbb{R} \) be a function of the form
\[
f(s, z) = \prod_{j=1}^{m} f_j(s_j, z_j), \quad s = (s_1, \ldots, s_m) \in [0, T]^m, \quad z = (z_1, \ldots, z_m) \in (\mathbb{R}^d)^m,
\]
(3.1)
where \(f_j : [0, T] \times \mathbb{R}^d \to \mathbb{R}, \ j = 1, \ldots, m \) are smooth functions with compact support. Further, let \(\varphi : [0, T]^m \to \mathbb{R} \) be a function of the form
\[
\varphi(s) = \prod_{j=1}^{m} \varphi_j(s_j), \quad s \in [0, T]^m,
\]
(3.2)
where \(\varphi_j : [0, T] \to \mathbb{R}, \ j = 1, \ldots, m \) are integrable functions.

Next, denote by \(\alpha_j \) a multiindex and \(D^{\alpha_j} \) its corresponding differential operator. For \(\alpha = (\alpha_1, \ldots, \alpha_m) \) considered an element of \(\mathbb{N}^{3d \times m} \) so that \(|\alpha| := \sum_{j=1}^{m} \sum_{i=1}^{d} \alpha_j^{(i)} \), we write
\[
D^{\alpha} f(s, z) = \prod_{j=1}^{m} D^{\alpha_j} f_j(s_j, z_j).
\]

In this section we aim at deriving an integration by parts formula of the form
\[
\int_{\Delta_{\theta,t}^m} D^{\alpha} f(s, B_s) ds = \int_{(\mathbb{R}^d)^m} \Lambda^f_{\alpha}(\theta, t, z) dz,
\]
(3.3)
for a suitable random field \(\Lambda^f_{\alpha} \), where \(\Delta_{\theta,t}^m \) is the \(m \)-dimensional simplex as defined in Section 2.2 and \(B_s = (B_{s_1}, \ldots, B_{s_m}) \) on that simplex. More specifically, we have that
\[
\Lambda^f_{\alpha}(\theta, t, z) = (2\pi)^{-dm} \int_{(\mathbb{R}^d)^m} \prod_{j=1}^{m} f_j(s_j, z_j) (-iu_j)^{\alpha_j} \exp\{-i\langle u_j, B_{s_j} - z_j \rangle\} ds du.
\]
(3.4)
Let us start by defining $\Lambda^f_\alpha(\theta, t, z)$ as above and show that it is a well-defined element of $L^2(\Omega)$.

To this end, we need the following notation: Given $(s, z) = (s_1, \ldots, s_m, z_1, \ldots, z_m) \in [0, T]^m \times (\mathbb{R}^d)^m$ and a shuffle $\sigma \in S(m, m)$ we write

$$f_\sigma(s, z) := \prod_{j=1}^{2m} f_{[\sigma(j)]}(s_j, z_{[\sigma(j)]})$$

and

$$\kappa_\sigma(s) := \prod_{j=1}^{2m} \kappa_{[\sigma(j)]}(s_j),$$

where $[j]$ is equal to j if $1 \leq j \leq m$ and $j - m$ if $m + 1 \leq j \leq 2m$.

For integers $k \geq 0$ let us define the expressions

$$\Psi^f_k(\theta, t, z) := \sum_{\sigma \in S(m, m)} \sum_{\beta \in \{H^d(2k+1), H^d\}^{2m}} \int_{\Delta^{2m}(\theta, t)} |f_\sigma(s, z)| \prod_{j=1}^{2m} |s_j - s_{j-1}|^{-\beta_j} ds$$

respectively,

$$\Psi^\kappa_k(\theta, t) = \sum_{\sigma \in S(m, m)} \sum_{\beta \in \{H^d(2k+1), H^d\}^{2m}} \int_{\Delta^{2m}(\theta, t)} |\kappa_\sigma(s)| \prod_{j=1}^{2m} |s_j - s_{j-1}|^{-\beta_j} ds.$$

Here, $\beta = (\beta_1, \ldots, \beta_{2m})$.

Theorem 3.1. Assume α is such that $\alpha_j^{(l)} \leq k$ for all $j = 1, \ldots, m$ and $l = 1, \ldots, d$ and that $\Psi^f_k(\theta, t, z), \Psi^\kappa_k(\theta, t) < \infty$. Then, $\Lambda^f_\alpha(\theta, t, z)$ as in (3.4) is a random variable in $L^2(\Omega)$ and there exists a universal constant $C = C(T, k) > 0$ such that

$$E[||\Lambda^f_\alpha(\theta, t, z)||^2] \leq C^m \Psi^f_k(\theta, t, z). \quad (3.5)$$

Moreover, we have

$$E\left[\int_{[\mathbb{R}^d]^m} \Delta^{(\alpha)}_\kappa(\theta, t, z) dz \right] \leq C^m Z \prod_{j=1}^{m} \|f_j\|_{L^1([\mathbb{R}^d, L^\infty([0, T], \mathbb{R}))} \Psi^\kappa_k(\theta, t)^{1/2}. \quad (3.6)$$

Proof. See [6, Theorem 3.1]. □

The next result is a key estimate which shows why fractional Brownian motion regularises (1.1). It rests in fact on the earlier integration by parts formula. This estimate is given in more explicit terms when the function κ_j is chosen to be

$$\kappa_j(s) = (K_H(s, \theta) - K_H(s, \theta'))^{\epsilon_j}, \quad 0 < s < t$$

and

$$\kappa_j(s) = (K_H(s, \theta))^{\epsilon_j}, \quad 0 < s < t$$

for every $j = 1, \ldots, m$ with $(\epsilon_1, \ldots, \epsilon_m) \in \{0, 1\}^m$. It will be made clear why these choices are important in the forthcoming section. This estimate is computed in [6, Proposition 3.3 and Proposition 3.4] and the corresponding proofs can be found there.
Proposition 3.2. Let B^H, $H \in (0,1/2)$, be a standard d-dimensional fractional Brownian motion and functions f and κ as in (3.1), respectively as in (3.2). Let $\theta', \theta, t \in [0,T]$, $\theta' < \theta < t$ and

$$\kappa_j(s) = (K_H(s, \theta) - K_H(s, \theta'))^{\epsilon_j}, \quad \theta < s < t$$

for every $j = 1, \ldots, m$ with $(\epsilon_1, \ldots, \epsilon_m) \in \{0,1\}^m$ for $\theta, \theta' \in [0,T]$ with $\theta' < \theta$. Let $\alpha \in (\mathbb{N}_0^d)^m$ be an multi-index such that $\alpha_i^{(j)} \leq k$ for all $i = 1, \ldots, m$ and $j = 1, \ldots, d$. If

$$H < \frac{1}{2(d(2k+1) - 1)},$$

then there exists a universal constant $C > 0$ (independent of m, $\{f_j\}_{j=1}^m$ and α) such that for any $\theta, t \in [0,T]$ with $\theta < t$ we have

$$|E \left[\int_{\Delta^m_{\theta,t}} \prod_{j=1}^m D^{\alpha_j} f_j(s_j, B^H_{s_j}) \kappa_j(s_j) \right] ds | \leq C^m \prod_{j=1}^m \| f_j \|_{L^1([0,T], \mathbb{R})} \left(\frac{\theta - \theta'}{\theta' \theta} \right)^{\gamma} \sum_{j=1}^m \epsilon_j \theta^{H - \frac{1}{2} - \gamma} \sum_{j=1}^m \epsilon_j$$

$$\times \sum_{\beta \in \{H(d(2k+1)), Hd\}^{2m}} \Gamma \left(-\sum_{j=1}^{2m} \beta_j + 2 \left(H - \frac{1}{2} - \gamma \right) \sum_{j=1}^m \epsilon_j + 2m \right)^{1/2}$$

for $\gamma \in (0, H)$.

Proof. See [6, Proposition 3.3].

Proposition 3.3. Let B^H, $H \in (0,1/2)$, be a standard d-dimensional fractional Brownian motion and functions f and κ as in (3.1), respectively as in (3.2). Let $\theta, t \in [0,T]$, $\theta < t$ and

$$\kappa_j(s) = (K_H(s, \theta))^{\epsilon_j}, \quad \theta < s < t$$

for every $j = 1, \ldots, m$ with $(\epsilon_1, \ldots, \epsilon_m) \in \{0,1\}^m$. Let $\alpha \in (\mathbb{N}_0^d)^m$ be an multi-index such that $\alpha_i^{(j)} \leq k$ for all $i = 1, \ldots, m$ and $j = 1, \ldots, d$. If

$$H < \frac{1}{2(d(2k+1) - 1)},$$

then there exists a universal constant $C > 0$ (independent of m, $\{f_j\}_{j=1}^m$ and α) such that for any $\theta, t \in [0,T]$ with $\theta < t$ we have

$$|E \left[\int_{\Delta^m_{\theta,t}} \prod_{j=1}^m D^{\alpha_j} f_j(s_j, B^H_{s_j}) \kappa_j(s_j) \right] ds | \leq C^m \prod_{j=1}^m \| f_j \|_{L^1([0,T], \mathbb{R})} \left(\frac{\theta - \theta'}{\theta' \theta} \right)^{\gamma} \sum_{j=1}^m \epsilon_j \theta^{H - \frac{1}{2} - \gamma} \sum_{j=1}^m \epsilon_j$$

$$\times \sum_{\beta \in \{H(d(2k+1)), Hd\}^{2m}} \Gamma \left(-\sum_{j=1}^{2m} \beta_j + 2 \left(H - \frac{1}{2} - \gamma \right) \sum_{j=1}^m \epsilon_j + 2m \right)^{1/2}$$

for $\gamma \in (0, H)$.
then there exists a universal constant $C > 0$ (independent of m, $\{f_i\}_{i=1}^m$, and α) such that for any $\theta, t \in [0, T]$ with $\theta < t$ we have

$$
\left| E \left[\int_{\Delta_{\theta,t}^m} \left(\prod_{j=1}^m D^{\alpha_j} f_j(s_j, B_{s_j}^H) \kappa_j(s_j) \right) ds \right] \right|
\leq C^m \prod_{j=1}^m \| f_j \|_{L^1(\mathbb{R}^d; L^\infty([0,T], \mathbb{R}))} \theta^{(H-\frac{1}{2}) \sum_{j=1}^m \varepsilon_j} \, \prod_{\beta \in \{Hd(2k+1), Hd\}^{2m}} \sum_{j=1}^{2m} \beta_j \left(H - \frac{1}{2} \right) \sum_{j=1}^m \varepsilon_j + m)^{1/2}.
$$

(3.10)

Proof. See [6, Proposition 3.4].

\[\square \]

4. LOCAL TIMES OF A FRACTIONAL BROWNIAN MOTION AND PROPERTIES

One can define, heuristically, the local time $L^x_t(B^H)$ of B^H at $x \in \mathbb{R}^d$ by

$$
L^x_t(B^H) = \int_0^t \delta_x(B^H_s)ds.
$$

It is known that $L^x_t(B^H)$ exists and is jointly continuous in (t, x) as long as $Hd < 1$. See e.g. [44] and the references therein. Moreover, by the self-similarity property of the fBm one has that $L^{x}_t(B^H)$ law $= t^{1-Hd} \Lambda^{x/t}L^0_t(B^H)$ and, in particular

$$
L^0_t(B^H) \text{ law } \equiv t^{1-Hd}L^0_1(B^H).
$$

The rigorous construction of $L^x_t(B^H)$ involves approximating the Dirac delta function by an approximate unity. It is convenient to consider the Gaussian approximation of unity

$$
\varphi_{\varepsilon}(x) = \varepsilon^{-\frac{d}{2}} \varphi \left(\varepsilon^{-\frac{1}{2}} x \right), \quad \varepsilon > 0,
$$

for every $x \in \mathbb{R}^d$ where φ is the d-dimensional standard Gaussian density. Then, we can define the smoothed local times

$$
L^x_t(B^H, \varepsilon) = \int_0^t \varphi_{\varepsilon}(B_{s}^H - x)ds
$$

and construct $L^x_t(B^H)$ as the limit when ε tends to zero in $L^2(\Omega)$. Note that, using the Fourier transform, one can write $\varphi_{\varepsilon}(x)$ as follows

$$
\varphi_{\varepsilon}(x) = \frac{1}{(2\pi)^d} \int_{\mathbb{R}^d} \exp \left(i \langle \xi, x \rangle_{\mathbb{R}^d} - \varepsilon \frac{\| \xi \|^2_{\mathbb{R}^d}}{2} \right) d\xi.
$$

The previous expression allows us to write

$$
L^x_t(B^H, \varepsilon) = \frac{1}{(2\pi)^d} \int_0^t \int_{\mathbb{R}^d} \exp \left(i \langle \xi, B_{s}^H - x \rangle_{\mathbb{R}^d} - \varepsilon \frac{\| \xi \|^2_{\mathbb{R}^d}}{2} \right) d\xi ds,
$$
that exists, which yields the convergence in L^∞ where $\bar{\xi}$ and ξ. Hence, by dominated convergence, we can conclude that $E_x \left(\frac{1}{2} \sum_{j=1}^m \langle \xi_j, B^{H,j}_t \rangle_{\mathbb{R}^d} \right)$

\[\times \exp \left(- \sum_{j=1}^m \left(i \langle \xi_j, x \rangle_{\mathbb{R}^d} + \frac{\epsilon \langle \xi_j, x \rangle_{\mathbb{R}^d}^2}{2} \right) \right) \, d\bar{\xi} \, ds, \quad (4.1) \]

where $\bar{\xi} = (\xi_1, \ldots, \xi_m) = (\xi^1, \ldots, \xi^1_1, \ldots, \xi^1_m)$ and $s = (s_1, \ldots, s_m) \in T_m(0, t) = \{0 \leq s_1 < s_2 < \cdots < s \leq t\}$. Next, note that

\[E_x \left(i \sum_{j=1}^m \langle \xi_j, B^{H,j}_s \rangle_{\mathbb{R}^d} \right) = \exp \left(- \frac{1}{2} \mathrm{Var} \left(\sum_{j=1}^m \sum_{k=1}^d \xi^{k,j}_s B^{H,k,s}_j \right) \right) \]

where $\xi^k = (\xi^k_1, \ldots, \xi^k_m)$ and $Q(s)$ is the covariance matrix of the vector $(B^{H,1}_{s_1}, \ldots, B^{H,1}_{s_m})$. Rearranging the terms in the second exponential in equation (4.1) we can write

\[E_x \left(\frac{1}{2} \sum_{k=1}^d \langle \xi^k, Q(s) \xi^k \rangle_{\mathbb{R}^m} \right) \]

where $\xi^k = (\xi^k_1, \ldots, \xi^k_m)$ and $Q(s)$ is the covariance matrix of the vector $(B^{H,1}_{s_1}, \ldots, B^{H,1}_{s_m})$. Rearranging the terms in the second exponential in equation (4.1) we can write

\[E_x \left(\frac{1}{2} \sum_{k=1}^d \langle \xi^k, Q(s) \xi^k \rangle_{\mathbb{R}^m} + \frac{\epsilon \langle \xi^k, x \rangle_{\mathbb{R}^d}^2}{2} \right) \]

Hence, by dominated convergence, we can conclude that $E_x \left(\frac{1}{2} \sum_{j=1}^m \langle \xi_j, B^{H,j}_t \rangle_{\mathbb{R}^d} \right)$ converges when ϵ tends to zero as long as $\alpha_m < \infty$. If $\alpha_2 < \infty$, then one can similarly show that

\[\lim_{\epsilon_1, \epsilon_2 \to 0^+} E_x \left(\frac{1}{2} \sum_{j=1}^m \langle \xi_j, B^{H,j}_t \rangle_{\mathbb{R}^d} \right) \]

exists, which yields the convergence in $L^2(\Omega)$ of $L^\infty_t \left(B^{H,j}_t \right)$. If $\alpha_m < \infty$ for all $m \geq 1$ one can deduce the convergence in $L^p(\Omega), p \geq 2$ of $L^\infty_t \left(B^{H,j}_t \right)$. The following well known result can be found in Anderson [3, p. 42].
Lemma 4.1. Let \((X_1, \ldots, X_m)\) be a mean-zero Gaussian random vector. Then,
\[\det (\text{Cov} [X_1, \ldots, X_m]) = \text{Var} [X_1] \text{Var} [X_2 | X_1] \cdots \text{Var} [X_m | X_{m-1}, \ldots, X_1]. \]

Another useful elementary result is:

Lemma 4.2. Let \(X\) be a square integrable random variable and \(\mathcal{G}_1 \subset \mathcal{G}_2\) be two \(\sigma\)-algebras. Then,
\[\text{Var} [X|\mathcal{G}_1] \geq \text{Var} [X|\mathcal{G}_2]. \]

Combining Lemmas 4.1, 4.2 and (2.7) we get that
\[
\begin{align*}
\det Q(s) &= \text{Var} [B_{s_1}^{H,1}] \text{Var} [B_{s_2}^{H,1}B_{s_1}^{H,1}] \cdots \text{Var} [B_{s_m}^{H,1}B_{s_{m-1}}^{H,1}, \ldots, B_{s_1}^{H,1}] \\
&\geq s_1^{2H} \text{Var} [B_{s_2}^{H,1}|\mathcal{F}_{s_1}] \cdots \text{Var} [B_{s_m}^{H,1}|\mathcal{F}_{s_{m-1}}] \\
&\geq K^{m-1} s_1^{2H} (s_2 - s_1)^{-H} \cdots (s_m - s_{m-1})^{2H}
\end{align*}
\]

and, therefore,
\[
\int_{T_m(0,t)} (\det Q(s))^{-\frac{d}{2}} ds \leq K^{\frac{d}{2}(1-m)} \int_{T_m(0,t)} s_1^{-Hd} (s_2 - s_1)^{-Hd} \cdots (s_m - s_{m-1})^{-Hd} ds \\
= K^{\frac{d}{2}(1-m)} \left(\prod_{j=1}^{m} \mathcal{B} (j (1 - Hd), 1 - Hd) \right) t^{m(1-Hd)} \leq \infty,
\]

if \(Hd < 1\). Finally, we have proved the bound
\[
\mathbb{E} \left[L_\xi^x (B^H)^m \right] \leq \frac{m!}{(2\pi)^{\frac{d}{2}}} K^{\frac{d}{2}(1-m)} \left(\prod_{j=1}^{m} \mathcal{B} (j (1 - Hd), 1 - Hd) \right) t^{m(1-Hd)} \tag{4.2}
\]

Remark 4.3. We just have checked that if \(Hd < 1\) then \(L_\xi^x (B^H)\) exists and has moments of all orders. By checking that \(\sum_{m \geq 1} \frac{a_m}{m} < \infty\), one can deduce that \(L_\xi^x (B^H)\) has exponential moments or all orders. Furthermore, one can also show the existence of exponential moments of \(L_\xi^x (B^H)^2\) by doing similar computations as before. However, one may also use Theorem 4.4 below to show that the exponential moments are finite.

Chen et al. [8] proved the following result on large deviations for local times of fractional Brownian motion, which we won’t use in our paper but which is of independent interest:

Theorem 4.4. Let \(B^H\) be a standard fractional Brownian motion with Hurst index \(H\) such that \(Hd < 1\). Then the limit
\[
\lim_{a \to \infty} a^{-\frac{1}{\pi d}} \log P \left(L^0_\xi (B^H) \geq a \right) = -\theta(H, d),
\]

exists and \(\theta(H, d)\) satisfies the following bounds
\[
\left(\frac{\pi c_H^2}{H} \right)^{\frac{1}{2}} \theta_0(Hd) \leq \theta(H, d) \leq (2\pi)^{\frac{1}{2}} \theta_0(Hd),
\]

where \(c_H\) is given by and
\[\theta_0(\lambda) = \lambda \left(\frac{(1 - \lambda)^{1-\lambda}}{\Gamma(1-\lambda)} \right)^{1/\lambda}. \]
5. Existence of strong solutions

As outlined in the introduction the object of study is a generalized SDE with additive d-dimensional fractional Brownian noise B^H with Hurst parameter $H \in (0, 1/2)$, i.e.

$$X^x_t = x + \alpha L_t(X^x) \cdot 1_d + B^H_t, \quad 0 \leq t \leq T, \quad x \in \mathbb{R}^d,$$

where $L_t(X^x), t \in [0, T]$ is a stochastic process of bounded variation which arises from taking the limit

$$L_t(X^x) := \lim_{\varepsilon \to 0} \int_0^t \varphi_\varepsilon(X^x_s)ds,$$

in probability, where φ_ε are probability densities approximating δ_0, denoting δ_0 the Dirac delta generalized function with total mass at 0. We will consider

$$\varphi_\varepsilon(x) = \varepsilon^{-d/2} \varphi(\varepsilon^{-1/2}x), \quad \varepsilon > 0,$$

where φ is the d-dimensional standard Gaussian density function.

Hereunder, we establish the main result of this section.

Theorem 5.1. If $H < 1/(2(3d - 1)), \ d \geq 1$ there exists a continuous strong solution $X^x = \{X^x_t, t \in [0, T], x \in \mathbb{R}^d\}$ of equation (5.1) for all α. Moreover, for every $t \in [0, T]$, X_t is Malliavin differentiable in the direction of the Brownian motion W in (2.3).

Proposition 5.2. Retain the conditions of Theorem 5.1. Let $Y^x \cdot$ be another solution to the SDE (5.1). Suppose that the Doelan-Dade exponentials

$$\mathcal{E}(\int_0^T -K_H^{-1}(\int_0^t \varphi_\varepsilon(Y^x_u)1_ddu)^*(s)dW_s), \ \varepsilon > 0$$

converge in $L^p(\Omega)$ for $\varepsilon \to 0$ for all $p \geq 1$, where φ_ε is the approximation of the Dirac delta δ_0 in (5.2) and $*$ denotes transposition. Then strong uniqueness holds for such solutions.

In particular, this is the case, if e.g. uniqueness in law is satisfied.

The proof of Theorem 5.1 essentially consists of four steps:

1. In the first step, we construct a weak solution X to (5.1) by using the version of Girsanov's theorem for the fractional Brownian motion, that is we consider a probability space (Ω, \mathcal{F}, P) on which a fractional Brownian motion B^H and a process X^x are defined such that (5.1) holds. However, a priori the solution is not a measurable functional of the driving noise, that is X^x is not adapted to the filtration $\mathcal{F} = \{\mathcal{F}_t\}_{t \in [0, T]}$ generated by B^H.

2. In the next step, we approximate the generalized drift coefficient δ_0 by the Gaussian kernels φ_ε. Using classical Picard iteration, we know that for each smooth coefficient $\varphi_\varepsilon, \ \varepsilon > 0$, there exists unique strong solution X^x to the SDE

$$dX^x_t = \alpha \varphi_\varepsilon(X^x_t) \cdot 1_d dt + dB^H_t, \quad 0 \leq t \leq T, \quad X^x_0 = x \in \mathbb{R}^d.$$

Then we prove that for each $t \in [0, T]$ the family $\{X^x_t\}_{\varepsilon > 0}$ converges weakly as $\varepsilon \searrow 0$ to the conditional expectation $E[X_t|\mathcal{F}_t]$ in the space $L^2(\Omega; \mathcal{F}_t)$ of square integrable, \mathcal{F}_t-measurable random variables.
Further, it is well known, see e.g. [42], that for each \(t \in [0, T] \) the strong solution \(X^\varepsilon_t, \varepsilon > 0 \), is Malliavin differentiable, and that the Malliavin derivative \(D_sX^\varepsilon_t, 0 \leq s \leq t \), with respect to \(W \) in (2.3) solves the equation

\[
D_sX^\varepsilon_t = K_H(t, s)I_d + \int_s^t \alpha \varphi'_\varepsilon(x_u^\varepsilon) \cdot 1_d D_sX^\varepsilon_u du, \tag{5.4}
\]

where \(\varphi'_\varepsilon \) denotes the Jacobian of \(\varphi_\varepsilon \). Using a compactness criterion based on Malliavin calculus (see Appendix A) we then show that for every \(t \in [0, T] \) the set of random variables \(\{X^\varepsilon_t\}_{\varepsilon > 0} \) is relatively compact in \(L^2(\Omega) \), which enables us to conclude that \(X^\varepsilon_t \) converges strongly as \(\varepsilon \downarrow 0 \) in \(L^2(\Omega; \mathcal{F}_t) \) to \(\mathbb{E}[X_t|\mathcal{F}_t] \). As a consequence of the compactness criterion we also observe that \(\mathbb{E}[X_t|\mathcal{F}_t] \) is Malliavin differentiable.

Finally, we prove that \(\mathbb{E}[X_t|\mathcal{F}_t] = X_t \), which entails that \(X_t \) is \(\mathcal{F}_t \)-measurable and thus a strong solution on our specific probability space, on which we assumed our weak solution.

Let us first have a look at step 1 of our programme, that is we want to construct weak solutions of (5.1) by using Girsanov’s theorem. Let \((\Omega, \mathcal{A}, P)\) be some given probability space which carries a \(d\)-dimensional fractional Brownian motion \(\tilde{B}^H \) with Hurst parameter \(H \in (0, 1/2) \) and set \(X^\varepsilon_t := x + \tilde{B}^H_t, t \in [0, T], x \in \mathbb{R}^d \). Set \(\theta_t := (K_H^{-1}\left(\int_0^t \delta_0(X^\varepsilon_u)dr1_d\right))(t) \) and consider the Doléans-Dade exponential

\[
\xi_t := \exp\left\{ \int_0^t \theta^T_s dW_s - \frac{1}{2} \int_0^t \theta^T_s \theta_s ds \right\}, \quad t \in [0, T].
\]

formally.

If we were allowed to implement Girsanov’s theorem in this setting we would arrive at the conclusion that the process

\[
B^H_t := X^\varepsilon_t - x - \int_0^t \delta_\varepsilon(x^\varepsilon_s)ds1_d
\]

\[
= \tilde{B}^H_t - \int_0^t \delta_0(B^H_s)ds1_d
\]

is a fractional Brownian motion on \((\Omega, \mathcal{A}, P)\) with Hurst parameter \(H \in (0, 1/2) \), where \(\frac{dP}{dP} = \xi_T \). Hence, because of (5.5), the couple \((X^\varepsilon, \tilde{B}^H)\) will be a weak solution of (5.1) on \((\Omega, \mathcal{A}, P)\).

Therefore, in what follows we show that the requirements of Theorem 2.5 are accomplished.

Lemma 5.3. Let \(x \in \mathbb{R}^d \). If \(H < \frac{1}{2(1+d)} \) then

\[
\sup_{\varepsilon>0} \mathbb{E}[\exp(\mu \int_0^T (K_H^{-1}\left(\int_0^t \varphi_{x,\varepsilon}(B^H_u)du\right)(t))^2 dt)] < \infty
\]

for all \(\mu \in \mathbb{R} \), where

\[
\varphi_{x,\varepsilon}(B^H_u) = \frac{1}{(2\pi \varepsilon)^{\frac{d}{2}}} \exp\left(-\frac{|B^H_u - x|^2}{2\varepsilon}\right).
\]
Proof. In order to prove Lemma 5.3 we can write

\[
K_H^{-1} \left(\int_0^t \varphi_{x,\varepsilon}(B_r^H)dr \right)(t) = t^{H-\frac{1}{2}} \int_{0+}^{t^{1-H}} \left(\int_0^t \varphi_{x,\varepsilon}(B_r^H)dr \right)'(t)
\]

\[
= t^{H-\frac{1}{2}} \int_0^{t} \gamma_{-\frac{1}{2}-H,\frac{1}{2}-H}(t, u) \varphi_{x,\varepsilon}(B_u^H)du,
\]

where

\[
\gamma_{\alpha,\beta}(t, u) = (t - u)^\alpha u^\beta.
\]

Using the self-similarity of the fBm we can write

\[
K_H^{-1} \left(\int_0^t \varphi_{x,\varepsilon}(B_r^H)dr \right)(t) \xrightarrow{\text{law}} t^{\frac{1}{2}-H(1+d)} \int_0^1 \gamma_{-\frac{1}{2}-H,\frac{1}{2}-H}(1, u) \varphi_{x-t^{-H},\varepsilon(t)}(B_u^H)du,
\]

where \(\varepsilon(t) := \varepsilon t^{-2H}\), and hence

\[
K_H^{-1} \left(\int_0^t \varphi_{x,\varepsilon}(B_r^H)dr \right)^{2m}(t) \xrightarrow{\text{law}} t^{2m(\frac{1}{2}-H(1+d))} \left(\int_0^1 \gamma_{-\frac{1}{2}-H,\frac{1}{2}-H}(1, u) \varphi_{x-t^{-H},\varepsilon(t)}(B_u^H)du \right)^{2m}
\]

\[
= t^{2m(\frac{1}{2}-H(1+d))}(2m)! \int_{\mathcal{T}_{2m}(0,1)} \prod_{j=1}^{2m} \gamma_{-\frac{1}{2}-H,\frac{1}{2}-H}(1, u_j) \varphi_{x-t^{-H},\varepsilon(t)}(B_{u_j}^H)du,
\]

where \(\mathcal{T}_n(0, s) = \{0 \leq u_1 < u_2 < \ldots < u_n \leq s\}\) and

\[
\varphi_{x-t^{-H},\varepsilon(t)}(B_{u_j}^H) = \frac{1}{(2\pi)^d} \int_{\mathbb{R}^d} \exp \left(i \left\langle \xi, B_{u_j}^H - xt^{-H} \right\rangle \right)_{\mathbb{R}^d} - \varepsilon(t) \left| \xi \right|^{2d} \frac{1}{2^d} d\xi.
\]

Then

\[
\mathbb{E}[\left(\int_0^T (K_H^{-1} \left(\int_0^t \varphi_{x,\varepsilon}(B_u^H)du \right)(t))^{2m} dt \right)^m] \leq T^{m-1} \int_0^T \mathbb{E}[K_H^{-1} \left(\int_0^t \varphi_{x,\varepsilon}(B_r^H)dr \right)^{2m}(t)]dt
\]

\[
= T^{m-1} \int_0^T t^{2m(\frac{1}{2}-H(1+d))}(2m)! \int_{\mathcal{T}_{2m}(0,1)} \prod_{j=1}^{2m} \gamma_{-\frac{1}{2}-H,\frac{1}{2}-H}(1, u_j) E \prod_{j=1}^{2m} \varphi_{x-t^{-H},\varepsilon(t)}(B_{u_j}^H)du dt.
\]
Moreover,

\[
\mathbb{E}\left[\prod_{j=1}^{2m} \varphi_{xt^{-H},\varepsilon(t)}(B_{u_j}^H)\right] = \frac{1}{(2\pi)^{2dm}} \int_{\mathbb{R}^d} \mathbb{E}\left[\prod_{j=1}^{2m} \exp(i \langle \xi_j, B_{u_j}^H - xt^{-H} \rangle_{\mathbb{R}^d} - \varepsilon(t)\frac{|\xi_j|^2}{2})d\xi_j\right] \]

Next note that

\[
\mathbb{E}[\exp(i \sum_{j=1}^{2m} \langle \xi_j, B_{u_j}^H \rangle_{\mathbb{R}^d})] = \exp\left(-\frac{1}{2} \text{Var}\left(\sum_{j=1}^{2m} \sum_{k=1}^{d} \xi_j^k B_{u_j}^{H,k}\right)\right)
\]

where

\[
Q(u) = \text{Cov}(B_{u_1}^{H,1}, \ldots, B_{u_{2m}}^{H,1}).
\]
Hence,
\[
\mathbb{E} \left[\prod_{j=1}^{2m} \varphi_{x-t,\varepsilon}(t) \left(B^H_u \right) \right]
\leq \frac{1}{(2\pi)^{2dm}} \int_{\mathbb{R}^{2dm}} \exp\left(-\frac{1}{2} \text{Var} \left[\sum_{j=1}^{2m} \sum_{k=1}^{d} \xi_j^k B^H_{u_j} \right] \right) d\xi_1 ... d\xi_{2m}
\]
\[
= \frac{1}{(2\pi)^{2dm}} \int_{\mathbb{R}^{2dm}} \exp\left(-\frac{1}{2} \sum_{k=1}^{d} \langle \xi^k, Q(u) \xi^k \rangle \right) d\xi_1 ... d\xi_{2m}
\]
\[
= \frac{1}{(2\pi)^{2dm}} \int_{\mathbb{R}^{2m}} \exp\left(-\frac{1}{2} \sum_{k=1}^{d} \langle \xi^1, Q(u) \xi^1 \rangle \right) d\xi_1
\]
\[
\leq \frac{1}{(2\pi)^{dm}} \left(\det Q(u) \right)^{-\frac{d}{2}}.
\]

Using the last estimate, we get that
\[
\mathbb{E} \left[\left(\int_0^T (K^{-1}_H \left(\int_0^t \varphi_{x,\varepsilon}(B^H_u)du \right) dt)^m \right) \right]
\leq \frac{T^{m-1}}{(2\pi)^{dm}} T^{2m(\frac{1}{2} - H(1+d))} \times (2m)! \int_{T^{2m}(0,1)} \left[\prod_{j=1}^{2m} \gamma^{\frac{1}{2} - H, \frac{1}{2} - H(1, u_j)} \right] (\det Q(u))^{-\frac{d}{2}} du
\]
\[
\leq \frac{T^{m-1}}{(2\pi)^{dm}} T^{2m(\frac{1}{2} - H(1+d))} \times C_{H,d}^m \left(m! \right)^{2H(1+d)},
\]
where the last bound is due to Lemma A.5 for a constant \(C_{H,d} \) only depending on \(H \) and \(d \). So the result follows.

\[\square \]

Proposition 5.4. Let \(x \in \mathbb{R}^d \) and \(H < \frac{1}{2(1+d)} \). Then there exists a \(X \in L^p(\Omega) \) such that
\[
\mathcal{E} \left(\int_0^T K^{-1}_H \left(\int_0^t \varphi_{x,1/n}(B^H_u) du \right) \right)^n(s) dW_s \xrightarrow{n \to \infty} X \text{ in } L^p(\Omega)
\]
for all \(p \geq 1 \). Furthermore,
\[
B^H_t - L^x_t(B^H)1_d, 0 \leq t \leq T
\]
is a fractional Brownian motion with Hurst parameter \(H \) under the change of measure with respect to the Radon-Nikodym-derivative \(X \).
Proof. Without loss of generality let $p = 1$. Then using $|e^x - e^y| \leq |x - y| e^{x+y}$, Hölder’s inequality, the supermartingale property of Doleans-Dade exponentials we get in connection with the previous Lemma that

$$E\left[E\left(\int_0^T K_H^{-1}(\int_0^\cdot \varphi_{x,1/n}(B_u^H)1_{dW}(s))dW_s, \int_0^T K_H^{-1}(\int_0^\cdot \varphi_{x,1/r}(B_u^H)1_{dW}(s))dW_s \right) \right] \leq C(I_1 + I_2)E,$$

where

$$I_1 := E\left[\int_0^T \left| K_H^{-1}(\int_0^\cdot \varphi_{1/n}(B_u^H)1_{dW}(s)) - K_H^{-1}(\int_0^\cdot \varphi_{1/r}(B_u^H)1_{dW}(s)) \right|^2 ds \right]^{1/2},$$

$$I_2 := E\left[\left(\int_0^T \left| K_H^{-1}(\int_0^\cdot \varphi_{1/n}(B_u^H)1_{dW}(s)) \right|^2 ds - \int_0^T \left| K_H^{-1}(\int_0^\cdot \varphi_{1/r}(B_u^H)1_{dW}(s)) \right|^2 ds \right)^2 \right]^{1/2}$$

$$E := E[\exp\{\mu_1 \int_0^t \left| K_H^{-1}(\int_0^\cdot \varphi_{1/n}(B_u^H)1_{dW}(s)) \right|^2 ds \}]^{1/4} \cdot E[\exp\{\mu_2 \int_0^t \left| K_H^{-1}(\int_0^\cdot \varphi_{1/r}(B_u^H)1_{dW}(s)) \right|^2 ds \}]^{1/4}$$

for constants $C, \mu_1, \mu_2 > 0$.

Now, let us have a look at the proof of the previous Lemma and adopt the notation therein. In the sequel we omit 1_d. Then we obtain for $m = 1$ by using the self-similarity of the fBm in a similar way (but under expectation) that

$$E\left[K_H^{-1}(\int_0^\cdot \varphi_1(B_u^H)1_{dW}(t)) \right] \left| K_H^{-1}(\int_0^\cdot \varphi_2(B_u^H)1_{dW}(t)) \right|^2 = E[(t^{2m(\frac{1}{2}-H(1+d))(2m)})]^2 \int_{T_{2m}(0,1)}^{2m} \prod_{j=1}^{2m} \gamma_{-\frac{1}{2}-H,\frac{1}{2}-H}(1, u_j) \varphi_{1,2}(-x, x)(B_u^H)^2 du$$

$$\times \int_{T_{2m}(0,1)}^{2m} \prod_{j=1}^{2m} \gamma_{-\frac{1}{2}-H,\frac{1}{2}-H}(1, u_j) \varphi_{1,2}(-x, x)(B_u^H)^2 du,$$

where $\varepsilon_i(t) = \varepsilon_i t^{-2H}$, $i = 1, 2$. Using shuffling (see Section 2.2), we get that

$$E\left[K_H^{-1}(\int_0^\cdot \varphi_1(B_u^H)1_{dW}(t)) \right] \left| K_H^{-1}(\int_0^\cdot \varphi_2(B_u^H)1_{dW}(t)) \right|^2 = E[(t^{2m(\frac{1}{2}-H(1+d))(2m)})]^2 \times \sum_{\sigma \in S(2m,2m)}^{4m} \int_{T_{4m}(0,1)}^{4m} \prod_{j=1}^{4m} f_{\sigma(j)}(u_j) du,$$
where \(f_j(s) := \gamma_{-\frac{1}{2}-H,\frac{1}{2}-H}(1, s) \varphi_{xt^{-H},\varepsilon_1(t)}(B_y^H) \), if \(j = 1, \ldots, 2m \) and \(\gamma_{-\frac{1}{2}-H,\frac{1}{2}-H}(1, s) \varphi_{xt^{-H},\varepsilon_2(t)}(B_y^H) \), if \(j = 2m+1, \ldots, 4m \). Without loss of generality, consider the case

\[
\prod_{j=1}^{4m} f_{\sigma(j)}(u_j) = \prod_{j=1}^{2m} \gamma_{-\frac{1}{2}-H,\frac{1}{2}-H}(1, u_j) \varphi_{xt^{-H},\varepsilon_1(t)}(B_{u_j}^H) \times \prod_{j=2m+1}^{4m} \gamma_{-\frac{1}{2}-H,\frac{1}{2}-H}(1, u_j) \varphi_{xt^{-H},\varepsilon_2(t)}(B_{u_j}^H).
\]

Then

\[
E[(i^{2m}(\frac{1}{2}-H(1+d))(2m)!)]^2 \int_{T_{4m}(0,1)} \prod_{j=1}^{4m} f_{\sigma(j)}(u_j) du \]

\[
= (i^{2m}(\frac{1}{2}-H(1+d))(2m)!)^2 \int_{T_{4m}(0,1)} \prod_{j=1}^{2m} \gamma_{-\frac{1}{2}-H,\frac{1}{2}-H}(1, u_j) \prod_{j=2m+1}^{4m} \gamma_{-\frac{1}{2}-H,\frac{1}{2}-H}(1, u_j) \times E[\prod_{j=1}^{2m} \varphi_{xt^{-H},\varepsilon_1(t)}(B_{u_j}^H) \prod_{j=2m+1}^{4m} \varphi_{xt^{-H},\varepsilon_2(t)}(B_{u_j}^H)] du \]

\[
= (i^{2m}(\frac{1}{2}-H(1+d))(2m)!)^2 \int_{T_{4m}(0,1)} \prod_{j=1}^{2m} \gamma_{-\frac{1}{2}-H,\frac{1}{2}-H}(1, u_j) \times E[\prod_{j=1}^{2m} \int_{\mathbb{R}^d} \exp(i \langle \xi_j, B_{u_j}^H - xt^{-H} \rangle_{\mathbb{R}^d} - \varepsilon_1(t) \frac{\langle \xi_j \rangle_{\mathbb{R}^d}^2}{2}) d\xi_j \times \int_{\mathbb{R}^d} \exp(i \langle \xi_j, B_{u_j}^H - xt^{-H} \rangle_{\mathbb{R}^d} - \varepsilon_2(t) \frac{\langle \xi_j \rangle_{\mathbb{R}^d}^2}{2}) d\xi_j] du \]

\[
= (i^{2m}(\frac{1}{2}-H(1+d))(2m)!)^2 \times \int_{T_{4m}(0,1)} \prod_{j=1}^{4m} \gamma_{-\frac{1}{2}-H,\frac{1}{2}-H}(1, u_j) \times \frac{1}{(2\pi)^{4dm}} \int_{\mathbb{R}^{4dm}} E[\exp(i \sum_{j=1}^{4m} \langle \xi_j, B_{u_j}^H \rangle_{\mathbb{R}^d})] \times \exp(-i \sum_{j=1}^{4m} \langle \xi_j, xt^{-H} \rangle_{\mathbb{R}^d}) \exp(-\varepsilon_1(t) \sum_{j=1}^{2m} |\xi_j|_{\mathbb{R}^d}^2 - \varepsilon_2(t) \sum_{j=1}^{2m} |\xi_j|_{\mathbb{R}^d}^2) d\xi_1...d\xi_{4m} du.
\]
So

\[
E[(t^{2m(\frac{1}{2}-H(1+d))}(2m)!)]^2 \int_{\mathcal{T}_{4m}(0,1)} \prod_{j=1}^{4m} f_{\sigma(j)}(u_j) du
\]

\[
= (t^{2m(\frac{1}{2}-H(1+d))}(2m)!)^2 \int_{\mathcal{T}_{4m}(0,1)} \prod_{j=1}^{4m} \gamma_{-\frac{1}{2}-H, \frac{1}{2}-H}(1, u_j)
\]

\[
\times \frac{1}{(2\pi)^{4dm}} \int_{\mathbb{R}^{4dm}} \exp(-\frac{1}{2} \sum_{k=1}^{d} \langle \xi^k, Q(u)\xi^k \rangle_{\mathbb{R}^{4m}})
\]

\[
\times \exp(-i \sum_{j=1}^{4m} \langle \xi_j, xt^{-H} \rangle_{\mathbb{R}^d})\exp(-\frac{\varepsilon_1(t)}{2} \sum_{j=1}^{2m} |\xi_j|_{\mathbb{R}^d}^2 - \frac{\varepsilon_2(t)}{2} \sum_{j=1}^{2m} |\xi_j|_{\mathbb{R}^d}^2)
\]

\[d\xi_1 \cdots d\xi_{4m} du.
\]

Hence, using dominated convergence in connection with Lemma A.5, we see that

\[
\int_0^T E[(t^{2m(\frac{1}{2}-H(1+d))}(2m)!)]^2 \int_{\mathcal{T}_{4m}(0,1)} \prod_{j=1}^{4m} f_{\sigma(j)}(u_j) du dt
\]

\[
\rightarrow \int_0^T (t^{2m(\frac{1}{2}-H(1+d))}(2m)!)^2 \int_{\mathcal{T}_{4m}(0,1)} \prod_{j=1}^{4m} \gamma_{-\frac{1}{2}-H, \frac{1}{2}-H}(1, u_j)
\]

\[
\times \frac{1}{(2\pi)^{4dm}} \int_{\mathbb{R}^{4dm}} \exp(-\frac{1}{2} \sum_{k=1}^{d} \langle \xi^k, Q(u)\xi^k \rangle_{\mathbb{R}^{4m}})
\]

\[
\times \exp(-i \sum_{j=1}^{4m} \langle \xi_j, xt^{-H} \rangle_{\mathbb{R}^d})\exp(-\frac{\varepsilon_1(t)}{2} \sum_{j=1}^{2m} |\xi_j|_{\mathbb{R}^d}^2 - \frac{\varepsilon_2(t)}{2} \sum_{j=1}^{2m} |\xi_j|_{\mathbb{R}^d}^2)
\]

\[d\xi_1 \cdots d\xi_{4m} du dt
\]

for \(\varepsilon_1, \varepsilon_2 \downarrow 0\). For other \(\sigma \in S(2m, 2m)\), we obtain similar limit values. In summary, we find (by also considering the case \(\varepsilon_1 = \varepsilon_2\)) that

\[
E[(\int_0^T K_{H}^{-1}(\int_0^s \varphi_{\varepsilon_1}(B_u^H)du)(s) - K_{H}^{-1}(\int_0^s \varphi_{\varepsilon_2}(B_u^H)du)(s) \right)^2 ds)] \rightarrow 0
\]

for \(\varepsilon_1, \varepsilon_2 \downarrow 0\). Thus

\[
I_2 = I_2(n, r) \rightarrow 0 \text{ for } n, r \rightarrow \infty.
\]

Similarly, we have that

\[
I_1 = I_1(n, r) \rightarrow 0 \text{ for } n, r \rightarrow \infty.
\]

Since \(E = E(n, r)\) is uniformly bounded with respect to \(n, r\) because of the previous Lemma 5.5, we obtain the convergence of the Radon-Nikodym derivatives to a \(X\) in \(L^p(\Omega)\) for \(p = 1\). The second statement of the Lemma follows by using characteristic functions combined with dominated convergence.

Henceforth, we confine ourselves to the filtered probability space \((\Omega, \mathcal{F}, P), \mathcal{F} = \{\mathcal{F}_t\}_{t \in [0,T]}\) which carries the weak solution \((X^x, B^H)\) of (5.1).
We now turn to the second step of our procedure.

Lemma 5.5. Suppose that $H < \frac{1}{2(1+d)}$ and let $\{\varphi_x\}_{x > 0}$ be defined as

$$\varphi_x(y) = \varphi_{e,x}(y) = e^{-\frac{d}{2} \varphi(e^{-\frac{1}{2}}(y - x))}, \varepsilon > 0,$$

where φ is the d-dimensional standard normal density. Denote by $X^{x,\varepsilon} = \{X^{x,\varepsilon}_t, t \in [0,T]\}$ the corresponding solutions of (5.1), if we replace δ_x by $\varphi_{e,x}(y), \varepsilon > 0$. Then for every $t \in [0,T]$ and bounded continuous function $\eta : \mathbb{R}^d \rightarrow \mathbb{R}$ we have that

$$\eta(X^{x,\varepsilon}_t) \xrightarrow{\varepsilon \rightarrow 0} E[\eta(X^x_t) \mid \mathcal{F}_t]$$

weakly in $L^2(\Omega, \mathcal{F}_t, P)$.

Proof. Without loss of generality let $x = 0$. We mention that

$$\Sigma_t := \{\exp\left\{\sum_{j=1}^{k} \left(\alpha_j, B^{H}_{t_j} - B^{H}_{t_{j-1}}\right)\right\} : \{\alpha_j\}_{j=1}^{k} \subset \mathbb{R}^d, 0 = t_0 < ... < t_k = t, k \geq 1\}$$

is a total subset of $L^2(\Omega, \mathcal{F}_t, P)$. Denote $X^{x,\varepsilon}_t$ by X^n_t for $\varepsilon = 1/n$. Then using Girsanov’s theorem, we find that

$$E[\eta(X^n_t) \exp\left\{\sum_{j=1}^{k} \left(\alpha_j, B^{H}_{t_j} - B^{H}_{t_{j-1}}\right)\right\}]$$

$$= E[\eta(X^n_t) \exp\left\{\sum_{j=1}^{k} \left(\alpha_j, X^n_{t_j} - X^n_{t_{j-1}} - \int_{t_{j-1}}^{t_j} \varphi_{1/n}(X^n_s)1_d s\right)\right\}]$$

$$= E[\eta(B^{H}_{t}) \exp\left\{\sum_{j=1}^{k} \left(\alpha_j, B^{H}_{t_j} - B^{H}_{t_{j-1}} - \int_{t_{j-1}}^{t_j} \varphi_{1/n}(B^{H}_s)1_d s\right)\right\}]$$

$$\cdot E(\int_0^t K^{-1}_H(\int_0^1 \varphi_{1/n}(B^{H}_u)1_d u)^*(s) dW_s).$$

On the other hand, we obtain by $|e^x - e^y| \leq |x - y| e^{x+y}$, Hölder’s inequality, the supermartingale property of Doleans-Dade exponentials and the proof of Proposition 5.4 that

$$E[\eta(B^{H}_{t}) \exp\left\{\sum_{j=1}^{k} \left(\alpha_j, B^{H}_{t_j} - B^{H}_{t_{j-1}} - \int_{t_{j-1}}^{t_j} \varphi_{1/n}(B^{H}_s)1_d s\right)\right\}]$$

$$\cdot E(\int_0^t K^{-1}_H(\int_0^1 \varphi_{1/n}(B^{H}_u)1_d u)^*(s) dW_s)$$

$$- \eta(B^{H}_{t}) \exp\left\{\sum_{j=1}^{k} \left(\alpha_j, B^{H}_{t_j} - B^{H}_{t_{j-1}} - \int_{t_{j-1}}^{t_j} \delta_0(B^{H}_s)1_d s\right)\right\}$$

$$\cdot X$$

$$\leq C(I_1 + I_2 + I_3) E,$$
where
\[
I_1 := E\left[\left(\sum_{j=1}^{k} \left(\alpha_j, \int_{t_{j-1}}^{t_j} \delta_0(B_t^{H}) ds \right) \varphi_{1/n}(B_s^{H}) 1_d ds \right)^2 \right]^{1/2},
\]
\[
I_2 := \lim_{r \to \infty} E\left[\int_{0}^{t} K_H^{-1}(0) \varphi_{1/r}(B_u^{H}) 1_d u(s) \delta_0(B_s^{H}) ds \right]^{2} \left(\int_{0}^{t} \varphi_{1/r}(B_u^{H}) 1_d u(s) \delta_0(B_s^{H}) ds \right)^{2} \left(\int_{0}^{t} \varphi_{1/r}(B_u^{H}) 1_d u(s) \delta_0(B_s^{H}) ds \right)^{2} \right]^{1/2},
\]
\[
I_3 := \lim_{r \to \infty} E\left[\int_{0}^{t} K_H^{-1}(0) \varphi_{1/r}(B_u^{H}) 1_d u(s) \delta_0(B_s^{H}) ds \right]^{2} \left(\int_{0}^{t} \varphi_{1/r}(B_u^{H}) 1_d u(s) \delta_0(B_s^{H}) ds \right)^{2} \right]^{1/2}
\]
and
\[
E := \sup_{r \geq 1} E\left[\exp\left\{ 8 \sum_{j=1}^{k} \left(\alpha_j, B_t^{H} - B_{t_{j-1}}^{H} - \int_{t_{j-1}}^{t_j} \varphi_{1/n}(B_s^{H}) 1_d ds \right) \right\} \right]^{1/8}
\]
\[
\cdot E\left[\exp\left\{ 8 \sum_{j=1}^{k} \left(\alpha_j, B_t^{H} - B_{t_{j-1}}^{H} - \int_{t_{j-1}}^{t_j} \varphi_{1/n}(B_s^{H}) 1_d ds \right) \right\} \right]^{1/8}
\]
\[
\cdot E\left[\exp\left\{ \mu_1 \int_{0}^{t} K_H^{-1}(0) \varphi_{1/r}(B_u^{H}) 1_d u(s) \delta_0(B_s^{H}) ds \right\} \right]^{1/8}
\]
\[
\cdot E\left[\exp\left\{ \mu_2 \int_{0}^{t} K_H^{-1}(0) \varphi_{1/r}(B_u^{H}) 1_d u(s) \delta_0(B_s^{H}) ds \right\} \right]^{1/16}
\]
for constants \(C, \mu_1, \mu_2 > 0\).

By inspecting the proof of Proposition 5.4 once again, we know that
\[
I_1 = I_1(n) \to 0 \text{ for } n \to \infty.
\]
and
\[
I_2 = I_2(n) \to 0 \text{ for } n \to \infty.
\]
Since \(L_t^\varepsilon(B^H, \varepsilon)\) converges to \(L_t^\varepsilon(B^H)\) in \(L^p(\Omega)\) for all \(p \geq 1\), we also conclude that
\[
I_3 = I_3(n) \to 0 \text{ for } n \to \infty.
\]
On the other hand, we obtain from 4.2, Theorem 4.4 and Lemma 5.3 that
\[
E = E(n) \leq K
\]
for all \(n\), where \(K\) is a constant. So we see that
\[
E[\eta(X^n_t)] \exp\left\{ \sum_{j=1}^{k} \left(\alpha_j, B_t^{H} - B_{t_{j-1}}^{H} \right) \right\} \to
\]
\[
E[\eta(B_t^{H})] \exp\left\{ \sum_{j=1}^{k} \left(\alpha_j, B_t^{H} - B_{t_{j-1}}^{H} \right) \right\} \cdot X
\]
\[
= E[E[\eta(X_t)] \mid \mathcal{F}_t] \exp\left\{ \sum_{j=1}^{k} \left(\alpha_j, B_t^{H} - B_{t_{j-1}}^{H} \right) \right\}
\]
for \(n \to \infty\), which completes the proof. \(\square\)
We continue with the third step of our scheme. This is the most challenging part. For notational convenience let us from now on assume that $\alpha = 1$ in (5.1) and that φ_ε stands for the Jacobian of $\varphi_\varepsilon 1_d$. The following result is based on a compactness criterion for subsets of $L^2(\Omega)$ which is summarised in the Appendix.

Lemma 5.6. Let $\{\varphi_\varepsilon\}_{\varepsilon > 0}$ the family of Gaussian kernels approximating Dirac’s delta function δ_0 in the sense of (5.3). Fix $t \in [0, T]$ and denote by X^ε_t the corresponding solutions of (5.1) if we replace $L_t(X^\varepsilon)$ by $\int_0^t \varphi_\varepsilon(X^\varepsilon_s)ds$, $\varepsilon > 0$. Then there exists a $\beta \in (0, 1/2)$ such that

$$\sup_{\varepsilon > 0} \int_0^t \int_0^t E[|D_\theta X^\varepsilon_t - D_\theta X^\varepsilon_\theta|^2] d\theta' d\theta < \infty$$

and

$$\sup_{\varepsilon > 0} \|D_t X^\varepsilon_t\|_{L^2(\Omega \times [0, T], \mathbb{R}^d \times \mathbb{R}^d)} < \infty. \quad (5.6)$$

Proof. Fix $t \in [0, T]$ and take $\theta, \theta' > 0$ such that $0 < \theta' < \theta < t$. Using the chain rule for the Malliavin derivative, see [42, Proposition 1.2.3], we have

$$D_\theta X^\varepsilon_t = K_H(t, \theta) I_d + \int_0^t \varphi_\varepsilon'(X^\varepsilon_s)D_\theta X^\varepsilon_s ds$$

P-a.s. for all $0 \leq \theta \leq t$ where $\varphi_\varepsilon'(z) = \left(\frac{\partial}{\partial z_j}\varphi_\varepsilon(0)(z)\right)_{i,j=1,\ldots,d}$ denotes the Jacobian matrix of φ_ε and I_d the identity matrix in $\mathbb{R}^{d \times d}$. Thus we have

$$D_\theta X^\varepsilon_t - D_\theta X^\varepsilon_\theta = K_H(t, \theta') I_d - K_H(t, \theta) I_d + \int_0^t \varphi_\varepsilon'(X^\varepsilon_s)D_\theta X^\varepsilon_s ds - \int_0^t \varphi_\varepsilon'(X^\varepsilon_s)D_\theta X^\varepsilon_\theta ds$$

$$= K_H(t, \theta') I_d - K_H(t, \theta) I_d + \int_0^t \varphi_\varepsilon'(X^\varepsilon_s)D_\theta X^\varepsilon_s ds + \int_0^t \varphi_\varepsilon'(X^\varepsilon_s)(D_\theta X^\varepsilon_s - D_\theta X^\varepsilon_\theta) ds$$

$$= K_H(t, \theta') I_d - K_H(t, \theta) I_d + D_\theta X^\varepsilon_t - D_\theta X^\varepsilon_\theta$$

$$+ \int_0^t \varphi_\varepsilon'(X^\varepsilon_s)(D_\theta X^\varepsilon_s - D_\theta X^\varepsilon_\theta) ds.$$
On the other hand, observe that one may again write
\[D_{\theta'}X_t^\varepsilon - K_H(\theta, \theta')I_d = \sum_{m=1}^\infty \int_{\Delta_{\theta', \theta}^m} \prod_{j=1}^m \varphi'_\varepsilon(X_{s_j}^\varepsilon)(K_H(s_m, \theta')I_d) \, ds_m \cdots ds_1. \]

Altogether, we can write
\[D_{\theta'}X_t^\varepsilon - D_{\theta}X_t^\varepsilon = I_1(\theta', \theta) + I_2(\theta', \theta) + I_3(\theta', \theta), \]
where
\[I_1(\theta', \theta) := K_H(t, \theta')I_d - K_H(t, \theta)I_d \]
\[I_2(\theta', \theta) := \sum_{m=1}^\infty \int_{\Delta_{\theta', \theta}^m} \prod_{j=1}^m \varphi'_\varepsilon(X_{s_j}^\varepsilon)(K_H(s_m, \theta')I_d - K_H(s_m, \theta)I_d) \, ds_m \cdots ds_1 \]
\[I_3(\theta', \theta) := \left(I_d + \sum_{m=1}^\infty \int_{\Delta_{\theta', \theta}^m} \prod_{j=1}^m \varphi'_\varepsilon(X_{s_j}^\varepsilon) \, ds_m \cdots ds_1 \right) \times \left(\sum_{m=1}^\infty \int_{\Delta_{\theta', \theta}^m} \prod_{j=1}^m \varphi'_\varepsilon(X_{s_j}^\varepsilon)(K_H(s_m, \theta')I_d) \, ds_m \cdots ds_1 \right). \]

It follows from Lemma A.4 that
\[\int_0^t \int_0^t \frac{||I_1(\theta', \theta)||^2_{L^2(\Omega)}}{|\theta' - \theta|^{1+2\beta}} \, d\theta \, d\theta' \leq C E\left[\sum_{m=1}^\infty \int_{\Delta_{\theta, \theta}^m} \prod_{j=1}^m \varphi'_\varepsilon(x + B_{s_j}^H)(x + B_{s_m}^H)I_d \, ds_m \cdots ds_1 \right]^{1/2} \]
for a suitably small \(\beta \in (0, 1/2) \).

Let us continue with the term \(I_2^\varepsilon(\theta', \theta) \). Then Girsanov’s theorem, Cauchy-Schwarz inequality and Lemma A.3 imply
\[E[||I_2^\varepsilon(\theta', \theta)||^2] \leq C \left(\sum_{m=1}^\infty \prod_{j=1}^m \left\| \int_{\Delta_{\theta, \theta}^m} \varphi'_\varepsilon_{ij}(x + B_{s_j}^H, \theta') \varphi'_\varepsilon_{ij}(x + B_{s_m}^H) \, ds_m \cdots ds_1 \right\|^2 \right)^{1/2}, \]
where \(C > 0 \) is an upperbound from Lemma A.3.

Let \(|| \cdot || \) denote the matrix norm in \(\mathbb{R}^{d \times d} \) such that \(||A|| = \sum_{i,j=1}^d |a_{ij}| \) for a matrix \(A = \{a_{ij}\}_{i,j=1}^{d \times d} \), then taking this matrix norm and expectation we have
\[E[||I_2^\varepsilon(\theta', \theta)||^2] \leq C \left(\sum_{m=1}^\infty \sum_{i,j=1}^d \sum_{l_1, l_2, \ldots, l_m=1}^d \left\| \int_{\Delta_{\theta, \theta}^m} \frac{\partial}{\partial x_{l_1}} \varphi^{(l_1)}H(x + B_{s_1}^H, \theta') \frac{\partial}{\partial x_{l_2}} \varphi^{(l_2)}H(x + B_{s_2}^H, \theta') \cdots \frac{\partial}{\partial x_{l_m}} \varphi^{(l_m-1)}H(x + B_{s_m}^H, \theta') K_H(s_m, \theta') \, ds_m \cdots ds_1 \right\| \right)^2. \]
Now we concentrate on the expression
\[J_2^e(\theta', \theta) := \int_{\Delta_{v,t}^{2m}} \frac{\partial}{\partial x_1} \varphi_e(x + B_s^H) \cdots \frac{\partial}{\partial x_j} \varphi_e^{(m-1)}(x + B_s^H) \left(K_H(s_m, \theta') - K_H(s_m, \theta) \right) ds. \]
(5.8)

Then, shuffling \(J_2^e(\theta', \theta) \) as shown in (2.31), one can write \((J_2^e(\theta', \theta))^2\) as a sum of at most \(2^{2m}\) summands of length \(2m\) of the form
\[\int \Delta_{v,t}^{2m} g^e_1(B_s^H) \cdots g^e_{2m}(B_s^{2m}) ds_{2m} \cdots ds_1, \]
(5.9)
where for each \(l = 1, \ldots, 2m, \)
\[g^e_l(B^H) \in \left\{ \frac{\partial}{\partial x_j} \varphi_e(x + B^H), \frac{\partial}{\partial x_j} \varphi_e^{(i)}(x + B^H) \left(K_H(\cdot, \theta') - K_H(\cdot, \theta) \right), i, j = 1, \ldots, d \right\}. \]

Repeating this argument once again, we find that \(J_2^e(\theta', \theta)^4 \) can be expressed as a sum of, at most, \(2^{4m}\) summands of length \(4m\) of the form
\[\int \Delta_{v,t}^{4m} g^e_1(B_s^H) \cdots g^e_{4m}(B_s^{4m}) ds_{4m} \cdots ds_1, \]
(5.10)
where for each \(l = 1, \ldots, 4m, \)
\[g^e_l(B^H) \in \left\{ \frac{\partial}{\partial x_j} \varphi_e(x + B^H), \frac{\partial}{\partial x_j} \varphi_e^{(i)}(x + B^H) \left(K_H(\cdot, \theta') - K_H(\cdot, \theta) \right), i, j = 1, \ldots, d \right\}. \]

It is important to note that the function \((K_H(\cdot, \theta') - K_H(\cdot, \theta))\) appears only once in term (5.8) and hence only four times in term (5.10). So there are indices \(j_1, \ldots, j_4 \in \{1, \ldots, 4m\} \) such that we can write (5.10) as
\[\int \Delta_{v,t}^{4m} \left(\prod_{j=1}^{4m} g^e_j(B_s^{j}) \right) \prod_{i=1}^{4m} \left(K_H(s_{j_i}, \theta') - K_H(s_{j_i}, \theta) \right) ds_{4m} \cdots ds_1, \]
where
\[g^e_l(B^H) \in \left\{ \frac{\partial}{\partial x_j} \varphi_e(x + B^H), i, j = 1, \ldots, d \right\}, \quad l = 1, \ldots, 4m. \]

The latter enables us to use the estimate from Proposition 3.2 with \(\sum_{j=1}^{4m} \varepsilon_j = 4 \) and \(k = 1 \) and thus we obtain that
\[E(J_2^e(\theta', \theta))^4 \leq \left(\frac{\theta - \theta'}{\theta \theta'} \right)^{4\gamma} \theta^{(H - \frac{1}{2} - \gamma)} C^{4m} \| \varphi_e \|_{L^1(R^d)} A_m^\gamma(H, d, |t - \theta|) \]
whenever \(H < \frac{1}{2(3d-1)} \) and \(\gamma \in (0, H) \), where
\[A_m^\gamma(H, d, |t - \theta|) := \sum_{\beta \in \{Hd, 3Hd\}^{8m}} \frac{|t - \theta|^{-\frac{1}{2} \sum_{j=1}^{8m} \beta_j + 4(H - \frac{1}{2} - \gamma) + 4m}}{\Gamma \left(-\sum_{j=1}^{8m} \beta_j + 8(H - \frac{1}{2} - \gamma) + 8m \right)^{1/2}}. \]
(5.11)

Note that \(\| \varphi_e \|_{L^1(R^d)} = 1. \)
Altogether, we see that
\[E \left[||I_2^\varepsilon(\theta', \theta)||^2 \right] \leq \left(\frac{\theta - \theta'}{\theta\theta'} \right)^{2\gamma} \theta^{2(H - \frac{1}{2} - \gamma)} \left(\sum_{m=1}^{\infty} d^{m+1} C_m \left\| \varphi_\varepsilon \right\|_{L^1(\mathbb{R}^d)}^m A_m^\gamma(H, d, |T|)^{1/4} \right)^2. \]

So we can find a constant \(C > 0 \) such that
\[\sup_{\varepsilon > 0} E \left[||I_2^\varepsilon(\theta', \theta)||^2 \right] \leq C \left(\frac{\theta - \theta'}{\theta\theta'} \right)^{2\gamma} \theta^{2(H - \frac{1}{2} - \gamma)} \]
for \(\gamma \in (0, H) \) provided that \(H < \frac{1}{2(3d - 1)} \). It is easy to see that we can choose \(\gamma \in (0, H) \) such that there is a suitably small \(\beta \in (0, 1/2) \), \(0 < \beta < \gamma < H < 1/2 \) so that it follows from the proof of Lemma A.4 that
\[\int_0^t \int_0^t \left| \frac{\theta - \theta'}{\theta\theta'} \right|^{2\gamma} \left| \theta - \theta' \right|^{-1 - 2\beta} d\theta' d\theta < \infty, \quad (5.12) \]
for every \(t \in (0, T] \).

We now turn to the term \(I_5^\varepsilon(\theta', \theta) \). Observe that term \(I_5^\varepsilon(\theta', \theta) \) is the product of two terms, where the first one will simply be bounded uniformly in \(\theta', t \in [0, T] \) under expectation. This can be shown by meticulously the same steps as we did for \(I_2^\varepsilon(\theta', \theta) \) and observing that in virtue of Proposition 3.3 with \(\varepsilon_j = 0 \) for all \(j \) the singularity in \(\theta \) vanishes.

Again Girsanov’s theorem, Cauchy-Schwarz inequality several times and Lemma 5.3 lead to
\[E[||I_5^\varepsilon(\theta', \theta)||^2] \leq C \left[\int_0^T \sum_{m=1}^{\infty} \prod_{l=1}^{d} \varphi_\varepsilon(x + B_{s_l}^H)ds_m \cdots ds_1 \right]_{L^8(\Omega, \mathbb{R}^{d\times d})}^2 \times \left[\sum_{m=1}^{\infty} \prod_{l=1}^{d} \varphi_\varepsilon(x + B_{s_l}^H)K_H(s_m, \theta'ds_m \cdots ds_1 \right]_{L^4(\Omega, \mathbb{R}^{d\times d})}, \]
where \(C > 0 \) denotes an upperbound obtained from Lemma 5.3.

Again, we have
\[E[||I_5^\varepsilon(\theta', \theta)||^2] \leq C \left(1 + \sum_{m=1}^{\infty} \sum_{m=1}^{d} \sum_{i,j=1}^{d} \sum_{l=1}^{d} \int_{\Delta_{n,1}} \frac{\partial}{\partial x_{i,j}} \varphi_\varepsilon^{(l_{m-1})} (x + B_{s_l}^H) ds_m \cdots ds_1 \right]_{L^8(\Omega, \mathbb{R})}^2 \times \left(\sum_{m=1}^{\infty} \sum_{m=1}^{d} \sum_{i,j=1}^{d} \sum_{l=1}^{d} \int_{\Delta_{n,1}} \frac{\partial}{\partial x_{i,j}} \varphi_\varepsilon^{(l_{m-1})} (x + B_{s_l}^H) ds_m \cdots ds_1 \right)_{L^4(\Omega, \mathbb{R})}^2, \]
Using exactly the same reasoning as for $I_2^\varepsilon(\theta', \theta)$ we see that the first factor can be bounded by some finite constant C depending on H, d, T, i.e.

$$E[\|I_3^\varepsilon(\theta', \theta)\|^2] \leq C \left(\sum_{m=1}^\infty \sum_{i,j=1}^d \sum_{l=1}^d \left\| \int_{\Delta_{\theta', \theta}^m} \frac{\partial}{\partial x_i} \varphi_\varepsilon^{(i)}(x + B^{H}_{s_1}) \cdots \frac{\partial}{\partial x_j} \varphi_\varepsilon^{(l)}(x + B^{H}_{s_m}) K_H(s_m, \theta') ds_m \cdots ds_1 \right\|_{L^4(\mathbb{R}, \mathbb{R})}^2 \right).$$

As before, we pay attention to

$$J_3^\varepsilon(\theta', \theta) := \int_{\Delta_{\theta', \theta}^m} \frac{\partial}{\partial x_i} \varphi_\varepsilon^{(i)}(x + B^{H}_{s_1}) \cdots \frac{\partial}{\partial x_j} \varphi_\varepsilon^{(l)}(x + B^{H}_{s_m}) K_H(s_m, \theta') ds_m \cdots ds_1.$$

(5.13)

We can express $(J_3^\varepsilon(\theta', \theta))^4$ as a sum of, at most, 2^{8m} summands of length $4m$ of the form

$$\int_{\Delta_{\theta', \theta}^m} g_1^\varepsilon(B^{H}_{s_1}) \cdots g_{4m}^\varepsilon(B^{H}_{s_{4m}}) ds_{4m} \cdots ds_1,$$

(5.14)

where for each $l = 1, \ldots, 4m$,

$$g_l^\varepsilon(B^{H}) \in \left\{ \frac{\partial}{\partial x_i} \varphi_\varepsilon^{(i)}(x + B^{H}), \frac{\partial}{\partial x_j} \varphi_\varepsilon^{(l)}(x + B^{H}) K_H(\cdot, \theta'), i, j = 1, \ldots, d \right\},$$

where the factor $K_H(\cdot, \theta')$ is repeated four times in the integrand of (5.14). Now we can simply apply Proposition 3.3 with $k = 1$ and $\sum_{j=1}^{4m} \varepsilon_j = 4$ in order to get

$$E[(J_3^\varepsilon(\theta', \theta))^4] \leq \theta^{4(H-\frac{1}{2})} C^{4m} \|\varphi_\varepsilon\|_{L^4(\mathbb{R}, \mathbb{R})}^{4m} A_0^0(H, d, |\theta - \theta'|),$$

whenever $H < \frac{1}{2(3d-1)}$ where $A_0^0(H, d, |\theta - \theta'|)$ is defined as in (5.11) by inserting $\gamma = 0$. As a result,

$$E[|I_3^\varepsilon(\theta', \theta)|^2] \leq \theta^{2(H-\frac{1}{2})} \left(\sum_{m=1}^\infty d^{m+1} C^m \|\varphi_\varepsilon\|_{L^4(\mathbb{R}, \mathbb{R})}^m A_0^0(H, d, |\theta - \theta'|)^{1/4} \right)^2.$$

Since the exponent of $|\theta - \theta'|$ appearing in $A_0^0(H, d, |\theta - \theta'|)$ is strictly positive by assumption, we can find a small enough $\delta > 0$ and a constant $C := C_{H,d,T} > 0$ such that

$$\sup_{\varepsilon > 0} E[|I_3^\varepsilon(\theta', \theta)|^2] \leq C |\theta|^{2(H-\frac{1}{2})} |\theta - \theta'|^\delta$$

provided $H < \frac{1}{2(3d-1)}$. Then again, it is easy to see that we can choose $\beta \in (0, 1/2)$ small enough so that it follows from the proof of Lemma A.4 that

$$\int_0^t \int_0^t |\theta|^{2(H-\frac{1}{2})} |\theta - \theta'|^{\beta - 1 - 2\beta} d\theta' d\theta < \infty,$$

(5.15)

for every $t \in [0, T]$.

Altogether, taking a suitable β so that \((5.7)\), \((5.12)\) and \((5.15)\) are finite, we have

$$\sup_{\varepsilon > 0} \int_0^t \int_0^t E\left[\|D_\theta X^\varepsilon_t - D_\theta X^\varepsilon_s\|^2\right] d\theta' d\theta < \infty.$$

Similar computations show that

$$\sup_{\varepsilon > 0} \|D \cdot X^\varepsilon_t\|_{L^2(\Omega; [0,T], \mathbb{R}^d \times \mathbb{R}^d)} < \infty.$$

□

Corollary 5.7. Let $\{X^\varepsilon_t\}_{\varepsilon > 0}$ the family of approximating solutions of \((5.1)\) in the sense of \((5.3)\). Then for every $t \in [0, T]$ and bounded continuous function $h : \mathbb{R}^d \to \mathbb{R}$ we have

$$h(X^\varepsilon_t) \xrightarrow[n \to \infty]{} h(E[X_t|\mathcal{F}_t])$$

strongly in $L^2(\Omega; \mathcal{F}_t)$. In addition, $E[X_t|\mathcal{F}_t]$ is Malliavin differentiable for every $t \in [0, T]$.

Proof. This is an immediate consequence of the relative compactness from Lemma 5.6 and by Lemma 5.5 we can identify the limit as being $E[X_t|\mathcal{F}_t]$ then the convergence holds for any bounded continuous functions as well. The Malliavin differentiability of $E[X_t|\mathcal{F}_t]$ is shown by taking $h = I_d$ and estimate \((5.6)\) together with \([42, \text{Proposition 1.2.3}]\). □

Finally, we can prove the main result of this section.

Proof of Theorem 5.1. It remains to prove that X_t is \mathcal{F}_t-measurable for every $t \in [0, T]$. It follows that there exists a strong solution in the usual sense that is Malliavin differentiable.

Indeed, let h be a globally Lipschitz continuous function, then by Corollary 5.7 we have that

$$\varphi(X_t^{1/n}) \to \varphi(E[X_t|\mathcal{F}_t]), \quad P - a.s.$$

as $n \to \infty$.

On the other hand, by Lemma 5.5 we also have

$$h(X_t^{1/n}) \to E[\varphi(X_t)|\mathcal{F}_t]$$

weakly in $L^2(\Omega; \mathcal{F}_t)$ as $n \to \infty$. By the uniqueness of the limit we immediately have

$$h(E[X_t|\mathcal{F}_t]) = E[h(X_t)|\mathcal{F}_t], \quad P - a.s.$$

which implies that X_t is \mathcal{F}_t-measurable for every $t \in [0, T]$.

Let us finally show that our strong solution has a continuous modification. We observe that

$$E[|X^\varepsilon_t - X^\varepsilon_s|^m] \leq C_{d,m}(E[\int_s^t \delta_0(X^\varepsilon_u) du]^m + E[|B^H_t - B^H_s|^m])$$

$$\leq C_{d,m}(E[\int_s^t \delta_0(X^\varepsilon_u) du]^m + |t-s|^{mH}).$$
On the other hand, we have that
\[E[\int_s^t \delta_0(X^s_x du)^m] \leq E[\int_s^t \delta_0(B^H u + x) du]^{2m} \frac{1}{2} E[X^2]^{1/2}, \]
where \(X \) is the Radon-Nikodym derivative as constructed in Proposition 5.4. Further, we know from (4.2) for a similar estimate that
\[E[\int_s^t \delta_0(B^H u + x) du]^{2m} \frac{1}{2} \leq C_{d,m,H} |t-s|^{2m(1-Hd)} \]
So
\[E[|X^s_x - X^t_x|^m] \leq C |t-s|^{2m(1-Hd)} + |t-s|^{m}, s \leq t, m \geq 1, \]
which entails by Kolmogorov’s Lemma the existence of a continuous modification of \(X^x \).

Proof of Proposition 5.2. Denote by \(Y \) the \(L^p \)-limit of the Dooleans-Dade exponentials. Using characteristic functions combined with Novikov’s condition, we see that
\[Y^x t - x = B^H t + L_t(Y^x) 1_d \]
is a fractional Brownian motion under a change of measure with respect to the density \(Y \). The latter enables us to proceed similarly to arguments in the proof of Lemma 5.5 and to verify that
\[E[Y^x t \exp \left\{ k \sum_{j=1}^k \left(\alpha_j, B^H t_j - B^H t_{j-1} \right) \right\}] = E[X^x t \exp \left\{ k \sum_{j=1}^k \left(\alpha_j, B^H t_j - B^H t_{j-1} \right) \right\}] \]
for all \(\{\alpha_j\}_{j=1}^k \subset \mathbb{R}^d, 0 = t_0 < ... < t_k = t, k \geq 1 \), where \(X^x \) denotes the constructed strong solution of our main theorem. This allows us conclude that both solutions must coincide a.e.

APPENDIX A. TECHNICAL RESULTS

The following result which is due to [10, Theorem 1] provides a compactness criterion for subsets of \(L^2(\Omega) \) using Malliavin calculus.

Theorem A.1. Let \(\{\Omega, A, P\} ; H \) be a Gaussian probability space, that is \((\Omega, A, P) \) is a probability space and \(H \) a separable closed subspace of Gaussian random variables of \(L^2(\Omega) \), which generate the \(\sigma \)-field \(A \). Denote by \(D \) the derivative operator acting on elementary smooth random variables in the sense that
\[D(f(h_1, \ldots, h_n)) = \sum_{i=1}^n \partial_i f(h_1, \ldots, h_n) h_i, h_i \in H, f \in C^\infty(\mathbb{R}^n). \]
Further let \(D^{1,2} \) be the closure of the family of elementary smooth random variables with respect to the norm
\[\|F\|_{1,2} := \|F\|_{L^2(\Omega)} + \|DF\|_{L^2(\Omega; H)} \]
Assume that \(C \) is a self-adjoint compact operator on \(H \) with dense image. Then for any \(c > 0 \) the set
\[G = \left\{ G \in D^{1,2} : \|G\|_{L^2(\Omega)} + \|C^{-1} DG\|_{L^2(\Omega; H)} \leq c \right\} \]
is relatively compact in $L^2(\Omega)$.

In order to formulate compactness criteria useful for our purposes, we need the following technical result which also can be found in [10].

Lemma A.2. Let $v_s, s \geq 0$ be the Haar basis of $L^2([0, T])$. For any $0 < \alpha < 1/2$ define the operator A_α on $L^2([0, T])$ by

$$A_\alpha v_s = 2^{k\alpha} v_s, \text{ if } s = 2^k + j$$

for $k \geq 0, 0 \leq j \leq 2^k$ and

$$A_\alpha 1 = 1.$$

Then for all β with $\alpha < \beta < (1/2)$, there exists a constant c_1 such that

$$\|A_\alpha f\| \leq c_1 \left\{ \|f\|_{L^2([0, T])} + \left(\int_0^T \int_0^T \frac{|f(t) - f(t')|^2}{|t - t'|^{1+2\beta}} dt dt' \right)^{1/2} \right\}.$$

A direct consequence of Theorem A.1 and Lemma A.2 is now the following compactness criteria.

Corollary A.3. Let a sequence of F_T-measurable random variables $X_n \in D^{1,2}, n = 1, 2, ..., $ be such that there exists a constant $C > 0$ with

$$\sup_n E[\|X_n\|^2] \leq C,$$

$$\sup_n E\left[\|D_t X_n\|^2_{L^2([0, T])} \right] \leq C$$

and there exists a $\beta \in (0, 1/2)$ such that

$$\sup_n \int_0^T \int_0^T E\left[\|D_t X_n - D_{t'} X_n\|^2_{L^2([0, T])} \right] \frac{dt dt'}{|t - t'|^{1+2\beta}} < \infty$$

where $\| \cdot \|$ denotes any matrix norm.

Then the sequence $X_n, n = 1, 2, ...$, is relatively compact in $L^2(\Omega)$.

For the use of the above result we will need to exploit the following technical results which are extracted from [6].

Lemma A.4. Let $H \in (0, 1/2)$ and $t \in [0, T]$ be fixed. Then, there exists a $\beta \in (0, 1/2)$ such that

$$\int_0^t \int_0^t \frac{|K_H(t, \theta') - K_H(t, \theta)|^2}{|\theta' - \theta|^{1+2\beta}} d\theta d\theta' < \infty. \quad (A.1)$$

Proof. Let $\theta, \theta' \in [0, t], \theta' < \theta$ be fixed. Write

$$K_H(t, \theta) - K_H(t, \theta') = c_H \left[f_t(\theta) - f_t(\theta') + \left(\frac{1}{2} - H \right) \left(g_t(\theta) - g_t(\theta') \right) \right],$$

where $f_t(\theta) := (\frac{t}{\beta})^{H-\frac{1}{2}} (t - \theta)^{H-\frac{1}{2}}$ and $g_t(\theta) := \int_0^t \frac{f_u(\theta)}{u} du, \theta \in [0, t]$.

We will proceed to estimating $K_H(t, \theta) - K_H(t, \theta')$. First, observe the following fact,

$$\frac{y^{-\alpha} - x^{-\alpha}}{(x - y)^\gamma} \leq C y^{-\alpha - \gamma}$$
for every \(0 < y < x < \infty\) and \(\alpha := (\frac{1}{2} - H) \in (0, 1/2)\) and \(\gamma < \frac{1}{2} - \alpha\). This implies

\[
f_t(\theta) - f_t(\theta') = \left(\frac{t}{\theta}(t - \theta)\right)^{H - \frac{1}{2}} - \left(\frac{t}{\theta'}(t - \theta')\right)^{H - \frac{1}{2}}
\leq C \frac{t}{\theta}(t - \theta)^{H - \frac{1}{2} - \gamma} t^{2\gamma} (\theta - \theta')^\gamma
\leq C \frac{(\theta - \theta')^\gamma}{(\theta')^\gamma} (t - \theta)^{H - \frac{1}{2} - \gamma}
\leq C \frac{(\theta - \theta')^\gamma}{(\theta')^\gamma} \theta^{H - \frac{1}{2} - \gamma} (t - \theta)^{H - \frac{1}{2} - \gamma}.
\]

Further,

\[
g_t(\theta) - g_t(\theta') = \int_\theta^t \frac{f_u(\theta) - f_u(\theta')}{u} du - \int_\theta^t \frac{f_u(\theta')}{u} du
\leq \int_\theta^t \frac{f_u(\theta) - f_u(\theta')}{u} du
\leq C \frac{(\theta - \theta')^\gamma}{(\theta')^\gamma} \int_\theta^t \frac{(u - \theta)^{H - \frac{1}{2} - \gamma}}{u} du
\leq C \frac{(\theta - \theta')^\gamma}{(\theta')^\gamma} \theta^{H - \frac{1}{2} - \gamma} \int_1^\infty \frac{(u - 1)^{H - \frac{1}{2} - \gamma}}{u} du
\leq C \frac{(\theta - \theta')^\gamma}{(\theta')^\gamma} \theta^{H - \frac{1}{2} - \gamma} \leq C \frac{(\theta - \theta')^\gamma}{(\theta')^\gamma} \theta^{H - \frac{1}{2} - \gamma} (t - \theta)^{H - \frac{1}{2} - \gamma}.
\]

As a result, we have for every \(\gamma \in (0, H)\), \(0 < \theta' < \theta < t < T\),

\[
(K_H(t, \theta) - K_H(t, \theta'))^2 \leq C_{H,T} \frac{(\theta - \theta')^{2\gamma}}{(\theta')^{2\gamma}} \theta^{2H - 1 - 2\gamma} (t - \theta)^{2H - 1 - 2\gamma},
\]

for some constant \(C_{H,T} > 0\) depending only on \(H\) and \(T\).
Thus

\[
\int_0^t \int_0^\theta \frac{(K_H(t, \theta) - K_H(t, \theta'))^2}{|\theta - \theta'|^{1+2\beta}} d\theta' d\theta \\
\leq C \int_0^t \int_0^\theta |\theta - \theta'|^{-1-2\beta+2\gamma} |\theta'^{-2\gamma}(t - \theta)^{2H-1-2\gamma} d\theta' d\theta \\
= C \int_0^t \theta^{2H-1-4\gamma} (t - \theta)^{2H-1-2\gamma} \int_0^\theta |\theta - \theta'|^{-1-2\beta+2\gamma} (\theta')^{-2\gamma} d\theta' d\theta \\
= C \int_0^t \theta^{2H-1-4\gamma} (t - \theta)^{2H-1-2\gamma} \frac{\Gamma(-2\beta + 2\gamma)}{\Gamma(-2\beta + 1)} \theta^{-2\beta} d\theta \\
\leq C \int_0^t \theta^{2H-1-4\gamma-2\beta} (t - \theta)^{2H-1-2\gamma} d\theta \\
= C \frac{\Gamma(2H - 2\gamma) \Gamma(2H - 4\gamma - 2\beta)}{\Gamma(4H - 6\gamma - 2\beta)} t^{4H-6\gamma-2\beta-1} < \infty,
\]
for appropriately chosen small γ and β.

On the other hand, we have that

\[
\int_0^t \int_0^\theta \frac{(K_H(t, \theta) - K_H(t, \theta'))^2}{|\theta - \theta'|^{1+2\beta}} d\theta' d\theta \\
\leq C \int_0^t \theta^{2H-1-4\gamma} (t - \theta)^{2H-1-2\gamma} \int_0^\theta |\theta - \theta'|^{-1-2\beta+2\gamma} (\theta')^{2\gamma} d\theta' d\theta \\
\leq C \int_0^t \theta^{2H-1-6\gamma} (t - \theta)^{2H-1-2\gamma} \int_0^\theta |\theta - \theta'|^{-1-2\beta+2\gamma} d\theta' d\theta \\
= C \int_0^t \theta^{2H-1-6\gamma} (t - \theta)^{2H-1-2\beta} d\theta \\
\leq Ct^{4H-6\gamma-2\beta-1}.
\]

Hence

\[
\int_0^t \int_0^\theta \frac{(K_H(t, \theta) - K_H(t, \theta'))^2}{|\theta - \theta'|^{1+2\beta}} d\theta' d\theta < \infty.
\]

\[\square\]

Lemma A.5. If $H < \frac{1}{2(1+d)}$ we have that

\[
I := (2m)! \int_{T_m(0,1)}^{2m} \prod_{j=1}^{2m} \gamma_{-\frac{1}{2}-H, \frac{1}{2}-H} (1, u_j) \left(\det \text{Cov} \left(B^{H,1}_{u_1}, \ldots, B^{H,1}_{u_{2m}} \right) \right)^{-\frac{d}{2}} d\mu \leq C_{H,d} m!^{2H(1+d)},
\]
for some constant $C_{H,d}$ depending only on H and $d.$
Proof. We have that

\[I = (2m)! \int_{T_{2m}(0,1)} \prod_{j=1}^{2m} \gamma_{\frac{1}{2}-H,\frac{1}{2}-H} (1, u_j) \left(\det \text{Cov} \left(B_{u_1}^{H,1}, \ldots, B_{u_{2m}}^{H,1} \right) \right)^{-\frac{d}{2}} du \\
\leq (2m)! \int_{T_{2m}(0,1)} \gamma_{\frac{1}{2}-H,\frac{1}{2}-H} (1, u_1) u_1^{-Hd} \prod_{j=2}^{2m} \gamma_{\frac{1}{2}-H,\frac{1}{2}-H} (1, u_j) (u_j - u_{j-1})^{-Hd} du \\
\leq (2m)! \int_0^1 \int_0^{u_2} \cdots \int_0^{u_{2m}} \left(\gamma_H (1, u_2) \prod_{j=3}^{2m} \gamma_{\frac{1}{2}-H,\frac{1}{2}-H} (1, u_j) (u_j - u_{j-1})^{-Hd} \right) \\
\times \left(\int_0^{u_2} \gamma_{\frac{1}{2}-H,\frac{1}{2}-H} (1, u_1) u_1^{-Hd} (u_2 - u_1)^{-Hd} du_1 \right) du_2 \cdots du_{2m}. \\
\]

The inner integral can be bounded by

\[\int_0^{u_2} \gamma_{\frac{1}{2}-H,\frac{1}{2}-H} (1, u_1) u_1^{-Hd} (u_2 - u_1)^{-Hd} du_1 \\
= u_2^{\frac{3}{2}-2Hd-H} \int_0^1 \gamma_{-Hd,\frac{1}{2}+H(1+d)} (1, u_1) (1 - u_2u_1)^{-\frac{1}{2}-H} du_1 \\
\leq u_2^{\frac{3}{2}-2Hd-H} \int_0^1 \gamma_{-\frac{1}{2}-H(1+d),\frac{1}{2}+H(1+d)} (1, u_1) du_1 \\
= u_2^{\frac{3}{2}-2Hd-H} B \left(\frac{1}{2} - H (1 + d), \frac{3}{2} - H (1 + d) \right), \]

where we have used that \((1 - u_2u_1)^{-\frac{1}{2}-H} \leq (1 - u_1)^{-\frac{1}{2}-H}\). Hence,

\[I \leq (2m)! \int_0^1 \int_0^{u_2} \cdots \int_0^{u_3} \left(\gamma_{\frac{1}{2}-H,\frac{1}{2}-H} (1, u_1) \prod_{j=3}^{2m} \gamma_{\frac{1}{2}-H,\frac{1}{2}-H} (1, u_j) (u_j - u_{j-1})^{-Hd} \right) \\
\times \left(\int_0^{u_3} \gamma_{\frac{1}{2}-H,2-2Hd-2H} (1, u_2) (u_3 - u_2)^{-Hd} du_2 \right) du_3 \cdots du_{2m} \\
\times B \left(\frac{1}{2} - H (1 + d), \frac{3}{2} - H (1 + d) \right). \]

The inner integral can be bounded by

\[\int_0^{u_3} \gamma_{\frac{1}{2}-H,2-2Hd-2H} (1, u_2) (u_3 - u_2)^{-Hd} du_2 \\
= u_3^{3-3Hd-2H} \int_0^1 \gamma_{-Hd,2-2Hd-2H} (1, u_2) (1 - u_3u_2)^{-\frac{1}{2}-H} du_2 \\
\leq u_3^{3-3Hd-2H} \int_0^1 \gamma_{-\frac{1}{2}-H(1+d),2-2Hd-2H} (1, u_2) du_2 \\
= u_3^{3-3Hd-2H} B \left(\frac{1}{2} - H (1 + d), 3 - 2H (1 + d) \right). \]
and we get

\[
\mathcal{I} \leq (2m)! \prod_{j=1}^{2m} \mathcal{B} \left(\frac{1}{2} - H \left(1 + d \right), j \left(\frac{3}{2} - H \left(1 + d \right) \right) \right)
\]

\[
= (2m)! \prod_{j=1}^{2m} \frac{\Gamma \left(\frac{3}{2} - H \left(1 + d \right) \right) \Gamma \left(\frac{3}{2} - H \left(1 + d \right) \right)}{\Gamma \left(\frac{1}{2} - H \left(1 + d \right) + 2m \left(\frac{3}{2} - H \left(1 + d \right) \right) \right)}
\]

\[
= \left(\frac{1}{2} - H \left(1 + d \right) \right)^{2m} \frac{\Gamma \left(\frac{3}{2} - H \left(1 + d \right) \right) \Gamma \left(\frac{3}{2} - H \left(1 + d \right) \right) \Gamma \left(\frac{1}{2} - H \left(1 + d \right) + 2m \left(\frac{3}{2} - H \left(1 + d \right) \right) \right)}{\Gamma \left(\frac{1}{2} - H \left(1 + d \right) + 2m \left(\frac{3}{2} - H \left(1 + d \right) \right) \right)}
\]

\[
= \left(\frac{1}{2} - H \left(1 + d \right) \right)^{2m} \frac{\Gamma \left(\frac{3}{2} - H \left(1 + d \right) \right) \Gamma \left(\frac{3}{2} - H \left(1 + d \right) \right) \Gamma \left(\frac{1}{2} - H \left(1 + d \right) + 2m \left(\frac{3}{2} - H \left(1 + d \right) \right) \right)}{\Gamma \left(\frac{1}{2} - H \left(1 + d \right) + 2m \left(\frac{3}{2} - H \left(1 + d \right) \right) \right)}
\]

\[
= \left(\frac{1}{2} - H \left(1 + d \right) \right)^{2m} \frac{\Gamma \left(\frac{3}{2} - H \left(1 + d \right) \right) \Gamma \left(\frac{3}{2} - H \left(1 + d \right) \right) \Gamma \left(\frac{1}{2} - H \left(1 + d \right) + 2m \left(\frac{3}{2} - H \left(1 + d \right) \right) \right)}{\Gamma \left(\frac{1}{2} - H \left(1 + d \right) + 2m \left(\frac{3}{2} - H \left(1 + d \right) \right) \right)}
\]

Next, taking into account the following asymptotics, see Wendel [51],

\[
\Gamma \left(m + \lambda \right) \sim m^\lambda \Gamma \left(m \right),
\]

\[
\Gamma \left(\lambda m + 1 \right) \sim \lambda^\frac{1}{2} \left(2\pi \right)^{\frac{1}{2}} \lambda^{\lambda m \frac{1-\lambda}{2}} \left(m! \right)^\lambda,
\]
we get that

\[
\Gamma \left(2m + 1 \right) \sim 2^{\frac{1}{2}} (2\pi)^{-\frac{1}{2}} 4^m m^{-\frac{1}{2}} (m!)^2 ,
\]

\[
\Gamma \left(\frac{1}{2} + H (1 + d) \right) + m (3 - 2H (1 + d)) + 1 \right) \sim (m (3 - 2H (1 + d)) + 1)^{-\left(\frac{1}{2} + H (1 + d) \right)} \\
\times \Gamma \left(m (3 - 2H (1 + d)) + 1 \right) \\
\sim C_{H,d} K_{H,d}^m (m)^{-\frac{3}{2}} (m!)^{3 - 2H (1 + d)} ,
\]

\[
\Gamma \left(-\frac{2}{3 - 2H (1 + d)} + 2m + 1 \right) \sim (2m + 1)^{-\frac{3 - 2H (1 + d)}{2}} \Gamma (2m + 1) \\
\sim C'_{H,d} (K'_{H,d})^m (m)^{-\frac{3 - 2H (1 + d)}{2}} (m!)^{2H (1 + d)} ,
\]

which yields

\[
\frac{\Gamma (2m + 1) \Gamma \left(-\frac{2}{3 - 2H (1 + d)} + 2m + 1 \right)}{\Gamma \left(\frac{1}{2} + H (1 + d) \right) + m (3 - 2H (1 + d)) + 1} \sim C''_{H,d} (K''_{H,d})^m (m)^{-\frac{1 + 2H (1 + d)}{6 - 4m (1 + d)}} (m!)^{2H (1 + d)} ,
\]

and the result follows.

\[\square\]

REFERENCES

