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Abstract	

At	a	large	scale,	the	human	brain	is	organized	into	modules	of	interconnected	regions,	

some	of	which	play	opposing	roles	in	supporting	cognition.	In	particular,	the	Default-

Mode	Network	(DMN)	has	been	linked	to	operations	on	internal	representations,	while	

task-positive	networks	are	recruited	during	interactions	with	the	external	world.	Here,	

we	test	the	hypothesis	that	the	generation	of	durable	long-term	memories	depends	on	

optimal	recruitment	of	such	antagonistic	large-scale	networks.	As	long-term	memory	

consolidation	is	a	process	ongoing	for	days	and	weeks	after	an	experience,	we	propose	

that	individuals	characterized	by	strong	decoupling	of	the	DMN	and	task-positive	

networks	at	rest	operate	in	a	mode	beneficial	for	the	long-term	stabilization	of	episodic	

memories.	To	capture	network	connectivity	unaffected	by	transient	task	demands	and	

representative	of	brain	behavior	outside	an	experimental	setting,	87	participants	were	

scanned	during	rest	before	performing	an	associative	encoding	task.	To	link	individual	

resting-state	functional	connectivity	patterns	to	time-dependent	memory	consolidation	

processes,	participants	were	given	an	unannounced	memory	test,	either	after	a	brief	

interval	or	after	a	retention	period	of	~6	weeks.	We	found	that	participants	with	a	

resting	state	characterized	by	high	synchronicity	in	a	DMN-centered	network	system	

and	low	synchronicity	between	task-positive	networks	showed	superior	recollection	

weeks	after	encoding.	These	relationships	were	not	observed	for	information	probed	

only	hours	after	encoding.	Furthermore,	the	two	network	systems	were	found	to	be	

anticorrelated.	Our	results	suggest	that	this	memory-relevant	antagonism	between	DMN	

and	task-positive	networks	is	maintained	through	complex	regulatory	interactions	

between	the	systems.	
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1.	Introduction	

Episodic	long-term	memory	consolidation	is	a	process	that	progresses	over	time,	

starting	immediately	following	the	encoding	of	an	event	and	continuing	through	days	

and	nights,	months	and	possibly	years	(Dudai	et	al.,	2015).	Recent	efforts	in	human	

neuroimaging	have	shed	light	on	brain	processes	during	the	initial	post-encoding	

interval	that	are	relevant	for	early	consolidation	and	subsequent	memory	performance,	

either	by	investigating	post-stimulus	activity	time-locked	to	the	offset	of	encoding	

events	(Ben-Yakov	et	al.,	2014,	2013;	Ben-Yakov	and	Dudai,	2011),	or	intrinsic	network	

activity	during	post-encoding	rest	periods	(Schlichting	and	Preston,	2014;	Stevens	et	al.,	

2010;	Tambini	et	al.,	2010;	Tambini	and	Davachi,	2013;	van	Kesteren	et	al.,	2010).	These	

studies	have	elegantly	demonstrated	that	the	representational	state	of	memory	traces	

immediately	following	encoding	is	linked	to	retrieval	success	after	short	periods	of	

retention.		

There	is	a	however	also	a	strong	consensus	that	systems	consolidation	–	i.e.	the	

transformation	of	labile	representations	into	enduring	long-term	memories	(Nadel	and	

Moscovitch,	1997;	Squire	and	Alvarez,	1995)		–	depends	on	repeated	replay,	and	thus	

strengthening,	of	internal	representations	over	extended	periods	of	time,	involving	

periods	of	sleep	(Diekelmann	and	Born,	2010;	Stickgold,	2013).	On	a	neuronal	level,	this	

repeated	accessing	of	labile	representations	is	suggested	to	occur	through	recurrent	

communication	during	sleep	and	awake	rest	between	the	hippocampus	and	neocortical	

networks	(Dudai	et	al.,	2015).	Much	evidence	show	that	such	neocortical	networks	can	

exist	in	antagonistic	relationships:	introspection	and	the	recruitment	of	networks	

involved	in	internally	oriented	cognition	suppresses	networks	supporting	interactions	

with	external	representations,	and	vice	versa	(Daselaar	et	al.,	2009;	Kim,	2011;	Raichle	

et	al.,	2001).	Efficient	decoupling	between	the	brain	systems	recruited	during	the	two	

attentional	modes	–	internal	mentation	and	operations	on	external	stimuli	–	has	been	
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associated	with	optimal	behavioral	performance	on	a	variety	of	tasks	(Eichele	et	al.,	

2008;	Fox	et	al.,	2005;	Kelly	et	al.,	2008).	Thus,	an	intriguing	hypothesis	is	that	the	

prolonged	accessing	of	internal	representations	–	thought	to	underlie	successful	

systems	consolidation	–	is	supported	by	the	combined	up-	and	down-regulation	of	

antagonistic	neocortical	systems.		

A	strong	neocortical	candidate	for	long-term	memory-relevant	processing	is	the	

Default-Mode	Network	(DMN),	as	it	is	closely	connected	to	the	medial	temporal	lobes	

(MTL;	Buckner	et	al.,	2008)	and	is	functionally	coupled	to	processes	involved	in	

attention	to	internal	representations	(Andrews-Hanna	et	al.,	2014;	Konishi	et	al.,	2015;	

Smallwood	et	al.,	2013;	Spreng	et	al.,	2014).	Moreover,	the	retrieval	of	remote	memories	

recruits	DMN	nodes	more	strongly	than	does	retrieval	of	information	encoded	the	same	

day	(Frankland	and	Bontempi,	2005;	Gais	et	al.,	2007;	Takashima	et	al.,	2007;	Wiltgen	et	

al.,	2004),	suggesting	that	DMN	regions	are	particularly	central	in	accessing	information	

after	prolonged	retention	intervals.	The	DMN	is	commonly	found	to	be	decoupled	with	

sensory	and	perceptual	brain	regions	(Sadaghiani	et	al.,	2015;	Schooler	et	al.,	2011),	as	

well	as	the	external	attention	system	(EAS)	consisting	of	several	task-positive	networks	

including	the	dorsal	attention,	the	cingulo-opercular,	and	the	fronto-parietal	network	

(Anticevic	et	al.,	2012;	Fox	et	al.,	2005).	From	this,	we	would	expect	that	individuals	

recruiting	the	DMN	while	at	the	same	time	disengaging	task-positive	networks	operate	

in	a	mode	beneficial	for	the	long-term	stabilization	of	episodic	memories.	

In	the	present	study,	using	functional	magnetic	resonance	imaging	(fMRI)	and	an	

individual	differences	approach,	we	investigate	how	brain	network	communication	may	

support	the	formation	of	durable	long-term	memories.	Rather	than	focusing	on	post-

encoding	rest	periods	that	reflect	state-dependent	brain	processes	likely	active	only	

until	a	new	encoding	situation	is	encountered,	we	aimed	at	capturing	task-independent	

network	interactions	reflective	of	the	brain’s	default	behavior	outside	an	experimental	
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setting.	We	therefore	measured	rsFC	pre-encoding,	i.e.	before	two	groups	of	participants	

performed	an	associative	encoding	task	followed	by	an	unannounced	memory	test.	For	

one	group,	we	estimated	episodic	memory	capacity	over	commonly	used	short	retention	

intervals	(hours)	between	encoding	and	test.	Crucially,	to	investigate	associations	

between	brain	network	interactions	and	capacity	to	form	durable	long-term	memories,	

we	used	a	delay	interval	of	several	weeks	in	the	second	group	of	participants.	As	the	

effect	of	encoding	and	retrieval	processes	on	performance	should	be	unaffected	by	

manipulations	of	retention	intervals,	this	made	it	possible	to	separate	connectivity	

patterns	enabling	efficient	consolidation	from	encoding	and	retrieval	influences.	
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2.	Materials	and	Methods	

2.1.	Participants	

Eighty-nine	participants	(female	n	=	60;	age	range	19.5	–	38.6;	mean	age	25.4)	gave	

written	informed	consent	and	took	part	in	the	study,	which	was	approved	by	the	

Regional	Ethical	Committee	of	South	Norway.	Participants	reported	no	history	of	

neurological	or	psychiatric	disorders,	chronic	illness,	premature	birth,	learning	

disabilities,	or	use	of	medicines	known	to	affect	nervous	system	functioning.	They	were	

further	required	to	be	right-handed,	speak	Norwegian	fluently	and	have	normal	or	

corrected	to	normal	hearing	and	vision.	Moreover,	participants	were	required	to	score	

≥26	on	the	Mini	Mental	State	Examination	(Folstein	et	al.,	1975),	and	have	a	Beck	

Depression	Inventory	(Beck	and	Steer,	1987)	score	≤16.	At	scanning	a	separate	clinical	

sequence	(T2-FLAIR)	was	included	for	neuroradiological	evaluation	by	a	

neuroradiologist,	and	the	scans	were	required	to	be	deemed	free	of	significant	injuries	

or	conditions.	One	person	was	excluded	due	to	an	incidental	MRI	finding,	and	one	due	to	

excessive	motion	(>1.5	mm)	during	the	resting	state	fMRI	(rsfMRI)	scan.	Participant	

demographics	are	summarized	in	Table	1.	

---	INSERT	TABLE	1	ABOUT	HERE	---	

	

2.2.	Experimental	design	

Participants	were	scanned	at	rest	(eyes	closed)	using	BOLD	fMRI	before	going	through	

two	fMRI	runs	of	an	incidental	memory-encoding	task.	Participants	were	explained	the	

task	verbally	and	did	not	go	through	any	practice	session	before	entering	the	scanner.	

All	participants	reported	staying	awake	throughout	the	scan.	For	50	participants	(short	

delay	group)	an	fMRI	test	session	followed	1.5	hours	after	the	last	encoding	trial.	The	
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remaining	37	participants	(long	delay	group)	were	given	the	memory	test	when	

returning	for	neuropsychological	testing	after	on	average	~6.5	weeks.	

The	memory	task	was	optimized	to	allow	for	the	investigation	of	individual	differences	

in	source	memory	performance,	i.e.,	the	ability	to	remember	a	previously	encountered	

item	together	with	information	about	the	encoding	context.	In	line	with	recent	

theoretical	accounts	of	source	memory,	our	conceptualization	of	source	memory	

considers	all	retained	information	about	the	encoding	context	as	relevant,	not	only	

information	about	time	and	space	(e.g.,	Ranganath	and	Ritchey,	2012).	During	encoding	

participants	went	through	100	trials	of	a	task	in	which	they	performed	simple	

evaluations	of	everyday	objects	and	items	(Figure	1A).	A	trial	had	the	following	

structure:	a	black	and	white	line	drawing	of	an	object	was	presented	on	the	screen	while	

a	female	voice	asked	either	“Can	you	eat	it?”	or	“Can	you	lift	it?”	Both	questions	were	

asked	equally	often	and	were	pseudorandomly	mixed	across	the	different	objects.	

Participants	were	instructed	to	produce	yes/no-responses	based	on	their	subjective	

evaluations	of	object/task-contingencies,	and	that	there	were	no	correct	responses	to	

the	task.	Importantly,	participants	did	not	know	that	they	were	part	of	a	memory	

experiment	and	would	be	tested	on	the	evaluated	material,	and	remained	ignorant	

about	this	until	just	before	the	test	session.		

---	INSERT	FIGURE	1	ABOUT	HERE	---	

During	test,	200	line	drawings	of	objects	were	presented;	100	of	these	had	been	shown	

and	evaluated	during	encoding	while	the	remaining	100	objects	were	new	(Figure	1B).	A	

test	trial	started	with	the	presentation	of	an	object	(old	or	new,	pseudorandomly	

picked)	and	the	question	“Have	you	seen	this	item	before?”	Participants	were	instructed	

to	respond	“Yes”	if	they	remembered	seeing	the	item	during	the	encoding	phase,	and	

“No”	otherwise.	If	the	participant	indicated	that	(s)he	remembered	seeing	the	object,	a	

new	question	followed:	“Can	you	remember	what	you	were	asked	to	do	with	the	item?”	
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A	“Yes”-response	to	this	question,	indicating	that	the	participant	also	remembered	the	

action	associated	with	the	object	during	encoding,	led	to	a	final	control	question:	“Were	

you	asked	to	eat	it	or	lift	it?”	Here,	the	participant	indicated	either	“Eat”	("I	evaluated	

whether	I	could	eat	the	item	during	the	encoding	phase)"	or	“Lift”	("I	evaluated	lifting	

the	item").	Note	that	the	specific	questions	asked	during	scanning	were	simplified	to	fit	

within	the	temporal	limits	of	the	paradigm,	but	that	all	participants	were	instructed	in	

detail	before	the	test	session	that	the	questions	pertained	to	the	item-action	evaluation	

performed	at	encoding.	The	task	has	also	been	described	in	Sneve	et	al.	(2015).		

A	participant’s	raw	source	memory	score	was	calculated	as	the	percentage	of	encoded	

items	that	were	recognized	with	correct	recollection	of	the	associated	encoding	action.		

Thus,	participants	had	to	correctly	recognize	an	item	(correct	“Yes”	response	to	test	

question	1),	state	that	they	remembered	the	associated	action	(“Yes”	response	to	test	

question	2),	and	explicitly	pick	the	correct	associated	action	(correct	response	to	

question	3)	for	that	item	to	fall	into	the	raw	source	memory	category.	A	corrected	

source	memory	score	was	calculated	from	the	raw	source	memory	score	by	subtracting	

the	number	of	times	a	participant	produced	a	wrong	source	response	(i.e.,	wrong	

response	to	test	question	3).	Here	we	assumed	that	guessing	behavior	would	produce	

correct/incorrect	responses	equally	often.	All	main	analyses	were	run	on	the	corrected	

source	memory	estimates,	but	results	using	raw	source	memory	estimates	produced	

similar	results	and	are	reported	in	the	Supplementary	Material.		

Signal	detection	theory	was	used	to	investigate	potential	differences	in	response	criteria	

(C)	between	the	two	groups,	i.e.	differences	in	the	tendency	to	characterize	a	stimulus	as	

new	or	old	as	a	factor	of	retention	interval	(Stanislaw	and	Todorov,	1999).	The	majority	

of	the	participants	(see	Supplementary	Table	1)	were	also	tested	on	three	subtests	of	

the	Wechslers	Adult	Intelligence	Scale	(WASI;	Wechsler,	1999):	Vocabulary,	Matrix	

Reasoning,	and	Digit	Span.	Individual	Vocabulary	and	Matrix	Reasoning	scores	were	t-
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standardized	before	being	used	as	covariates	in	control	analyses,	representing	central	

aspects	of	full	scale	IQ.	Individual	forward	and	backward	Digit	Span	results	were	

summed	into	one	score	per	participant,	representing	working	memory	performance.	

2.3.	MRI	scanning		

Imaging	was	performed	at	a	Siemens	Skyra	3T	MRI	unit	with	a	24-channel	head	coil.	For	

the	rsfMRI	scan,	43	slices	(transversal,	no	gap)	were	measured	using	T2*	BOLD	EPI	

(TR=2390ms;	TE=30ms;	flip	angle=90°;	voxel	size=3x3x3mm;	FOV=224x224;	

interleaved	acquisition;	GRAPPA=2).	The	rsfMRI	run	produced	150	volumes	and	lasted	

~6	minutes	which	has	been	shown	to	be	sufficient	to	produce	stable	connectivity	

measures	(Van	Dijk	et	al.,	2010).	Three	dummy	volumes	were	collected	at	the	start	of	

the	rsfMRI	scan	to	avoid	T1	saturation	effects	in	the	analyzed	data.	Additionally,	a	

standard	double-echo	gradient-echo	field	map	sequence	was	acquired	for	distortion	

correction	of	the	EPI	images.	Anatomical	T1-weighted	MPRAGE	images	consisting	of	176	

sagittally	oriented	slices	were	obtained	using	a	turbo	field	echo	pulse	sequence	(TR	=	

2300	msec,	TE	=	2.98	msec,	flip	angle	=	8°,	voxel	size	=	1	×	1	×	1	mm,	FOV=	256	×	256	

mm).		

2.4.	Pre-processing	and	parcellation	of	MRI	data	

Cortical	reconstruction	and	volumetric	segmentation	of	the	T1-weighted	scans	were	

performed	with	Freesurfer	5.3.	This	processing	included	segmentation	of	the	subcortical	

white	matter	and	deep	grey	matter	volumetric	structures	(including	the	hippocampus)	

(Fischl	et	al.,	2004a,	2002),	surface	inflation	(Fischl	et	al.,	1999a),	registration	to	a	

spherical	atlas	which	utilized	individual	cortical	folding	patterns	to	match	cortical	

geometry	across	subjects	(Fischl	et	al.,	1999b),	and	parcellation	of	the	cerebral	cortex	

into	units	based	on	gyral	and	sulcal	structure	(Desikan	et	al.,	2006;	Fischl	et	al.,	2004b).		
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RsfMRI-data	were	corrected	for	B0	inhomogeneity,	motion	and	slice	timing	corrected,	

and	smoothed	(5mm	FWHM)	in	volume	space	using	FSL	

(http://fsl.fmrib.ox.ac.uk/fsl/fslwiki).	Next,	FMRIB’s	ICA-based	Xnoiseifier	(FIX;	Salimi-

Khorshidi	et	al.,	2014)	was	used	to	auto-classify	noise	components	and	remove	them	

from	the	rsfMRI	data.	The	classifier	was	trained	on	a	scanner-specific	dataset	in	which	

resting	state	fMRI	data	from	16	participants	had	been	manually	classified	into	signal	and	

noise	components	(age	span	in	training	set:	18-40;	fMRI	acquisition	parameters	

identical	to	the	current	study).	Such	ICA-based	procedure	for	denoising	fMRI	data	has	

been	shown	to	effectively	reduce	motion-induced	variability,	outperforming	methods	

based	on	removing	motion	spikes	in	the	dataset	(Pruim	et	al.,	2015).	Motion	confounds	

(24	parameters)	were	regressed	out	of	the	data	as	a	part	of	the	FIX	routines.	Freesurfer-

defined	individually	estimated	anatomical	masks	of	cerebral	white	matter	(WM)	and	

cerebrospinal	fluid	/	lateral	ventricles	(CSF)	were	resampled	to	each	individual’s	

functional	space.	All	1mm3	anatomical	voxels	that	“constituted”	a	27mm3	functional	

voxel	had	to	be	labeled	as	WM	or	CSF	for	that	functional	voxel	to	be	considered	a	

functional	representation	of	non-cortical	tissue.	Following	FIX,	average	time	series	were	

extracted	from	functional	WM-	and	CSF-voxels,	and	were	regressed	out	of	the	FIX-

cleaned	4D	volume.	Following	recent	recommendations	about	noise	removal	from	

resting-state	data	(Hallquist	et	al.,	2013)	we	band-pass	filtered	the	data	(.009	-	.08Hz)	

after	regression	of	confound	variables.		

---	INSERT	FIGURE	2	ABOUT	HERE	---	

In	analyzing	the	rsfMRI	data,	we	took	advantage	of	Yeo	and	colleagues’	(Yeo	et	al.,	2011)	

cortical	parcellation	estimated	by	intrinsic	functional	connectivity	from	1000	

participants	and	made	available	in	Freesurfer’s	average	surface	space.	Details	about	the	

networks	are	presented	in	Figure	2A.	The	parcellation	scheme	consisted	of	17	bilateral	

networks	as	well	as	values	representing	the	estimated	confidence	of	each	surface	vertex	
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belonging	to	its	assigned	network.	Typically,	network	assignments	were	less	confident	

for	vertices	close	to	the	boundaries	between	two	networks	(Yeo	et	al.,	2011).	The	17-

network	parcellation	and	the	associated	confidence	map,	estimated	from	1000	

participants,	were	resampled	into	each	participant’s	surface	space	using	the	intersubject	

registration	created	during	Freesurfer’s	cortical	reconstruction	steps.	The	

individualized	parcellation/confidence	maps	were	then	converted	into	functional	

volume	space	using	a	projection	factor	of	0.5	from	the	estimated	white/gray	matter	

boundary	(i.e.,	half	way	into	the	cortical	sheet).	This	step	ensured	that	only	gray	matter	

dominated	voxels	were	included	in	the	volumetric	representations	of	the	networks.	

Each	network	and	its	confidence	map	were	thus	brought	from	the	surface	(vertex)	level	

to	the	volume	(voxel)	level.	Next,	in	volume	space	and	in	a	voxel-wise	fashion,	we	

extracted	pre-processed	rsfMRI	time	series	data	from	all	17	networks,	and	from	a	region	

of	interest	representing	the	two	hippocampi.	Finally,	we	estimated	connectivity	

between-	and	within	all	networks,	resulting	in	an	18x18	network	connectivity	matrix	

per	participant	(see	Figure	2B	for	a	representation	of	this	matrix	averaged	across	all	

participants).	Between-network	connectivity	was	calculated	as	the	average	Fisher	z-

transformed	correlation	(Silver	and	Dunlap,	1987)	between	all	voxels	in	two	networks	

weighted	by	the	product	of	each	pair	of	voxels’	normalized	confidence	values.	The	

normalization	involved	rescaling	of	confidence	values	to	fall	between	0	(lowest	

confidence)	and	1	(highest	confidence)	within	a	network,	ensuring	that	differences	in	

scaling	of	the	confidence	values	between	networks	did	not	influence	weighting	in	favor	

of	high-confidence	networks	(Yeo	et	al.,	2011).	To	summarize:	if	network	A	consisted	of	

N	voxels	and	network	B	consisted	of	M	voxels,	correlations	were	calculated	across	all	

NxM	voxel	combinations.	The	resulting	NxM	correlation	map	was	then	weighted	by	an	

NxM	confidence	map,	ensuring	that	voxels	strongly	associated	with	their	respective	

networks	contributed	the	most	to	the	connectivity	estimates.	Within-network	

connectivity	was	calculated	following	the	same	steps,	and	reflected	average	connectivity	
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within	a	network.	When	investigating	hippocampal	connectivity,	all	hippocampal	voxels	

were	equally	weighted	in	the	calculations.	

Temporal	signal-to-noise	ratios	(tSNR)	were	calculated	for	all	17	networks	and	the	

hippocampus.	As	expected,	the	Limbic	networks	(NW9	and	NW10)	showed	lower	tSNR	

than	the	other	networks	due	to	their	proximity	to	air-tissue	boundaries.	However,	all	

tSNR	values	in	all	networks	for	all	participants	were	within	or	above	the	ranges	

reported	in	similar	regions	by	authoritative	studies	(e.g.,	Yeo	et	al.,	2011;	see	

Supplementary	Figure	1).	

2.5.	Connectivity	analyses	

To	investigate	relationships	between	cortical	brain	network	connectivity	and	source	

memory	performance,	we	first	standardized	each	participant's	18x18	network	

connectivity	matrix	using	Matlab’s	zscore-function.	This	involved	converting	"raw"	

Fisher-transformed	connectivity	values	into	standard	deviation	units	above	or	below	

the	mean	connectivity	of	the	171	unique	edges	in	the	matrix,	and	allowed	comparisons	

across	participants	independent	of	individual	differences	in	absolute	connectivity	levels	

(see	Figure	2C	for	average	representations	of	these	matrices	in	the	two	groups;	

Supplementary	Figure	2	for	a	representation	of	differences	in	absolute	connectivity	

levels).	Such	standardization	of	individual	connectivity	measures	is	commonly	used	to	

minimize	the	influence	of	nuisance	variables	known	to	affect	individuals’	average	

connectivity	levels	(Yan	et	al.,	2013).	The	values	shown	in	Figure	2C	should	thus	be	

interpreted	as	connectivity	relative	to	individuals’	global	connectivity	levels,	that	is,	

negative	values	indicate	reduced	connectivity	relative	to	participant	baseline	and	not	

negative	correlations/anticorrelations.	Next,	relationships	between	standardized	rsFC	

and	source	memory	performance	were	calculated	separately	for	the	long	and	short-term	

memory	groups	using	Spearman's	rho,	producing	18x18	matrices	of	correlation	

coefficients	and	their	associated	p-values.	Significant	between-group	differences	in	
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correlation	coefficients	were	established	following	Fisher’s	r-to-z-transformation	

(shown	to	be	valid	for	Spearman's	rho	by	Myers	and	Sirois,	2006).	

To	control	for	multiple	comparisons,	we	used	random	permutation	testing	in	

combination	with	cluster-based	statistics,	as	described	in	(Han	et	al.,	2013).	The	method	

is	an	extension	of	the	Network-based	Statistics	method	(NBS;	Zalesky	et	al.,	2010),	and	

has	been	optimized	to	identify	clusters	of	connected	edges	in	brain	connectivity	graphs	

that	are	significantly	correlated	with	behavioral	measures.	As	NBS	clusters	form	in	

topological	and	not	physical	space,	the	specific	network	arrangement	in	the	connectivity	

matrix	does	not	affect	cluster	properties.	For	each	group	and	for	positive/negative	

correlations	separately,	we	established	the	extent	of	clusters	of	connected	edges	at	an	

uncorrected	threshold	of	p<.05.	This	corresponded	to	a	correlation	coefficient	stronger	

than	rho	±.28	in	the	short	delay	group	and	rho	±.325	in	the	long	delay	group.	Next,	we	

repeated	the	procedure	10.000	times	per	group,	randomly	permuting	the	behavioral	

data	while	keeping	the	connectivity	data	stationary	(i.e.,	in	adherence	with	the	

exchangeability	criterion	in	permutation	testing	(Nichols	and	Holmes,	2002)).	Finally,	

significance	levels	of	clusters	identified	in	the	empirical	data	were	estimated	from	the	

permuted	null	distribution	of	cluster	extents.	A	significant	effect	indicated	that	a	cluster	

of	connected	significant	correlations	was	larger	than	expected	due	to	chance	at	the	

family-wise	error	corrected	p<0.05	level,	however	not	that	any	specific	individual	

correlation	was	significant.	This	latter	aspect,	significant	corrected	single-edge	

correlations,	was	investigated	by	comparing	the	observed	relationships	to	the	95th	

percentile	of	the	permuted	distribution	of	single-edge	correlation	coefficients.	

In	additional	analyses,	we	used	alternative	cluster-forming	thresholds:	p	<	.01	(short	

delay	group	rho	±.36,	long	delay	group	rho	±.42),	and	p	<	.005	(short	delay	group	rho	

±.39,	long	delay	group	rho	±.45;	see	Supplementary	Figure	4).	
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3.	Results	

3.1.	Subsequent	memory	performance	after	short	and	long	delays	

In	the	short	delay	group,	on	average	50.4%	(range	24%-90%;	SD	15.6%)	of	the	encoded	

item-action	associations	were	remembered	with	source	information	following	

correction	for	wrong	recollection	responses.	Unsurprisingly,	the	long	delay	group	

remembered	less	(mean	corrected	source	memory:	8.7%;	range	-3%-28%;	SD	7.5%),	

but	at	the	group	level	still	retained	significant	amounts	(p	<	10-7)	of	relevant	information	

throughout	the	delay	period	(Supplementary	Table	1).	Analyses	on	the	signal	detection	

theory	response	criterion	C	showed	that	there	were	no	significant	differences	between	

the	groups	(p	=	.69)	in	the	propensity	to	report	recognition	of	the	test	item	(“yes”-

response	to	Test	question	1),	and	that	both	the	short	delay	group	(C=.52)	and	the	long	

delay	group	(C=.47)	were	slightly	conservative	(C>0,	p<10-6)	in	their	recognition	

judgments.	

---	INSERT	FIGURE	3	ABOUT	HERE	---	

3.2.	Relationship	between	rsFC	and	source	memory	capacity	after	short	and	

long	delays	

Following	standardization	of	each	participant's	connectivity	matrix,	we	correlated	

individual	differences	in	within-	and	between-network	connectivity	with	source	

memory	performance.	Correlation	coefficients	across	the	entire	18x18	connectivity	

matrix	are	shown	for	the	two	groups	in	Figure	3A.	At	a	single-edge	level,	one	edge	in	the	

long	delay	group	survived	correction	for	multiple	comparisons	through	permutation:	

pre-encoding	connectivity	between	the	Parietal	Memory	Network	(NW	11)	and	a	

subnetwork	of	the	DMN	(NW	15)	correlated	strongly	and	positively	with	source	

memory	capacity	after	retention	intervals	of	weeks	(rho	=	.56;	uncorrected	p	<	.0003).	

No	edges	survived	single-edge	correction	in	the	short	delay	group.	
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Figure	3B	shows	the	correlation	matrices	thresholded	at	the	cluster-forming	threshold	

(p	<	0.05).	Permutation	testing	was	used	to	establish	whether	the	extents	of	observed	

clusters	of	significant	connected	edges	were	due	to	chance.	Two	clusters	in	the	long	

delay	group	survived	correction:	a	15-edge	cluster	of	positive	correlations	(p	=	.016)	

and	a	15-edge	cluster	of	negative	correlations	(p	=	.018).	The	cluster	of	connected	

positive	correlations	included	edges	between	the	hippocampus,	the	DMN	(NW	15,	16),	

the	Parietal	Memory	Network	(NW	11),	the	Frontoparietal	Network	(NW	12,	13),	and	

Limbic	Networks	(NW	9,	10).	The	cluster	of	connected	negative	correlations	included	

sensory	networks	(NW	1,	2,	3,	4,	14),	the	Dorsal	Attention	Network	(NW	5,	6),	and	parts	

of	the	Ventral	Attention	Network	(NW	7).	Included	in	these	two	large-scale	network	

systems	were	also	edges	connecting	the	two	clusters:	connectivity	between	Parietal	

Memory	NW	11	and	sensory	NW	2,	as	well	as	between	DMN	NW	16	and	sensory	NW	2	

showed	a	positive	relationship	with	source	memory	performance.	Connectivity	between	

DMN	NW	17	and	Dorsal/Ventral	Attention	NW	6/7,	on	the	other	hand,	showed	a	

negative	relationship	with	memory.		

Connectivity	levels	within	the	significant	positive	cluster	and	the	significant	negative	

cluster	were	strongly	negatively	correlated	across	participants	in	the	long	delay	group	

(rho	=	-.83,	p	<	.0001;	Figure	4).	Based	on	the	observation	that	some	participants	

showed	higher	connectivity	levels	within	the	positive	cluster	compared	to	the	negative	

cluster,	and	vice	versa,	we	ran	a	follow-up	analysis	splitting	the	long	delay	sample	into	

those	who	showed	stronger	connectivity	levels	within	the	positive	cluster	compared	to	

the	negative	(N=18)	and	those	who	showed	stronger	connectivity	levels	within	the	

negative	cluster	compared	to	the	positive	(N=19).	An	independent	sample	t-test	

confirmed	that	participants	with	higher	coupling	in	the	positive	cluster	at	rest	retained	

significantly	more	source	information	over	a	retention	interval	of	weeks	compared	to	

those	who	showed	higher	coupling	in	the	negative	cluster	(t(35)=3.94;	p	<	.0005).		
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---	INSERT	FIGURE	4	ABOUT	HERE	---	

Finally,	a	direct	test	of	the	difference	between	the	observed	correlations	in	the	two	

groups	confirmed	that	the	relationships	between	network	connectivity	and	source	

memory	performance	were	unique	to	the	long	delay	group	(Figure	3C).	Furthermore,	

after	extracting	mean	rho	from	the	two	significant	clusters,	a	comparison	of	correlation	

coefficients	in	the	two	groups	showed	that	the	observed	relationship	was	significantly	

stronger	in	the	long	delay	group	in	both	the	positive	(one-tailed	p	=	.019)	and	in	the	

negative	(one-tailed	p	=	.015)	cluster.	For	descriptive	purposes,	Figure	3D	shows	plots	

of	average	connectivity	levels	within	significant	clusters	against	source	memory	

performance	in	the	two	groups.	

No	significant	clusters	of	correlations	between	network	connectivity	and	memory	

performance	were	observed	in	the	short	delay	group.	The	main	findings,	source	memory	

performance	in	the	long	delay	group	correlating	positively	with	connectivity	within	a	

DMN-centered	network	system	and	negatively	with	connectivity	within	a	task-positive	

network	system,	remained	robust	in	several	control	analyses:	1)	Controlling	for	

candidate	confounds	(delay	interval	in	the	long	delay	group,	IQ,	and	working	memory	

capacity;	Supplementary	Figure	3),	2)	Using	different	cluster-forming	thresholds	

(Supplementary	Figure	4)	3)	Using	uncorrected	source	memory	scores	as	memory	

performance	measure	(Supplementary	Figure	5),	4)	Separating	the	bilateral	17-network	

parcellation	into	unilateral	networks	(Supplementary	Figure	6).	Note	however	that	all	

networks	discovered	by	Yeo	and	colleagues	in	their	optimal	parcellation	were	bilateral	

(Yeo	et	al.,	2011).	Finally,	the	negative	correlation	between	connectivity	levels	in	the	

two	significant	clusters	was	also	found	in	the	short	delay	group,	indicating	that	the	

observed	antagonistic	relationship	is	stable	across	samples	(Supplementary	Figure	7).		



	 18	

3.3.	Antagonistic	interactions	between	cortical	networks		

The	observed	significant	negative	relationship	between	memory	performance	weeks	

after	encoding	and	pre-encoding	connectivity	within	a	sensory-dominated	network	

constellation	suggests	that	sensory	decoupling	benefits	long-term	memory	

performance.	Moreover,	the	opposite	(positive)	relationship	between	memory	

performance	and	connectivity	within	a	Parietal	Memory/DMN-centered	system	

suggests	that	the	two	systems,	“Sensory”	and	“DMN”,	may	interact	in	an	antagonistic	

fashion.	Pursuing	this	hypothesis,	we	combined	rsFC	estimates	from	all	87	participants	

to	characterize	connectivity	patterns	between	the	investigated	networks	(i.e.,	

independent	of	behavior).	

---	INSERT	FIGURE	5	ABOUT	HERE	---	

We	operationalized	sensory	coupling	as	the	average	connectivity	within	unique	edges	in	

the	upper	left	5x5	quadrant	of	the	connectivity	matrix;	i.e.	connectivity	within	and	

between	visual	(Yeo	NW	1+2),	somatomotor	(Yeo	NW	3+4),	and	auditory	(Yeo	NW	14)	

networks.	We	first	investigated	whether	individual	differences	in	connectivity	between	

the	two	significant	“Sensory”	and	“DMN”	clusters	shown	in	Figure	3B	predicted	degree	

of	sensory	coupling.	Here,	we	pursued	the	edges	found	to	be	significantly	and	uniquely	

associated	with	memory	performance	in	the	long	delay	group	and	connecting	the	two	

systems	(i.e.,	falling	within	the	upper	right	quadrant	of	the	matrix	in	Figure	3C).	The	

networks	included	in	the	analysis	are	shown	in	Figure	5A.	Figure	5B	shows	that	

connectivity	levels	between	Parietal	Memory	NW	11	/	DMN	NW	16	and	visual	sensory	

NW	2	correlated	negatively	with	connectivity	within	the	sensory	networks	(rho	=	-.25;	

Holm-Bonferroni	adjusted	p	=	.018).	The	same	two	connecting	edges	were	positively	

correlated	with	connectivity	within	DMN/Parietal	Memory	network	(rho	=	.29;	adjusted	

p	=	.013).	In	other	words,	participants	with	a	strong	connection	of	the	two	systems	via	

NW	11/NW	16	and	NW	2	tended	to	show	low	levels	of	sensory	coupling	and	high	levels	
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of	connectivity	within	a	DMN-centered	system.	Similarly,	connectivity	levels	between	

DMN	NW	17	and	Dorsal	Attention	NW	6	correlated	positively	with	connectivity	within	

sensory	networks	(rho	=	.43;	adjusted	p	=.0001),	and	negatively	with	connectivity	within	

the	DMN	and	Parietal	Memory	network	(rho	=	-.37;	adjusted	p	=	.0013;	Figure	5C;	

Supplementary	Figure	8).	Thus,	connectivity	levels	within	memory-relevant	edges	that	

connect	the	“DMN”	and	“Sensory”	systems	was	linked	with	sensory	coupling	and	DMN	

synchronicity	in	a	manner	consistent	with	the	observed	relationships	between	

connectivity	and	memory	performance.	

Finally,	we	explicitly	tested	the	prediction	that	a	high	level	of	connectivity	within	the	

“DMN”	system	is	associated	with	sensory	decoupling,	that	is:	the	two	systems	exist	in	an	

antagonistic	relationship.	While	we	above	confirmed	that	the	two	significant	clusters	of	

connectivity-memory	relationships	found	in	the	long-delay	group	were	negatively	

correlated,	we	here	extracted	mean	connectivity	estimates	from	edges	in	the	“DMN”	

system	significantly	and	uniquely	associated	with	memory	performance	(i.e.	falling	

within	the	lower	right	quadrant	of	the	matrix	in	Figure	3C).	This	included	interactions	

within	and	between	Parietal	Memory	NW	11	and	DMN	NW	15	and	16.	We	observed	a	

strong	negative	correlation	between	individual	differences	in	connectivity	within	this	

“DMN”	cluster	and	connectivity	within	the	sensory	networks	(rho	=	-.61;	p	<	.0001;	

Supplementary	Figure	7),	demonstrating	that	individuals	with	strong	resting	state	

connectivity	within	DMN	and	Parietal	Memory	Network	regions	show	lower	sensory	

coupling.		
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4.	Discussion	

The	present	results	show	that	participants	characterized	by	strong	decoupling	between	

DMN	and	perceptual	regions	are	more	efficient	at	establishing	durable	long-term	

memories.	We	observed	a	positive	correlation	between	amount	of	episodic	memories	

retained	weeks	after	encoding	and	individual	differences	in	the	ability	to	engage	a	large-

scale	network	system	involving	the	DMN,	as	well	as	the	hippocampus,	frontoparietal,	

and	limbic	networks.	The	opposite	relationship	was	found	with	perceptual	regions	and	

external	attention	networks,	in	which	low	levels	of	synchronicity	were	beneficial	for	

long-term	recollection.	Complementing	these	results,	we	found	that	a	DMN-centered	

network	constellation	was	anticorrelated	with	sensory	networks,	and	that	the	degree	of	

anticorrelation	was	reflected	in	the	strength	of	interacting	links	between	the	two	

systems.	The	present	findings	thus	indicate	that	the	regulation	of	networks	with	

possible	opposing	effects	on	cognition	is	important	in	facilitating	stabilization	of	

episodic	memories	over	extended	time	intervals.	

4.1	DMN-recruitment	and	perceptual	decoupling	predict	long-term	memory	

The	significant	cluster	of	positive	correlations	between	long-term	memory	performance	

and	connectivity	contained	edges	linking	subnetworks	of	the	DMN	and	hippocampus	to	

Limbic	networks,	the	Frontoparietal	network	and	the	recently	proposed	Parietal	

Memory	network	(Gilmore	et	al.,	2015).	Together	with	the	Parietal	Memory	network,	

communication	within	DMN	at	rest	seems	to	be	of	particular	importance	for	ongoing	

processes	related	to	establishing	durable	long-term	memories,	as	DMN	connectivity	was	

uniquely	associated	with	performance	in	the	long	delay	group	(cf.	Figure	3C).	A	massive	

amount	of	research	has	gone	into	describing	the	DMNs	role	in	cognition	(Andrews-

Hanna	et	al.,	2014),	and	several	lines	of	evidence	point	to	it	being	central	in	the	forming	

and	accessing	of	memory	representations.	Degeneration	of	DMN	structures	and	changes	

in	rsFC	within	the	DMN	is	seen	with	increased	age	and	in	particular	in	amnestic	
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conditions	such	as	Alzheimer’s	disease	(Jones	et	al.,	2011;	Mevel	et	al.,	2011;	Sala-Llonch	

et	al.,	2015),	and	has	been	linked	to	reduced	memory	performance	in	healthy	controls	

(Fjell	et	al.,	2015;	Mevel	et	al.,	2013;	Persson	et	al.,	2014).	Moreover,	DMN	structures	

have	consistently	been	found	to	be	differentially	recruited	during	episodic	memory	

encoding	and	retrieval	(Huijbers	et	al.,	2012;	Vannini	et	al.,	2013),	and	more	strongly	

activated	during	retrieval	of	remote	than	recently	encoded	memories	(Gais	et	al.,	2007;	

Takashima	et	al.,	2007).	Also,	the	DMN	is	associated	with	autobiographical	retrieval	and	

updating	(Philippi	et	al.,	2014;	Schacter	et	al.,	2012).	One	explanation	for	the	apparent	

important	role	of	DMN	in	memory	function	comes	from	a	series	of	recent	experimental	

investigations	finding	that	DMN	is	a	system	generally	involved	in	cognitive	operations	

on	representations	not	available	to	the	senses	(Konishi	et	al.,	2015;	Smallwood	et	al.,	

2013;	Spreng	et	al.,	2014).	In	a	global	workspace	framework,	high	DMN	engagement	is	

thus	an	indication	that	task-unrelated/stimulus-independent	thoughts	are	dominating	

awareness	at	a	given	moment,	i.e.	attention	is	oriented	internally	(Smallwood	et	al.,	

2012).	Importantly,	recent	investigations	have	demonstrated	that	neuronal	activity	in	

perceptual	brain	regions	and,	correspondingly,	processing	of	external	input,	is	

attenuated	during	periods	of	task-unrelated	thoughts,	a	phenomenon	termed	perceptual	

decoupling	(Baird	et	al.,	2014;	Braboszcz	and	Delorme,	2011;	Kam	et	al.,	2011;	Schooler	

et	al.,	2011;	Smallwood	et	al.,	2013).		

Our	data	supports	the	notion	that	DMN-engagement	and	perceptual	decoupling	

constitute	opposing	processes,	as	the	DMN	and	perceptual	networks	were	shown	to	be	

strongly	anticorrelated	at	rest.	Furthermore,	while	high	levels	of	connectivity	within	

DMN-networks	correlated	positively	with	long-term	memory	performance,	the	opposite	

relationship	was	found	within	sensory	networks.	Recent	studies	support	the	view	that	

consolidation	results	from	re-activation	of	labile	internal	memory	representations	

during	off-task	periods	(Deuker	et	al.,	2013;	Gregory	et	al.,	2014;	Gruber	et	al.,	2016;	

Schlichting	and	Preston,	2014;	Staresina	et	al.,	2013).	However,	while	these	studies	have	
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demonstrated	spontaneous	re-occurrence	of	encoding	stimuli	during	post-learning	rest,	

it	remains	an	open	question	for	future	research	whether	such	re-surfacing	of	internal	

representations	occur	with	higher	frequency	in	individuals	with	strong	DMN	

connectivity	during	task-independent	rest.	

Interestingly,	the	cluster	of	positive	correlations	between	long-term	memory	

performance	and	connectivity	also	contained	edges	between	the	frontoparietal	network	

and	DMN.	The	frontoparietal	network	is	commonly	considered	to	be	part	of	the	external	

attention	system	(EAS)	and	anti-correlated	with	DMN	during	rest	(Anticevic	et	al.,	

2012).	However,	recent	studies	have	found	evidence	for	functional	integration	of	these	

network	systems	during	certain	cognitive	tasks,	including	mind-wandering	(Christoff	et	

al.,	2009),	memory	recollection	(Fornito	et	al.,	2012)	and	memory	search	(Kragel	and	

Polyn,	2013).	Similarly,	the	Parietal	Memory	network	has	been	associated	with	core	

memory	functions	such	as	distinguishing	between	novel	and	familiar	items	(Gilmore	et	

al.,	2015).	In	sum,	the	rsFC	interactions	observed	to	be	relevant	for	long-term	memory	

in	the	present	study	occur	between	regions	and	networks	with	documented	roles	in	

central	memory	operations.	

4.2.	The	Dorsal	Attention	Network	as	a	regulating	intermediate	between	

DMN	and	sensory	networks	

The	cluster	of	negative	correlations	between	long-term	memory	performance	and	

connectivity	contained	edges	linking	sensory	networks	to	the	Dorsal	Attention	Network	

(DAN;	NW	5	and	6)	and	parts	of	the	Ventral	Attention	Network	(NW	7).	A	closer	look	at	

the	connectivity-behavior	correlations	within	and	between	the	attention	networks	(i.e.,	

in	Figure	3A)	shows	that	no	strong	trends	existed	between	the	degree	of	communication	

among	these	networks	and	memory	performance.	Rather,	their	memory-relevant	

communication	was	found	in	their	connectivity	with	sensory	networks	which,	when	

low,	was	associated	with	better	long-term	memory	performance.	An	indication	of	how	
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this	attentional-sensory	decoupling	may	be	regulated	comes	from	the	observation	that	

strength	of	connectivity	within	sensory	regions	was	reflected	in	the	connectivity	

between	DMN	regions	(NW	17)	and	the	Dorsal	Attention	Network	(NW	6;	Figure	5A).	As	

shown	in	Figure	5C,	strong	levels	of	connectivity	within	the	DMN	was	associated	with	

weak	coupling	between	DMN	and	the	Dorsal	Attention	Network	(DAN).	Weak	DMN-DAN	

coupling	was	further	associated	with	low	connectivity	levels	between	DAN	and	sensory	

networks,	and	this	desynchronization	was	associated	with	sensory	decoupling	

(Supplementary	Figure	8).	Thus,	a	complex	interplay	between	DMN	and	DAN	may	

underlie	sensory	decoupling,	and,	as	suggested	by	similar	observations	in	the	literature,	

internally	guided	cognition	(Kragel	and	Polyn,	2013;	Shapira-Lichter	et	al.,	2013;	

Smallwood	et	al.,	2012;	Vincent	et	al.,	2008).	

	Although	previous	studies	using	individual	differences	in	rsFC	to	index	trait-level	

episodic	memory	capacity	after	short	delay	intervals	have	found	local	relationships	

within	the	hippocampal	complex	(Wang	et	al.,	2010;	Wig	et	al.,	2008),	we	did	not	find	

any	robust	links	between	cortical	network	connectivity	and	source	memory	

performance	in	the	short	delay	group.	These	previous	studies	focused	specifically	on	the	

medial	temporal	lobes	and	utilized	free	recall	as	memory	capacity	measure,	either	alone	

(Wang	et	al.,	2010),	or	combined	with	verbal	recognition	capacity	into	a	PCA	score	(Wig	

et	al.,	2008).	The	current	study	focused	on	interactions	between	large-scale	networks	

and	used	a	stringent	measure	of	source	memory	capacity	as	behavioral	measure,	and	

these	methodological	differences	may	explain	the	apparent	inconsistencies	with	earlier	

reports.		

Interestingly,	a	recent	study	found	that	individual	differences	in	autobiographical	recall	

in	an	adult	lifespan	sample	correlated	with	rsFC	between	parts	of	the	DMN	and	

hippocampus	(Mevel	et	al.,	2013).	Autobiographical	recall	relates	to	memory	for	events	

that	occurred	far	back	in	time,	and	can	to	some	extent	be	argued	to	resemble	the	long	
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delay	condition	in	our	experiment.	In	the	same	study,	no	correspondence	was	found	

between	DMN	connectivity	and	performance	on	tests	of	episodic	memory	capacity	

utilizing	brief	retention	delays.	Obviously,	mechanisms	supporting	successful	retention	

over	minutes	and	hours	are	relevant	for	systems	consolidation,	as	memory	for	an	event	

after	a	short	delay	is	a	prerequisite	for	that	event	to	be	remembered	after	delays	of	days	

and	weeks	(Carr	et	al.,	2010;	Liu	et	al.,	2013).	However,	in	our	sample	of	young	healthy	

adults,	large-scale	neocortical	network	connectivity	patterns	seem	to	reflect	processes	

relevant	for	long-term	memory	stabilization	only.	We	have	recently	demonstrated	that	

encoding	of	durable	episodic	memories	is	associated	with	hippocampal-neocortical	

connectivity	signatures	not	critical	for	the	encoding	of	more	short-lived	memories	

(Sneve	et	al.,	2015),	and	the	present	results	complement	the	notion	that	systems	

consolidation	of	enduring	memory	traces	is	partly	dependent	on	processes	less	

important	for	immediate	recollection.	

4.3.	Limitations	

A	limitation	of	the	current	study	is	the	dependence	of	one	single	rsfMRI	scan	to	estimate	

individual	brain	connectivity	patterns.	Recent	research	has	shown	that,	while	there	are	

reliable	components	to	be	found	in	rsFC	measures,	they	are	also	influenced	by	transient,	

state-dependent	components	(e.g.,	Geerligs	et	al.,	2015;	Hutchison	et	al.,	2013).	Although	

the	implications	such	findings	have	on	the	interpretation	of	individual	differences	in	

rsFC	are	currently	being	debated	(e.g.,	Laumann	et	al.,	2016),	it	is	likely	that	factors	such	

as	fluctuations	between	alertness	and	drowsiness	introduce	some	instability	in	the	rsFC	

measure	(Chang	et	al.,	2016).		

Finally,	we	observed	strong	positive	correlations	between	edges	involving	the	

two	Limbic	networks	(NW	9	and	10)	and	memory	performance	in	the	long	delay	group.	

These	regions	are	known	to	suffer	from	susceptibility	artifacts	due	to	their	proximity	to	

air-tissue	boundaries.	Even	after	B0-correction	of	participants'	fMRI	data,	we	observed	
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low	average	connectivity	levels	in	all	edges	involving	the	two	networks	(e.g.,	see	Figure	

3B).	The	findings	involving	these	networks	thus	have	to	be	to	be	interpreted	with	

caution.	

4.4.	Conclusion	

In	sum,	we	here	show	that	individual	differences	in	rsFC	connectivity	within	and	

between	large-scale	cortical	networks	and	the	hippocampus	explain,	in	part,	behavioral	

variability	attributable	to	ongoing	systems	consolidation	processes.	The	selective	

relationship	between	observed	connectivity	patterns	and	true	long-term	memory	

capacity,	operationalized	as	successful	retention	after	weeks	rather	than	minutes,	

suggests	that	these	differences	in	network	interactions	are	important	for	slow	or	

repeated	cognitive	processes	that	are	extended	in	time.	
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Figure	1	

A)	Encoding	trial	example.	B)	Test	trial	example.	C)	Design	overview.	
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Figure	2	

A)	Summary	of	Yeo’	17-network	cortical	parcellation.	1)	Networks	labeled	by	Yeo	and	

colleagues	(2011).	Yeo	et	al.	point	out	that	the	ventral	attention	networks	(NW	7+8)	

likely	encompasses	networks	often	referred	to	in	the	literature	as	the	salience	(Seeley	et	

al.,	2007)	or	cingulo-opercular	(Dosenbach	et	al.,	2007)	network.	2)	NW	14	which	covers	

regions	involved	in	auditory	processing	and	perception	(Rauschecker	and	Scott,	2009).	

3)	NW	11	which	recently	has	been	singled	out	as	a	Parietal	Memory	Network	involved	in	

broad	aspects	of	memory	processing	(Gilmore	et	al.,	2015).	B)	Average	connectivity	

within	and	between	all	investigated	networks	across	all	87	participants	in	the	study;	

individual	connectivity	matrices	were	r-to-z	transformed	following	Fischer's	method	

before	being	averaged.	The	presented	average	connectivity	matrix	is	the	resulting	

matrix	following	Fischer's	z-to-r	transformation.	HC	indicates	hippocampal	connectivity.	

C)	Average	connectivity	within	the	two	groups	following	standardization	of	each	

participant's	Fischer	r-to-z	transformed	connectivity	matrix.	
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Figure	3	

A)	Spearman	correlations	between	individual	differences	in	corrected	source	memory	

estimates	and	rsFC,	separated	by	group.	B)	Same	as	[A],	but	thresholded	at	a	significance	

level	of	p(rho)	<	.05.	Random	permutation	testing	and	cluster	inference	were	run	on	

these	matrices.	Two	clusters	of	connected	edges	in	the	long	delay	group	survived	

correction;	one	positive	and	one	negative.	The	unique	edges	associated	with	these	

clusters	are	marked	in	red	and	black,	respectively.	No	edges	in	the	short	delay	group	

survived	correction	for	multiple	comparisons,	either	at	a	single-edge	level	or	at	a	cluster	

level.	C)	Edges	falling	within	the	significant	clusters	and	showing	significantly	different	

correlation	strengths	between	the	two	groups	at	p(difference	of	rho)	<	.05.	D)	Scatter	

plots	of	the	relationships	between	corrected	source	memory	estimates	and	average	

connectivity	within	the	two	significant	clusters	in	the	long	delay	group.	The	plots	are	

shown	for	descriptive	purposes:	blue/red	opaque	lines	indicate	the	least	squares	

relationship;	black	opaque	lines	indicate	relationship	following	robust	regression.	

Dashed	lines	indicate	95%	confidence	interval	of	the	slope	of	the	robust	regression.	
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Figure	4	

Average	connectivity	levels	within	the	two	significant	clusters	in	the	long	delay	group.	

The	orange	line	shows	the	best	fitting	least	squares	slope	of	connectivity	within	the	

significant	negative	cluster	across	participants.	

	 	



	 42	

	

Figure	5	

A)	Three	edges	were	found	to	connect	the	two	clusters	of	networks	shown	to	relate	to	

long-term	memory	performance	in	Figure	3C.	In	the	full	sample	of	87	participants	we	

investigated	the	effect	connectivity	levels	within	these	connecting	edges	has	on	

connectivity	within	the	"Sensory"	network	system	and	the	"DMN".	B-C)	Scatter	plots	of	

connectivity	within	sensory	networks	and	"DMN"	against	connectivity	levels	in	the	

connecting	edges.	Black	lines	in	scatter	plots	show	results	of	robust	regression	and	95%	

confidence	interval	of	the	slope	-	for	descriptive	purposes.	Uncorrected	p-values	

associated	with	the	correlations	are	presented	above	the	scatter	plots.	Corrected	values	

are	reported	in	the	text.	
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Supplementary	Figure	1	

Temporal	signal-to-noise	ratios	(tSNR)	of	each	network	at	different	stages	of	

preprocessing:	following	standard	motion	correction	(left),	following	additional	FIX-

cleaning	(middle),	following	additional	temporal	filtering	(right).		
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Supplementary	Figure	2	

Illustration	of	absolute	connectivity	differences	between	the	87	participants	included	in	

the	study.	Mean	connectivity	refers	to	the	mean	across	each	participant’s	network	

connectivity	matrix	(only	unique	edges	included).	
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Supplementary	Figure	3	

Same	as	Figure	3	in	the	main	text,	but	including	covariates	(IQ,	digit	span,	delay	interval	

in	the	long	delay	group).	Significant	positive	cluster	in	long	delay	group:	permuted	p	=	

.020.	Significant	negative	cluster	in	long	delay	group:	permuted	p	=	.021.	
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Supplementary	Figure	4	

Same	as	Figure	3B	in	the	main	text,	but	using	alternative	cluster-forming	thresholds.		

A)	p	<	.01,	corresponding	to	a	rho	of	±.36	in	the	short	delay	group	and	±.42	in	the	long	

delay	group.	Significant	positive	cluster	in	long	delay	group	at	p	<	.01:	permuted	p	=	

.006.	Significant	negative	cluster	in	long	delay	group	at	p	<	.01:	permuted	p	=	.026.		

B)	p	<	.005,	corresponding	to	a	rho	of	±.39	in	the	short	delay	group	and	±.45	in	the	long	

delay	group.	Significant	positive	cluster	in	long	delay	group	at	p	<	.005:	permuted	p	=	

.038.	Significant	negative	cluster	in	long	delay	group	at	p	<	.005:	permuted	p	=	.039.		
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Supplementary	Figure	5	

Same	as	Figure	3	in	the	main	text,	but	using	uncorrected	source	memory	scores	as	

behavioral	estimates.	Significant	positive	cluster	in	long	delay	group:	permuted	p	=	.012.	

Significant	negative	cluster	in	long	delay	group:	permuted	p	=	.049.	
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Supplementary	Figure	6	

Same	as	Figure	3	in	the	main	text,	but	separating	networks	across	hemispheres.	

Significant	positive	cluster	in	long	delay	group:	permuted	p	=	.012.	Significant	negative	

cluster	in	long	delay	group:	permuted	p	=	.013.	
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Supplementary	Figure	7	

Top	panel:	same	plot	as	Figure	4	in	the	main	text,	but	depicting	data	from	the	short	

delay	group.	Bottom	panel:	Plot	of	the	negative	correlation	between	individual	

differences	in	the	“DMN”	cluster	and	connectivity	within	the	sensory	networks.	All	87	

participants	included.	
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Supplementary	Figure	8	

Left	panel:	correlations	(Spearman’s	rho)	between	DMN-DAN	connectivity	levels,	DAN-

sensory	connectivity	levels,	and	connectivity	levels	within	sensory	networks	(NW1-4	+	

NW14)	and	“DMN”	(NW15-17	+	11).	All	correlations	were	significant	at	the	p<.05	level	

following	Bonferroni	correction	for	six	tests.	Right	panel:	scatter	plots	of	two	selected	

edges	in	the	correlation	plot.	

	


