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Abstract

We consider a Navier-Stokes equation in two and three space dimensions subject to pe-
riodic boundary conditions and perturbed by a transport type noise. The perturbation is suf-
ficiently smooth in space, but rough in time. The system is studied within the framework of
rough path theory and, in particular, the recently developed theory of unbounded rough drivers.
We introduce an intrinsic notion of weak solution to the Navier-Stokes system, establish suit-
able a priori estimates and prove existence. In two dimensions, we also present uniqueness and
stability results with respect to the driving signal.
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1 Introduction

The theory of rough paths was introduced by Terry Lyons in his seminal work [Lyo98]. It can be
briefly described as an extension of the classical theory of controlled differential equations which
is robust enough to allow for a deterministic treatment of stochastic differential equations. Since
its introduction, the rough path theory has found a large number of applications and tremendous
progress has been made in application of rough path ideas to ordinary as well as partial differential
equations driven by rough signals. We refer the reader for instance to the works by Friz et al.
[CF09, CFO11], Gubinelli et al. [GT10, DGT12, GLT06], Gubinelli–Imkeller–Perkowski [GIP15],
Hairer [Hai14] for a tiny sample of the exponentially growing literature on the subject. However,
in view of these exciting developments, it is remarkable that many basic PDE methods have not
yet found their rough path analogues. For instance, until recently it was an open problem how to
construct (weak) solutions to rough partial differential equations (RPDEs) using energy methods.
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The first results in this direction were given in [BG15, DGHT16b, HH17]. In [BG15], the
basics of the so-called theory of unbounded rough drivers were laid down and applied in order
to show well-posedness for a linear rough path driven transport equation. In a similar spirit, the
paper [DGHT16b] was concerned with nonlinear scalar conservation laws with rough flux and
well-posedness was proved. The work [HH17] was then concerned with linear parabolic PDEs
with discontinuous coefficients driven by rough paths and existence, uniqueness and stability was
shown. Within the framework of unbounded rough drivers it was possible to give an intrinsic notion
of weak solution to rough path driven PDEs as well as to derive a priori estimates similar to the
classical PDE theory. These (and related) problems remained long open in the literature due to
the lack of a suitable Gronwall Lemma applicable in the rough path setting. In addition, the same
difficulty applied to uniqueness for reflected rough differential equations which was established by
similar techniques in [DGHT16a].

The aim of the present paper is to continue in this direction and study one of the most prominent
equations in fluid dynamics, namely, the Navier-Stokes system, subject to rough transport noise.
We study the following equation that governs the time evolution of the velocity field u : R+ ×Td →

Rd and the pressure p : R+ × Td → R of an incompressible viscous fluid on the d-dimensional
torus Td subject to a transport type noise

∂tu + ((u − ȧ) · ∇)u + ∇p = ν∆u, (1.1)

∇ · u = 0,

u(0) = u0 ∈ L2(Td; Rd),

where ν > 0 is the viscosity and ȧ is the formal time-derivative of a function a : R+ × Td → Rd

that is divergence-free in space and has finite p-variation for p ∈ [2, 3) in time. As an example,
ȧ may stand for a white in time, colored in space noise, which is formally a time derivative of a
Wiener process. Nevertheless, one of the main advantages of the rough path theory is that it allows
to go much further as far as the driving (stochastic) process is concerned. For instance, it allows to
consider drivers beyond the martingale world, in contrast to the classical Itô stochastic integration
theory. Consequently, ȧ may represent for instance time derivative of a more general Gaussian or
Markov process, such as fractional Brownian motion with Hurst parameter H ∈ ( 1

3 , 1
2 ].

Due to the low regularity, a classical interpretation of the transport noise term is out of reach.
Instead, we consider the equation integrated in time as an evolution type equation with values
in some spatial distribution space. To this end, it is necessary make sense of the time integral∫ t

0 (ȧs · ∇)us ds as a spatial distribution; that is, tested against some smooth φ : Td → Rd:∫ t

0
(ȧs · ∇)usds(φ) = −

∫ t

0
us((ȧs · ∇)φ )ds, (1.2)

where we used the assumption ∇ · ȧ = 0. Nevertheless, this time integral is not a priori well
defined. Indeed, we expect a solution to inherit the same time regularity as the noise a. In other
words, we are confronted with a multiplication of a distribution ȧ with a non-smooth function u.
The theory of integration introduced L.C. Young in [You36] cannot be applied unless p ∈ [1, 2).
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Lyons’ rough paths theory [Lyo98], however, enables us to give meaning to this integral provided
we possess additional information about the driving path, namely its iterated integral.

In the case of transport noise, this iteration also leads to an iteration of the spatial derivative.
This is easier to see if we consider a pure transport equation

∂tu = (ȧ · ∇)u. (1.3)

Integrating the equation in time and testing against φ gives us

ut(φ) = us(φ) −

∫ t

s
ur((ȧr · ∇)φ)dr

= us(φ) − us

(∫ t

s
(ȧr · ∇)φdr

)
+

∫ t

s

∫ r1

s
ur2 ((ȧr2 · ∇)(ȧr1 · ∇)φ) dr2dr1

= us(φ) − us

(∫ t

s
(ȧr · ∇)φdr

)
+ us

(∫ t

s

∫ r1

s
(ȧr2 · ∇)(ȧr1 · ∇)φ dr2dr1

)
−

∫ t

s

∫ r1

s

∫ r2

s
ur3 ((ȧr3 · ∇)(ȧr2 · ∇)(ȧr1 · ∇)φ) dr3dr2dr1, (1.4)

where we have iterated the equation into itself and used the fact that ȧ is divergence free in space.
Let us now define the operators

A1
stφ =

∫ t

s
(ȧr · ∇)drφ,

and

A2
stφ =

∫ t

s

∫ r1

s
(ȧr2 · ∇)(ȧr1 · ∇)dr2dr1φ

and write δust = ut − us. Solving the transport equation (1.3) then corresponds to finding a map
t 7→ ut such that u\ defined by

δust(φ) − us
(
[A1,∗

st + A2,∗
st ]φ

)
=: u\st(φ) (1.5)

is a negligible remainder, that is, it is of order o(|t − s|). As a consequence, tested against φ, the
germ [A1

st + A2
st]us provides a good local approximation of the time integral (1.2), which is then

uniquely defined in view of the Sewing Lemma (see Lemma B.1). We point out that in the smooth
setting, (1.5) gives an equivalent formulation of the transport equation (1.3). Furthermore, (1.5)
does not contain any time derivatives and is therefore well-suited for irregular drivers.

In order to guarantee the time regularity of the remainder u\, it has to be regarded as a distribu-
tion of third order with respect to the space variable; it is third order since three derivatives are taken
in (1.4). This is yet another example of the trade-off between time and space regularity pertinent to
many PDE problems, also in the classical setting. More precisely, if a is α-Hölder continuous with
respect to time and the solution u has the same regularity, the first two terms on the right hand side
of (1.5) are proportional to |t − s|α, whereas the last term can be bound by |t − s|2α. Hence, in the
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case of α ∈ ( 1
3 , 1

2 ] there has to be a cancellation between these terms to guarantee that u\ is indeed
of order o(|t − s|). On the other hand, the right hand side of (1.5) is a distribution of second order
with respect to the space variable. Accordingly, the necessary improvement of time regularity can
be obtained at the cost of loss of space regularity, i.e. considering u\ rather as a distribution of third
order.

In this paper, we assume that the noise can be factorized as follows:

at(x) = σk(x)zk
t =

K∑
k=1

σk(x)zk
t , (1.6)

where we employ the summation over repeated indices k ∈ {1, . . . , k}. The vector fields σk :
Td → Rd are bounded, twice differentiable with bounded derivatives and divergence free. The
driving signal z is a RK-valued path of finite p-variation for some p ∈ [2, 3) that can be lifted to a
geometric rough path (Z, Z). The first component is given by the increments of z, i.e. Zst = zt − zs,
whereas the second one is the so-called Lévy’s area which plays the role of the iterated integral
Zst =:

∫ t
s

∫ r
s dzr1 ⊗ dzr. In the smooth setting, this iterated integral is well-defined, whereas in

the rough setting, it has to be given as an input datum. For instance, if z is a Wiener process
then a suitable iterated integral can be constructed using the Stratonovich stochastic integration,
nevertheless, many other important stochastic processes give rise to a (2-step) rough paths. For
more details we refer to Section 2.3 and the literature mentioned therein.

The motivation for a perturbation of this form comes from modeling of a turbulent flow of a
viscous fluid. Namely, it was observed e.g. in [BCF91, BCF92, MR04, MR+05] that an equation
of the form (1.1) with (1.6) (modulo certain zero order terms) stems from the dynamics of fluid
particles given by the stochastic flow map

η̇t(x) = ut(ηt(x)) −σk(ηt(x)) ◦ ẇk
t , η0(x) = x ∈ Td,

where wk is a sequence of independent Wiener process and ◦ denotes the Stratonovich product. In
this formulation, the velocity of the fluid splits into a regular (slow oscillating, deterministic) com-
ponent u and a turbulent (fast oscillating, stochastic) component σk ◦ ẇk. Accordingly, it is natural
to assume that the vector fields σk are divergence free. In other words, the random fluctuations are
superimposed to the velocity field at the Lagrangian level and are energy neutral, i.e. they do not
contribute to the energy balance. Such a splitting idea goes back to Krachnan’s turbulence theory
[Kra68] and was then further developed in [GK96, GV00] and other works. The solvability of
(1.1) with transport noise driven by a Wiener process, was presented in [BCF92, FG95, MR+05].
In general, k may range over N, but for simplicity, in this paper, we consider only on {1, . . . , K}.

The present paper puts forward a (rough) pathwise approach to (1.1), (1.6), which, in particular,
yields pathwise energy estimates for a wide class of driving signals. We establish the existence
of weak solutions in two and three space dimensions, see Theorem 2.10, including the pressure
recovery, see Section 4.1.2. The main tool is a Galerkin approximation combined with a suitable
mollification of the driving signal, uniform estimates and a compactness argument. In addition,
in two space dimensions and for constant vector fields we prove uniqueness as well as pathwise
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stability with respect to the given driver and initial datum (also called a Wong-Zakai result), see
Theorem 2.11 and Corollary 2.12. To the best of our knowledge, this is the first Wong-Zakai type
result for the Navier-Stokes system perturbed by such a general transport noise. It is an immediate
consequence of the construction of solutions within rough path theory, which allows to overcome
the lack of continuity of solutions as functions of the noise pertinent to the classical stochastic
integration theory. There is a substantial number of Wong-Zakai results for infinite dimensional
stochastic evolution equations in various settings. We mention only the work [CM11] of A. Millet
and I. Chueshov in which the authors derive a Wong-Zakai result and support theorem for a general
class of stochastic 2D hydrodynamical systems, including 2D stochastic Navier-Stokes. However,
the diffusion coefficients in [CM11] are assumed to have linear growth on H, and hence do not
cover transport-type noise. We note, however, that in [CM10], A. Millet and I. Chueshov establish
a large deviations result for stochastic 2D hydrodynamical systems that does hold for transport-type
noise.

Our approach relies on a suitable formulation of the problem (1.1), (1.6) in the spirit of (1.5).
Due to the delicate structure of (1.1) and the fact that a solution is a couple of velocity and pressure
(u, p), we observe an interesting phenomenon. To be more precise, in Section 2.5, we derive two
equivalent (rough) formulations of (1.1), (1.6).

Let P be the Helmholtz-Leray projection and Q = I − P. Applying P and Q separately to (1.1),
we get the system of coupled equations

∂tu + P[(u · ∇)u] = ν∆u + P[(ȧ · ∇)u]

Q[(u · ∇)u] + ∇p = Q[(ȧ · ∇)u]

We take this formulation as the starting point as it makes clear the dependence of p on ȧ = σkżk.
We then perform an iteration similar to that of the transport equation (1.3) for the terms P[ȧ · ∇u]
and Q[ȧ · ∇u]. In doing so, we arrive at a coupled system of equations for the velocity field and
pressure in which the associated unbounded rough drivers are intertwined and a particular version
of the so-called Chen’s relation holds true (cf. (2.15) and Definition 2.5). We obtain the second
formulation by summing the coupled equations in the first formulation. The second formulation is
a single equation for the velocity field where the Chen’s relation also has to be modified (cf. (2.19)
and Definition 2.7). An alternative way to arrive at the second formulation is by iterating (1.1) and
using that ∇p = Q[(ȧ · ∇)u] − Q[(u · ∇)u].

The presentation is organized as follows. In Section 2 we introduce the basic set up and state
our main results. Section 3 is devoted to a priori estimates for various quantities. This is then used
in Section 4 where the main results are proved. Several auxiliary results needed in the main body
of the paper are collected in the appendix.
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2 Mathematical framework and main results

2.1 Notation and definitions

To begin with, let us fix the notation we use throughout the paper. For a given Banach space V with
norm | · |V , we denote by V∗ its continuous dual and by B(V) the Borel sigma-algebra. For given
Banach spaces V1 and V2, we denote by L(V1, V2) the space of continuous linear operators from
V1 to V2 with the operator norm denoted by | · |L(V1,V2). For a given d ∈ N, let Td = Rd/(2πZ)d

be the d-dimensional flat torus and denote by dx the unormalized Lebesgue measure on Td. For
a given sigma-finite measured space (X,X, µ), separable Banach space V with norm | · |V , and
p ∈ [1,∞], we denote by Lp(X; V) the Banach space of all µ-equivalence-classes of strongly-
measurable functions f : X → V such that

| f |Lp(X;V) :=
(∫

X
| f |pV dµ

) 1
p

< ∞,

equipped with the norm | · |Lp(X;V). We denote by L∞(X; V) the Banach space of all µ-equivalence-
classes of strongly-measurable functions f : X → V such that

| f |L∞(X;V) := esssupX | f |V := inf{a ∈ R : µ(| f |−1
V ((a,∞)) = 0)} < ∞,

where | f |−1
V ((a,∞)) denotes the preimage of the set (a,∞) under the map | f |V : X → R, equipped

with the norm | · |L∞(X;V). It is well-known that if V = H is a Hilbert space with inner product
(·, ·)H , then L2(X; H) is a Hilbert space equipped with the inner product

( f , g)L2(X;H) =

∫
X
( f , g)H dµ, f , g ∈ L2(X; H).

For a given Hilbert space H, we let L2
T H = L2([0, T ]; H), L∞T H = L∞([0, T ]; H). For a given

Hilbert space V , and real number T > 0 we let CT H denote the Banach space C([0, T ]; H) consist-
ing of continuous functions from [0, T ] to G endowed with the supremum norm in time.

For a given n ∈ Zd, let en : Td → C be defined by en(x) = (2π)−
d
2 ein·x. It is well-known

that {en}n∈Zd constitutes an orthonormal system of L2(Td; C), and hence for all f , g ∈ L2 :=
L2(Td; Rd),

f =
∑
n∈Zd

f̂nen, ( f , g)(L2)d =
∑
n∈Zd

f̂n · ĝn,

where for each n ∈ Zd,

f̂ i
n =

∫
Td

f i(x)e−n(x) dx, i ∈ {1, . . . , d}.

Let S be the Fréchet space of infinitely differentiable periodic complex-valued functions with the
usual set of seminorms. Let S′ be the continuous dual space of S endowed with the weak-star
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topology. We denote by Λ(φ) the value of a distribution Λ ∈ S′ at a test function φ ∈ S. Since
en ∈ S, for a given f ∈ S′ and n ∈ Zd, we define f̂n = f (en). It is well-known that f =

∑
n∈Zd f̂nen,

where convergence holds in S if f ∈ S and in S′ if f ∈ S′. This extends trivially to the set
S′ = (S′)d of continuous linear functions from S = (S)d to C endowed with the weak-star
topology.

For a given m ∈ N∪ {0}, we denote by Wm,2 the Hilbert space

Wm,2 = (I − ∆)−
m
2 L2 = { f ∈ S′ : (I − ∆)

m
2 f ∈ L2}

with inner product

( f , g)m = ((I − ∆)
m
2 f , (I − ∆)

m
2 g)L2 =

∑
n∈Zd

(1 + |n|2)m f̂n·ĝn, f , g ∈Wm,2

and induced norm | · |m. For notational simplicity, when m = 0 we omit the index in the inner
product, i.e. (·, ·) := (·, ·)0. It is easy to see that Wm1,2 ⊂ Wm2,2 for m1, m2 ∈ Z with m1 > m2
and that S is dense in Wm,2 for all m ∈ Z. It can be shown that for all m, k ∈ Z, the map ik−m,k+m :
Wk−m,2 → (Wk+m,2)∗ defined by

ik−m,k+m(g)( f ) = 〈g, f 〉k−m,k+m := ((I − ∆)
−m
2 g, (I − ∆)

m
2 f )k,

for all f ∈Wk+m,2, and g ∈Wk−m,2, is an isometric isomorphism.
Let

H0 =
{
f ∈W0,2 : ∇ · f = 0

}
=

{
f ∈W0,2 : f̂n · n = 0, ∀n ∈ Zd

}
,

define P : S′ → S′ by

P f =
∑
n∈Zd

(
f̂n −

n · f̂n
|n|2

n
)

en, f ∈ L2,

and let Q : I − P. It follows that P is a projection of L2 onto H0 = PL2 and that L2 possesses the
orthogonal decomposition

L2 = PL2 ⊕ QL2.

It follows that P, Q ∈ L(Wm,2, Wm,2) and that P and Q have operator norm less than or equal to
one for all m ∈ Z. We set Hm = PWm,2 and Hm

⊥ = QWm,2. As in Lemma 3.7 in [Mik02], it can be
shown that the following direct sum decomposition holds for all m ∈ Z,

Wm,2 = Hm ⊕Hm
⊥,

where
〈u, v〉−m,m = 0, ∀v ∈ Hm

⊥, ∀u ∈ H−m, (2.1)

and
Hm =

{
f ∈Wm,2 : ∇ · f = 0

}
,
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Hm
⊥ = {u ∈Wm,2 : 〈v, u〉−m,m = 0, ∀v ∈ H−m}.

Using (2.1), one can check that i−m,m : H−m → (Hm)∗ and i−m,m : H−m
⊥ → (Hm

⊥)
∗ are isometric

isomorphisms for all m ∈ Z.
For each vector n ∈ Zd, n , 0, we can find a d − 1-vectors {m1(n), · · · , md−1(n)} ⊆ Rd

that are of unit length and orthogonal to both −n and n. It follows that m j(n) = m j(−n) for
all j ∈ {1, . . . , d − 1} and n ∈ Zd such that n , 0, and that f j,n = m j(n)en, n ∈ Zd, n , 0,
j ∈ {1, . . . , d − 1}, is an orthonormal family of {u ∈ L2(Td; Cd) : ∇ · u = 0}. In particular, for
n = [n1, n2]T ∈ Z2, n , 0 , the vector n⊥

|n| = [ n2
|n| ,−

n1
|n| ]

T is orthogonal to n and −n and has length

one. Thus, if d = 2, fn = n⊥
|n| en, n ∈ Z2, n , 0 is an orthonormal family H0

C. Notice that in this case

∇T fn =
n⊥

|n|
inT en = −

n⊥

|n|
(−inT )en = −∇T e−n = −∇T fn. (2.2)

One can then check that wsin
j,n(x) :=

√
2

(2π)
d
2

m j(n) sin(n · x) and wcos
j,n (x) :=

√
2

(2π)
d
2

m j(n) cos(n · x),

where j ∈ {1, . . . , d − 1} and n ∈ Zd such that n1 ≥ 0 form an orthonormal basis of H0, an
orthogonal basis of H1. Moreover, they are the eigenfunctions of the Stokes operator P∆ on H0 with
corresponding eigenvalues λ j,n = |n|2. We re-index the sequence of eigenfunctions and eigenvalues
by {hn}n∈N and {λn}n∈N, respectively, where {λn}n∈N is a strictly positive increasing sequence tending
to infinity.

The following considerations shall enlighten the construction of unbounded rough drivers in
Section 2.5. Let σ : Td → Rd be 2-times differentiable and divergence-free. Moreover, assume
that all of its derivatives up to order 2 are bounded uniformly by a constant N0. LetA1 = σ · ∇ =∑d

i=1 σ
iDi and note thatA2 = (σ · ∇)(σ · ∇). Then we find that

|A1|L(Wm+1,2,Wm,2) ≤ N, ∀m ∈ {0, 2}, |A2 f |L(Wm+2,2,Wm,2) ≤ N, ∀m ∈ {0, 1},

for some constant N depending only on d and N0.
Since P ∈ L(Wm,2, Hm) and Q ∈ L(Wm,2, Hm

⊥) for all m ∈ Z, both of which have operator
norm bounded by 1, we have

|PA1|L(Hm+1,Hm) ≤ N, |QA1|
L(Hm+1

⊥ ,Hm
⊥)
≤ N, ∀m ∈ {0, 2}, (2.3)

and
|PA2|L(Hm+2,Hm) ≤ N, |QA2|

L(Hm+2
⊥ ,Hm

⊥)
≤ N, ∀m ∈ {0, 1}, (2.4)

and hence (PA1)∗ ∈ L((Hm)∗, (Hm+1)∗) and (QA1)∗ ∈ L((Hm
⊥)
∗, (Hm+1

⊥ )∗) for m ∈ {0, 2} and
(PA2)∗ ∈ L((Hm)∗, (Hm+2)∗) and (QA2)∗ ∈ L((Hm

⊥)
∗, (Hm+2

⊥ )∗) for m ∈ {0, 1}. A simple
calculation shows

((−PA1) f , g) = ( f , PA1g), ∀ f , g ∈ S∩H0,

((−QA1) f , g) = ( f , QA1g), ∀ f , g ∈ S∩H0
⊥,

8



which implies that (−PA1)∗ = PA1, (−QA1)∗ = QA1. Thus, owing to the characteriza-
tion of the duality between Wm,2 and W−m,2 through the L2 inner product, we have that PA1 ∈

L(H−m, H−(m+1)), QA1 ∈ L(H−m
⊥ , H−(m+1)

⊥ ), PA2 ∈ L(H−m, H−(m+2)) and QA2 ∈ L(H−m
⊥ , H−(m+2)

⊥ ).

In order to describe the convective term, we employ the classical notation and bounds. Owing
to Lemma 2.1 in [Tem83], the trilinear form

b(u, v, w) =
∫

Td
((u · ∇)v) ·w bdx =

d∑
i, j=1

∫
Td

uiDiv jw j dx

is continuous on Wm1,2 ×Wm2+1,2 ×Wm3,2 if m1, m2, m3 ∈ N0 satisfy

m1 + m2 + m3 ≥
d
2

, if mi ,
d
2

for all i ∈ {1, 2, 3}, (2.5)

m1 + m2 + m3 >
d
2

, if mi =
d
2

for some i ∈ {1, 2, 3}. (2.6)

Moreover, for all u, v, w ∈ H1,

b(u, v, w) = −b(u, w, v) and b(u, v, v) = 0. (2.7)

For m1, m2, and m3 that satisfy (2.6) or (2.5) and any given (u, v) ∈ Hm1 × Hm2+1, we define
B(u, v) ∈ H−m3 by

〈B(u, v), w〉−m3,m3 = b(u, v, w), ∀w ∈ Hm3 .

At times we may simply write (u · ∇)v(w) instead of B(u, v)(w), and B(u)(w) := B(u, u)(w).

2.2 Smoothing operators

As in [BG15], we shall need a family of smoothing operators (Jη)η∈(0,1) acting on the scale of
spaces (Wm,2)m∈Z, i.e.

|(I − Jη) f |m . ηk| f |m+k and |Jη f |m+k . η
−k| f |m (2.8)

for all m ∈ Z and k ∈ N. To construct these operators, denote by J̃N : S′ → S the frequency cut-off

operator
J̃N f =

∑
|n|<N

f̂nen.

It follows that for all m ∈ Z and k ∈ N,

| f − J̃N f |2m =
∑
|n|≥N

(1 + |n|2)m| f̂n|2 ≤ N−2k
∑
|n|≥N

(1 + |n|2)m+k| f̂n|2 ≤ N−2k| f |2m+k

and
|J̃N f |2m+k =

∑
|n|<N

(1 + |n|2)m+k| f̂n|2 ≤ (1 + N2)k
∑
|n|≥N

(1 + |n|2)m| f̂n|2 . N2k| f |2m.

We define Jη := J̃bη
−1c and Jη is a smoothing operator on Wm,2. A pleasant feature of the frequency

cut-off smoothing operator is that it leaves the the subspaces Hm and Hm
⊥ invariant.
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2.3 Rough paths

For an interval I we define ∆I := {(s, t) ∈ I2 : s ≤ t}, and for T > 0 we let ∆T := ∆[0,T ]. We also

set ∆(2)
I := {(s, θ, t) ∈ I3 : s ≤ θ ≤ t}. Let P(I) denote the set of all partitions of an interval I and

let E be a Banach space with norm | · |. A function g : ∆I → E is said to have finite p-variation for
some p > 0 on I if

|g|p−var;I := sup
(ti)∈P(I)

∑
i

|gtiti+1 |
p


1
p

< ∞.

and we denote by Cp−var
2 (I; E) the set of all continuous functions with finite p-variation on I

equipped with the seminorm | · |p−var;I . For notational simplicity, we do not specify explicitly
the space E in the norm as it will be always clear from the context. We denote by Cp−var(I; E) the
set of all paths z : I → E such that δz ∈ Cp−var

2 (I; E), where δzst := zt − zs.
A two-index map ω : ∆I → [0,∞) is called superadditive if for all s ≤ θ ≤ t ∈ I

ω(s, θ) +ω(θ, t) ≤ ω(s, t),

and ω is called a control if it is superadditive, continuous on ∆I and for all s ∈ I, ω(s, s) = 0.
If for a given p > 0, g ∈ Cp−var

2 (I; E), then it can be shown that the 2-index map ωg : ∆I →

[0,∞) defined by ωg(s, t) = |g|p
p−var;[s,t]

is a control (see, e.g., Proposition 5.8 in [FV10]) and we

obviously have |gst| ≤ ωg(s, t)
1
p . Conversely, if ω is a control such that |gst| ≤ ω(s, t)

1
p then for any

partition (ti) of [s, t] we have using the superadditivity,∑
i

|gtiti+1 |
p ≤

∑
i

ω(ti, ti+1) ≤ ω(s, t).

Taking supremum over all partitions gives ωg(s, t) ≤ ω(s, t) and we could equivalently define the
semi-norm

|g|p−var;[s,t] = inf{ω(s, t)
1
p : |guv| ≤ ω(u, v)

1
p for all (u, v) ∈ ∆[s,t]}.

For our analysis we shall need a local version of the p-variation spaces where we restrict the
mesh size of the partitions. This restriction shall be given by a control as follows.

Definition 2.1. Given a control $ and a number L > 0 we define the space Cp−var
2,$,L (I; E) of contin-

uous functions g : ∆I → E such that (s, t) ∈ ∆I with $(s, t) ≤ L implies

|gst| ≤ ω(s, t)
1
p

for some control ω. We define a semi-norm on this space by

|g|p−var,$,L;[s,t] := inf
{
ω(s, t)

1
p : |guv| ≤ ω(u, v)

1
p for all (u, v) ∈ ∆[s,t] such that $(s, t) ≤ L

}
.
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From the above analysis it is clear that we could equivalently define the semi-norm as

|g|p−var,$,L;I = sup
(ti)∈P$,L(I)

∑
i

|gtiti+1 |
p


1
p

,

where P$,L(I) denotes the family of all partitions of an interval I such that $(ti, ti+1) ≤ L for all
neighboring partition points ti and ti+1. Clearly we have

Cp−var
2,$1,L1

(I; E) ⊂ Cp−var
2,$2,L2

(I; E) (2.9)

for $1 ≤ $2 and L2 ≤ L1.

Remark 2.2. We could define the corresponding local p-variation space for 1-index maps Cp−var
$,L (I; E)

as above, but in this case there is no difference between the local and global spaces, i.e.

Cp−var
$,L (I; E) ⊂ Cp−var(I; E) ⊂ Cp−var

$,L (I; E)

under our assumptions on $. In fact, if $ is such that we can choose a partition (s j)J
j=1 of I

such that $(s j, s j+1) ≤ L, then for any partition (ti) of I we may choose a refinement (t̃k) of (ti)
containing (s j). We then have for any g ∈ Cp−var(I; E),∑

(ti)

|δgtiti+1 |
p ≤ Jp−1

∑
(t̃i)

|δgt̃i t̃i+1 |
p

where we have used
|δgst|

p ≤ Jp−1
∑

1≤ j≤J:s j∈[s,t]

|δgs j s j+1 |
p

for all (s, t) ∈ ∆I .

We now introduce the notion of a rough path. For a thorough introduction to the theory of
rough paths we refer the reader to the monographs [LCL07, FV10, FH14].

Definition 2.3. Let K ∈ N, p ∈ [2, 3). A continuous p-rough path is a pair

Z = (Z, Z) ∈ Cp−var
2 ([0, T ]; RK) ×C

p
2−var
2 ([0, T ]; RK×K) (2.10)

that satisfies the Chen’s relation

δZsθt = Zsθ ⊗ Zθt , (s, θ, t) ∈ ∆(2)
[0,T ]

.

A rough path (Z, Z) is said to be geometric if it can be obtained as the limit in the p-variation
topology given in (2.10) of a sequence of rough paths (Zε, Zε) explicitly defined as

Zεst := δzεst, Zε
st :=

∫ t

s
δzεsθ ⊗ dzεθ ,

for some smooth path zε : [0, T ] → RK . Denote by Cp−var
g ([0, T ]; RK) the set of geometric p-rough

paths.
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Throughout this paper, we are only concerned with geometric rough paths. An advantage of
working with geometric rough paths is a first order chain rule formula similar to the one known
for smooth paths. Recall that this is not true within the Itô stochastic integration theory, where
only a (second order) Itô formula is available. However, for the Stratonovich stochastic integral,
the first order chain rule holds true. Thus in case of a Brownian motion we employ Stratonovich
integration for the construction of the iterated integrals of a geometric rough path, whereas the Itô
integral would lead to a non-geometric setting.

2.4 Unbounded rough drivers

Since the rough perturbation considered in (1.1) is actually (unbounded) operator valued, it is
necessary to generalize the notion of a rough path accordingly. To this end, we define unbounded
rough drivers, which can be regarded as operator valued rough paths with values in a suitable space
of unbounded operators. In what follows, we call a scale any sequence (En, | · |n)n∈N0 of Banach
spaces such that En+1 is continuously embedded into En. Besides, for n ∈ N0 we denote by E−n

the topological dual of En and note that in general E−0 , E0.

Definition 2.4. Let p ∈ [2, 3) be given. A continuous unbounded p-rough driver with respect to
the scale (En, | · |n)n∈N0 , is a pair A = (A1, A2) of 2-index maps such that

A1
st ∈ L(E

−n, E−(n+1)) for n ∈ {0, 2}, A2
st ∈ L(E

−n, E−(n+2)) for n ∈ {0, 1},

and there exists a continuous control ωA on [0, T ] such that for every s, t ∈ [0, T ],

|A1
st|

p
L(E−n,E−(n+1))

≤ ωA(s, t) for n ∈ {0, 2},

|A2
st|

p
2

L(E−n,E−(n+2))
≤ ωA(s, t) for n ∈ {0, 1},

and, in addition, the Chen’s relation holds true, that is,

δA1
sθt = 0, δA2

sθt = A1
θtA

1
sθ, for all (s, θ, t) ∈ ∆(2)

T . (2.11)

Similarly to the introduction, it will become immediately clear from the sequel, that Defini-
tion 2.4 allows a formulation of (1.1), (1.6) which is well-suited for our rough path analysis.

2.5 Formulation of the equation

In this section we derive a rough path formulation of (1.1), (1.6), which will be satisfied by solutions
constructed by our main result below, Theorem 2.10. The main ideas of this step were already
discussed in Section 1 in the simpler setting of the transport equation (1.3).

We study the system of Navier-Stokes equations

∂tu + (u · ∇)u + ∇p = ν∆u + (σk · ∇)u żk
t , (2.12)

∇ · u = 0,

u(0) = u0,
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where (t, x) ∈ [0, T ] × Td and the velocity field u : [0, T ] × Td → Rd together with the pressure
p : [0, T ] × Td → R are the unknown functions, and z ∈ Cp−var([0, T ]; RK) can be lifted to a
continuous p-rough path Z = (Z, Z). For simplicity we will let ν = 1 for the remainder of the
paper. We read the term

(u · ∇)u =
d∑

j=1

u j ∂u
∂x j

and similarly

(σk · ∇)u żk
t =

K∑
k=1

(σk · ∇)u żk
t =

K∑
k=1

d∑
j=1

σ
j
k
∂u
∂x j

.

The Laplacian ∆ is taken component-wise. The initial condition u0 is assumed to be in H0 and we
assume that the vector fields σk : Td → Rd are bounded, twice continuously differentiable with
bounded derivatives and divergence-free, i.e. ∇ ·σk = 0 for all k = 1, . . . , K.

The classical way of studying the Navier-Stokes equation in a variational framework is to de-
couple the velocity field and the pressure into two equations using the Leray projection P defined
in Section 2.1. Starting from (2.12) this leads to

∂tu + P[(u · ∇)u] = ∆u + P[(σk · ∇)u]żk
t ,

∇p + Q[(u · ∇)u] = Q[(σk · ∇)u]żk
t ,

(2.13)

where we recall that P : Wm,2 → Hm and Q : Wm,2 → Hm
⊥ are solenoidal and gradient projection,

respectively. As in the introduction, we integrate the equations from [s, t] and iterate them into
themselves and arrive at

δust +

∫ t

s
P[(ur · ∇)ur]dr =

∫ t

s
∆urdr + [AP,1

st + AP,2
st ]us + uP,\

st ,

δπst +

∫ t

s
Q[(ur · ∇)ur)]dr = [AQ,1

st + AQ,2
st ]us + uQ,\

st ,
(2.14)

where we denoted π =
∫ ·

0 ∇pr dr with π0 = 0 and

AP,1
st ϕ := P[(σk · ∇)ϕ] Zk

st, AP,2
st ϕ := P[(σk · ∇)P[(σi · ∇)ϕ]]Z

i,k
st ,

AQ,1
st ϕ := Q[(σk · ∇)ϕ] Zk

st, AQ,2
st ϕ := Q[(σk · ∇)P[(σi · ∇)ϕ]]Z

i,k
st .

To do this derivation, let us assume that we have a solution u only with energy bounds, i.e.
u ∈ L2

T H1 ∩ L∞T H0. If we denote by µ the drift term
∫ ·

0 ∆ur − ur · ∇urdr, then from the energy
bound µ ∈ C1−var([0, T ]; W−1,2).
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Iterating the first equation iterated into itself gives

δust = Pδµst +

∫ t

s
P(σk · ∇)(us +

∫ r

s
P(σi · ∇)ur1dzi

r1
)dzk

r

= Pδµst + P(σk · ∇)usZk
st +

∫ t

s
P(σk · ∇)δµsrdzk

r +

∫ t

s
P(σk · ∇)

∫ r

s
P(σi · ∇)ur1dzi

r1
dzk

r

= Pδµst + P(σ · ∇k)usZk
st +

∫ t

s
P(σk · ∇)δµsrdzk

r+

+

∫ t

s
P(σk · ∇)

∫ r

s
P(σi · ∇)

(
us + Pδµsr1 + P

∫ r1

s
(σ j · ∇)ur2dz j

r2dzi
r1

)
dzk

r

= Pδµst + P(σk · ∇)usZk
st + P(σk · ∇)P(σi · ∇)usZ

i,k
st +

∫ t

s
P(σk · ∇)δµsrdzk

r+

+

∫ t

s
P(σk · ∇)

∫ r

s
P(σi · ∇)

(
Pδµsr1 + P

∫ r1

s
(σ j · ∇)ur2dz j

r2dzi
r1

)
dzk

r

= Pδµst + P(σk · ∇)usZk
st + P(σk · ∇)P(σi · ∇)usZ

i,k
st + uP,\

st

where

uP,\
st :=

∫ t

s
P(σk · ∇)δµsrdzk

r +

∫ t

s
P(σk · ∇)

∫ r

s
P(σi · ∇)

(
Pδµsr1 + P

∫ r1

s
(σ j · ∇)ur2dz j

r2dzi
r1

)
dzk

r

which is expected to be in C
p
3−var
2 ([0, T ]; H−3) using µ ∈ C1− var([0, T ]; W−1,2) and u ∈ L∞T H0.

For the second equation we put in the first equation

δπst = −Qδµst − Q
∫ t

s
(σk · ∇)urdzk

r

= −Qδµst − Q
∫ t

s
(σk · ∇)

(
us + Pδµsr + P

∫ r

s
(σi · ∇)ur1dzi

r1

)
dzk

r

= −Qδµst − Q(σk · ∇)usZk
st − Q

∫ t

s
(σk · ∇)Pδµsrdzk

r

− Q
∫ t

s
(σk · ∇)P

∫ r

s
(σi · ∇)

(
us + Pδµsr1 + P

∫ r1

s
(σ j · ∇)ur2dz j

r2)dzi
r1

)
dzk

r

= −Qδµst − Q(σk · ∇)usZk
st − Q(σk · ∇)P(σi · ∇)usZ

i,k
st − uQ,\

st

where

uQ,\
st = Q

∫ t

s
(σk · ∇)Pδµsrdzk

r +Q
∫ t

s
(σk · ∇)P

∫ r

s
(σi · ∇)

(
Pδµsr1 + P

∫ r1

s
(σ j · ∇)ur2dz j

r2)dzi
r1

)
dzk

r

which is expected to be in C
p
3−var
2 ([0, T ]; H−3

⊥ ) by similar reasoning.
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Recall that the equations (2.14) are to be understood in the sense that we define the remainder
terms uP,\ and uQ,\ from the solution u and π and have to verify that they are indeed negligible
remainders, namely, they are of order o(|t − s|). This will be made precise in Definition 2.5 below.

We point out that the couple (AP,1, AP,2) is an unbounded rough driver on the scale (Hn)n ac-
cording to the Definition 2.4. Indeed, the analytical bounds follow from the discussion in Section
2.1 and the fact that (Z, Z) is a continuous p-rough path according to Definition 2.3, which also im-
plies the Chen’s relation. The pair (AQ,1, AQ,2) is, somewhat surprisingly, not quite an unbounded
rough driver on (Hn

⊥)n, because it fails to satisfy Chen’s relation (2.11). Newertheless, it satisfies

δAQ,2
sθt = AQ,1

θt AP,1
sθ , for all (s, θ, t) ∈ ∆(2)

T , (2.15)

which is the correct Chen’s relation for the system of equations (2.13) needed for establishing the
necessary time regularity of the remainders uP,\, uQ,\. This in turn justifies the choice of the second
order component AQ,2.

Our first notion of solution to (2.12) reads as follows.

Definition 2.5. A pair of weakly continuous functions (u, π) : [0, T ] → H0 × H−3
⊥ is called a

solution of (2.12) if

sup
t∈[0,T ]

|ut|
2
0 +

∫ T

0
|∇ur |

2
0dr . |u0|

2
0

and if uP,\ : ∆T → H−3 and uQ,\ : ∆T → H−3
⊥ defined by

uP,\
st (φ) := δust(φ) +

∫ t

s
[(∇ur,∇φ) + (ur · ∇ur, φ)] dr − us([A

P,1,∗
st + AP,2,∗

st ]φ), (2.16)

uQ,\
st (ψ) := δπst(ψ) +

∫ t

s
(ur · ∇ur,ψ)dr − us([A

Q,1,∗
st + AQ,2,∗

st ]ψ), (2.17)

for all φ ∈ H3, ψ ∈ H3
⊥ and (s, t) ∈ ∆T , satisfy

uP,\ ∈ C
p
3−var
2,$,L ([0, T ]; H−3), uQ,\ ∈ C

p
3−var
2,$,L ([0, T ]; H−3

⊥ ), (2.18)

for some control $ and L > 0.

Remark 2.6. From (2.9) there is no restriction in taking the same $ and L > 0 for both local
variation spaces in (2.18).

Another possible way of formulating the equation is by performing the iteration directly on the
equation, i.e. we start from the original equation (2.12) and iterate it into itself. Again, we only
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want to assume u ∈ L2
T H1 ∩ L∞T H0. We obtain

δust = δµst − δπst +

∫ t

s
(σk · ∇)urdzk

r

= δµst − δπst +

∫ t

s
(σk · ∇)

(
us + δµsr − δπsr +

∫ r

s
(σi · ∇)ur1dzi

r1

)
dzk

r

= δµst − δπst + (σk · ∇)usZk
st +

∫ t

s
(σk · ∇)δµsrdzk

r −

∫ t

s
(σk · ∇)δπsrdzk

r

+

∫ t

s

∫ r

s
(σk · ∇)(σi · ∇)ur1dzi

r1
dzk

r

= δµst − δπst + (σk · ∇)usZk
st +

∫ t

s
(σk · ∇)δµsrdzk

r −

∫ t

s
(σk · ∇)δπsrdzk

r

+

∫ t

s
(σk · ∇)

∫ r

s
(σi · ∇)

(
us + δµsr2 − δπsr2 +

∫ r1

s
(σ j · ∇)ur2dz j

r2

)
dzi

r1
dzk

r

= δµst − δπst + (σk · ∇)usZk
st + (σk · ∇)((σi · ∇)us)Z

i,k
st +

∫ t

s
(σk · ∇)δµsrdzk

r −

∫ t

s
(σk · ∇)δπsrdzk

r

+

∫ t

s
(σk · ∇)

∫ r

s
(σi · ∇)

(
δµsr1 − δπsr1 +

∫ r1

s
(σ j · ∇)ur2dz j

r2

)
dzi

r1
dzk

r

Notice that
∫ t

s (σk · ∇)δπsrdzk
r is not regular enough in time to assume it is a negligible remainder.

Indeed, we expect π to have finite p-variation, so
∫ ·

0 (σk · ∇)δπsrdzk
r should have finite p

2 -variation
only. If we define

ū\st =

∫ t

s
(σk · ∇)δµsrdzk

r +

∫ t

s
(σk · ∇)

∫ r

s
(σi · ∇)

(
δµsr2 − δπsr2 +

∫ r1

s
(σ j · ∇)ur2dz j

r2

)
dzi

r1
dzk

r

then we expect ū\ to be in C
p
3−var
2 ([0, T ]; W−3,2), so it holds

δust = δµst − δπst + (σk · ∇)usZk
st + (σk · ∇)(σi · ∇)usZ

i,k
st + ū\st −

∫ t

s
(σk · ∇)δπsrdzk

r .

In order to close the argument, we use the equation (2.13) for π to deduce (note that that Qµt =
−

∫ t
0 Q[ur · ∇)ur]dr)

−

∫ t

s
(σk · ∇)δπsrdzk

r =

∫ t

s
(σk · ∇)Qδµsrdzk

r −

∫ t

s
(σk · ∇)

∫ r

s
Q(σi · ∇)ur1dzi

r1
dzk

r

=

∫ t

s
(σk · ∇)Qδµsrdzk

r

−

∫ t

s
(σk · ∇)

∫ r

s
Q(σi · ∇)

(
us + δµsr1 − δπsr1 +

∫ r1

s
(σ j∇)ur2dz j

r2

)
dzi

r1
dzk

r
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= −(σk · ∇)Q((σi · ∇)us)Z
i,k
st +

∫ t

s
(σk · ∇)Qδµsrdzk

r

−

∫ t

s
(σk · ∇)

∫ r

s
Q(σi · ∇)

(
δµsr1 − δπsr1 +

∫ r1

s
(σ j · ∇)ur1dz j

r1

)
dzi

r1
dzk

r .

All the terms above except for (σk · ∇)Q((σi · ∇)us)Z
i,k
st belong to C

p
3−var
2 ([0, T ]; W−3,2) and hence

we may include them in the new remainder

u\st := ū\st −

∫ t

s
(σk · ∇)Qδµsrdzk

r −

∫ t

s
(σk · ∇)

∫ r

s
Q(σi · ∇)

(
δµsr1 + δπsr1 +

∫ r1

s
(σ j · ∇)ur1dz j

r2

)
dzi

r1
dzk

r .

Finally, we obtain

δust = δµst − δπst + (σk · ∇)usZk
st + (σk · ∇)((σi · ∇)us)Z

i,k
st − (σk · ∇)(Q(σi · ∇)us)Z

i,k
st + u\st

= δµst − δπst + (σk · ∇)usZk
st + (σk · ∇)(P(σi · ∇)us)Z

i,k
st + u\st,

thus the corresponding unbounded rough driver should be defined as A1
stϕ = (σk · ∇)ϕZk

st and
A2

stϕ = (σk · ∇)(P(σk · ∇)ϕ)Z
i,k
st . This pair no longer satisfies the Chen’s relation (2.11), but

δA2
sθt = A1

θtPA1
sθ, for all (s, θ, t) ∈ ∆(2)

T . (2.19)

holds true.
Alternatively, we may therefore formulate a solution to (2.12) as follows.

Definition 2.7. A pair of weakly continuous functions (u, π) : [0, T ] → H0 × H−3
⊥ is called a

solution of (2.12) if

sup
t∈[0,T ]

|ut|
2
0 +

∫ T

0
|∇ur |

2
0dr . |u0|

2
0

and if u\ : ∆T →W−3,2 defined by

u\st(φ) = δust(φ) +

∫ t

s
[(∇ur,∇φ) + (ur · ∇ur, φ)] dr − us([A

1,∗
st + A2,∗

st ]φ) + δπst(φ), (2.20)

for all φ ∈W3,2 and (s, t) ∈ ∆T , satisfies u\ ∈ C
p
3−var
2,$,L ([0, T ]; W−3,2) for some control $ and L > 0.

Remark 2.8. Notice that since we require φ ∈ W3,2 and u ∈ L2
T H1 all the terms above are well-

defined. Indeed, let Γ ⊂ [0, T ] be a set of full Lebesgue measure such that ur ∈ H1 for all r ∈ Γ.
Then

|(ur · ∇ur, φ)| = |(ur · ∇φ, ur)| ≤ |∇φ|L∞ |ur |
2
0 . |φ|3|ur |

2
0

where we have used that (ur · ∇ur, φ) = −(ur · ∇φ, ur) since u is divergence free and the Sobolev
embedding W2,2 ⊂ (L∞(Td))d valid for d = 2, 3. Integrating w.r.t. r shows that the drift term is
well-defined.
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The following result justifies that both formulations were derived in a consistent way and are
equivalent.

Lemma 2.9. Definition 2.5 and Definition 2.7 are equivalent.

Proof. Start by noticing that PAi
st = AP,i

st and QAi
st = AQ,i

st for i = 1, 2. Moreover, the mapping

C
p
3−var
2,$,L ([0, T ]; W−3,2)→ C

p
3−var
2,$,L ([0, T ]; H−3) ×C

p
3−var
2,$,L ([0, T ]; H−3

⊥ )

u\ 7→ (uP,\, uQ,\) := (Pu\, Qu\)

is continuous and invertible with inverse

C
p
3−var
2,$1,L1

([0, T ]; H−3) ×C
p
3−var
2,$2,L2

([0, T ]; H−3
⊥ )→ C

p
3−var
2,$,L ([0, T ]; W−3,2)

(uP,\, uQ,\) 7→ uP,\ + uQ,\

where $ := $1 +$2 and L := L1 ∧ L2. The proof is straightforward. �

In the remainder of the paper we will work with Definition 2.5.

2.6 Main results

Let us now formulate our main results.

Theorem 2.10. Let d = 2, 3. Assume the vector fields σk : Td → Rd are divergence free, twice
differentiable with bounded derivatives up to order 2. Then there exists a solution of (2.12) in the
sense of Definition 2.5.

The proof of this result is presented in Section 4.1 as a consequence of the stronger statement in
Theorem 4.1. It proceeds in two steps: First the velocity field is constructed using compactness as
a limit of suitable Galerkin approximations combined with an approximation of the driving signal
z by smooth paths, see Section 4.1.1. Second, the pressure is recovered in Section 4.1.2.

In two space dimensions and for constant vector fields, also uniqueness holds true.

Theorem 2.11. Let d = 2 and assume σk(x) = σk are constant for all k = 1, . . . , K. Then
uniqueness holds for solutions to (2.12) in the sense of Definition 2.5.

The proof of uniqueness can be found in Section 4.2 as a consequence of the stronger statement
in Theorem 4.3. Considering the evolution of a difference of two arbitrary solutions, the key is a
suitable tensorization argument which allows to estimate the difference of these solutions by the
difference of their initial conditions.

In addition, in two space dimensions we obtain the following stability result which is proved in
Section 4.3.
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Corollary 2.12. Let d = 2 and p ∈ [2, 3). Let Cp−var
g ([0, T ]; RK) denote the space of continuous

geometric p-rough paths according to Definition 2.3 equipped with the topology given by (2.10).
Let Γ denote the solution map to (3.1) corresponding to an initial condition u0, a family of constant
vector fields σ and a continuous geometric p-rough path Z = (Z, Z), that is, Γ(u0,σ, Z) := (u, π)
where the couple (u, π) is the unique solution constructed in Theorem 4.1 and Theorem 4.3. Then

Γ : H0 ×R2×K × C
p−var
g ([0, T ]; RK)→ L2

T H0 ∩CT H0
w ×C1−var([0, T ]; H−2

⊥ )

(u0,σ, Z) 7→ (u, π)

is continuous.

Remark 2.13. Following ideas in e.g. [FO14, CFO11] and [DFO14] it is tempting to try to rewrite
(1.1) using a flow-transformation. More specifically, suppose that there is sufficiently regular in-
vertible map ϕ : [0, T ] ×Td → Td such that

ϕ̇t(x) = ȧt(ϕt(x)), ϕ0(x) = 0,

and let us define vt(x) := ut(ϕt(x)). Then we get

∂tvt(x) = ∂tut(ϕt(x)) + ȧt(ϕt(x)) · ∇ut(ϕt(x))

= ∆ut(ϕt(x)) − ut(ϕt(x)) · ∇ut(ϕt(x)) −∇pt(ϕt(x))

which could be rewritten in terms of v using ∇vt(x) = ∇ut(ϕt(x))∇ϕt(x) provided ϕt(·) is a diffeo-
morphism. If we assume all the driving vector fields are divergence free we have det(∇ϕt(x)) = 1
so that the equation for v is a Navier-Stokes type equation including coefficients from a unimodular
matrix depending on t and x. This could account for further diffulties although it seems plausi-
ble that one can solve such an equation. The added value of our construction is that it allows for
an intrinsic notion of solution to (1.1) and the necessary estimates for the corresponding rough
integral.

3 A priori estimates

As the next step, we derive the basic a priori estimates for the system (2.13). Let (u, π) be a solution
of (2.13) in the sense of Definition 2.5. For t ∈ [0, T ], let

µt(φ) = −

∫ t

0
[(∇ur,∇φ) + (ur · ∇ur, φ)] dr, φ ∈ H1,

and

ωµ(s, t) :=
∫ t

s

[
|ur |1 + |ur |

2
1

]
dr.
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Since u ∈ L2
T H1, ωµ is a control. Using (2.6) with m1 = m3 = 1 and m2 = 0 we have

|B(ur, ur)|−1 . |ur |
2
1 which gives

|δµst|−1 . ωµ(s, t).

Note that for all (s, t) ∈ ∆T ,

δust = δµst + AP,1
st us + AP,2

st us + uP,\
st (3.1)

on (Hk)k. Implicit in the definition of the solution of (3.1) is time-regularity of the solution as
a spatial distribution. In order to establish this result, we explore the trade-off between time and
space regularity, which will be an important technique in the remaining proofs of the paper.

We begin with an important lemma that enables us to estimate uP,\ in terms of the given data.
The following Lemma is a special case of [DGHT16b, Theorem 2.5], but we include a proof in this
easier setting.

Lemma 3.1. Assume (u, π) solves (2.14), in particular uP,\ defined by (2.16) is in C
p
3−var
2,$,L ([0, T ]; H−3)

for some control $ and L > 0. Let ωP,\(s, t) := |uP,\|
p
3
p
3−var;[s,t]

. Then provided L is small enough

depending only on p and ωA(s, t) ≤ L we have

ωP,\(s, t) . |u|
p
3
L∞T H0ωA(s, t) +ωµ(s, t)

p
3 (ωA(s, t)1/3 +ωA(s, t)2/3), (3.2)

and

ωP,\(s, t) . |u|
p
3
L∞T H0ωA(s, t) + (t − s)

p
3 (|u|L∞T H0 + |u|2L∞T H0)

p
3 (ωA(s, t)1/3 +ωA(s, t)2/3), (3.3)

where the proportionality constants only depends p.

Proof. We apply δ to (2.16) and recalling δδ = 0 we get for any φ ∈ H3 that

δuP,\
sθt (φ) = δusθ(A

P,2,∗
θt φ) + (δusθ − AP,1

sθ us)(A
P,1,∗
θt φ).

As in the proof of Lemma 3.2 we decompose δuP,\
sθt (φ) into a smooth and non-smooth part

δuP,\
sθt (φ) = δuP,\

sθt (Jηφ) + δuP,\
sθt ((I − Jη)φ),

for some η ∈ (0, 1] that will be specified later and then analyse term by term. For the non-smooth
part, we obtain∣∣∣∣δuP,\

sθt ((I − Jη)φ)
∣∣∣∣ . |u|L∞T H0

(∣∣∣AP,1∗
θt ((I − Jη)φ)

∣∣∣
0 +

∣∣∣AP,1,∗
sθ AP,1∗

θt ((I − Jη)φ)
∣∣∣
0 +

∣∣∣A2∗
θt ((I − Jη)φ)

∣∣∣
0

)
. |u|L∞T H0

(
ωA(s, t)

1
p |(I − Jη)φ|1 +ωA(s, t)

2
p |(I − Jη)φ|2

)
. |u|L∞T H0

(
ωA(s, t)

1
p η2 +ωA(s, t)

2
p η

)
|φ|3
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For the smooth part, we notice that we can write δusθ − AP,1
sθ us = δµsθ + AP,2

sθ us + uP,\
sθ , we have

δuP,\
sθt (Jηφ) = δµsθ(A

P,1,∗
θt Jηφ) + us(A

P,2,∗
sθ AP,1,∗

θt Jηφ) + uP,\
sθ (A

P,1,∗
θt Jηφ)

+ δµsθ(A
P,2,∗
θt Jηφ) + us(A

P,1,∗
sθ AP,2,∗

θt Jηφ) + us(A
P,2,∗
sθ AP,2,∗

θt Jηφ) + uP,\
sθ (A

P,2,∗
θt Jηφ),

Estimating each term we obtain

|δuP,\
sθt (Jηφ)| ≤ ωµ(s, t)ωA(s, t)

1
p |Jηφ|2 + |u|L∞T H0ωA(s, t)

3
p |Jηφ|3 +ωP,\(s, t)

3
pωA(s, t)

1
p |Jηφ|4

+ωµ(s, t)ωA(s, t)
2
p |Jηφ|3 + |u|L∞T H0ωA(s, t)

3
p |Jηφ|3 + |u|L∞T H0ωA(s, t)4/p|Jηφ|4

+ωP,\(s, t)
3
pωA(s, t)

2
p |Jηφ|5

≤

(
ωµ(s, t)ωA(s, t)

1
p + |u|L∞T H0ωA(s, t)

3
p +ωP,\(s, t)

3
pωA(s, t)

1
p η−1

+ωµ(s, t)ωA(s, t)
2
p + |u|L∞T H0ωA(s, t)

3
p + |u|L∞T H0ωA(s, t)4/pη−1

+ ωP,\(s, t)
3
pωA(s, t)

2
p η−2

)
|φ|3.

Setting η = ωA(s, t)
1
pλ for some constant λ > 0 to be determined later, we find

|δuP,\
sθt |−3 . |u|L∞T H0ωA(s, t)

3
p (λ−1 + 1 + λ+ λ2) +ωµ(s, t)ωA(s, t)

1
p

+ωµ(s, t)ωA(s, t)
2
p +ωP,\(s, t)

3
p (λ−1 + λ−2)

.
(
|u|

p
3
L∞T H0ωA(s, t)(λ−1 + 1 + λ+ λ2)

p
3 +ωµ(s, t)

p
3ωA(s, t)1/3

+ ωµ(s, t)
p
3ωA(s, t)2/3 +ωP,\(s, t)(λ−1 + λ−2)

p
3
) 3

p

By Lemma B.1, we get

|uP,\
st |−3 ≤ C

(
|u|

p
3
L∞T H0ωA(s, t)(λ−1 + 1 + λ+ λ2)

p
3 +ωµ(s, t)

p
3ωA(s, t)1/3

+ ωµ(s, t)
p
3ωA(s, t)2/3 +ωP,\(s, t)(λ−1 + λ−2)

p
3
) 3

p

for a constant C that only depends on p. Since ωP,\ was chosen as the infimum over all controls

satisfying |uP,\
st |−3 ≤ ωP,\(s, t)

3
p we must have

ωP,\(s, t) ≤ C
p
3

(
|u|

p
3
L∞T H0ωA(s, t)(λ−1 + 1 + λ+ λ2)

p
3 +ωµ(s, t)

p
3ωA(s, t)1/3

+ ωµ(s, t)
p
3ωA(s, t)2/3 +ωP,\(s, t)(λ−1 + λ−2)

p
3
)

.

Choosing λ such that C
p
3 (λ−1 + λ−2)

p
3 ≤ 1

2 , and L such that ωA(s, t)
1
pλ ≤ 1 we obtain (3.2).
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The proof of (3.3) is done in a similar way replacing ωµ(s, t) by the estimate

|δµst(φ)| ≤

∫ t

s
|(ur, ∆φ)|+ |B(ur, ur)(φ)|dr

.

∫ t

s
|ur |0|φ|2 + |ur |

2
0|φ|3dr

≤ (t − s)(|u|L∞T H0 + |u|2L∞T H0)|φ|3.

Above we have used the antisymmetric nature of B as well as (2.5) with m1 = m3 = 0 and m2 = 2.
Notice that this is only possible when d ≤ 3. The rest of the proof follows exactly the same lines
substituting this bound instead of ωµ. �

Lemma 3.2. Assume (u, π) is a solution to (2.14). There exists a constant L > 0 such that whenever
ωP,\(s, t),ωA(s, t) ≤ L we have

ωu(s, t) . (1 + |u|L∞T H0)p(ωP,\(s, t) +ωµ(s, t)p +ωA(s, t)),

where ωu(s, t) := |u|p
p−var;[s,t]

.

Proof. For any η ∈ (0, 1] which will be specified later, we can decompose any φ ∈ H1 into smooth
and non-smooth part using Jη as follows: φ = Jηφ+ (I − Jη)φ. Thus, for all (s, t) ∈ ∆T we have

δust(φ) = δust(Jηφ) + δust((I − Jη)φ).

Applying (2.8) we find

|δust((I − Jη)φ)| ≤ 2|u|L∞T H0 |(I − Jη)φ|0 . η|u|L∞T H0 |φ|1.

For the smooth part we expand δust using (3.1) and then apply (2.8) to get

|δust(Jηφ)| ≤ |uP,\
st (Jηφ)|+ |δµst(Jηφ)|+ |us(A

P,1,∗
st Jηφ)|+ |us(A

P,2,∗
st Jηφ)|

. ωP,\(s, t)
3
p |Jηφ|3 +ωµ(s, t)|Jηφ|1 + |u|L∞T H0ωA(s, t)

1
p |Jηφ|1 + |u|L∞T H0ωA(s, t)

2
p |Jηφ|2

≤

(
ωP,\(s, t)

3
p η−2 +ωµ(s, t) + |u|L∞T H0ωA(s, t)

1
p + |u|L∞T H0ωA(s, t)

2
p η−1

)
|φ|1.

Put η = ωP,\(s, t)
1
p +ωA(s, t)

1
p and choose L such that η ∈ (0, 1].Then

|δust|−1 . (1 + |u|L∞T H0)ωP,\(s, t)
1
p +ωµ(s, t) + |u|L∞T H0ωA(s, t)

1
p

. (1 + |u|L∞T H0)
(
ωP,\(s, t) +ωµ(s, t)p +ωA(s, t)

) 1
p ,

which proves the claim. �
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We now go on to prove an intermediate step, which in the language of controlled rough paths
shows that the solution u is controlled by AP,1. We define the map

u]st = δust − AP,1
st us.

Lemma 3.3. Assume (u, π) is a solution to (2.14). There exists constant L > 0 such that whenever
ωP,\(s, t),ωA(s, t) ≤ L we have

ω](s, t) . (1 + |u|L∞T H0)p(ωP,\(s, t) +ωµ(s, t)
p
2 +ωA(s, t)),

where ω](s, t) := |u]|
p
2
p
2−var;[s,t]

.

Proof. For any η ∈ (0, 1] which will be specified later, we can decompose any φ ∈ H2 into smooth
and non-smooth part using Jη as follows: φ = Jηφ+ (I − Jη)φ. Thus, for all (s, t) ∈ ∆T we have

u]st(φ) = u]st(Jηφ) + u]st((I − Jη)φ).

Since by definition we have two formulaes for u], namely,

u]st = δust − AP,1
st us = δµst + AP,2

st us + uP,\
st ,

we employ the first formulae to the non-smooth part of φ whereas the second one to the smooth
part of φ. Applying (2.8) we find

|u]st((I − Jη)φ)| ≤ |δust((I − Jη)φ)|+ |us(A
P,1,∗
st (I − Jη)φ)|

. |u|L∞T H0 |(I − Jη)φ|0 + |u|L∞T H0ωA(s, t)
1
p |(I − Jη)φ|1

.
(
η2|u|L∞T H0 + η|u|L∞T H0ωA(s, t)

1
p

)
|φ|2.

For the smooth part we apply (2.8) to get

|u]st(Jηφ)| ≤ |uP,\
st (Jηφ)|+ |δµst(Jηφ)|+ |us(A

P,2,∗
st Jηφ)|

. ωP,\(s, t)
3
p |Jηφ|3 +ωµ(s, t)|Jηφ|1 + |u|L∞T H0ωA(s, t)

2
p |Jηφ|2

≤

(
ωP,\(s, t)

3
p η−1 +ωµ(s, t) + |u|L∞T H0ωA(s, t)

2
p

)
|φ|2.

Put η = ωP,\(s, t)
1
p +ωA(s, t)

1
p and choose L such that η ∈ (0, 1].Then

|u]st|−2 . (1 + |u|L∞T H0)ωP,\(s, t)
2
p +ωµ(s, t) + |u|L∞T H0ωA(s, t)

2
p

. (1 + |u|L∞T H0)
(
ωP,\(s, t) +ωµ(s, t)

p
2 +ωA(s, t)

) 2
p ,

which proves the claim. �
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Similary we can find estimates for the rough integral of the pressure term (2.17). The compu-
tations below show why (2.15) is the correct Chen’s relation for this system.

Lemma 3.4. Suppose (u, π) solves (2.14), in particular uQ,\ defined by (2.17) is in C
p
3−var
2,$,L ([0, T ]; H−3)

for some control $ and L > 0. Let ωQ,\(s, t) = |uQ,\|
p
3
p
3−var;[s,t]

. Then there exists L > 0 such that

ωA(s, t) ≤ L implies

ωQ,\(s, t) . |u|L∞T H0ωA(s, t)
3
p +ωµ(s, t)ωA(s, t)

1
p +ωP,\(s, t)

3
p +ωu(s, t)

1
pωA(s, t)

2
p , (3.4)

and

ωQ,\(s, t) . |u|L∞T H0ωA(s, t)
1
p (ωA(s, t)

2
p + (t − s)) +ωP,\(s, t)

3
p +ωu(s, t)

1
pωA(s, t)

2
p . (3.5)

In particular, using Lemma 3.1 and Lemma 3.2, uQ,\ ∈ C
p
3−var
2,$,L ([0, T ]; H−3

⊥ ) where $ depends
only on |u|L∞T H0 , ωA and ωµ, and L depends only on p.

Proof. We apply δ to (2.17) and recalling δδ = 0 we get for any ψ ∈ H3
⊥

δuQ,\
sθt (ψ) = uQ,\

st (ψ) − uQ,\
sθ (ψ) − uQ,\

θt (ψ)

= δusθ(A
Q,1,∗
θt ψ) + δusθ(A

Q,2,∗
θt ψ) − us(A

P,1,∗
θt AQ,1,∗

θt ψ)

= (δusθ − AP,1
sθ us)(A

Q,1,∗
θt ψ) + δusθ(A

Q,2,∗
θt ψ)

where we have used (2.15) in the second equality. Using Lemma 3.2 the last term obviously
satisfies (3.4) and (3.5), so we focus on the first term.

We split up the equality into smooth and non-smooth parts ψ = Jηψ+ (I − Jη)ψ for η to be
determined later. For the non-smooth part we have

(δusθ − AP,1
sθ us)((I − Jη)ψ) = δusθ(A

Q,1,∗
θt (I − Jη)ψ) − us(A

P,1,∗
sθ AQ,1,∗

θt (I − Jη)ψ)

≤ 2|u|L∞T H0ωA(s, t)
1
p |(I − Jη)ψ|1 + |u|L∞T H0ωA(s, t)

2
p |(I − Jη)ψ|2

. |u|L∞T H0(ωA(s, t)
1
p η2 +ωA(s, t)

2
p η)|ψ|3

For the smooth part we use (2.16) to write

(δusθ − AP,1
sθ us)(Jηψ) = δµsθ(A

Q,1,∗
θt Jηψ) + us(A

P,2,∗
sθ AQ,1,∗

θt Jηψ) + uP,\
sθ (A

Q,1,∗
θt Jηψ)

≤ ωµ(s, t)ωA(s, t)
1
p |Jηψ|2 + |u|L∞T H0ωA(s, t)

3
p |Jηψ|3 +ωP,\(s, t)

3
pωA(s, t)

1
p |Jηψ|4

≤ (ωµ(s, t)ωA(s, t)
1
p + |u|L∞T H0ωA(s, t)

3
p +ωP,\(s, t)

3
pωA(s, t)

1
p η−1)|ψ|3.

Choosing η = ωA(s, t)
1
p and L such that η ∈ (0, 1] we get

|δuQ,\
sθt |−3 . |u|L∞T H0ωA(s, t)

3
p +ωµ(s, t)ωA(s, t)

1
p +ωP,\(s, t)

3
p +ωu(s, t)

1
pωA(s, t)

2
p .

Using Lemma B.1 gives the first inequality. The second one is similar. �

From Lemma 3.4 and (2.17) we see immediately that π ∈ Cp−var([0, T ]; H−3
⊥ ), although we

conjecture that there is much better spatial reqularity.
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4 Proofs of the main results

4.1 Existence, proof of Theorem 2.10

4.1.1 Galerkin approximation

Existence of a solution is proved using a standard Galerkin approximation as follows. Let {hn}n∈N
be the eigenfunctions of the Stokes operator with corresponding eigenvalues {λn}n∈N. As mentioned
in Section 2.1, the collection {hn}n∈N is an orthonormal basis of H0 and an orthogonal basis of H1.
For a given N ∈ N, let HN = span({h1, . . . , hN}) and PN : H−1 → HN be defined by

PNv :=
N∑

n=1

v(hn)hn, v ∈ H−1.

Besides, let {zN}N∈N be a sequence of smooth paths such that their canonical lifts ZN = (ZN , ZN)
converge to Z in the rough path topology, and the uniform bounds

|ZN
st | ≤ ωZ(s, t)

1
p and |ZN

st | ≤ ωZ(s, t)
2
p (4.1)

are satisfied.
We consider the following N-th order Galerkin approximations

∂tuN + PN B(uN , uN) = PN∆uN +
K∑

k=1

PN
(
P(σk · ∇uN)

)
żN,k

t (4.2)

where uN(0) = PNu0. Assume uN takes the form uN(t, x) =
∑N

i=1 cN
i (t)hi(x). Plugging uN into

(4.2) and then testing against hi, we find

ċN
i (t) +

N∑
j,l=1

cN
j (t)c

N
l (t)PN B(h j, hl)(hi) = λicN

i (t) +
K∑

k=1

N∑
j=1

cN
j (t)(σk · ∇h j, hi)ż

N,k
t .

Set B j,l,i = PN B(h j, hl)(hi) and Ak, j,i = (σk · ∇h j)(hi) then we have |B j,l,i| ≤ |h j|1|hl|1|hi|1 and
|Ak, j,i| ≤ |σk|L∞ |h j|1|hi|0. The system of N-ODEs

ċN
i (t) = λicN

i (t)−
N∑

j,l=1

B j,l,icN
j (t)c

N
l (t)+

K∑
k=1

N∑
j=1

Ak, j,icN
j (t)ż

N,k
t , cN

i (0) = (u0, hi), i ∈ {1, . . . , N},

(4.3)
has locally Lipschitz coefficients, and hence there exists a unique solution (ci)N

i=1 of (4.3) on a time
interval [0, TN), where TN > 0. Thus, uN(t, x) =

∑N
i=1 cN

i (t)hi(x) ∈ C1([0, TN); HN) is a solution
of (4.2) on the time interval [0, TN).
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Testing (4.2) against uN and using (2.7), the divergence theorem, and that theσk, k ∈ {1, . . . , K},
are divergence free, we get

|uN
t |

2
0 + 2

∫ t

0
|∇uN

s |
2
0ds = |PNu0|

2
0 − 2

∫ t

0
PN B(uN

s , uN
s )(u

N
s )ds

+
K∑

k=1

∫ t

0
(σk · ∇uN

s , uN
s )ż

N,k
s ds

= |PNu0|
2
0 ≤ |u0|

2
0, ∀t ∈ [0, TN).

It follows that the L2-norm of uN is non-increasing in time, and hence that (ci)N
i=1 do not blow-up

in finite time. Therefore, for all T > 0, uN solves (4.2) and uN ∈ CT H0 ∩ L2
T H1.

Define the operators

AN,1
st φ = P̃Nσk · ∇φZN,k

st ,

AN,2
st φ = P̃N(σk · ∇P̃N [σ j · ∇φ])Z

N, j,k
st ,

where P̃N := PN P. Notice that by (4.1) it follows that (AN,1, AN,2) is uniformly bounded in N as a
family of unbounded rough drivers on the scale (Hn)n. In addition, we have for φ ∈ H3

|(AN,1
st − AP,1

st )φ|0 ≤ |PN P(σk · ∇φ)Z
N,k
st − P(σk · ∇φ)Zk

st|0

≤ |PN P(σk · ∇φ)(Z
N,k
st − Zk

st)|0 + |(I − PN)P(σk · ∇φ)Zk
st|0

which converges to 0 as N → ∞. Indeed, from (2.3) the first term above is bounded by

|Pσk · ∇φ|0|Z
N,k
st − Zk

st| . |φ|1|Z
N,k
st − Zk

st|.

Similary for the second order term,

|(AN,2
st − AP,2

st )φ|0 ≤ |P̃N(σk · ∇P̃N [σ j · ∇φ])(Z
N, j,k
st −Z

j,k
st )|0 + |(I − PN)P(σk · ∇P[σ j · ∇φ])Z

j,k
st |0

+ |P̃N(σk · ∇(I − PN)P[σ j · ∇φ])Z
j,k
st |0.

Now, by (2.4) for fixed φ ∈ H3, (P(σk · ∇P̃N [σ j · ∇φ]))N is a bounded set in H0, and the first term
above is bounded by

|P(σk · ∇P̃N [σ j · ∇φ])|0|Z
N, j,k
st −Z

j,k
st |

which converges to 0 by assumption on ZN . The second term also converges to 0 since PNψ → ψ

uniformly in ψ from a bounded set in H0. The last term is bounded by

|σk · ∇(I − PN)P[σ j · ∇φ])Z
j,k
st |0 . |(I − PN)P[σ j · ∇φ])|1|Z

j,k
st |

which converges to 0 since P[σ j · ∇φ] ∈ H1.
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Moreover, we may equivalently rewrite (4.2) as

δuN
st =

∫ t

s

(
PN∆uN

r − PN B(uN
r , uN

r )
)

dr + AN,1
st uN

s + AN,2
st uN

s + uN,\
st , (4.4)

where

uN,\
st =

∫ t

s
P̃N(σk · ∇δµ

N
sr)ż

N,k
r dr + P̃N

∫ t

s

∫ r

s
(σk · ∇P̃N(σi · ∇δµ

N
sr1
))żN,i

r1
żN,k

r dr1dr

+

∫ t

s

∫ r

s

∫ r1

s
P̃N(σi · ∇P̃N(σi · ∇P̃N(σ j · ∇uN

r2
)))żN, j

r2 żN,i
r1

żN,k
r dr2dr1dr

where we have defined µN
t := PN

∫ t
0

(
∆uN

r − B(uN
r , uN

r )
)

dr. Clearly we have uN,\ ∈ Cζ−var
2 ([0, T ]; HN)

for any 0 < ζ < 1. Similary as in Lemma 3.1 we get

ωN,\(s, t) . |uN |L∞T HNωAN (s, t) + (t − s)
p
3 (|uN |L∞T HN + |uN |2L∞T HN

)(ωAN (s, t)
1
3 +ωAN (s, t)

2
3 )

≤ |u0|0ωZ(s, t) + (t − s)
p
3 (|u0|0 + |u0|

2
0)(ωZ(s, t)

1
3 +ωZ(s, t)

2
3 ), (4.5)

where the proportionality constant is independent of N.

Theorem 4.1. The sequence {uN} is relatively compact in L2
T H0 ∩CT H−1 and there exists a subse-

quence converging to the solution of (2.16).

Proof. The proof is similar to the proof of Lemma 3.2, except we need a slight different bound on
the drift term. This bound does in particular not give p-variation of the solution, which is why we
include it here.

Let φ ∈ H1. Decomposing into smooth and non-smooth parts we get

|δuN
st(φ)| ≤ |δu

N
st(Jηφ)|+ |δuN

st((I − Jη)φ)|

. ωN,\(s, t)
3
p |Jηφ|3 + (t − s)(|uN |L∞T HN + |uN |2L∞T HN

)|Jηφ|3

+ |uN |L∞T HN (ωAN (s, t)
1
p |φ|1 +ωAN (s, t)

2
p |Jηφ|2) + |uN |L∞T HN |(I − Jη)φ|0

. ωN,\(s, t)
3
p η−2|φ|1 + (t − s)η−2|φ|1

+ (ωAN (s, t)
1
p +ωAN (s, t)

2
p η−1)|φ|1 + η|φ|1.

Using (4.5) together with η = ωA(s, t)
1
p + (t − s)

1
p and L ≥ 0 chosen such that η ∈ (0, 1] we see

that

|δuN
st |−1 .

(
ωAN (s, t)

3
p + (t − s)ωAN (s, t)

1
p

)
η−2

+ (t − s)η−2 + (ωAN (s, t)
1
p +ωAN (s, t)

2
p η−1) + η

. ωA(s, t)
1
p + (t − s)1− 2

p . (4.6)
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Using Lemma A.2 there is a subsequence uN converging to an element u in CT H−1 ∩ L2
T H0.

From Lemma A.3 it is also clear that u is continuous with values in H0 equipped with the weak
topology. Fix φ ∈ H3, then

AN,i,∗
st φ→ AP,i,∗

st φ

in H0 for i = 1, 2 as N → ∞. Then

|(uN
s , AN,i,∗

st φ) − (us, AP,i,∗
st φ)| ≤ (uN

s − us, AN,i,∗
st φ) − (us, (A

P,i,∗
st − AN,i,∗

st )φ)|

≤ |uN
s − us|−1|A

N,i,∗
st φ|1 + |us|0|(A

P,i,∗
st − PAN,i,∗

st )φ|0 → 0

as N → ∞. Finally, using strong convergence in L2
T H0 we have∣∣∣∣∣∣

∫ t

s
B(ur, ur)(φ) − B(uN

r , uN
r )(φ)dr

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
∫ t

s
B(ur − uN

r , ur)(φ)dr

∣∣∣∣∣∣ +

∣∣∣∣∣∣
∫ t

s
B(uN

r , ur − uN
r )(φ)dr

∣∣∣∣∣∣
.

∫ t

s
|ur − uN

r |0|ur |0dr|φ|3 +

∫ t

s
|ur − uN

r |0|u
N
r |0dr|φ|3 → 0

as N → ∞.
Since all the terms in equation (4.4) converge when applied to φ, also the remainder uN,\

st (φ)

converges to some limit uP,\
st (φ). By the uniform bounds (4.5) we have uP,\ ∈ C

p
3−var
2,$,L ([0, T ]; H−3)

for some control $ depending only on ωZ and L > 0 depending only on p which proves that u is a
solution of (2.16). �

4.1.2 Pressure recovery

To finalize the proof of existence we need to prove that also the pressure term π as in (2.17) exists.
To this end, we first observe that according to the a priori estimates from Lemma 3.2 and Lemma
3.3, we can construct the rough integral It = Q

∫ t
0 (σk · ∇)ur dZk

r , I0 = 0, using the sewing lemma,
Lemma B.1. Indeed, let us define

hst = AQ,1
st us + AQ,2

st us.

We apply the δ-operator to the above and obtain

δhsθt = (δAQ,2
sθt )us − AQ,1

θt δusθ − AQ,2
θt δusθ

= AQ,1
θt AP,1

sθ us − AQ,1
θt δusθ − AQ,2

θt δusθ

= −AQ,1
θt u]sθ − AQ,2

θt δusθ

where we have used (2.15). In view of the regularity of δu and u] and the bounds on (AQ,1, AQ,2)

there exists (I, I\) such that ‖I\sθt‖−3 . ω(s, t)
3
p ,

δIst = AQ,1
st us + AQ,2

st us + I\st.
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As the next step, we define

πt := −Q
∫ t

0
ur · ∇urdr + It,

or alternatively using the local approximation

δπst = −Q
∫ t

s
ur · ∇urdr + AQ,1

st us + AQ,2
st us + uQ,\

st ,

where uQ,\
st := I\st. As a consequence of Lemma 3.4 we therefore obtain that π ∈ Cp−var([0, T ]; H−3

⊥ ).

4.2 Uniqueness in two spatial dimensions, proof of Theorem 2.11

The objective of this section is to prove uniqueness of solutions to the Navier-Stokes equation
when d = 2. For technical reasons we are forced to consider the case where σk is a constant for all
k = 1, . . . , K. Assume for a moment that all our objects are smooth, and we have two solutions of
our equation i.e.

∂tui
t = ∆ui

t − B(ui
t) + Pσk · ∇ui

t ż
k
t .

Then v := u1 − u2 satisfies

∂tvt = ∆vt − (B(u1
t ) − B(u2

t )) + Pσk · ∇vt żk
t ,

and the usual calculus rules give

1
2
∂t|vt(x)|2 = vt(x)T ∆vt(x) − vt(x)T (B(u1

t (x)) − B(u2
t (x))) + vt(x)Tσk · ∇vt(x)żk

t .

Then one could proceed by integration w.r.t. x to obtain uniqueness and energy estimates.
However, in the rough case many of our objects are distributions, and so the action of integrat-

ing w.r.t. x is actually applying a distribution to a test function. Unfortunately, we do not expect
our solution to be regular enough to perform this operation but instead we shall employ a usual
doubling of the variables trick, i.e. we consider t 7→ v⊗2

t (x, y) := vt(x)vt(y)T where T denotes
the transpose. This is a well defined operation for any distribution and we get the formula for the
square by testing this distribution against an approximation of the Dirac-delta in x = y. We remark
that one cannot use directly the techniques from [DGHT16b], since this way of approximating the
Dirac-delta violates the divergence-free condition.

Let u1 and u2 be solutions of (3.1). We have that for all φ ∈ H3 and (s, t) ∈ ∆T ,

δui
st(φ) = δµi

st(φ) + ui
s([A

P,1,∗
st + AP,2,∗

st ]φ) + ui;P,\
st (φ),

where

µi
t(φ) = −

∫ t

0

[
(∇ui

r,∇φ) + B(ui
r)(φ)

]
dr.

29



Setting v = u1 − u2 and v\ = u1;P,\ − u2;P,\ and µt(φ) = −
∫ t

0 [(∇vr,∇φ) + (B(u1
r ) − B(u2

r ))(φ)]dr,
we have

δvst(φ) = δµst(φ) + vs([A
P,1,∗
st + AP,2,∗

st ]φ) + v\st.

Define
ωµ(s, t) = ωµ1(s, t) +ωµ2(s, t),

and notice that ∣∣∣δµst(φ)
∣∣∣
−1 ≤ ωµ(s, t).

We denote by a ⊗̂ b the symmetrisation of the tensor product of two functions a, b : T2 → R2,
i.e.

a ⊗̂ b(x, y) :=
1
2
(a ⊗ b + b ⊗ a)(x, y) =

1
2

(
a(x)b(y)T + b(x)a(y)T

)
.

Lemma 4.2. The tensorised mapping t 7→ v⊗2
t satisfies the equation

δv⊗2
st − 2

∫ t

s

(
vr ⊗̂ ∆vr − vr ⊗̂ (B(u1

r ) − B(u2
r ))

)
dr =

(
Γ1

st + Γ2
st

)
v⊗2

s + v⊗2,\
st (4.7)

where
Γ1 = AP,1 ⊗ I + I ⊗ AP,1, Γ2 = AP,2 ⊗ I + I ⊗ AP,2 + AP,1 ⊗ AP,1

where v⊗2,\ ∈ Cγ−var
2,$,L([0, T ]; H−3

x ⊗H−3
y ) for some γ < 1, a control $ and L > 0.

Proof. Elementary algebraic manipulations give

δv⊗2
st = 2vs ⊗̂ δvst + δvst ⊗ δvst = 2vs ⊗̂ v\st + 2vs ⊗̂ δµst + 2vs ⊗̂ A1

stvs + 2vs ⊗̂ AP,2
st vs

+ (v\st + δµst + AP,2
st vs)

⊗2 + 2(v\st + δµst + AP,2
st vs) ⊗̂ AP,1

st vs + AP,1
st vs ⊗ AP,1

st vs.

Thus,

δv⊗2
st − 2

∫ t

s

[
vr ⊗̂ ∆vr − vr ⊗̂ (B(u1

r ) − B(u2
r ))

]
dr =

(
Γ1

st + Γ2
st

)
v⊗2

s + v⊗2,\
st , (4.8)

where

v⊗2,\
st := −2

∫ t

s
δvsr ⊗̂ [∆vr + (B(u1

r ) − B(u2
r )]dr + 2v\st ⊗̂ vs

+ (v\st + δµst + AP,2
st vs)

⊗2 + 2(v\st + δµst + AP,2
st vs) ⊗̂ AP,1

st vs

= −2
∫ t

s
δvsr ⊗̂ ∆vrdr + 2

∫ t

s
δvsr ⊗̂

[
B(u1

r ) − B(u2
r )

]
dr + 2v\st ⊗̂ vs

+ v\st ⊗ v\st + v\st ⊗̂ δµst + v\st ⊗̂ AP,2
st vs + δµst ⊗ δµst + δµst ⊗̂ AP,2

st vs + AP,2
st vs ⊗ AP,2

st vs

+ 2v\st ⊗̂ AP,1
st vs + δµst ⊗̂ AP,1

st vs + AP,2
st vs ⊗̂ AP,1

st vs, (4.9)

where the second equality is simply expanding the tensor products. The result follows. �
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Let fn be the orthonormal basis of H0 as described in Section 2.1, and define FN(x, y) :=∑
|n|≤N fn(x) ⊗ fn(y). From (2.2) we get that ∇xFN + ∇yFN = 0. Moreover, we have for f , g ∈ H0

( f ⊗ g, FN) =
∑
|n|≤N

( f , fn)(g, fn)→ ( f , g)

as N → ∞. Motivatied by this, we would like to test our equation (4.8) for v⊗2 against FN , which
converges to |v|20 as N → ∞.

Notice that

Γ1,∗
st FN = (σk · ∇xFN + σk · ∇yFN)Zk

st = 0

when we assume σk is constant. Moreover we have

Γ2,∗
st FN = σk · ∇x(σ j · ∇xFN)Z

j,k
st + σk · ∇y(σ j · ∇yFN)Z

j,k
st + σk · ∇x(σ j · ∇yFN)Z

j
stZ

k
st

= σk · ∇x(σ j · ∇xFN)Z
j,k
st + σk · ∇x(σ j · ∇xFN)Z

k, j
st −σk · ∇x(σ j · ∇xFN)Z

j
stZ

k
st

= 0,

where we have used σk · ∇(σ j · ∇) = σ j · ∇(σk · ∇) and Z
j,k
st + Z

k, j
st = Z j

stZ
k
st.

For the drift terms it holds∫ t

s
vr ⊗ ∆vr(FN)dr = −

∫ t

s
vr ⊗∇vr(∇yFN)dr =

∫ t

s
vr ⊗∇vr(∇xFN)dr

= −

∫ t

s
∇vr ⊗∇vr(FN)dr

so that

2
∫ t

s
vr ⊗̂ ∆vr(FN)dr = −2

∫ t

s
∇vr ⊗∇vr(FN)dr.

Since v ∈ L2
T H1 we have ∇vr ⊗ ∇vr(FN) → |∇vr |

2
0 for almost all r ∈ [s, t], and |∇vr ⊗ ∇vr(FN)| ≤

|∇vr |
2
0 if follows by dominated convergence that

lim
N→∞

2
∫ t

s
vr ⊗̂ ∆vr(FN)dr = −2

∫ t

s
|∇vr |

2
0dr.

For the convective term we write∫ t

s
vr ⊗ ui

r · ∇ui
r(FN)dr = −

∫ t

s
vr ⊗ (ui

r)
T ui

r(∇yFN)dr = −
∫ t

s
∇vr ⊗ (ui

r)
T ui

r(FN)dr.

By Sobolev embedding we have (ui)T ui ∈ L2
T H0. In fact, we have |(ui

r)
T ui

r |0 . |u
i
r |

1/2
0 |∇ui

r |
1/2
0 .

This also shows we may use dominated convergence to get

lim
N→∞

2
∫ t

s
vr ⊗̂ B(ui

r)(FN)dr = 2
∫ t

s
B(ui

r)(vr)dr

We are now ready to finish the proof of uniqueness.
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Theorem 4.3. Suppose d = 2 and assume σk(x) = σk are constant for all k = 1, . . . , K. Then
v = u1 − u2 satisfies the following energy equality

|vt|
2
0+2

∫ t

0
(B(u1

r ) − B(u2
r ))(vr)dr + 2

∫ t

0
|∇vr |

2
0dr = |v0|

2
0

and we have

|vt|
2
0 +

∫ t

0
|∇vr |

2
0dr . |v0|

2
0 exp

{
c
∫ t

0
|u1

r |
2
0|∇u1

r |
2
0dr

}
(4.10)

for some universal constant c. Consequently, uniqueness holds.

Remark 4.4. The right hand side of (4.10) is finite. Indeed, we have∫ t

0
|u1

r |
2
0|∇u1

r |
2
0dr ≤ sup

t∈[0,T ]
|u1

t |
2
0

∫ T

0
|∇u1

r |
2
0dr

which is finite by assumption.

Proof of Theorem 4.3. We test equation (4.8) for v⊗2 against FN , and use that Γi,∗
st FN = 0 to see

that

δv⊗2
st (FN) − 2

∫ t

s
vr ⊗̂ ∆vr + vr ⊗̂ (B(u1

r ) − B(u2
r ))dr(FN) = v⊗2,\

st (FN).

Since the above left hand side is an increment of a function from s to t, so is the right hand side
(s, t) 7→ v⊗2,\

st (FN). From Lemma 4.2 we see that v⊗2,\(FN) has finite p
3 -variation which is only

possible if v⊗2,\
st (FN) = 0, so

δv⊗2
st (FN) − 2

∫ t

s
vr ⊗̂ ∆vr − vr ⊗̂ (B(u1

r ) − B(u2
r ))dr(FN) = 0

for every N. Letting N → ∞ we get from the above discussion

δ(|v|20)st+2
∫ t

s
(B(u1

r ) − B(u2
r ))(vr)dr + 2

∫ t

s
|∇vr |

2
0dr = 0.

Using (2.7), (2.6) and the interpolation inequality |φ|L4(T2) . |φ|
1/2
0 |∇φ|

1/2
0 yields

(B(u1
r ) − B(u2

r ))(vr) = −B(vr, vr)(u1
r ) ≤ |vru1

r |0|∇vr |0

≤ |vr |L4(T2)|u
1
r |L4(T2)|∇vr |0 . |vr |

1/2
0 |∇vr |

3/2
0 |u

1
r |L4(T2)

≤ ε|∇vr |
2
0 + cε |vr |

2
0|u

1
r |

4
L4(T2)

for any ε > 0 where we have used Young’s inequality, ab ≤ εa4 + cεb4/3 in the last step. This gives

|vt|
2
0 + 2

∫ t

0
|∇vr |

2
0dr . |v0|

2
0 + ε

∫ t

0
|∇vr |

2
0dr + cε

∫ t

0
|vr |

2
0|u

1
r |

2
0|∇u1

r |
2
0dr
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Choose ε small enough to get

|vt|
2
0 +

∫ t

0
|∇vr |

2
0dr . |v0|

2
0 + cε

∫ t

0
|vr |

2
0|u

1
r |

2
0|∇u1

r |
2
0dr

which gives the result by Gronwall’s lemma.
Note that from the uniqueness of the velocity and the pressure recovery in Section 4.1.2 we

immediately obtain the uniqueness of the associated pressure π. �

4.2.1 Energy equality and continuity

Taking u = u1 and u2 = 0 in (4.10) we get the following.

Corollary 4.5. The solution to the 2-d Navier-Stokes equation satisfies the energy equality

|ut|
2
0 + 2

∫ t

0
|∇ur |

2
0dr = |u0|

2
0. (4.11)

Moreover, u is continuous as a mapping with values in H0.

Proof. We start by showing that u is continuous as a mapping with values in H0 equipped with the
weak topology. It is immediate from (3.1) that lims→t us(φ) = ut(φ) for any φ ∈ H3. Moreover,
since {|us|0}s∈[0,T ] is bounded there exists a subsequence {usn}n ⊂ {us}s→t such that usn(φ) has a
limit for all φ ∈ H3. Since H3 is dense in H0 and weak limits are unique we see that we must have
convergence lims→t us(φ) = ut(φ) for all φ ∈ H0.

From the energy equality, (4.11) we see that lims→t |us|0 = |ut|0 which implies strong conver-
gence. �

Remark 4.6. The reader should notice that in the simpler case of σk being constant, the unbounded
rough driver (AP,1, AP,2) leaves the decomposition Wm,2 = Hm ⊕Hm

⊥ invariant. In particular we
have AQ,i

st us = 0 for i = 1, 2 and so (2.17) reduces to the standard case, i.e.

πt = −Q
∫ t

0
(ur · ∇)urdr,

from which it is easy to see that π is of bounded variation with values in H1
⊥.

4.3 Stability in two spatial dimension, proof of Corollary 2.12

Proof of Corollary 2.12. For n ∈ N consider an initial condition un
0 ∈ H0, a family of constant

vector fields σn and a continuous geometric p-rough path Zn = (Zn, Zn). According to Theorem
4.1, there exists (un, πn) which is a solution to (2.13) corresponding to the datum (un

0,σn, Zn).
Moreover, due to (4.11) it holds true

|un
t |

2
0 + 2

∫ t

0
|∇un

r |
2dr = |un

0|
2
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and in view of Lemma 3.2 and Lemma 3.1 it follows

|un|p−var ≤ c
(
|un

0|0, |σn|, |Zn|p−var;[0,T], |Z
n| p

2−var;[0,T]

)
.

Assume now that un
0 → u0 in H0, σn → σ in R2×K and Zn → Z = (Z, Z) in the topology

given by (2.10), namely, Zn → Z in Cp−var
2 ([0, T ]; RK) and Zn → Z in Cp−var

2 ([0, T ]; RK×K).
Then the above estimates yield a uniform (in n) bound for the sequence (un)n∈N in L∞T H0 ∩ L2

T H1 ∩

Cp−var([0, T ]; H−1). Hence due to Lemma A.3 there exists u ∈ L∞T H0 ∩ L2
T H1 ∩Cp−var([0, T ]; H−1)

such that (up to a subsequence)

un → u in L2
T H0 ∩CT H0

w.

Similarly to the proof of Theorem 4.1 we may pass to the limit in the equation and verify that u
solves (2.13) with the datum (u0,σ, Z). Since uniqueness holds true for (2.13) in 2-d with constant
vector fields, we deduce that the whole sequence un converges to u in L2

T H0 ∩CT H0
w.

To see the convergence of πn, we simply note that since the vector fields are constant we have
AQ,i

st us = 0 for i = 1, 2 and so

πn
t = −Q

∫ t

0
un

r · ∇un
r dr.

The convergence πn → π in C1−var([0, T ]; H−2
⊥ ) follows since un converges to u in L2

T H0 as follows∣∣∣∣∣∣
∫ t

s
B(ur, ur)(ψ) − B(un

r , un
r )(ψ)dr

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
∫ t

s
B(ur − un

r , ur)(ψ)dr

∣∣∣∣∣∣+
∣∣∣∣∣∣
∫ t

s
B(un

r , ur − un
r )(ψ)dr

∣∣∣∣∣∣
.

∫ t

s
|ur − un

r |0|ur |1|ψ|2dr +
∫ t

s
|un

r |1|ψ|2|ur − un
r |0dr

for every ψ ∈ H3
⊥ where we have used (2.6) with m1 = m2 = 0 and m3 = 2 as well as (2.7) and

(2.6) with m1 = 1, m2 = 1 and m3 = 0 �

4.4 Final remark

In 3 dimensions, it is known that the Stratonovich Navier-Stokes equation

du(t, x) + u(t, x) · ∇u(t, x)dt + ∇p(t, x) = ∆u(t, x)dt + ∇u(t, x) ◦ dW

has a probabilistically weak solution (see e.g. [BCF92, FG95, MR+05]). Nevertheless, the ques-
tion of whether it is probabilistically strong is still an open problem. In other words, it is not known
whether the solution to the above equation is adapted to the filtration generated by the Brownian
motion W. Even though a prime example of a driving rough path in our equation is a Brownian
motion with its Stratonovich lift and solving rough PDEs corresponds to a non-probabilistic (path-
wise) contruction of solutions, we still can not answer this question at this point. The reader should
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notice that using the compactness criterion Lemma A.2 we obtain a a subsequence of the approx-
imate solutions that a priori depends the randomness variable ω. The question whether the full
sequence converges is very difficult to answer as it is intimately related to the issue of uniqueness.
Indeed, if uniqueness held true, then every subsequence of {uN}N≥1 would converge to the same
limit, hence the full sequence would converge. As a consequence, the proof of stability in Corol-
lary 2.12 would imply that the solution (u, π) depends continuously on the given data (u0,σ, Z)
and is thus adapted to the filtration generated by the Brownian motion.

A Compact embedding results

The following compact embedding result is comparable to the fractional version of the Aubin-
Lions compactness result (see e.g. [FG95, Theorem 2.1]). We include a proof for the sake of being
self-contained. Before we come to the embedding itself, we need to prove a simple lemma.

Lemma A.1. If ω is a continuous control, then

lim
a→0

sup
s∈[0,T ]

sup
t∈[s,s+a]

ω(s, t) = 0.

Proof. Owing to superadditivity, for any t ∈ [s, s + a], we have ω(s, t) ≤ ω(s, s + a), and hence
the claim follows once we show that

lim
a→0

sup
s∈[0,T ]

ω(s, s + a) = 0.

Suppose, by contradiction, there exists an ε > 0 and a sequence {(sn, an)}n∈N ⊂ [0, T ] × [0, 1] such
that limn→∞ an = 0 and

ω(sn, sn + an) > ε, ∀n ∈ N.

Since [0, T ] is compact, there exists an s ∈ [0, T ] and a subsequence {(snk , ank)}k∈N ⊂ {(sn, an)}n∈N
converging to (s, 0). By continuity of the control, we find

ε ≤ lim
k→∞

ω(snk , snk + ank) = ω(s, s) = 0,

which is a contradiction.
�

Lemma A.2. Let ω be a control L > 0, κ > 0, and

X = L2
T H1 ∩

{
g ∈ CT H−1 : ω(s, t) ≤ L implies |δgst|−1 ≤ ω(s, t)κ

}
.

Then X is compactly embedded into CT H−1 and L2
T H0.
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Proof. For each a ∈ [0, L], define the operator Ja on L2
T H1 by

Jags =
1
a

∫ s+a

s
gtdt =

1
a

∫ a

0
gs+tdt,

where we extend g to R+ by letting g = gT outside [0, T ]. Clearly, s 7→ (Jag)(s) is continuous
from [0, T ] into H−1. Moreover,

|Jags|−1 ≤
1
a

∫ a

0
|gs+t|−1dt ≤

1
√

a

(∫ a

0
|gs+t|

2
−1dt

)1/2

,

which implies ∫ T

0
|Jags|

2
−1ds ≤

1
a

∫ T

0

∫ a

0
|gs+t|

2
−1dtds =

∫ T

0
|gt|

2
−1dt,

and hence |Jag|L2([0,T ];H−1) ≤ |g|L2([0,T ];H−1). Let us first show that Jag → g in CT H−1 as a → 0. To
see this consider

|Jags − gs|−1 =

∣∣∣∣∣∣1a
(∫ s+a

s
gtdt −

∫ s+a

s
gsdt

)∣∣∣∣∣∣
−1
≤

1
a

∫ s+a

s
|gt − gs|−1 dt

≤
1
a

∫ s+a

s
ω(s, t)κdt ≤ sup

t∈[s,s+a]
ω(s, t)κ

which converges uniformly in s to 0 by Lemma A.1 as a→ 0.
On the other hand, notice that for fixed a ∈ [0, L], the set JaL2

T H1 is relatively compact in
CT H−1. In fact, for s, s̄ ∈ [0, T ] we have

|Jags − Jags̄|1 =
1
a

∣∣∣∣∣∣
∫ s+a

s̄+a
gtdt −

∫ s

s̄
gtdt

∣∣∣∣∣∣
1
≤

2
a

√
|s − s̄||g|L2

T H1 (A.1)

where we have used Hölder’s inequality in the last step. Since H1 is compactly embedded into H−1

we can use Arzelà–Ascoli to see that JaL2
T H1 is indeed relatively compact.

To conclude the proof, assume gn is a sequence of functions bounded in L2
T H1 and |δgn

st|−1 ≤

ω(s, t)κ. In particular there exists a g ∈ L2
T H1 such that gn converges weak* to g (we omit the

subsequence for simplicity). We may assume g = 0 and the result is proved if we can prove
that |gn|CT H−1 converges to 0 as n → ∞. For any a ∈ [0, L], Jagn has a converging subsequence
{Jagna

k }k ⊂ {Jagn}n in CT H−1 by the above Arzelà–Ascoli theorem. Notice that this subsequence
may depend on a. Combining with weak* compactness we see that for any f ⊗ φ ∈ CT ⊗H1 we
have

lim
k→∞

∫ T

0
Jag

na
k

r (φ) frdr = lim
k→∞

∫ T

0
g

na
k

r (φ)J∗a frdr = 0,

so that limk→∞ Jagna
k = 0 in CT H−1. Since all subsequences converges to the same limit, this

means the full sequence converges.
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For any 0 < a ≤ L

|gn|CT H−1 ≤ |Jagn|CT H−1 + |Jagn − gn|CT H−1 ≤ |Jagn|CT H−1 + sup
s∈[0,T ]

sup
t∈[s,s+a]

ω(s, t)κ.

Letting first n→ ∞ and then a→ 0 we get the result.
To show that the set is also relatively compact in L2

T H0 we use Young’s inequality for h ∈ H1

and any ε > 0
|h|20 = h(h) ≤ |h|−1|h|1 ≤ Cε |h|2−1 + ε|h|21

for some appropriate constant Cε . Consequently,

|gn|2L2
T H0 ≤ Cε |gn|2L2

T H−1 + ε|gn|2L2
T H1 ≤ Cε |gn|2CT H−1 + ε sup

k
|gk|2L2

T H1 .

Letting first n→ ∞ we have by the above result for CT H−1 that

lim
n→∞
|gn|2L2

T H0 ≤ ε sup
k
|gk|2L2

T H1 .

Let ε → 0 to conclude the proof. �

Similarly, we obtain weak continuity of trajectories.

Lemma A.3. Let ω be a control L > 0, κ > 0, and

Y = L∞T H0 ∩
{
g ∈ CT H−1 : ω(s, t) ≤ L implies |δgst|−1 ≤ ω(s, t)κ

}
.

Then Y is compactly embedded into CT H0
w, the space of weakly continuous functions with values

in H0.

Proof. Let g ∈ Y . First, we will show that for all ϕ ∈ H0 the mapping

t 7→ 〈gt,ϕ〉 ∈ C([0, T ]). (A.2)

To this end, we observe that since g ∈ L∞T H0 it follows that there exists R > 0 such that gt ∈ BR for
all t ∈ [0, T ], where BR ⊂ H0 is a ball of radius R. Take any family (hn)n∈N that belong to H1 and
their finite linear combinations are dense in H0. Then

|〈gt,ϕ〉 − 〈gs,ϕ〉|

≤

∣∣∣∣∣∣∣
〈
gt − gs,

∑
n≤M

βnhn

〉∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣
〈
gt − gs,ϕ −

∑
n≤M

βnhn,
〉∣∣∣∣∣∣∣

≤

∣∣∣∣∣∣∣
〈
gt − gs,

∑
n≤M

βnhn,
〉∣∣∣∣∣∣∣+ R

∣∣∣∣∣∣∣ϕ −∑
n≤M

βnhn

∣∣∣∣∣∣∣
0

≤ c(M)ω(s, t)κ + R

∣∣∣∣∣∣∣ϕ −∑
n≤M

βnhn

∣∣∣∣∣∣∣
0

, (A.3)
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where the last term can be made small uniformly for all s, t ∈ [0, T ] by taking suitable βm and M
large enough. Hence (A.2) follows. The compactness of the embedding follows from the abstract
Arzelà–Ascoli theorem. Indeed the ball BR is relatively weakly compact, and the desired equi-
continuity follows from (A.3). �

B Sewing Lemma

Lemma B.1. Fix a subinterval I of [0, T ], a Banach space E and a parameter ζ < 1. Consider a
two-index map h : ∆I → E such that for all (s, u, t) ∈ ∆(2)

I with $(s, t) ≤ L implies

|δhsut| ≤ ω(s, t)
1
ζ ,

for some controls ω, $ on I and L > 0. Then there exists a unique path Ih : I → E with Ih0 = 0
such that Λh := h − δIh ∈ Cζ−var

2,$,L (I; E). If h ∈ Cp−var
2,$,L (I; E), then Ih ∈ Cp−var(I; E). Moreover,

there exists a universal constant Cζ > 0 such that for all (s, t) ∈ ∆I with $(s, t) ≤ L, we have

|(Λh)st| ≤ Cζω(s, t)
1
ζ .

The following corollary is immediate since Ih is a path.

Corollary B.2. Assume the hypothesis of Lemma B.1. If h ∈ Cp−var
2,$,L (I; E) for some p > 1, then for

all (s, t) ∈ ∆I ,
|hst| ≤ Cζω(s, t)

1
ζ .
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