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Abstract. We initiate the study of the internal structure of C∗-algebras associated to a left
cancellative semigroup in which any two principal right ideals are either disjoint or intersect in
another principal right ideal; these are variously called right LCM semigroups or semigroups
that satisfy Clifford’s condition. Our main findings are results about uniqueness of the full
semigroup C∗-algebra. We build our analysis upon a rich interaction between the group of
units of the semigroup and the family of constructible right ideals. As an application we
identify algebraic conditions on S under which C∗(S) is purely infinite and simple.

1. Introduction

In recent years, C∗-algebras associated to semigroups have received much attention due to the
range of new examples and interesting applications that they encompass. One such applica-
tion is to the connections between operator algebras and number theory, which have grown
deeper since Cuntz’s work in [6] on the C∗-algebra QN associated to the affine semigroup over
the natural numbers N o N×. Laca and Raeburn [12] continued the analysis of C∗-algebras
associated to No N× by examining the Toeplitz algebra T (No N×), including an analysis of
its KMS structure. Cuntz, Deninger and Laca [7] have since examined the KMS structure of
Toeplitz-type C∗-algebras associated to ax + b-semigroups R o R× of rings of integers R in
number fields.

Li has recently defined C∗-algebras associated to left cancellative semigroups S with identity,
and initiated a study of when certain naturally arising ∗-homomorphisms are injective [19,
20]. The reduced C∗-algebra C∗r (S) associated to S is defined by means of the left regular
representation of S on the Hilbert space `2(S). The full C∗-algebra C∗(S) is defined to be the
universal C∗-algebra generated by isometries and projections, subject to certain relations which
are imposed by the regular representation. For certain classes of semigroups, the canonical
isomorphism between the full and reduced semigroup C∗-algebras was established in [19, 20,
27].

In [2], the authors studied the full semigroup C∗-algebra arising from an algebraic construc-
tion called a Zappa-Sźep product of semigroups. The resulting semigroups display ordering
features similar to the quasi-lattice ordered semigroups introduced by Nica [26], but by con-
trast contain a non-trivial group of units. These semigroups were called right LCM (for least
common multiples) in [2], and we shall henceforth use this terminology, but mention that in
[17, §4.1] and [27] these are known as semigroups that satisfy Clifford’s condition. The class
of right LCM semigroups is pleasantly large and includes quasi-lattice ordered semigroups,
certain semidirect products of semigroups, and also semigroups that model self-similar group
actions, see [16, 18, 2].

In the present work we begin a study of the internal structure of C∗-algebras associated to
right LCM semigroups. The main thrust of our work is that when S is a right LCM semigroup
one may unveil the internal structure of C∗(S) and answer questions about its uniqueness by
carefully analysing the relationship between the group of units S∗ and the constructible right
ideals of S.
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The problem of finding good criteria for injectivity of ∗-homomorphisms on C∗(S) and in
particular to decide uniqueness of such C∗-algebras is at the moment not settled in the general-
ity of left cancellative semigroups. A powerful method to prove injectivity of ∗-representations
was developed by Laca and Raeburn in [11, Theorem 3.7] for C∗(S) with (G,S) quasi-lattice
ordered. Their work recasted Nica’s C∗-algebras associated to quasi-lattice ordered groups
in [26] by viewing them as C∗-crossed products by semigroups of endomorphisms. Based on
this realisation, they adapted a technique introduced by Cuntz in [5] which involved expecting
onto a diagonal subalgebra.

There are new technical obstacles to be overcome when dealing with a semigroup S that
has a non-trivial group of units. In particular, not all of Laca and Raeburn’s programme
can be carried through beyond the case of quasi-lattice ordered pairs. One challenge is that
the diagonal subalgebra of C∗(S), denoted D in [19], may be too small to accommodate the
range of a conditional expectation from C∗(S), cf. an observation made in [27]. Furthermore,
generating isometries in C∗(S) that correspond to elements from the group of units S∗ give
rise to unitaries. These unitaries together with the generating projections from D yield two
new subalgebras of C∗(S) whose role in explaining the structure of C∗(S) is yet to be fully
understood.

Our initial approach was to push to the fullest extent the Laca-Raeburn strategy to an
arbitrary right LCM semigroup S, with or without an identity. It soon became evident that
the presence of non-trivial units in S∗ makes it unlikely that [11, Theorem 3.7] will extend in the
greatest generality to right LCM semigroups. However, by carefully analysing the action of the
group of units S∗ on the constructible right ideals J (S) of S we are able to identify conditions
on S which ensure that injectivity of ∗-homomorphisms on C∗(S) can be characterised on D.
This approach has lead us to find conditions on a right LCM semigroup S which ensure that
C∗(S) is purely infinite and simple. The examples we have of such semigroups belong to a
class of semidirect products G oθ P of a group G by an injective endomorphic action θ of a
semigroup P . C∗-algebras associated to such semidirect products where P = N were studied by
Cuntz and Vershik in [9], and by Vieira in [30]. Our C∗(Goθ P ) may be interpreted as higher
dimensional versions of those C∗-algebras. We mention that K-theory and internal structure of
C∗-algebras associated to ax+b-semigroups of certain integral domains were analysed recently
by Li, see [21].

The organisation of the paper is as follows. In Section 2 we collect some standard results
about semigroups. We also introduce our conventions on semidirect product semigroups, and
identify an abstract characterisation of the examples of interest G oθ P . Section 3 contains
an introduction to right LCM semigroups, and their associated full and reduced C∗-algebras.
Since we do not assume that S necessarily contains an identity element, we explain how
the definitions of C∗r (S) and C∗(S) from [19] can be adapted to this, slightly more general,
situation. In the same section we introduce the distinguished subalgebras of interest, which
are built out of D and the unitaries coming from the group of units S∗. We also discuss
conditional expectations onto the diagonal subalgebras of C∗(S) and C∗r (S).

Our first findings about injectivity of a ∗-homomorphism on C∗(S) are the subject of Sec-
tion 4. We show in Theorem 4.3 that injectivity can be phrased as a nonvanishing condition
involving projections from D, similar to [11, Theorem 3.7], when the semigroup S has at
most an identity element as unit, or, in the presence of non-trivial units, satisfies a technical
condition on the left action of S∗ on the space J (S). In Section 5 we identify a number of
conditions on a right LCM semigroup S which imply that C∗(S) is purely infinite and simple.
These conditions include a characterisation of the left action of S∗ on J (S) which is a refined
version of effective action; we call this strongly effective. In a short Section 6 we discuss injec-
tivity of the canonical surjection from C∗(S) onto C∗r (S) and illustrate this with semigroups
of the form Goθ P . Section 7 initiates the study of injectivity of ∗-homomorphisms on C∗(S)
phrased in terms of a core subalgebra that is built from D and the unitaries corresponding to
the group of units S∗ in S. The final section, Section 8, is devoted to applications. Here we
discuss the validity of the properties of right LCM semigroups introduced in sections 4 and
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5. The main class of examples is that of semidirect products of the form G oθ P , and via
Theorem 8.12 we provide examples of purely infinite simple C∗(S) from this class. We also
take the opportunity to examine the Zappa-Szép product semigroups X∗ ./ G coming from
self-similar actions (G,X) as considered in [16, 18, 2]; in particular, we examine some of the
properties of semigroups introduced in the paper. While at this stage we cannot apply our
C∗-algebraic results to this class of semigroups, we plan to examine these problems in further
work.

We thank the referee for suggesting many improvements to the presentation.

2. Some results on semigroups

By a semigroup S we understand a non-empty set S with an associative operation. We refer
to [4] and [14] for basic properties of semigroups. Semigroups with an identity element for the
operation are known as monoids. Here we shall use the terminology semigroup, and specify
existence of an identity when this is the case. All semigroups considered in this work are
discrete. A semigroup S is left cancellative if pq = pr implies q = r for all p, q, r ∈ S; right
cancellative if qp = rp implies q = r for all p, q, r ∈ S; and cancellative if it is both left and
right cancellative.

Given a semigroup S with identity 1S , an element x in S is invertible if there is y ∈ S such
that xy = yx = 1S . We denote by S∗ the group of invertible elements of S (also called the
group of units of S). We shall write S∗ 6= ∅ in case the group of units is non-trivial (possibly
consisting only of the identity element), and we write S∗ = ∅ otherwise. If S is cancellative
and x ∈ S∗, then x−1 will denote the inverse of x.

The Green relations on a semigroup are well-known, see for example [14, Chapter 2]. The
left Green relation L is aLb if and only if Sa = Sb for a, b ∈ S. Likewise, the right Green
relation R is given by aRb if and only if aS = bS for a, b ∈ S. Suppose that S is a semigroup
with S∗ 6= ∅. Since Sx = S whenever x ∈ S∗, we see that a = xb for some x ∈ S∗ implies that
aLb. If S is right cancellative, the reverse implication holds and, moreover, the element x in
S∗ is unique. Indeed, let Sa = Sb. Then there are c, d ∈ S such that b = ca and a = db, so
b = cdb and a = dca. Thus right cancellation implies cd = 1S = dc, showing that c, d ∈ S∗. If
right cancellation is replaced with left cancellation in the previous considerations, then aRb is
the same as a = by for a unique y ∈ S∗.

If S∗ = ∅, we will assume throughout this paper that S has the following property: if
a, b ∈ S satisfy aS = bS, then a = b. This is what happens in the case that S∗ = {1S}.

Given a semigroup S, a right ideal R is a non-empty subset of S such that RS ⊆ R. The
principal right ideals of S are all the right ideals of the form pS := {ps | s ∈ S} for p ∈ S.
Given a principal right ideal pS, an element r ∈ pS is called a right multiple of p. The right
ideal generated by p ∈ S is defined as {p} ∪ pS; we shall denote it 〈p〉.

Remark 2.1. If S has an identity it is clear that pS = 〈p〉. For an arbitrary left cancellative
semigroup S and p ∈ S, a sufficient condition to have pS = 〈p〉 is that there is an idempotent
t ∈ S, i.e. t = tt, such that p = pt. Note that if p is a regular element of S, in the sense that
there is s ∈ S such that p = psp, then t = sp is an idempotent such that p = pt. Thus p ∈ pS
whenever p is a regular element in a semigroup S.

Definition 2.2. A semigroup S is right LCM if it is left cancellative and every pair of elements
p and q with a right common multiple has a right least common multiple r.

It is clear that a semigroup S is right LCM if it is left cancellative and for any p, q in S, the
intersection of principal right ideals pS ∩ qS is either empty or of the form rS for some r ∈ S.
This property of semigroups is called Clifford’s condition in [17, §4.1] and [27]. In general,
right least common multiples are not unique: if r is a right least common multiple of p and q,
then so is rx for any x ∈ S∗.

The quasi-lattice ordered groups treated in [26] are examples of right LCM semigroups with
unique right least common multiples. We discuss other examples in Section 8. The main class
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of examples of semigroups that is considered in the present work is that of semidirect product
semigroups. We introduce next our conventions for a semidirect product of semigroups.

For a semigroup T we let EndT denote the semigroup of all homomorphisms T → T . The

identity endomorphism is idT . An action P
θy T of a semigroup P on T is a homomorphism

θ : P → EndT , i.e. θpθq = θpq for all p, q ∈ P . If T has an identity 1T , we shall require that
θp(1T ) = 1T for all p ∈ P . In case P has an identity 1P , we shall further require that θ1P is
the identity endomorphism of T .

Definition 2.3. Let T, P be semigroups and P
θy T an action. The semidirect product of T

by P with respect to θ, denoted ToθP , is the semigroup T × P with composition given by

(s, p)(t, q) = (sθp(t), pq),

for s, t ∈ T and p, q ∈ P .

Examples of semidirect products are ax+ b-semigroups, where T comprises the additive struc-
ture, and P the multiplicative structure in some ring or field. It is known that T oθ P is right
cancellative when T and P are both right cancellative, and T oθ P is left cancellative when T
and P are both left cancellative and, in addition, θ is an action by injective endomorphisms
of T .

In the next result we describe S∗ in the case of a semidirect product S = Goθ P in which
G is a group.

Lemma 2.4. Let G be a group, P a semigroup and P
θy G an action such that Goθ P is left

cancellative. If P has an identity, then (Goθ P )∗ = Goθ P
∗ holds, otherwise Goθ P does not

have an identity.

Proof. If P has an identity element 1P , the identity element of G oθ P is given by (1G, 1P ).
Now let (g, x) ∈ (G oθ P )∗. By definition, there is (h, y) ∈ G oθ P such that (gθx(h), xy) =
(g, x)(h, y) = (1G, 1P ). Thus, x ∈ P ∗. Conversely, if x ∈ P ∗ and g ∈ G, the inverse of (g, x) is
given by (θx−1(g−1), x−1). The second case is obvious. �

Remark 2.5. Let G be a group, P a semigroup with P ∗ = {1P } and P
θy G an action such that

Goθ P is left cancellative. Given (g, p) ∈ Goθ P , we have (g, p)(h, 1P ) = (gθp(h)g−1, 1P )(g, p)
for any h ∈ G. By Lemma 2.4, a(GoθP )∗ ⊂ (GoθP )∗a for any a in GoθP . This observation
motivates the next considerations.

In [4, §10.3], a subset H of a semigroup S is called centric if aH = Ha for every a ∈ S. For a
semigroup S with S∗ 6= ∅, we shall consider two one-sided versions of this condition.

Definition 2.6. Given a semigroup S with S∗ 6= ∅, let (C1) and (C2) be the conditions:

(C1) aS∗ ⊆ S∗a for all a ∈ S.
(C2) S∗a ⊆ aS∗ for all a ∈ S.

Proposition 2.7. Let S be a semigroup with S∗ 6= ∅. Consider the equivalence relation on S
given as follows: for a, b ∈ S,

a ∼ b if a = xb for some x ∈ S∗.
If S satisfies (C1), then ∼ is a congruence on S. Consequently, if S := S/∼ denotes the
collection of equivalence classes [a] := {b ∈ S | b ∼ a}, then S is a semigroup with identity
[1S ]. Moreover, S∗ = {[1S ]}.

Proof of Proposition 2.7. It is routine to check that ∼ is an equivalence relation. To show
that it is a congruence on S, we must show that whenever a ∼ b then cad ∼ cbd for all c, d
in S. Let x in S∗ such that a = xb. By (C1), there is x′ ∈ S∗ such that cx = x′c. Then
cad = cxbd = x′cbd, giving the claim. Thus [a1] · [a2] := [a1a2] for a1, a2 ∈ S is a well-defined
operation which turns S into a semigroup with identity [1S ].

Suppose that [a][b] = [1S ] = [b][a] for a, b ∈ S. Then ab = x and ba = y for x, y ∈ S∗, which
shows that bx−1 = y−1b is an inverse for a. Similarly, b ∈ S∗, and thus [a] = [b] = [1S ]. �
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Remark 2.8. The relation ∼ from Proposition 2.7 is closely related to the left Green relation:
since Sx = S whenever x ∈ S∗, we see that a ∼ b implies aLb. If S is right cancellative, then
also aLb implies a ∼ b.

Our interest is in semigroups S that are left cancellative and often cancellative. So we would
like to know when the semigroup S from Proposition 2.7 inherits these properties. One suf-
ficient condition for left cancellation to pass from S to S is spelled out in the next lemma,
whose immediate proof we omit.

Lemma 2.9. Let S be a semigroup with S∗ 6= ∅ and satisfying (C1). If S is right cancellative
then S is right cancellative. Further, S is left cancellative if S is left cancellative and has the
following property:

ab = xac for a, b, c ∈ S, x ∈ S∗ =⇒ ∃y ∈ S∗ with xa = ay.

Proposition 2.10. Let P be a semigroup with P ∗ 6= ∅, G a group and P
θy G an action by

injective group endomorphisms of G. Denote S = Goθ P the resulting semidirect product.
(a) If P satisfies (C1), then so does S.
(b) If P is right cancellative and satisfies (C1), then S is right cancellative.
(c) If P is left cancellative and P ∗ is centric, then S is left cancellative.

Proof. For (a), let (g, p) ∈ S and (g′, x) ∈ S∗ = G o P ∗, according to Lemma 2.4. Choose
by (C1) an element y ∈ P ∗ such that px = yp. It follows that (g, p)(g′, x) = (g′′, y)(g, p) for
g′′ = gθp(g

′)θy(g
−1). For assertion (b), note that S has (C1) by (a) and is right cancellative,

so the claim follows by Lemma 2.9.
To prove (c), first note that S is well-defined since S has (C1). Suppose we have elements

(g, p), (h, q), (k, r) in S and (g0, p0) ∈ S∗ such that (g, p)(h, q) = (g0, p0)(g, p)(k, r). Therefore
(gθp(h), pq) = (g0θp0(gθp(k)), p0pr). Since P ∗ is centric, there is a unique p1 ∈ P ∗ such that
p0p = pp1. Choosing g1 = hθp1(k−1) in G we have (g0, p0)(g, p) = (g, p)(g1, p1). Hence
Lemma 2.9 applies and shows that S is left cancellative. �

The next result shows that cancellative semigroups which are semidirect products of the form
G oθ P , with P ∗ = {1P }, can be characterised abstractly as cancellative semigroups S that
satisfy (C1) and for which the quotient map of S onto S admits a homomorphism lift.

Proposition 2.11. There is a bijective correspondence between the class of cancellative semi-
groups S with identity 1S satisfying (C1) and such that the quotient map from S onto S admits
a transversal homomorphism which embeds S into S, and the class of semidirect product semi-
groups GoθP arising from a cancellative semigroup P with P ∗ = {1P }, which acts by injective
endomorphisms of a group G.

Proof. Suppose S is cancellative with 1S , satisfies (C1), and is such that there is an embedding
of S as a subsemigroup of S which is a right inverse for the quotient map S → S. For ease of
notation, we identify S ⊆ S. Then for each p ∈ S we have a map θp : S∗ → S∗, where θp(x)
is the unique element of S∗ satisfying px = θp(x)p. Note that such an element exists because
of (C1), and is unique because S is right cancellative. We claim that θ : p 7→ θp is an action
of S by injective endomorphisms of S∗. For each p ∈ S and x, y ∈ S∗ we have θp(xy)p =
pxy = θp(x)py = θp(x)θp(y)p, which by right cancellation means θp(xy) = θp(x)θp(y). Since
we obviously have θp(1S) = 1S , each θp is an endomorphism of S∗. For each p, q ∈ S and
x ∈ S∗ we have θpq(x)pq = pqx = pθq(x)q = θp(θq(x))pq, which by right cancellation means
θpq(x) = θp(θq(x)), and so θ is an action. Hence we can form the semidirect product S∗ oθ S.
We have each θp injective because θp(x) = θp(y) implies px = θp(x)p = θp(y)p = py, resulting
in x = y.

The map φ : S∗ oθ S → S given by φ((x, p)) = xp is a homomorphism because

φ((x, p))φ((y, q)) = xpyq = xθp(y)pq = φ((x, p)(y, q)).

For each r ∈ S we choose p ∈ S the representative of r in S. Then r = xp for some
x ∈ S∗, which means r = φ((x, p)), and hence φ is surjective. For injectivity note that
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φ((x, p)) = φ((y, q)) means p and q differ by a unit. Hence as elements of S they must be
equal. Then right cancellation gives x = y. So φ : S∗ oθ S → S is an isomorphism. Moreover,
S is cancellative because S is cancellative, and we have S∗ = {1S} because [x] = [1S ] for all
x ∈ S∗. Since S∗ = {1S}, S trivially satisfies (C1).

Now suppose that P is cancellative with P ∗ = {1P }, and acts by injective endomorphisms
on a group G. Then we know from the discussion on semidirect products prior to Lemma 2.4
that G oθ P is cancellative. We also know from Proposition 2.10 that G oθ P satisfies (C1).
Denote by SG,P the semigroup obtained by applying Proposition 2.7 to Goθ P , and consider
the map π : SG,P → G oθ P given by π([(g, p)]) = (1G, p). Since (G oθ P )∗ = G × {1P },
the equality [(g, p)] = [(h, q)] implies p = q, which means π([(g, p)]) = π([(h, q)]). So π is well
defined. We have

π([(g, p)][(h, q)]) = π([(gθp(h), pq)]) = pq = π([(g, p)])π([(h, q)])

for each [(g, p)], [(h, q)] ∈ SG,P , and so π is a homomorphism. Moreover, π is obviously unital.
Finally, for each [(g, p)], [(h, q)] ∈ SG,P we have

π([(g, p)]) = π([(h, q)]) =⇒ p = q,

so (g, p) = (gh−1, 1P )(h, q), resulting in [(g, p)] = [(h, q)]. Thus π is injective, and hence a
semigroup embedding in Goθ P . �

3. Right LCM semigroup C*-algebras

3.1. Semigroup C*-algebras.
In [19], Li constructed the reduced and the full C∗-algebras C∗r (S) and C∗(S) associated to
a left cancellative semigroup S with identity. In this work we shall allow semigroups that do
not necessarily have an identity, so we start by investigating to what extent the construction
of C∗r (S) and C∗(S) from [19] still makes sense.

Let S be a left cancellative semigroup, and let {εt}t∈S denote the canonical orthonormal
basis of `2(S) such that (εs|εt) = δs,t for s, t ∈ S. For each p ∈ S let Vp be the operator
in L(`2(S)) given by Vpεt = εpt for all t ∈ S. We have V ∗p Vp = I in L(`2(S)), so that Vp
is an isometry for every p ∈ S. We define the reduced C∗-algebra C∗r (S) to be the unital
C∗-subalgebra of L(`2(S)) generated by Vp for all p ∈ S.

Given p ∈ S, clearly VpV
∗
p εs = 0 when s /∈ pS. Left cancellation implies that VpV

∗
p εs = εs

when s ∈ pS. Thus the range projection VpV
∗
p of Vp is the orthogonal projection onto the

subspace l2(pS) corresponding to the principal right ideal pS. We shall denote this projection
by EpS . With reference to Remark 2.1, note that p need not belong to pS. However, p is
contained in pS if S has an identity or if p is a regular element of S. We summarise some
properties of the elements Vp and EpS in the next lemma, whose proof we omit.

Lemma 3.1. Let S be a left cancellative semigroup that does not necessarily have an identity.
Then for each p in S, the range projection of Vp is equal to the orthogonal projection EpS onto
the subspace l2(pS). Further, the isometries Vp and the projections EpS satisfy the relations:

(1) VpVq = Vpq;
(2) VpEqSV

∗
p = EpqS;

(3) EpSEqS = EpS∩qS

for all p, q ∈ S.

Recall from [19] that for each right ideal X and p ∈ S, the sets

pX = {px | x ∈ X} and p−1X = {y ∈ S | py ∈ X}
are also right ideals. Li [19, §2.1] defines the set of constructible right ideals J (S) to be the
smallest family of right ideals of S satisfying

(1) ∅, S ∈ J (S) and
(2) X ∈ J (S), p ∈ S =⇒ pX, p−1X ∈ J (S).

An inductive argument as in the proof of [19, Lemma 3.3] shows that (1) and (2) imply
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(3) X,Y ∈ J (S) =⇒ X ∩ Y ∈ J (S).

The full C∗-algebra for a left cancellative semigroup S will be defined in terms of generators
and relations similar to what is done in [19] for semigroups with identity.

Definition 3.2. Let S be a left cancellative semigroup. The full semigroup C∗-algebra C∗(S)
is the universal unital C∗-algebra generated by isometries (vp)p∈S and projections
(eX)X∈J (S) satisfying

(L1) vpvq = vpq;
(L2) vpeXv

∗
p = epX ;

(L3) e∅ = 0 and eS = 1; and
(L4) eXeY = eX∩Y ,

for all p, q ∈ S, X,Y ∈ J (S).

The left regular representation is, by definition, the ∗-homomorphism λ : C∗(S) → C∗r (S)
given by λ(vp) = Vp for all p ∈ S.

In [19], the set of constructible right ideals J (S) is called independent if for every choice of
X,X1, . . . , Xn ∈ J (S) we have

Xj & X for all 1 ≤ j ≤ n =⇒
n⋃
j=1

Xj & X.

Equivalently, J (S) is independent if ∪nj=1Xj = X implies Xj = X for some 1 ≤ j ≤ n.
The next two lemmas explain why right LCM semigroups form a particularly tractable class

of semigroups. The proof of the first of these lemmas is left to the reader.

Lemma 3.3. If S is a right LCM semigroup, then J (S) = {∅, S} ∪ {pS | p ∈ S}.

Lemma 3.4. Let S be a right LCM semigroup. Then
⋃
X∈F X $ S holds for all finite subsets

F ⊂ J (S) \ {S} if and only if J (S) is independent.

Proof. Clearly, independence of J (S) implies
⋃
X∈F X $ S for all finite F ⊂ J (S) \ {S}.

Conversely, let X,X1, . . . , Xn ∈ J (S) satisfy Xi $ X. Since S is right LCM, Lemma 3.3 gives
p, p1, . . . , pn ∈ S with X = pS,Xi = piS for i = 1, . . . , n. For each i = 1, . . . , n, Xi $ X
implies that pi = pp′i for some p′i ∈ S with p′iS $ S. Thus⋃

1≤i≤n
Xi = p

⋃
1≤i≤n

p′iS and X = pS.

By left cancellation,
⋃

1≤i≤nXi = X is equivalent to
⋃

1≤i≤n p
′
iS = S. However, the second

statement is false by the choice of p′iS. Hence
⋃

1≤i≤nXi $ X and J (S) is independent. �

Remark 3.5. Let S be a left cancellative semigroup and J (S) the family of constructible right
ideals. Let F be a finite subset of J (S) \ {S}. Note that if S has an identity 1S , then⋃
X∈F

X $ S holds. Indeed, if we had
⋃
X∈F

X = S, then there would exist X ∈ F such that

1S ∈ X, so X = S since X is a right ideal, a contradiction.

Corollary 3.6. If S is a right LCM semigroup with identity, then J (S) is independent.

Proof. This follows from [27, Proposition 2.3.5]. Alternatively, apply Lemma 3.4 and Remark
3.5. �

If S does not have an identity, we can always pass to its unitisation S̃ = S ∪ {1S}, where we

declare 1Sp = p = p1S for all p ∈ S̃.

Lemma 3.7. If S is a right LCM semigroup with S∗ = ∅, then for every p, q ∈ S we have
pS ∩ qS = ∅ precisely when pS̃ ∩ qS̃ = ∅, and

pS ∩ qS = rS if and only if pS̃ ∩ qS̃ = rS̃

for r ∈ S. In particular, S̃ is right LCM and J (S̃) is independent.
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Proof. Let p, q ∈ S. It is clear that pS ∩ qS is empty if and only if pS̃ ∩ qS̃ is. Suppose next
that pS ∩ qS 6= ∅. In case pS = qS, the standing assumption imposed on semigroups without
identity element forces p = q, and so pS̃ = qS̃. Assume therefore that pS 6= qS, and let r ∈ S
with pS ∩ qS = rS. Then

pS ∩ qS = rS ⊂ rS̃ ⊆ pS̃ ∩ qS̃.
We claim that pS̃ ∩ qS̃ ⊆ rS̃. Let t ∈ pS̃ ∩ qS̃. If t ∈ pS ∩ qS then clearly t ∈ rS ⊂ rS̃.
Assume that t = q = ps for some s ∈ S. Then t = q1S ∈ qS̃ and t ∈ pS ⊂ pS̃, so t ∈ rS̃. The
case that t = p = qu for some u ∈ S is similar, and the claim is established.

Since left cancellation in S̃ is inherited from S, this shows that S̃ is a right LCM semigroup
Thus J (S̃) is independent according to Corollary 3.6. �

The following example shows that independence of J (S) need not hold in general for semi-
groups without an identity:

Example 3.8. Let S = 2N×∪3N× be endowed with composition given by multiplication. Then
J (S) is not independent. Indeed, for X1 = 2N× = 3−1(2S) and X2 = 3N× = 2−1(3S), we
have Xi $ S but X1 ∪X2 = S. We remark that S is not right LCM.

One can modify the previous example to get a right LCM semigroup with S∗ = ∅ such that
J (S) is independent.

Example 3.9. Consider the set S = N×\{1} with composition given by multiplication. Then S
is a right LCM semigroup with S∗ = ∅. We claim that J (S) is independent. For this it suffices
to show that

⋃
X∈F X $ S holds for all finite F ⊂ J (S) \ {S}. Assume that

⋃n
i=1Xi = S

for X1, . . . , Xn in J (S) \ {S}. Since S contains n + 1 relatively prime elements p1, . . . , pn+1,
we can find i0 ∈ {1, . . . , n} and j, k ∈ {1, . . . , n + 1} with j 6= k such that pj , pk ∈ Xi0 . But
this implies that Xi0 = S, a contradiction. The underlying idea is that as long as there are
infinitely many prime right ideals, J (S) is independent.

Remark 3.10. For a left cancellative semigroup S, the range projection vpv
∗
p of the generating

isometry vp in C∗(S) equals epS :

vpv
∗
p

(L3)
= vpeSv

∗
p

(L2)
= epS .

Thus, if S has an identity, then vx is a unitary in C∗(S) if (and only if) x ∈ S∗. If S is right
LCM, then Lemma 3.3 shows that C∗(S) is generated already by (vp)p∈S .

3.2. Spanning families and distinguished subalgebras.
When S is a right LCM semigroup we have a description of its C∗-algebra C∗(S) in terms
of a spanning set of monomials of the kind that span C∗-algebras associated to quasi-lattice
ordered pairs, see [11]. This assertion could be deduced from [27, Proposition 3.2.15], however
we include a proof since we here do not assume that S necessarily has an identity.

Lemma 3.11. Let S be a right LCM semigroup. If S has an identity, then C∗(S) = span{vpv∗q |
p, q ∈ S}. If S∗ = ∅, then C∗(S) = span{vpv∗q | p, q ∈ S̃}.
Proof. In each case, the right-hand side is closed under taking adjoints and, due to Re-
mark 3.10, contains the generators of C∗(S). Hence, we only need to show that the right-hand
side is multiplicatively closed. Using (L1), it suffices to show that the product of v∗q and vp for
arbitrary p and q in S is 0 or has the form vp′v

∗
q′ for some p′, q′ ∈ S. By Remark 3.10, we have

v∗qvp = v∗qeqSepSvp
(L4)
= v∗qeqS∩pSvp.

Since S is right LCM, we know that pS∩qS is either empty, in which case eqS∩pS = 0 by (L3),
or pS ∩ qS = rS for some r ∈ pS ∩ qS. If we let p′, q′ ∈ S be such that pp′ = qq′ = r in S
(which are uniquely determined since S is left cancellative), then

v∗qvp = v∗qerSvp = v∗qvqq′v
∗
pp′vp = vq′v

∗
p′

establishes the claim for the second case. �
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Definition 3.12. Let S be a left cancellative semigroup. Define a subalgebra of C∗(S) by

D := C∗({eX | X ∈ J (S)}).
If S∗ 6= ∅, define further the subalgebras

CO := C∗({vpvxv∗p | p ∈ S, x ∈ S∗}) and CI := C∗({epS , vx | p ∈ S, x ∈ S∗}).
These are, respectively, the diagonal, the outer core and the inner core of C∗(S).

It is clear that D = span{eX | X ∈ J (S)}. The other two subalgebras satisfy the following:

Lemma 3.13. Let S be a right LCM semigroup with S∗ 6= ∅. Then

(i) D ⊆ CI ⊆ CO;
(ii) CI = span{epSvx | p ∈ S, x ∈ S∗}; and

(iii) if S∗ = {1S}, then D = CI = CO.

Proof. Parts (i) and (iii) are immediate verifications. For assertion (ii) we use (L2) and (L4)
to get

epSvxeqSvy = epSvxeqSv
∗
xvxvy = epS∩xqSvxy,

for each p, q ∈ S, x, y ∈ S∗. Hence {epSvx | p ∈ S, x ∈ S∗} is closed under multiplication.
Since (epSvx)∗ = v∗xepS = ex−1pSvx−1 , claim (ii) follows. �

3.3. Conditional expectations onto canonical diagonals of C∗(S) and C∗r (S).
Let S be a left cancellative semigroup. The diagonalDr in C∗r (S) is defined to be the subalgebra
Dr = span{EX | X ∈ J (S)}. We show next that when S is right LCM and also right
cancellative, there is a canonical faithful conditional expectation from C∗r (S) onto its diagonal.
The result was motivated by [19, Lemma 3.11], and is a generalisation to cancellative right LCM
semigroups of a similar result proved for quasi-lattice ordered groups, see [26, Remark 3.6] and
[29]. More precisely, it is a consequence of the normality of the coaction in [29, Proposition 6.5]
and of [29, Lemma 6.7] that the Wiener-Hopf algebra T (G,S), i.e. the reduced C∗-algebra of a
quasi-lattice ordered group (G,S), admits a faithful conditional expectation onto its canonical
diagonal.

Proposition 3.14. If S is a cancellative right LCM semigroup, then the canonical map ΦD,r :
C∗r (S) −→ Dr given by ΦD,r(VpV

∗
q ) = δp,qVpV

∗
p for p, q ∈ S is a faithful conditional expectation.

Proof. It was proved in [19, Section 3.2] that there is a faithful conditional expectation E :
L(`2(S)) −→ `∞(S) characterised by 〈E(T )εs, εs〉 = 〈Tεs, εs〉 for all s ∈ S and all T ∈
L(`2(S)). Clearly, Dr ⊂ `∞(S). We will show that the converse inclusion holds. Note that
C∗r (S) is the closure of the span of elements VpV

∗
q , p, q ∈ S. Therefore it suffices to show that

E(VpV
∗
q ) ∈ Dr for any p, q ∈ S. Let s ∈ S. If s /∈ qS, then V ∗q εs = 0, and for s ∈ qS of

the form s = qs′ we have V ∗q εs = ε′s. Thus if E(VpV
∗
q ) 6= 0, then there is s′ ∈ S such that

ps′ = qs′. Right cancellation then implies p = q, so VpV
∗
q ∈ Dr. Since ΦD,r = E in this case,

the proposition follows. �

A successful strategy to prove injectivity of representations of C∗(S) uses the classical idea
of Cuntz from [5], which involves expecting onto a diagonal subalgebra and constructing a
projection with good approximation properties. To pursue this path, we need a faithful con-
ditional expectation from C∗(S) onto D. Such a map can be specified by its image on the
spanning elements of C∗(S) as follows:

(3.1) ΦD(vpv
∗
q ) =

{
vpv
∗
p, if p = q

0, if p 6= q.

Thus in examples we need to ensure that (3.1) does extend to C∗(S) and that it is faithful on
positive elements. We now describe one such situation.

Let us recall the notion of a semigroup crossed product by endomorphisms, see e.g. [11].

Let S be a semigroup with identity and A a unital C∗-algebra with an action S
αy A by

endomorphisms. A nondegenerate representation of (A,S, α) in a unital C∗-algebra B is given
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by a unital ∗-homomorphism πA : A −→ B and a semigroup homomorphism πS : S −→
Isom(B), where Isom(B) denotes the semigroup of isometries in the C∗-algebra B. The pair
(πA, πS) is said to be covariant if it satisfies the covariance condition

πS(s)πA(a)πS(s)∗ = πA(αs(a)) for all a ∈ A and s ∈ S.
Assuming that there is a covariant pair, the semigroup crossed product A oα S is the unital
C∗-algebra generated by a pair (ιA, ιS) which is universal for nondegenerate covariant repre-
sentations. This is to say that whenever (πA, πS) is a nondegenerate covariant representation
of (A,S, α) in a C∗-algebra B, there is a homomorphism π : Aoα S −→ B such that

πA = π ◦ ιA and πS = π ◦ ιS .
The crossed product A oα S is uniquely determined (up to canonical isomorphism) by this
property. If the action α is by injective endomorphisms, then there is always a covariant pair
and Aoα S is non-trivial, see [10].

It was observed in [19] that whenever S is a left cancellative semigroup with identity, then
there is an action τ of S by endomorphisms of D given by τp(eX) = vpeXv

∗
p = epX for all p ∈ S

and X ∈ J (S). The semigroup crossed product DoτS is the universal C∗-algebra generated by
a pair (ιD, ιS) of homomorphisms of D and S, respectively, subject to the covariance condition
ιS(p)ιD(eX)ιS(p)∗ = ιD(epX) for all p ∈ S and X ∈ J (S). As shown in [19, Lemma 2.14],
the C∗-algebras C∗(S) and Doτ S are canonically isomorphic, through the isomorphism that
sends vp to ιS(p) and eX to ιD(eX). We have the following consequence of Lemma 3.11.

Corollary 3.15. Given a right LCM semigroup S, let τ be the action of S on D given by
conjugation with vp for p ∈ S. If S has an identity, then Doτ S = span{ιS(p)ιS(q)∗ | p, q ∈ S}.
If S∗ = ∅, then D oτ S = span{ιS(p)ιS(q)∗ | p, q ∈ S̃} holds.

Recall that a semigroup S is said to be right reversible if Sp∩Sq is non-empty for all p, q ∈ S,
see [4, 10.3]. If S embeds into a group, we refer to the subgroup generated by the image of S
as the enveloping group of S. Note that this group is unique up to canonical isomorphism in
case it exists.

Proposition 3.16. Let S be a right LCM semigroup with identity such that S is right reversible
and its enveloping group G = S−1S is amenable. Then there is a faithful conditional expectation
from C∗(S) onto D characterised by (3.1).

Proof. The first observation is that the action τ admits a left inverse, β, given by

βp(eX) = v∗peXvp = ep−1X

for p ∈ S and X ∈ J (S). It was proved in [20, Corollary 2.9] that βp defines an endomorphism
of D for each p ∈ S, the reason for this being that p−1X ∩ p−1Y = p−1(X ∩ Y ) holds for all
X,Y ∈ J (S). It is clear that β is an action of S such that βp ◦ τp = id for all p ∈ S. Moreover,

(τp ◦ βp)(eX) = vpv
∗
peXvpv

∗
p = epSeXepS = eXτp(1)

for every p ∈ S and X ∈ J (S). Thus τp ◦ βp is simply the cut-down to the corner associated
to the projection τp(1).

One consequence of the existence of β is that τp is injective for every p ∈ S. Hence [10,
Theorems 2.1 and 2.4] show that D embeds in D oτ S.

As a second consequence of the existence of β, note that [15, Proposition 3.1(1)] implies
that there is a coaction of G whose fixed-point algebra is ιD(D). Thus there is a conditional
expectation ΦD from D oτ S onto ιD(D) such that

ΦD(ιS(p)ιS(q)∗) =

{
ιS(p)ιS(p)∗, if p = q

0, if p 6= q.

Identifying ιS(p) with vp and ιD(epS) with epS gives existence of the claimed expectation.
Under the assumption that the enveloping group G is amenable, the map ΦD is faithful on
positive elements, cf. [28, Lemma 1.4]. Note that the last conclusion may also be reached for
the semigroup dynamical system (D, S, τ) by invoking [8, Lemma 8.2.5]. �
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3.4. From quasi-lattice order groups to right LCM semigroups.
It turns out that a good part of the general strategy of Laca and Raeburn [11] for proving
injectivity of representations of C∗(S) in the case that S is part of a quasi-lattice order (G,S)
can be extended to the class of right LCM semigroups, although the arguments become more
delicate due to the presence of non-trivial units. The next several results make this claim
precise.

Notation 3.17. In Lemma 3.1 we introduced isometries Vp for p ∈ S and projections EpS
for pS ∈ J (S) in C∗r (S) that satisfy conditions (L1)-(L4). Later in the paper we shall mainly
be interested in families of isometries and projections satisfying (L1)-(L4) inside an arbitrary
C∗-algebra B. In order to avoid unnecessary notational adornment we shall still use Vp, EpS
in that case.

Given a family of commuting projections (Ei)i∈I in a unital C∗-algebra B and finite subsets
A ⊂ F of I, we denote

QEF,A :=
∏
i∈A

Ei
∏

j∈F\A

(1− Ej).

If the family is (eX)X∈J (S) in C∗(S), we write QeF,A for the corresponding projections. In the

case of a right LCM semigroup S, finite subsets of J (S) are determined by finite subsets of
S, see Lemma 3.3.

If S is a left cancellative semigroup with identity such that J (S) is independent, then [19,
Corollary 2.22] and [19, Proposition 2.24] show that the left regular representation λ from
C∗(S) to C∗r (S) restricts to an isomorphism from D onto the diagonal Dr. This allows us to
show:

Lemma 3.18. Let S be a right LCM semigroup. Then the left regular representation λ restricts
to an isomorphism from the diagonal D of C∗(S) onto the diagonal Dr of C∗r (S).

Proof. If S has an identity, then J (S) is independent by Corollary 3.6. Hence the lemma is
simply an application of the mentioned results from [19]. Now suppose S∗ = ∅ holds. Then

J (S̃) is independent according to Lemma 3.7 and Corollary 3.6. Moreover, by Lemma 3.7, we
have

pS ∩ qS = rS if and only if pS̃ ∩ qS̃ = rS̃ for all p, q, r ∈ S.
This fact and the standing hypothesis S 6= ∅ imply that the maps

D −→ D̃ and Dr −→ D̃r
eS 7→ eS̃ ES 7→ ES̃
epS 7→ epS̃ EpS 7→ EpS̃

are isomorphisms, where D̃ and D̃r denote the diagonal subalgebra of C∗(S̃) and C∗r (S̃),

respectively. Since J (S̃) is independent, λ̃ : D̃ −→ D̃r is an isomorphism. Altogether, we get
a commutative diagram

(3.2)
D̃

DrD

D̃r

λ|D

∼= ∼=

∼=

which proves that λ|D is an isomorphism. �

Proposition 3.19. Suppose S is a right LCM semigroup and π is a ∗-homomorphism of
C∗(S). Let EX := π(eX) for X ∈ J (S) and Vp := π(vp) for p ∈ S. Then the following
statements are equivalent:
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(I) π|D : D −→ π(D) is an isomorphism.
(II) QEF,A 6= 0 for all non-empty finite subsets F of J (S) and all non-empty subsets A ⊂ F

satisfying ⋂
X∈A

X ∩
⋂

Y ∈F\A

S \ Y 6= ∅.

(III) QEF,∅ 6= 0 for all non-empty subsets F ⊂ J (S) \ {S}.

Proof. Lemma 3.18 implies that the left regular representation λ restricts to an isomorphism
from D onto Dr. Thus assuming (I) and letting A ⊂ F be finite non-empty subsets of J (S)
satisfying the non-empty intersection condition of (II), it follows that λ(QeF,A) 6= 0. Hence

QeF,A 6= 0, which by injectivity of π|D gives QEF,A 6= 0. This shows that (I) implies (II).

Conversely, it suffices to note that by [19, Lemma 2.20], condition (I) is equivalent to the
implication QEF,A = 0 =⇒ QeF,A = 0 for all non-empty finite subsets F of J (S) and all non-

empty subsets A ⊂ F . Thus (I) and (II) are equivalent.
Consider next a non-empty finite subset F ⊂ J (S) \ {S}. If S has an identity, then

Lemma 3.4 provides independence of J (S). In particular, we have
⋃
X∈F X $ S. Hence

QeF,∅ 6= 0 because its image under λ is non-zero. In case S∗ = ∅, Lemma 3.7 shows that

F ⊂ J (S) \ {S} corresponds to a finite subset F̃ ⊂ J (S̃) \ {S̃}. As S̃ is a right LCM
semigroup with identity, we get Qe

F̃ ,∅ 6= 0. According to Lemma 3.18, this is equivalent to

QeF,∅ 6= 0. Since π carries QeF,∅ to QEF,∅, it follows that ( I) implies (III).

Thus it remains to prove that (III) yields (II). Assume (III) and let F ⊂ J (S) be a non-
empty subset and A ⊂ F non-empty satisfying the non-empty intersection condition of (II).
Let σA ∈ S such that σAS =

⋂
X∈A

X and
⋃

Y ∈F\A
Y 6= S. Thus,

QEF,A = QEA,AQ
E
F\A,∅Q

E
A,A = VσA

∏
Y ∈F\A

(1− V ∗σAEY VσA)V ∗σA .

Each Y ∈ F \ A has the form Y = pY S for some pY ∈ S. Since S is right LCM, there exists
qY ∈ S such that σ−1

A Y = qY S and σAqY S = σAS ∩ pY S. Thus σ−1
A Y is a proper right ideal

of S if and only if σA /∈ Y . The choice of F and A therefore guarantees that σ−1
A Y 6= S for all

Y ∈ F \A. Hence QE
σ−1
A (F\A),∅ 6= 0 by (III). From

QE
σ−1
A (F\A),∅ =

∏
Y ∈F\A

(1− Eσ−1
A (Y ))

and V ∗σAEY VσA = Eσ−1
A (Y ), we obtain that

QEF,A = VσA
∏

Y ∈F\A

(1− Eσ−1
A (Y ))V

∗
σA
6= 0

since VσA is an isometry. This finishes the proof of the proposition. �

The following result is a variant of [11, Lemma 1.4].

Lemma 3.20. If (Ei)I are commuting projections in a unital C∗-algebra B and A ⊂ F are
finite subsets of I, then each QEF,A is a projection,

∑
A⊂F

QEF,A = 1, we have

(3.3)
∑
i∈F

λiEi =
∑
A⊂F

(∑
i∈A

λi

)
QEF,A

for any choice of complex numbers {λi | i ∈ I} and, moreover,

(3.4)
∥∥∥∑
i∈F

λiEi

∥∥∥ = max A⊂F
QE

F,A 6=0

∣∣∑
i∈A

λi
∣∣.
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Proof. Since the projections Ei commute, QEF,A is a projection. The second assertion is ob-
tained via

1 =
∏
i∈F

(Ei + 1− Ei) =
∑
A⊂F

QEF,A.

Equation (3.3) as well as Equation (3.4) follow immediately from this. �

We now set up a conventional notation which will be used repeatedly in the sequel. Let S be
a right LCM semigroup. We let

(3.5) tF :=
∑
p,q∈F

λp,qvpv
∗
q and tF,D :=

∑
p∈F

λp,pepS

denote an arbitrary, but fixed finite linear combination in C∗(S) and its image in D under ΦD,
where F is a finite subset of S when S has an identity, or, in case S∗ = ∅, F is a finite subset
of S̃, and λp,q ∈ C for p, q ∈ F .

We will decompose tF −tF,D into further terms, based on a suitable subset A ⊂ F depending
on the choice of the λp,q’s. We are interested in combinations tF with tF,D 6= 0, so we shall
make this a standing assumption.

Lemma 3.21. Let S be a right LCM semigroup and tF , tF,D be as in (3.5). Then there exists a
non-empty subset A ⊂ F such that the projection QeF,A is non-zero and satisfies the following:

(i) QeF,Avpv
∗
qQ

e
F,A = 0 for all p, q ∈ F with p 6∈ A or q 6∈ A.

(ii) ‖QeF,AtF,DQeF,A‖ = ‖tF,D‖.
(iii) If tF,D is positive, then we may take QeF,AtF,DQ

e
F,A = ‖tF,D‖QeF,A.

Proof. The projections (epS)p∈F commute because of epSeqS = epS∩qS for any p, q ∈ S. Ap-
plying Lemma 3.20 yields A ⊂ F which satisfies QeF,A 6= 0, and

‖QeF,AtF,DQeF,A‖ = ‖tF,D‖.
If tF is positive, then we may choose QeF,AtF,DQ

e
F,A to be a multiple of QeF,A. As tF,D 6= 0, we

must have A 6= ∅. The fact that QeF,A 6= 0 and the right LCM property of S imply that

QeF,A =
∏

q∈F\A

(eσAS − eσAS∩qS),

where σA ∈ S is such that σAS = ∩p∈ApS. We claim that QeF,Avpv
∗
qQ

e
F,A = 0 for p ∈ F \ A.

Indeed, if we have p 6∈ A, then QeF,Avpv
∗
qQ

e
F,A contains a factor of (1 − epS)vp = vp − vp = 0,

and hence QeF,Avpv
∗
qQ

e
F,A = 0. Similarly, v∗q (1 − eqS) = 0, so we get QeF,Avpv

∗
qQ

e
F,A = 0 for

q ∈ F \A. �

Before we state the next result we introduce some notation. Assume the hypotheses of
Lemma 3.21 and let A be the finite subset of F satisfying (i)-(iii). Fix σA ∈ S such that⋂
p∈A pS = σAS (this element is not unique for the given A; in case S∗ 6= ∅ then σAx for any

x ∈ S∗ will satisfy the same identity as σA). For each p ∈ A, let pA ∈ S denote the element
satisfying ppA = σA. By left cancellation, this element is unique. Define now

tF,1 =
∑

p,q∈F,p6=q
p/∈A or q /∈A

λp,qvpv
∗
q ,

tF,2 =
∑

p,q∈A,p 6=q
pAS 6=qAS

λp,qvpv
∗
q , and

tF,3 =
∑

p,q∈A,p 6=q
pAS=qAS

λp,qvpv
∗
q .

The sum tF,3 will only be relevant here when |S∗| > 1. When |S∗| ≤ 1, we distinguish two
cases: if S∗ = ∅, our standing assumption says that sS = tS forces s = t for s, t ∈ S. Hence a
term in tF,3 would correspond to pA = qA, which implies ppA = qpA. Thus, if the semigroup S
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is also right cancellative, we would get p = q, a contradiction. The same argument rules out
tF,3 when S∗ = {1S}.

Lemma 3.22. Assume the hypotheses of Lemma 3.21 and let A be the finite subset of F
satisfying (i)-(iii). Fix σA as above. Define a subset of A×A by

A1 = {(p, q) | p 6= q,∃x, y ∈ S, x, y not both units : pAx = qAy, pAS ∩ qAS = pAxS}.
Then

eσAStF,2eσAS =
∑

(p,q)∈A1

λp,qvσAxv
∗
σAy

.(3.6)

If |S∗| > 1, then also

eσAStF,3eσAS =
∑

p,q∈A,p 6=q,
pA=qAx,x∈S∗

λp,qvσAvxv
∗
σA
.(3.7)

Proof. Clearly, tF = tF,D + tF,1 + tF,2 + tF,3. Let us look more closely at the cut-downs of tF,2
and tF,3 by QeF,A. For p, q ∈ A, p 6= q, we have

eσASvpv
∗
qeσAS = vσAv

∗
pA
vqAv

∗
σA

= vσAv
∗
pA
epASeqASvqAv

∗
σA

=

{
0, if pAS ∩ qAS = ∅
vσAxv

∗
σAy

, if pAS ∩ qAS 6= ∅,

where x, y ∈ S satisfy pAx = qAy and pAS ∩ qAS = pAxS. The choice of the pair (x, y) is
unique up to composition from the right by S∗. Hence, vσAxv

∗
σAy

is independent of the choice
of (x, y). Therefore, with regard to tF,2, we only have to deal with p, q ∈ A, p 6= q such that
pAS ∩ qAS 6= ∅. These are exactly the pairs (p, q) in A1, so (3.6) follows.

If vpv
∗
q are terms in tF,3 then pAS = qAS means that pARqA, where R is the right Green

relation. Thus there exists x ∈ S∗ such that pA = qAx, and (3.7) follows. �

Lemma 3.23. If S is a right LCM semigroup, then there are finite subsets A,F1 of S with
A ⊂ F ⊂ F1 and QeF1,A

6= 0 such that

QeF1,AtFQ
e
F1,A = QeF1,A(tF,D + tF,3)QeF1,A and

‖QeF1,AtF,DQ
e
F1,A‖ = ‖tF,D‖.

If tF,D is positive, then we may take QeF1,A
tF,DQ

e
F1,A

= ‖tF,D‖QeF1,A
.

Proof. We invoke the notation of Lemma 3.22. For each (p, q) ∈ A1, let αp,q ∈ S be given by

αp,q :=

{
x if x ∈ S \ S∗,
y if x ∈ S∗,

and set F1 := F ∪{σAαp,q | (p, q) ∈ A1}. First of all, let us show that QeF1,A
6= 0 holds. Due to

QeF,A 6= 0, we know that σAS∩rS is a proper and non-empty subset of σAS for each r ∈ F \A.

Choose for each r ∈ F \A, an element r′ ∈ S \S∗ such that σAS ∩ rS = σAr
′S. It follows that

r′S $ S and αp,qS $ S for all r ∈ F \A and all (p, q) ∈ A1.
If S has an identity, J (S) is independent by Corollary 3.6 and hence we get⋃

r∈F\A

r′S ∪
⋃

(p,q)∈A1

αp,qS $ S

as both index sets are finite. By taking complements and using the implication (I) ⇒ (II)
from Proposition 3.19, this shows that∏

r∈F\A

(1− er′S)
∏

(p,q)∈A1

(1− eαp,qS) 6= 0.
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In the case where S∗ = ∅, we get r′S̃ $ S̃ and αp,qS̃ $ S̃ for all r ∈ F \A and all (p, q) ∈ A1.

By Lemma 3.7, J (S̃) is independent. If we combine this with Proposition 3.19 and the

isomorphism D̃ ∼= D from Lemma 3.18, we also get∏
r∈F\A

(1− er′S)
∏

(p,q)∈A1

(1− eαp,qS) 6= 0

in the case S∗ = ∅.
Since vσA is an isometry and QeF1,A

has the form

(3.8) QeF1,A = vσA

( ∏
r∈F\A

(1− er′S)
∏

(p,q)∈A1

(1− eαp,qS)
)
v∗σA ,

it follows that QeF1,A
6= 0. Then QeF1,A

is a non-trivial subprojection of QeF,A, so

‖QeF1,AtF,DQ
e
F1,A‖ = ‖tF,D‖.

If tF,D is positive, then we have QeF1,A
tF,DQ

e
F1,A

= ‖tF,D‖QeF1,A
. Note that Lemma 3.21 implies

QeF1,A
tF,1Q

e
F1,A

= 0, and (3.6) gives

QeF1,AtF,2Q
e
F1,A = QeF1\A,∅

∑
(p,q)∈A1

λp,qvσAxv
∗
σAy

QeF1\A,∅.

Now suppose (p, q) ∈ A1 and αp,q = x. Then QeF1\A,∅vσAxv
∗
σAy

QeF1\A,∅ contains a fac-

tor (1 − eσAxS)vσAxv
∗
σAy

= 0 and hence QeF1,A
vpv
∗
qQ

e
F1,A

= 0. A similar argument gives

QeF1,A
vpv
∗
qQ

e
F1,A

= 0 for (p, q) ∈ A1 and αp,q = y. Therefore, we have verified QeF1,A
tF,2Q

e
F1,A

=
0, or in other words

QeF1,AtFQ
e
F1,A = QeF1,A(tF,D + tF,3)QeF1,A. �

Lemma 3.24. Let S be a cancellative right LCM semigroup with S∗ = ∅. Then there are
finite subsets A,F1 of S such that A ⊂ F ⊂ F1, QeF1,A

6= 0 and

‖QeF1,AtFQ
e
F1,A‖ = ‖tF,D‖.

If tF is positive, then we may take QeF1,A
tFQ

e
F1,A

= ‖tF,D‖QeF1,A
.

Proof. It suffices to note that the sum tF,3 is empty, by our remark prior to Lemma 3.22. Then
the finite subsets A,F1 of S given by Lemma 3.23 satisfy the claim. �

4. Uniqueness theorem for right LCM semigroup algebras using D

In this section we prove a uniqueness theorem which involves a nonvanishing condition on
elements of the diagonal subalgebra D ⊂ C∗(S). Our theorem will apply to right LCM
semigroups S satisfying additional properties, including that S must be cancellative. One of
these conditions, the one we call (D2), is rather technical. Before we state it we introduce
two other conditions, which besides being closely related to (D2), are also likely to have more
transparent formulations in examples. Indeed, they are often satisfied, while condition (D2)
may be harder to obtain for large classes of semigroups.

Let S be a right LCM semigroup with S∗ 6= ∅ and consider the action S∗ y J (S) given by
left multiplication, that is x ·X = xX for x ∈ S∗ and X ∈ J(S). It is standard terminology
that the action S∗yJ (S) is effective if, by definition, for every x in S∗\{1S} there is X ∈ J (S)
such that xX 6= X. We next introduce three other properties that a semigroup can have.

Definition 4.1. Let S be a right LCM semigroup with S∗ 6= ∅. We say that the action
S∗ y J (S) given by left multiplication is strongly effective if for all x ∈ S∗ \ {1S} and p ∈ S,
there exists q ∈ pS such that xqS 6= qS.

Consider further the following two conditions that S can satisfy:

(D1) For all x ∈ S∗ and X ∈ J (S), we have xX ∩X 6= ∅ =⇒ xX = X.



16 NATHAN BROWNLOWE, NADIA S. LARSEN, AND NICOLAI STAMMEIER

(D2) If s0 ∈ S, s1 ∈ s0S and F ⊂ S is a finite subset so that s1S ∩
(
S\

⋃
q∈F

qS

)
6= ∅, then,

for every x ∈ S∗\{1S}, there is s2 ∈ s1S satisfying

s2S ∩
(
S\
⋃
q∈F

qS

)
6= ∅ and s−1

0 s2S ∩ xs−1
0 s2S = ∅.

Remark 4.2. Suppose that the action S∗yJ (S) is strongly effective and (D1) is satisfied. It
is immediate to see that for every x ∈ S∗ \ {1S} and p ∈ S there exists q ∈ pS such that
xqS ∩ qS = ∅. In fact, more is true. Let s0 ∈ S, s1 ∈ s0S, and x ∈ S∗ \ {1S}. Write s1 = s0r
for some r ∈ S. By the previous observation applied to x and r ∈ S there is r′ ∈ rS such that
xr′S ∩ r′S = ∅. If we now let s2 = s0r

′ ∈ s1S, we have established condition (D2) in case F is
the empty set. Conversely, if condition (D2) is satisfied, then by applying it with F equal the
empty set and s0 = 1S it follows that S∗yJ (S) is strongly effective.

For convenience, we will denote the elements of F by q1, . . . , q|F | whenever F 6= ∅.

Theorem 4.3. Let S be a cancellative right LCM semigroup such that ΦD : C∗(S)→ D is a
faithful conditional expectation. Let (Vp)p∈S and (EpS)p∈S be families of isometries and projec-
tions in a C∗-algebra B satisfying (L1)–(L4). Let π := πV,E be the associated ∗-homomorphism
from C∗(S) to B. Assume that one of the following conditions holds:

(1) |S∗| ≤ 1.
(2) |S∗| > 1 and S satisfies condition (D2).

Then π : C∗(S)→ B is injective if and only if

(4.1)
∏
p∈F

(1− EpS) 6= 0 for every finite F ⊂ S \ S∗.

Remark 4.4. (a) We observe that, for a quasi-lattice ordered pair (G,S) in the sense of [26],
the semigroup S is right LCM with S∗ = {1S}. Thus part (3) of the theorem recovers [11,
Theorem 3.7].

(b) Note that Theorem 4.3 does not apply to the case where S is a non-trivial group
(S = {1S} amounts to C∗(S) ∼= C). The reason is that S∗ = S directs us to part (2) of
Theorem 4.3 and (D2) fails in the group case for F = ∅: indeed, there exists x ∈ S∗ \ {1S},
but for every p ∈ S we get xpS ∩ pS = S 6= ∅.

(c) The hypotheses of part (1) of the theorem are satisfied in the case of the semigroup
from Example 3.9 because ΦD is a faithful expectation; to see this, note that N \ {1} embeds
in Q∗+ \ {1}, hence in Q∗+, and the latter admits a dual action on C∗(S) by [11, Remark 3.7].
Semigroups satisfying condition (D2) will be described in Examples 8.8 and 8.9.

The proof of this theorem requires some preparation. Note that by Proposition 3.19, condition
(4.1) is equivalent to injectivity of π on D. Relying on this equivalence, the key step in proving
Theorem 4.3 is the following intermediate result:

Proposition 4.5. Let S be a cancellative right LCM semigroup, and let (Vp)p∈S and (EpS)p∈S
be families of isometries and projections in a C∗-algebra B satisfying (L1)–(L4). Let π be the
associated ∗-homomorphism from C∗(S) to B. Assume that one of the following conditions
holds:

(1) |S∗| ≤ 1.
(2) |S∗| > 1 and S satisfies condition (D2).

If π is injective on D, then the map∑
p,q∈F

λp,qVpV
∗
q 7→

∑
p∈F

λp,pVpV
∗
p ,

where F ⊂ S is finite and λp,q ∈ C, is contractive, and hence extends to a contraction Φ of
π(C∗(S)) onto π(D).
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One consequence of this proposition is that when π is the identity homomorphism, we obtain
a contractive map from C∗(S) onto D which is nothing but the conditional expectation ΦD
from Theorem 4.3.

Thus it remains to prove Proposition 4.5. The established strategy is to express Φ on finite
linear combinations of the spanning family (vpv

∗
q )p,q∈S as a cut-down by a suitable projection

that will depend on the given linear combination. Fix therefore finite combinations tF ∈ C∗(S)
and tF,D ∈ D as in (3.5). In view of our aim we assume, without loss of generality, that tF,D 6= 0
holds (otherwise 0 is a suitable projection). Most of the preparation needed to construct Φ
was done in section 3.4. For case (1), Lemma 3.24 will suffice.

Condition (D2) is relevant when there are non-trivial elements in S∗. These units will
appear in the sum from (3.7) due to right cancellation in S: indeed, for p, q ∈ A, p 6= q
satisfying pAS = qAS it follows that ppA = qpAx for some x ∈ S∗. By right cancellation,
necessarily x 6= 1S . Thus there are n ∈ N, x1, . . . , xn ∈ S∗\{1S} and λ1, . . . , λn ∈ C such that

(4.2) eσAStF,3eσAS =
n∑
i=1

λivσAvxiv
∗
σA
.

Lemma 4.6. Let S be a cancellative right LCM semigroup such that |S∗| > 1 and S satisfies
condition (D2). Let A,F1 be as in Lemma 3.23. Then there exists pF ∈ σAS such that
eF := epFS satisfies

(i) eFQ
e
F1\A,∅ 6= 0.

(ii) ‖eFQeF1\A,∅tF eFQ
e
F1\A,∅‖ = ‖tF,D‖.

(iii) If tF,D is positive, then eFQ
e
F1\A,∅tF eFQ

e
F1\A,∅ = ‖tF,D‖eFQeF1\A,∅.

Proof. Since J (S) is independent, QeF1,A
6= 0 is equivalent to σAS ∩

(
S\

⋃
q∈F1\A

qS

)
6= ∅.

Applying (D2) to σA in place of s0, s1, the unit x1 ∈ S∗\{1S} and the finite set F1 \ A gives
an element s2 ∈ σAS such that x1σ

−1
A s2S ∩ σ−1

A s2S = ∅ and s2S has non-empty intersection
with S\

⋃
q∈F1\A

qS. Next, we apply (D2) to σA as s0, s2 in place of s1, the unit x2 and F1 \A

resulting in an element s3 ∈ s2S such that x2σ
−1
A s3S ∩ σ−1

A s3S = ∅ and s3S has non-empty
intersection with S\

⋃
q∈F1\A

qS. Note that we have

x1σ
−1
A s3S ∩ σ−1

A s3S
s3∈s2S⊂ x1σ

−1
A s2S ∩ σ−1

A s2S = ∅.
Thus, proceeding inductively, we get sn ∈ σAS such that snS has non-empty intersection with
S\

⋃
q∈F1\A

qS and xiσ
−1
A snS ∩ σ−1

A snS = ∅ for all i = 1, . . . , n. This translates to QeF1,A
≥

esnSQ
e
F1\A,∅ 6= 0 and esnStF,3esnS = 0. Let pF := sn. Since

eFQ
e
F1\A,∅tF eFQ

e
F1\A,∅ = eFQ

e
F1\A,∅tF,DeFQ

e
F1\A,∅,

an application of Lemma 3.23 shows that pF satisfies (i)−(iii). �

Proof of Proposition 4.5. For any finite linear combination TF ⊂ span{ VpV ∗q | p, q ∈ S },
consider the corresponding element tF ∈ C∗(S). For case (1), we use Lemma 3.24 to obtain a
non-zero projection QeF1,A

∈ D that satisfies

‖QeF1,AtFQ
e
F1,A‖ = ‖Φ(tF )‖.

Since πD is injective and (Vp)p∈S , (EpS)p∈S are families of isometries and projections, respec-
tively, satisfying (L1)–(L4), we get

‖QEF1,ATFQ
E
F1,A‖ = ‖Φ(TF )‖.

As QEF1,A
6= 0 is a projection, we get

‖Φ(TF )‖ = ‖QEF1,ATFQ
E
F1,A‖ ≤ ‖TF ‖,
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so Φ is contractive on a dense subset of π(C∗(S)). By standard arguments, it extends to a
contraction from π(C∗(S)) to π(D).

For case (2), run the same argument with eFQ
e
F1,A

given by Lemma 4.6 as the suitable
replacement for QeF1,A

. �

Proof of Theorem 4.3. Since S is a right LCM semigroup, Proposition 3.19 implies that con-
dition (4.1) is equivalent to injectivity of π on D. Obviously, π|D is injective whenever π is
injective, showing the forward implication in the theorem. To prove the reverse implication,
we apply Proposition 4.5 to obtain the following commutative diagram.

(4.3)

D

π(C∗(S))C∗(S)

π|D(D)

π

ΦD Φ

π|D

Now, if a ∈ C∗(S)+, a 6= 0, then Φ◦π(a) = π|D◦ΦD(a) 6= 0 as ΦD is faithful and π|D is
injective. Thus, we have π(a) 6= 0. Since injectivity of *-homomorphisms can be detected on
positive elements, π is seen to be injective. �

5. Purely infinite simple C∗(S) arising from right LCM semigroups

Suppose that S is a right LCM semigroup. Consider the following refinement of condition
(D2):

(D3) If s ∈ S and F is a finite subset of S with sS ∩
(
S \

⋃
q∈F

qS
)
6= ∅, then there is s′ ∈ sS

such that s′S ∩ qS = ∅ for all q ∈ F .

Whenever F 6= ∅, we will denote its elements by q1, . . . , qn. In section 8 we will see examples
of semigroups satisfying conditions (D3) and (D2). To clarify the relationship between (D2)
and (D3), we make the following observation:

Lemma 5.1. Let S be a right LCM semigroup with S∗ 6= ∅. If the action S∗ y J (S) is
strongly effective and S satisfies (D1) and (D3), then (D2) holds.

Proof. We saw in Remark 4.2 that the condition (D2) where F = ∅ is satisfied when S∗ y J (S)
is strongly effective and S satisfies (D1). Thus it remains to prove (D2) in case F 6= ∅. Let

therefore s0, q1, . . . , qn ∈ S and s1 ∈ s0S with s1S ∩
(
S\

n⋃
i=1

qiS

)
6= ∅. Applying (D3) yields

an element s ∈ s1S ⊂ s0S such that sS ∩ qiS = ∅ for i = 1, . . . , n. Note that every s2 ∈ sS
inherits this property, and therefore the first equation in (D2) is satisfied for such elements.
Let x ∈ S∗\{1S} and write s = s0r for some r ∈ S. By strong effectiveness and (D1) applied
to x and rS we get s′ ∈ rS with the property that s′S ∩ xs′S = ∅. Now s2 = s0s

′ ∈ sS ⊂ s1S
satisfies s−1

0 s2S ∩ xs−1
0 s2S = s′S ∩ xs′S = ∅, proving (D2). �

We note that (D1), (D3) and strong effectiveness are properties of a semigroup that can be
more readily verified than (D2). The latter condition is quite close to the operator algebraic
application it is designed for. Therefore, in Theorem 5.3 we provide an independent proof for
the last two sets of assumptions, even though (3) may be deduced from the proof in the case
(2). First we need a lemma.

Lemma 5.2. Let S be a cancellative right LCM semigroup such that |S∗| > 1, the action
S∗ y J (S) is strongly effective, and (D1), (D3) are satisfied. Suppose tF ∈ C∗(S) and
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tF,D ∈ D are linear combinations as in (3.5), and assume that tF is a positive element in
C∗(S). Then tF,D is positive and there is pF ∈ S such that eF := epFS satisfies

eF tF eF = ‖tF,D‖eF .

Proof. As tF,D is the image of tF under the natural conditional expectation C∗(S)→ D, it is
also positive. According to Lemma 3.23, there are finite subsets A,F1 of S with A ⊂ F ⊂ F1

and QeF1,A
6= 0 such that

QeF1,AtFQ
e
F1,A = QeF1,A(tF,D + tF,3)QeF1,A and QeF1,AtF,DQ

e
F1,A = ‖tF,D‖QeF1,A.

Since |S∗| > 1, the collection J (S) is independent by Corollary 3.6. According to Proposi-

tion 3.19, we have QeF1,A
6= 0 if and only if σAS ∩

(
S\

⋃
q∈F1\A

qS

)
6= ∅. By (D3), there is

p0 ∈ σAS such that p0S ∩ qS = ∅ for all q ∈ F1\A. Hence, we have

ep0StF ep0S = ep0S(tF,D + tF,3)ep0S and ep0StF,Dep0S = ‖tF,D‖ep0S .

Let x1, . . . , xn ∈ S∗\{1S} be the invertible elements that appear in (4.2) and let p′0 denote the
element satisfying p0 = σAp

′
0. Applying strong effectiveness to p′0 and x1 yields an element

p′1 ∈ p′0S satisfying x1p
′
1S 6= p′1S. By (D1), this amounts to x1p

′
1S ∩ p′1S = ∅. Proceeding

inductively, where pi ∈ pi−1S is given as pi = σAp
′
i with p′i ∈ p′i−1S satisfying xip

′
iS ∩ p′iS = ∅,

we obtain pn ∈ σAS such that

epnSvσAvxiv
∗
σA
epnS = vpnv

∗
p′n
vxivp′nv

∗
pn

= vpnv
∗
p′n
ep′iSvxiep′iSvp′nv

∗
pn (p′nS ⊂ p′iS)

= vpnv
∗
p′n
ep′iS∩xip′iSvxivp′nv

∗
pn

= 0

for all i = 1, . . . , n. Thus, pF := pn satisfies the claim of the lemma. �

Theorem 5.3. Let S be a cancellative right LCM semigroup such that ΦD : C∗(S)→ D is a
faithful conditional expectation. Assume that (D3) and one of the following conditions hold:

(1) |S∗| ≤ 1.
(2) |S∗| > 1 and S satisfies condition (D2).
(3) |S∗| > 1, S satisfies condition (D1), and the action S∗ y J (S) is strongly effective.

Then C∗(S) is purely infinite and simple.

Proof. Recall from Lemma 3.11 that the linear span of the elements vpv
∗
q is dense in C∗(S).

Every element from this linear span has the form tF =
∑

p,q∈F
λp,qvpv

∗
q for some finite F ⊂ S

and suitable λp,q ∈ C. Moreover, ΦD(tF ) = tF,D =
∑
p∈F

λp,pepS .

Let a ∈ C∗(S) be positive and non-zero, and let ε > 0. Choose a positive linear combination
tF that approximates a up to within ε. If ε is sufficiently small, we have tF 6= 0 which we will
assume from now on. For the four different cases in the hypothesis of the theorem, we will
use different methods to obtain a suitable small projection e′F := eqFS that annihilates the
off-diagonal terms of tF while picking up the norm of the diagonal part: that is,

e′F tF e
′
F = ‖tF,D‖e′F = ‖ΦD(tF )‖e′F .

For case (1), we use Lemma 3.24, and for case (2) Lemma 4.6 to get a finite subset F2 = F1 \A
of S and an element pF ∈ S such that eF = epFS satisfies

(i) eFQ
e
F2,∅ 6= 0, and

(ii) eFQ
e
F2,∅tF eFQ

e
F2,∅ = ‖tF,D‖eFQeF2,∅.

Since S is right LCM, (i) translates to pFS ∩
(
S \

⋃
q∈F2

qS

)
6= ∅ according to Lemma 3.18. So

we can apply (D3) to get an element qF ∈ pFS such that qFS ∩ qS = ∅ for all q ∈ F2. By (L4)
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this gives eqFS ≤ eFQ
e
F2,∅. Now e′F := eqFS satisfies e′F tF e

′
F = ‖tF,D‖e′F by (ii). For case (3),

the existence of such a projection e′F follows directly from Lemma 5.2.
We have ‖ΦD(tF )‖ > 0 since ΦD is faithful. Thus, e′F tF e

′
F = ‖ΦD(tF )‖e′F is invertible in

the corner e′FC
∗(S)e′F . If ‖a− tF ‖ is sufficiently small, this implies that e′Fae

′
F is positive and

invertible in e′FC
∗(S)e′F as well, because ‖ΦD(tF )‖ ε↘0−→ ‖ΦD(a)‖ > 0. Hence, if we denote

its positive inverse by b, we get(
b
1
2 vqF

)∗
e′Fae

′
F

(
b
1
2 vqF

)
= v∗qF e

′
F vqF = 1.

This implies that C∗(S) is purely infinite and simple. �

6. Injectivity of the left regular representation of C∗(S)

A major question of interest in [19] and [20] is to determine conditions under which the left
regular representation λ is an isomorphism C∗(S) ∼= C∗r (S). In the context of right LCM
semigroups, we have identified some classes of semigroups for which this isomorphism holds.

Proposition 6.1. Assume the hypotheses of Theorem 5.3. Then the left regular representation
λ : C∗(S)→ C∗r (S) is an isomorphism.

Proof. The conclusion follows because in this case C∗(S) is simple. �

Theorem 6.2. Assume that S is a cancellative right LCM semigroup such that the conditional
expectation ΦD is faithful. Then the left regular representation λ is an isomorphism from C∗(S)
onto C∗r (S).

Proof. By Lemma 3.18, λ restricts to an isomorphism D ∼= Dr. Then for a ∈ C∗(S)+, a 6= 0,
we have λ|D ◦ ΦD(a) 6= 0. From λ|D ◦ ΦD = ΦD,r ◦ λ and faithfulness of ΦD,r established in
Proposition 3.14 it follows that λ(a) 6= 0. Hence, λ is an isomorphism. �

Example 6.3. By Theorem 6.2 and Proposition 3.16 it follows that λ is an isomorphism in the
case of S = Goθ P that is right LCM, right reversible, and satisfies that S−1S is an amenable
group.

Remark 6.4. There is an alternative approach to injectivity of λ for certain subsemigroups
of amenable groups, see [20]. We refer to [20, Section 4] for the definition of the Toeplitz
condition. Namely, if S is a left cancellative semigroup satisfying the conditions

i) J (S) is independent,
ii) S embeds into an amenable group H such that S generates H and S ⊂ H satisfies the

Toeplitz condition,

then λ : C∗(S) −→ C∗r (S) is an isomorphism, cf. the equivalence of (iii) and (v) in [20, Theorem
6.1] applied to A = C (where (v) is valid because H is amenable). The proof of [20, Theorem
6.1] depends on a relatively involved machinery of various crossed product constructions. The
conclusion in Theorem 6.2 for right LCM semigroups is obtained through an analysis solely of
the semigroup C∗-algebra C∗(S).

7. A uniqueness result using CI
In this section we consider left-cancellative semigroups with identity that satisfy condition
(C1). By following an idea from [22] we show that it is possible to construct a conditional
expectation from C∗(S) onto CI which may be used to reduce the question of injectivity of
representations.

The proof of the next result is similar to [3, Proposition 3.5]. For a discrete group Γ, we
denote iΓ the canonical homomorphism sending γ in Γ to the generating unitary iΓ(γ) in
C∗(Γ), and we let δΓ be the homomorphism C∗(Γ) → C∗(Γ) ⊗ C∗(Γ) induced by the map
γ → iΓ(γ)⊗ iΓ(γ).
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Proposition 7.1. Let S be a right LCM semigroup with identity and assume that there exists
a homomorphism σ : S → T onto a subsemigroup T of a group Γ such that T generates Γ.
Then there is a coaction δ : C∗(S)→ C∗(S)⊗ C∗(Γ) such that

δ(vpv
∗
q ) = vpv

∗
q ⊗ iΓ(σ(p)σ(q)−1)

for all p, q ∈ S.

Proof. Since C∗(S) = span{vpv∗q : p, q ∈ S}, we define a map from S to C∗(S) ⊗ C∗(Γ)
by s 7→ vs ⊗ iΓ(σ(s)) for s ∈ S. A routine calculation shows that {vs ⊗ iΓ(σ(s))}s∈S and
{vpv∗p ⊗ iΓ(1Γ)} satisfy the relations that characterise C∗(S), hence by the universal property
we obtain the required homomorphism δ such that δ(vs) = vs ⊗ iΓ(σ(s)) for all s ∈ S. Since
C∗(S) is unital and δ(1) = 1⊗ iΓ(1Γ), the map δ is nondegenerate. If we let ε : C∗(Γ)→ C be
the homomorphism integrated from γ 7→ 1, then the equality (idC∗(S)⊗ε) ◦ δ = idC∗(S) shows
that δ is an injective map. The coaction identity

(δ ⊗ idC∗(Γ)) ◦ δ = (idC∗(S)⊗δΓ) ◦ δ
is immediately checked on the generators vs of C∗(S). �

By standard theory of coactions, see for example [28], the spectral subspaces for δ are defined
as C∗(S)δσ(s) = {a ∈ C∗(S) | δ(a) = a⊗ iΓ(σ(s))}. The space

C∗(S)δ = {a ∈ C∗(S) | δ(a) = a⊗ iΓ(1Γ)}
is a C∗-subalgebra of C∗(S), called the fixed-point algebra. There is always a conditional
expectation Φδ : C∗(S) → C∗(S)δ such that Φδ(a) = 0 if a ∈ C∗(S)δσ(s) with σ(s) 6= 1Γ.

Moreover, it is known that Φδ is faithful on positive elements precisely when the coaction δ is
normal : this is for instance the case when Γ is amenable. Since C∗(S) = span{vpv∗q : p, q ∈ S},
we have C∗(S)δ = span{vpv∗q : p, q ∈ S, σ(p) = σ(q)} and

(7.1) Φδ(vpv
∗
q ) =

{
vpv
∗
q , if σ(p) = σ(q)

0, otherwise.

We will prove in Corollary 7.3 that the above fixed-point algebra C∗(S)δ coincides with CI
when the semigroup S satisfies condition (C1).

Remark 7.2. Recall that CI was defined as C∗({vx, epS | p ∈ S, x ∈ S∗}), where we assume S∗

is non-trivial, and that basic properties of this subalgebra were established in Lemma 3.13.
We claim that if S∗ is non-trivial and S satisfies (C1), then CO = CI . To see this, note that
Lemma 3.13 implies that it suffices to show vpvxv

∗
p ∈ CI for all p ∈ S and x ∈ S∗. By (C1)

there exists y ∈ S∗ such that px = yp. Hence,

vpvxv
∗
p = vyepS = eypSvy ∈ CI .

Given a right LCM semigroup S with S∗ 6= ∅ and satisfying (C1), suppose that the monoid S
constructed in Proposition 2.7 embeds into a group Γ such that S generates Γ. Proposition 7.1
applied to the canonical homomorphism σ : S → S, σ(p) = [p] for p ∈ S gives a coaction of
Γ with associated conditional expectation as described in (7.1). Note that, in this situation,
σ(p) = σ(q) means precisely that p = xq for some x ∈ S∗. Hence vpv

∗
q = vxqv

∗
q = vxeqS , which

is in CI . Thus C∗(S)δ ⊆ CI , and since the reverse inclusion is immediate, the two subalgebras
of C∗(S) are equal. In case S is not right cancellative, it may happen that p = xq = x′q
for different x, x′ in S∗. However, vxeqS = vxqv

∗
q = vx′qv

∗
q = vx′eqS . We summarise these

considerations in the following result.

Corollary 7.3. Let S be a right LCM semigroup such that S∗ 6= ∅ and (C1) holds. Assume
that S embeds into a group Γ which is generated by the image of S. Then there is a well-defined
conditional expectation ΦCI : C∗(S)→ CI such that

(7.2) ΦCI (vpv
∗
q ) =

{
vxeqS , if p = xq for some x ∈ S∗

0, if p 6∼ q.
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If Γ is amenable, then ΦCI is faithful on positive elements.

Our main result about injectivity of representations in terms of their restriction to CI is the
following theorem.

Theorem 7.4. Let S be a cancellative right LCM semigroup with identity 1S such that S
satisfies (C1) and the semigroup S constructed in Proposition 2.7 embeds into a group Γ in such
a way that Γ is generated by S. Assume that the conditional expectation ΦCI : C∗(S) −→ CI
constructed in Corollary 7.3 is faithful, and that there is a faithful conditional expectation
Φ0 from CI onto D such that Φ0(eqSvx) = δx,1SeqS for all q ∈ S and x ∈ S∗. Then a *-
homomorphism π : C∗(S) −→ B is injective if and only if π|CI is injective.

Proof. One direction of the theorem is clear, so assume that π|CI is injective. We must prove
that π is injective.

Let Φ := Φ0 ◦ ΦCI be the faithful conditional expectation from C∗(S) to D obtained by
composing the two given expectations. The idea of the proof is to construct a contraction
Φπ : π(C∗(S)) → D such that Φπ ◦ π = Φ. Then the injectivity of π will follow from a
standard argument: let a ∈ C∗(S)+ with a 6= 0. From Φπ(π(a)) = Φ(a) and the fact that Φ is
faithful on positive elements it follows that π(a) 6= 0.

Let F ⊂ S be finite and tF ∈ C∗(S) a linear combination of vpv
∗
q , p, q ∈ F with scalars λp,q

in C such that tF is positive and non-zero. Then Φ(tF ) 6= 0. We have

Φ(tF ) =
∑
p∼q

λp,q(Φ0 ◦ ΦCI )(vpv
∗
q )

=
∑

p∼q,p=xq
λp,qΦ0(vxeqS)

=
∑

{p,q∈F |p=q}

λp,qeqS ,

which is tF,D, and is non-zero.
By Lemma 3.23, there are finite subsets A ⊂ F ⊂ F1 ⊂ S such that QeF1,A

tFQ
e
F1,A

∈ CO
and QeF1,A

tF,D = ‖tF,D‖QeF1,A
6= 0. Remark 7.2 shows that CO = CI , so QeF1,A

tFQ
e
F1,A

∈ CI .
Therefore, we get

Φ(QeF1,A
tFQ

e
F1,A

) = QeF1,A
Φ(tF )QeF1,A

= QeF1,A
tF,DQ

e
F1,A

= ‖tF,D‖QeF1,A
6= 0.

Since π|CI
is injective, it follows that

‖π(tF )‖ ≥ ‖π(QeF1,A
)π(tF )π(QeF1,A

)‖
= ‖π(QeF1,A

tFQ
e
F1,A

)‖
= ‖QeF1,A

tFQ
e
F1,A
‖

≥ ‖Φ(QeF1,A
tFQ

e
F1,A

)‖
= ‖tF,D‖.

Thus Φπ : π(C∗(S)) → D given by Φπ(π(tF )) := tF,D is a well-defined contraction with the
desired properties. �

For the moment the only examples of semigroups S we know for which the hypotheses of
Theorem 7.4 are satisfied are semidirect products GoθP covered by Proposition 3.16. However,
we expect that the theorem will apply in situations where G or the enveloping group of P are
non-amenable, for example when they are free groups. The challenge is to generalise the
arguments of [11] that show existence of a faithful conditional expectation onto D from the
case S∗ = {1S} to the case that there are non-trivial units.

Corollary 7.5. Assume the notation and hypotheses of Theorem 7.4. Then the left regular
representation λ : C∗(S) −→ C∗r (S) is an isomorphism.
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Proof. Let Φ = Φ0 ◦ ΦCI be the faithful conditional expectation from Theorem 7.4. Since S
has an identity, J (S) is independent, and therefore λ restricts to an isomorphism D ∼= Dr,
[19]. Thus the argument of Theorem 6.2 can be used. �

Results with the flavour of a gauge-invariant uniqueness theorem have been proved for many
classes of C∗-algebras, see [3] and the references therein. In our context, a straightforward
version is as presented in the next proposition.

Proposition 7.6. Let S be a cancellative right LCM semigroup with identity such that S
satisfies (C1) and the conditional expectation ΦCI : C∗(S) −→ CI constructed in Corollary 7.3
is faithful. Then a ∗-homomorphism π : C∗(S)→ B is injective if and only if π|CI is injective
and B admits a coaction ε of the enveloping group Γ of S such that π is δ− ε-equivariant, i.e.
(π ⊗ idC∗(Γ)) ◦ δ = ε ◦ π.

Proof. If B admits a coaction ε as in the hypothesis, then there is a conditional expectation
Φε from B onto π(CI) such that Φε ◦π = (π|CI ) ◦ΦCI . Now the standard argument shows that
injectivity of π on CI can be lifted to C∗(S). �

8. Applications

8.1. Semidirect products of groups by semigroups.
The new class of right LCM semigroups covered in this work is that of semidirect products
of a group by the action of a semigroup. Throughout this subsection, let G be a group, P a

cancellative right LCM semigroup with identity 1P , and P
θy G an action by injective group

endomorphisms of G. The semidirect product G oθ P is denoted by S for convenience of
notation.

Definition 8.1. The action θ is said to respect the order on P if for all p, q ∈ P with pP ∩qP 6=
∅, we have θp(G) ∩ θq(G) = θr(G), where r ∈ P is any element such that pP ∩ qP = rP . This
is well-defined since r1P = pP ∩ qP = r2P implies that r1 = r2x for some x ∈ P ∗, which
means θr1(G) = θr2x(G) = θr2(G) because θx is an automorphism of G.

Proposition 8.2. If θ respects the order, then S is a right LCM semigroup.

Proof. Since both G and P are left cancellative and θ acts by injective maps, S is left can-
cellative. Suppose g1, g2 ∈ G and p1, p2 ∈ P such that (g1, p1)S ∩ (g2, p2)S 6= ∅. Then
p1P ∩ p2P 6= ∅, and since P is right LCM, there is q ∈ P satisfying p1P ∩ p2P = qP . Denote
by p′1, q

′
1 ∈ P the elements satisfying q = p1p

′
1 = p2p

′
2. We must also have h1, h2 ∈ G such that

g1θp1(h1) = g2θp2(h2). We claim that

(g1, p1)S ∩ (g2, p2)S = (g1θp1(h1), q)S.

Since (g1θp1(h1), q) = (g1, p1)(h1, p
′
1) = (g2, p2)(h2, p

′
2), the right ideal (g1θp1(h1), q)S is con-

tained in (g1, p1)S ∩ (g2, p2)S.
For the reverse containment, suppose that (g, s), (h, t) ∈ S with (g1, p1)(g, s) = (g2, p2)(h, t).

Then g1θp1(g) = g2θp2(h) and p1s = p2t. We now immediately have p1s = p2t = qq′ for some

q′ ∈ P . The identities g1θp1(h1) = g2θp2(h2) and g1θp1(g) = g2θp2(h) yield θp1(h−1
1 g) =

θp2(h−1
2 h). Since θ respects the order on P , we have θp1(G) ∩ θp2(G) = θq(G), and hence

θp1(h−1
1 g) = θq(k) for some k ∈ G. Then

(g1, p1)(g, s) = (g1θp1(g), p1s) = (g1θp1(h1)θp1(h−1
1 g), p1s) = (g1θp1(h1), q)(k, q′)

∈ (g1θp1(h1), q)S.

So the reverse containment holds, and hence S is right LCM. �

Since the focus of this paper is on right LCM semigroups we shall assume from now on that θ
respects the order. The structure of J (S) is determined by the semigroup P and the collection
of cosets {G/θp(G)}p∈P .
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Lemma 8.3. For any g, h ∈ G and p ∈ P we have

(g, p)S ∩ (h, p)S =

{
(g, p)S, if g−1h ∈ θp(G),

∅, otherwise.

Proof. If the intersection is non-empty, we have gθp(g1) = hθp(h1) for some g1, h1 ∈ G. Then

g−1h = θp(g1h
−1
1 ) ∈ θp(G), as needed. �

Corollary 8.4. Let P satisfy (C2). For any (g, p) ∈ S and (h, x) ∈ S∗, the following are
equivalent:

(i) (h, x)(g, p)S 6= (g, p)S;
(ii) (hθx(g), p)S ∩ (g, p)S = ∅;

(iii) g−1hθx(g) /∈ θp(G).

In particular, S satisfies condition (D1).

Proof. Take (g, p) ∈ S and (h, x) ∈ S∗. By Lemma 2.4, we have that x ∈ P ∗. Condition (C2)
gives y ∈ P ∗ with xp = py. Therefore,

(h, x)(g, p)S ∩ (g, p)S = (hθx(g), p)S ∩ (g, p)S.

By Lemma 8.3, these intersections are non-empty if and only if g−1hθx(g) ∈ θp(G), in which
case the ideals (h, x)(g, p)S and (g, p)S coincide. It follows immediately from this that S
satisfies condition (D1). �

Lemma 8.5. Let P satisfy (C2). Then the action S∗yJ (S) from Definition 4.1 is strongly
effective if and only if it is effective.

Proof. Strong effectiveness implies effectiveness. Assume therefore that S∗yJ (S) is effective.
Let (g, p) ∈ S and (h, x) ∈ (G × P ∗) \ {(1G, 1P )}, where S∗ = G × P ∗ by Lemma 2.4. If
(h, x)(g, p)S 6= (g, p)S holds, then (g, p) itself does the job required for strong effectiveness.
Let now (h, x)(g, p)S = (g, p)S. We have to find an element (g′, p′) ∈ S satisfying

(8.1) (h, x)(g, p)(g′, p′)S 6= (g, p)(g′, p′)S.

It follows from Corollary 8.4 that g−1hθx(g) = θp(g̃) for some g̃ ∈ G. Using (C2) to find y
in S∗ such that xpp′ = pp′y, the left-hand side of (8.1) rewrites as

(h, x)(g, p)(g′, p′)S = (hθx(g)θxp(g
′), xpp′)S = (hθx(g)θpy(g

′), pp′)S.

Thus to prove (8.1) we need to ensure that

(gθp(g
′))−1hθx(g)θpy(g

′) = θp((g
′)−1)g−1hθx(g)θpy(g

′) /∈ θpp′(G).

Since g−1hθx(g) = θp(g̃) and θp is injective, this is equivalent to

(g′)−1g̃θy(g
′) /∈ θp′(G).

Since x 6= 1P implies, by right cancellation in P , that y 6= 1P , we see that the existence of
(g′, p′) is guaranteed by effectiveness of the action applied to (g̃, y) ∈ S∗\{1S}. Thus S∗yJ (S)
is strongly effective. �

Since an action of a group on a space is effective precisely when the intersection of all stabiliser
subgroups is the trivial subgroup, Lemma 8.5 says that we can rephrase the property of
S∗yJ (S) being strongly effective in terms of stabilisers. We introduce first some notation.
For each (g, p) ∈ S, let S(g,p) denote the subgroup of G equal to gθp(G)g−1. For the action
S∗yJ (S) from Definition 4.1, let S∗(g,p)S denote the stabiliser subgroup of (g, p)S ∈ J (S).

Lemma 8.6. Let P satisfy (C2) and consider the action S∗yJ (S) from Definition 4.1. Then
the stabiliser subgroup of (g, p)S ∈ J (S) takes the form

S∗(g,p)S = {(h, x) ∈ S∗ | hθx(g) ∈ gθp(G)}.

If P ∗ = {1P }, then S∗(g,p)S = S(g,p) × {1P }.
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Further, S∗yJ (S) is strongly effective if and only if⋂
(g,p)∈S

S(g,p) = {1G}.

In particular, if P ∗ = {1P } and G is abelian, then S∗yJ (S) is strongly effective if and only
if
⋂
p∈P θp(G) = {1G}.

Proof. The claimed description of S∗(g,p)S follows from Corollary 8.4, and the characterisation

of strongly effective follows from Lemma 8.5. �

We shall be able to say more for semigroups S where P is a countably generated free abelian
semigroup with identity. For the purposes of the next results, we therefore assume that P ∼= Nk
for some k ∈ N or P ∼=

⊕
NN. In this case, (C2) is automatic for P , hence S = GoθP satisfies

(D1) by Corollary 8.4.
As indicated in the comment following Lemma 5.1, condition (D2) is harder to establish in

full generality. The next result describes an obstruction to having (D2) satisfied by S = GoθP .

Lemma 8.7. Assume P ∼= Nk for some k ∈ N or P ∼=
⊕

NN. If there are q1, . . . , qm ∈ P \{1P }
such that [G : θqi(G)] <∞ and ⋂

(g,p)∈S
p∈P\(

⋃
1≤i≤m qiP )

S(g,p) % {1G},

then S does not satisfy (D2).

Proof. Suppose there are q1, . . . , qm as prescribed above and pick an element

h ∈
⋂

(g,p)∈S
p∈P\(

⋃
1≤i≤m qiP )

S(g,p)

with h 6= 1G. Denote [G : θqi(G)] = Ni in N×, and choose, for each i = 1, . . . ,m, a complete
set of representatives (hi,j)1≤j≤Ni for G/θqi(G).

We claim that (D2) fails for the choice of elements (g0, p0) = (g1, p1) = (1G, 1P ) in S,
(h, 1P ) in S∗, and the finite subset {(hi,j , qi) | j = 1, . . . , Ni, i = 1, . . . ,m} of S. Note that
we have (g1, p1) /∈ (hi,j , qi)S for all j = 1, . . . , Ni and i = 1, . . . ,m. If (D2) were to hold, it
would imply the existence of (g2, p2) such that both (g2, p2) /∈ (hi,j , qi)S for all i, j and, by
Corollary 8.4, also h /∈ S(g2,p2). Hence, by the choice of h, there is at least one i with p2 ∈ qiP .
For this i there is a unique j ∈ {1, . . . , Ni} with g2 ∈ hi,jθqi(G). In other words, we would get
(g2, p2) ∈ (hi,j , qi)S, which is a falsehood. �

In the next two examples we describe some situations where S satisfies condition (D2).

Example 8.8. Let G =
⊕

N Z and P be the unital subsemigroup of N× generated by 2 and
3. We shall denote P = |2, 3〉. Define an action θ of P by injective endomorphisms of G as
follows: for g = (gn)n∈N ∈ G, let

θ2(g) = 2g, (θ3(g))0 = 3g0 and (θ3(g))n = gn for all n ≥ 1.

It is immediate that θ preserves the order, so S is right LCM by Proposition 8.2. Further,
[G : θ2(G)] = ∞ and [G : θ3(G)] = 3. Note that

⋂
n∈N θ2n(G) = {1G}. We claim that

S = Goθ P satisfies (D2). It will follow from Lemma 8.11 that S does not satisfy (D3).
Suppose that we have s0 := (g0, p0) ∈ S, s1 := (g1, p1) ∈ (g0, p0)S as well as

(h1, q1), . . . , (hm, qm) ∈ S such that

(g1, p1)S ∩
(
S \

⋃
1≤i≤m

(hi, qi)S

)
6= ∅.

In particular, this implies (g1, p1) /∈ (hi, qi)S for each i = 1, . . . ,m. In case p1 ∈ qiP for some i,
then necessarily g1 /∈ hiθqi(G), and therefore Lemma 8.3 implies that (g1, p1)S ∩ (hi, qi)S = ∅.
Without loss of generality we may thus assume that p1 /∈ qiP for all i = 1, . . . ,m.
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Let now x = (g, 1P ) with g 6= 1G. An element s2 := (g2, p2) as required in (D2) will have
to satisfy xs−1

0 s2S ∩ s−1
0 s2S = ∅. If we denote r := p−1

0 p2, this requirement takes the form
(g, 1P )(h′, r)S ∩ (h′, r)S = ∅ for some h′ ∈ G. Now, using

⋂
n∈N θ2n(G) = {1G}, we can choose

n ∈ N large enough so that p2 := p12n satisfies g /∈ θr(G). By Corollary 8.4, this means that
x(h′, r)S ∩ (h′, r)S = ∅ for any h′ ∈ G. Thus we have freedom to choose the first entry in s2,
and this choice must be made so that it ensures the second requirement in (D2). The crucial
ingredient here is the fact that [G : θ2k(G)] = ∞ for all k ≥ 1, which will allow us to choose
g2 ∈ g1θp1(G) such that (g2, p2) /∈ (hi, qi)S for all i. To achieve this goal requires a careful
argument.

If p2 /∈ qiP for all i = 1, . . . ,m, then any choice of g2 ∈ g1θp1(G) will ensure that
(g2, p2) /∈ (hi, qi)S for all i. Assume next that q1, . . . , qm are labelled in such a way that
there is m′ ∈ {1, . . . ,m} with the property that p2 ∈ qiP implies i ≤ m′. Note that the ele-
ments corresponding to i = m′ + 1, . . . ,m pose no obstruction to the choice of g2 because for
these indices i we have (g2, p2) /∈ (hi, qi)S irrespective of the choice of g2. Possibly changing
enumeration once more, we can assume that 1 is minimal in {1, . . . ,m′} in the sense that

p1P ∩ q1P ⊂ p1P ∩ qiP =⇒ p1P ∩ q1P = p1P ∩ qiP for all 1 ≤ i ≤ m′,

and that 2, . . . ,m′ are assigned in such a way that there is m1 with

p1P ∩ q1P = p1P ∩ qiP =⇒ i ≤ m1 for i ∈ 2, . . . ,m′.

Let n1 be such that p1P ∩ q1P = p12n1 , and note that 1 ≤ n1 ≤ n. Since [G : θ2n1 (G)] =∞,
there are infinitely many distinct principal right ideals of the form (g1θp1(g′), p12n1)S ⊂
(g1, p1)S with g′ ∈ G. Since S is right LCM, of these infinitely many ideals, at most
m1 of them are not admissible for a choice of g2 (because they are possibly contained in
(h1, q1)S, . . . , (hm1 , qm1)S). Thus there is g2,1 ∈ g1θp1(G) with

(g2,1, p12n1) /∈ (hi, qi)S for all i = 1, . . . ,m1.

Replacing g1 by g2,1, p1 by p12n1 , n by n − n1, and {1, . . . ,m′} by {m1 + 1, . . . ,m′}, we
can iterate this process. Thus at the second step we obtain an element (g2,2, p12n12n2) ∈
(g2,1, p12n1)S, for appropriate 1 ≤ n2 ≤ n and g2,2 ∈ G, which also avoids additional ideals
(hi, qi)S, where i ∈ {1, . . . ,m2} is a subset of {m1 + 1, . . . ,m′} for appropriate m2. This
process stops after finitely many steps (equal to m ≥ 1 if n1 + · · · + nm = n) because n is
finite. Hence the final pair (g2,m, p2) has the required properties.

The second example shows that we can also have (D2) in the absence of endomorphisms with
infinite index:

Example 8.9. Let G = Z, P = N× and θ be given by multiplication, i.e. θp(g) = pg. Clearly,
we have [G : θp(G)] = p < ∞ for all p ∈ P . Also, note that for all q1, . . . , qm ∈ P \ {1P }, we
have ⋂

p∈P\(
⋃

1≤i≤m

qiP )

θp(G) = {1G}

since P \ (
⋃

1≤i≤m qiP ) contains arbitrarily large positive integers. So there is an abundance

of subsemigroups Q ⊂ P for which the restricted action θ|Q separates the points in G. We
claim that S = Goθ P satisfies (D2).

Let (g0, p0) ∈ S, (g1, p1) ∈ (g0, p0)S, (h1, q1), . . . , (hm, qm) ∈ S\{1S} with (g1, p1) /∈ (hi, qi)S
for i = 1, . . . ,m, and x = (g, 1P ) ∈ S with g 6= 1G. For similar reasons as in Example 8.8, we
can assume that p1 /∈ qiP holds for all i.

Now choose a prime p ∈ P that does not divide any of the q1, . . . , qm. Take n ≥ 1 such
that g /∈ θpn(G) = pnZ. If we let p2 := p1p

n and g2 := g1, then p2 /∈ qiP and hence

(g2, p2) /∈ (hi, qi)S for all i. Moreover, p−1
0 p2 ∈ pnP as p1 ∈ p0P . Therefore g /∈ θp−1

0 p2
(G).

Hence Corollary 8.4 implies that (g, 1P )(g0, p0)−1(g2, p2)S ∩ (g0, p0)−1(g2, p2)S = ∅, showing
(D2).
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Remark 8.10. One can relax the assumptions and consider semidirect products of suitable
semigroups by semigroups instead, for instance positive cones G+ in a group G on which we
already have an action θ of a semigroup P . A natural assumption in this setting would be
θp(G+) ⊂ G+. Natural examples of this kind arise for Nk ⊂ Zk where θ takes values in
Mk(N) ∩GLk(Q).

8.2. Examples of purely infinite simple semigroup C∗-algebras from semidirect
products.
As before, we consider S of the form Goθ P , where P is a countably generated, free abelian

semigroup with identity and P
θy G is an action by injective group endomorphisms of G that

respects the order. In this subsection, we show that Theorem 5.3 (3) applies to S if [G : θp(G)]
is infinite for every p 6= 1P . We illustrate the theorem with several concrete examples of
semigroups whose semigroup C∗-algebra is purely infinite and simple.

Lemma 8.11. Assume that P ∼= Nk for some k ≥ 1 or P ∼=
⊕

NN. Then S satisfies (D3) if
and only if the index [G : θp(G)] is infinite for every p 6= 1P .

Proof. To begin with, note that S∗ = G × {1P }. Suppose that there exists q 6= 1P such
that [G : θq(G)] = n < ∞ and let h1, . . . , hn ∈ G be a complete set of representatives for
G/θq(G). We claim that (D3) fails for (g, p) = (1G, 1P ) = 1S and (h1, q), . . . , (hn, q). To see
this, note first that (g, p) /∈ (hk, q)S for all 1 ≤ k ≤ n. If (g′, p′) ∈ (g, p)S is arbitrary, then
there is a unique k such that g′ ∈ hkθq(G), i.e. g′ = hkθq(g̃) for some g̃ ∈ G. Since P is
commutative, we have (g′, p′)S∩ (hk, q)S ⊃ (g′, p′q)S∩ (hkθq(g̃), p′q)S, which equals (g′, p′q)S,
so (g′, p′)S ∩ (hk, q)S is non-empty.

Now suppose [G : θp(G)] is infinite for every p ∈ P\{1P }. Let (g, p) ∈ S and F ⊂ S be
finite such that

(g, p)S ∩
(
S \

⋃
(h,q)∈F

(h, q)S

)
6= ∅.

Without loss of generality, we may assume (g, p)S∩(h, q)S 6= ∅ and p 6= q hold for all (h, q) ∈ F .
Consider

FP := {r | pP ∩ qP = rP for some (h, q) ∈ F}.
Pick p1 ∈ FP which is minimal in the sense that for any other r ∈ FP , p1 ∈ rP implies r = p1.
Let (h1, q1), . . . , (hn, qn) ∈ F denote the elements satisfying pP ∩ qiP = p1P . According to
Proposition 8.2, the fact that (g, p)S ∩ (hi, qi)S 6= ∅ for all i = 1, . . . , n shows that we have

(g, p)S ∩ (hi, qi)S = (gθp(g
′
i), p1)S = (g, p)(g′i, p

−1p1)S

for suitable g′i ∈ G and each i = 1, . . . , n. Since p 6= qi, we have p−1p1 6= 1P and hence the
index [G : θp−1p1(G)] is infinite. In particular, there is g1 ∈ gθp(G) such that

(g1, p1) ∈ (g, p)S and (g1, p1)S ∩ (hi, qi)S = ∅ for all i = 1, . . . , n.

Setting

F1 := {(h, q) ∈ F | (h, q)S ∩ (g1, p1)S 6= ∅},
we observe that F1 ⊂ F \ {(h1, q1), . . . , (hn, qn)} so F1 $ F . If F1 is empty, then we are done
so let us assume that F1 6= ∅. Note that the minimal way in which p1 was chosen implies
p1 /∈ pP ∩ qP for all (h, q) ∈ F1. This will allow us to conclude

(g1, p1)S ∩
(
S \

⋃
(h,q)∈F1

, (h, q)S

)
6= ∅

by invoking the choice of (g, p) and F . Indeed, if the intersection was empty, then there would
be (h, q) ∈ F1 with (g1, p1)S ⊂ (h, q)S, see Proposition 8.2. This would force p1 ∈ qP and
therefore p1 ∈ p1P ∩ qP ⊂ pP ∩ qP , contradicting (h, q) ∈ F1. Thus, we can iterate this
process and, after finitely many steps, arrive at an element (g′, p′) ∈ (g, p)S with the property
(g′, p′)S ∩ (h, q)S = ∅ for all (h, q) ∈ F . This completes the proof of the lemma. �
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Theorem 8.12. Suppose G is a group, P ∼= Nk for some k ≥ 1 or P ∼=
⊕

NN, and P
θy G is

an action by injective group endomorphisms of G respecting the order. Denote S = G oθ P .
Assume that

⋂
p∈P θp(G) = {1G}, [G : θp(G)] is infinite for every p 6= 1P and the conditional

expectation C∗(S)
ΦD−→ D is faithful. Then C∗(S) is purely infinite and simple.

Proof. We intend to apply Theorem 5.3 (3). First, note that (D1) holds by Corollary 8.4 since
(C2) is trivially satisfied for P . By Lemma 8.6,

⋂
p∈P θp(G) = {1G} corresponds to strong

effectiveness of S∗yJ (S). The fact that S satisfies (D3) follows from Lemma 8.11. Since ΦD
is faithful, Theorem 5.3 (3) implies that C∗(S) is purely infinite and simple. �

Let us now look at some concrete examples. We start with a shift space:

Example 8.13. Let P ∼= Nk for some k ≥ 1 or P ∼=
⊕

NN and suppose G0 is a countable
amenable group. To avoid pathologies, let us assume that G0 has at least two distinct elements.
Then P admits a shift action θ on G :=

⊕
P

G0 given by

(θp((gq)q∈P ))r = χpP (r) gp−1r for all p, r ∈ P.
It is apparent that θ is an action by injective group endomorphism that respects the order and⋂
p∈P θp(G) = {1G} holds. We note that S is a right reversible semigroup whose enveloping

group S−1S is amenable because G and P−1P are amenable. Using Proposition 3.16 we
conclude that ΦD is faithful. Finally, [G : θp(G)] < ∞ holds for p 6= 1P only if G0 is finite
and P ∼= N. Indeed, if p 6= 1P , then each element of

⊕
q∈P\pP G0 yields a distinct left-coset

in G/θp(G). Clearly, this group is finite if and only if G0 is finite and P ∼= N. So if P is not
singly generated or G0 is a countably infinite group, C∗(S) is purely infinite and simple by
Theorem 8.12.

A variant of the next example with singly generated P and finite field K has been considered
in [9, Example 2.1.4].

Example 8.14. Let K be a countably infinite field and let G = K[T ] denote the polynomial ring
in a single variable T over K. We choose non-constant polynomials pi ∈ K[T ], i ∈ I for some

index set I. Multiplying by pi defines an endomorphism θpi of G with [G : θpi(G)] = |K|deg(pi),
where deg(pi) denotes the degree of pi ∈ K[T ]. Thus, if we let P be the semigroup generated
by all the pi’s, in notation

P := |(pi)i∈I〉,
then the index of θp(G) in G is infinite for all p 6= 1P . It is not hard to show that θ respects
the order if and only if (pi) ∩ (pj) = (pipj) holds for the principal ideals whenever i 6= j.
Since every element in G has finite degree,

⋂
p∈P θp(G) = {1G} is automatic because the pi are

non-constant. The expectation ΦD is faithful for the same reason as in Example 8.13. Thus,
provided the family (pi)i∈I has been chosen accordingly, C∗(S) is purely infinite and simple.

We next discuss a class of semigroups S based on a non-commutative group G.

Example 8.15. Let G = F2 be the free group in a and b. We define injective group endomor-
phisms θ1, θ2 of G by θ1(a) = a2, θ1(b) = b, θ2(a) = a, θ2(b) = b2 and set P = |θ1, θ2〉 ∼= N2. It is
clear that the induced action θ of P on G respects the order. Additionally,

⋂
p∈P θp(G) = {1G}

is easily checked using the word length coming from {a, a−1, b, b−1}. To see that [G : θ1(G)] =
∞ holds, note that the family

(
(ab)j

)
j≥1

yields mutually distinct left-cosets in G/θ1(G). The

same argument with ba instead of ab shows that θ2(G) has infinite index in G. Thus, C∗(S)
is purely infinite and simple provided that ΦD is faithful. One can show that this amounts to

amenability of the action F2
τy D.

This example can be viewed as belonging to a larger class, as described next. The inspi-
ration for these examples was [30, Example 2.3.9], where the single endomorphism θ2 from
Example 8.15 on F2 is considered.
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Example 8.16. For 2 ≤ n ≤ ∞, let Fn be the free group in n generators (ak)1≤k≤n. Fix
1 ≤ d ≤ n and choose for each 1 ≤ i ≤ d an n-tuple (mi,k)1≤k≤n ⊂ N× such that

1) for each 1 ≤ i ≤ d, there exists k such that mi,k > 1, and
2) for all 1 ≤ i, j ≤ d, i 6= j and 1 ≤ k ≤ n, mi,k and mj,k are relatively prime.

Then θi(ak) = a
mi,k

k defines an injective group endomorphism of Fn for each 1 ≤ i ≤ d. We
set P = |(θi)1≤i≤d〉. Using 2), one can show that the induced action θ of P on G respects
the order. As in Example 8.15, [G : θp(G)] is infinite for every p 6= 1P . The requirement⋂
p∈P θp(G) = {1G} reduces to

3) For each 1 ≤ k ≤ n, there exists 1 ≤ i ≤ d satisfying mi,k > 1.

So C∗(S) is purely infinite and simple if conditions 1)−3) above are satisfied and ΦD is faithful.

As in Example 8.15, the latter corresponds to amenability of the action Fn
τy D.

8.3. Semigroups from self-similar actions.
Another large class of right LCM semigroups arises from self-similar actions, cf. [16, 18, 2]. We
won’t be able to say much here, since conditions (D2) and (D3) are not likely to hold. However,
these semigroups will satisfy condition (D1), and they will satisfy strong effectiveness in the
presence of right cancellation. We include these observations here, as well as a description of
those semigroups that satisfy (C1).

Let X be a finite alphabet. We write Xn for the set of all words of length n, and X∗ for the
set of all finite words. We let ∅ denote the empty word. Under concatenation of words, X∗

is a semigroup (and is nothing more than F+
|X|). A self-similar action is a pair (G,X), where

G is a group acting faithfully on X∗ and such that for every g ∈ G and x ∈ X, there exists a
unique g|x ∈ G such that

(8.2) g · (xw) = (g · x)(g|x · w).

The group element g|x is called the restriction of g to x. The restriction map can be extended
iteratively to all finite words, and satisfies

g|vw = (g|v)|w, gh|v = g|h·vh|v, and g|−1
v = g−1|g·v,

for all g, h ∈ G and v, w ∈ X∗. Moreover, the map g : Xn → Xn for n ≥ 1 given by w 7→ g ·w
is bijective. The proof of these properties and much more can be found in [24]. The Cuntz-
Pimsner algebra O(G,X) of a self-similar group has been studied in [23, 25], and the Toeplitz
algebra T (G,X) has been studied in [13].

To each self-similar action (G,X) there exists a semigroup X∗ ./ G, which is the set X∗×G
with multiplication given by

(x, g)(y, h) = (x(g · y), g|yh).

The semigroup X∗ ./ G was introduced in [16], and is an example of a Zappa-Szép product.
The C∗-algebra C∗(X∗ ./ G) was studied in [2], and was shown to be isomorphic to T (G,X).

Denote S = X∗ ./ G. Then S is right LCM and the principal right ideals are determined
by the element of X∗, in the sense that (w, g)X∗ ./ G = (z, h)X∗ ./ G if and only if w = z.
The identity in X∗ ./ G is (∅, 1G), and we have (X∗ ./ G)∗ = {∅} × G. For x ∈ X let Gx
denote the stabiliser subgroup of x in G. The map φx : Gx → G given by φx(g) = g|x is a
homomorphism, see for example [18, Lemma 3.1].

We now show that S satisfies (D1), and we determine the precise conditions under which
the action S∗ y J (S) given by left multiplication on constructible ideals is strongly effective.

Lemma 8.17. Let (G,X) be a self-similar action. Then X∗ ./ G satisfies (D1) from Defini-
tion 4.1.

Proof. Let (∅, h) ∈ (X∗ ./ G)∗ and (w, g)X∗ ./ G ∈ J (X∗ ./ G) with

(∅, h)(w, g)X∗ ./ G ∩ (w, g)X∗ ./ G 6= ∅.
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Then there are (w′, g′), (w′′, g′′) such that (∅, h)(w, g)(w′, g′) = (w, g)(w′′, g′′), and since w and
h · w have the same length, this means w = h · w. Then

(∅, h)(w, g)X∗ ./ G = (h · w, h|wg)X∗ ./ G = (w, h|wg)X∗ ./ G = (w, g)X∗ ./ G. �

We know from [18, Proposition 3.11] that X∗ ./ G is right cancellative if and only if {w ∈
X∗ : ∃g ∈ G \ {1G}, g ·w = w and g|w = 1G} = ∅. This condition also appears in the following
result:

Lemma 8.18. Let (G,X) be a self-similar action. Then the action S∗ y J (S) given by left
multiplication is strongly effective in the sense of Definition 4.1 if and only if

{w ∈ X∗ : ∃g ∈ G \ {1G}, g · w = w and g|w = 1G} = ∅.

Proof. We prove the contrapositive of the forward implication. Suppose w ∈ X∗ and g ∈ G
with g · w = w and g|w = 1G. Then (∅, g) ∈ (X∗ ./ G)∗ and (w, h) ∈ S satisfy

(∅, g)(w, h)(z, k)X∗ ./ G = (g · w, g|wh)(z, k)X∗ ./ G = (w, h)(z, k)X∗ ./ G,

for all (z, k) ∈ X∗ ./ G. So the action is not strongly effective.
For the reverse implication, suppose (∅, g) ∈ (X∗ ./ G)∗ and (w, g) ∈ X∗ ./ G. If g ·w 6= w,

then (∅, g)(w, h)X∗ ./ G 6= (w, h)X∗ ./ G. If g ·w = w, then g|w = 1G by assumption. Choose
z ∈ X∗ such that g|w · (h · z) 6= h · z. Then

(∅, g)(w, h)(z, 1G)X∗ ./ G =
(
w(g|w · (h · z)), (g|wh)|z

)
X∗ ./ G

6= (w(h · z), (g|wh)|z)X∗ ./ G
= (w(h · z), h|z)X∗

= (w, g)(z, 1G)X∗ ./ G.

So the action is strongly effective. �

We can describe those semigroups X∗ ./ G that satisfy (C1). Recall from [18, page 22] (or
[23]) that a self-similar action of G on X is recurrent if the action of G on X is transitive and
the homomorphism φx is surjective for any x ∈ X. By [18, Lemma 1.3(8)], the last condition
is equivalent to φw being surjective for all w ∈ X∗.

Lemma 8.19. Let G be a recurrent self-similar action on X. Then S := X∗ ./ G satisfies
(C1). In the converse direction, if S satisfies (C1), then all maps φx for x ∈ X are surjective.

Proof. Let (w, g) ∈ S and (∅, h) ∈ S∗. We will show that there is (∅, k) ∈ S∗ such that
(w, g)(∅, h) = (∅, k)(w, g). Since φw is surjective, there is k ∈ Gw such that φ(k) = ghg−1.
In other words, there is k ∈ G with k · w = w and k|w = ghg−1. Then

(∅, k)(w, g) = (k · w, k|wg) = (w, ghg−1g) = (w, g)(∅, h),

showing (C1).
In the other direction, let x ∈ X and g ∈ G. From (C1) applied to (x, g−1) ∈ S and

(∅, g) ∈ S∗, there is (∅, k) ∈ S∗ such that (x, g−1)(∅, g) = (x, eG) = (∅, k)(x, g−1), which is
(k ·x, k|xg−1). This says that k ∈ Gx and φx(k) = g, showing surjectivity for all x ∈ X (hence
for all x ∈ X∗ by [18, Lemma 1.3(8)].) �

It would be interesting to know if for the latter class one can prove a uniqueness result using
the expectation onto the C∗-subalgebra CI .
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