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1 Introduction

Every time a mobile phone customer makes a phone call, sends an SMS or generates Internet

traffic there are traces left at the mobile operator. These digital traces, which have

traditionally been used mainly for billing purposes, also have other benefits. This thesis is

based on 7 publications where mobile phone logs are used to understand large-scale human 

behaviour. The applications range from improved economic and social wellbeing to 

marketing, and the level of granularity ranges from the individual to the level of society. 

Contributions include individual prediction of socio-economic indicators, poverty prediction 

and understanding human behavioural signals during disasters. Furthermore, how products 

spread over large social networks is investigated, and how this information can be exploited 

to perform large-scale marketing experiments. The size of the datasets analysed ranges from 

500 million to 300 billion phone records. 

Studies 1 and 2 develop scalable predictive models based on mobile phone logs to reliably 

infer the illiteracy status and income level of individuals. Such insight can be further 

aggregated to the geographical level to help vulnerable groups in society. Study 3 represents 

the first attempt to build predictive maps of poverty using a combination of mobile phone and 

satellite data, with Bangladesh as an example. Knowing where poor people live is a crucial 

component of poverty eradication, and this study complements expensive approaches that are 

entirely based on data from traditional surveys with low temporal frequencies. Studies 4 and 

5 quantify people’s behaviour during larger shocks in society: study 4 reveals human 

behavioural patterns through the eyes of mobile phone data during the 22nd July 2011 terror 

attack in Norway, while study 5 shows how people adapt to climate extremes by analysing 

financial, social and mobility behaviour from 5 million people during a cyclone event in 

Bangladesh. The aim is to gain understanding and to detect early-warning signals that can 

help prevent future disasters. 

We know that social networks matter when purchase decisions are made. Study 6 is

motivated by the question of how people adopt new products and services, and what role the 

underlying social network structure plays in the process. 

Study 7 addresses how social network effects, together with discretionary income and timing,

can be modelled and exploited in large-scale marketing experiments in Asia, targeting people 

with more personalised offers.
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1.1 Authorship contributions  

 

Authorship contributions for the included articles (I–VII) are specified below.  

I. Can mobile usage predict illiteracy in a developing country?  

PRS is the sole author.  

II. Deep learning applied to mobile phone data for individual income classification 

PRS took the initiative, performed the analysis and wrote the paper. JØB, BAR, AI and EJ commented on the draft 

and suggested improvements for the paper. PRS is the first author.  

III. Mapping poverty using mobile phone and satellite data  

JS held the main responsibility for the paper and the overall analysis. CP was responsible for survey data 

management, cleaning and processing, and interpretation and drafting of the final manuscript. PRS were 

responsible for management of the project from Telenor side, the CDR data management, cleaning, and production 

of CDR data, and interpretation and drafting of the final manuscript. JB, J.Bj, KE was responsible for 

interpretation, drafting, and production of the final manuscript. V.A., T.B., Y.M., X.L. and E.W. were responsible 

for interpretation and production of the final manuscript. A.I. and K.N.H. for handling of income survey data. AJT 

and LB were responsible for overall scientific management, interpretation and production of the final manuscript. 

All authors gave final approval for publication.  

IV. The activation of core social networks in the wake of the 22nd July Oslo bombing 

PRS took the initiative, collected the data, performed the analysis, interpreted the data and wrote the article. RL, 

JB, KEM, GC interpreted the data, revised the article and approved it. PRS is the first author.  

V. Detecting climate adaptation with mobile network data: Anomalies in communication, mobility and 

consumption patterns during Cyclone Mahasen  

XL held the main responsibility for the paper and overall analysis. DW positioned the paper from a development 

perspective. PRS collected and prepared the data, analysed the financial top-up data and revised the article. MN 

EW, AI, TQ, AT, GC, KEM, LB interpreted the data, suggested changes and gave the final approval of the article. 

PRS is the third author.  

VI. Comparing and visualising the social spreading of products on a large-scale social network 

PRS took the initiative, collected and visualised the data, performed the analysis and drafted the article. RL 

suggested changes and placed the paper in a sociological context. JB, KEM and GC interpreted, revised and 

approved the article. PRS is the first author. 

VII. Big Data-driven marketing: How machine learning outperforms marketers’ gut feeling 

PRS and JB coded the experiment and made the model. Several trips to South-East Asia were required to prepare 

and run the experiment. AI arranged access to data sources. PRS performed the post-analysis and wrote the article. 

YA and AP suggested improvements, revised the article and positioned the paper. PRS is the first author.  

 

1.2 Research objective  

 

The key research question in this thesis can be formulated as follows:  

Question: Apart from providing basic communication services, what kinds of positive 

impacts can we create for society and/or individuals using large-scale mobile phone datasets? 

 



1.3 Outline of the study

The high-level dissertation roadmap is shown in Figure 1.1. This thesis argues that mobile 

phone data can be used to:

1. Inform socially beneficial policies.

2. Provide additional insights into human behaviour, with the aim of gaining:

I. A better understanding of human behaviour and interactions.

II. Better insights into human behaviour to improve marketing.

The publications in the first category include empirical studies that address challenges in 

society and how they can be tackled in a different way using mobile phone logs, while

complementing existing approaches. The second category addresses how mobile phone logs 

can be used to obtain new behavioural insights and how such information can be used 

experimentally for marketing.

Figure 1.1: Thesis theme overview. Publication number is given for each topic



Chapter 2 reviews the literature, with a special emphasis on how mobile phone metadata has 

been used in the social sciences to date.

In Chapter 3 the research design, tools used and analytical framework are outlined.

Chapter 4 reviews the 7 papers ordered by topic, as shown in Figure 1.1, and introduces the 

problem, research findings and evaluation for each one.

Chapter 5 discusses the main research question, the limitations and challenges from a holistic 

point of view, followed by concluding remarks in Chapter 6. All publications are attached 

after the Bibliography.



2 Review of literature

The availability of large datasets, often referred to as ‘Big Data’, has opened the possibility of

improving our understanding of society and human behaviour. The generation and use of 

large volumes of data is reshaping our social and economic landscapes, creating new 

industries, products and processes, and producing significant competitive advantages [1].

2.1 Big Data for social sciences

Recent research has found that countries could make much more use of data analytics in 

terms of economic and social benefits if governments did more to encourage investment in 

Big Data and to promote data sharing and reuse [2]. A consensual definition of Big Data is

presented by De Mauro et al. : ‘Big Data represents the information assets characterized by 

such a high volume, velocity and variety to require specific technology and analytical 

methods for its transformation into value’ [3]. Naturally for Big Data, ‘size’ is a constantly 

moving target.

Studies have shown that Big Data has the potential to improve health policies [4], understand 

large-scale social networks [5], improve the efficiency of poverty prediction [6,7], run large-

scale experiments and improve the understanding of urban development by, for instance,

considering people’s mobility patterns [8]. Data-driven methods have also outperformed 

traditional marketing approaches [9]. By combining behavioural patterns in Big Data with 

traditional data it has also been shown to be useful in epidemic spreading predictions [10],

and to compliment UN official statistics [11].

In summary, large-scale datasets of human behaviour have the potential to fundamentally 

transform performing social science research [12].

Traditionally, the broad range of social sciences have focused on explanatory models,

whereas researchers from computational sciences have targeted predictive models or 

observational/‘found’ data [13]. Conventional statistical and econometric techniques such as 

regression often work well, but there are issues distinct to big datasets that may depend upon

different approaches [14]. While large amounts of data will not overcome the selection 

problems that make causal inference difficult, this thesis shows that it can provide 

opportunities to gain understanding and run experiments on a scale that was previously 



impossible in the social sciences. Recent literature also supports that there are many policy 

applications where causal inference is not central, or even necessary, and where machine

learning is useful for solving prediction problems and generating high social impact [15].

One of the most promising and rich Big Data sources is mobile phone datasets. The mobile 

ecosystem is a major driver of economic progress and welfare globally. In 2014, the mobile 

industry generated 3.8% of global GDP [16]. Half of the world’s population now has a

mobile subscription, and it has been reported that the global penetration rate in 2020 is 

expected to be 60%. De-identified mobile phone data is a promising source that has the 

potential to deliver near real-time information of human behaviour on both an individual and 

societal scale. The next chapter introduces the details of this promising source.

2.2 Conceptual framework

2.2.1 Mobile phone metadata – what are CDRs? 

Whenever a mobile phone call or other transactions are made, a call detail record (CDR) is 

generated by the mobile operator [17]. A CDR contains, for instance, the start time and

duration of a call, but does not provide any information about the content, and is therefore 

defined as mobile phone metadata. Other information recorded in CDRs is which cell tower 

the caller (and often recipient’s) phones were connected to at the time of the call. It is 

therefore possible to use the CDRs to approximate the location of a user. A sample of CDR 

fields is presented in Table 2.1. The location is usually found by coupling the cell ID to an 

external mapping table containing the actual positions (lon,lat) of the tower.

Table 2.1: Example of set of CDR fields 

Calling party Called party

Caller cell 

ID Call time Type

Call 

duration IMSI IMEI

91845206 92234065 6D45X "15.05.2016 14:24:50 Voice 200 4798X 5840X

91845206 A56DE "15.05.2016 20:10:13 Internet 4798X 5850X

92234065 91845206 A56DE 16.05.2016 15:40:25 SMS 4777X 6382X

Traditionally, CDRs have mostly been used for billing purposes and the maintenance of 

business. In recent years researchers from many cultures, data scientists, economists, social 



scientists and public sector organisations have begun to explore additional applications of de-

identified CDRs, where all personal information has been removed. 

With regards to Telenor-owned mobile operators, where the data is taken from for use in this 

thesis, the number of daily stored CDR observations varies from 100 million to over 1 billion

per country. 

One additional promising source of metadata for social science research is airtime credit 

purchases, or so-called ‘top-up transactions’, which are used for recharging mobile accounts

in pre-paid markets like Asia and Africa [18]. Each purchase contains the user ID, top-up

amount, date/time of top-up and often the location information of the retailer used. See the 

example in Table 2.2. Retailers, used by customers as a touch-point to refill their account, can 

range from basic kiosks on the street level to stores in large shopping malls. 

Table 2.2: Example of a set of airtime purchase transaction fields 

Buyer Retailer

Retailer 

location Time of purchase

Recharge 

amount

8849039482 880348403 6D45X "25.05.2016 20:10:13 300

Even if airtime purchases are stored separately they are often placed under the CDR 

umbrella, due to their transactional nature.

2.2.2 Human behavioural traces 

Mobile phone metadata contains longitudinal digital traces of human behaviour which have

proved valuable to guiding development policies and humanitarian action [19,20]. At least 

three dimensions can be measured: financial activity, mobility and social interactions. 

Figure 2.1: Dimensions measured by mobile phone metadata (CDR)



Financial activity: When people in developing countries have more money to spend, they 

tend to spend a large portion of it on a luxury good such as cell phone communication, 

specifically by topping up their mobile airtime credit [21]. As we will see, several studies 

have already been run on socio-economic wellbeing using mobile phone data. 

Social interactions: Social interactions include the number of ‘friends’ a person has, and 

how central the person is in the entire social network. In the context of mobile phone 

metadata the social network will be limited by the ‘call graph’ derived from phone logs,

which is known to be a good proxy for the real social network [22]. The social interactions 

might also be used to understand how services and products diffuse on a large scale (or 

spread virally) throughout society [23].

Mobility: Since mobile phone users send and receive calls and messages through various cell 

towers, it is possible to reconstruct the movement patterns. This information may be used to 

understand daily rhythms of commuting to and from home, work, school and markets, but 

also have applications in modelling anything from a disease spreading to the movements of a 

disaster-affected population [24-26]. Typical derived personal-level features include most-

used cell site, the radius of gyration (mobility radius) and total distance travelled within a 

given time period.

In addition to the three dimensions above, personal interests or content information, such as

app usage, can be derived from on-board sniffer apps or deep packet inspection data [27].

Such information is however still very limited in use, and extends beyond the definition of 

metadata. There are also serious privacy implications [28].

The next section highlights examples of how mobile phone metadata has been applied to 

social sciences. 

Socioeconomics is the social science that studies how economic activity affects and is shaped 

by social processes. Eagle et al. quantified the correlation between network diversity and a 

population’s economic wellbeing [29]. The findings revealed that the diversity of individuals’ 

relationships is strongly correlated with the economic development of communities. The 

assumption that more diverse ties correlate with better access to social and economic 

opportunities was untested at the population level. It concludes that frequently making and 

receiving calls with contacts outside one’s immediate community is correlated with higher 

socio-economic class. Similar results were later verified by Jahani et al., which investigates 



the differences between social networks of the rich and the poor based on individually 

matched income data [30].

Additionally, CDRs have also been shown to provide proxy indicators for assessing regional 

poverty levels, as proven by studies in Cote D’Ivoire [31] and Rwanda [6]. They can also 

complement national surveys in estimating the changes associated with a growing economy,

by exploiting the relationships between socio-economic factors and cell-phone usage [32]. It 

has also been hypothesised that airtime purchases are correlated with socio-economic status, 

but it has been difficult to validate this with external reliable data [33]. Monitoring airtime 

purchases for trends can be useful for detecting early impacts of an economic crisis, as well 

as for measuring the impact of programmes designed to improve livelihoods and food 

security [34]. As shown later, someone’s handset type might also be a good indicator of their

economic wellbeing.

Measuring population density in different regions can be explored by using the number of 

people who are calling each tower. By using CDRs, population density has been mapped out 

in France and Portugal [35] and Cote d’Ivoire [36]. In underdeveloped countries census data 

is costly and difficult to obtain, and existing data is often outdated, so CDRs can therefore 

provide updated information on the actual density of population in such regions. Population 

density has implications for economic growth and policies; the effects of population density 

and other socio-economic factors on poverty rates were studied in [37].

The findings by Toole et al. highlight the potential of mobile phone metadata to improve 

forecasts of critical economic indicators, such as unemployment [38]. The researchers found 

that CDRs, specifically changes in mobility and social interactions, can be used to predict 

unemployment rates up to four months before the release of official reports and more 

accurately than using historical data alone. This research can potentially identify 

macroeconomic statistics faster and with much finer spatial granularity than traditional 

methods of tracking the economy.

Disasters initiate a complex chain of events that can disrupt the local economy, and in some 

cases the national economy [39]. It has been shown that CDRs can be used to monitor 



extreme situations and predict the movements of people after natural disasters. Bagrow et al. 

studied the reactions of people to different emergency situations, such as a plane crash, 

bombing and earthquake [40]. During the Haiti earthquake, Bengtsson et al. identified 

mobility patterns by analysing CDRs, providing more post-analysis of population migration. 

They found that the destinations of people who left the capital during the first three weeks 

after the earthquake were correlated with the locations where they had strong social bonds

[41,42]. This research indicated that relief efforts could be planned more precisely, as 

population movement patterns may be significantly more predictable than has been 

previously understood. 

Infectious diseases have serious consequences for people and the economies they affect. 

Diseases, such as dengue fever and cholera, often receive little attention because their real 

costs are poorly understood. Costs can be measured in loss of productivity, in dollars spent on 

healthcare interventions and in people’s health and quality of life [43]. As CDR can help 

follow people’s movements, these movements can also provide information about how a 

disease could spread across a country. The dynamics depend on the disease and how it can be 

transmitted, and therefore different models based on mobility have been suggested. Studies 

have validated the use of mobile phone data as a proxy for modelling epidemics [26].

Mobility patterns have been identified in Kenya, where regional travel patterns of millions of 

subscribers were mapped and related to areas in which malaria had a higher probability of 

spreading [10]. One shortcoming in this area of research comes from the current difficulty of 

gaining access to high-quality ground truth data to compare the results with. Gaining access 

to mobile phone data from more than one country has also proven to be very difficult, as 

exemplified by the Ebola outbreak [44]. The largest CDR analytics project on epidemics to 

date was performed on a dengue outbreak in Pakistan in 2013, where mobility patterns of 40 

million subscribers were combined with climatic suitability indices and epidemiological data

[45]. High-resolution fine-scale risk maps predicting epidemics were produced, providing a 

platform to allow local public health departments to prepare for epidemics. 

Transportation has substantial effects on economic growth, but the relationship between 

transportation and the economy are poorly understood [46]. Several studies on CDRs using 

mobility patterns are based on the subject of transport planning, and avoiding traffic jams and 



road accidents. Berlingerio et al. mapped new routes to decongest Abidjan’s crowded roads, 

which could potentially reduce travel time by 10% [47]. Another study estimated the flow of 

residents between each pair of intersections in a city [48]. A recent study used CDRs to track 

commuters during peak morning rush hour in five cities [49]. People try to travel from home 

to work as quickly as possible, but simulations showed that as much as 30% of the total time 

lost to congestion is caused solely by what the authors refer to as selfish routing. They 

suggest that social route planning could make driving less problematic. For more information 

on the research in this field the reader is referred to [50].

Marketing is a wide term that touches upon many disciplines. From a societal point of view, 

marketing provides the link between the material requirements in society and its economic 

response patterns. One factor that influences marketing strategies is social forces and peer-

influence [51]. As social networks are becoming more explicit through other technologies, 

understanding how peer-influence creates and sustains behavioural congestion is also 

becoming more feasible [52]. For instance, Trusov et al. has demonstrated that, on average, 

approximately one fifth of a user’s friends actually influence his or her activity level on a 

specific website [53].

In particular, mobile phone metadata provides the opportunity to quantify the effects of social 

interactions on marketing (and vice versa) on a scale that has never been done before. It is 

known that the neighbourhood of an individual influences their decisions [54]. A study by 

Hill et al. quantified the neighbours’ probability of adopting an undisclosed technological 

service [55], and Ahorony et al. showed that common app installations were overrepresented 

for pairs of users who often have physical meetings [56]. Furthermore, Risselada et al. 

showed that the neighbours’ influence on product adoption evolves over time, depending on 

the time since introduction of the product in the market [57].

Product adoption has also been recently studied in other contexts, such as the adoption of 

Mobile Money [58]. Billions of people around the world live without access to banks or other 

formal financial institutions, and mobile money platforms, which deliver basic financial 

services over the mobile phone network, are believed to improve the lives of the poor.

Unfortunately in many countries the adoption rates are still very low. A recent research study 

addresses how machine learning can be used to predict passive and active mobile money 

usage, using behavioural information from CDRs [59]. The results highlight key correlations 

of mobile money use in three development countries, as well as the potential for such 



methods to drive adoption. However, the models developed in one country do not perform 

very well in other countries, which may indicate, in the context of mobile money, that each 

population has a unique signature in terms of which metrics are good predictors of adoption. 



3 Methodology

This dissertation combines methods from multiple disciplines, including social network 

analysis, statistical analysis, machine learning and visualisation. The approach is data-centric,

where inductive reasoning is used to make generalisations from specific observations. 

Extensive travelling, especially in South-East Asia, has been required to collect and analyse

the datasets. This chapter elaborates on the data collection, tools and analytical framework 

used. 

3.1 Research design 

3.1.1 Data collection

The data was collected from subsidiaries of the Telenor Group [60]. Telenor Group has 

operations in 13 countries in South-East Asia, Eastern Europe and Scandinavia (Fig 3.1),

covering over 200 million mobile subscribers. Local data warehouses store the raw data, 

which is maintained by business intelligence teams. Research datasets are de-identified and 

either analysed locally, or transferred to a research data warehouse in Norway. The collection 

process is shown in Figure 3.2. In the case of external research collaboration, de-identified 

data are shared under special non-disclosure agreements.

Figure 3.1: Global presence of Telenor in 13 countries (blue)



Figure 3.2: Data collection. Network information is collected from mobile users (A) and 

stored in local data warehouses (B). De-identified information (CDR, purchases) is 

transferred to the research data warehouse via a secure channel

3.1.2 Tools 

A combination of several tools is used in this thesis. All analysis originates from second-

resolution raw data, where processing requires a significant amount of computational power. 

Most datasets are pre-processed in-database using SQL, either on Oracle, Teradata or 

PostGres platforms, on high-performance Linux servers [61]. Considering the size of the 

datasets, SQL is also used for efficiency purposes for specific analytical and algorithmic 

tasks. Other tools include Python, R and specific tools for data analysis and machine learning

[62,63]. For visualisation purposes, tools include Autodesk Maya for 3D modelling [64], and 

Gephi/Cytoscape for network visualisations [65]. QGIS is mainly used for spatial analysis 

and geographic visualisations [66].

3.1.3 Analytical framework

The analytical framework is considered as multi-disciplinary. Fig 3.3 provides an overview 

of the type of data sources and the main methodology used in each of the included 

publications. 



Figure 3.3: Per-paper overview of data sources and methodology

Papers 1, 2, 3 and 7 use supervised machine learning and/or prediction methods to infer a 

function from the training data that is further used for prediction. These studies make use of 

surveys or other subscriber information as ground truth information. An important note is that 

the feature generation processes (which generate the variables) are often based on other types

of analysis, including mobility and social network analysis. Paper 3 uses techniques from 

machine learning, such as cross-validation and test-set, but within a Bayesian statistical 

modelling framework [67]. The methodology in papers 4 and 6 are mainly social network 

analysis. Paper 5 applies general statistical analysis and anomaly detection. All of the studies 

use CDR data as the main data source, while some of the studies make use of additional data 

sources such as financial airtime purchase information, subscription information and spatial 

layers, including satellite information. Data visualisation has also been vital, but is not 

mentioned in the methodology as shown in Figure 3.3.

3.1.4 Social network analysis

Mobile operators often have access to a huge portion of the social network in a given country, 

and these sources are therefore good candidates for social science research, e.g. for studying 



social influence and purchase decisions. Understanding the nature of relationships and 

connections between entities is important for understanding a range of phenomena 

throughout multiple disciplines. Social network analysis (SNA) has broad and successful 

applications in economics epidemiology, sociology, biology and criminology [68]. The 

building block in the field of SNA is graphs, residing in graph theory, employed to represent 

the structure of interactions among people or any type of entities [69]. From a network 

perspective, it is the structure of the network and how the structural properties affect 

behaviour that is informative, and not simply the characteristics of the actors in the network. 

Analysis of large social networks is a non-trivial task that introduces challenges due to long 

processing time and large computational resources. 

A social network is defined as graphs representing social relationships between people or 

organisations. Each node, also called a vertex or an actor, in a graph represents an individual 

person or a group of people. The connection between two individual nodes is referred to as an 

edge or tie. Two important concepts are components and centrality.

Figure 3.4: Example social network

Social component: A component is a portion of the network where all actors are connected,

directly or indirectly, by at least one tie. By definition, each isolate is a separate component.

Figure 3.4 consists of a social network of three social components. Node G is situated in an

isolated component, while component 3 is the largest connected component (LCC) in the 

network. 

Centrality: Centrality measures identify the most prominent actors, that is those who are 

extensively involved in relationships with other actors. The ‘importance’ of actors in 

networks is indicated by centrality. The most used centrality measures include degree 



centrality, closeness centrality, betweenness centrality and eigenvector centrality [70]. By 

using Figure 3.4 as an example, we see that Nodes H and A both have three close friends 

each, indicating a degree centrality of three. If we use another centrality metric, such as 

eigenvector centrality (EVC), we will see that Node H suddenly has a higher EVC than A. 

The reason is that EVC takes into account the global network, where the friends of friends 

also matters. 

From mobile phone datasets we can study a weighted social network, where the weight (or 

intensity) wij of an edge connecting person i and and person j is defined as the aggregated 

time that the two users spend talking to one another. Most often, in communication networks 

the edge weight (i,j) is taken as the total number of calls, or as the aggregated duration of 

calls between i and j during the period under investigation. Previous studies have shown that 

they give an equivalent quantification of edge weight [71].

3.1.5 Machine learning 

Machine learning  picks its algorithms from different academic disciplines [72]. It is closely 

related to and often overlaps with computational statistics, which is a discipline that also 

focuses on prediction-making through the use of computers, and generalising from examples

[73]. It is also considered as a sub-field of artificial intelligence. Practically, machine learning 

can be described as the algorithmic part of a data mining process, where the data preparation 

step is often the most tedious one. This type of data mining process model, which describes 

commonly used approaches to tackle problems, can be best visualised with the CRISP-DM

framework [74]. A more detailed scheme of the isolated machine learning process is 

visualised in Figure 3.5. Here the process has been divided into 3 phases. The first phase is 

the pre-processing phase, where the features are generated from raw data, and the data are 

split into train and test.



Figure 3.5: Process of machine learning 

The second phase is the computational learning phase, where techniques such as cross-

validation are used to generate the final model [75]. Cross-validation is a technique for 

assessing how the results will generalise to an independent dataset, prevents the model from 

overfitting and provides an insight on how the model will generalise to an independent 

dataset, which is used in phase 3. There are also several ways to evaluate the performance of 

a machine learning model: popular choices include accuracy, recall, precision and ‘area under 

the curve’ (AUC) [76]. For instance, accuracy measures the proportion of true positives and 

negatives in the whole dataset. It is calculated for a given threshold; for example, logistic 

regressions return positive or negative depending on whether the logistic function is greater

or smaller than a threshold, usually set to 0.5 by default. AUC measures how true positive 

rate (recall) and false positive rate trade off, and is an evaluation of the classifier as threshold 

varies over all possible values. The interpretation of AUC is the probability that a randomly 

chosen positive example is ranked above a randomly chosen negative example, according to 



the classifier’s internal value for the examples. The third phase is where the model is applied 

to unseen data (test-set), predictions are made and performance metrics are evaluated. If the 

performance is significantly lower than the train set, an overfitted model is used, and a re-

calibration of the model is needed.

By the learning style (phase 2), the machine learning algorithms can be mainly divided into 

the following types: supervised learning and unsupervised learning.

In supervised learning, each sample in the dataset is a pair of an input vector and an external 

output vector (or value) that we are trying to predict [77]. Supervised learning is closely 

related to regression or classification in econometrics. By analysing a training set under a 

supervised learning algorithm an inferred function can be generated. The inferred function, 

e.g. the training model, can be then used to map or predict new samples. Both classification 

and regression are supervised learning where there is an input vector X and an external output 

Y, and the task T is to learn the experience E from the input X to the output Y. Typical 

supervised learning algorithm types are shown in Table 3.1.

Table 3.1: Examples of supervised learning algorithms [78-81].

Linear regression Non-linear regression and 

classification

Regression and classification 

trees

• Ordinary linear 

regression

• Partial least squares 

regression

• Penalised regression

• Multivariate adaptive regression 

splines

• Support vector machines (SVM)

• Artificial neural networks (incl. 

deep learning)

• K-nearest neighbours

• Bagging tree

• Random forest (RF)

• Boosted trees/gradient 

boosted trees

In unsupervised learning there is no external output (or label), and we only possess the input 

vector. The aim is to find similarities among samples in the unlabelled dataset. Typical 

algorithms include clustering (e.g. k-means), latent variable models and blind signal 

separation techniques [82]. Principal component analysis (PCA) is an example of a blind 



signal separation technique that can be used to explain key features of the data, and reduce 

the data from a high-dimensional space. Often the feature selection itself is embedded into 

learning algorithms. Unsupervised learning is closely related to density estimation and 

clustering in econometrics. In this thesis supervised machine learning is mainly considered,

as access to labelled data is available, and it is therefore possible to evaluate predictions. 

The main objective in supervised machine learning is to provide accurate predictions of the 

variables of interest. Even though these techniques are extremely powerful for forecasting, it 

can be very difficult to interpret the underlying structure implied by them. 

On the contrary, the main objective in econometrics is to provide an explanation of various 

observed outcomes. The goal is often to produce reliable estimates of parameters that 

describe economic systems, to provide an understanding of the underlying process that 

determines equilibrium outcomes. The estimation process is based on conditions implied by 

economic theory. Such a structural approach is beneficial when we want to know what 

happens when ‘the world’ changes (used for e.g. auctions, pricing). Machine learning can not 

easily predict the effect of intervention (how y changes as some x change). 

Hal Varian argues that there are several things that econometricians can learn from machine 

learners and vice versa [14]. Machine learning introduces the train-test-validate (including 

cross-validation) concept to avoid model overfitting, and there are several non-linear 

estimation techniques, as mentioned above. Variable selection methods are also developed to 

deal with large amounts of data. 

However, casual inference including confounding and instrumental variables is seldom 

considered in machine learning, even though some efforts have been made to combine the 

two approaches [83,84]. In addition, time series are often decomposed into trend and seasonal 

components to look at deviations from expected behaviour. The concept of cross-validation 

does not work directly on time series. Kleinberg et al. show how machine learning adds value 

over traditional regression approaches in solving prediction problems, and argue that 

causality is not always important when dealing with policy applications [15].



4 Key contributions

This chapter summarises the main findings in each of the 7 papers included in this thesis. 

Section 4.1 focuses on using mobile phone logs in a context that can benefit society as a 

whole. Contributions include individual prediction of socio-economic indicators, poverty 

prediction and understanding human behavioural signals during disasters. Section 4.2

investigates how products spread over large social networks, and further how to use these key

findings in a large-scale marketing experiment in Asia, giving people access to more 

personalised offers. 

4.1 Contributions to social good

4.1.1 Studies 1–3: Predicting socio-economic indicators

Section 2.2.2 discussed how mobile phone metadata has been used to study socio-economic 

behaviour. Here we build on these findings; in study 1 and 2 prediction models are developed

that can be used to infer individual characteristics of users, such as illiteracy status and 

income, by looking only at the users’ mobile phone behaviour. The fact that most phones in 

the developing world are prepaid means that the data lacks very basic information about the 

individual. This prevents numerous uses of this data in development economics research and 

social sciences. More importantly, it prevents the development of humanitarian applications 

such as the use of mobile phone data to target aid towards the most vulnerable groups during 

a crisis. For development purposes insight can be learned on the individual scale, before it is

aggregated on a spatial scale of mobile towers.



Figure 4.1: Studies 1–3: topic, data sources and country

Study 3 addresses how mobile phone data can be used to predict multiple dimensions of 

poverty in Bangladesh using both mobile phone metadata and additional spatial information, 

such as satellite information, as model input. As indicated in Figure 4.1, all the studies use 

CDR and survey information as their main data sources.

The aim with study 1 is to investigate whether large-scale mobile phone metadata, in the 

form of CDRs and airtime purchases (top-up) can support quantifying individual and spatial 

illiteracy in a developing country. Geographical mapping of illiteracy is crucial to know 

where illiterate people are, and where to distribute resources to improve education. In 

underdeveloped countries such mapping can be based on out-dated household surveys with 

low spatial and temporal resolution. One in five people worldwide struggle with illiteracy, 

and it is estimated that illiteracy costs the global economy more than $1 trillion dollars each 

year [85].

By deriving a broad set of mobile phone indicators reflecting users’ financial, social and 

mobility patterns, as introduced in section 2.2.2, we show how supervised machine learning 

can be used to predict individual illiteracy. On average the model performs 10 times better 

than random guessing with 70% accuracy. Feature investigation indicates that the most 

frequent cell tower and incoming SMS are the superior predictors, followed by diversity of 

communication partners and Internet volume (Figure 4.2a). Furthermore, the investigation 

extends to how individual illiteracy can be aggregated and mapped geographically at cell 

tower resolution (Figure 4.2b).



Figure 4.2: a) Most important predictors from mobile phone metadata data for 

predicting illiteracy; b) geographical mapping of illiteracy, top predictors and the cell 

tower distribution in one major city

This study shows how illiteracy can be predicted from mobile phone logs, purely by 

investigating users’ metadata. An important policy application of this work is the prediction 

of regional and individual illiteracy rates in underdeveloped countries where official statistics 

are limited or non-existing. Further work is required to investigate the findings up against 

population illiteracy and also verify the robustness of indicators in other countries. 

One promising supervised classification method for social sciences is deep learning, 

sometimes referred to as ‘deep neural networks’, as introduced in section 3.1.5. For social 

sciences the main advantage of deep learning is to avoid cumbersome feature engineering, 

and let the algorithm itself decide the features (based on near raw data as input). 

Deep learning has had breakthroughs in computer vision [86] and speech recognition [87].

The aim of study 2 is to understand whether deep learning can be beneficial for useful 

prediction tasks on mobile phone data, where classic machine learning algorithms are often 

under-utilised due to time-consuming country and domain-specific feature engineering (as 

shown in paper 1). Specifically the aim is to see how well the socio-economic status of an 



individual can be predicted, with a comparison to traditional data mining models as a

benchmark.

A simple deep learning architecture is implemented and is compared with traditional data 

mining models as benchmarks. On average this model achieves 77% AUC on test data using 

location traces as the sole input. In contrast, the benchmarked state-of-the-art data mining 

models include various feature categories such as basic phone usage, top-up pattern, handset 

type, social network structure and individual mobility. The traditional machine learning 

models achieve 72% AUC in the best-case scenario. Figure 4.3a shows the predictive 

performance, as measured by the AUC on test set, where the true positive vs. false positive 

rate is plotted for deep learning (DL), gradient boosting machines (GBM) and random forest 

(RF). The top predictive indicators in the random forest model and given in 4.3b and 

coloured by their respective variable family. 

Figure 4.3: a) Income prediction; predictive deep learning (DL), gradient boosting 

machines (GBM) and random forest (RF); b) top predictors for random forest model

Even though the traditional model is not meant to be interpretable, Figure 4.4b gives some 

insight into the most predictive features. We especially note the importance of location 

dynamics, handset brand and airtime credit purchase patterns for predicting income.

Location dynamics: Where the user spends most of his time is a good signal of his income. 

This indicates that our models have detected regions of low economic development status. 

This is also in line with the deep learning model. 



Handset brand: In the country of the study, minimal and more affordable handset brands are 

very popular among the lower income quantiles, while expensive smartphones are considered 

as a huge status symbol.

Top-up pattern: Interestingly, the recharge amount per transaction is more predictive than the 

total recharge amount. It can be observed that individuals from the lower income quantiles 

usually top-up with lower amounts when they first fill up their account.

The approach suggests that deep learning approaches could be an effective tool for predicting 

economic indicators based on mobile communication patterns. The disadvantage is that this is 

a more ‘black box’ approach and harder to interpret than traditional models.

In 2015, approximately 700 million people lived in extreme poverty, defined as living on less 

than $1.90 a day [88]. To end poverty in all its forms everywhere is one of the selected 

targets of the UN Sustainable Development Goals [89]. As mentioned in section 2.2.2, CDRs 

have been shown to provide proxy indicators for assessing regional poverty levels in Cote 

D’Ivoire and Rwanda. Paper 3 builds on these approaches, and extends the approach by also 

including spatial layers such as satellite information, in addition to predicting multiple 

dimensions of poverty, with Bangladesh as an example.

Eradication of poverty requires national and subnational quantification and monitoring over 

the next 15 years, and the challenge is to establish appropriate, effective and timely 

measurements. Existing approaches to estimate multi-dimensional poverty rely on census 

data collected with limited temporal frequency. Alternate measures are needed to update 

estimates in the time between censuses. Here the aim is to investigate whether mobile phone 

data, combined with satellite data, can complement existing approaches for predicting 

multiple dimensions of poverty. An objective is to know which sources are most promising in 

rural vs. urban areas. 

In this work, a Bayesian geostatistical modelling framework is used, combining data from 

GPS-located household surveys, satellite and other spatial layers, and mobile phone metadata

to predict asset-, consumption- and income-based metrics of poverty at high resolution. This

reveals that models employing a combination of mobile operator data and satellite variables 

provide the highest predictive power and lowest uncertainty (highest for wealth index: 

r2=0.78).



Figure 4.4: National level prediction maps for mean wealth index. Maps were generated 

using mobile phone features, remote sensing data and Bayesian geostatistical models.

The lower map restricts the focus on the poorest cells. 

National, urban and rural models were built to predict poverty rates from three separate geo-

referenced household survey datasets. Indicators such as night-time lights, transport time to 

the closest urban settlement and elevation were important, both nationally and in rural 

models; climate variables were also important in rural areas. Distance to roads and waterways 

were significant within urban and rural strata. In general, the addition of CDR data did not 

change the selection of satellite features at any level. Top-up features derived from recharge 

amounts and tower averages were significant in every model. Percentage of nocturnal calls, 

and count and duration of SMS traffic were significant nationally. Mobility and social 

network features were important at all strata, but only in rural models when combined with 

satellite data. In urban areas, SMS traffic was important, whereas multimedia messaging and 

video attributes were key in rural areas. The outputs correlate strongly with previous poverty

estimates for Bangladesh, highlighting the value of such cell phone-satellite-driven models in 

producing high-resolution poverty maps that can be rapidly updated. The findings based on 



this research can be utilised for real-time monitoring and decision-making to more effectively 

reduce poverty.

4.1.2 Papers 4–5: Understanding systemic shocks and disasters in society

A shock is an unexpected or unpredictable event that affects the economy, either positively or 

negatively. Shocks are typically produced when accidents or disasters appear. Systemic 

shocks will prompt hundreds or thousands of individuals or households to react in roughly 

similar ways. Section 2.2.2 discussed how mobile phone data have been used to study shocks 

and disasters, such as in the case of Haiti [41].

Figure 4.5: Studies 4–5: topic, data sources and country 

The studies introduced in this section are related to two extreme events, as shown in Figure

4.5. The first study uses CDR information to investigate the terror incident that hit Oslo, 

Norway, in 2011. The next study investigates an extreme weather event – cyclone Mahasen,

which hit Bangladesh in 2013. 

Study 4 examines human behavioural patterns on Friday 22nd July 2011 when a powerful 

bomb exploded in Regjeringskvartalet (the centre of national administration) in central Oslo, 

Norway. It killed 8 people and seriously injured almost 100 others. 

Earlier work has presented qualitative results on the 9/11 catastrophe, emphasising the need 

to reach out to the closest tie [90]. Another study examined the geographical distribution of 

traffic after a terrorist bombing in Israel [91]. This work differs from the others in the sense 

that large-scale mobile phone logs are used to understand communication patterns around the 



disaster. In such events we feel the need to check the wellbeing of family and friends, to 

organise assistance, and to make sense of the situation. Mobile phone logs can illuminate the 

ways these needs are met in the face of disaster.

Empirical mobile traffic data illuminate exceptional behaviour immediately after the 

bombing in Oslo; in the minutes after the bombing people called ties that were close socially 

and perceived to be in danger, that is, people who were close to the bombing point. The main 

findings: (1) individuals first focus on their single closest contact (‘best friend’), but soon 

after switch to spending more mobile communication resources than average on contacts 

ranked 2–5; (2) a large increase (over typical) in traffic is clear to and from, and not least 

within, the affected area (Oslo). In some cases this was more than a 300% increase

immediately after the bombing. Interestingly, a marked increase in traffic also occurred for 

relationships where both persons were outside Oslo. All of these results illustrate the 

importance of social contact in this highly unusual situation. 

Figure 4.6: Fraction of active subscribers contacting their 1–5 closest relations vs. time 

for all active subscribers. All curves are normalised by average communication for the 

same contact number (1–5)

This paper underlines how the mobile phone is an instrument of the intimate sphere. The 

situation on the 22nd July in Oslo is a prime example of an unexpected situation where 



individuals use the mobile to get critical information on their loved ones in their core 

network. The study has several limitations. These include the fact that the data are taken only 

from one operator in Norway, and the data is therefore not generalisable to all of Norway. 

The location-based data use also the postal code of the subscriber, and not the actual location 

of the phone at the time of the bombing. This is a result of privacy issues. 

Other shocks in society include natural disasters. Extreme weather events have always had 

and will continue to have significant consequences for society and the economy. Climate 

projections indicate that changing extreme weather patterns are very likely to increase 

exposure to those events. Researchers have also found that a temperature change will leave 

the average income around the world 23% lower in the year 2100 than without climate 

change [92]. The following paper quantifies the impact of an extreme weather event in 

Bangladesh using CDR data. Weather events in Bangladesh already have a major impact on 

the economic performance and livelihoods of millions of poor people, and climate change is 

likely to drive migration from environmentally stressed areas. 

In this study mobility, economic and social patterns are analysed during cyclone Mahasen,

which hit Bangladesh in 2013. The aim is to investigate whether data from mobile phone 

metadata may be a useful tool to prioritise locations in which rapid needs assessment is

performed after a cyclone. The aim is also to investigate whether anomaly detection can help 

to understand ‘signals’ of response in the population exposed to the cyclone. 

The results show that anomalous patterns of calling frequency correlate with rainfall intensity 

at the local scale, likely providing a spatiotemporal indicator of users’ physical exposure to 

the storm.



Figure 4.7: The temporal and spatial distribution of anomalies in airtime purchase 

anomalies. The threshold detection was set at three standard deviations from the mean 

of baseline

In addition, the results show that mobile recharge purchases increase in impact zones before 

landfall, representing preparations for potential environmental threats. The temporal and 

spatial recharge purchase anomalies are shown in Figure 4.7. Anomalous patterns of mobility

are also identified during evacuation and storm landfall, indicating how people respond to 

storm forecasts and early warnings. 

Detecting anomalous usage patterns from mobile network data is a promising avenue for 

researching human behavioural responses to environmental impacts across large 

spatiotemporal scales. Based on comparisons with rainfall measurements at landfall, and 

considering the considerable weakening of cyclones as they pass over land, calling frequency 

and population movement anomalies seem to be the best indicators of physical interaction 

and impact of the cyclone. The anomaly detection technique applied to CDRs, as presented 

here, overcomes some of these challenges, and demonstrates the potential value of CDR as a 

complement to current cyclone impact assessment tools to improve the accuracy, timeliness, 

and cost-effectiveness of cyclone impact assessments. Data from CDRs may be very useful 

as a tool to prioritise locations in which rapid needs assessment are performed after cyclone 

landfall, with the potential to drastically reduce the time to reach those most in need. Primary 

limitations of the study involve representativeness of the data for the general population. The 

indicators found should however reflect natural human response to shocks, but it is important 



to stress that CDR data should not be used alone to indicate where post-disaster assistance is 

needed.

4.2 Contributions to behavioural insight and marketing

Building on the marketing literature from section 2.2.2 and the methodology introduced in 

section 3.1, the last two studies investigate how the social network matters when purchase 

decisions are made. 

Figure 4.8: Studies 6–7: topic, data sources and country

Most of the existing research on product diffusion in networks has been focused on a single 

product, with a static snapshot of the network. Here the interest is to know how the social 

network among product adopters develops over time. In addition the aim is to understand 

how the product diffusion depends on the underlying social network. In short this study looks

for evidence of social spreading effects. The starting point of the analysis covers more than 

2.5 million subscribers and 50 billion CDR records collected over 9 quarters.

By combining the social interactions, derived from CDRs, with the adoption history of a 

product of interest, how different products are spread over the social network can be 

observed. Several products have been studied, including the iPhone, iPad, video telephony, 

Doro and Android phones. For each product the evolution of fraction of adopters is shown by

social component size, and centrality distributions by product is presented, as measured by 

eigenvector centrality of the adopters. All products show various degrees of social spreading 

effects. This work reveals in particular strong social effects in the adoption of iPhones and 

iPads. The Doro handsets have very weak social spreading, and will probably never ‘take 



off’. Video telephony also has strong spreading effects, but early takeoff was prevented by an 

external factor, here a new price model. 

Figure 4.9: Time evolution of the iPhone adoption network (largest-connected 

component). One node represents one subscriber. Node colour represents iPhone 

model: red = 2G, green = 3G, yellow = 3GS

To verify social spreading effects the probability pk that a subscriber has adopted a product is

measured, given that k of the subscriber’s friends have adopted the product. Figure 4.10

shows the following: if we know that a subscriber has one friend using a Doro phone, that 

subscriber’s probability of using one themself is roughly twice the adoption probability for a 

subscriber with no adopting friends. 



Figure 4.10: Adoption probability pk vs. the number k of adopting friends for three 

products. In each case a monotonic growth of pk with k is visible, indicating that some 

kind of social spreading is occurring

Through visualisations, supported by analysis, a glimpse is provided of how products spread 

over large-scale social networks. These measurement methods give new and useful insight 

into how and why the different services have performed so differently. Initially social 

spreading effects were unexpected for Doro, which is a handset marketed towards the elderly. 

The findings quantify and suggest that such effects exist for most products. The strength of 

the effects also produce the possibility that such knowledge could be investigated further in 

marketing experiments. 

Paper 6 quantified the adoption probability as a function of friends that have adopted a 

product. In paper 7 this insight is experimentally exploited in a campaign in Asia, using 

Internet packages as the product of choice. Economic growth in Asia is steadily increasing, 

but the overall Internet penetration is very small, which contributes to an economic and 

educational gap in comparison to more developed countries [93]. Mobile operators in this 

geographical region typically run thousands of text-based campaigns a year, resulting in 

customers receiving several promotional texts per month. This is a major problem for 

operators, since they are considered as spammers rather than providing people with useful 

information. For this particular operator, the policy is to not send more than one text per 



customer every 14 days. It is therefore crucial to personalise the offers towards the 

customers. This paper evaluates a data-driven approach to marketing against the operator’s 

current best practice in a large-scale ‘Internet data’ experiment. The experiment will compare 

the conversion rates of the treatment and control groups after one promotional text. 

Figure 4.11 a) Conversion rate in the control (best practice) and treatment (data-driven 

approach) groups; b) the percentage of converted people who renewed their data plan 

after using the volume included in the campaign offer

The findings show that the data-driven approach using machine learning and SNA leads to 

higher conversation rates than the best-practice marketing approach.

The study also shows that historical natural adoption data can be used to train models when 

campaign response data is unavailable. New features to identify which customers are the 

most likely to convert into mobile Internet users were created. The features fall into the

following categories: discretionary income, timing and social learning. In total 50 million 

customers were scored, and the treatment group was composed of the top 250,000 customers 

with the highest score. The conversion rate of an Internet data campaign was increased by 13 

times compared to current best practice (the control group). The model also shows very good 

properties in the longer term, as 98% of the converted customers in the treatment group 

renewed their mobile internet packages after the campaign, compared to 37% in the control 

group.



Table 4.1: Top 10 most predictive indicators to classify natural converters, ranked by 

importance in the model

The cross-validated model only relies on a few key variables. Only 20 features out of the 

initial 350 were selected for the final model. Table 4.1 shows the top 10 most useful features 

to classify natural converters.

The social learning features computed for this study turn out to be very helpful to help 

classify the natural converters. The total spending on data among the closest social graph

neighbours is the most predictive feature. Using social features in selecting customers for the 

offer might have improved the retention rates. The results lead to speculation that the value 

customers derive from mobile data increases when their neighbours are also mobile data 

users. In other words, it is expected that a network externality effect exists in mobile Internet 

data. This means that selecting customers whose closest neighbours are already using mobile 

data might have locally used this network effect to create the lasting effect observed with a

very high retention rate in the second month. It is also worth noting that the marketing team 

believed that average revenue per user (ARPU) would be the most predictive feature for

Internet uptake. It can be seen however that the low-ARPU segment was slightly 

overrepresented, and the text- and data-focused discretionary spending variables are selected 

as being more important in the model. These findings open up exciting avenues of research 

within data-driven marketing and customer understanding. Such an approach has now been 

implemented in the respective business unit, and is greatly reducing spamming by providing 

the customer with more relevant offers. Such an approach can also be used to micro-target 

outreach or drive uptake of e.g. agricultural technologies, health-seeking behaviour or mobile 

money.



5 Discussion

Here the overall research question and challenges are addressed from a holistic perspective. 

The purpose is to analyse the contribution of this thesis, both in detail and from a societal 

perspective. 

5.1 On the research question

Q: Apart from providing basic communication services, what kind of positive impact can we 

create for society and/or individuals using large-scale mobile phone datasets?

A: As shown in this thesis, new techniques could be adopted to achieve near-real-time

insights into people’s wellbeing and target aid interventions to vulnerable groups. The results 

show that mobile phone data can be used for making reliable socio-economic predictions on 

the individual and geographical level. The way you use a phone can also reveal something 

about ‘who’ you are, for example, whether you are illiterate or your income level. Such 

insight can further be aggregated to the geographical level to help vulnerable groups in 

society. Additional results show that mobile phone data can be combined with satellite 

information to estimate multi-dimensional poverty at high spatial resolution, using 

Bangladesh as an example. Eradication of poverty requires national and subnational 

quantification and monitoring, and existing poverty estimates rely on census data collected 

with limited temporal frequency. How traditional survey information may be complimented 

by adoption of this methodology has also been addressed. 

Further results show that mobile phone data can be used to understand human behaviour

during large systemic shocks and disasters in society. These results were exemplified by 

investigating the terror attack that hit Norway in 2011, and by analysing financial, social and 

mobility patterns from millions of people during a large cyclone event that hit Bangladesh in 

2013. Such knowledge can be used to both gain understanding and detect early-warning 

signals that can help to prevent future disasters. Understanding how the diffusion of 

information occurs may also help us to understand the complex network in a modern society. 

In summary, these findings can be used to inform socially beneficial policies that include 

improved understanding of crisis behaviour, accurate mapping of service needs and faster 



tracking and response. As obtaining survey information is costly and slow, there is a strong 

need for better approaches. 

The following results are motivated by the questions of how people adopt new products and 

services, and what role the underlying social network structure plays in this process. Results 

indicate that social networks strongly matter when purchase decisions are made, and that 

these effects can be exploited to boost uptake of products and services. By including social 

patterns and machine learning techniques in a large-scale marketing experiment in Asia, the 

adoption rate was increased by 13 times compared to current best practice for a given 

product. This approach, which has now been adopted by the company, greatly reduces spam 

and provides customers with more relevant offers. At the same time the method provides an 

efficient way of increasing Internet penetration in a highly underdeveloped country. The 

same methodology may also be used for other services, as mentioned in section 4.2.2. In

summary, these results provide additional insights into human behaviour with the aim to 

understand social interactions and improve marketing. 

5.2 Challenges and limitations 

Using de-identified mobile phone logs represents many opportunities, but also throws up big 

challenges around public trust, privacy and potential abuses of data. 

5.2.1 Privacy challenges

Privacy challenges can be easy to overlook when confronted with the challenges of poverty, 

disease and basic economic growth. They are however critical to realise the great potential of 

innovations to help address these critical problems.

Privacy is defined by ITU as the ‘right of individuals to control or influence what information 

related to them may be disclosed’ [94]. Personal information that needs to be protected is 

central to the privacy framework. The OECD defines personal data as ‘any information 

relating to an identified or identifiable individual (data subject)’ [95]. The result of this

approach has been the policy of ‘informed consent’ practiced by most companies to inform 

users of what data are being collected and how they are used. In the world of ‘Big Data’ this 

method has been argued to be impractical [96]. The main reason is that the greatest potential 

often lies in secondary applications long after the data has been collected. It is not possible 



for companies to know a priori all the potential uses and to continuously seek permission 

from all users. 

Other concerns relate to data anonymisation. Recent research on ‘computational privacy’ has 

shown that de-identification of users in CDR is possible, with high accuracy, if only four user 

data points are available [97]. In practice this is difficult as the real-world identities of users 

are unknown, but the authors argue that cross-referencing to other data sources might help to 

de-identify the individual. Such risks are currently lower in underdeveloped countries, as the 

amount of data stored on each user is still low. As addressed in papers 1 and 2, the great

majority of mobile phone users in the developing world are prepaid, with minimal 

registration associated. In some countries, such as Pakistan, this might change, as mobile 

phone users must now go through a biometric verification  before buying a SIM card. This 

creates a solid link between the owner of the SIM card and their actual identity [98].

One additional concern is when data go beyond metadata and move into the space of content 

information [99]. Linking non-personal data to an actual individual can then be made easier 

[100]. In particular this can be a problem when several sources of Big Data are coupled with 

other data sources to generate new insight. 

5.2.2 Analysis and interpreting data

Establishing a generalisation of findings from large-scale analysis might often be difficult, as 

several data sources are often involved and the chance of data quality issues increases. This 

section addresses some of the challenges related to analysis and data interpretation. 

Given multiple raw sources of data, it is important to understand how the data has mutated 

along the pathway into the final datasets. Some mobile phone operators choose to include the 

complete route of traffic that has been forwarded. This implies that there are multiple records 

in the CDRs for the same traffic sessions. The result is, for instance, errors when conducting

SNA, where edge strengths are overvalued. Another concern is redundant locations, 

generated by the so-called ping-pong phenomenon where a user connects to several towers 

frequently. This might introduce errors when inferring the mobility patterns of users [101].



A known concern is sampling selection bias. A large dataset may make the sampling rate 

irrelevant, but it does not make it representative [102]. The fact is that those who use a

mobile phone are not necessarily a representative sample of the larger population being 

considered. This issue is particularly relevant when considering how mobile phone data may 

be used for monitoring, economic forecasting and development. Research studies are often 

based purely on data from one mobile operator, and depending on the type of data one can 

expect wealthier or poorer, and educated or uneducated individuals. Even if data from all 

operators in a country were available, nearing the total population, this is still not the whole 

population. 

The main problem with results based on non-representative samples is that they lack external 

validity, which is the degree to which an internally valid conclusion can be generalised 

beyond the sample. 

As people adopt new technology, one challenge is the change of structure and content of 

mobile phone datasets. The signals of human behaviour in mobile phone datasets might 

change over time and place, analogously to stock markets where signals will change over 

time and new signals will appear or disappear. As communication signals might be

transferred to other platforms, the CDR might not capture the social network as well as 

before [103]. The choice of data source(s) and when to re-train the models will be vital when 

considering the research questions. Another challenge is the change in human behaviour

itself, which can be subject to self-censorship (turning the phone off in certain areas) and 

creation of multiple personas (SIM-switching). 

Big Data analysis draws much of its methodology from artificial intelligence and machine 

learning, which is primarily about prediction and correlations. Most often the datasets are 

observational and therefore are not able to measure causality. Hal Varian stated that ‘there are 

often more police in precincts with high crime, but that does not imply that increasing the 

number of police in a precinct would increase crime’ [14]. While some researchers have 

predicted the end of theory and hypotheses-testing [104], others are more sceptical [105].

Sendihl Mullainathan believes that inductive science (algorithmically mining data sources) 



will not threaten deductive science (hypothesis testing). He believes that greater volume

makes Big Data induction techniques more effective, while more variety makes them less

effective. There will therefore be a need for explaining behaviour (deductive science) rather 

than just predicting behaviour. At the same time it is worth mentioning that causal modelling

is possible in the Big Data regime by conducting large-scale experiments. Mobile phone 

operators utilise such techniques to learn about product usage and pricing.

Many of the publications in this thesis rely on a combination of survey data and large-scale

datasets. To be able to create understanding and models that reflect ground realities, ‘small’

survey data will still be important in the future. For many studies it is crucial to verify the 

underlying assumptions in Big Data using survey data. 

5.2.3 The future of artificial intelligence in social sciences

Throughout this thesis machine learning and prediction methodology have been applied in a

positive context, without much of a focus on potential negative pitfalls. Of course there are 

both short and long term implications of this emerging field that need to be considered from 

all angles. Artificial intelligence and machine learning are now being implemented in 

driverless cars [106], commercial drones [107], financial trading [108], autonomous weapons 

[109] and monitoring patients in care [110]. As such applications emerge it is important to be 

transparent around the decision-making process, especially since intelligent machines 

sometimes make errors too. In the field of social sciences this includes always validating the 

methodology to actual ground truth data, and using it as a complementary source of insight. It 

also includes updating analytical models, as researchers pointed out in relation to Google Flu 

trends, which made inaccurate forecasts for 100 out of 108 weeks [111].

Certainly, the development of artificial intelligence will increasingly make it a part of our 

daily lives. Currently we do not know if human-level intelligence will be incorporated into 

artificial intelligence, but it is important to consider it as a possible outcome of today’s 

research. 



6 Conclusion

This thesis has highlighted the economic and social benefits of using large-scale mobile 

phone metadata. This data paints a picture of an individual’s patterns of behaviour and 

interactions. When applying this capability across a nation covering millions of people, it is 

possible to collapse a very detailed picture of the entire population. There are still many 

challenges to overcome, especially when addressing the privacy implications of Big Data, but 

mobile phone records can be mutually beneficial to both the private sector and the 

government.

This thesis has addressed how this information can be used to inform socially beneficial 

policies on socioeconomics, poverty and disasters on the society level. More targeted and 

timely policy actions can be taken by governments to address the underlying problems, which 

would not be possible with the limited and lagged insights revealed by traditional official 

statistics.

Furthermore, the possibility of using new behavioural insights has been explored, by

exploiting large-scale social networks to build models and target the right individuals in 

marketing experiments. By incorporating social information, product adoption is significantly 

increased and spam is reduced.

Hopefully, this dissertation will contribute to generating debates and interest among a wide 

range of audiences, to advancing the understanding of analysis of large-scale datasets and 

their applications, and most importantly to making such analyses possible and beneficial for 

society. 
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Abstract— Deep learning has in recent years brought 
breakthroughs in several domains, most notably voice and image 
recognition. In this work we extend deep learning into a new 
application domain - namely classification on mobile phone 
datasets. Classic machine learning methods have produced good 
results in telecom prediction tasks, but are underutilized due to 
resource-intensive and domain-specific feature engineering. 
Moreover, traditional machine learning algorithms require 
separate feature engineering in different countries. In this work, 
we show how socio-economic status in large de-identified mobile 
phone datasets can be accurately classified using deep learning, 
thus avoiding the cumbersome and manual feature engineering 
process.  We implement a simple deep learning architecture and 
compare it with traditional data mining models as our 
benchmarks. On average our model achieves 77% AUC on test 
data using location traces as the sole input. In contrast, the 
benchmarked state-of-the-art data mining models include various 
feature categories such as basic phone usage, top-up pattern, 
handset type, social network structure and individual mobility. 
The traditional machine learning models achieve 72% AUC in 
the best-case scenario. We believe these results are encouraging 
since average regional household income is an important input to 
a wide range of economic policies. In underdeveloped countries 
reliable statistics of income is often lacking, not frequently 
updated, and is rarely fine-grained to sub-regions of the country. 
Making income prediction simpler and more efficient can be of 
great help to policy makers and charity organizations – which 
will ultimately benefit the poor.

Deep learning; Mobile phone data; poverty;household income ;
Big Data Analytics; Machine learning; Asia, Mobile network 
operator; metadata; algorithms

I. INTRODUCTION 

Recent advances in Deep Learning [1][2] have made it 
possible to extract high-level features from raw sensory data, 
leading to breakthroughs in computer vision [9][10][11] and 
speech recognition [12][13]. It seems natural to ask whether 
similar techniques could also be beneficial for useful 
prediction tasks on mobile phone data, where classic machine 
learning algorithms are often under-utilized due to time-
consuming country and domain- specific feature engineering 
[6]. 

Our work investigates how we can separate individuals with 
high and low socio-economic status using mobile phone call 
detail records (CDR). Finding good proxies for income in 
mobile phone data could lead to better poverty prediction –
which could ultimately lead to more efficient policies for 
addressing extreme poverty in hardest hit regions.

With this in mind, we perform a large-scale country-
representative survey in a low HDI Asian country, where 
household income is collected from approximately 80 000 
individuals. The individual records are de-identified and 
coupled with raw mobile phone data that span over 3 months. 
This dataset allow us to build a deep learning model, as well 
as a benchmarking model using custom feature engineering
and traditional data mining algorithms.  

From the household income we derive two binary 
classifiers (1) below or above median household income and 
(2) below or above upper poverty level.  The income threshold 
for poverty level is derived from official statistics and based 
on average national household income and household size. 
Our survey classifies participants into 13 household income 
bins – where bin 1 and 2 correspond to below upper poverty 
level. 

The rest of this paper is organized as follows: In section 2 
we describe the features and models used for benchmarking 
our deep learning approach.  Section 3 describes the deep 
learning approach itself.  In section 4 we compare the results 
of the two approaches. Finally, we draw our conclusions in 
section 5.  

II. BEST PRACTICE – TRADITIONAL DATA MINING

This section describes the features and the standard 
machine learning algorithms used as our benchmark.  The data 
preparation phase in the data mining process is a tedious task, 
that requires specific knowledge about both the local market 
and the various data channels as potential sources for input 
features.  Typically the data warehouse architecture and the 
data format vary between the operators and third-party 
software packages, making it hard to create generalizable 
feature-sets.

A. Features 
We build a structured dataset consisting of 150 features 

from 7 different feature families, see Table 1. The features are 
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FIGURE 1 LOCATION ACTIVITY MAP. THE MAP PROVIDES 
INFORMATION ABOUT EACH USERS’ TOWER ACTIVITY.

custom-made and range from basic phone usage, top-up
pattern, social network and mobility to handset usage. The 
features include various parameters of the corresponding 
distributions such as weekly or monthly median, mean and 
variance. 

TABLE 1 SAMPLE FEATURES USED IN TRADITIONAL 
MACHINE LEARNING BENCHMARKS. 

Feature family Feature examples 

Basic phone usage Outgoing/incoming voice duration, sms count 
etc. 

Top-up transactions Spending speed, recharge amount per 
transaction, fraction of lowest/highest 
recharge amount, coefficient of variation 
recharge amount etc

Location/mobility Home district/tower, radius of gyration, 
entropy of places, number of places etc.

Social Network Interaction per contact, degree, entropy of 
contacts etc.

Handset type Brand, manufacturer, camera enabled,
smart/feature/basic phone etc

Revenue Charge of outgoing/incoming SMS, MMS, 
voice, video, value added sevices, roaming, 
internet etc. 

Advanced phone 
usage

Internet volume/count, MMS count, video 
count/duration, value added services 
duration/count etc. 

A. Models
Ensemble methods have been proven as powerful 

algorithms when applied to large-scale telecom datasets 
[14][6]. They combine predictions of several base classifiers 
built with a given learning algorithm in order to improve 
robustness over a single classifier. We investigate two different 
state-of-the-art ensemble methods: 

1) Random forest, where we build several independent 
classifiers and average their predictions, thus reducing the 
variance.  We choose grid search to optimize the tree size. 

2) Gradient boosting machines (GBM) where the base 
classifiers are built sequentially. The algorithm combines the 
new classifier with ones from previous iterations in an attempt 
to reduce the overall error rate. The main motivation is to 
combine several weak models to produce a powerful 
ensemble.   

In our set-up, each model is trained and tested using a 75/25 
split. For the response variable related to poverty level we 
introduce misclassfication cost. Since few people are below 
the poverty level (minority class), a naive model will predict 
everyone above poverty line.  We therefore apply a 
misclassification cost to the minority class to achieve fewer 
false positives and adjust for the ratio between the classes.

III. DEEP LEARNING

In this section we describe the input data and the structure 
of our deep learning model.  

B. Features
Classification results of the traditional learning algorithms 

are inherently limited in performance by the quality of the 
extracted features [7]. Deep learning can instead reproduce 
complicated functions that  represent higher level extractions, 
and replace manual domain-specific feature engineering.

Earlier studies have shown a good correlation between 
location/human mobility and socio-economic levels [15-17].
Using this as a motivation we build a simple vector whose 
length corresponds to the number of mobile towers (8100 
dimensions), and the vector elements correspond to the mobile 
phone activity at the given tower – shown in Table 2. 

TABLE 2 INPUT VECTORS TO DL ALGORITHM BEFORE 
NORMALIZATION

Hashed 
Phone 
number

Tower
1

Tower2 …. Tower8100 Below/above 
poverty level 

1 0 67 …. 16 0

2 7 0 …. 0 1

.

.

.

.

.

.

…. .

.

.

.

80K 0 9 …. 6 0

A visual representation of Table 2 can be seen in Fig 1,
where each subscriber is represented by a location density map. 

A. Models
We use a standard multi-layer feedforward architecture 

where the weighted combination of the n input signals is 
aggregated, and an output signal f(α) is transmitted by the 
connected neuron. The function f used for the nonlinear 
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FIGURE 2 AUC ON TEST SET SHOWING THE TRUE POSITIVE VS 
FALSE POSITIVE RATE FOR DEEP LEARNING (DL), GRADIENT 
BOOSTING MACHINES (GBM) AND RANDOM FOREST (RF).  

FIGURE 3 TOP FEATURES IN RF MODEL COLORED BY THEIR RESPECTIVE 
FEATURE FAMILY.  

activation is rectifier f(α) ≈ log(1+eα) .  To minimize the loss 
function we apply a standard stochastic gradient descent with 
the gradient computed via back-propagation. We use dropout 
[4][5] as a regularization technique to prevent over-fitting. For 
the input layer we use the value of 0.1 and 0.2 for the hidden 
layers. Dropout secures that each training example is used in a
different model which all share the same global parameters. 
This allows the models to be averaged as ensembles, improving 
generalization and preventing overfitting. The split between 
train and test set, as well as the introduced misclassification 
cost for poverty level, are similar to the benchmark models.

TABLE 3 MODEL PERFORMANCE (AUC)  ON TEST SET

IV. RESULTS

Our deep neural network is trained to separate individuals 
with high and low socio-economic status.  We evaluate our
models' performance with AUC [2][3] achieving 77% and 74%
AUC on test set when the classifier is predicting above/below 
median household income and above/below poverty level 
respectively (Fig 2, Table 3). The corresponding AUC on the 
train sets are respectively 80% and 77%, showing that our 
model does not overfit significantly. Our results indicate that 
the DL model achieves a higher performance than those of 
multi-source  RF and GBM models, which vary between 71-
72% and 68-69% for above/below median household income 
and poverty level respectively. 

Next, we feed the RF and GBM models with the same 
representation as fed into the DL algorithm - achieving RF 
performance of AUC 64% and  GBM performance of AUC 
61% .  The performance of these models greatly suffers as the 
number of input features increase without increasing the 
training size. We conclude that given a fixed training sample, 
the traditional models are not able to learn a complicated 
function that represents higher level extractions, but perform 
better when using manual domain-specific feature engineering. 

A posteriori inspection of the top features selected by our 
traditional models leads to some interesting qualitative insights.  
We observe a similar pattern in the top features selected by the 
RF and GBM model.  Figure 3 shows the top features in our 
RF model. We notice the importance of three feature families: 

1) Location dynamics: Where the user spends most of his 
time is  a good signal of his income. This indicates that our 
models have detected regions of low economic development 
status.

Model AUC test set

Below/above poverty level 

AUC test set

Below/above median 
income

DL 0.74 0.77

GBM 0.68 0.71

RF 0.69 0.72
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2) The handset brand: In the country of our study, 
minimal and more affordable handset brands are very popular 
among the lower income quantiles, while expensive 
smartphones are considered as a huge status symbol.  

3) The top-up pattern: Interestingly, the recharge amount 
per transaction is more predictive than the total recharge 
amount. We observe that individuals from the lower income 
quantiles usually top-up with lower amounts when they first 
fill up their account. 

V. CONCLUSION

In order to predict household income based on mobile 
phone communication and mobility patterns, we implemented a 
multi-layer feedforward deep learning architecture. Our 
approach introduces a novel data representation for learning 
neural networks on real CDR data.

Our approach suggests that multi-layer feedforward models 
are an effective tool for predicting economic indicators based 
on mobile communication patterns. While capturing the 
complex dependencies between different dimensions of the 
data, deep learning algorithms do not overfit the training data 
as seen by our test performance.

Furthermore, our deep learning model, using only a single 
dimension of the data in its raw form, achieves a 7% better
performance compared to the best traditional data mining 
approach based on custom engineered features from multiple 
data dimensions. Even though such an automated approach is 
time-saving, many of the classic machine learning approaches 
have the advantage of being interpretable. However, since a
large portion of a data mining process is data preparation, there 
is a big demand to automate this initial step.

As future work, we would like to investigate the 
performance implications of including temporal aspects of raw 
CDRs in our models and the data representation.  In addition, 
we will work on finding a general representation of telecom 
data that can be used for various prediction tasks. 

An important application of this work is the prediction of 
regional and individual poverty levels in low HDI countries. 
Since our approach only requires de-identified customer and 
tower IDs, we find this method more privacy preserving 
compared to traditional data mining approaches where the 
input features may reveal sensitive information about the 
customers.

REFERENCES

[1] Yann LeCun, Yoshua Bengio & Geoffrey Hinton. Deep Learning, 
Nature 521 436-444 (28 May 2015)

[2] P.Baldi et al. Searching for exotic particles in high-energy physics with 
deep learning, Nature Communications 5, article  4308

[3] AUC:A better measure than accuracy in comparing learning algorithms, 
Ling C, Advances in Artificial Intelligence  LNCS Vol 2671, 2003, pp 
329-341

[4] G. Hinton et. al. (2012) Improving Neural Networks by Preventing Co-
adaptation of Feature Detectors. arXiv preprint arXiv:1207.0580

[5] G. Dahl et. al. (2013) Improving Deep Neural Networks for LVCSR 
using Rectified Linear Units and Dropout. ICASSP, 8609-8613.

[6] P.Sundsøy, J.Bjelland, A.Iqbal, A.Pentland, Y.A.Montjoye, Big Data-
Driven Marketing: How machine learning outperforms marketers’ gut-
feeling, Social Computing, Behavioral-Cultural Modeling & Prediction. 
Lecture Notes in Computer Science Volume 8393, 2014, pp 367-374

[7] Arel I,Rose DC,Karnowski TP, Deep machine learning – A new frontier 
in artificial intelligence research. IEEE computational intelligence 
magazine 5,13-18 (2010). 

[8] Bengio Y, Learning deep architectures for AI. Foundations and trends in 
machine learning 2 (2009). 

[9] Alex Krizhevsky, Ilya Sutskever, and Geoff Hinton. Imagenet 
classification with deep convolutional neural networks. In Advances in 
Neural Information Processing Systems 25, pages 1106–1114, 2012

[10] Pierre Sermanet, Koray Kavukcuoglu, Soumith Chintala, and Yann 
LeCun. Pedestrian detection with unsupervised multi-stage feature 
learning. In Proc. International Conference on Computer Vision and 
Pattern Recognition (CVPR 2013). IEEE, 2013.

[11] Volodymyr Mnih. Machine Learning for Aerial Image Labeling. PhD 
thesis, University of Toronto, 2013.

[12] George E. Dahl, Dong Yu, Li Deng, and Alex Acero. Context-dependent 
pre-trained deep neural networks for large-vocabulary speech 
recognition. Audio, Speech, and Language Processing, IEEE 
Transactions on, 20(1):30 –42, January 2012.

[13] Alex Graves, Abdel-rahman Mohamed, and Geoffrey E. Hinton. Speech 
recognition with deep recurrent neural networks. In Proc. ICASSP, 2013

[14] Namhyoung K,Kyu J, Yong.K, A New Ensemble Model for Efficient 
Churn Prediction in Mobile Telecommunication, 2012 45th Hawaii 
international conf on system sciences

[15] V.Frias-Martinez,J.Virseda,E.Frias-Martinez. Socio-economic levels and 
human mobility, Qual Meets Quant Workshop – QMQ 2010 at the 
int.conf on information & communication technologies and 
development, ICTD (2010). 

[16] Rubio, A., Frias-Martinez, V., Frias-Martinez E. & Oliver, N. (2010, 
March). Human Mobility in Advanced and Developing Economies: A 
Comparative Analysis, in AAAI Spring Symposia Artificial Intelligence 
for Development, AID, Stanford, USA.

[17] Eagle, N., Macy, M. & Claxton, R. (2010). Network Diversity and 
Economic Development, Science 328 2029-1030.



Paper 3





rsif.royalsocietypublishing.org

Research
Cite this article: Steele JE et al. 2017
Mapping poverty using mobile phone and

satellite data. J. R. Soc. Interface 14: 20160690.
http://dx.doi.org/10.1098/rsif.2016.0690

Received: 29 August 2016

Accepted: 3 January 2017

Subject Category:
Life Sciences–Mathematics interface

Subject Areas:
biometrics, environmental science,

biomathematics

Keywords:
poverty mapping, mobile phone data, Bayesian

geostatistical modelling, remote sensing

Author for correspondence:
Jessica E. Steele

e-mail: steele.jessica@gmail.com

Electronic supplementary material is available

online at https://dx.doi.org/10.6084/m9.fig-

share.c.3662800.

Mapping poverty using mobile phone and
satellite data
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Poverty is one of the most important determinants of adverse health outcomes

globally, a major cause of societal instability and one of the largest causes of lost

human potential. Traditional approaches to measuring and targeting poverty

rely heavily on census data, which in most low- and middle-income countries

(LMICs) are unavailable or out-of-date. Alternatemeasures are needed to comp-

lement and update estimates between censuses. This study demonstrates how

public and private data sources that are commonly available for LMICs can be

used to provide novel insight into the spatial distribution of poverty. We evalu-

ate the relative value of modelling three traditional poverty measures using

aggregate data from mobile operators and widely available geospatial data.

Taken together,models combining thesedata sources provide thebest predictive

power (highest r2 ¼ 0.78) and lowest error, but generally models employing

mobile data only yield comparable results, offering the potential to measure

poverty more frequently and at finer granularity. Stratifying models into

urban and rural areas highlights the advantage of using mobile data in urban

areas anddifferent data indifferent contexts. The findings indicate thepossibility

to estimate and continually monitor poverty rates at high spatial resolution in

countrieswith limited capacity to support traditionalmethods ofdata collection.

1. Background
In 2015, approximately 700million people lived in extreme poverty [1]. Poverty is

a major determinant of adverse health outcomes including child mortality [2],

and contributes to population growth [3], societal instability and conflict [4].

Eradicating poverty in all its forms remains a major challenge and the first

target of the Sustainable Development Goals (SDGs) [5]. To eradicate poverty,

it is crucial that information is available on where affected people live. Such

data improve the understanding of the causes of poverty, enable improved allo-

cation of resources for poverty alleviation programmes, and are a critical

& 2017 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution
License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original
author and source are credited.
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component for monitoring poverty rates over time. The latter

issue is especially pertinent for efforts aimed at reaching the

SDGs, which need to bemonitored at national and subnational

levels over the coming 15 years [5].

The definition of poverty and the measurement methods

used to identify poor persons are part of a longstanding discus-

sion in development economics [6–9]. Different approaches

exist to calculate indicators of living standards, including

the construction of unidimensional and multidimensional indi-

ces, as well as the use of monetary or non-monetary metrics.

A further discussion for living standard indices regards the

methods used to set appropriate thresholds (poverty lines)

under which a person is defined as poor [10–12]. Monetary-

based metrics identify poverty as a shortfall in consumption

(or income) and measure whether households or individuals

fall above or below a defined poverty line [13,14]. By contrast,

asset-based indicators define household welfare based on

asset ownership (e.g. refrigerator, radio or bicycle), dwelling

characteristics, and access to basic services like clean water and

electricity [15]. Moreover, poverty indicators can capture the

status of a household or individual at a given point in time, or

identify chronic versus transient poverty over time [14,16–18].

Every approach used to calculate indicators of living stan-

dards for a population has its advantages and disadvantages,

and each indicator discerns different characteristics of the

population. Consumption data can be highly noisy due to

recall error or because expenditures occurred outside the

period captured in surveys, but provide a better shorter-

term concept of poverty [19,20]. Asset-based measures have

been regarded as a better proxy for the long-term status of

households as they are thought to be more representative

of permanent income or long-term control of resources

[20–22]. The same population can be ranked quite differently

along a poverty distribution when comparing consumption

and asset-based measures and many assumptions are necess-

arily accepted in order do such comparisons. These include

assumptions that the data represent the same populations

in the same time period; that the indicators are well matched

in their wording and response options; and that the poverty

measures have a similar distribution of responses [20,23].

Furthermore, it is difficult to compare asset-based measures

to income or consumption as it is not straightforward to

link the productive potential of a household to their assets

owned; this can be particularly relevant in rural areas

where the return on physical assets can be strongly environ-

mentally related and interactions among assets may be

important [24]. These factors necessitate a flexible approach

to modelling poverty as indicators representing asset-based,

consumption-based and income-based measures are not

necessarily expected to produce similar results.

While numerous high-resolution indicators of human wel-

fare are routinely collected for populations in high-income

countries, the geographical distribution of poverty in low-

and middle-income countries (LMICs) is often uncertain [25].

Small area estimation (SAE) forms the standard approach to

produce sub-national estimates of the proportion of house-

holds in poverty. SAE uses statistical techniques to estimate

parameters for sub-populations by combining household

survey and census data to use the detail in household surveys

and the coverage of the census. Common variables between the

two are used to predict a poverty metric across the population

[26–28]. These techniques rely on the availability of census

data, which are typically collected every 10 years and often

released with a delay of one or more years, making the updat-

ing of poverty estimates challenging. Recently, there are

promising signs that novel sources of high-resolution data

can provide an accurate and up-to-date indication of living

conditions. In particular, recent work illustrates the potential

of features derived from remote sensing and geographic infor-

mation system data [29–35] (hereafter called RS data) and

mobile operator call detail records (CDRs) [36–39]. However,

the predictive power in integrating these two data sources,

and their ability to estimate different measures of poverty has

not been evaluated.

RS and CDR data capture distinct and complimentary cor-

relates of human living conditions and behaviour. For example,

RS data of physical properties, such as rainfall, temperature

and vegetation capture information related to agricultural pro-

ductivity, while distance to roads and cities reflects access to

markets and information. Similarly, monthly credit consump-

tion on mobile phones and the proportion of people in an

area using mobile phones indicate household access to finan-

cial resources, while movements of mobile phones and the

structure and geographical reach of the calling networks

of individuals may be correlated with remittance flows and

economic opportunities [39–41].

RS and CDR data are generated at different spatial scales,

which further complement each other. The CDR indicators

used in this study are derived from data aggregated at the

level of the physical cell towers to preserve the privacy of

individual subscribers. Thus, the spatial resolution of these

data is determined by tower coverage, which is larger in

rural areas and fine-scaled in urban areas. By contrast, RS

data can be relatively coarse in urban areas and only capture

physical properties of the land. As RS and CDR data are con-

tinually collected, the ability to produce accurate maps using

these data types offers the promise of ongoing subnational

monitoring required by the SDGs.

Here,weuse overlapping sources ofRS,CDRand traditional

survey-based data from Bangladesh to provide the first sys-

tematic evaluation of the extent to which different sources of

input data can accurately estimate three different measures of

poverty. To date, the predictive power in integrating these data

sources, and their ability to estimate different measures of

poverty, has not been evaluated. We use hierarchical Bayesian

geostatistical models (BGMs) to construct highly granular

maps of poverty for three commonly used indicators of

living standards: the Demographic and Health Surveys

(DHS) Wealth Index (WI); an indicator of household expendi-

tures (Progress out of Poverty Index, PPI) [42] and reported

household monetary income. We additionally compare our

results with previous poverty estimates for Bangladesh at

coarser and finer resolutions.

2. Material and methods
2.1. Spatial scale and data processing
All data used in this study were processed to ensure that projec-

tions, resolutions and extents matched. The spatial scale of

analysis was based on approximating the mobile tower coverage

areas using Voronoi tessellation [43] and models were built on

the scale of the Voronoi polygons (figure 1). This allowed us to

maintain the fine spatial detail in mobile phone data within

urban areas, as Voronoi polygon size, and corresponding spatial

detail, varies greatly from urban to rural areas (minimum 60 m,
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maximum 5 km) as shown in the figure. All datasets were then

summarized to spatially align with these polygons. In practice,

each polygon was assigned RS and CDR values representing

the mean, sum or mode of the corresponding data. The survey

data are matched to the Voronois based on the GPS located

lat/long of PPI data, the lat/long representing the centroid of

each DHS cluster, and the home tower of each income survey

respondent. Where multiple points from the same output

(WI, PPI and income) fell within the same polygon, we used

the mean aggregated value.

2.2. Poverty data
We used three geographically referenced datasets representing

asset, consumption and income-based measures of wellbeing

in Bangladesh (see the electronic supplementary material,

figure S1 and section A.1). These data were obtained from

three sources: the 2011 Bangladesh DHS, the 2014 FII survey

[44] with data collected on the PPI (www.progressoutofpov

erty.org) and national household surveys conducted by Telenor

Group subsidiary Grameenphone (GP) between November

2013 and March 2014 collecting household income data.

The DHS WI is constructed by taking the first principal com-

ponent of a basket of household assets and housing characteristics

such as floor type and ceiling material, which explains the largest

percentage of the total variance, adjusting for differences in urban

and rural strata [45]. A final composite combined score is then

used as a WI whereby each household is assigned its correspon-

dent quintile in the distribution and each individual belonging to

the same household shares the same WI score. A higher score

implies higher socioeconomic status (range¼ 21.45 to 3.5). Here,

we used aggregated average WI scores per primary sampling

unit (PSU) for 600 PSUs (207 in urban areas and 393 in rural

areas) to estimate the mean WI of sampled populations residing

in each Voronoi polygon.

The PPI is a measurement tool built from the answers to 10

questions about a household’s characteristics and asset owner-

ship, scored to compute the likelihood the household is living

above or below a poverty line. In Bangladesh, these poverty score-

card questions were determined using data from the 2010

Household Income and Expenditure Survey (HIES) [42,46], and

used in a nationally representative survey of 6000 Bangladeshi

adults undertaken in 2014 [44]. Together with basic demographics

and access to financial services information, the 10 questions

190
km

N

3
km

Figure 1. Spatial structure of Voronoi polygons based on the configuration of mobile phone towers in Bangladesh. The zoom window shows the spatial detail of
Dhaka.
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needed to construct the PPI were collected. These data were used

to assign a poverty measure to each individual interviewed: the

likelihood they have per capita expenditure above or below a pov-

erty line. Here, we estimate the mean likelihood (range¼ 12.3–

99.7%) of populations residing in each Voronoi polygon to be

below the $2.50 a day poverty line.

Income data were obtained from two independent, sequential

household surveys run by GP. For each survey, face-to-face

interviews were conducted with 90 000 individuals, and their

corresponding household income was collected, together with

basic demographic information for each survey participant

(e.g. gender, age, profession, education) and phone usage. Respon-

dents were directly asked about income and were requested

to place themselves within pre-set income bins. Among GP

subscribers, CDRs were successfully linked to phone numbers

for 76 000 participants. Here we converted income bins to USD

(range ¼ 0–1285$) and modelled the average USD for each

Voronoi polygon.

2.3. CDR and RS data
CDR features were generated from four months of mobile phone

metadata collected between November 2013 and March 2014. GP

subscribers consented to the use of their data for the analysis. GP,

the largest mobile network operator in Bangladesh, had 48

million customers at the time of the analysis, with a network cov-

ering 99% of the population and 90% of the land area [47]. CDR

features range from metrics such as basic phone usage, top-up

patterns, and social network to metrics of user mobility and

handset usage. These features are easily made available in data

warehouses and do not rely on complex algorithms. They

include various parameters of the corresponding distributions

such as weekly or monthly median, mean and variance (see

the electronic supplementary material).

We further identified, assembled and processed 25 raster and

vector datasets into a set of RS covariates for the whole of Ban-

gladesh at a 1 km spatial resolution. These data were obtained

from existing sources and produced ad hoc for this study to

include environmental and physical metrics likely to be associ-

ated with human welfare [31,33,48–50] such as vegetation

indices, night-time lights, climatic conditions, and distance

to roads or major urban areas. A full summary of assembled

covariates is provided in the electronic supplementary material.

2.4. Covariate selection
Prior to statistical analyses, all CDR and RS covariate data were

log transformed for normality. Bivariate Pearson’s correlations

were computed for each pair of covariates to assess multicolli-

nearity, and for high correlations (r . 0.70), we eliminated

covariates that were less generalizable outside Bangladesh.

For example, population data are widely available (e.g. www.

worldpop.org.uk/) but births data may not be; similarly,

volumes of calls could be computed and compared across

countries, but charges may be country-specific.

To identify the set of predictors most suitable for modelling

the WI, PPI, and income data, we employed a model selection

stage as is common in statistical modelling [51]. For this we

used non-spatial generalized linear models (glms), implemented

via the R glmulti package [52,53], to build every possible non-

redundant model for every combination of covariates. Models

were built on a randomly selected 80% of the data to guard

against overfitting. Models were chosen using Akaike’s infor-

mation criterion (AIC), which ranks models based on goodness

of fit and complexity, while penalizing deviance [52]. A full

IC-based approach such as this allows for multi-model inference.

Where multiple glms had near-identical AIC values, we selected

the model with the fewest number of covariates. For the CDR data

only, we used forward and backward stepwise selection ( p ¼ 0.05)

prior to model selection to reduce the initial CDR inputs from 150

to 30 or less. The covariate selection process was completed for all

three poverty measures for national, urban and rural strata, and

using RS-only, CDR-only and CDR–RS datasets (27 resulting

models). This allowed us to explore differences in factors related

to urban and rural poverty, aswell as to explicitly compare the abil-

ity of RS-only, CDR-only and CDR–RS datasets to predict poverty

measures. The resulting models were then used in the hierarchical

Bayesian geostatistical approach (see the electronic supplementary

material, tables S2a–c).

2.5. Prediction mapping
Using the models selected by the previous step, we employed

hierarchical Bayesian geostatistical models (BGMs) to predict

the three poverty metrics at unsampled locations across the

population. We chose BGMs as they offer several advantages

for addressing the limitations and constraints associated with

modelling geolocated survey data. These include straight-

forwardly imputing missing data, allowing for the specification

of prior distributions in model parameters and spatial covari-

ance, and estimating uncertainty in the predictions as a

distribution around each estimate [54,55].

Additionally, we needed to account for spatial autocorrelation

in the data as they are aligned to the tower locations, which are

clustered across varying spatial scales (described in §2.1 and

figure 1). BGMs can achieve this through incorporating a spatially

varying random effect. Here, the Voronoi polygons themselves

form the neighbourhood structure for this spatial random effect,

and neighbours are defined within a scaled precision matrix [56].

The matrix represents the spatially explicit processes that may

affect poverty estimates. It is passed through a graph function

in the model which assumes the neighbour relations are connec-

ted [57], that is all adjacent polygons share a boundary. This

function accounts for the spatial covariance in the data by allowing

observations to have decreasing effects on predictions that are

further away.

Here, all BGMs were implemented using integrated nested

Laplace approximations (INLA) [58], which uses an approxi-

mation for inference and avoids the computational demands,

convergence issues and mixing problems sometimes encountered

byMCMCalgorithms [59]. Themodel is fit usingR-INLA,with the

Besagmodel for spatial effects specified inside the function [60,61].

In the Besag model, Gaussian Markov random fields (GMRFs) are

used as priors to model spatial dependency structures and unob-

served effects. GMRFs penalize local deviation from a constant

level based on the precision parameter t, where the hyperpriors

are loggamma distributed [56]. The hyperprior distribution

governs the smoothness of the field used to estimate spatial auto-

correlation [56]. The spatial random vector x ¼ (x1, . . . ,xn) is thus
defined as

xijxi,i = j,t � N 1

ni

X
i�j

xj,
1

nit

� �
,

where ni is the number of neighbours of node i, i � j indicates that
the two nodes i and j are neighbours. The precision parameter t is

represented as

u1 ¼ log t,

where the prior is defined on u1 [60]. The geostatistical models

defined for the WI, PPI and income data were applied to produce

predictions of the each poverty metric for each Voronoi polygon as

a posterior distribution with complete modelled uncertainty

around estimates. The posterior mean and standard deviation for

each polygon were then used to generate prediction maps with

associated uncertainty (figure 2 and electronic supplementary

material, figures S2–S6). Model performance was based on out-

of-sample validation statistics calculated on a 20% test subset of

data. Pearson product-moment correlation coefficient (r) (or
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Spearman’s rho (r) for n, 100), root-mean-square-error (RMSE),

mean absolute error (MAE) and the coefficient of determination

(r2) were calculated for all BGMs. Finally, because glms do not

incorporate prior information for model parameters, we ran each

model through INLA while excluding the random spatial effect

to obtain non-spatial Bayesian estimates and compare model fit

and performance due to the explicit spatial process.

3. Results
We find models employing a combination of CDR and RS data

generally provide an advantage over models based on either

data source alone. However, RS-only and some CDR-only

models performed nearly as well (table 1).While the combined

CDR–RS model performed well in both urban (r2 ¼ 0.78) and

rural (r2 ¼ 0.66) areas, and at the national level (r2 ¼ 0.76), the

performance of RS-only and CDR-only models was more

context-dependent. For example, PPI and income models did

not improve predictions in urban areas, but in rural areas

the RS-only models performed nearly as well for both indi-

cators. The fine spatial granularity of the resultant poverty

estimates can be shown in figure 2, which shows the predicted

distribution of poverty for all three measures. Spatially, the

models exhibit higher uncertainty where fewer data are

available, such as the peninsular areas surroundingChittagong

in the southeast where mobile towers are sparse. We also

find that explicitly modelling the spatial covariance in the

data was critically important. This resulted in improved pre-

dictions, lower error and better measures of fit based on

cross-validation and the deviance information criteria (DIC),

a hierarchical modelling generalization of the AIC [62]

(electronic supplementary material, tables S3 and S4).

Separating estimation by urban and rural regions

further highlights the importance of different data in different

contexts (electronic supplementary material, tables S2a–c).
Night-time lights, transport time to the closest urban settle-

ment, and elevation were important nationally and in rural

models; climate variables were also important in rural areas.

Distances to roads and waterways were significant in urban

and rural strata. In general, the addition of CDR data did not

change the selection of RS covariates at any level. Top-up fea-

tures derived from recharge amounts and tower averages

DHS Wealth Index

0.1
2.2

–1.2
>75%
>45%

likelihood of being below $2.50 per day income (USD)

>90%

standard deviation standard deviationstandard deviation

5.0
3.9

7.7
10.6
0

34.8
0.25
0

0.6

205
443

–68.3

(a) (b)

(d) (e) ( f )

(c)

Figure 2. National level prediction maps for mean WI (a) with uncertainty (d ); mean probability of households being below $2.50/day (b) with uncertainty (e); and
mean USD income (c) with uncertainty ( f ). Maps were generated using call detail record features, remote sensing data and Bayesian geostatistical models. The maps
show the posterior mean and standard deviation from CDR–RS models for the WI and income data (a,c), and the RS model for the PPI (b). Red indicates poorer
areas in prediction maps, and higher error in uncertainty maps.
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were significant in every model, affirming their importance in

poverty work. People predicted to be poorer top-up their

phones more frequently in small amounts. Per cent nocturnal

calls, and count and duration of SMS traffic were signifi-

cant nationally. Mobility and social network features were

important in all three strata. In urban areas, SMS traffic

was important, whereas multimedia messaging and video

attributes were key in rural areas.

Models were most successful at reconstructing the WI

to model poverty (r2 ¼ 0.76); consumption-based and

income-based poverty proved more elusive. WI models

have better fit, lower error and higher explained variance

based on out-of-sample validation (figure 3). Combined

CDR–RS data produced the best WI models and

lowest error (r2 (CDR–RS) ¼ 0.76, r2 (RS) ¼ 0.74, r2 (CDR) ¼ 0.64;

RMSE (CDR–RS) ¼ 0.394, RMSE (RS) ¼ 0.413, RMSE (CDR) ¼
0.483). However, for the PPI models, the best model predicting

the probability of falling below $2.50/day was the RS-only

model (figure 2b,e, r2 (RS) ¼ 0.32; RMSE (RS) ¼ 57.439). The

model discerns many urban areas but also predicts areas

with very low poverty likelihood and high uncertainty outside

urban areas, especially around Sylhet in the northeast. Income

predictions (figure 2c,f ) show greater variation across the

country, and the best national model was for combined

CDR–RS data (r2 (CDR–RS) ¼ 0.27, RMSE (CDR–RS) ¼ 105.465).

The resulting predictions line up well with existing

SAE estimates for Bangladesh, and with high-resolution

maps of slum areas in Dhaka. The urban CDR–

RS model has the highest explained variance for any model

(r2 (CDR–RS_urb) ¼ 0.78) and the urban CDR-only model out-

performs the national CDR-only model (r2 (CDR_urb) ¼ 0.70).

Precision and accuracy are slightly lower, but the improved

correlation highlights the advantage of using CDRs within

a diverse urban population. To explore this further, we com-

pared our WI predictions against a spatially explicit dataset

of slum areas in Dhaka [63] (figure 4). We find the mean pre-

dicted WI of slum and non-slum areas to be significantly

different, t615 ¼ 217.2, p , 0.001, predicting slum areas to

be poorer than non-slum areas.

Table 1. Cross-validation statistics based on a random 20% test subset of
data for all Bayesian geostatistical models.

poverty metric model r2 RMSE

whole country

DHS WI CDR–RS 0.76 0.394

CDR 0.64 0.483

RS 0.74 0.413

PPI CDR–RS 0.25 57.907

CDR 0.23 58.562

RS 0.32 57.439

income CDR–RS 0.27 105.465

CDR 0.24 107.155

RS 0.22 108.682

urban

DHS WI CDR–RS 0.78 0.424

CDR 0.70 0.552

RS 0.71 0.433

PPI CDR–RS 0.00 60.128

CDR 0.03 60.935

RS 0.00 60.384

income CDR–RS 0.15 168.452

CDR 0.15 172.738

RS 0.05 176.705

rural

DHS WI CDR–RS 0.66 0.402

CDR 0.50 0.483

RS 0.62 0.427

PPI CDR–RS 0.18 57.397

CDR 0.17 57.991

RS 0.21 57.162

income CDR–RS 0.14 81.979

CDR 0.13 82.773

RS 0.23 76.527
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Figure 3. Out-of-sample observed versus predicted values for (a) DHS
WI using mobile phone and remote sensing data: r2 ¼ 0.76, n ¼ 117,
p, 0.001, RMSE ¼ 0.394; (b) progress out of Poverty Index using
remote sensing data: r2 ¼ 0.32, n ¼ 100, p , 0.001, RMSE ¼ 57.439;
and (c) income using mobile phone and remote sensing data: r2 ¼ 0.27,
n ¼ 1384, p, 0.001, RMSE ¼ 105.465.
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To compare our method to previous poverty estimates at

administrative level 3 (upazila), we used the same method-

ology at the lower spatial resolution, using the upazila

boundaries to form the random spatial effect in the model,

and covariates from the best national level model for each pov-

erty measure. We find strong correlations (r ¼ 20.91 and

20.86 for the WI; 0.99 and 0.97 for the PPI; and 20.96 and

20.94 for income, respectively, p, 0.001 for all models)

between our upazila predictions and earlier estimates of pov-

erty derived from SAE techniques based on data from the

2010 Household Income and Expenditure (HIES) survey and

2011 census [64] (figure 5). The r-values reported for WI and

income are negative at administrative level 3 because as the

proportion of people below the poverty line as estimated by

Ahmed et al. decreases, the WI value and income in USD of

the sampled population increases. That is, people who are

wealthier as estimated by the WI and income data are also

less likely to live below the poverty line according to earlier

estimates. The geostatistical method presented here thus accu-

rately maps heterogeneities at small spatial scales while

correlating well with earlier coarser estimates. All remaining

WI, PPI and income prediction maps are provided in the

electronic supplementary material.

4. Discussion
This work represents the first attempt to build predictive maps

of poverty using a combination of CDR and RS data. The

results demonstrate that CDR-only and RS-only models per-

form comparably in their ability to map poverty indicators,

and that integrating these data sources provides improvement

in predictive power and lower error. These results are promis-

ing as the CDR data here produce accurate, high-resolution

estimates in urban areas not possible using RS data alone. As

such, CDRs potentially allow for estimation of wealth at

much finer granularity—including the neighbourhood or

even the household or individual—than the current generation

of RS technologies [36]. While CDRs are proprietary data, they

are increasingly used in research, and have formed the basis for

hundreds of published articles over the past few years [65].

They also provide significant advantages in temporal granular-

ity: CDRs update in real-time versus RS data, which update far

less frequently. Although in this study we have not used

dynamic validation data, it is a clear future application for

CDRs in real-time to better comprehend the dynamic nature

of poverty.

The higher accuracy of predictions for the asset-based

WI over other poverty metrics is presumably due to several

factors. The predictive power for assets has been shown

to be higher than for consumption [35] in addition to the

aforementioned issues of survey question wording and

response options [20,23]. Further, income and consumption

can vary hugely by day, week, and can be related to changes

in household size, job loss or gain, piecework or harvest out-

comes. Assets and housing characteristics are generally

considered more stable [20–22]. For the datasets used in

this study, WI data are based on clusters of households,

and this sampling strategy provides more robust estimates

and less variability than the individually based PPI and

income data. Greater success in predicting the WI is also

presumably due to the WI measuring a wider range of

living standard across the population. That is, the full range

of distribution from poorest to wealthiest in the population

is represented in these data. Alternatively, by considering a

streamlined 10 questions, the PPI is meant to identify

the poorest individuals in a population. Similarly, in the

income data, there were very few respondents in higher

income categories.

The higher error associated with CDR-only models is not

surprising considering the noise inherent in these data. CDR

features are derived from daily and weekly measurements

aggregated over short temporal intervals, while RS covariates

are generally comprised of long-term averages or compara-

tively less dynamic measures of location and access such as

roads or proximity to urban centres. Bearing this in mind,

slum areas non-slum urban areas
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Figure 4. Comparison of predicted mean DHS WI values between slum and non-slum areas in Dhaka as delineated by Gruebner et al. [63] t615 ¼217.2, p , 0.001.
The 95% confidence interval using Student’s t-distribution with 615 degrees of freedom is (20.48, 20.38).
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we find CDR data useful for estimating poverty in the

absence of ancillary datasets.

Our findings provide further support for correlations

between socio-economic measures and night-time light inten-

sity [36,48,49], access to roads and cities [50,66], entropy of

contacts [37,40] andmobility features [39]. The universal cover-

age of cell towers across Bangladeshmade it possible to predict

poverty at high-resolution in both urban and rural areas.

Within urban areas, the high correlation with maps of slums

in Dhaka suggests we are capturing the poorest populations.

Even if the poorest populations are not generating call data

[36], and thus not included in the CDRs, we still see a clear

difference in WI predictions between slum and non-slum

areas using tower level CDR aggregates. This finding extends

recent work which predicted wealth and poverty at the district

level, but were unable to verify predictions at finer scales [36].

UsingCDRs andRSdatawithin BGMs to produce accurate,

high-resolution poverty maps in LMICs offers a way to comp-

lement census-based methods and provide more regular

updates. Regularly updated poverty estimates are necessary

to enable subnational monitoring of the SDGs during intercen-

sal years and are critical to ensure mobilization of resources to

end poverty in all its dimensions as set out in SDG 1. Poverty

estimates are time sensitive and become obsolete when factors

such as migration rates, infrastructure, and market integration

change [67]. Furthermore, the methods presented here offer a

workaround to estimating poverty with household survey

data, which can be time consuming and expensive to obtain.

To end poverty in all its dimensions, it is likely that

methods that exploit information from, and correlations

between, many different data sources will provide the great-

est benefit in understanding the distribution of human living

conditions. To leverage data from differing sample sizes, tem-

poral and spatial scales, BGMs provide such a rigorous

framework. This study further provides an example of how

aggregated CDR data can be processed in such a way that

detailed maps can be created without revealing sensitive

user and commercial information. As insights from CDRs

and other remote sensing data become more widely avail-

able, analysing these data at regular intervals could allow

for dynamic poverty mapping and provide the means for

operationally monitoring poverty. The combination of spatial

detail and frequent, repeated measurements may distinguish

the transitorily poor from the chronically poor, and allow for

monitoring economic shocks [68]. This offers the potential for

a fuller characterization of the spatial distribution of poverty

and provides the foundation for evidence-based strategies to

eradicate poverty. Researchers would do well to use the

additional information and granularity afforded by CDR

data with matched individual-based consumption data to

further infer novel and useful information from mobile data.
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Figure 5. Comparison of the proportion of people falling below upper
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and (a) predicted mean WI using mobile phone and remote sensing data,
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A. Input data 
A.1. Geolocated survey data 
The growing number of georeferenced household survey data from low and middle-income 
countries allows us to explore poverty metrics and comparisons between them while explicitly 
considering their geographic distribution. In Bangladesh, we utilised three geographically 
referenced datasets representing asset, consumption, and income-based measures of wellbeing 
(Figure S1).  

A.1.1. Demographic and Health Survey Wealth Index 
The Demographic and Health Surveys (DHS) were designed primarily to collect household data on 
marriage, fertility, family planning, reproductive and child health, and HIV/AIDS in almost all lower 
income countries1. Through the assembling of indicators correlated with a household’s economic 
status (e.g. ownership of television, telephone, radio as well as variables describing type of floor 
and ceiling material and other facilities), a wealth index is calculated for each country at each time2 
based on the idea that the possession of assets and access to services and amenities are related 
to the relative economic position of the household in the country3. By its construction, the wealth 
index is a relative measure of wealth within each survey; however, a new methodology has been 
developed in order to make it comparable across countries and through time4. Moreover, recent 
adjustments have been made to the methods of constructing the wealth index to overcome 
criticism that the original score was not adequately capturing the differences between urban and 
rural poverty or identifying the poorest of the poor3. 

The wealth index is constructed using a principal component analysis (PCA), which includes a 
long list of assets owned by households as well as other indicators. (The complete list of indicators 
included in the PCAs for each survey, as well as PCA analysis and results can be found at 
http://dhsprogram.com/topics/wealth-index/Wealth-Index-Construction.cfm). The first factor from 
the PCA, capturing the largest percentage of the variance within the dataset, is derived adjusting 
for urban and rural strata3,5. In practice, a national index and two area-specific indexes 
representing urban and rural strata are individually constructed using sets of assets/services 
specific to each in order to better capture differences between urban and rural areas, and compare 
the wealth index between them3. Subsequently, applying regression techniques described in 
Rutstein3 and Rutstein6, the three indexes are combined into a single wealth distribution and a 
composite national index is derived. This method ensures comparability between urban and rural 
areas. 

Here we used the 2011 Bangladesh DHS7 (Figure S1A), a nationally representative survey based 
on a two-stage stratified sample of households, where 600 enumeration areas (EA or cluster) were 
first selected with probability proportional to the EA size, (207 clusters in urban areas and 393 in 
rural areas). This first stage of selection provided a listing of households for the second stage, 
where a systematic sample of 30 households on average was selected per cluster, to create 
statistically reliable estimates of key demographic and health variables7,8. In recent DHS surveys 
where HIV/AIDS data are not collected, geolocations for each cluster are available. The survey 
cluster coordinates represent an estimated centre of the cluster and are collected in the field 
through GPS receivers. To maintain respondents’ confidentiality, GPS positions for all clusters are 
randomly displaced by a maximum of five kilometres for rural clusters and a maximum of two 
kilometres for urban clusters9–11. 
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 A.1.2. Progress out of Poverty Index 
The Progress out of Poverty Index (PPI) (Figure S1B) was designed to be easily collected, simple 
and cost-effective to implement and verify12, while applying a rigorous methodology through 
selecting assets based on their statistical relationship with poverty12,13. In the case of Bangladesh, 
an easy-to-use poverty scorecard13 of 10 questions was created in March 2013, based on data 
from the Bangladesh 2010 Household Income and Expenditure Survey (HIES). The questions 
selected are aggregated into a score highly correlated with poverty status as measured by the 
HIES. The scores included in the scorecard are then translated into likelihoods that the household 
has per-capita expenditure above or below a given poverty line13. 

A nationally representative survey of all adults in Bangladesh was undertaken by InterMedia 
Financial Inclusion Insight Project (www.finclusion.org) in 2014 (wave 2), where 6,000 
Bangladeshi individuals aged 15 and above were interviewed14 and geolocations for each 
individual were included in the survey. In Bangladesh, InterMedia adopted a stratified sample 
strategy, whereby divisions and subdivisions were first identified and interviews within each 
subdivision were distributed in proportion to population size. In order to select the individuals to 
interview, households were first randomly selected using electoral rolls to randomly assign starting 
points in each selected subdivision. After having identified the starting point, subsequent 
households were selected using the right-hand rule, and the Kish Grid method was applied to 
select an individual respondent from each household14,15. 

 A.1.3. Market research household surveys and income data 
Two sequential large-scale market research household surveys were run by Telenor through its 
subsidiary, Grameenphone (GP), during 2 time periods between November and December 2013 
(N=82,834, of which 55.3% GP subscribers) and February and March 2014 (N=87,509, of which 
54.5% GP subscribers) (Figure S1C). The country was stratified in 226 sales territories by the 
phone company, and for every territory, an equal number of unions (in rural areas) and wards (in 
urban areas) were randomly selected. Four hundred households were surveyed in each territory, 
where a household was defined as a group of people sharing food from the same chula (fire/gas 
burner) or living under the same roof. Systematic sampling was then undertaken to select 
households by selecting every fourth household, starting from the selection of a random 
geographic point and direction within each ward or union. In the case of more than one household 
present in the complex or building, the fourth household was selected. In cases of non-response, 
the next household was then selected. Non-response rate was approximately 10% of households. 
Respondents within the household were selected via the Kish grid method15 among those who 
were eligible. Eligibility was defined as individuals with their own phone, between 15 and 65 years 
of age. If a phone was shared between family members, usually the male head of household was 
interviewed. When the selected person was not home, the surveyors returned multiple times to try 
to reach the selected person. A very low non-response rate (less than 1-2%) was detected among 
respondents. The surveys were undertaken during working hours. To avoid that too many 
housewives were interviewed, given that men are more likely away for work, a ceiling on the 
number of housewives who could participate was also established. Sampling weights were applied 
to ensure national representativeness and correct for population sizes in urban and rural areas. 
Data quality control mechanisms were implemented and undertaken by the company; however, 
some sources of error were detected in matching household locations to phone number 
(approximately 20% of the cases). 
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A.2. Mobile phone call detail records (CDRs) 
For the household income survey respondents described above, we collected 3-months of mobile 
phone metadata by subscriber consent. These metadata included call detail records (CDR) and 
top-up information, which were further processed into features. For each survey participant, 150 
features from seven different feature families were constructed (Table S1). Household income was 
then linked to these metadata, resulting in three months of phone usage, matched with household 
income for each survey respondent. To preserve user anonymity, the local operator removes all 
personally identifying information from the data before analysis. 

To be able to map poverty in other countries we focused on features that are easily reproducible, 
and easy to implement by local data warehouses. Most mobile operators generate similar 
features. CDR features range from metrics such as basic phone usage, top-up pattern, and social 
network to metrics of user mobility and handset usage. They include various parameters of the 
corresponding distributions such as weekly or monthly median, mean, and variance. In addition, 
we received pre-aggregated datasets of tower-level activity from 48,190,926 subscriber SIMs over 
a 4-month period. This includes monthly number of subscribers per home cell, where home cell 
corresponds to most frequent tower. These per-user features are not directly used, but further 
aggregated to the Voronoi polygons, and the aggregate features are used in covariate selection, 
model fitting, and prediction. 

At the time of data acquisition, the mobile phone operator had an approximate 42% market share, 
and was the largest provider of mobile telecommunication services in Bangladesh. Multi-SIM 
activity is common in Bangladesh, but we believe that this should not create a systematic bias in 
poverty estimates because the geographic coverage of the operator is so extensive. In order to 
comply with national laws and regulations of Bangladesh, and the privacy policy of the Telenor 
group, the following measures were implemented in order to preserve the privacy rights of 
Grameenphone customers:  

1) All customers are de-identified and only Telenor/Grameenphone employees have had 
access to any detailed CDR-/top-up data; 
2) The processing of detailed CDR/top-up data resulted in aggregations of the data on a 
tower-level granularity; the tower-level aggregation makes re-identification impossible. 

Hence, the resulting aggregated dataset is truly anonymous and involves no personal data. 

Compared with other countries of comparable income levels, Bangladesh has a high mobile phone 
penetration, which includes rural areas. Fifty percent of the population above the age of fifteen has 
a mobile subscription16. The proportion of households with at least one mobile phone is increasing 
rapidly; between 2011 and 2014, household ownership across the whole of Bangladesh rose from 
78% to 89%, with much of that growth concentrated among rural households17. The CDR data 
used in this study are available upon request for the replication of results only by contacting the 
corresponding author. 

  



Mapping poverty using mobile phone and satellite data 
J.E. Steele, P. Sundsoy, C. Pezzulo, V. Alegana, T. Bird, J. Blumenstock, J. Bjelland, K. Engo-Monsen, YA de 
Montjoye, A. Iqbal, K. Hadiuzzaman, X. Lu, E. Wetter, A.J. Tatem, and L. Bengtsson 
 

6 
 

A.3. Remote Sensing-GIS covariates 
Ancillary data layers used as remote sensing-GIS (hereafter RS) covariates were identified, 
assembled, and processed for the whole of Bangladesh at a 1-km spatial resolution. These data 
are described in Table S1 and include 25 raster and vector datasets obtained from existing 
sources or produced ad hoc for this study to include environmental and physical metrics likely to 
be associated with human welfare18–22. These data differed in spatial and temporal resolution, 
type, accuracy, and coverage. In order to align all data for model fitting and prediction, the 
following steps were taken: 

1) Bangladesh was rasterized at a resolution of 30-arcsec (0.00833333 degree, 
corresponding to approximately 1-km at the equator); 

2) Vector datasets were rasterized at a resolution of 30-arcsec; 
3) When necessary, raster datasets were resampled to a resolution of 30-arcsec using an 

interpolation technique appropriate for the resolution and type of the original dataset; 
4) All datasets were spatially aligned to make every pixel representing the same location 

coincident and match the rasterized study area. 

Furthermore, for ad hoc datasets such as distance to roads and waterways, we used a customized 
Azimuthal Equidistant projection centred in the middle of the study area and clipped to a buffer 
extending 100 metres beyond its boundary to project the input data. This buffered area was 
rasterized to a resolution of approximately 927 metres, corresponding to 30-arcsec at the centre of 
the study area where distortion is smallest. Euclidean distance was calculated for each distance-to 
covariate within the customized projection. The resultant layers were then projected back to GCS 
WGS84, and made coincident with the rasterized study area. All datasets representing categorical 
variables (e.g. protected areas, global urban extent, etc.) were projected, rasterized, and/or 
resampled to 1-km resolution, spatially aligned to the rasterized study area, and converted into 
binary covariates, representing the presence or absence of a given feature. This resulted in 
twenty-five 1-km raster datasets, which were used to extract the mean, mode, or sum of each 
covariate for each Voronoi polygon, dependent on the type of dataset. These values were used for 
covariate selection, model fitting, and prediction. 

A.3.1 GPS data displacement 
In addition to the aforementioned processing, additional steps were undertaken to appropriately 
account for the displacement inherent in DHS data. When these data are collected, the latitude 
and longitude of the centre of each DHS cluster (representing numerous households) is collected 
in the field with a GPS receiver. To maintain respondents’ confidentiality, GPS latitude/longitude 
positions for all DHS clusters are randomly displaced by a maximum of five kilometres for rural 
clusters and two kilometres for urban clusters. The displacement is restricted so the points stay 
within the country, within the DHS survey region, and within the second administrative level9–11. 

In order to account for the displacement in our analyses, we created buffers around each cluster 
centroid of 2 km and 5 km for urban and rural clusters, respectively, and subsequently extracted 
the RS covariate data for each buffer zone. For continuous covariates, the minimum, maximum, 
and mean values were calculated and extracted. For categorical covariates, the modal value was 
calculated and extracted. 
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B. Statistical analyses and prediction mapping 
B.1. Covariate selection via generalized linear models 
Stratifying models into urban and rural components produced the best fit models as measured by 
AIC. Top-up data produced the most important CDR feature family for all poverty measures and 
models. Within this feature family, significant covariates included recharge amounts and 
frequencies per tower, spending speeds and time between refills, and fractions of the lowest and 
highest available top-up amounts. Advanced phone usage was also an important CDR feature 
family, especially for PPI and income models. Sum, revenue, count, and volume of ingoing and 
outgoing multimedia messaging, Internet usage, and videos were prominent. Basic phone usage 
covariates measuring incoming and outgoing text counts were important for every model save for 
rural WI models. Mobility covariates including number and entropy of places and radius of gyration 
were also significant features in all three strata and poverty measures, as were social network 
features such as number and entropy of contacts. 

Nighttime lights and covariates representing access - especially transport time to closest 
urban settlement and distance to roads - were the most important RS covariates for all three 
poverty measures and strata. Vegetation productivity, as measured by the Enhanced Vegetation 
Index (EVI), and elevation were also prominent RS features in all three strata, whereas climate 
variables featured prominently in rural models. 

B.2. Prediction mapping via Bayesian geostatistical models 
Using the models selected and described in Tables S2A-C, we employed hierarchical Bayesian 
geostatistical models (BGMs) for prediction as described in our manuscript. All prediction maps 
not highlighted in our manuscript can be found in Figures S2-S6. Model performance was based 
on out-of-sample validation statistics calculated on a 20% test subset of poverty data input points 
(see Table 1 in manuscript). The performance of models built with CDR-only or RS-only data 
varied based on poverty measure and strata. RS-only models were more successful at predicting 
the WI for all three strata (r2= 0.74, 0.71, 0.72 for national, urban, and rural models), as compared 
to CDR-only models. However, the CDR-only models performed nearly as well (r2= 0.64, 0.70, 
0.50 for national, urban, and rural models), and all urban WI models including CDRs outperformed 
national level models. The urban CDR-RS model exhibits the highest explained variance for any 
model (r2=0.78), and the urban CDR-only model outperforms the national CDR-only model 
(r2=0.70 versus r2=0.64, respectively). For PPI and income measures of poverty, CDR data 
produced the best models in urban areas, whereas RS data produced the best models in rural 
areas. This highlights the compatibility of these two datasets for predicting different measures of 
poverty at different scales, as the best estimates and lowest error corresponded to the data with 
fine-scale spatial heterogeneity (CDRs in urban areas; RS data in rural areas). To that end, 
national poverty models generally performed best when utilising both CDRs and RS data. 

To compare full model performance against a spatial interpolation model, we modelled the training 
data for all three poverty indicators using only the spatial random effect in the INLA model (see 
section 2.5 in manuscript). These results are shown in Table S3. We compared out-of-sample r2 
and RMSE values against results from the full models (see Table 1 in manuscript). The results 
show a spatial pattern in the WI data as the model built with only a spatial random effect yields an 
r2=0.49, RMSE=0.578. When compared to the full model, the addition of covariate data increases 
the r2 to 0.76, and the RMSE decreases to 0.394. Similarly for income, the data do show a slight 
spatial pattern, but the addition of covariate data to the model increases the predictive power and 
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decreases the error. For the PPI, the covariates do not show a strong influence in the modelling 
results, and the model was driven by the spatial process, which suggests there’s an underlying 
spatial covariate that we’re not capturing in the model that could explain the data. 

Model fit based on the spatial effect can also be considered using DIC, a hierarchical modelling 
generalization of the AIC and BIC, which can be useful in Bayesian modelling comparison. The 
BIC allows for comparing models using criterion based on the trade-off between the fit of the data 
to the model and the corresponding complexity of the model. Models with smaller DIC values are 
preferred over models with larger DIC values as the measure favours better fit and fewer 
parameters23. These results are shown in Table S4. For nearly every model with CDR data, DIC is 
greatly improved by accounting for the spatial covariance in the data structure. However, the 
income models see slight or no improvement from including the random spatial effect, likely due to 
the fact that they include and are thus penalised for many covariates. 
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Table S3. Comparison of r2 and RMSE for INLA models run with only a structured spatial 
random effect (Spatial interpolation) and the full model (Spatial model + covariates). 

Poverty Metric 
Spatial 

interpolation 
Spatial model + covariates 

(from Table 1) 
    R2, RMSE R2, RMSE 

DHS WI  0.49, 0.578 0.76, 0.394 
PPI  0.31, 58.727 0.32, 57.439 

Income  0.10, 123.963 0.27, 105.465 
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Table S4. Comparison of deviance information criterion (DIC) model fit for Bayesian 
geostatistical models run with a structured spatial random effect (Spatial model) and 
without (Non-spatial model). 

WHOLE COUNTRY 
Poverty Metric Model Spatial model Non-spatial model 
    DIC DIC 

DHS WI 
CDR - 
RS 463.7 574.6 
CDR 272.5 862.2 
RS 465.7 581.5 

PPI 
CDR - 
RS 1361.3 1439.8 
CDR 1349.7 1473.1 
RS 1358.6 1421.4 

Income 
CDR - 
RS 66142.5 66143.0 
CDR 66314.6 66314.3 
RS 66482.6 66480.4 

URBAN 
Poverty Metric Model Spatial model Non-spatial model 
    DIC DIC 

DHS WI 
CDR - 
RS 449.4 576.0 
CDR 239.2 873.2 
RS 454.1 582.0 

PPI 
CDR - 
RS 1371.6 1432.3 
CDR 1365.7 1470.1 
RS 1358.3 1417.7 

Income 
CDR - 
RS 66180.6 66179.8 
CDR 66363.3 66365.7 
RS 66693.0 66690.3 

RURAL 
Poverty Metric Model Spatial model Non-spatial model 
    DIC DIC 

DHS WI 
CDR - 
RS 458.0 574.5 
CDR 63.1 873.5 
RS 451.5 595.5 

PPI 
CDR - 
RS 1376.9 1444.6 
CDR 1342.9 1475.9 
RS 1357.7 1419.4 

Income 
CDR - 
RS 66262.5 66260.6 
CDR 66395.0 66392.1 

  RS 65548.9 66503.8 
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Figure S1. Survey sample locations for DHS wealth index (A), Progress out of Poverty Index (B), 
and income survey respondents (C). 
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Figure S2. National level prediction maps for mean wealth index (A) with uncertainty (D); mean 
probability of households being below $2.50/day (B) with uncertainty (E); and mean USD income 
(C) with uncertainty (F). Maps were generated using call detail record features only and Bayesian
geostatistical models. Red indicates poorer areas in prediction maps, and higher error in
uncertainty maps.
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Figure S3. National level prediction maps for mean wealth index (A) with uncertainty (D); mean 
probability of households being below $2.50/day (B) with uncertainty (E); and mean USD income 
(C) with uncertainty (F). Wealth index and income maps were generated using remote sensing
data only; PPI maps were generated using call detail record features and remote sensing data. All
maps were generated using Bayesian geostatistical models. Red indicates poorer areas in
prediction maps, and higher error in uncertainty maps.
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Figure S4. Stratified urban/rural prediction maps for mean wealth index (A) with uncertainty (D); 
mean probability of households being below $2.50/day (B) with uncertainty (E); and mean USD 
income (C) with uncertainty (F). Maps were generated using call detail record features only and 
Bayesian geostatistical models. Red indicates poorer areas in prediction maps, and higher error in 
uncertainty maps. 
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Figure S5. Stratified urban/rural prediction maps for mean wealth index (A) with uncertainty (D); 
mean probability of households being below $2.50/day (B) with uncertainty (E); and mean USD 
income (C) with uncertainty (F). Maps were generated using call detail record features, remote 
sensing data, and Bayesian geostatistical models. Red indicates poorer areas in prediction maps, 
and higher error in uncertainty maps. 
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Figure S . Stratified urban/rural prediction maps for mean wealth index (A) with uncertainty (D); 
mean probability of households being below $2.50/day (B) with uncertainty (E); and mean USD 
income (C) with uncertainty (F). Maps were generated using remote sensing data only and 
Bayesian geostatistical models. Red indicates poorer areas in prediction maps, and higher error in 
uncertainty maps. 
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Abstract Large-scale data from digital infrastructure, like mobile phone networks, provides
rich information on the behavior of millions of people in areas affected by climate stress. Using
anonymized data on mobility and calling behavior from 5.1 million Grameenphone users in
Barisal Division and Chittagong District, Bangladesh, we investigate the effect of Cyclone
Mahasen, which struck Barisal and Chittagong in May 2013. We characterize spatiotemporal
patterns and anomalies in calling frequency, mobile recharges, and population movements
before, during and after the cyclone. While it was originally anticipated that the analysis might
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detect mass evacuations and displacement from coastal areas in the weeks following the storm,
no evidence was found to suggest any permanent changes in population distributions. We
detect anomalous patterns of mobility both around the time of early warning messages and the
storm’s landfall, showing where and when mobility occurred as well as its characteristics. We
find that anomalous patterns of mobility and calling frequency correlate with rainfall intensity
(r = .75, p < 0.05) and use calling frequency to construct a spatiotemporal distribution of
cyclone impact as the storm moves across the affected region. Likewise, from mobile recharge
purchases we show the spatiotemporal patterns in people’s preparation for the storm in
vulnerable areas. In addition to demonstrating how anomaly detection can be useful for
modeling human adaptation to climate extremes, we also identify several promising avenues
for future improvement of disaster planning and response activities.

Keywords Climate change adaptation .Migration .Resilience .Mobile networkdata .Anomaly
detection . Disaster risk

1 Introduction

The increasingly robust evidence base in climate sciences relies on the measurement of normal
trends and analysis of deviations (Bindoff et al. 2013). Techniques for detecting anomalies have
produced key findings on changing atmospheric and surface temperature (Jones et al. 1999;
Mann et al. 1998), oceanic circulation (Hurrell 1995; Thompson and Wallace 1998), arctic
temperatures and ice cover (Serreze et al. 2000; Stroeve et al. 2007; Vinje 2001), intensity of
tropical rainfall and cyclones (Knutson et al. 2010; Trenberth 2011); and seasonal variability and
extremes (Seneviratne et al. 2012). Anomaly detection principles have also shown how earth’s
ecosystems (Lucht et al. 2002; Stenseth et al. 2002) and biota including agriculture (Lenoir et al.
2008) have responded to climate change. However, human behavior in response to disasters also
deviates from normal behavioral patterns. In this paper, we aim to use anomaly detection to
investigate behavioral responses in a human population exposed to an extreme weather event.

Vulnerable people in low- and middle-income countries respond to weather extremes
associated with climate change, such as tropical cyclones and flooding, with a variety of
behaviors that appear anomalous against a baseline (here termed Badaptations^) such as
moving animals to safety, harvesting crops early, reinforcing and repairing flood embank-
ments, and changing household spending behaviors. In more extreme cases, short-term
adaptive responses include evacuation and displacement. Weather extremes can, in the long-
term, undermine livelihoods, push people into poverty, and elicit an extraordinary adaptive
response in these circumstances: permanent migration (Black et al. 2011; Brouwer et al. 2007),
a subject of rich academic debate (summarized in (Black et al. 2013) featured centrally in 5th
Assessment of the IPCC (Adger et al. 2014; Olsson et al. 2014). Unfortunately, our ability to
detect anomalous human behaviors is not on par with our large-scale measurements of
biophysical systems at relevant temporal and spatial scales.

Climate science has seen rapid progress in the measurement, and prediction of changes and
extremes in biophysical systems in high resolution across geographic and temporal scales. To
understand the impacts of climate change on human society it is imperative tomeasure anomalous
behavioral responses as they coincide with hazards at the common spatiotemporal scales in which
they occur (Palmer and Smith 2014). This is especially crucial where people are dependent on
stable environmental conditions for livelihoods, and where both climate change and the burden of
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adaptation threaten human security and development (Adger et al. 2014; Field et al. 2014).
Methodologies that focus on large-scale spatial indicators of both human behavioral and envi-
ronmental change, and make use of temporally adjusted longitudinal data are required to establish
baselines and link short-term responses and long-term outcomes (Palmer and Smith 2014).

As of the end of 2014, mobile networks served a total of 3.6 billion unique mobile
subscribers, roughly half of the global population (GSMA Intelligence 2015). Mobile operator
data are updated in close to real-time and have a vast geographic reach. The data generated
from mobile operators enable measurement of some characteristics of social networks, migra-
tion, and patterns of household economic behavior at a previously unprecedented scale
(Bagrow et al. 2011; Palmer and Smith 2014; Zolli 2012). Operator data has been used during
relief operations after the Haiti 2010 earthquake (Bengtsson et al. 2011; Lu et al. 2012) and
cholera outbreaks (Bengtsson et al. 2015) and the Nepal 2015 earthquake (Wilson et al. 2016),
making them a very promising proxy indicator for measuring impacts of climate change, and
weather extremes. In Rwanda, retrospective analyses of network activity was used to estimate
the epicenter of an earthquake and to infer humanitarian needs in the weeks after the
earthquake (Kapoor et al. 2010). Likewise, Blumenstock and colleagues identified unusual
patterns of person-to-person transfers of airtime credits through social networks to identify a
geographical pattern of earthquake impact (Blumenstock et al. 2011). Anomaly detection
methods have previously been applied to mobile network data to identify unusual calling
patterns after floods (Pastor-Escuredo et al. 2014), and in the interest of improving the normal
operation of mobile networks (Karatepe and Zeydan 2014). They have been used for anomaly
detection for detecting and classifying social disturbances, like conflict and violence in data-
poor circumstances (Dobra et al. 2014; Young et al. 2014). One study showed the diffusion of
anomalous calling patterns through intimate social networks in the wake of a terrorist bombing
in Oslo (Sundsøy et al. 2012). Various studies have concluded that in the wake of disasters
anomaly detection could reduce the cost, increase timeliness and improve the geographic focus
of emergency response activities (Candia et al. 2008; Pawling et al. 2007).

The extreme South of coastal Bangladesh, with its low elevation and routine exposure to
intense tropical cyclones, exemplifies an area with high climate pressure and is a fitting
location to explore mobile network data before and after climate shocks. We searched for
anomalous patterns of phone usage that could provide insight into adaptive preparations and
responses (Martin et al. 2014; McGranahan et al. 2007; Penning-Rowsell et al. 2013), and
examined how spatial and temporal patterns in large sets of operator data from the
Grameenphone mobile network in Bangladesh around tropical cyclone Mahasen could inform
impact assessment and adaptation in cyclone affected areas. We investigated three hypotheses.
First, anomalous patterns of calling frequency represent the affected populations’ physical
contact with the storm in the most affected areas during landfall. Second, as communication is
an important tool during an environmental crisis, we hypothesized that anomalous mobile
recharges represent behaviors of people preparing for impacts in the most vulnerable areas.
Finally, we hypothesized that cyclones drive anomalous flows of users between towers, indicating
evacuation, displacement and migration.

2 Cyclone Mahasen

Cyclone Mahasen struck Bangladesh on 16 May 2013. Before landfall it moved northward
along the Bay of Bengal. Forecasts estimated a landfall in the heavily populated Chittagong
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District, and the government’s Comprehensive Disaster Management Programme concentrated
early warnings there. However, in the final hours of 15 May, the storm veered to the north,
making landfall over the rural Barisal Division, at approximately 3:00 a.m. on 16May (Fig. S1a).
During the course of 16 May, Mahasen moved eastward along the coast into Chittagong, and
northward into India, where rainfall and wind speed rapidly diminished (Gutro and Pierce 2013).

Mahasen was a relatively weak storm compared to earlier cyclones in Bangladesh, such as
Aila and Sidr (REACH Initiative 2013). While it affected an estimated 1.3 million people
(REACH Initiative 2013) and impacts on crops and homes were extensive, the death toll was
relatively small. Seventeen perished in the storm, mostly from falling trees, and unlike
previous storms, no fishermen were lost (Associated Press 2013). The minimal loss of life
was regarded as a major victory for the Comprehensive Disaster Management Programme’s
early warning system (UNDP 2013).

3 Cyclone impacts and population-level adaptation

3.1 Mobile phone data

We used a de-identified set of call detail records (CDRs) from 5.1 million Grameenphone users
collected between 1 April and 30 June of 2013 in the Barisal Division and Chittagong District
of Bangladesh. The dataset began six weeks before the landfall of Cyclone Mahasen
(16 May 2013) and continued for six weeks after landfall (1 April to 30 June 2013) (Fig. S1).
CDRs are compiled by network operators principally for the purposes of billing customers for
their use of the network. De-identified data entries include information on the time of the call,
the mobile phone tower used and the duration of call, and can thus be used to indicate the
geographical position and movements of users. To limit potential biases resulting from sub-
scriber churn, and new users entering the dataset due to impacts of the storm, we limited the
study to SIM cards that had placed at least one call before the cyclone landfall (16 May); and
also made at least one call in the last ten days of the data collection period (21–30 June).

Since Mahasen was a relatively weak cyclone, the performance of the Grameenphone
network remained virtually undisturbed during and after landfall, guaranteeing continuous
relay of CDR throughout the study period. An analysis of tower function anomalies appears in
the Supporting Information (S2), along with a general discussion on the Grameenphone
network, the dataset, and the representativeness of data for the general population (S1).

3.2 Calling frequency and rainfall measurements

During Bnormal^ circumstances, which we defined as the average calls per hour for any given
hour across the data set, regular daily and weekly cycles of calls were apparent (Fig. 1a). Users
concentrated phone usage in the daytime hours, with a spike occurring toward late evening. A
small shift in the temporal distribution of calls occurred on Fridays (the first day of the
weekend) when calls began later in the day. Increases in calling frequency coincided with
several events within the data set, most notably on 25 June, when a major religious festival,
Shab-e-Barat was celebrated. Likewise smaller increases coincided with the Bengali New Year
in early April and a series of protests in early May.

However in the early hours of Thursday 16 May 2013, as Mahasen made landfall across
Barisal, we observed a dramatic increase in call frequency relative to Bnormal,^whichwe defined
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as calls per hour compared with the same hour on all Thursdays in the dataset (Fig. 1a).
Deconstructing calling frequency among the more vulnerable coastal districts (Barguna, Bhola,
Patuakhali, Pirojpur), we saw calling volumes increase by at least seven times the average level
(Fig. 1b). In Barguna, calling frequency increased by a factor of 15. Throughout the evening and
early hours, a spatiotemporal pattern emerged in peak calling frequency. In Barguna and Pirojpur,
in the extreme south and west of Barisal, peaks occurred between 3:00 and 4:00 a.m., while in the
northern districts of Jhalokhati and Barisal, the peak occurred between 4:00 and 5:00 a.m. This
suggests that call frequency corresponded with the physical manifestations of the cyclone as it
moved over Barisal Division from the South West. One alternative explanation is that people
might call friends and relatives when a cyclone is approaching in order to communicate concerns
for wellbeing, encourage evacuation plans, and coordinate preparations. However, between 00:00
and 6:00 a.m. at the time Mahasen was making landfall in Barisal, in the areas where the cyclone
was predicted to make landfall (the Chittagong district), calling frequency was close to normal
levels. These differences provide support for the hypothesis that calling frequency represented a
behavioral response to sensory experience of the storm.

To further investigate the relationship between calling frequency and physical manifestations of
the storm, we conducted a spatiotemporal comparison of calling frequency with rainfall data from
NASA’s Tropical Rainfall Measurement Mission (TRMM) satellite. The TRMM satellite passed
over Bangladesh at 3:32 a.m., measuring rainfall during the cyclone’s landfall, reaching 67mmper
hour in some areas (Gutro and Pierce 2013). Locations of maximum rainfall were clearly
correlated with locations of maximum increase in calling frequency (Fig. 2). Even areas with
moderate rainfall, for example a narrow band of rainfall to the east of Chittagong (Fig. 2a) also
exhibited an increase in calling frequency (Fig. 2b). This adds supporting evidence that clusters of
high calling frequency represented contact with the cyclone’s most severe physical effects.

Past research has shown that rainfall data alone is often too low resolution and intermittent to
make any inferences about cyclone damage (Auffhammer et al. 2013). Detailed spatiotemporal
data on call frequency may improve inferences about the effect of weather extremes on
vulnerable people, and is identified here as an area for future research.
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3.3 Recharge behaviors

Next, we investigated how mobile recharges or top-ups can complement call frequency to
provide insight on how vulnerable people prepare for climate impacts. To accomplish this, we
relied on a second data set, consisting of mobile recharge purchases from 892 retailers in
Barisal and Chittagong Divisions during the original three-month timeline, 1 April to 30 June
of 2013 (Fig. 3). Recharges are the amount of money that users credit to their SIM card to

2000%
1000%
<100%

Change of calling frequency at union level during 2:00 - 3:00am on May 16

1 2 3 4 5 6 7 8 9
100

200

300

400

500

600

700

800

900

TRMM pcp measure

 In
cr

ea
se

 o
f c

al
lin

g 
fre

qu
en

cy
 in

 e
ac

h 
di

st
ric

t (
%

)

(a)

(b)

(c)
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Mission captured at 3:32 a.m. show the distribution of rainfall in the study area, reprinted from Gutro and Pierce
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access the network. They allowed an investigation of the geographic distribution of changes in
expenditures before and after the cyclone. In Bangladesh, mobile credits represent a small but
significant proportion (~3 %) of the household budget (Lucini and Hatt 2014), and disasters
increase demand for private communication (Samarajiva 2005). We hypothesized that spikes
in recharges represented knowledge of the cyclone and preparations for its impacts.

In the second half of 15 May, as forecasts and early warnings were transmitted across radio
and television, a large increase in recharges is evident, coinciding with a high volume of calls
placed on the same day (Fig. 3). However even as calling frequency remained high on 16 May,
recharges dropped below the predicted level, and continued at low levels during the following
day. This suggests that users recharged their phones as part of their storm preparation and
awareness of vulnerability, planning for the need to communicate with family and friends
during and after the cyclone.

3.4 Estimating evacuation, displacement and migration

Usage patterns in the data also enabled us to analyse short-term features of evacuation,
displacement and migration, which would be extremely hard to quantify using standard
survey-based research but were readily apparent in CDRs. Using CDRs and tower locations
to identify moving SIM cards, we created a series of mobility networks, which quantify the
direction, volume and distance of flows between locations at specified time intervals before
and after Cyclone Mahasen (Figs. 4 and 5). Note that the mobility networks during normal
periods were almost perfectly symmetrical, meaning that the numbers of users entering an area
are roughly equal to the number of users leaving an area (Fig. 4). In contrast, anomalies
appeared as larger than normal flows in one or both directions (Fig. 5), and indicated
spatiotemporally explicit patterns of movement, such as evacuation, displacement and perma-
nent migration that took place at specific moments coinciding with the storm. Because
asymmetrical flows might also represent, for example, the onset of migration season, a
calendar festival or a popular protest, it is important to be cautious in assigning causation.

Prior to the storm, large changes in the flow network were notable in Chittagong City, as
people evacuated in response to the forecasts that Mahasen would make landfall over
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Chittagong (Fig. 5a) Meanwhile, there were less than normal flows in Barisal at the same time,
suggesting people were not evacuating to other areas in large numbers, but rather suspending
regular trips.

(a)

(b)

Fig. 5 Evacuation and landfall flow networks. a The mobility network on 15 May (the day prior to landfall) is
compared with 24 April (3 weeks before the storm during the same hourly period). Positive flows are shown in
red, indicating increased flow on 15 May, while negative flows are shown in blue, indicating decreased flow on
15 May. Thickness of link represents relative volume of flow. To appear in the flow network, a user had to make
at least two calls. Each SIM contributed only one movement (the first and last observed location). Links indicate
areas where 10 or more movements were observed, at distances greater than 10 km. b The mobility network
during landfall on 16 May, 00:00–6:00 a.m., is compared with 25 April (3 weeks prior during the same hourly
period). Unusual mobility is observed in the affected area, where warnings were not concentrated
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In the early hours of May 16, during cyclone landfall, at the time when people should
have been in shelters, above normal flows of SIMs were evident in the margin of sub-
districts in Barisal nearest to the coast, indicating that people were moving about at night,
during the storm (Fig. 5b). This suggests that people evacuated too late, and would have
been in danger if the storm intensity had been greater. Mobility patterns in Barisal during
landfall contrasted sharply with mobility in Chittagong during the same time, where
patterns were virtually unchanged from normal flows for that day and hour. Although
the exact explanation for these differences is unknown, officials in the Ministry of
Disaster Planning and Response indicated that early warnings were not made in Barisal
until too late because all forecasting indicated that the storm would make landfall in
Chittagong (Nadiruzzaman 2013). Other possible explanations for delayed evacuation in rural
areas were that men commonly stay behind to look after livestock and protect homes and assets
from thieves.

In sum, the mobility patterns evident in mobile network data allow researchers to perform
an audit of early warning program effectiveness on the basis of early and mid-storm population
movements. In this case, the early warning system in Chittagong apparently accomplished the
aim of motivating evacuation during appropriate times.

4 Quantifying impacts and behavioral responses using anomaly detection
techniques

To automatically detect human behavioral changes in our study, we used a sigma-model
to evaluate the stability of the observed sequence of activities extracted from customers’
usage data in the mobile network. Specifically, for each time series of a quantified
activity, E = {e1, e2, e3, ... , et},in which ei ∈ R(1 ≤ i ≤ t) is the measure of the activity
(e.g., number of calls at time i, and t the length of evaluated time window) we highlight time
points I = {1 ≤ i1, i2, ... , iM ≤ t} in which each observation eim at time point im exceeds three
standard deviations from E’s average during the time period.

As the studied activity reached the predetermined thresholds, three standard deviations from
the mean, it was flagged as anomalous. In this way, any unusual patterns of network usage
could be identified, and further analysis would determine what these anomalies represented
about cyclone impacts. When the number of anomalous cases is very large, the procedure may
result in considerable false positives (type I error) (Candia et al. 2008). To avoid this limitation,
we also calculated the total number of anomalies detected (see Fig. 6a).

4.1 Anomaly detection for calling frequency

Unusual calling patterns provide a measure of behavioral response to storm severity. In the
timeline, several clusters of calling frequency anomalies were observed (Fig. 6). The first
occurred on 14 April, the Bengali New Year, followed by a drop the following day. A second
cluster occurred on 9 May around an infamous series of national protests, dubbed Bthe Siege of
Dhaka^ in which several dozen people were killed across the nation in a series of violent
protests. The next two clusters coincided with Mahasen, which made landfall on 15 and 16
May, and a cold front, which flooded the southern coast between 30 May and 1 June. Finally a
large spike on 25 June coincided with Shab-e-Barat, an important religious festival, when
people commonly call their relatives.
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The most profound and longest lasting set of anomalies coincided with Mahasen. With few
exceptions, calling frequency anomalies were concentrated along the vulnerable coastline, and in areas
where the storm made landfall (Fig. 6b). These anomalies spatiotemporally coincided with cyclone
landfall, and indicated when and where behavioral response to the physical cyclone were strongest.
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Typically, post-cyclone damage assessments, which determine the form that disaster relief
should take, rely on the reporting of damage by local officials. These rapid reports typically
form the basis for selection of areas in which more detailed information on impacts and needs
may be collected through household surveys. However systematic biases and delays can be
introduced at various stages of the assessment process (Hallegatte and Przyluski 2010) due to
limited capacity of responding agencies in many resource constrained settings. This analysis
indicates how mobile network data could be used to overcome potential biases in the site
selection portion of post-cyclone damage assessments by indicating when and where impacts
have occurred.

4.2 Anomaly detection relating to recharge behavior

Mobile recharge anomalies differ from other anomalous behaviors detected in the timeline in
two ways: they are almost exclusively concentrated around the cyclone impact zone, and
occured before the event, indicating foreknowledge of the coming cyclone and preparation for
its impacts. As with calling frequency, recharge anomalies were concentrated along the
vulnerable coastline, where the cyclone first made landfall (Fig. 6). But whereas calling
frequency anomalies were detected widely across the region, mobile recharge anomalies were
concentrated in Kalapara and Patharghata (Fig. 6d), areas noted as pockets of exceptional
vulnerability within this already vulnerable landscape (Ahamed et al. 2012), where impacts of
Cyclones Sidr (2007) and Aila (2009) were most severe. This suggests that anomalous
preparation behaviors can reveal the areas where people perceive themselves to be vulnerable
(Fig. 6d).

Alternative explanations include that these were areas where people had greater access to
recharge vendors and spending money, however if this were the case, similar anomalies would
have been observed in other urban centers of similar size. It is plausible that people undertook
other anticipatory actions in areas where recharge anomalies were detected, but further study is
required to link mobile recharges to overall disposition toward cyclone preparedness.

4.3 Anomaly detection relating to population movements

Forms of human mobility that deviate from normal patterns can also be detected from mobile
network data (Fig. 6). To identify anomalous flows, we investigated daily flow between each
pair of locations (unions) during the whole period. If the daily flow between unions A and B
exceeded three standard deviations from the mean for that weekday during the study period, a
signal was generated for both unions A and B. Since a substantial number of location pairs
normally have low flows, false alarms could result from small absolute increases. While
anomalous decreases in daily flow were less likely to produce false alarms, there is potentially
more noise in increases due to the small flows which normally pass between some locations.
For simplicity, to decrease noise and to obtain a conservative measure of flow anomalies, we
therefore focused on pairs of locations having non-zero flow during all days during the whole
period.

As with call frequency anomalies, the flow anomalies detected in this analysis corresponded
with the significant events in the time line: Bengali New Year (14 April), nation-wide
protests (8 May), Cyclone Mahasen (16 May), and heavy rainstorms (30 May) (Fig. 6e).
The largest cluster of anomalous flow increases coincided with the Bengali New Year,
where very few anomalous flow decreases were simultaneously observed. Both anomalous
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flow increases and decreases were apparent between 15 and 19 May, before and after
Mahasen struck, nevertheless the frequency of anomalous increases was eight times that
of decreases. Note that the areas with most anomalous flow events coincided very well
with the area in which rainfall intensity was the highest during cyclone landfall (Fig. 2).

5 Conclusion

In this paper, we show how data from mobile networks provides insights into behavioral
responses to Cyclone Mahasen and its impacts. We show that anomalous patterns of calling
frequency are correlated with rainfall intensity at local scales, likely providing a defined
spatiotemporal measure of users’ physical exposure to the storm. We show that mobile
recharge purchases increase in vulnerable impact zones before landfall, representing
preparations for potential environmental hazards. We also identify anomalous patterns of
mobility during evacuation and storm landfall, indicating how people respond to storm
forecasts and early warnings. The analysis is in agreement with the official joint needs
assessment, which saw little evidence of mass displacement. We also show how, in future
applications, anomalous flows of SIM cards between mobile towers can provide a much
needed audit of the effectiveness of forecasting and early warnings systems, and indicate
the new locations of displaced people. Rapid, cost-effective and accurate tools for assessing the
effectiveness of early warning systems, and indicating the location of displaced people are
currently in short supply.

Based on comparisons with rainfall measurements at landfall, and considering the substan-
tial weakening of cyclones as they pass over land, calling frequency and population movement
anomalies seemed to provide the best proxy indicators for cyclone impacts among those
evaluated. Traditional methods for assessing cyclone impacts and human behavioral responses
have well known limitations (Hallegatte and Przyluski 2010), and the anomaly detection
technique applied to mobile network data presented here (building on work of Blumenstock
et al. 2011; Candia et al. 2008; Dobra et al. 2014; Kapoor et al. 2010; Pawling et al. 2007;
Sundsøy et al. 2012, and Young et al. 2014), may overcome some of these challenges, and
demonstrates the potential value of mobile network data as a complement to current cyclone
impact assessment tools. Specifically, the spatiotemporal distributions of anomalous usage
activity could be used to improve the timeliness and cost-effectiveness of cyclone impact
assessments. Data from mobile networks may be very useful as a tool to prioritize locations in
which rapid needs assessments are performed after cyclone landfall, with the potential to
drastically reduce the time to reach those most in need.

While the study provided a robust analysis of the behavior of Grameenphone subscribers,
the primary limitations of the study involved the representativeness of data for the general
population. However, the general features of behavior change that we found to be most useful,
i.e. sharp increases in calling frequency and changes in mobility, may well result independently
of mobile operator and are likely to reflect natural human responses to shocks. Likewise, the
study concentrated on Mahasen, a relatively Cyclone, which despite maximum rainfall of
68 mm/h dissipated quickly. Findings cannot be generalized about larger, more energetic
cyclones, where storm surges and flooding can cause greater destruction. Finally, other causes
of increased calling frequency and mobility than those indicating a need for post-disaster
assistance may exist after a disaster, and thus network data should, at our present level of
understanding, be used as a complement to, not a replacement for, other information sources.
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To overcome these limitations and to better understand the effects of multiple types of
environmental disruption, future work should incorporate mobile network data covering longer
time spans. Longitudinal household measures of storm impacts and improved environmental
impact models can provide external validation of the spatiotemporal patterns of anomalous
usage that are apparent in the mobile network data. Additionally, as we illustrate in the
Supporting Information (S2), analysis of other aspects of network function, such as service
interruptions, which do not convey information on human behavior, may still provide a proxy
for spatiotemporal damage to infrastructure.

Detecting anomalous usage patterns from mobile network data is a promising avenue for
researching human behavioral responses to impacts associated with climate change across
large spatiotemporal scales. Data from mobile networks may become an important tool for
prioritizing areas for rapid needs assessments following cyclones.
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S1. Dataset Characteristics

De-identified call detail records (CDRs) from 5.1 million Grameenphone users were collected between 1 
April and 30 June of 2013 in the Barisal Division and Chittagong District of Bangladesh. The data begins 
six weeks before the landfall of Cyclone Mahasen (16 May 2013) and continues for six weeks after landfall 
(1 April to 30 June 2013) (Fig. S1a). CDRs are compiled by network operators principally for the purposes 
of billing customers for their use of the network. De-identified data entries include information on the time 
of the call, the mobile phone tower used and the duration of call, and can thus be used to indicate the 
geographical position and movements of users. To limit potential biases resulting from subscriber churn, 
and new users entering the dataset due to impacts of the storm, we limited the study to SIM cards that had 
placed at least one call before the cyclone landfall (16 May); and also made at least one call in the last ten 
days of the data collection period (21-30 June) .

A distribution of 986 towers across the Barisal Division and Chittagong District forms the basis for our 
spatiotemporal analysis of calling frequency, mobility and top-up behaviors. We assigned users a position 
within the network based on the tower through which his or her most recent call was routed (Fig. S1a). The 
coverage area of a mobile tower (BTS, base transceiver station) can range from a few hundred meters in a 
city, up to tens of kilometers in rural areas. The location of tower positions were further scrambled within 
200 meters. The average and maximum distance of each tower and its nearest neighbor tower, were 2.1 km 
and 16.8 km, respectively. 
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Fig. S1 Study area, distribution of users, distribution of calls, number of active days, and unique locations 
visited.  a) Map of study area, including tower map and cyclone path. Colored lines represent the 
forecasted versus actual cyclone paths. Forecasts predicted landfall over Chittagong, but on its final 
approach, Mahasen passed over Barisal. Actual versus predicted storm paths allow us to distinguish 
anticipatory and actual behaviors. b) Distribution of population and number of SIM cards at district level. 
Population data are taken from the 2011 census, and SIM cards’ locations are determined by the district in 
which they appeared most frequently during evening (10:00pm-6:00am) during the study period. c) A
distribution of the number of calls per user shows that 90% of users made at least 200 calls during the 
three months period, and 50% of users made more than 1000 calls during the period. d) The number of 
active days on the network shows that 89% of users were active on 30 days, and 50% of users were active 
on at least 80 days. e) A distribution of unique locations visited shows that 95% of users visited more than 
one union.

A comparison of number of SIM cards to population shows high agreement between the number of 
subscribers and the census figures (Fig. S1b). Deviations are seen in Chittagong district. In Bangladesh, 
household possession of a mobile phone grew from 78% of all households in 2011 to 89% in 2014, 
exceeding usage in other countries of similar socioeconomic profiles (National Institute of Population 
Research and Training (NIPORT) 2015). Users from the Grameenphone network, the largest in Bangladesh, 
numbered at 42 million in 2013, and comprised 61% of all mobile users nationwide (Telenor 2013). In this
dataset, 90% of users made more than 200 calls during the study period and were active 80 days or more 
out of the 90 day study period (Fig. S1c, d). Likewise, SIM mobility is high: 95% of users appeared in 
more than one union, 84% in more than one sub-district, and 42% in more than one district (Fig. S1e). For 
the purposes of this study, we assumed that behaviors exhibited in CDRs are representative for the entire 
population. While earlier research support this notion, more studies are needed to adequately understand 
the representativeness of mobile phone users in Bangladesh.
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S2. Quantifying impacts and infrastructure resilience 

The functioning of mobile network towers potentially provides an additional proxy for cyclone damage. 
We undertook an analysis of network function during the study period, investigating towers that were 
inactive during Mahasen. Because of the potential for damaged equipment and interruption of services, 
mobile operators invest heavily in network resilience. Therefore in the most powerful cyclones, disabled 
towers could indicate where damages are concentrated, and could provide a proxy for other infrastructural 
damages sustained. 

In the analysis of towers with no calling activity, we see the same four events that appear in other sections. 
Focusing on Mahasen, we evaluated the number of inactive towers in Mahasen’s impact zone, i.e., towers 
that registered zero calls, calculated on an hourly basis (Fig. S2). The Grameenphone network held up very 
well. During Cyclone Mahasen, only 60 towers went offline during landfall followed by 120 towers going 
offline during the course of the following day. It is likely that rather than suffering damages, towers went 
offline the following day as power sources failed and reserve batteries became depleted. Notably, patterns 
of “offline” towers between Mahasen and a heavy downpour that occurred between 30 May and 2 June 
were remarkably similar (Fig. S2). 

In contrast to anomalies in calling frequency, recharges and mobility, tower function does not represent 
behavioral information, but may provide a potential indicator on the distribution of environmental impact to 
infrastructure. Mahasen was a relatively weak storm, and as such registered only minor disruption, however 
during major events, data showing inactive towers or loss of tower function may also indicate the locations 
where damages are concentrated, helping focus impact assessment on the most damaged sites. Further 
research is required to make meaningful inferences about the relationship between network function and 
infrastructural damage.

Fig. S2 Number of towers with zero calls over the study period. For all filtered SIM cards, the number of 
calls received by each tower in each hour is calculated. Towers are classified as inactive during any 
particular hour if they received zero calls. There are four major periods when the number of inactive 
towers increased: 1) the Bengali New Year, 2) a national demonstration, 3) Cyclone Mahasen, and 4) a 
severe rainstorm.
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