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Abstract

We explore the naturalness reach of the high-luminosity Large Hadron Collider
(HL-LHC) at

√
s = 14 TeV in future experiments searching for supersymmetry,

quantifying naturalness in terms of the Barbieri–Giudice measure. Based on work
presented in [1], we compare with similar results at a possible International Linear
Collider (ILC) at

√
s = 0.5 and 1 TeV, to investigate how the two can complement

each other.
In the framework of the minimal supersymmetric Standard Model with con-

servation of R-parity, we scan the parameter spaces of three different scenarios,
where one of them represents a so-called Natural supersymmetry model. We set
exclusion limits at the 95% confidence level, defining what parameter values and
sparticle masses are disfavored by experiment.

With Bayesian parameter estimation we also find posterior probability distri-
butions for naturalness from the planned searches for supersymmetry at CERN,
which indicate that very natural models may remain even after the HL-LHC
searches. The information gain in the update of our prior beliefs is quantified in
terms of the Kullback–Leibler divergence. From the literature, it appears that
this measure has never previously been used in the context of particle physics.
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Introduction

Within the framework of the minimal supersymmetric Standard Model with
conservation of R-parity, this thesis investigates the naturalness reach of the high-
luminosity Large Hadron collider at

√
s = 14 TeV with integrated luminosities

of L = 300 fb−1 and L = 3000 fb−1. We quantify naturalness in terms of the
widely adopted Giudice–Barbieri sensitivity criterium. By the use of Monte Carlo
event generators, we scan the parameter spaces of two minimal supergravity
scenarios, and one Natural supersymmetry scenario. The goal of the scans is to
set exclusion limits at the 95% confidence level, defining what parameter values
and sparticle masses are disfavored by experiment, as well as which naturalness
scores are excluded. Taking the same approach as Allanach et al. in [2], we use
these exclusion bounds to define the naturalness reach of the HL-LHC in terms
of the minimum non-excluded score. As a more sophisticated measure of the
naturalness reach, we also find posterior probability distributions of naturalness,
using Bayesian parameter estimation and likelihoods taken from the parameter
scans. These distributions indicate how likely we consider the various naturalness
values to be. We quantify the information gain in the update of our prior beliefs
in terms of the Kullback–Leibler divergence, and from the literature it appears
that this measure has never previously been used in the context of particle physics.
Based on work presented in [1], we compare with similar results at a possible
International Linear Collider at

√
s = 0.5 TeV and 1 TeV, to investigate how the

two can complement each other.
We begin with an introduction to the underlying principles of the Standard

Model in chapter 1. Many of the shortcomings of this theory can be solved with
supersymmetric models, which we elaborate on in chapter 2, culminating in the
definition of the minimal supersymmetric Standard Model. In chapter 3 we present
the hierarchy problem of the Standard Model and clarify why supersymmetry
can offer an attractive solution. We also explain how this impacts the scale at
which we believe supersymmery can be realized. Chapter 4 desribes the statistical
framwork of this thesis, where we outline the concept of Bayesian parameter
estimation, and define the Kullback–Leibler divergence. In chapter 5 we give a
detailed description of the simulation of future experiments, searching for various
supersymmetric signatures at the HL-LHC. The practical software and scan set-up
is given, the analyses are described in detail, and we validate our implementations
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by benchmark testing. In chapter 6 we present and discuss our results, before we
finally make our conclusions.
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Chapter 1

The Standard Model of particle
physics

The Standard Model (SM) of elementary particle physics has had great success
in describing the fundamental particles and their interactions. As of today, it
is our best description of the subatomic world. The final confirmation of its
viability came in 2012, after the Higgs boson was discovered by the CMS and
ATLAS experiments at CERN [3, 4]. Despite its great success, there are good
reasons for believing the Standard Model constitutes only the low energy part of
a more fundamental theory. The Standard Model offers no candidate for dark
matter (DM), and gravitation is ignored as a fundamental force. In addition, the
Standard Model suffers large quantum corrections to the Higgs mass, a topic we
will return to in chapter 3.

1.1 The Standard Model as a quantum field the-
ory

The Standard Model is a quantum field theory, described by a Lagrangian density
L (from now on referred to simply as the Lagrangian), a function of the field
content of the theory and their derivatives. It is related to the action S by

S =

∫
R

d4x L. (1.1)

The dynamics are obtained from the Lagrangian via the Euler–Lagrange equation,
which for a field φi is

∂µ

(
∂L

∂(∂µφi)

)
− ∂L
∂µφi

= 0. (1.2)

Symmetries play a crucial rôle in physics, as they have a deep underlying
connection to conserved physical quantities. In field theory, a symmetry transfor-
mation is defined as a transformation that leaves the equations of motion invariant.

3



Chapter 1

This is guaranteed if the action is left invariant under the transformation. In-
variance of the action is in turn obtained if the Lagrangian changes by a total
derivative,

L → L′ = L+ ∂µf(x), (1.3)

when we take f(x) to be zero on the surface S(R) of the integration boundary.
The connection between symmetries and conservation laws is summarized in

Noethers theorem from 1918. The theorem states that every continous symmetry
of the Lagrangian, has a corresponding conservation law [5]. As an example,
energy and momentum conservation are consequences of the invariance of the
Lagrangian under space and time translations.

Using the interaction amplitudeM found from the Lagrangian, we can calcu-
late physical quantities like the decay width of a particle or the cross section of a
scattering process. As the exact expression ofM is often unknown, an approxi-
mation in power series of the interaction strength is done, so-called perturbation
theory. Richard Feynman visualized and organized the calculation of the pertur-
bation series using diagrams, known as Feynman diagrams [6]. The expansion is
in principle an infinite sum of terms (diagrams) with increasing complexity and
decreasing importance. Hence it is often sufficient to evaluate only the first terms
(usually the leading and next-to-leading order) of the approximation.

1.1.1 Obtaining a finite theory

A problem arising when calculating the subleading contributions in scattering
processes, is diverging integrals. They appear when the corrections contain closed
loops, since the loop momenta are unknown, and integration therefore must be
carried out over all possible momenta. Regularization is the parametrization of
the mathematical infinities appearing in the field theory, and there exist several
ways to do this.

One method is the cut-off regularization, where the integration is performed
only up to a finite cut-off scale Λ, evoking a finite answer∫ ∞

0

d4k →
∫ Λ

0

d4k, (1.4)

where the physical limit is found when Λ → ∞. The cut-off is a large scale,
typically the Planck scale O(1018) GeV, indicating the invalidity of the Standard
Model at these energies and above. This regularization procedure is applied when
we calculate the Higgs mass corrections in appendix B.

Another approach is dimensional regularization (DR), where one substitutes
the four spacetime dimensions by d = 4− ε, where ε is a small parameter,∫ ∞

0

d4k →
∫ ∞

0

ddk. (1.5)
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The Standard Model of particle physics

The physical limit is found when ε→ 0.
Despite the parametrization of the infinities, they still appear in field theory

calculations. Renormalization is the removal of these infinities, and introduces a
fixed scale µ at which the parameters (couplings) of the Lagrangian are defined.
This means that for example the electron charge has different values depending
on what scale your experiment takes place. The renormalized parameters of the
Lagrangian correspond to the physical observables we can measure, in contrast to
the unphysical bare (infinite) parameters before renormalization took place.

The evolution of the couplings with energy is described by the renormalization
group equations, and is referred to as the running of the coupling constants. We
return to this in chapter 2.

In order for a theory to make meaningful physical predictions, it must be
renormalizable. Attempts at incorporating gravity into the Standard Model,
by the interaction with gravitons, results in a non-renormalizable theory, which
explains why it is not one of the fundamental forces in the Standard Model.

1.2 External symmetries
From Einstein’s special relativity, we know that the laws of physics should be
invariant under rotations and boosts between different reference frames. These
transformations are captured in the Lorentz group L, and is the group of all linear
transformations

xµ
′
= Λµ

νx
ν , (1.6)

such that xµxµ is invariant.
Any proper Lorentz transformation Λ ∈ L↑+ can be written as1

Λµ
ν =

[
exp

(
− i

2
ωρσMρσ

)]µ
ν

, (1.7)

where ωρσ are the (antisymmetric) parameters of the transformation, and Mρσ

are the generators of the proper Lorentz group. The Lie algebra for L is formed
by the elements of Mρσ, and are given by

M =


0 −K1 −K2 −K3

K1 0 J3 −J2

K2 −J3 0 J1

K3 J2 −J1 0

 , (1.8)

with Ki and Ji being the generators of boosts and rotations, respectively.
The external symmetries of the Standard Model are space and time translations,

and proper Lorentz transformations. These transformations are summarized in
1Improper transformations would include space and time reflections.
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Chapter 1

the (proper) Poincaré group, which is an extension of the Lorentz group with a
constant spacetime translation aµ, giving the transformation

xµ → x′µ = Λµ
νx

ν + aµ. (1.9)

The behaviour of the Poincaré group (locally), as for any Lie group, is deter-
mined by its algebra. The algebra is made up of the commutators of the generators
of the group, i.e. the translation generator Pµ and the generators of boosts and
rotations Mρσ. The behaviour of the Poincaré group is therefore determined by

[Pµ, Pν ] = 0, (1.10)
[Mµν , Pρ] = −i(gµρPν − gνρPµ), (1.11)

[Mµν ,Mρσ] = −i(gµρMνσ − gµσMνρ − gνρMµσ + gνσMµρ). (1.12)

1.3 Internal gauge symmetries
The Standard Model is based on the principle of gauge invariance under the
Lie groups SU(3)C × SU(2)L × U(1)Y . A gauge refers to redundant degrees of
freedom in the Lagrangian which are not physical observable, and is a continous
local symmetry.

1.3.1 Abelian gauge theories

We illustrate the gauge principle by looking at an abelian group,2 which will
reproduce the theory of quantum electrodynamics (QED). The conserved quantity
for this group is electric charge q, and the underlying symmetry group is U(1)em.

Fermions are described by Dirac spinors ψ(x), for simplicity referred to as ψ
in the following. Ignoring the fact that they — for reasons to be discussed later —
initially need to be treated as massless, the free Lagrangian of a free fermion field
is

L = ψ̄(iγµ∂µ −m)ψ, (1.13)

where ψ̄ = ψ†γ0. We observe that this Lagragian is invariant under the global
phase transformation ψ′ = U(α)ψ = eiαψ, where α is a real number. This
transformation belongs to the global U(1) transformations, where the elements
U(α) are 1× 1 ’matrices’, satisfying the unitary condition UU † = 1.

Imposing gauge invariance means we require the transformation to hold also
on a local basis, i.e. we take α = α(x), an arbitrary real differentiable function of
spacetime. The transformed Lagrangian then takes the form

L′ = ψ̄e−iqα(x)(iγµ∂µ −m)eiqα(x)ψ

= L − qψ̄ (∂µα(x))ψ,
(1.14)

2Abelian means the elements of the group commute.
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The Standard Model of particle physics

where q is a constant. This is no longer invariant due to the additional derivative
term. To recover the original L, we introduce a covariant derivative Dµ to replace
∂µ, containing a four-component spin-1 (gauge) vector field Aµ(x) — describing
the photon. The covariant derivative we define as

Dµ = ∂µ + iqAµ, (1.15)

and require it to be gauge invariant, meaning

ψ̄′D′µψ
′ = ψ̄Dµψ, (1.16)

which again implies that the vector field must transform according to

A′µ = Aµ − ∂µα(x). (1.17)

We also notice we can construct a gauge invariant term FµνF
µν , where Fµν ≡

∂νAµ − ∂µAν . This is known as the vector field strength, and describes free
photons. From eq. (1.17), we see that a possible photon mass term ∝ m2AµA

µ

would break gauge invariance, and is hence forbidden. This also applies to the
gauge bosons in non-abelian theories, to be discussed in section 1.3.2.

The full QED Lagrangian is then

LQED = iψ̄γµ∂µψ −mψ̄ψ −
1

4
F µνFµν − qψ̄γµψAµ, (1.18)

and describes a massive fermion and its interaction with a massless photon, where
the coupling strength q between ψ and Aµ is the electric charge.

1.3.2 Non-abelian gauge theories

We can generalize the abelian case to non-abelian theories, where commutation of
the group elements is not trivial. The procedure is similar to that of QED, but gives
some additional terms due to the non-commuting properties. This generalization
enables the description of the weak and strong interactions, through the SU(2)L
and SU(3)C groups, respectively.

In the fundamental representation, an SU(n) group consist of all complex
unitary n× n matrices A, with detA = 1. A general SU(n) transformation can
be written

ψ′(x) = eigα
a(x)Ta

ψ(x), (1.19)

where g is the charge of the field ψ(x) under the gauge group, related to the
interaction strength, αa(x) are the transformation parameters, and T a are the
non-abelian generators of the group. Summation in a is implicit. The covariant
derivative now takes the form

Dµ = ∂µ + igAaµT
a, (1.20)
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Chapter 1

where the number of gauge vector fields Aaµ equals the (n2 − 1) generators of the
group. Due to the non-abelian properties of the generators, the field strength
tensor needs an additional term to preserve gauge invariance, and now takes the
form

F a
µν = ∂µA

a
ν − ∂νAaµ + gfabcAbµA

c
ν , (1.21)

where fabc are the (antisymmetric) structure constants given by the algebra of
the group

[T a, T b] = ifabcT c. (1.22)

As the Standard Model gauge group is G = SU(3)C × SU(2)L × U(1)Y , the
complete covariant derivative is

Dµ = ∂µ + igs
λa

2
Ca
µ + ig

σi

2
W i
µ + ig′

Y

2
Bµ. (1.23)

We identify Ca
µ, W i

µ and Bµ as gauge fields, and gs, g and g′ as coupling constants
of the SU(3)C , SU(2)L and U(1)Y gauge groups, respectively, where 1

2
λa and 1

2
σi

are the group generators of the two former (composed of the Gell–Mann and
Pauli matrices).3 In section 1.6 we will see how spontaneous symmetry breaking
of SU(2)L × U(1)Y → U(1)em mixes the gauge bosons W i

µ and Bµ, which in
turn represent the physical gauge bosons W±, Z0 and γ, mediating the weak and
electromagnetic force. The strong force is mediated by the gluons, described by
the gauge fields Ca.

The subscripts of the gauge groups refer to the conserved color charge of
SU(3)C , and the weak hypercharge Y for U(1)Y . The weak hypercharge relates
to units of the electron charge Q and the projection of weak isospin I3 by

Y = 2(Q− I3). (1.24)

The conserved quantity for SU(2)L is isospin I, but here the subscript is a reminder
that only left chiral particles carry charge under this group. We will return to
this in section 1.5.

A tabulation of the fields in the Standard Model and their charges under G
can be seen in table 1.1.

1.4 Gauge multiplets
We have seen that the symmetry group of the weak interaction is the SU(2)L
group, where the generators are proportional to the 2× 2 Pauli–matrices. Hence,
an SU(2)L transformation

ψ → ψ′ = eigα
i(x) 1

2
σi

ψ, (1.25)
3The generators are defined with a factor of 1/2 to avoid accumulation of numerical factors.
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The Standard Model of particle physics

Table 1.1: Electromagnetic charge Q, projection of weak isospin I3 and
weak hypercharge Y for the SM fermions. The right handed neutrinos are
not charged under any of the SM gauge groups, and – if they exist – are
difficult to probe.

Left chiral Right chiral
Q I3 Y Q I3 Y

νe, νµ, ντ 0 +1
2
−1 0 0 0

e, µ, τ −1 −1
2
−1 −1 0 −2

u, c, t +2
3

+1
2

+1
3

+2
3

0 +4
3

d, s, b −1
3
−1

2
+1

3
−1

3
0 −2

3

needs a two dimensional vector ψ to act upon. As we know from experiments only
left chiral components of a fermion is affected by the weak force,4 we combine
these in SU(2)L doublets. For the quarks and leptons, they are

Qi
L =

(
uiL
diL

)
, LiL =

(
νiL
eiL

)
, (1.26)

where i = 1, 2, 3 is the generation index. The right chiral fermions are put in
SU(2)L singlets, as they are not charged under this group, and are

eiR, uiR, diR, (1.27)

and are acted upon by the U(1)Y gauge group only.
Only color charged fermions — the quarks — are subject to the strong

interaction, and an SU(3)C transformation,

ψ′ = eigsα
a(x) 1

2
λaψ, (1.28)

for a = 1, ...8, acts on color neutral so-called triplets of quarks

q =

qrqg
qb

 , (1.29)

where the indices refer to the red, green and blue color charge. The mathematical
description of the strong interaction in terms of a gauge field theory is called
quantum chromodynamics (QCD).

4We return to chirality in section 1.5.
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1.5 Parity violation of the weak force
The weak interaction was confirmed to violate parity in 1957 [7],5 and is today
manifest through the Standard Model being a chiral theory, where the SU(2)L
gauge group describes the interaction with left chiral components of a fermion.
We will in the following clarify the concept of chirality.

A four-component Dirac spinor can, in the fundamental representation of the
Lorentz group, be represented by two two-component Weyl spinors ψL and ψR,

ψ =

(
ψL
ψR

)
, (1.30)

where the subscripts refer to the chirality of the Weyl spinor. Using the projection
operators

PL =
1− γ5

2
, PR =

1 + γ5

2
, (1.31)

we can project out the different components of the Dirac fermion

ψL = PLψ, ψR = PRψ, (1.32)

and by using that PL + PR = 1, the representation of a Dirac fermion can hence
be written as

ψ = (PL + PR)ψ = ψL + ψR. (1.33)

We can express the free fermion Dirac Lagrangian from eq. (1.13) in terms of
the chiral components by

ψ̄(iγµ∂µ −m)ψ = iψ̄Lγ
µ∂µψL + iψ̄Rγ

µ∂µψR

−m(ψ̄RψL − ψ̄LψR).
(1.34)

The kinetic term nicely treats the chiral components separately, while the mass
term mix the two. Since only the left chiral component is charged under SU(2)L,
mass terms are not gauge invariant. This is why fermions initially must be treated
as massless, and we will see how they aquire their mass in section 1.6.

1.6 The Higgs mechanism
As seen in sections 1.4 and 1.5, Lagrangian mass terms are forbidden in the
Standard Model for both fermions and gauge bosons, as they are not gauge
invariant. From experimental measurements we know they are massive, with the
exception of the photon, and we need a mechanism by which they can aquire their
masses — respecting our renormalizable theory.

5The chinese phycisists C.N. Yang and T.D. Lee were rewarded the Nobel Prize after
suggesting this in 1950 [8].
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The Standard Model of particle physics

The Higgs mechanism of spontaneous symmetry breaking was introduced
almost simultaneously by three independent groups in 1964 [9–12], and showed
how gauge invariant mass terms could be present in the Lagrangian if the gauge
fields interact with a neutral scalar field h(x), later known as the Higgs field.
As we are about to see, the particles acquire their masses through the non-zero
vacuum expectation value (vev) of the Higgs field, its value in the lowest energy
state. The vacuum does not obey the symmetry of the underlying Lagrangian,
and this is what provides us the fermion and boson masses.

We begin by introducing an additional weak isospin doublet of two complex
scalar fields φa and φb, with hypercharge Y = 1, known as the Higgs doublet,

Φ =

(
φa
φb

)
. (1.35)

As Y = 1, this implies φa has positive charge, while φb is neutral. The gauge
invariant renormalizable Lagrangian of the Higgs doublet is

LH = (DµΦ)†(DµΦ)− V (Φ)

= (DµΦ)†(DµΦ)− µ2Φ†Φ− λ(Φ†Φ)2,
(1.36)

where V (Φ) is the Higgs potential.
We want to investigate the stable vacuum state of the system described by

Φ. This forces λ > 0, as the potential ought to be bound from below, but no
such constraint is required for µ2. For µ2 > 0, the potential has one minimum
at Φ = 0, but for µ2 < 0, the vev of the field is non-zero. This property of the
vacuum state is the essence of spontaneous symmetry breaking. The field value
minimizing the potential in eq. (1.36), is

Φ†Φ = −µ
2

2λ
. (1.37)

This vacuum is degenerate, since a global phase transformation (a rotation around
the origin) of the field Φ→ eiαΦ, leaves the potential unchanged. See figure 1.1
for an illustration of the Higgs potential with φa = 0.

As the energy decreases and the Higgs field falls to the bottom of this degenerate
circle, it is forced into a non-zero vacuum state. Since the potential only depends
on Φ†Φ and not on Φ, we can use the degeneracy of the vacuum to rotate the
state, such that

Φ0 =
1√
2

(
0
v

)
, (1.38)

where v ≡
√
−µ2
λ

is the vacuum expectation value. We can parametrize the Higgs
doublet as a perturbation around this vacuum by

Φ =
1√
2

(
η1(x) + iη2(x)

v + h(x) + iη3(x)

)
, (1.39)
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Figure 1.1: The Higgs potential for φa = 0 with λ > 0 and µ2 < 0.

where the ηi(x) and h(x) are real scalar fields. The three fields ηi(x) turn out to
be unphysical fields, so-called Goldstone bosons, and are exactly what we need for
the gauge bosons to be massive.

Using the gauge freedom of the SU(2)L × U(1)Y group, we can transform the
upper component of Φ to be zero, and the lower component to be real. This
choice of gauge is called the unitary gauge, and the Higgs doublet can be written
as

Φ =
1√
2

(
0

v + h(x)

)
, (1.40)

where h(x) now represents the physical Higgs field.
After the gauge transformations, the Goldstone bosons ηi(x) are no longer

present. The interpretation is that they are absorbed into W± and Z0, providing
them with an extra longitudinal degree of freedom, needed for massive vector
bosons.

What remains is to identify the gauge boson masses. They arise from the
kinetic term of the Lagrangian in eq. (1.36) using eq. (1.40), and are

LH =
g2v2

8

(
W 1
µW

µ1 +W 2
µW

µ2
)

+
v2

8

(
gW 3

µ − g′Bµ

) (
gW µ3 − g′Bµ

) (1.41)
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This can be written in matrix form,

LH =
1

2
(W 1

µ W 2
µ)

(
m2
W 0
0 m2

W

)(
W µ1

W µ2

)
+

1

2
(Aµ Zµ)

(
0 0

0
(
v
2

)2
(g2 + g′2)

)(
Aµ

Zµ

)
,

(1.42)

where we have diagonalized the second mass matrix. The physical gauge fields
are the normalized eigenvectors of the diagonal mass matrices from eq. (1.42),

W±
µ =

1√
2

(W 1
µ ∓ iW 2

µ), Z0
µ =

gW 3
µ − g′Bµ√
g2 + g′2

, Aµ =
g′W 3

µ + gBµ√
g2 + g′2

, (1.43)

where Aµ describes the photon. Their masses are

mW =
1

2
gv, mZ =

1

2
v
√
g2 + g′2, mA = 0, (1.44)

and from the Higgs potential we find the Higgs mass to be

mh =
√

2λv. (1.45)

Since the photon does not aquire mass through the Higgs mechanism, we have
broken the SU(2)L × U(1)Y symmetry down to a U(1)em symmetry, and electric
charge is conserved.

The fermion masses are induced by the same mechanism as described above,
as the Higgs field can couple a left handed SU(2)L doublet LiL to a right-handed
SU(2)L singlet eiR in a gauge invariant way, through the terms L̄iLΦeiR + h.c. An
SU(2)L gauge transformation U on these terms is

L̄i
′

LΦ′ei
′

R = L̄iLU
†UΦeiR = L̄iLΦeiR. (1.46)

Taking the electron mass as an example,6 the vacuum state provides us with
the gauge invariant mass term in the following way

Le = −yeL̄LΦeR + h.c.

= − ye√
2

(
ν̄L ēL

)(0
v

)
eR + h.c.

= −yev√
2
ēLeR + h.c. (1.47)

From this we identify the electron mass as me = yev√
2
, where ye is the Yukawa

coupling of the electron, giving the coupling strength with the Higgs field. The
6And omitting the generation indices.
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size of the Yukawa couplings yf is not predicted by the Higgs mechanism, but
can be chosen to be in compliance with the measured fermion masses, i.e.,

yf =

√
2mf

v
. (1.48)

With the Higgs vacuum expectation value of v ∼ 246 GeV [13], this implies Yukawa
couplings of the top and bottom quarks of yt ≈ 1 and yb ≈ 0.02, respectively. In
comparison, the Yukawa coupling of the electron is ye ≈ 0.3 · 10−6.

Since the non-zero vev occurs for the lower component in the Higgs doublet,
it can only give masses to charged leptons and down-type quarks. Ignoring the
question of neutrino masses, we also need to generate the masses of the up-type
quarks. This is done using the charge conjugate field Φ̃ = iσ2Φ∗, where the terms
Q̄i
L(iσ2Φ∗)uiR + h.c. are gauge invariant.7

1.7 Shortcomings of the Standard Model
Despite its success, the Standard Model cannot be the final theory of particle
physics. One of the reasons is the lack of the fourth fundamental force, gravity. As
the Standard Model is considered to be a low-energy part of a more fundamental
theory, we also believe that the three interactions of the Standard Model unite at
some high energy, and act as one single interaction under a larger gauge group.
This gives rise to a so-called grand unified theory (GUT). If such a unification is
to be realized, the three gauge couplings must be equal at the GUT scale, but
they fail to unify if the Standard Model is taken to high energies.

Further, the postulation of dark matter attempts to explain the discrepancy
between the predicted and observed angular motion of galaxies [14]. The dark
matter is assumed to be made up of at most weakly interacting particles, and the
Standad Model has no such viable candidate. The neutrino masses are too small
to make up all the missing mass, as the sum of the three generations is constrained
by cosmological measurements to be approximately

∑
imνi ≤ 1 eV [15].

Finally, the quantum corrections to the Higgs mass give rise to the hierarchy
problem of the Standard Model, and introduces a large degree of fine-tuning in
order for experiment and theory to coincide. As this topic is central to the thesis,
we have devoted chapter 3 to it. Possible extensions of the Standard Model are
numerous, and one of the most popular are theories of supersymmetry, which will
be the subject of the next chapter.

7With σ2 being a Pauli matrix.
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Supersymmetry

Various theories extending the Standard Model exist, and theories with super-
symmetry (SUSY) are perhaps the most popular, as they can solve many of the
shortcomings of the Standard Model mentioned in section 1.7. They propose a
solution to the hierarchy problem, have cold dark matter candidates, and can
make the gauge couplings unite at high energies. These are all compelling reasons
for the theory to be realised in nature.

In this chapter, we look at how supersymmetry arose as a concept and study
the framework of the model. We will first take a general approach, before we
introduce the minimal supersymmetric Standard Model (MSSM) — holding only
the minimal number of fields needed to reconstruct the particles and interactions
of the Standard Model.

2.1 Extending the Poincaré algebra
We have seen in sections 1.2 and 1.3 how the Standard Model has both external
and internal symmetries, desribed by the Poincaré group and gauge groups
SU(3)C × SU(2)L × U(1)Y . In additin to these, supersymmetry introduces yet
another symmetry, a symmetry between fermions and bosons. A supersymmetric
operator Q acts on fermionic and bosonic states as

Q |fermion〉 = |boson〉 and Q |boson〉 = |fermion〉 . (2.1)

The transformation alters the particle spin by 1/2, while all other quantum
numbers remain unchanged. As none of the particles in the Standard Model can
be superpartners of each other, a new set of particles is needed, and consequently
a whole new range of interactions appear.

Theories with supersymmetry arose during the 1970s, from a desire to extend
the spacetime symmetries of the Poincaré group to also include the internal gauge
symmetries in a non-trivial way. By non-trivial we mean that there should exist
non-zero commutation relations between the generators of the internal gauge
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groups and the external ones in the Lie algebra. Unfortunately, Coleman and
Mandula proved that such a non-trivial extension was impossible [16], known as
the Coleman and Mandula no-go theorem.

To succeed in a non-trivial extension, Haag, Łopuszański and Sohnius intro-
duced the concept of a graded Lie algebra, also called a superalgebra [17]. The
superalgebra L is a direct sum of two Lie algebras, L = L0 ⊕ L1, with a binary
operation · called grading. For xi ∈ Li, the grading is given by

xi · xj = xk ∈ Li+j mod 2, (2.2)

meaning the superalgebra is a so-called Z2 graded algebra.
By combining the Poincaré algebra with an algebra spanned by four super-

symmetry operators in a Majorana spinor Qa, Haag et al. constructed such a
superalgebra. By relating the Majorana spinors to a two-component Weyl spinor
QA and its hermitian conjugate Q̄Ȧ as

Qa =

(
QA

Q̄Ȧ

)
, (2.3)

the superalgebra is given by the following commutation and anti-commutation
relations

{QA, QB} = {Q̄Ȧ, Q̄Ḃ} = 0, (2.4)
{QA, Q̄Ḃ} = 2σµ

AḂ
Pµ, (2.5)

[QA, Pµ] = [Q̄Ȧ, Pµ] = 0, (2.6)

[QA,M
µν ] = σµνBA QB, (2.7)

where now σµν = i
4
(σµσ̄ν − σν σ̄µ).

Unfortunately, with only one Majorana spinor, the internal gauge symmetries
must still commute trivially with all the operators in the superalgebra, and the
original idea of merging them with the external symmetries fails. They can appear
if one further extends the algebra with more sets of Majorana spinor charges
Qn
a where n = 1, ...N . These theories are called N > 1 supersymmetries, but

introduces an extensive number of extra particles that are difficult to reconcile
with experiment.

2.2 Superfields

The fields we are familiar with from the Standard Model live in Minkowski space
and are objects that transform under the Poincaré and gauge transformations. In
supersymmetry, it is conventient to replace these fields with superfields Φ, that
transform under supersymmetry transformations, and are functions of superspace.
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Table 2.1: The component fields of a general superfield Φ(x, θ, θ̄), and
their degrees of freedom.

Component field Type Degrees of freedom

f(x),m(x), n(x) Complex (pseudo) scalars 2
ψA(x), φA(x) Left-handed Weyl spinors 4

χ̄Ȧ(x), λ̄Ȧ(x) Right-handed Weyl spinors 4
Vµ(x) Lorentz four-vector 8
d(x) Complex scalar 2

Table 2.2: The component fields of a left-handed scalar superfield Φ(y, θ),
and their degrees of freedom.

Component field Type Degrees of freedom

A(y), F (y) Complex scalars 2
ψA(y) Left-handed Weyl spinor 4

Superspace is a manifold spanned by spacetime xµ and four additional anti-
commuting Grassmann numbers θ and θ̄,

zπ = (xµ, θA, θ̄Ȧ), (2.8)

with A = 1, 2 and Ȧ = 1̇, 2̇.
A general superfield can be expanded in a power series of θ and θ̄,

Φ(x, θ, θ̄) = f(x) + θAφA(x) + θ̄Ȧχ̄
Ȧ(x) + θθm(x) + θ̄θ̄n(x)

+ θσµθ̄Vµ(x) + θθθ̄Ȧλ̄
Ȧ(x) + θ̄θ̄θAψA(x) + θθθ̄θ̄d(x),

(2.9)

where the series terminate due to the anti-commuting properties of the Grassmann
numbers. Here, σµ = (12×2, σ

i), with σi being the Pauli matrices. The properties
of the component fields in eq. (2.9) are found in table 2.1, and are deduced from
the requirement of Φ being a Lorentz (pseudo) scalar, as this makes Φ invariant
under Lorentz transformations.

In order to represent particles with the superfields, we need both scalar and
vector superfields, to be defined shortly. The superfield in eq. (2.9) contains too
many degrees of freedom to represent only the known fermions and bosons of
the Standard Model, and is how the supersymmetric partners — the sparticles —
enter the theory.

Due to the commutation of the supersymmetry operators Q and Q† with the
operators of the gauge transformations, all component fields of the same superfield
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Table 2.3: The component fields of a general vector superfield V (x, θ, θ̄),
and their degrees of freedom.

Component field Type Degrees of freedom

f(x), d(x) Real scalar fields 1
φA(x), λA(x) Left-handed Weyl spinors 4
m(x) Complex scalar field 2
Vµ(x) Real Lorentz four-vector 4

must be equally charged under each of the three Standard Model gauge groups. As
the supersymmetry operators also commute with the squared momentum operator
P 2 = PµP

µ, particles originating from the same superfield are also initially equal
in mass. As none of the supersymmetric particles have been discovered, they must
be heavier than their Standard Model partners, and supersymmetry is therefore a
broken theory. The supersymmetry breaking will be discussed in section 2.4.

2.2.1 Scalar superfields

A superfield Φ is defined to be a scalar superfield if

D̄ȦΦ(x, θ, θ̄) = 0 (left-handed), (2.10)
DAΦ†(x, θ, θ̄) = 0 (right-handed), (2.11)

where we have introduced covariant supersymmetry invariant derivatives,

DA = ∂A + i(σµθ̄)A∂µ, (2.12)
D̄Ȧ = −∂Ȧ − i(θσ

µ)Ȧ∂µ, (2.13)

where ∂A = ∂/∂θA.
We observe that a coordinate change yµ = xµ + iθσµθ̄ simplifies D̄Ȧ, namely

D̄Ȧ = −∂Ȧ. This impacts the left-handed scalar fields, as no dependence upon θ̄
can occur in the new set of coordinates. Hence, we can write a general left-handed
scalar superfield as

Φ(y, θ) = A(y) +
√

2θψ(y) + θθF (y), (2.14)

where the properties of the component fields are listed in table 2.2. By undoing
the coordinate change, we can see that the field F (x) is auxillary as it has no
derivatives, and can be eliminated after applying the equations of motion in
eq. (1.2). They also eliminate two of the four fermion degrees of freedom from
the Weyl spinor. Hence, from a left-handed scalar superfield we get one complex
scalar and one left-handed Weyl fermion, giving a total of two fermionic and two
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bosonic degrees of freedom. The same procedure can be followed for right-handed
superfields, with the coordinate change yµ = xµ − iθσµθ̄, giving one right-handed
Weyl fermion and one complex scalar.

As seen in eq. (1.30), a Weyl spinor on its own cannot describe a Dirac fermion.
To do this, we combine the left-handed Weyl spinor ψA and the right-handed
Weyl spinor χ̄Ȧ to the Dirac spinor ψa as

ψa =

(
ψA
χ̄Ȧ

)
. (2.15)

Therefore, when finding a representation of Dirac fermions in section 2.5.1, we
construct it from the Weyl spinor from one left-handed scalar superfield Φi, and
the Weyl spinor from a different right-handed scalar superfield Φ†j. Constructing
the Dirac fermion from the Weyl spinor from Φi and Φ†i , would give a Majorana
fermion.

2.2.2 Vector superfields

A superfield Φ is defined to be a vector superfield if

Φ(x, θ, θ̄) = Φ†(x, θ, θ̄), (2.16)

and this affects what type of component fields we have in the vector superfield.
Comparing the two sides of eq. (2.16), we find that they must be as listed in table
2.3. Some of the remaining auxillary degrees of freedom in the vector superfield
is removed in the so-called Wess–Zumino gauge, which is a certain choice of
superfield gauge transformation of the vector superfield V , generally defined as

V ′(x, θ, θ̄) = V (x, θ, θ̄) + i(Λ(x, θ, θ̄)− Λ†(x, θ, θ̄)), (2.17)

where Λ(x, θ, θ̄) is a scalar superfield. In this gauge, the vector superfield then
takes the form

VWZ(x, θ, θ̄) = (θσµθ̄)[Vµ(x) + i∂µ(A(x)− A∗(x))]

+ θθθ̄λ̄(x) + θ̄θ̄θλ(x) + θθθ̄θ̄d(x),
(2.18)

where A is a complex scalar field from Λ.1

After the equations of motions are applied, and all redundant degrees of
freedom are eliminated, a vector field gives us one left-handed Weyl spinor λA,
the hermitian conjugate right-handed Weyl spinor λ̄Ȧ, and one massless vector
boson Vµ, and we are also here left with two fermionic and two bosonic degrees of
freedom.

1The remaining ordinary gauge degree of freedom is found in the imaginary part of A.
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2.3 The supersymmetric Lagrangian
Not surprisingly, we want to construct a Lagrangian that is invariant under the
supersymmetry transformations generated by Qa. As we have seen in chapter 1,
the action is invariant if the Lagrangian changes by a total derivative. It can be
shown that the highest order component fields (in θ and θ̄) of a superfield always
have this property [18]. The following redefinition of the action integral isolates
the highest order component fields, and therefore guarantees invariance

S =

∫
R

d4x

∫
d4θ L. (2.19)

The integration over the four Grassmann numbers has a projecting effect, where
only the highest order component fields in θ and θ̄ give contributions to the
integral.

For the theory to be renormalizable, we can have at most three powers of scalar
superfields [19], and since the action must be real, the most general expression
for a supersymmetric invariant Lagrangian with scalar superfields is restricted to

L = Φ†iΦi + θθW [Φ] + θ̄θ̄W [Φ†], (2.20)

where Φ†iΦi is the kinetic term2 and W [Φ] is the superpotential

W [Φ] = giΦi +mijΦiΦj + λijkΦiΦjΦk, (2.21)

where the tadpole term has coupling gi, the mass term mij and the Yukawa term
λijk. The dimensions of the couplings can be derived from the fact that the action
is dimensionless, and we find that [gi] = [M2], [mij] = [M ], [λijk] = 1.

2.3.1 Supersymmetric gauge theories

As supersymmetric theories are usually extensions of the Standard Model, they
must reproduce its field content and interactions. Therefore, supersymmetric
theories must also be gauge theories.

We start by defining a local (super) gauge transformation on a left-handed
scalar superfield Φ in the following way3

Φi → Φ′i = e−iqiΛ
aTa

Φi, (2.22)

where qi is the charge of Φi under the gauge group, T a are the group generators,
and Λa = Λa(x, θ, θ̄) are the parameters of the transformation. As the transformed

2And in fact a vector field, since (Φ†iΦi)
† = (Φ†iΦi).

3We have already given the non-abelian (super) gauge transformation for a vector superfield
in eq. (2.17).
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field Φ′i must also be a left-handed superfield, i.e. D̄ȦΦ′i = 0, it follows that the
Λa must be too.

Gauge invariance must also be satisfied by the superpotentialW [Φ], restricting
the allowed couplings in the superpotential. For the kinetic term to be invariant,
we must introduce gauge compensating vector superfields V a, transforming under
supersymmetry transformations in such a way that the gauge invariance is fulfilled.
The coupling of scalar and vector superfields is introduced into the kinetic terms
of the Lagrangian by writing them as

Φ†ie
qiV

aTa

Φi. (2.23)

The kinetic term after a gauge transformation of Φi → Φ′i is now

Φ†eiqiΛ
†aTa

eqiV
′aTa

e−iqiΛ
aTa

Φi, (2.24)

which is gauge invariant given that the vector field transforms according to4

eqiV
′aTa

= e−iqiΛ
a†Ta

eqiV
aTa

eiqiΛ
aTa

. (2.25)

This procedure reproduces the Standard Model couplings between fermions
and bosons for the component fields.

In order to write down the complete (supersymmetric) Lagrangian, we lack
the gauge field strengths. These interactions can be covered through the gauge
invariant traces Tr[WAWA] and Tr[W̄ ȦW̄Ȧ], where the left-handed superfield WA

is given by

WA = −1

4
D̄D̄e−V

aTa

DAe
V aTa

. (2.26)

From the above arguments, the most general form of a gauge invariant supersym-
metric Lagrangian can be written

L = Φ†ie
qiV

aTa

Φi + θ̄θ̄W [Φ] + θθW [Φ†] +
1

2T (R)
θ̄θ̄Tr[WAWA]. (2.27)

Here, T (R) is the so-called Dynkin index, a numerical factor included to ensure
correct energy densities of the gauge fields. It is related to the representation R
of the gauge group, and the generators are normalized by the relation

Tr[T a, T b] = T (R)δab. (2.28)

2.4 Supersymmetry breaking
As the supersymmetric particles remain undiscovered, supersymmetry must be
a broken theory. Just as properties of the vacuum provide masses to the gauge

4The expression in eq. (2.17) is the special case of eq. (2.25) for non-abelian gauge fields.
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bosons in the Standard Model, we seek to construct a similar mechanism by
which the supersymmetric masses can be driven upwards. In other words, we
assume spontaneous symmetry breaking to be the breaking mechanism also in
supersymmetry.

From the complete scalar potential,5 including also contributions from gauge
interactions and vector superfields,

V (Ai, A
∗
i ) =

n∑
i=1

∣∣∣∣∂W [A1, ..., An]

∂Ai

∣∣∣∣2 +
1

2

∑
a

g2
a(A

∗T aA)2 > 0, (2.29)

we want to break the SU(2)L × U(1)Y symmetry. Unfortunately, spontaneous
supersymmetry breaking is hard to make work in practice, due to a property of
the supertrace. The supertrace is effectively the difference between the (squared)
scalar and fermionic masses, and can be proven to vanish (at tree level) [20]. The
physical consequence of the vanishing supertrace is that only some of the scalar
partners can be heavier than the known fermions — but not all of them.

To solve this problem, the assumption is made that spontaneous supersymme-
try breaking originates at some high energy scale inaccessible to us, before it is
mediated down to our scale by some unknown mechanism, leaving particles at
high scale to fulfill the supertrace requirement. One of the suggested mechanisms
leads to the model of minimal supergravity, to be discussed in section 2.7.1. To
paramterize our ignorance of the true spontaneous symmetry breaking, we simply
add certain breaking terms into the Lagrangian explicitly, under the name soft
terms. They are terms which do not introduce new quadratic6 divergencies in
loop contributions to scalar masses. Written in terms of component fields, the
possible allowed soft terms are7

Lsoft = − 1

2
Miλ

A
i λiA +

(
1

6
aijkAiAjAk +

1

2
bijAiAj + tiAi

)
+ c.c.

−m2
ijA
∗
iAj.

(2.30)

As the soft terms include a gaugino massM for each gauge group, and scalar mass
terms m2

ij and bij , these may drive the gaugino and sfermion masses upwards. We
will later see that the soft terms are responsible for most of the parameters in
supersymmetric models.

5The scalar potential are those terms of the Lagrangian with no derivatives, holding only
scalar fields.

6Or worse.
7We have here omitted a type of term that might be soft, − 1

2cijkA
∗
iAjAk + c.c., depending

on the gauge structure of the model.
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2.5 The minimal supersymmetric Standard Model
The minimal supersymmetric Standard Model (MSSM) introduces the minimal
number of superfields needed in order to recover all the known particles and
interactions of the Standard Model. Based on the previous sections of this
chapter, we now go on constructing the MSSM Lagrangian and find its particle
content.

2.5.1 Field content

To construct a Dirac fermion, we need one left-handed and one right-handed Weyl
spinor from two different scalar superfields, as argued in section 2.2.1. They give
us the four degrees of freedom required by a Dirac fermion and its anti-particle.
As each of the scalar superfields also contain a (complex) scalar component field,
we gain two scalar particle anti-particle pairs in constructing the Dirac fermion.
These are known as sfermions and are the superpartners of the Dirac fermions.

Similar to the multiplets of quantum fields in the Standard Model, we now put
superfields in supermultiplets, to be acted upon by the relevant gauge symmetry
group. For the leptons we introduce three SU(2)L superfield doublets and singlets

Li =

(
νi
ei

)
and Ēi, (2.31)

for each generation i = 1, 2, 3. The bar is not to be confused with a conjugate field,
it is simply a part of the singlet name. From these superfields8 we recover the
known Standard Model leptons, in addition to their spin-0 superpartners — the
sleptons.

Similar, for the three generations of up- and down-type quarks, we introduce

Qi =

(
ui
di

)
, Ūi and D̄i, (2.32)

and from this we recover all the known Standard Model quarks, and their spin-0
superpartners — the squarks.

For the Standard Model gauge bosons we must introduce twelve vector super-
fields, for the generators of the SM gauge groups. They are

Ca, W i, B0, (2.33)

from the gauge groups SU(3)C , SU(2)L and U(1)Y , respectively. From this we
recover the SM spin-1 gauge bosons W±, Z and γ from the mixing between the
vector fields in W i and B0. In addition we gain their fermionic supersymmetric
partners. The gluinos, g̃a, come from the Weyl spinors of Ca, the winos, W̃ i, from

8And their conjugate fields.
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the Weyl spinors of W i and the bino, B̃0, from the Weyl spinor of B0. They are
gauge eigenstates, and in section 2.6.3 we will see how they mix into observable
mass eigenstates, knwon as the charginos and neutralinos.

In order to give masses to both up-, and down-type leptons,9 we need to
introduce two Higgs SU(2)L doublets. As seen in section 1.6, the up-type fermions
of the Standard Model are given mass through a rotation of the Higgs field using
one of the generators of the SU(2)L gauge group. The same trick can not be
applied now, as the construction generating the mass of up-type quarks relies
on the term −i(H†σ2)T . With H being a superfield, this would mix left- and
right-handed superfields in the superpotential. Hence, we must introduce one
SU(2)L doublet generating the up-type masses, and another for the down-type
masses. They must have opposite hypercharge Y = ±1 due to the need of anomaly
cancellation, which ensures gauge invariance also at loop level.10 Hence, the two
Higgs doublets are composed of four scalar superfields H+

u , H
0
u, H

0
d and H−d in the

following way

Hu =

(
H+
u

H0
u

)
, Hd =

(
H0
d

H−d

)
, (2.34)

where the indices indicate what quark type they give mass to.
The doublets extend the Higgs sector of the Standard Model, as they predict

a total of five Higgs bosons after giving mass to the gauge bosons, in addition to
their fermionic superpartners known as higgsinos. We return to the Higgs bosons
in section 2.6.1, and treat the higgsinos in section 2.6.3.

All Standard Model superpartners and the extended Higgs sector predicted
by the MSSM are given in table 2.4.

2.5.2 The Lagrangian

With the field content of the MSSM defined, we can construct the kinetic terms
of the Lagrangian, describing the interactions between matter and gauge particles.
For readability, we will abbreviate λaCa to λC etc. The kinetic terms of eq. (2.27)
are then

Lkin = L†e
1
2
gσW− 1

2
g′BL+Q†e

1
2
gsλC+ 1

2
gσW+ 1

3
1
2
g′BQ

+ Ū †e
1
2
gsλC− 4

3
1
2
g′BŪ + D̄†e

1
2
gsλC+ 2

3
1
2
g′BD̄

+ Ē†e2 1
2
g′BĒ +H†ue

1
2
gσW+ 1

2
g′BHu +H†de

1
2
gσW− 1

2
g′BHd.

(2.35)

The normalized gauge terms of supersymmetric field strengths are

LV =
1

2
Tr
[
WAWA

]
θ̄θ̄ +

1

2
Tr
[
CACA

]
θ̄θ̄ +

1

4
BABAθ̄θ̄ + h.c., (2.36)

9Ignoring the question of neutrino masses.
10This happens automatically in the Standard Model due to its field content, but is no longer

valid in the MSSM as the content has changed.
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Table 2.4: The gauge and mass eigenstates of the MSSM sparticles, in
addition to the extended Higgs sector of the SM.

Name Spin PR Gauge eigenstates Mass eigenstates

Higgs bosons 0 +1 H+
u H0

u H
−
d H0

d h0 H0 A0 H±

Squarks 0 −1
ũL ũR d̃L d̃R ũL ũR d̃L d̃R

s̃L s̃R c̃L c̃R s̃L s̃R c̃L c̃R

t̃L t̃R b̃L b̃R t̃1 t̃2 b̃1 b̃2

Sleptons 0 −1
ẽL ẽR ν̃e ẽL ẽR ν̃e

µ̃L µ̃R ν̃µ µ̃L µ̃R ν̃µ

τ̃L τ̃R ν̃τ τ̃1 τ̃2 ν̃τ

Neutralinos 1/2 −1 B̃0 W̃ 0 H̃0
u H̃

0
d χ̃0

1 χ̃
0
2 χ̃

0
3 χ̃

0
4

Charginos 1/2 −1 W̃± H̃+
u H̃−d χ̃±1 χ̃±2

Gluino 1/2 −1 g̃ g̃

where the field strengths are given by

BA = −1

4
D̄D̄DAB, B =

1

2
g′B0, (2.37)

WA = −1

4
D̄D̄e−WDAe

W , W =
1

2
gσaW a, (2.38)

CA = −1

4
D̄D̄e−CDAe

C , C =
1

2
gsλ

aCa. (2.39)

Having defined the kinetic terms and field strengths of the Lagrangian, what
remains is to identify the gauge invariant terms of the superpotential from
eq. (2.21). Since none of the superfields of the MSSM in eq. (2.35) are singlets
under all gauge groups, no tadpole terms are allowed in the superpotential.
Furthermore, to preserve U(1)Y gauge invariance, the mass terms need Yi+Yj = 0
and the Yukawa terms need Yi + Yj + Yk = 0, where Yi is the hypercharge of the
superfield. This reduces the number of possible superfield combinations, and the
only allowed superpotential terms are

LW = µHuHd + µ′LiHu + yeijLiHdĒj + yuijQiHuŪj + ydijQiHdD̄j

+ λijkLiLjĒk + λ′ijkLiQjD̄k + λ′′ijkŪiD̄jD̄k.
(2.40)

We have here contracted the superfield doublets, e.g. HuHd, as shorthand for
HT
u iσ

2Hd, since this construction preserves SU(2)L gauge invariance.
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The total MSSM Lagrangian can then be expressed as

LMSSM = Lkin + LV + Lsoft + LW . (2.41)

2.5.3 R-parity

The terms LiHu, LiLjĒk and LiQjD̄k of the superpotential in eq. (2.40), violate
lepton number conservation, while ŪiD̄jD̄j violates baryon number conservation,
and together they allow for phenomenological inconsistencies such as rapid proton
decay. As such decays have never been observed, the lifetime of a proton has a
known lower limit of ∼ 1033 years [13] This puts heavy restrictions on the values
of some of the couplings in the superpotential. To avoid all such couplings — and
hence remove the terms mentioned at the beginning of this section — R-parity
conservation was introduced by Fayet in in 1975 [21], where he defined a new
multiplicative quantum number PR as

PR = (−1)2s+3B+L. (2.42)

Here, s is the particle spin, B is the baryon number and L is the lepton number.
This means all Standard Model particles have PR = 1, while all supersymmetry
particles have PR = −1. Note that the two Higgs doublets extend the Higgs sector
of the Standard Model, as all five Higgs bosons have PR = 1.

Conservation of R-parity has some important phenomenological consequences.
The lightest supersymmetric particle (LSP) must be stable, and every other
supersymmetric particle must decay into the LSP, often through so-called decay
cascades via other sparticles. Further, supersymmetric particles from collider
experiments must be pair produced, as they originate from Standard Model
particles with PR = 1.

2.5.4 Supersymmetry breaking terms

Gauge invariance and R-parity conservation also restricts what soft terms from
eq. (2.30) are allowed in the MSSM Lagrangian. Written in component fields,
they are

Lsoft =− 1

2

(
M1B̃

0B̃0 +M2W̃
iW̃ i +M3g̃

ag̃a
)

+ c.c.

−
(
aeijL̃iHdẽ

∗
jR + auijQ̃iHuũ

∗
jR + adijQ̃iHdd̃

∗
jR

)
+ c.c.

− (mL
ij)

2L̃†i L̃j − (mQ
ij)

2Q̃†iQ̃j

− (me
ij)

2ẽ∗iRẽjR − (mu
ij)

2ũ∗iRũjR − (md
ij)

2d̃∗iRd̃jR

−m2
Hu
H†uHu −m2

Hd
H†dHd − (bHuHd + c.c.).

(2.43)
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Removing all the freedom we can from the MSSM Lagrangian in terms of the
field redefinitions, we are left with 105 new parameters, in addition to those of
the Standard Model. All of them origin from the soft terms above, except the
higgsino mass parameter µ from the superpotential in eq. (2.40).

The soft terms of eq. (2.43) give the main contribution to the sparticle masses,
and are responsible for driving them above their Standard Model partners’.

2.5.5 Gauge coupling unification

In section 1.1.1, we introduced renormalization as a way to remove infinities
from quantum field calculations. The prize to pay for a finite theory, was the
introduction of a scale µ, at which the parameters of the Lagrangian are defined.11

As the scale is not a physical measurable quantity, but simply a choice of how
we define our theory, the action should be invariant under a change of µ. This
invariance is expressed in terms of the renormalization group equation (RGE):(

µ
∂

∂µ
+ µ

∂λ

∂µ

∂

∂λ

)
S(ZΦ, λ, µ) = 0, (2.44)

where λ are the couplings (from the superpotential) of the theory and ZΦ represent
the renormalized superfields.12 From this, we define the β-function, controlling
how the couplings behave away from the energy where they were defined

βλ ≡
∂λ

∂t
, (2.45)

with t = lnµ.
Taking the MSSM field content and its three couplings,

g1 =

√
5

3
g′, g2 = g, g3 = gs, (2.46)

it can then be showed that the one-loop β-functions of the inverse coupling
constants α−1

i ≡
g2i
4π

are

βα−1
i

= − bi
2π
, (2.47)

where in the MSSM, bi = (33
5
, 1,−3). This means the strong interaction strength

decreases as we go to higher scales, while the weak and hypercharge increase. In
the MSSM, the inverse couplings α−1

i unite at ∼ 1016 GeV, the so-called GUT
scale, as illustrated in figure 2.1 (left).

11This is not to be confused with the Higgs mass parameter in the superpotential.
12The coupling constants of the superpotential do not need renormalization in unbroken

SUSY [22].
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Figure 2.1: Left: evolution of the gauge couplings with energy in the
Standard Model (dashed) and in supersymmetry (solid). Right: Soft masses
and their evolution with energy in the MSSM. Both illustrations taken
from [23].

Assuming GUT-unification of the couplings, g1 = g2 = g3 = gu, in addition to
a common gaugino mass M1 = M2 = M2 = m1/2 at the same scale, the following
ratio between the gaugino masses at 1 TeV can be showed to hold at all scales (at
one-loop),

M3 : M2 : M1 = 6 : 2 : 1. (2.48)

2.5.6 Radiative electroweak symmetry breaking

In the Standard Model, the gauge bosons gain mass through the electroweak
symmetry breaking (EWSB), as described in section 1.6. It is induced by the shape
of the Higgs scalar potential V (Φ) in eq. (1.36), and the requirement for breaking
was λ > 0 and µ2 < 0, to ensure the potential is bounded from below, and that
the Higgs field has a vev, respectively. Rather than putting this mechanism in by
hand, supersymmetry gives an explanation to why it occurs, through the RGE
equation and running of the Higgs masses mHu and mHd

.
From eq. (2.29), the MSSM scalar potential for the scalar Higgs component

fields (not superfields) is

V (Hu, Hd) = |µ|2(|H0
u|2 + |H+

u |2 + |H0
d |2 + |H−d |

2)

+
1

8
(g2 + g′2)(|H0

u|2 + |H+
u |2 − |H0

d |2 − |H−d |
2)2

+
1

2
g2|H+

u H
0∗
d +H0

uH
−∗
d |

2

+m2
Hu

(|H0
u|2 + |H+

u |2) +m2
Hd

(|H0
d |2 + |H−d |

2)

+ (bH+
u H

−
d − bH

0
uH

0
d + c.c.).

(2.49)
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Here, the first line comes from so-called D-terms from the first part of eq. (2.21),
the second line from F -terms from the second part, while the three last lines have
their origin in the soft breaking terms.

Just like in the Standard Model, we now seek to use the shape of the potential
to break the SU(2)Y × U(1)Y symmetry in order to provide the fermion and
gauge boson masses while keeping U(1)em. To do this, eq. (2.49) must fulfill the
following three requirements:

i) the potential must have a minimum for finite, i.e. non-zero, field values,

ii) the minimum must have a remaining U(1)em symmetry,

iii) the potential must be bound from below.

We will restrict our analysis to tree-level, ignoring loop effects on the potential.
As we have a gauge invariant theory, we are free to use the SU(2)L gauge
transformation to rotate away any field value of H+

u at the minimum of the
potential, preventing it from having a possible vev. Without loss of generality,
we therefore put H+

u = 0. Further, since ∂V/∂H+
d = 0 in the minimum, this

implies H−d = 0 when H+
d = 0. Hence, the charged fields cannot have vevs in

the minimum, and electromagnetism is unbroken as required in ii). With these
changes, the potential can be written

V (H0
u, H

0
d) = (|µ|2 +m2

Hu
)|H0

u|2 + (|µ|2 +m2
Hd

)|H0
d |2

+
1

8
(g2 + g′2)(|H0

u|2 − |H0
d |2)2 − (bH0

uH
0
d + c.c.)

(2.50)

The parameter b can be taken to be real and positive, as we can absorb a phase in
H0
u or H0

d . For the b-term to give a maximal negative contribution, H0
uH

0
d must

be real and positive in the minimum. This means the vacuum expectation values
vu and vd of H0

u and H0
d , respectively, must have opposite phases. However, we

use our U(1)Y gauge freedom to transform vu and vd to both be real and of same
sign.

For the potential to have a minimum for non-zero field values, we need negative
mass terms. This is now fulfilled by eq. (2.50) if

b2 > (|µ|2 +m2
Hu

)(|µ|2 +m2
Hd

). (2.51)

For the potential to be bound from below also outside the vacuum, usually
dominated by the H4 terms, we need to take care of the situation |H0

u| = |H0
d |,

which will require
2b < 2|µ|2 +m2

Hu
+m2

Hd
. (2.52)

Negative values of m2
Hu

or m2
Hu

help satisfy eqs. (2.51) and (2.52), but do
not guarantee EWSB. Assuming a common mass mHu = mHd

at some high
scale, e.g. the GUT scale ∼ 1016 GeV, these two inequalities can not be satisfied
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simultaneously at that scale. However, both m2
Hu

and m2
Hd

run down with energy,
to an extent determined by the Yukawa couplings yt and yb of the top and bottom
quarks, respectively. As yt � yb, m2

Hu
runs down much faster than m2

Hd
, and

may in fact become negative as we go to the electroweak scale, as illustrated in
figure 2.1 (right). If we also have that m2

Hu
∼ |µ|2, the first term of eq. (2.51)

is zero and automatically fulfilled, which means we only have to make sure
that 2b < |µ|2 + mHd

. This is called radiative electroweak symmetry breaking
(REWSB), and is caused by the soft terms of the MSSM Lagrangian. This is in
contrast to the Standard Model, where the breaking must be put in by hand.

The two vacuum expectation values are related to the masses of the Standard
Model vector bosons by

v2
u + v2

d = v2 =
2m2

Z

g2 + g′2
≈ (246 GeV)2. (2.53)

This relation can be used to define one free parameter from the two Higgs vevs,

tan β ≡ vu
vd
, (2.54)

where by convention 0 < β < 2π. Hence the Higgs scalar potential of the MSSM
has four real parameters; b, µ,m2

Hu
and m2

Hd
. By the property

∂V/∂H0
u = ∂V/∂H0

d = 0 (2.55)

at the minimum, we can eliminate b and |µ| as free parameters, however, not the
sign of µ. This means we can parametrize the scalar MSSM Higgs sector with

tan β,m2
Hu
,m2

Hd
, sgn(µ). (2.56)

Alternatively we may eliminate m2
Hu

and m2
Hd
, keeping b and µ. It is then

common to trade b against m2
A = 2b/ sin 2β, where mA is the mass of the Higgs

pseudo scalar.

2.6 Sparticle masses and phenomenology

2.6.1 The extended Higgs sector

The MSSM predicts five Higgs bosons from the two Higgs supermultiplets.13

Three of the eight degrees of freedom in the scalar potential in eq. (2.49) are
absorbed into W± and Z0 as they turn massive. The five remaining form two
neutral scalars h,H, two charged scalars H±, and one neutral pseudo-scalar A.

13In addition, the supermultiplets also contain a total of four higgsinos, H̃0
u, H̃

+
u , H̃

0
d , H̃

−
d .
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At tree level, the Higgs masses are

m2
A =

2b

sin 2β
= 2|µ|2 +m2

Hu
+m2

Hd
, (2.57)

m2
h,H =

1

2

(
m2
A +m2

Z ∓
√

(m2
A −m2

Z)2 + 4m2
Zm

2
A sin2 2β

)
, (2.58)

m2
H± = m2

A +m2
W . (2.59)

From this we see that H,H± and A are all in principle unbound in mass, since
they grow as b/ sin 2β. The lightest Higgs boson h, however, is restricted from
(2.58) to have a tree-level mass

mh < mZ | cos 2β|. (2.60)

Unfortunately, this is not in accord with the experimental measurements of the
Higgs mass ofmh ' 125 GeV. To the rescue comes large loop corrections, otherwise
the MSSM would have been excluded already. The dominant corrections come
from scalar top (stop) and top quark loops, due to their large Yukawa couplings,
given in eq.(B.25). Taking these, and other corrections into consideration, the
bound on mh is weaker,

mh ≤ 135 GeV, (2.61)

when assuming a common sparticle mass mSUSY ≤ 1 TeV. The bound is not very
sensitive to higher values of the sparticle mass scale mSUSY due to a logarithmic
dependence in the correction term, and is weakened very little as mSUSY increases.
However, the larger the sparticle masses, the larger the fine-tuning, a topic we
will discuss in chapter 3.

2.6.2 Sfermions and gluinos

The soft terms of the MSSM Lagrangian give multiple contributions to the sfermion
masses. For the two first generations, many of the contributions are negligible
due to small Yukawa couplings. To avoid flavour changing neutral currents from
the soft terms, the mass matrix must to a good approximation be diagonal. The
sfermion masses are

m2
F = m2

F,soft + ∆F , (2.62)

where mF,soft are contributions from the soft terms on the form −m2F̃ †i F̃i and
−m2f̃ ∗iRf̃iR, and ∆F = (I3g

2 − Y g′2)(v2
d − v2

u). The isospin I3 and hypercharge Y
belong to the left-handed supermultiplet from which the sfermion originates.

The third generation of sfermions t̃, b̃ and τ̃ are slightly more complicated, as
they receive a larger number of non-negligible contributions due to their large
Yukawa and trilinear couplings. Taking the stop as an example, the mass term of
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the Lagrangian is given as

Lt̃ = −(t̃∗L t̃
∗
R)M2

t̃

(
t̃L
t̃R

)
, (2.63)

where we have that

M2
t̃ =

(
m2
Q3

+m2
t + ∆ũL v(a∗t sin β − µyt cos β)

v(at sin β − µ∗yt cos β) m2
u3

+m2
t + ∆ũR

)
. (2.64)

The particle masses can be found by diagonalizing M2
t̃
, writing it in terms of

the mass eigenstates t̃1 and t̃2, mixing with the gauge eigenstates t̃L and t̃R.
By convention, mt̃1 < mt̃2 . The mass matrices for b̃ and τ̃ both have the same
structure.

The gluino is a color octed Majorana fermion, and has nothing to mix with in
the MSSM. The tree-level mass of the gluino is therefore simply given by the soft
term M3. As the gluino interacts strongly, M3(µ) runs quickly with energy. It is
therefore useful to talk about the scale-independent pole-mass. Including effects
of gluon exchange and squark loops to one-loop order, it is given by

mg̃ = M3(µ)

[
1 +

αs
4π

(
15 + 6 ln

µ

M3(µ)
+
∑
all q̃

Aq̃

)]
, (2.65)

where Aq̃ is the first order squark loop corrections,

Aq̃ =

∫ 1

0

x ln

(
x
m2
q̃

M2
3

+ (1− x)
m2
q

M2
3

− (1− x)− iε
)

dx. (2.66)

The gluino mass is therefore mainly driven by the M3 gaugino soft mass, but is
also dependent upon the squark masses from the loop corrections.

2.6.3 Charginos and neutralinos

Due to electroweak symmetry breaking, we get mixing between the electroweak
gauginos W̃ i, B̃0 and the higgsinos H̃+

u , H̃
0
u, H̃

0
d , H̃

−
d from the Higgs doublets. The

remaining U(1)em symmetry only allows fields of equal charge to mix, and the
mass eigenstates of the allowed mixings give us what is known as charginos and
neutralinos.

The neutral gauginos mix with the neutral higgsinos to form four neutral
mass eigenstates χ̃0

i — the neutralinos. We can define a vector χ̃0 in the gauge
eigenstate basis

χ̃0 =


B̃0

W̃ 0

H̃0
d

H̃0
u

 , (2.67)
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with the relevant mass terms in the Lagrangian

Lχ̃0 = −1

2
(χ̃0)TMχ̃0χ̃0 + c.c., (2.68)

where the mass matrix Mχ̃0 is given as

Mχ̃0 =


M1 0 − 1√

2
g′vd

1√
2
g′vu

0 M2
1√
2
gvd − 1√

2
gvu

− 1√
2
g′vd

1√
2
gvd 0 −µ

1√
2
g′vu − 1√

2
gvu −µ 0

 . (2.69)

We recognize the M1 and M2 gaugino mass parameters from the soft breaking
terms, and the higgsino mass parameter µ from the superpotential.

The neutralino mass eigenstates χ̃0
i and their corresponding masses mχ̃0

i
are

found by diagonalizing the mass matrix by a unitary matrix N such that

N∗MN−1 = diag(mχ̃0
1
,mχ̃0

2
,mχ̃0

3
,mχ̃0

4
). (2.70)

The mass eigenstates are then given by

χ̃0
i = Ni1B̃

0 + Ni2W̃
0 + Ni3H̃

0
d + Ni4H̃

0
u. (2.71)

As with the stops, the labels i = 1, 2, 3, 4 describe the neutralinos by increasing
mass.

An interesting limit is whenmZ � |µ±M1|, |µ±M2| and whenM1 < M2 � |µ|,
as argued for GUT motivated models in eq. (2.48). The neutralinos can here be
approximated as

χ̃0
1 ≈ B̃0,

χ̃0
2 ≈ W̃ 0,

χ̃0
3,4 ≈

1√
2

(
H̃0
u ± H̃0

d

)
.

(2.72)

The charged gauginos, W̃± = 1√
2
(W̃ 1 ∓ iW̃ 2), mix with the charged higgsinos

forming the mass eigenstates known as charginos. Again, we can write the gauge
eigenstate basis as

χ̃± =


W̃+

H̃+
u

W̃−

H̃−d

 , (2.73)

with the corresponding Lagrangian mass terms

Lχ̃± = −1

2
(χ̃±)TMχ̃±χ̃

± + c.c, (2.74)
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where the mass matrix is given by

Mχ̃± =


0 0 M2 gvd
0 0 gvu µ
M2 gvu 0 0
gvd µ 0 0

 . (2.75)

Taking the same limit as for eq. (2.72), the charginos can be approximated as

χ̃±1 ≈ W̃±

χ̃±2 ≈ H̃+
u /H̃

−
d .

(2.76)

This limit, and the stronger assumption in eq. (2.48) allows us to reach the
following usefull sparticle mass relations,

mχ̃±1
≈ mχ̃0

2
≈ 2mχ̃0

1
,

mg̃ ≈ 6mχ̃0
1
.

(2.77)

However, the table turns if we assume |µ| < |M1|, |M2|, as this gives χ̃0
1 ≈

H̃0
u/H̃

0
d , χ̃0

2 ≈ H̃0
u/H̃

0
d and χ̃±1 ≈ H̃+

u /H̃
−
d , while χ̃

±
2 ≈ W̃±.

2.7 GUT motivated supersymmetric models

2.7.1 Minimal supergravity

Perhaps the most studied — although not the best motivated — MSSM based
model is minimal supergravity (mSUGRA), also known as the constrained MSSM
(CMSSM). The constraint is manifest in the minimal number of free parameters,
making it relatively easy to study. The model assumes some gravity mechanism at
the Planck scaleMP ∼ 1018 GeV is responsible for the spontaneous supersymmetry
breaking. Motivated by the wish for unification at high scale, the 105 free
parameters of the MSSM are reduced to four, plus a sign. They are

m0,m1/2, tan β,A0, sgn(µ), (2.78)

where m0 is the common scalar soft mass, m1/2 the common gaugino soft mass,
tan β is the ratio of the Higgs vacuum expectation values, A0 is the common
trilinear coupling constant, and µ the Higgs superpotential mass parameter. All
parameters except tan β are defined at the GUT scale, and the RGE equations in
section 2.5.5 define the corresponding sparticle masses at low scale. An example
of their running from the GUT scale to electroweak scale can be seen in figure2.1.
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2.7.2 Non-universal Higgs mass

In mSUGRA, all soft scalar masses are described at the GUT scale by the universal
soft mass parameter m0, motivated by the need to suppress unwanted flavour
changing processes [24]. However, this motivation does not apply to the soft
breaking Higgs masses. This has been the inspiration behind more general forms
of mSUGRA, allowing for non-universal Higgs masses (NUHM) at the GUT scale.
In these models, the soft Higgs masses mHu and mHd

are free parameters.
In the NUHM1 model, the assumption is that they are non-universal by

the same amount, i.e. mHu = mHd
= mH , giving one extra parameter mH in

addition to those of mSUGRA. In the NUHM2 model, the Higgs masses are
allowed also to have an internal splitting, i.e. mHu 6= mHd

. From the conditions
for electroweak symmetry breaking in eqs. (2.51) and (2.52), we may trade the
GUT scale parameters mHu and mHd

with the weak scale values of µ and mA,
and we can parametrize NUHM2 by the set

m0,m1/2, tan β,A0, µ,mA. (2.79)

Certain choices of these parameters are well motivated by their low fine-tuning
and fulfillment of the sparticle and Higgs mass constraints, e.g. see [25]. This
framework is dubbed Radiatively-driven Natural Supersymmetry (RNS), as the
required value of m2

Hu
' −m2

Z at the weak scale is generated radiatively via
running from the GUT scale. This running of mHu can only be realized once its
GUT scale value is decoupled from the matter scalar masses m0.

We will return to the phenomenology of natural supersymmetry in section 3.3.
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Naturalness

Naturalness is a concept in physics concerning how comfortable we are with
accidental cancellations of physical quantitites. In the Standard Model, this
is relevant for the quantum corrections of the Higgs mass, as the theoretical
predicted mass is off by approximately 1016 orders of magnitude compared to
what is measured, being such magical cancellations. Concidering the Standard
Model alone, this is regarded unnatural, as it offers no explanation to why this
happens. In this chapter, we will first introduce the hierarchy problem of the
Higgs mass, before we explain why and how supersymmetry can protect it from
such cancellations. We then give the typical phenomenological consequences of a
natural supersymmetry model, before we quantify the naturalness in terms of the
so-called Barbieri–Giudice fine-tuning criteria.

3.1 The hierarchy problem in the Standard Model
The tree level mass term of the Higgs field h is present in the Standard Model
Lagrangian as

− µ2h†h, (3.1)

and its Feynman diagram representation can be seen in figure 3.1. Since the
Higgs field interacts with the other particles in the Standard Model, there is
an infinite number of diagrams with identical initial and final state as those in

h h

Figure 3.1: Tree level mass term og the Higgs particle.
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figures 3.2(a) and 3.2(b). They contribute to the same process, and are the loop
corrections to the Higgs mass. Their naïve mathematical evaluation gives infinity,
and regularization is necessary to parametrize these infinities. A cut-off scale Λ
can be introduced,1 a scale above which we expect the Standard Model to be
invalid. This is often taken to be the Planck scale at the order of MP ∼ 1018 GeV,
as we know gravitational effects are no longer negligible at this scale.

To leading order in Λ, the resulting Higgs mass is (see appendix B for detailed
calculations)

m2
h = µ2 + ∆m2

h

= µ2 +

(
λS

16π2
− |λf |

2

8π2

)
Λ2,

(3.2)

where the first correction comes from the scalar loop, and the second from the
fermion loop. This means the Higgs mass is quadratically sensitive to the scale
of where new physics takes over. From experiments the Higgs mass is known to
be ∼ 125 GeV [13], but the theoretical prediction seemingly wants to push it to
the order of 1018 GeV. This extreme disagreement between theory and experiment
is known as the hierarchy problem of the Standard Model, where the name refers
to the hierarchy of scales between the Planck scale and the electroweak scale.

For theory and experiment to agree, the terms of eq. (3.2) must cancel almost
completely. In terms of the Standard Model alone, this is regarded as improbable,
as the theory gives no mechanism or explanation to why these numbers are almost
identical. As we are about to see, supersymmetry does.

3.2 Solving the hierarchy problem with supersym-
metry

As we have seen in chapter 2, supersymmetry introduces a whole new range of
elementary particles, and the Higgs boson is accompanied by many other scalars.
The number of particles running in loops increases, and so does the number of
correction terms.

From eq. (3.2), we see that a cancellation to leading order in Λ means the
couplings must be related by λS = |λf |2, in addition to a factor of two in the scalar
correction. This is exactly what happens in unbroken supersymmetry. To see this,
we go back to the super- and scalarpotential of the MSSM Lagrangian, defined
in eqs. (2.21) and (2.29), respectively. From this we see that the superpotential
term λijkΦiΦjΦk contains terms with component fields of the form

W ∼ λijkψiψjAk, (3.3)

1But a dimensional regularization could also be done.

38



Naturalness

f

f

λf λf
h h

(a) Fermion loop with coupling λf .

S

λS

S

h h

(b) Scalar loop with coupling λS .

Figure 3.2: Fermion and scalar loop corrections to the Higgs mass.

which describe the interaction of a scalar particle Ak with two fermions ψi, ψj, as
in figure 3.2(a). From the scalar potential in eq. (2.29) we identify the following
term coming from the same superpotential term

V ∼
∣∣∣∣∂W [A]

∂Ai

∣∣∣∣2 = |λijk|2A∗jA∗kAjAk, (3.4)

which describes the interaction of two scalar fields Aj and Ak, illustrated in figure
3.2(b). Since both interactions come from the same superpotential term, it is
then clear that if we write |λijk|2 = λS, then λijk = λf , and we have the relation

λS = |λf |2, (3.5)

which was one of the two conditions needed for a cancellation to leading order in
Λ from eq. (3.2).

The remaining factor of two enters as every Standard Model fermion has two
superpartners, so there are twice as many scalar as fermionic degrees of freedom
running around in loops, see table 2.4. The cancellation of these quadratic
divergencies in the loop corrections to the Higgs mass2 holds to all orders in
perturbation theory in both broken and unbroken supersymmetry [23].

However, in broken supersymmetry there is a remaining logarithmic depen-
dency, see eq. (B.21),

λS
16π2

m2
S ln

(
Λ2

m2
S

)
, (3.6)

where mS is the scalar soft mass parameter, driving the scalar masses. We now
encounter what is called the little hierarchy problem. As the logarithmic correction
increases with increasing soft masses, the superpartner masses should be restricted
in order not to reintroduce the hierarchy problem.

2Or in fact, any scalar mass.

39



Chapter 3

In order to keep the cancellations fairly natural, it is often claimed that the
lightest superpartner masses should not be much greater than the TeV scale [23].
This provides a Higgs vev from the MSSM scalar potential in compliance with
the gauge boson masses mW and mZ , without suffering miraculous cancellations.

It should be noted that the historical motivation for developing supersymmetry
was not to solve the hierarchy problem. The fact that it does, is therefore even
more impressive.

3.3 Natural supersymmetry

Introducing supersymmetry cancelled the quadratic divergencies in the Higgs
mass corrections, but left us with a term depending upon the mass splitting
between the Standard Model particles and their superpartners, known as the little
hierarchy problem. From this it is clear that the supersymmetric masses can not
be too large, in order not to reintroduce the hierarchy problem.

This constraint is also manifest if one expresses the Z-boson mass as a function
of supersymmetric parameters, by minimizing the MSSM one-loop scalar potential.
At tree-level, this dictates the relation [2]3

1

2
m2
Z =

m2
Hu
−m2

Hd
tan2 β

tan2 β − 1
− µ2, (3.7)

which correlates the higgsino mass parameter µ with the soft masses m2
Hu

and m2
Hd

and tan β. Equation (3.7) serves as the starting point for a qualitative discussion
of naturalness, as well as raising an interesting question concerning the scales of
the parameters on the right hand side. The MSSM is regarded as natural if the
individual terms of eq. (3.7) are of the same order as mZ . Otherwise, they will
give large contributions to the right hand side, and consequently, all individual
contributions need to be finely tuned for the equation to hold. As m2

Hu
and m2

Hd

are from the part of the MSSM Lagrangian breaking supersymmetry, they have
an expected scale mSUSY, common to all the soft masses. For the equation to
hold for the observed Z-boson mass, this means µ must be at the same scale.
However, µ does not originate from the supersymmetry breaking part of the
MSSM Lagrangian, and there is no explanation in the MSSM for why its scale
should be that of the soft breaking terms. This is known as the µ-problem.

Assuming there is an explanation to why the scale of µ is correlated to that of
m2
Hu

, there is still a fine-tuning problem in eq. (3.7), as parameters at the scale of
mSUSY must be fine-tuned in order to obtain the observed mZ at the electroweak
scale.

3We will here for simplicity work with the parameters at the low energy scale. If the model
is defined by parameters at some high scale, as it is elsewhere in this thesis, the low scale
parameters must be regarded as functions of these.
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Inspired by the wish for a minimally fine-tuned model, Natural supersymmetry
models have been developed [26, 27]. In general, keeping the fine-tuning as low as
possible requires that m2

Hu
,m2

Hd
and µ are kept fairly low. For simplicity, we will

use eq. (3.7) to discuss some phenomenological consequences in Natural SUSY,
even though the fine-tuning is alleviated somewhat if one includes also higher
order corrections [28].

As µ is the higgsino mass parameter, Natural SUSY models thus predict light
higgsinos. A very natural scenario would be |µ| ≤ mZ , but this is already excluded
by LEP results [13]. Unless either the gaugino soft mass parameters M1 or M2

are also small, this means the two lightest neutralinos and the lightest chargino
will be dominantly higgsinos, with masses of similar size.

The dominant one-loop corrections to m2
Hu

are driven by the soft breaking
parameters governing the masses of stops and left-handed sbottoms, due to the
large Yukawa strengths. It is therefore expected that these squarks are rather light
in Natural SUSY. The gluino mass parameter M3 enters the two-loop corrections
to m2

Hu
, hence gluinos are neither expected to be too heavy.

To summarize the above, models of Natural SUSY predict light higgsinos,
stops and left-handed sbottoms, and gluinos accessible to the LHC [29]. However,
Natural SUSY models out of kinematic reach at the LHC can also be motivated,
see e.g. [25].

3.4 Measuring fine-tuning
To measure the fine-tuning, we will take on the commonly used Giudice–Barbieri-
measure defined in [30]. The definition consideres the electroweak scale represented
by the Z-boson mass, expressed in terms of the most general set of model
parameters {θi}. The amount of fine-tuning ci is defined as the sensitivity of the
electroweak scale with respect to the model parameter θi,

ci =

∣∣∣∣∂ lnm2
Z

∂ ln θi

∣∣∣∣ =

∣∣∣∣ θim2
Z

∂m2
Z

∂θi

∣∣∣∣ , (3.8)

with the naturalness score or overall fine-tuning c determined by the most sensitive
parameter,

c = max{ci}. (3.9)

We will in this thesis focus on the specific model parameters of the MSSM, and
take the scan parameters — to be defined in chapter 5 — as the fundamental
parameters.

3.4.1 Example

We give a simple example to illustrate how this criteria measures fine-tuning, and
how it reflects the problem of cancellation discussed previously in this chapter.
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We have from eq. (3.7) the correlation of the Z-boson mass with the higgsino
mass parameter µ, tan β and the soft masses m2

Hu
and m2

Hd
. This serves as the

starting point for a qualitative discussion of naturalness.
Now we can find how sensitive eq. (3.7) is to changes in for instance µ, by

cµ =

∣∣∣∣ µm2
Z

∂m2
Z

∂µ

∣∣∣∣ =

∣∣∣∣4µ2

m2
Z

∣∣∣∣ . (3.10)

Taking µ to be positive, m2
Hd

to be negative, and µ2 > |m2
Hd
|, we can simplify

eq. (3.7) in the limit where tan β � 1 as

cµ =

∣∣∣∣4µ2

m2
Z

∣∣∣∣ ≈ 2µ2

µ2 − |m2
Hd
|
. (3.11)

This can be rearranged to give the ratio of mHd
and µ as√

|m2
Hd
|

µ
=

√
1− 2

cµ
' 1− 1

cµ
, (3.12)

assuming cµ > 2. Thus, if we find the sensitivity criteria to be cµ = 100, this
corresponds to µ and

√
|m2

Hd
| being equal to an accuracy of ∼ 1%.

Taking the maximum accepted fine-tuning to be for example c = 100, ap-
proximate upper bounds on the sparticle masses has been derived. In [31], an
MSSM scenario finds that higgsinos should be lighter than ∼ 600 GeV, stops and
left-handed sbottoms lighter than ∼ 1 TeV and gluinos and winos lighter than
∼ 1.4 TeV. Other sparticles are less constrained by naturalness arguments, due to
their smaller couplings to the Higss sector. Note that these predictions rely on
the constraint c = 100, and must be taken to be rough estimates only. In fact,
Barbieri and Giudice proposed in [30] that the amount of acceptable fine-tuning
should be c = 10, as this gives cancellations among the parameters in eq. (3.7) of
at most one order of magnitude.

Even though the Barbieri–Giudice-measure is well-defined, it is also fully
subjective, through the interpretation of the numbers given by eq. (3.9). Another
important concern, is the question of what parameters to include in the fine-
tuning analysis. For instance, should one also include important Standard Model
parameters such as the top Yukawa coupling? And finally, there is the question
of what fine-tuning measure to use, as there exist several alternative suggestions
in litterature, see e.g. [25].
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Statistics and information criteria

The success of a physical theory relies on its agreement with observed data, and
how well it is able to predict the outcomes of future experiments. The answer to
these questions are related to hypothesis testing and parameter estimation.

In hypothesis testing we investigate how our model predictions agree with
observed data. In parameter estimation, we try to determine what parameter
values of the theory are preferred, based on some data.

Both hypothesis testing and parameter estimation are important concepts
of statistical inference — the process of drawing conclusions about a model,
based on the data at hand. This is in contrast to probability theory, where
the goal is to predict the outcome for a random variable given a known model.
The close connection of statistical inference with probability theory, has lead to
two different statistical approches — Bayesian and frequentist — based on how
probability is interpreted. Both interpretations will come into play in the process
of Bayesian parameter estimation in this thesis, and we begin this section with a
brief discussion of the two.

4.1 Bayesian and frequentist statistics

From a frequentist point of view, probability is only meaningful when assigning
it to repeatable random samples. In the limit of infinitely many samples N , the
true probability P (A) of event A is

P (A) = lim
N→∞

nA
N
, (4.1)

where nA is the number of occurences of A in N . This means probabilities are
fundamentally related to the frequency of events.

From a Bayesian perspective, however, probability covers degrees of certainty
about statements, and is related to our prior knowledge about an event. It is
not restricted to cover random processes only, and hence extends the range of
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possible problems to treat in a probabalistic manner. Rather than measuring
the probability of an event, one measures a degree of belief in it, i.e. how well
the event is supported by data at hand. In Bayesian statistics we must therefore
define our prior knowledge before an experiment.

Both the Bayesian and frequentist interpretation of probability is based on
the sum and product rules of probability theory,

P (A) + P (Ā) = 1, (4.2)
P (A,B) = P (A|B)P (B), (4.3)

for 0 ≤ P (A) ≤ 1, where P (A) is the probability of event A being true and
P (Ā) is the probability of A being false. Further, if we know the conditional
probability of A given B, P (A|B), and the probability of B, P (B), we also know
the probability of both A and B, P (A,B). Among the most useful results derived
from these rules is Bayes’ theorem.

4.2 Bayes’ theorem
The central tool in Bayesian statistics is Bayes’ theorem [32],

P (A|B) =
P (B|A)P (A)

P (B)
, (4.4)

which expresses the probability of A given B, P (A|B), through the probability of
B given A, and the unconditioned probabilities P (A) and P (B). As the theorem
is a direct consequence of the sum and product rules of probability theory in
eqs. (4.2) and (4.3), it is valid in both a frequentist and Bayesian interpretation.
However, replacing the condition A with some hypothesis H, B with some data
D, and conditioning all probabilities on some background information I, Bayes’
theorem takes the form

P (H|D, I) =
P (D|H, I)P (H|I)

P (D|I)
. (4.5)

This formulation is only valid in the Bayesian approach, as we assign a prior
belief in the hypothesis H. The left hand side is called the Bayesian posterior
probability (referred to simply as the posterior), and represents our degree of belief
in the hypothesis H in light of some new data D. The factor P (H|I) is called
the prior probability (or just the prior), and expresses our degree of belief in the
hypothesis before analyzing any data, on light of the background information
only. As the posterior from one experiment is an update of our prior belief, it
may be used as the prior in another experiment.

The factor P (D|H, I) expresses the probability of obtaining the observed data
D, assuming the hypothesis H is true. This is the likelihood, and introduces the
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physical predictions from H into the equation. The likelihood describes how the
probability of an observation relates to the corresponding theoretical prediction
from our theory, and is central in both frequentist and Bayesian approaches. We
return to likelihoods in section 4.4.

The denominator of eq. (4.5) is called the Bayesian evidence, and is the
nominator marginalized over all possible realizations of H. Taking Hi to represent
a set of discrete parameters, the marginalization reads

P (D|I) =
∑
i

P (D|Hi, I)P (Hi|I), (4.6)

where the set of possible hypothesis must be exhaustive, i.e.
∑

i P (Hi|I) = 1.
Now, if the hypothesis H represents a point in a continous parameter space, such
as the parameter space of the MSSM, the prior and posterior probabilities in
eq. (4.4) become probability density functions (pdfs). The evidence then turns
into an integral over the entire parameter space of the model, and is nothing but
a normalization constant of the posterior. It can be determined post hoc, and
does not affect the shape of the posterior.

However, in the case of Bayesian hypothesis testing, the ratio of the evidence
of two models takes central stage, controlling our relative confidence in the two.

From this, we can conclude that the Bayesian posterior is a description
of how our state of knowledge is modified by experimental measurements. A
corresponding frequentist analysis would be based on the likelihood alone, while
a Bayesian analysis considers also the prior, and makes inferences based on the
posterior.

4.2.1 Bayesian parameter estimation

As an example of Bayesian parameter estimation, consider a model with a set of
free parameters Θ and data D. The posterior p can then be expressed as

p(Θ|D) =
L(Θ)π(Θ)

Z
, (4.7)

where L is the likelihood and π is the prior.1 The evidence is given from the
marginalization over all possible Θ,

Z =

∫
L(Θ)π(Θ)dΘ. (4.8)

In addition to the posterior distributions of the model parameters themselves,
we may also be interested in the distribution of a function of them. If the interesting

1All quantities are still conditioned on the overall model and background information being
true, even if the notation is simplified.
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quantity is f = f(Θ), this means we want to change variables in e.g. the posterior
from Θ to f . From eq. (4.3), the joint posterior can be expressed as2

p(f,Θ) = p(f |Θ)p(Θ), (4.9)

where the value of f is determined by the parameters, and may be equal for
different Θ. As it does not rely on the background data D, a pdf for f conditional
Θ is a delta function, [33] and the posterior becomes

p(f,Θ) = δ(f(Θ)− f)p(Θ). (4.10)

The posterior in f alone is the marginalization over the model parameters,

p(f) =

∫
δ(f(Θ)− f)p(Θ)dΘ. (4.11)

Hence, the posterior is found by weighting all values of f by the posterior in the
corresponding value of Θ. This approach is valid for all pdfs, hence it is also
applicable to the prior.

Unfortunately, this analytic approach can not be taken in practice, as we
do not have analytic expressions for the pdfs. In this thesis, we will typically
draw random samples Θi in our scan parameters from their prior and posterior
distributions, before calculating the interesting quantity fi = f(Θi). Then, we
histogram the sampled values fi, giving the distributions in f . The histogramming
in terms of fi without reference to the parameters Θ, corresponds numerically to
the marginalization in eq. (4.11).

4.2.2 Assigning priors

In order to calculate a posterior, we are in need of a prior distribution. It is
assigned according to how we believe prior information — or the lack thereof —
should be encoded in a pdf, and there are many important principles for how this
should be done. We will here explain the two principles behind the priors we use
in this thesis.

The first principle is applied to location parameters, such as the mean x of a
Gaussian distribution. Having no information about this parameter (other than
its rôle in our theory), the principle of transformation group invariance is used.
This means that our prior knowledge should not be affected if our parameter
is transformed in a way considered to be irrelevant for the problem. Said in
other words, the prior π(x) should be invariant under the coordinate translation
x′ = x+ a,

π(x)dx = π(x+ a)d(x+ a), (4.12)

2In the simplified notation where the data conditioning is omitted.
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and since d(x+ a) = dx, the requirement is

π(x) = π(x+ a). (4.13)

This is referred to as a flat or uniform prior, and is fulfilled if π(x) is constant.
Another important class of parameters are scale parameters, e.g. mass parame-

ters such as the common GUT scale scalar and gaugino masses in supersymmetry,
m0 and m1/2, respectively. Their dimension introduces a definite scale into the
problem. Ignorance as to what scale is correct for a mass m, implies that the
prior should be invariant under the transformation m′ = cm, where c is a constant
scaling. This means we require

π(m)dm = π(cm)d(cm) = cπ(cm)dm, (4.14)

which is satisfied by the prior π(m) ∝ 1/m. By a change of variables, we see that
this means π(log(m)) is uniform, and hence we call this a log prior.

Both priors discussed above are improper pdfs, as they do not integrate to
unity. Nevertheless, they may be used in Bayesian analysis as long as the resulting
posterior is normalizable. Improper pdfs can also be used when we have good
arguments for restricting the parameter range. If so, one simply construct the
priors in some given parameter range [θmin, θmax], and define them to be zero
everywhere else. This is typically what we do in this thesis, as we have restricted
our scans to finite intervals in the scan parameters. The motivation behind
this, is that we simulate scenarios that can be searched for at the LHC and a
possible future International Linear Collider (ILC). This implies mass scales in
the GeV–TeV range, putting upper limits on the scan intervals. Lower limits arise
naturally by results from LEP.

4.2.3 Prior dependence

To what extent the posterior is affected by the choice of prior, depends upon the
strength of the data available, i.e. how narrow our likelihood is. Large variations
in posteriors based on different priors (but equal likelihoods), means the data are
not strong enough to dominate the prior information. Conclusions based on weak
data should therefore be interpreted with care, as they may be strongly affected
by the assumption of prior information.

To see the effect on the posterior from a weak study, see figures 4.1(a) and 4.1(b).
The likelihood is based on some data having a large uncertainty, which is not
strong enough to dominate both priors — hence the posteriors differ in shape
depending on the choice of prior. The opposite effect can be illustrated with a
particle physics experiment and determination of a particle mass. Say the prior
range of the mass is 100–1000 GeV, and the likelihood from the experiment is a
peak with a width of a few GeV. This would dominate all (reasonable) priors, and
the posterior would look much the same regardless of what prior was assigned.
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θmin θmax

π(θ)

L(θ)

p(θ)

(a) Log prior, weak data.

θmin θmax

π(θ)

L(θ)

p(θ)

(b) Flat prior, weak data.

θmin θmax

π(θ)

L(θ)

p(θ)

(c) Log prior, strong data.

θmin θmax

π(θ)

L(θ)

p(θ)

(d) Flat prior, strong data.

Figure 4.1: Illustration of the sensitivity of the posterior distribution to
the choice of prior.

This is illustrated in figures 4.1(c) and 4.1(d). In the limit of very strong data, the
Bayesian interpretation would give the same result as a frequentist interpretation,
meaning the result would not depend upon what is the underlying statistical
philosophy.

4.3 The Kullback–Leibler divergence

We have earlier seen how experiments can be used to construct likelihoods,
updating our prior beliefs of e.g. model parameters. As a formal measure of the
information gain in updating our prior knowledge,3 we are using the Kullback–
Leibler (KL) divergence [34] from information theory. It appears from literature
that this has never previously been used in the context of particle physics. The

3Or, the information lost when using the prior to approximate the posterior.
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Kullback–Leibler divergence is defined as

DKL =

∫
p(Θ|D) ln

p(Θ|D)

π(Θ)
dΘ, (4.15)

where π(Θ) is the prior probability of the model parameters Θ, and p(Θ|D) is
the posterior from eq. (4.7). This measures the amount of information provided
by D on the parameters Θ,4 and has the property DKL ≥ 0, with equality only
if the two distributions are equal almost everywhere. Hence, if our knowledge
about the parameters a priori equals the knowledge a posteriori, no information
is gained from the experiment.

To illustrate the concept of the KL-measure, we look at a toy model of one
parameter as an example.

4.3.1 Example

Consider a theory with the parameter θ, in which we investigate how a uniform,
log and normal distributed prior affect the KL-measure. The priors we define as

π1(θ) = C1/θ, (4.16)
π2(θ) = C2, (4.17)
π3(θ) = N(θ|α, σ), (4.18)

where N(θ|α, σ) denotes a normal distribution of mean α = 0.9 and standard
deviation σ = 0.2, and C1 and C2 are normalization constants. As the priors
are pdfs, they must integrate to unity over all possible θ. Obviously, we need
to restrict the parameter interval, as neither π1 nor π2 are normalizable for
θ ∈ [−∞,∞]. Therefore, we specify the range of the parameters such that
θ ∈ [θmin, θmax] = [0.05, 1.5].

Now assume the model predicts the value of an observable x(θ), whose
measured value is α0. We assume the likelihood to be a normal distribution,
L = N(θ|α0, σ0), of mean α0 = 1 and standard deviation σ0 = 0.09. The posterior
distribution pi(θ) for prior i is then

pi(θ) =
L(θ)πi(θ)

Zi
, (4.19)

and we can calculate the corresponding KL-measure Di
KL from eq. (4.15).

The resulting KL-measures are D1
KL = 2.2, D2

KL = 1.36, and D3
KL = 0.56,

and can be seen in figure 4.2. The largest information gain is achived for π1,
reflected in the fact that D3

KL < D2
KL < D1

KL. This prior distribution in θ had the
largest discrepancy compared to the posterior obtained in taking experiment into
consideration. The smallest information gain was for π3, which had the greatest
relative coincidence with the posterior.

4It can also be regarded as the distance between the two distributions, even if the measure
is not a metric, as it is not symmetric in p and π.
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θmin θmax

π1 (θ)

p1 (θ)

p1 ln(p1/π1 )

(a) Log prior.

θmin θmax

π2 (θ)

p2 (θ)

p2 ln(p2/π2 )

(b) Flat prior.

θmin θmax

π3 (θ)

p3 (θ)

p3 ln(p3/π3 )

(c) Normal distributed prior.

Figure 4.2: Illustration of how prior knowledge affects the KL-measure.

4.4 Likelihoods

4.4.1 Signal events

In this thesis, we generate particle collisions using Monte Carlo event generators.
The ultimate goal of a Monte Carlo event generation is to determine the detection
efficiency, or simply efficiency, of a given parameter point. The efficiency is defined
as

E = NMC
acc /N

MC
tot , (4.20)

where NMC
acc is the number of accepted events, and NMC

tot is the total number
of generated events. The accepted events are those events passing a set of
requirements, called selection cuts, needed to be fulfilled. The selection cuts are
imposed to isolate a supersymmetric process from a Standard Model background
event. A supersymmetric decay chain may just as well end in the same final-state
as from a Standard Model process, thus resulting in the same signature. Luckily
we are able to distinguish between a supersymmetric event and a background
event by evalutaing e.g. the kinematic configuration of the two. Consequently we
can filter out the supersymmetry processes by imposing cuts on for example the
amount of total missing energy or individual energies of the final-state particles
of the event. The efficiency constitutes the fundament in further calculations, as
it ables us to determine the physical number of expected signal events.

We can find the number of expected signal events of a parameter point by
assuming that the (constant) ratio in nature between the physical number of
signal events, s = Nacc, and the total number of all events Ntot, equals the same
ratio as from an MC generation — if that particular parameter point is realized
in nature. In other words, we assume that

NMC
acc

NMC
tot

=
Nacc

Ntot

. (4.21)

The number of accepted events from the MC generation is easy to keep under
control, as well as the total number of generated events. This ables us to find the
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physical number of signal events as

s = Nacc = ENtot, (4.22)

where the total number of events can be found from

Ntot = σtot

∫
L dt = σL. (4.23)

Here, L is the integrated luminosity, characterizing the performance of the particle
accelerator, and σtot is the total cross section for the process. Hence, the number
of signal events for a given process, at a given parameter point, is given by

s = EσtotL. (4.24)

The efficiency is a result from a counting experiment, as we either keep
an event as an accepted supersymmetry event, or we do not. The number of
generated collisions for each parameter point is large (NMC

tot →∞), the probability
of keeping an event is low (p→ 0), and the expected number of events is constant
(NMC

tot p → ν). Therefore, the actual number of kept events follows a Poisson
distibution, given by

P (n; ν) =
νne−ν

n!
. (4.25)

Here, P (n; ν) gives the probability of getting n events when we expect to have ν.
In our case, we expect to have b background events from the Standard Model,
in addition to s supersymmetry signal events predicted from our model, hence
ν = (b+ s). Thus, we can write eq. (4.25) as

P (n; s+ b) =
(s+ b)ne−(s+b)

n!
. (4.26)

The number of accepted events NMC
acc follows a Poisson distribution, and

consequently the error on the efficiency is given by δE =
√
NMC

acc /N
MC
tot .

4.4.2 Likelihoods from collider experiments

We interpret as likelihoods two different distributions in the presention of our
results in this thesis. The first distribution is a Gaussian distribution, where the
experimentally measured Higgs mass mexp

h plays the rôle of the observation. Given
model parameters Θ, the model predicts a Higgs mass m0

h(Θ), and we interpret
the likelihood as

L(mh|mexp
h ) =

1√
2σ2π

exp

[
−(mh(Θ)−mexp

h )2

2σ2

]
, (4.27)
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where σ is the uncertainty in the theoretical prediction of the Higgs mass mh,
taken to be 2 GeV.5 In this way, the model parameters are introduced into the
calculations through mh, and the likelihood quantifies the level of agreement
between model and experiment across the parameter space. If a predicted mh is
close to mexp

h , the likelihood in that particular parameter point is large, reflecting
that model and experiment agree. If our prior belief in that point was low, the
posterior belief is increased in comparison, as a consequence of the large likelihood.

As our second likelihood we use the so-called p-value. It is defined from the
cummulative Poisson distribution,

P (n ≤ b; (s+ b)) =
b∑

n=0

(s+ b)ne−(s+b)

n!
, (4.28)

which quantifies the significance through the probability of observing b events or
less, when the expected number is (s+ b).

We set exclusion limits to define what areas of parameter space are disfavored
by experiment, i.e. what parameters are likely to be realized in nature and not.
By convention, we exclude points with p < 0.05, referred to as exclusion at 95%
confidence level (CL). We will always use the strongest signal by minimizing the
p-value over all signal regions in each parameter point.6

An exclusion limit should not be confused with a discovery limit, where the
latter is much more stringent. For an observation to be classified as a discovery,
one needs a discovery at so-called 5σ, corresponding to a p-value of 3 · 10−7.

5The experimental uncertainty, however, is much smaller.
6A parameter point may have different set of selection cuts, defining different signal regions.
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Future collider searches for
supersymmetry

To investigate the potential of planned searches for electroweak and strong super-
symmetry production at a high-luminosity Large Hadron Collider (HL-LHC) [35],
we perform two-dimensional grid scans in the parameter spaces of two supersym-
metric models. By calculating the p-value of each parameter point we set exclusion
limits, defining what parameter values and sparticle masses are disfavored by
experiment. We also explore the naturalness reach of the HL-LHC, by evaluating
likelihoods using the measured Higgs mass in addition to the potential likelihoods
from future searches. From the prior and posterior distributions of naturalness,
we determine the KL-measure from eq. (4.15), describing the information gain
in the update of our prior beliefs. We include also results for the possible future
ILC [1,36], to explore how the two colliders can complement each other.

In this chapter, we discuss the practical software set-up of these scans, and
give the selection cuts from the original analyses in [35] and [36]. We also give
results from benchmark testing, validating our implementations. Results from
the analysis validation will be referred to as T (test), and the original results as
O. A short discussion of uncertainties will be given in section 5.5.

5.1 Model scenarios

The grid scans are performed in the parameter space of mSUGRA and NUHM2,
described in section 2.7. We study two parameter choices for mSUGRA and
one for NUHM2, in the following referred to as mSUGRA10, mSUGRA30 and
NUHM2, respectively. Their parametrizations are given in table 5.1. As we fix
some of the free parameter values, the effective model dependence upon these are
removed, and we only maximize over the specific MSSM scan parameters in the
evaluation of naturalness.

The scan ranges are chosen to enable comparison with the results in [2]
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Table 5.1: The three scenarios and their parameter ranges. In the scan
we sample O(100) points in each direction.

Scenario Parameter Prior range [GeV] Fixed parameters

mSUGRA10 m0 [50, 5000] tan β = 10, A0 = 0,
m1/2 [72, 1854] sgn(µ) = +.

mSUGRA30 m0 [50, 5000] tan β = 30, A0 = −2m0,
m1/2 [36, 1818] sgn(µ) = +.

NUHM2 m1/2 [30, 2010] tan β = 15, A0 = −1.6m0,
µ [42, 636] m0 = 4 TeV.

and [25].1 We do not scan over areas where the mass of the lighter chargino is
mχ̃±1

. 45 GeV, as these areas are already excluded by LEP [13], and should be
reflected in our prior. This sets natural lower bounds on m1/2 and µ.

5.2 Scan set-up
To calculate the supersymmetric mass spectrum from the GUT scale parameters
in table 5.1, the corresponding naturalness from eq. (3.9), and to ensure consistent
EWSB for a given parameter point, we use RGE codes of SOFTSUSY [37], generating
a SUSY Les Houches Accord (SLHA) file [38], describing the model point. This is
used as input to SUSY-HIT [39], calculating, and adding to the file, the sparticle
decays. The SLHA file is further passed to FeynHiggs [40–45], improving the
calculations of masses and couplings for the MSSM Higgs bosons. We further use
two versions of the Monte Carlo event generator PYTHIA [46, 47] to generate the
signal samples. To make file operations on the SLHA files, we use the Python
interface PySLHA [48]. All program versions and their non-standard settings can
be found in appendix A, table A.1.

For the electroweak processes in both e+e−- and pp-collisions, we use the leading
order (LO) plus leading log (LL) cross sections calculated by PYTHIA, except where
noted otherwise. We use NLL-fast [49–52] for the calculation of decoupled next-
to-leading order (NLO) plus next-to-leading log (NLL) production cross sections
for strong processes at the LHC. These corrections are of importance in strong
processes, as αs � αem. Beyond the extra NLL corrections, we use NLL-fast is
as it is many orders of magnitude faster than the alternative, Prospino [53], even
though the latter is more flexible in terms of processes. As the 14 TeV version of

1In the case of NUHM2, we reduced the value of m0 by 1 TeV compared to [25] in order
to bring the Higgs mass into closer agreement with the measured value. The difference in
Higgs mass is due to the use of different RGE codes and the use of the more precise calculation
in FeynHiggs in this thesis.
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Table 5.2: Cross sections σ used in the benchmark testing.

Benchmark point [GeV] Process σ [fb] Origin

m(g̃, χ̃0
1) = (1425, 1400) g̃g̃ 32.4 NLL-fast

m(g̃, χ̃0
1) = (1950, 1) g̃g̃ 2.14 NLL-fast

m(q̃, χ̃0
1) = (1050, 900) q̃q̃ + q̃q̃∗ 85.4 Prospino

m(q̃, χ̃0
1) = (2250, 1) q̃q̃ + q̃q̃∗ 0.245 Prospino

m(χ̃0
2, χ̃

0
1) = (400, 1) χ̃±1 χ̃

0
2 130.4 Prospino

m(χ̃0
2, χ̃

0
1) = (600, 1) χ̃±1 χ̃

0
2 23.09 Prospino

m(χ̃0
2, χ̃

0
1) = (800, 1) χ̃±1 χ̃

0
2 5.53 Prospino

m(χ̃0
2, χ̃

0
1) = (1000, 1) χ̃±1 χ̃

0
2 1.646 Prospino

Benchmark point in eq. (5.11) χ̃±1 χ̃
∓
1 187.27 PYTHIA 6.428

NLL-fast has no option for squark–squark (q̃q̃) production, this process is omitted
in the scan, and we only look at gluino–gluino (g̃g̃) and squark–anti-squark (q̃q̃∗)
processes in the respective limits where squark and gluino masses are decoupled.

This means we will underestimate the cross section in areas where the squark
and gluino masses are not decoupled, as we leave open fewer possible channels for
production than what is reality. The consequence is that we will set conservative
limits, as we underestimate the number of signal events, and we do not run the
risk of excluding more than we should. For the benchmark testing, however,
production cross sections are generated by both NLL-fast, PYTHIA and Prospino,
as listed in table 5.2.

The resources needed to perform a parameter scan is highly model dependent.
In mSUGRA10 and NUHM2 we generate in PYTHIA 8 a total of 1 200 000
events for each point for electroweak production and 800 000 events for strong
production. In mSUGRA30 the statistics are halved. In PYTHIA 6, used for the
ILC analysis, we generate 100 000 events for each parameter point in all scenarios.
In mSUGRA10, this costs ∼ 30 000 CPU hours (CPUh), while for mSUGRA30
the cost is 25 000 CPUh. The most expensive scenario is NUHM2, in which
we utilise ∼ 39 000 CPUh. Since the parameter scanning is a complex process
involving parallell processing and many scripts, we give a flowchart in figure 5.1,
describing the routine for one worker process.
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Start Done

Master process: sample
new parameter point from
grid. Send point as SLHA

file to worker process.

Calculate mass spectrum and
fine-tuning with SOFTSUSY.

Is sampled point physical?

Run SUSY-HIT and write
sparticle decays to SLHA.

Run FeynHiggs to improve
Higgs masses and couplings.

Is point still physical?

Run NLL-fast and cal-
culate cross sections for
strong production. Write
to SLHA. Are any cross

sections (processes) non-zero?

Generate pp-collisions with
PYTHIA 8 for non-zero pro-
cesses. Write efficiency (and
σ) to SLHA. Is point accepted?

Generate e+e−-collisions
with PYTHIA 6, write

efficiency and σ to
SLHA. Is point accepted?

Master process: accept
point. Save SLHA to re-

sult folder. Are there
more points left in grid?

Discard point.

Yes

No

Yes

No

Yes

No

Yes

No

Yes

No

Yes

pythia.py

pythia6.py

nllfast.py

pointsampler.py

softsusy.py

susyhit.py

feynhiggs.py

pointsampler.py

Figure 5.1: Flowchart describing the program flow of the grid scanning
process. One process handles one parameter point at the time. Points are
unphysical if the EWSB eqs. (2.52) and (2.52) are not fulfilled, tachyons
appear in the particle spectrum or the LSP is not the lightest neutralino.
Points are accepted by PYTHIA if event generation finishes during a given
time limit.
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Figure 5.2: Decay cascades for the simplified models for supersymmetry
production at the LHC used in [35].

5.3 Supersymmetry production at the
high-luminosity LHC

The Large Hadron Collider is expected to deliver 300 fb−1 of collected data by
2022, before the accelerator has a foreseen upgrade. After the high-luminosity
upgrade, it is expected to reach 3000 fb−1 within 2032, and can hence access
processes with small cross sections or poor detection efficiencies.

We implement searches for electroweak direct production of charginos and
neutralinos and direct production of gluino and squark–anti-squark pairs. All
collisions are at the ultimate centre-of-mass energy

√
s = 14 TeV, and results are

presented for luminosities L = 300 fb−1 and L = 3000 fb−1.
The following supersymmetric searches are motivated by the simplified models

defined by ATLAS in [35], giving the signatures in figure 5.2. The simplified
models are described in more detail in section 5.3.3. However, in this thesis we
apply the searches to more general models, and to a wider range of parameter
points.

5.3.1 Search for chargino and neutralino production

If squarks and gluinos are out of kinematic reach, electroweak production of
supersymmetry can dominate at the LHC. Smoking gun signals for processes
beyond the Standard Model are large amounts of missing energy Emiss

T due to LSPs
escaping detection,2 in addition to isolated leptons [54].3 Therefore, a possible
signature from production of charginos and neutralinos are three isolated leptons
and missing energy, as illustrated in figure 5.2(a). In this section, we describe our
implementation of the planned search for this particular signature given in [35].

Jets are identified and reconstructed by FastJet with the anti-kT -algorithm [55],
with a size parameter of ∆R = 0.4. Pile-up effects are not concidered in this
thesis, but to simulate some detector imperfections, we smear all jet four-momenta

2For clarity, by missing energy we mean missing transverse momentum.
3But there are of course Standard Model background processes to these signals as well.

57



Chapter 5

by 3%. Candidate jets are then selected from clusters with transverse momenta
pT > 20 GeV, and pseudo-rapidity |η| < 2.5,4 whereas candidate leptons, electrons
and muons only, are selected with pT > 10 GeV and |η| < 2.4.

For all tracks5 i of the event with piT > 1 GeV and within a cone of ∆R =√
∆η2 + ∆φ2 = 0.3 around the lepton candidate j we define

SpT =
∑
i 6=j

piT . (5.2)

All candidate leptons are required to be isolated by imposing SpT < 0.15pjT , with
pjT being the transverse momentum of the lepton candidate itself. Further, all
lepton candidates must be isolated also from each other, through the distance
requirement between lepton ` and `′, ∆R(`, `′) > 0.1.

The analysis is optimized for heavy sparticle masses, as events are selected
with exactly three surviving high-pT (candidate) leptons, all with piT > 50 GeV.6
We also require one same-flavour opposite-sign (SFOS) pair, choosing the one
with invariant mass mSFOS closest to the Z-boson mass. This is further restricted
to |mSFOS −mZ | < 10 GeV for the event to include a Z-boson candidate. The
lepton not forming the SFOS pair is used to construct mT , the invariant mass of
the lepton with the missing energy,

m2
T = (Emiss

T + E`)
2 − (pmiss

x + p`x)
2 − (pymiss + p`y)

2, (5.3)

The transverse mass is required to be mT > mW to eliminate the dominating
Standard Model background from WZ production.

To suppress the less dominant background from tt̄ and tt̄+ V processes,7 we
veto events with b-tagged jets. Jets are labelled as b-jets if the distance between
the b-quark and a candidate jet is ∆R(j, b) < 0.4. We further implement a
b-tagging efficiency of 70%, with a jet misidentification probabilty of 1%.

The Emiss
T and mT requirements are used to define three (four) signal regions

(SR), A, B, and C (D) for L = 300 (3000) fb−1. The first is designed for maximal
discovery reach, while SRB and SRC are designed for maximal exclusion reach.
The fourth signal region is defined to improve the sensitivity to high mass scenarios.
As we set exclusion limits, SRA is not used in our scan results.

These selection cuts are summarized in table 5.3.

4Where η is defined as

η = atanh

(
pL
|p|

)
, (5.1)

with pL being the longitudinal momentum component, i.e. momentum along the beam axis.
5That is, final state, charged particles.
6Where piT defines the i-th hardest (highest pT ) lepton of the event.
7For V = W,Z.
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Table 5.3: Selection cuts for the search for direct production of χ̃±1 and
χ̃0

2 at the LHC.

Electroweak selection cuts. SRA SRB SRC SRDSignal: 3` + Emiss
T .

1) Candidate lepton pT [GeV] > 10

2) Candidate lepton |η| < 2.4

3) Candidate lepton track isolation SpT [GeV] < 0.15pjT
4) Candidate lepton isolation ∆R(`, `′) > 0.1

5) Candidate jet pT [GeV] > 20

6) Candidate jet |η| < 2.5

7) |mSFOS −mZ | [GeV] < 10

8) Number of b-tagged jets 0

9) Lepton p1,2,3
T [GeV] > 50

10) Emiss
T [GeV] > 250 300 400 500

11) mT [GeV] > 150 200 200 200

5.3.2 Search for squark and gluino pair production

Strongly produced supersymmetry, i.e. squarks and gluinos, is expected to have
the highest cross section of all supersymmetry processes at the LHC, provided
the sparticles are within kinematic reach. Signals from such production are
characterized by many high-pT jets, large Emiss

T and no leptons. The hard jets
are expected as they originate from massive gluinos and squarks, while the LSP
carries away large amounts of Emiss

T . In this section we describe the planned
search for gluino and squark pair production.

As in section 5.3.1, candidate leptons, i.e. electrons and muons, are selected
with pT > 10 GeV and |η| < 2.4. Jets are selected with transverse momentum
pT > 20 GeV and |η| < 4.5, and are reconstructed and smeared as described
in section 5.3.1. The number of required jets come from the typical signatures
illustrated in figure 5.2, with an additional possibility for initial and final state
gluon radiation, and radiation from beam remnants. The ten signal regions in the
search are labelled by the number of high-pT jets they contain, with corresponding
loose (l), medium (m) and tight (t) cuts on the effective mass meff . This is defined
from the missing energy and transverse momentum of jets,

meff = Emiss
T +

njets∑
i

|piT |, (5.4)

and is applied to reduce the dominant Standard Model background from V + jets,
tt̄ and diboson production. A total missing energy of Emiss

T > 160 GeV and
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pT > 60 GeV for the jets are required in all signal regions, to characterize final
states originating from cascade decays of supersymmetric particles. We also
require the hardest jet to have pT (j1) > 160 GeV. This will limit us in the case of
mass degeneration of the squark and LSP. If these masses have a 10% fine-tuning,
i.e. if mq̃/mχ̃0

1
= 1.1, this corresponds to ∼ 180 GeV of available kinetic energy to

the jet from the squark decay. Increasing the fine-tuning of the sparticle masses
to e.g. 8% decreases the available energy for the jet to ∼ 150 GeV, hence scenarios
of fine-tuning much more than 10% in the squark and LSP masses will be hard to
detect with this analyis.

To reject QCD multijet events with large Emiss
T from bad jet reconstruction,

cuts on the azimuth angle ∆φ between the missing energy vector Emiss
T and two

different configurations of jets are imposed. One is defined from the three strongest
jets of the event, and is required to be ∆φ(j1, j2, j3) > 0.4. The second is formed
from all jets with pT > 40 GeV, and we impose ∆φ(pT > 40 GeV) > 0.2. We also
impose cuts on Emiss

T /meff and the so-called Emiss
T significance, Emiss

T /
√
HT . Here,

HT is defined to be the scalar sum of the jet pT s,

HT =

njets∑
i

piT . (5.5)

The cut selection is summarized in table 5.4.

5.3.3 LHC analysis validation

To validate our implementation of the analyses of the two previous sections, we
do benchmark testing of the points given in [35]. They are defined in terms of
parameters, decays, and gauge particle content of the mass eigenstates.

We use Prospino for cross section calculations for the electroweak processes
in order to compare to [35]. The benchmark point is defined with wino-like
χ̃±1 and χ̃0

2, bino-like χ̃0
1, and a mass relation between the lighter chargino and

next-to-lightest neutralino mχ̃±1
= mχ̃0

2
.8 Gluinos, squarks, sleptons and sneutrinos

are decoupled, and the produced charginos and neutralinos decay according to
figure 5.3(b). We generate all four electroweak benchmark points with 200 000
events.

The results are presented in table 5.5. We see that our validation is in good
overall agreement with the original ATLAS results, with a few exceptions at the
lowest mass. The reason could e.g. be the lack of electromagnetic smearing. We
emphasize that ratios sT/sO < 1 are conservative as our analyses give fewer signal
events.

For the strong processes, we use the NLL+NLO cross sections from NLL-fast for
gluino pair production, and NLO cross sections from Prospino for squark–squark

8For the original ATLAS results, the neutralino mass is mχ̃0
1

= 0, but as this gives no open
decay channel for the lightest chargino in PYTHIA, it is here set to 1 GeV.
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and squark–anti-squark production, assuming a gluino mass of 4.5 TeV. The
benchmarks defined by ATLAS in [35] have 100% branching fraction of the de-
caying sparticles according to figure 5.2. We generate one million events in the
benchmark points with degenerate masses, and 100 000 otherwise.

The validation for gluino pair production is presented in table 5.6, and for
squark–squark + squark–anti-squark production in table 5.7. The mass degen-
erate squark point at L = 300 fb−1 has a relative large disagreement, especially
pronounced in the 3j and 4jl signal regions. We did not succeed to uncover the
reason for this discrepancy. However, the other benchmark points seem to be in
relatively good compliance.

The errors in tables 5.5, 5.6 and 5.7 are statistical only, and calculated under
the very reasonable the assumption that the two results (testing and original) are
uncorrelated. Hence, the error of the ratio sT/sO is calculated as

δ

(
sT
sO

)
=
sT
sO

√(
δsT
sT

)2

+

(
δsO
sO

)2

. (5.6)

5.4 Supersymmetry production at the ILC
This section is a summary of the search for sleptons and charginos at the ILC,
presented in [1]. These searches are motivated by the analyses in [36], searching
for the signatures in figure 5.3. Collisions are assumed to be at the centre-of-mass
energies

√
s = 0.5 TeV and

√
s = 1 TeV, and results are presented for an integrated

luminosity of L = 100 fb−1.

5.4.1 Detector simulation

For the calorimeter simulation, the covered regions are −4 < η < 4, with cell sizes
∆η ×∆φ = 0.05× 0.05. Both the electromagnetic Eem and hadronic Eh energy is
smeared according to the energy resolutions given in [36]

σem

Eem

=
0.15√
Eem

⊕ 0.01, (5.7)

and
σh
Eh

=
0.5√
Eh
⊕ 0.02. (5.8)

Here, σ is the standard deviation of the energy smearing, and the ⊕ denotes
addition in quadrature. The smeared energy is then given by Esmear = E + σ ·
N(0, 1), where E is the unsmeared energy, and N(0, 1) is a normal distribution
around zero with standard deviation one.

The term of the resolution proportional to 1/
√
E is the stochastic term, and

simulates the fluctuations related to the physical development of the electromag-
netic and hadronic showers. The constant term simulates energy independent
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Figure 5.3: Example of slepton and chargino production and decay at
the ILC.

contributions, e.g. imperfections in the mechanical structure and geometry of
the detector. The constant term becomes important at high energies, while the
stochastic term dominates at low energies.

The electromagnetic smearing of leptons, that is electrons and muons in the
event, happens in the analysis itself, while the hadronic smearing is implemented
by changing jet reconstruction subroutine PYCELL of PYTHIA 6. This has been
modified to cluster on energy rather than transverse energy to enable comparison
with results in [36]. The modified code is given in appendix C. PYCELL is used
with a fixed cone size of ∆R = 0.6, and labels jets from clusters with E > 5 GeV
and |η| < 2.5.

5.4.2 Search for slepton production

A typical signal of slepton pair production at the ILC can be a pair of opposite
sign same flavour leptons and Emiss

T as illustrated in figure 5.3(a). In this section,
we describe the search for these signatures as investigated in [36]. The reach is
evaluated by running with right-polarized electron beams, PL(e−) = −0.9, to
minimize Standard Model W+W− background, and maximize pair production
of right handed sleptons. To reduce more of the W+W− background, a missing
energy of Emiss

T > 25 GeV is required, and events with jets are vetoed.
Candidate leptons, that is electrons and muons, are selected with E > 5 GeV

and |η| < 2.5, and are classified as isolated if the visible activity within a cone of
∆R = 0.5 about the lepton direction is less than max(E/10 GeV, 1 GeV).

It has been shown in [56] that a range of backgrounds9 are efficiently removed
by the cuts listed in table 5.8, at least for

√
s = 0.5 TeV. The bulk of these

backgrounds is removed also at
√
s = 1 TeV, though not completely eliminated.

9Such as e+e− → ννZ, e+e− → e+e−Z, e+e− → e±νW∓ and e+e− → e+e−W+W−.
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Table 5.8: Selection cuts for slepton pair production. The lepton cuts
must be fulfilled for both `+ and `−.

Slepton selection cuts.
Signal: `+`− + Emiss

T .

1) E` < 200 GeV. Energy E` of lepton.
2) 20 GeV < Evis <

√
s− 100 GeV. All visible energy Evis in event.

3) |m`` −mZ | > 10 GeV. Invariant mass m`` of lepton pair.
4) | cos θ`| < 0.9. Polar angle θ with beam axis for lepton.
5) −Q` cos θ` < 0.75. Charge Q and polar angle θ of lepton.
6) θacop > π/6. Acoplanar angle of leptons.
7) Emiss

T > 25 GeV. Missing energy of event.
8) No jets. Discard all events with jet activity.

The visible energy of the event is required in the range 20 GeV < Evis <√
s− 100 GeV, and both lepton energies must have E` < 200 GeV to suppress

backgrounds from W+W− production with leptonic decays.
To avoid signals from background with Z-production, |m`` −mZ | > 10 GeV is

required, where m`` is the invariant mass of the lepton pair. Further, the polar
angle θ with the beam axis must fulfill | cos θ`| < 0.9 for both leptons. This
prevents mismeasurements of the missing energy due to leptons going down the
beam pipe, and therefore suppresses possible fake signals. A more stringent cut,
−Q` cos θ` < 0.75, eliminates events where we suspect the final state leptons to
come from the beam itself. To reduce the dominant portion of the e+e−W+W−

background from γγ-collisions, a cut on the acoplanar angle between the two
leptons is introduced, θacop > π/6, with the acoplanar angle defined as

θacop ≡ π − arccos(p̂1
xp̂

2
x + p̂1

yp̂
2
y), p̂x =

px
|p|

, (5.9)

where p̂ix referes to lepton i for i = 1, 2.

5.4.3 Search for chargino production

The chargino search targets chargino pair production with one hadronic and one
leptonic W -boson decay, as illustrated in figure 5.3(b). The signal one may search
for is then one isolated lepton, two jets and missing energy. The complete list
of selection cuts is given in table 5.9. The signal samples are generated without
beam polarization as in [36].

As for the typical slepton signal, an important Standard Model background
to the chargino signal is W+W− production, and it is desirable to suppress as
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Table 5.9: Selection cuts for chargino production. The jet cuts must be
fulfilled for both jets.

Chargino selection cuts.
Signal: 1` + 2j + Emiss

T .

1) 20 GeV < Evis <
√
s− 100 GeV. All visible energy Evis in event.

2) If Ejj > 200 GeV, then mjj < 68 GeV. Total energy Ejj and invariant mass mjj of jets.
3) Emiss

T > 25 GeV. Missing energy of event.
4) |m`ν −mW | > 10 GeV. Invariant mass m`ν of lepton and neutrino.
5) | cos θj| < 0.9. Polar angle θj with beam axis for jet.
6) | cos θ`| < 0.9. Polar angle θ` with beam axis for lepton.
7) −Q` cos θ` < 0.75. Charge Q` of lepton.
8) Q` cos θjj < 0.75. Polar angle θjj of jet momentum vector sum.
9) θWW

acop > π/6. Acoplanar angle of WW -pair.

much of this as possible. Therefore, it is required that |m`ν −mW | > 10 GeV,
where m`ν is the invariant mass of the lepton with the neutrino, where the latter
is represented by the missing energy of the event. Further, if the total jet energy
Ejj > 200 GeV, it is required that the invariant mass of the jets, mjj < 68 GeV. It
is also required that the acoplanar angle of the reconstructedW -pair is θWW

acop > π/6.
As in the search for sleptons, the visible energy of the event is required to be
20 GeV < Evis <

√
s − 100 GeV and the total missing energy Emiss

T > 25 GeV.
The cut on the polar angle of both the jet θj and the isolated lepton θ` yields
| cos θj|, | cos θ`| < 0.9. Again, we impose −Q` cos θ`, Q` cos θjj < 0.75, where the
polar angle θjj is the angle between the beam axis and the momentum vector
sum of two jets. This supresses events where we are in risk of loosing particles
down the beam pipe.

5.4.4 Extended search for chargino production

To extend the reach of the ILC for chargino production in areas where the chargino
and neutralino are almost degenerate in mass, a new set of selection cuts are
introduced in [36], given here in table 5.10.

The low energy release of the chargino decays expected in this scenario is
reflected in the stringent cut on the visible energy, 20 GeV < Evis < 100 GeV.
This also removes the bulk of Standard Model background such as W+W−, ZZ
and tt̄ production. The upper bound is chosen to lie well over the endpoint of
the signal distribution for the cut to be valid also in areas where the mass gap of
the charginos and neutralinos are larger. To reduce possible backgrounds from
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Table 5.10: Selection cuts for extended chargino production. The lepton
isolation cuts are those defined in the beginning of section 5.4.1.

Chargino extended selection cuts.
Signal: 1` + 2j + Emiss

T .

1) |η|, E,∆R. Lepton (isolation) cuts.
2) 20 GeV < Evis < 100 GeV. All visible energy Evis in event.
3) cosφjj > −0.6. Transverse dijet opening angle φjj.
4) m`j > 5 GeV. Invariant mass m`j of lepton with jet.

γγ → cc̄, bb̄,10 a cut on the transverse dijet opening angle,

cosφjj =
p1 · p2

|p1||p2|
, (5.10)

where p = (px, py), is required to be cosφjj > −0.6. The SM b-quarks will
typically emerge back-to-back in the transverse plane, and the distribution in
cosφjj for this process peaks at cos θjj ∼ −1 [36]. If the two jets come from
a supersymmetry decay cascade such as in figure 5.3(b), cosφjj will peak at
cos θjj ∼ 1 as the jets are the decay products of a W -boson. Some additional
background removal at low cost to signal is gained by requiring m`j > 5 GeV,
where m`j is the invariant mass of the isolated lepton with the closest jet in space
angle. This also targets Standard Model events with leptonic b-decays because of
the b-quark mass mb ' 5 GeV.

5.4.5 ILC analysis validation

The only benchmark point shown for supersymmetry production at the ILC in [36]
is for the chargino extended analysis, an mSUGRA point

(m0,m1/2, A0, tan β, sgn(µ)) = (4625 GeV, 885 GeV, 0, 30,+). (5.11)

For this benchmark point we have available the cut-flow of the analysis in terms of
the effective cross section σE . The validation of this analysis is given in table 5.11
for 100 000 generated events, and is in quite good agreement with [36], although
an overestimation of the signal events is the tendency for this benchmark point.

5.5 Discussion of uncertainties
The errors given in the benchmark point tests are statistical only, and originate
from the detection efficiency E due to the Monte Carlo sampling of events. In

10Where the incoming particles escape detection due to scattering at small angles with the
beam direction.
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Table 5.11: Effective cross section σeff = Eσ for the chargino extended
benchmark point from [36] at

√
s = 0.5 TeV. Errors are statistical and from

the testing, as they are not specified in [36].

Cut σTeff [fb] [1] σOeff [fb] σTeff/σ
O
eff

1) |η|, E,∆R 15.81± 0.29 16.2 0.98± 0.02

2) Evis 15.52± 0.29 14.4 1.08± 0.02

3) cosφjj 14.10± 0.27 13.5 1.04± 0.02

4) m`j 13.96± 0.27 12.0 1.16± 0.02

reality, however, the error in the number of signal events s comes not only from
our estimate of the efficiency, but also the luminosity and cross section. For
simplicity, we will ignore the uncertainty in the luminosity since it is typically
small, and we can express the total error on s as

δs = s

√(
δσ

σ

)2

+

(
δE
E

)2

. (5.12)

The estimate of error in cross section from (the absence of) higher order
corrections is often referred to as the renormalization or factorization error, and
with both NLO and NLL corrections included, it has shown to be as low as 10% of
the total cross section for strong production [51]. However, we need also to include
the PDF and αs uncertainties, which give rise to the dominant cross section errors
in the case of strong processes. These increase with increasing sparticle mass,
since the PDFs are most poorly constrained at high scales and high parton x.

As an example with gluino pair production at 14 TeV with a gluino mass of
mg̃ = 3 TeV, NLL-fast gives errors of (+48.0%,−28.4%) and (+10.2%,−6.6%)
from the PDFs and αs, respectively. The same analysis for squark pair production
with mq̃ = 3 TeV gives the errors (+61.9%,−36.5%) and (+13.9%,−9.1%). This
means the total error budget from PDFs and αs — in a worst case scenario with
heavy squarks and gluinos — will not drop much below 50% and 64% for gluinos
and squarks, respectively. Reducing the gluino and squark masses to 1 TeV, the
total error is reduced to ∼ 16% in both cross sections.

In the case of electroweak processes, the cross section error is much smaller
due to the dependence on α rather than αs. This means δs at the ILC will be
dominated by the statistical error on the efficiency in the scan, while at the LHC,
δσ can be a dominating effect in regions with large squark and gluino masses.

However, there are regions of the parameter space where the uncertainty in
efficiency will dominate also for the LHC results. These are the areas where the
efficiency is very low, giving a large relative error δE/E ' 1/

√
Nacc. The last

square of eq. (5.12) would be close to unity, and one single accepted event would
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for instance give δs ' s, but with potentially large s due to large cross section
(and luminosity). Exclusion limits in these areas will fluctuate due to the poor
efficiencies, giving undesired effects caused by the statistical limitations.

While the errors discussed here can be sizeable, they are difficult to reduce
significantly. The error on the efficiency would require an infeasible amount of
statistics to eliminate, while the cross section errors can only be reduced by future
improved knowledge of PDFs from LHC measurements. Although the above
errors are known to a certain degree, it is hard to predict how they will impact
our calculation of the likelihood. Due to the time constraints inherant to a thesis,
we have been unable to include these errors properly in the statistical discussion
of parameter estimation and limit setting. We leave this for future work.
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Results and discussion

We will now present and discuss our results from the simulation of future searches
for supersymmetry at the high-luminosity Large Hadron Collider. In each of the
three scenarios studied,1 we discuss our results for the exclusion limits at the 95%
CL, and what parameter values, masses and naturalness scores they disfavour.
Apart from giving the naturalness reach in terms of the minimum non-excluded
score, we also give a more sophisticated evaluation of the reach by interpreting
naturalness posterior distributions, and their corresponding KL-measures.

As the focus of this thesis is on the HL-LHC, we refer the reader to [1] for a
more thorough discussion of the ILC results for the same scenarios.

6.1 mSUGRA10

Within the chosen prior ranges for this scenario, the calculated Higgs mass is too
small to reach the measured Higgs mass, but we include this scenario to enable
comparison with the results by Allanach et al. from [2], given here in figure 6.1
for ease of reference.

6.1.1 Exclusion limits

In figure 6.2 we give the 95% CL exclusion limits in the mSUGRA10 scenario.
The red lines represent the search for the production of gluinos and squarks
(g̃g̃/q̃q̃∗) and charginos and neutralinos (χ̃±1 χ̃0

2) for the two integrated luminosities
L = 300 fb−1 and L = 3000 fb−1. The light green and light blue lines represent
the slepton ( ˜̀̀̃ ∗), chargino (χ̃+χ̃−) and extended chargino searches (χ̃+χ̃−E) at
the ILC at 0.5 TeV and 1 TeV, respectively. We have also included some mass
contours of interest, seen in black for the Higgs, yellow for the LSP, turquoise for

1Defined in section 5.1, table 5.1.
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Figure 6.1: Naturalness values in the mSUGRA10 mass plane with
predicted discovery reach for the

√
s = 14 TeV LHC with 10 fb−1 (dashed

line). Taken from [2].

the lighter chargino, dark blue for the slepton2, dark green for the squark3 and
purple for the gluino.

We observe that the planned search for strongly produced supersymmery at
the HL-LHC successfully excludes large squark and gluino masses, where the
highest reach is obtained with L = 3000 fb−1, represented by the dashed red line.
It excludes all values of m1/2 . 800 GeV, corresponding to all gluino masses below
∼ 1.9 TeV and all squark masses below ∼ 2.1 TeV, which is close to the kinematic
reach at

√
s = 14 TeV. It is evident that this exclude higher masses than in [2], as

in figure 6.1 we see that their bound excludes only m1/2 . 460 GeV. Our bound is
similar to that of Allanach et al. in that both decrease with increasing m0, but the
shapes are otherwise rather dissimilar. Allanach et al. use an integrated luminosity
of L = 10 fb−1 and have set a discovery limit, in contrast to our exclusion limit
with an integrated luminosity of L = 3000 fb−1. These are good reasons for our
increased reach and the different m0 dependence in the two results. Another
important difference between the two results is the shift in the no REWSB-area,
due to the improvements of RGE codes since the year 2000, and possibly the
different RGE codes used, SOFTSUSY versus ISAJET.

As the squark masses are driven by the m0 parameter, they will only be
kinematically accessible at sufficiently low m0. The increasing squark production
with decreasing m0 is evident in the small bumps in the strong exclusion bounds
to the left in figure 6.2. Thus, the bound at m0 & 1.1 TeV mainly represents

2The slepton mass is minimized over the left- and right-handed selectron.
3The squark mass is the average of the two first generations, as this is where we expect to

have the best reach. Stop and sbottom production often leads to leptons in the final state, thus
the event is rejected by the jets and missing energy search described in section 5.3.2.
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gluino production. The limits roughly follow the isocurves of the gluino mass
when mg̃ < mq̃, and the isocurves of the squark mass when mq̃ < mg̃. We observe
that the gluino mass is driven slightly down as m0 increases, due to loop effects
from squarks in the RGE running of the gluino mass parameter M3. The strong
search with L = 300 fb−1, given as the red dashed-dot line, follows the same
pattern as with L = 3000 fb−1, as expected.

The search for charginos and neutralinos with L = 3000 fb−1, represented by
the red solid line, extends the strong reach slightly at m0 . 250 GeV. In this
area, production of squarks happens at high rate. A "fake" signal resembling
direct production of charginos and neutralinos can occur if the squark–anti-squark
pair decays to q̃ → qχ̃0

2 and q̃∗ → q′χ̃±1 . The resulting jets are not vetoed by the
analysis, and the event is accepted as a signal in the electroweak search. Other
than the small area mentioned above, the electroweak limit is consistently weaker
than the limit from the search for squarks and gluinos. This is as expected in
this plane, as electroweak production cross sections are much smaller than the
strong. The corresponding bound using L = 300 fb−1 reaches up to maximally
m1/2 ∼ 900 GeV, and is consequently weaker than all the other bounds. To ease
the readability of the plot, it is therefore omitted.

We observe that the search for electroweak production with L = 3000 fb−1

suffers from statistical fluctuations, as the bounds have rather large fluctuations.
It also fails to exclude areas at very low m1/2, due to the small energy release
in the sparticle decays. Thus, leptons in this area of parameter space are too
soft to pass the selection cuts given in section 5.3.1, and the detection efficiency
drops. Since the analysis targets scenarios where the supersymmetric particles are
assumed to be heavy, the analysis is well suited in such areas of parameter space,
while it suffers under the same assumptions elsewhere. The same pecularity is
also seen in the search for squarks and gluinos with L = 3000 fb−1, at very low
m1/2. However, these areas are already covered by previous searches at 7 and
8 TeV, and by LEP [13].

The HL-LHC dominates the ILC in the entire parameter space, apart from a
small strip following the edge of the no REWSB-area at highm0. Here, squarks and
gluinos are out of kinematic reach, and the lighter charginos χ̃±1 and neutralinos
χ̃0

1 have a substantial higgsino component, with masses ∼ µ.4 As expected, the
extended search for charginos at 1 TeV remains efficient the furthest into the
high m0-region and gives the best reach here, as it is optimized for such mass
degenerate scenarios. This degenerate scenario will not give sufficient Emiss

T in
the electroweak search at the HL-LHC, and therefore lies beyond its reach. We
observe that the ILC bounds in general follow the kinematic limit at 0.5 TeV
(1 TeV), as the exclusion limits from the different searches follow the mass contours
of 250 GeV (500 GeV) of the sparticles they are optimized to look for.

4Note that the mass contours for the lighter chargino (turquoise) and neutralino (yellow)
give unfortunate color mixing as they meet along the no REWSB-area.
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6.1.2 Naturalness reach

Taking the same approach as Allanach et al. in [2], we look for the minimum
non-excluded naturalness. In figure 6.2 we see that the HL-LHC excludes all
naturalness below ∼ 400, in contrast to ∼ 210 in figure 6.1. The maximal
reach from the ILC is obtained from the slepton search at 1 TeV, excluding all
naturalness below ∼ 250. The contours of naturalness agree, and the increased
reach of the HL-LHC compared to the reach found in [2] is probably due to the
difference in luminosity and type of limits,5 and that the analysis from [2] is based
on 16 year old estimates from ATLAS. Therefore we expect the recent analyses in
the ATLAS note [35] to give more realistic predictions. The electroweak search
with L = 3000 fb−1 however, has a reach similar to that of [2], as it excludes all
naturalness below ∼ 200.

The somewhat naive definition of the naturalness reach in Allanach et al. does
not reflect the fact that for example the HL-LHC can exclude naturalness as
high as ∼ 700. To overcome this, we have used Bayesian parameter estimation
to explore how the two prior distributions of naturalness in figure 6.3 will be
affected by the future searches for supersymmetry and by measurements of the
Higgs mass, using as likelihoods the p-value and a Gaussian function, respectively,
as described in section 4.4.2. This better measures the reach, as it gives the
distribution of all naturalness scores, reflecting the likelihood of the various values.
For readability, we include in figure 6.3 only the posteriors from the likelihoods
with greatest impact. The LHC300 (LHC3000) posterior is based on the product
of likelihoods from both the strong and electroweak searches with L = 300 fb−1

(L = 3000 fb−1),6 while the ILC05 (ILC1) is based on the product of the slepton
and two chargino likelihoods at 0.5 TeV (1 TeV). The total likelihood is the
product of the likelihoods of LHC300, LHC3000, ILC05, ILC1 and the Higgs.

In figure 6.3(a) we see the prior and posterior distributions of naturalness
with flat priors in m0,m1/2, obtained as described in section 4.2.1. Within the
prior range in this scenario, the LHC3000 likelihood impacts the total distribution
of naturalness more than ILC1 (blue), but less than Higgs (green). The Higgs
likelihood is clearly dominant, as the total posterior adopts its shape. As the
measured Higgs mass lies outside the chosen prior range, at higher values of
m0 and naturalness, this likelihood prefers the maximum possible fine-tuning in
the scan region. Taking all experiments into consideration, the most probable
naturalness score in this scenario is c ∼ 1500.

The small peak for low naturalness in the LHC3000 posterior in figure 6.3(a) is
an effect from the non-excluded area in the lower left corner of figure 6.2, for the
electroweak and strong searches with L = 3000 fb−1. This effect may be alleviated
with more statistics, but as the area is already excluded by other experiments, it

5We have also used a top mass slightly different from Allanach et al., but we assume this
effect to be negligible.

6Although we only show three of the total four analyses in figure 6.2.
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Figure 6.3: Prior and posterior distributions of naturalness in the
mSUGRA10 scenario.
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can be ignored.
The ILC1 results has the least impact on the total posterior in this scenario,

and it remains almost unchanged in shape compared to the prior. The exception
is a small region of naturalness values below ∼ 250, in agreement with what we
found previously. Consequently, the posterior is raised above the prior in the rest
of the range due to conservation of probability.

The characteristic shape of the prior and posterior distributions, with a sharp
cut-off at c ∼ 1500, is caused by how the naturalness is distributed across
parameter space, and our choice of prior ranges. In figure 6.2 we see that we
virtually scan over the whole area with c = 1500, but very little of the area with
higher values. This causes the dramatic fall in naturalness there.

In figure 6.3(b) we give the same results with log priors in m0,m1/2. We see
that the total posterior is similar in both shape and maximum, which reflects the
strong data from the Higgs likelihood. Due to the large prior at low parameter
(and naturalness) values, the weakness of the HL-LHC analyses is more pronounced
here. Since these searches fail to exclude low naturalness in this plane on their
own, they do not reject our prior belief in low fine-tuning.

This explains why the KL-measure with a log prior for the LHC3000 searches
in table 6.1 is smaller than the KL-measure for ILC1. As our prior assumptions
are not rejected by LHC3000, the information gain is small. However, the ILC1
mainly excludes in areas with low fine-tuning, which is in contrast to our prior
belief, and therefore we learn more.

The KL-measures for various posteriors in table 6.1 reflect our discussion
above, as the Higgs posterior gives the largest information gain, followed by the
LHC3000 and ILC1 posteriors. We notice that all KL-measures with a log prior
are larger than the corresponding measures with a flat prior, as the experiments
in general exclude — at least some of — the lowest naturalness. The prior belief
in this area is thus rejected, and information gained. Although it is tempting
to believe that the KL-measure for the total posterior should be the sum of the
KL-measures from which it is composed, the KL-measure for the total posterior
is not linear in the individual parts it is constructed from.

Table 6.1: KL-measures for naturalness in mSUGRA10. The priors refer
to the priors in m0 and m1/2. The content of the posteriors is defined in
the text.

Posterior Flat prior Log prior

LHC3000 0.431 0.775
ILC1 0.221 1.313
Higgs 0.708 2.136
Total 0.845 2.434
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6.2 mSUGRA30

A plausible realization of supersymmetry is not really present in the parameter
space of the previous scenario, as the predicted Higgs mass is too low compared
to the experimental measured mass. The parameters of msUGRA30 are therefore
chosen to bring the calculated Higgs mass into closer agreement with the measured.
The prize to pay is an overall increase in naturalness compared to mSUGRA10.7

As the Higgs likelihood no longer gives a — rather artificial — dominating
effect, this scenario allows us to inverstigate a more realistic reach and impact on
our knowledge of naturalness from the HL-LHC and ILC.

6.2.1 Exclusion limits

In figure 6.4 we give the 95% CL exclusion limits and mass contours for the
mSUGRA30 scenario. We find many of the same features as in the previous
section, and we will here mainly focus on the differences. We see that the search
for strongly produced supersymmetry with L = 3000 fb−1 excludes all values of
m1/2 . 900 GeV, corresponding to squark and gluino masses below ∼ 2.25 GeV.
Notice that in contrast to the mSUGRA10 scenario, the detection efficiency is
maintained at low m0 to the very left in figure 6.4. In the same figure we also see
that the strong searches at both luminosities suffer from poor statistics at very
low m1/2, indicated by the fluctuations in the lower red lines. We did not have
the computational resources to improve this effect.8

The searches for electroweak production at the HL-LHC reach up to maximally
m1/2 ∼ 700, but are not included in figure 6.4 as they suffer from even larger
statistical fluctuations and consistently give the weakest bounds. We have also
removed the extended search for charginos at the ILC at 1 TeV, as this bound
ran along m1/2 ∼ 200 GeV and did not contribute much to the plot.

We notice that the no REWSB-area is no longer present, but a small region
with tachyons has appeared. If the soft masses of squarks and sfermions run
sufficiently low, they can take on negative values at the electroweak scale. This
increases the risk of also having negative physical squared masses — called
tachyons. RGE running effects at high m1/2 can prevent these negative values, so
tachyons appear at low m0,m1/2. The effect is more pronounced at high tan β,
because this will increase the splitting of the stop (and sbottom) masses, making
it easier for the lighter one to become negative.

The bounds from the ILC have the same pattern as in mSUGRA10, following
the kinematic limits.

7Though not dramatic.
8This scenario has the smallest amount of statistics, with only 400 000 generated events for

each point for the strong processes.
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Figure 6.5: Prior and posterior distributions of naturalness in the
mSUGRA30 scenario.
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6.2.2 Naturalness reach

In figure 6.5(a) we see the prior and posterior distributions of naturalness with flat
priors in the scan parameters. The LHC3000 and total posteriors no longer contain
the likelihood from the much weaker electroweak searches for supersymmetry, but
otherwise they are as defined in section 6.1.

Within the prior ranges in this scenario, we see in figure 6.4 that the search
for squarks and gluinos at L = 3000 fb−1 excludes most of the naturalness below
∼ 700 — but not completely, as the search is weak in the region of parameter
space where m1/2 . 200 GeV. The LHC3000 posterior in figure 6.5(a) has a small
plateu at values between approximately 200− 700, reflecting this weakness. Even
though the ILC slepton search at 1 TeV successfully excludes all naturalness
values below ∼ 300, and hence complements the problematic areas of the HL-LHC
searches, these values are already excluded by previous runs at the LHC at 7 and
8 TeV, and by LEP. As we can see in figure 6.4, the HL-LHC searches exclude
little of the very lowest naturalness values, explaining the little peak at c ∼ 100.

We notice that the Higgs likelihood no longer dominates in the total posterior.
This is as expected, since the measured Higgs mass is present in the current
scenario. In fact, within the theoretical uncertainty of 2 GeV for the Higgs
mass calculation in FeynHiggs compared to the measured value, we can have an
acceptable Higgs mass in almost the whole prior range scanned. Therefore, the
Higgs likelihood allows almost all of the naturalness range in the scan, and is far
less dominant than in mSUGRA10. In this plane, the LHC3000 posterior has the
greatest impact on the total posterior, while the effect from the ILC1 likelihood
is roughly the same as from the Higgs. The most probable naturalness is now
c ∼ 1600, slightly raised compared to the mSUGRA10 scenario.

The total posterior maintains roughly the same shape and maximum in the
case of a log prior, shown in figure 6.5(b). However, we find some differences
in the individual posteriors. The weak limits at low naturalness are once again
pronounced in the LHC3000 posterior, and we notice small shifts towards smaller
naturalness also in the ILC1 and Higgs posteriors. The LHC3000 posterior is now
the least informative, as can be seen from the KL-measures in table 6.2. From
these measures it is also clear that the largest information gain is achieved from
ILC1, as this likelihood — similar to the Higgs — mainly excludes low naturalness.
The KL-measure for the Higgs posterior with flat priors confirm the very modest
information gain from this measurement.

Even though comparison of KL-measures in different scenarios is difficult, we
allow for an important observation concerning the information gain in mSUGRA10
versus mSUGRA30. In terms of the definition of naturalness reach by Allanach
et al., we have the best reach in the current scenario, as we now exclude all
naturalness below ∼ 700, versus ∼ 400 in mSUGRA10. However, the KL-measure
for the total posterior with flat priors in mSUGRA10, given in table 6.1, gives
us almost twice as much information as the same measure in mSUGRA30, given
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Table 6.2: KL-measures for naturalness in mSUGRA30. The priors refer
to the priors in m0 and m1/2. The content of the posteriors is defined in
the text.

Posterior Flat prior Log prior

LHC3000 0.211 0.115
ILC1 0.164 0.905
Higgs 0.099 0.673
Total 0.469 1.519

in table 6.2. This means that despite the higher allowed minimal naturalness
value in mSUGRA30, we actually learn less about naturalness in this scenario
compared to mSUGRA10. This illustrates that the approach of Allanach et al. is
somewhat naive compared to the one followed here.

6.3 NUHM2

Both models studied up to now have been mSUGRA models, motivated by the
wish for GUT unification of scalar masses in m0. We will now study the NUHM2
model described in section 2.7.2, motivated by both the possibility of low fine-
tuning, and the prediction of a Higgs mass in agreement with observation. Large
squark masses increase the mass of the Higgs, since the loop corrections to the
Higgs mass depend upon the masses of the particles running in them. This in
turn typically shifts naturalness in the same direction. Hence, such areas do not
exist in mSUGRA models, as the prize to pay there is an increase in the overall
naturalness score, and vice versa.

The NUHM2 model in [25], given the name Radiatively-driven Natural su-
persymmetry (RNS), maintainins the features of gauge coupling unification and
radiative electroweak symmetry breaking, as well as keeping the fine-tuning low
and predicting a correct Higgs mass. This can be seen from eq. (3.8), as

cmHu
=

∣∣∣∣ 4

tan2 β

m2
Hu

m2
Z

∣∣∣∣ (6.1)

is low if |mHu| ∼ mZ and tan2 β � 1. This happens naturally in RNS with
running from the GUT scale.

We now compare our results with those from [25], given here in figure 6.7 for
ease of reference.
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6.3.1 Exclusion limits

As m0 = 4 TeV in the NUHM2 mass plane, squarks are out of kinematic reach,
and we produce and set limits on the gluino mass. The high value of m0 also
removes the possibility of tachyons, and there are no unphysical areas within the
chosen prior ranges.

In figure 6.6 we give the 95% CL exclusion limits for the NUHM2 scenario.
We see that the strong production search at the HL-LHC with L = 3000 fb−1 will
explore all values of m1/2 . 800 GeV, corresponding to all gluino masses below
∼ 2 TeV. As expected, this reach is similar to those obtained for mSUGRA10 and
mSUGRA30, as the kinematics are the same, and 2 TeV gluinos are close to the
kinematic reach at

√
s = 14 TeV. This is in contrast to the ILC reach, which in

fact is able to exclude models with gluino masses well above this. The electroweak
searches for supersymmetry at the HL-LHC once again suffer from large statistical
fluctuations,9 and explore values of at most m1/2 ∼ 600 GeV. Being consistently
weaker than the limit from strong production at L = 3000 fb−1, we have left them
out of figure 6.6 for readability.

Our reach is increased compared to the results in [25], due to the ten times
higher luminosity. The dashed blue line in figure 6.7, representing the search for
gluino pair production at L = 300 fb−1, excludes m1/2 . 700 GeV, corresponding
to gluino masses of mg̃ . 1.7 TeV. The shape of the collider bounds in figures 6.6
and 6.7 are similar, both for the HL-LHC and the ILC. However, the ILC bounds
shown in figure 6.7 are purely kinematic, hence it lacks the decreasing detection
efficiency at high m1/2 from the more realistic simulation shown in figure 6.6. In
figure 6.7 we can also see the areas already excluded by LEP, clearly showing that
the area poorly covered by the HL-LHC along the lowest values of m1/2 is already
excluded.

6.3.2 Naturalness reach

We cannot directly relate the shape of the naturalness contours in figure 6.6
with the naturalness contours in figure 6.7, as the former is based on the so-
called electroweak fine-tuning, and not the Barbieri–Giudice measure defined in
eq. (3.9).10 However, both results are characterized by a low overall fine-tuning,
even if quantitatively our results are slightly higher.

A Higgs mass of approximately 125± 2 GeV is present throughout the prior
ranges in this scenario, and the corresponding likelihood therefore provides little
information on naturalness, and has no effect on the total posterior. For these
reasons it is omitted in figure 6.8. However, all posteriors used in this scenario
are the same as those defined in section 6.2.2, meaning the Higgs likelihood is
still included in the total posterior.

9Despite the generation of 1 200 000 events for each parameter point.
10Although the contours from the two different naturalness definitions bear some resemblance.
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Figure 6.7: Electroweak naturalness scores (red), and predicted LHC
(blue) and ILC (black) exclusion bounds for a NUHM2 scenario with
m0 = 5 TeV, tanβ = 15, A0 = −1.6m0, mA = 1 TeV and mt = 173.2 GeV.
Taken from [25].

In figure 6.8(a) we give the prior and posterior distributions of naturalness with
flat priors in m0,m1/2. An important discovery in this scenario, is the extremely
small information gain — hardly any at all — from the planned searches for
strongly produced supersymmetry at the HL-LHC. In terms of the naturalness
reach defined by Allanach et al., the HL-LHC has none, since it cannot exclude all
naturalness below any value. In contrast to the previous two scenarios, the reason
is no longer limitations on detection efficiency, but solely due to the peculiar shape
of the naturalness score in the mass plane in combination with the bounds from the
HL-LHC experiments at constant m1/2. As the LHC3000 posterior in figure 6.8(a)
is roughly distributed evenly over all naturalness values, it is effectively just an
overall scaling, and the likelihood has no contribution in the total posterior. Our
information gain on naturalness from this experiment is very limited, despite the
rather large excluded area from the HL-LHC bound at L = 3000 fb−1 shown in
figure 6.6. However, an interesting effect from this constraint in the mass plane,
is its removal of the naturalness plateau for values of c ∼ 40, for m1/2 between
∼ 500− 1000 GeV, seen in figure 6.6. We find the plateau in the accumulation of
the same values in the prior distribution of figure 6.8(a), and observe that the
peak is gone in the LHC3000 posterior. This plateau also explains the rather
peculiar behaviour of some of the naturalness isocurves.

The supersymmetry searches at the ILC give the best reach in this scenario,
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Figure 6.8: Prior and posterior distributions of naturalness in the NUHM2
scenario.
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and in figure 6.6 we see that the ILC1 posterior excludes all naturalness below
∼ 30.

Studying the log priors in figure 6.8(b), we find that the ILC1 and total
posteriors are virtually identical in shape and maximum value as with flat priors,
indicating the very strong data from the ILC experiments in this scenario. Thus,
the other experiments hardly contribute in the total posterior, and the ILC1
posterior predicts a most probable naturalness score of c ∼ 120. We also observe
that the prior peak at c ∼ 40 is gone.

The KL-measures in table 6.3 reflect the above discussion. The LHC3000
posterior provides close to no information about naturalness, meaning that very
natural models may remain even after the HL-LHC searches. If supersymmetry
is realized within the parameter space of the scenario studied here, the ILC can
provide us with ∼ 12 and ∼ 16 times the information compared to the HL-LHC
assuming flat and log priors in m0,m1/2, respectively. This motivates building
such a collider.

Table 6.3: KL-measures for naturalness in NUHM2. The priors refer to
the priors in m0 and m1/2. The content of the posteriors is defined in the
text.

Posterior Flat prior Log prior

LHC3000 0.088 0.183
ILC1 1.063 2.075
Total 1.031 2.016
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Conclusions

In this thesis we have scanned the parameter spaces of three supersymmetric
scenarios to explore the potential naturalness reach of the HL-LHC at

√
s = 14 TeV

in planned searches for supersymmetry. We have set exclusion limits at the
95% confidence level to find the disfavoured naturalness values and sparticle
masses. With the likelihoods obtained from these planned experiments, assuming
negative results, we have used Bayesian parameter estimation to calculate posterior
probability distributions for naturalness. These indicate not only the most
probable fine-tuning, but also its spread. We have also used the Kullback–Leibler
divergence to quantify the information gain on naturalness from different collider
experiments. From the literature it appears that this measure has never been
used in the context of particle physics before. This thesis was focused on the
planned experiments at the HL-LHC, but we have also compared our results with
similar work done for the ILC presented in [1].

In the two mSUGRA scenarios we see that the HL-LHC can exclude all squark
and gluino masses below ∼ 2 TeV, while virtually all slepton and chargino masses
below ∼ 0.5 TeV can be excluded by the ILC at 1 TeV. This corresponds to the
kinematically accessible sparticles at these energies. In the natural supersymmetric
model, the squarks and sleptons were out of kinematic reach, but the reach in the
remaining masses was the same as stated above.

The searches for supersymmetry at the HL-LHC were found to have surprisingly
weak constraining power in areas of parameter space with low sparticle masses,
due to poor detection efficiency and consequently large statistical fluctuations.
This is a consequence of the assumptions of high sparticle masses used in the
analyses. However, the resultig limitations of the searches are not dramatic, as
the problematic areas are already exluded by other searches and experiments.
A similar effect is found for the ILC in areas with mass degeneration between
charginos and neutralinos. As these areas are not already excluded, an optimized
analysis for this mass degenerate case was implemented to extend the reach here.

The favoured fine-tuning in the two mSUGRA scenarios is c ∼ 1500− 1600,
where the results from the planned searches at the HL-LHC can give substantial
contributions to our knowledge about the naturalness of the model. This is in
great contrast to the situation in our natural supersymmetry scenario, where the
HL-LHC searches cannot provide us with any information about the fine-tuning,
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independent on our assumptions of prior beliefs. Thus, natural supersymmetry
models may remain viable after the HL-LHC experiments. However, the searches
for supersymmetry at the ILC at 1 TeV may push fine-tuning up to c ∼ 120, and
can give over ten times as much information about naturalness as the HL-LHC.
This motivates building such a collider.
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Formalities

Einsteins summation convention is used throughout this thesis, meaning repeated
indices is summed over, i.e.,

αiθ
i ≡

N∑
i

αiθ
i = α1θ

1 + ...+ αNθ
N . (A.1)

The same convention also applies if both indices are raised or lowered.
We also use natural units ~ = c = 1 and the relativistic four-vector notation,

with the contravariant space time vector x = xµ defined by

xµ ≡ (x0, x1, x2, x3) = (t,x), (A.2)

and the metric tensor in flat space gµν defined by

g00 = −g11 = −g22 = −g33 = 1, (A.3)
gµν = 0 for µ 6= ν. (A.4)

Covariant four vectors are defined using the metric tensor in the following way,

xµ = gµνx
ν = (x0,−x1,−x2,−x3) = (t,−x). (A.5)

The energy-momentum vector pµ is defined as

pµ = (E, p1, p2, p3) = (E,p). (A.6)

The three Pauli matrices σi are proportional to the generators of the SU(2)L
gauge group, and are given by

σ1 =

(
0 1
1 0

)
σ2 =

(
0 −i
i 0

)
σ3 =

(
1 0
0 −1

)
, (A.7)

with the commutation relations

[σi, σj] = 2iεijkσk, (A.8)

93



Chapter A

Table A.1: Programs and non-standard settings used.

Generator/program Application Tune

SOFTSUSY 3.7.0 [37] Mass spectrum and naturalness score.

α−1
em = 1.279 44 · 102.
αs(mZ) = 1.184 · 10−1.
mb(mb) = 4.18 GeV.
mt(pole) = 1.734 · 102 GeV.

PYTHIA 8.215 [47] Event generator for pp-collisions.
PDF set CTEQ6.6M NLO.
No multiparton interactions.
Isotropic tau decays.

FeynHiggs 2.12.0 [40–45] Improved Higgs masses and couplings. Loglevel 2.
NLL-fast 4.01 [49–52] Cross section calculations. PDF set CTEQ6.6M NLO.
PYTHIA 6.428 [46] Event generator for e+e−-collisions. Modified PYCELL subroutine, see appendix C.
anti-kT [55] Jet reconsruction algorithm used by FastJet. Default.
FastJet [57] Jet reconsruction of PYTHIA 8.215. Default.
Prospino 2.1 [53] Cross section calculations. Default.
SUSY-HIT 1.5 [39] Better decays of SUSY particles. Default.

where εijk is the Levi–Civita symbol. Further we have that

σµ = (12×2, σ
i), (A.9)

and
σµν =

i

4
(σµσ̄ν − σν σ̄µ), (A.10)

where σ̄µ = (12×2,−σi).
The eight Gell-Mann matrices λa compose the generators of the SU(3)C gauge

group. They have the commutation relations

[λa, λb] = 2ifabcλc, (A.11)

where the structure constants fabc are antisymmetric in the three indices.
To avoid accumulation of numerical factors, the generators of both SU(2)L

and SU(3)C are defined as

T i =
1

2
σi, T a =

1

2
λa. (A.12)

We also remind the reader of the trace relations for the gamma matrices,

Tr(γµγν) = 4gµν . (A.13)

All program versions and their non-standard settings are found in table A.1.
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Loop corrections to the Higgs mass

In this appendix we calculate the fermionic and scalar one-loop corrections to the
Higgs mass, using the Feynman rules defined in table B.1.

The tree level mass term of the Higgs boson is present in the Lagrangian as

Lmh
= µ2h†h, (B.1)

and is represented by the Feynman diagram in figure B.1. From quantum field
theory, we know that a scalar field h† contains a destruction operator, while h has
a creation operator. Figure B.1 therefore describes the destruction and creation of
a quanta of the Higgs field. Diagrams such as those in figure B.2 are corrections
to the tree level mass, since the initial and final states are exactly the same. It is
clear that the tree level mass term in the Lagrangian depends upon the parameter
µ. It is important to stress that this is not the same as the physical mass of the
Higgs boson, mh. The physical (squared) mass m2

h, is the sum of the parameter
µ2 and all possible corrections,

m2
h = µ2 + ∆m2

h. (B.2)

The parameter µ has no predicted value from the Standard Model, and must be
determined from experiment.

Table B.1: Feynman rules for calculating fermion and scalar corrections
to the Higgs mass.

Diagram element Expression Comment

Vertex hf̄f −iλf/
√

2 λf : fermion coupling to the Higgs field
Vertex (h†h)(S∗S) −iλS λS: scalar coupling to the Higgs field

Fermion propagator (i/q+mf )

q2−m2
f

four-momentum q and mass mf of fermion
Scalar propagator i

q2−m2
S

four-momentum q and mass mS of scalar
External scalar 1
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h h

Figure B.1: Tree level mass term og the Higgs particle.
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q + k
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(a) Fermion loop contribution.

q q
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h h

k

(b) Scalar loop contribution.

Figure B.2: First order loop corrections to the Higgs mass.

B.1 Fermionic loop correction
We begin by calculating the correction corresponding to the diagram on the left
of figure B.2 which is the contribution from a fermion of mass mf and coupling
λf to the Higgs.

Until performing the integral, integration limits will be left for esthetic reasons.
The integral is taken over over the unknown loop four-momenta ki ∈ [−∞,∞].
The overall sign of the trace is negative due to the closed fermion loop.

The matrix element to calculate is then

iM = −|λf |
2

2
Tr

[∫
d4k

(2π)4

(
(/q + /k) +mf

(q + k)2 −m2
f

)(
/k +mf

k2 −m2
f

)]
, (B.3)

where q is the four-momentum of the Higgs boson.

B.1.1 Feynman parametrization

As a first step to solve the integral, we simplify the denominator by defining

A = (q + k)2 −m2
f , (B.4)

B = k2 −m2
f . (B.5)
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Further, we use the Feynman parametrization where we rewrite the expression as
an integral:

1

AB
=

1

A−B

(
1

B
− 1

A

)
=

1

A−B

∫ A

B

dz

z2
. (B.6)

Then we make the substitution

x =
z −B
A−B

, (B.7)

where we have

z = Ax+ (1− x)B. (B.8)

Since z ∈ [A,B], this implies x ∈ [0, 1] from eq. (B.7). We have also

dx =
dz

(A−B)
. (B.9)

Substituting back in eq. (B.6), we get

1

AB
=

1

A−B

∫ 1

0

(A−B)dx

[Ax+ (1− x)B]2

=

∫ 1

0

dx

[Ax+ (1− x)B]2
. (B.10)

The (unsquared) denominator in the integral can be expressed in terms of the
momenta as

[Ax+ (1− x)B] = [(q + k)2 −m2
f ]x+ (1− x)[k2 −m2

f ]

= (k + qx)2 − (q2x(x− 1) +m2
f )︸ ︷︷ ︸

≡∆

= (k + qx)2 −∆(x). (B.11)

We then make the following shift in the unknown four-momentum k to simplify
the denominator further,

k → k′ = `− qx, dk′ = d`. (B.12)

No Jacobi factor is introduced, and the denominator simplifies to

[Ax+ (1− x)B]2 = [`−∆]2. (B.13)
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B.1.2 Trace of numerator

Next, we write out the numerator in the same variables. All odd multiples of
gamma matrices are left out, as these are traceless and give no contributions. The
trace itself is to be integrated over all four-momenta `. Hence all linear terms in
` can be neglected as these do not contribute to the integral.

Using these simplifications, the numerator can be written

Tr{[(/q + /k′) +mf ][/k
′
+mf ]} = Tr([(/q + /l − /qx) +mf ][/l − /qx+mf ])

= 4(q`− q2x+ l2 − 2q`x+ q2x2 +m2
f )

= 4(`2 + q2x2 − q2x+m2
f )

= 4(`+ ∆(x)). (B.14)

After the Feynman parametrization and trace evaluation, the matrix element is
reduced to

iM = −2|λf |2

(2π)4

∫ 1

0

dx

∫
d4`

`2 + ∆(x)

[`2 −∆(x)]2
. (B.15)

B.1.3 Wick rotation

The next step is to perform a Wick-rotation. The Wick-rotation takes us from
integration in Minkowski space, to Euclidean space. This is done by introducing
the coordinate `E which is defined with the following properties,

`0 ≡ i`0
E, ` ≡ `E. (B.16)

This leads to the relations

`2 = (`0)2 − `2 = (i`0
E)2 − (`E)2 = −(`0

E)2 − `2
E = −`2

E, (B.17)

d4` = id4`E. (B.18)

We now perform the integral over the four-dimensional Euclidean space, using
four-dimensional spherical coordinates,∫

d4`E =

∫
dΩ4

∫
|`E|3d|`E|, (B.19)

where the solid angle integral gives∫
dΩ4 = 2π2. (B.20)
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B.1.4 Regularization

We use a cut-off scale Λ for the momentum `E to regularize the integral. The
integral then yields

iM = −2|λf |2

(2π)4

∫ 1

0

dx

∫
d4`

`2 + ∆(x)

[`2 −∆(x)]2

=
2i|λf |2

(2π)4

∫ 1

0

dx

∫
d4`E

`2
E −∆(x)

[`2
E + ∆(x)]2

=
2i|λf |2

(2π)4

∫ 1

0

dx

∫
dΩ4

∫ Λ

0

d|`E|
|`E|2 −∆(x)

(|`E|2 + ∆(x))2
|`E|3

=
i|λf |2

4π2

∫ 1

0

dx

∫ Λ

0

d|`E|
(

|`E|5

(|`E|2 −∆(x))2
− ∆|`E|3

(|`E|2 + ∆(x))2

)
≈ i|λf |2

4π2

Λ2

2

∫ 1

0

dx, (B.21)

where we have taken the limit Λ � ∆, and ignored the innermost integral
evaluated at zero, as this subtraction is very small compared to the dominating Λ
factors from the upper limit.

Hence, the fermionic mass correction is

(∆ m2
h)f = −|λf |

2

8π2
Λ2. (B.22)

B.2 Scalar loop correction

We also have loop diagrams where Higgs can interact with another scalar particle,
see figure B.2(b). The only contributing factors is one vertex and one propagator.
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The calculation is similar to that of the fermion, but simpler.

iM = −iλS
∫

d4k

(2π)4

i

k2 −m2
S

= λS

∫
d4k

(2π)4

1

k2 −m2
S

= −i λS
(2π)4

∫
d4kE

(
1

k2
E +m2

S

)
= −i λS

(2π)4

∫
dΩ4

∫
d|kE|

(
1

|kE|2 +m2
S

)
|kE|3

= −i λS
8π2

∫ Λ

0

d|kE|
(

|kE|3

|kE|2 +m2
S

)
= −i λS

16π2

(
Λ2 −m2

S ln

(
1 +

Λ2

m2
S

))
≈ −i λS

16π2

(
Λ2 −m2

S ln

(
Λ2

m2
S

))
, (B.23)

where we have that Λ� mS.
To leading order in Λ the correction term from the scalar loop is

(∆m2
h)S =

λS
16π2

Λ2. (B.24)

B.3 Complete correction
The total correction to leading order in Λ from the fermionic and scalar loops is,

∆m2
h = (∆m2

h)f + (∆m2
h)S

= −|λf |
2

8π2
Λ2 +

λS
16π2

Λ2. (B.25)
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Code

The subroutine PYCELL of PYTHIA 6 is modified to cluster on energy rather than
transverse energy, for results to be comparable with those in [36]. In addition,
two other modifications are done. To avoid double counting of leptons, we allow
neither muons nor electrons to be present in jets. This is implemented in line
40. We also redefine the standard deviation in the electromagnetic smearing to
include the constant term of eq. (5.7). This is done in line 100. We mark our
modifications and additional code with *-*-*-*.

1 SUBROUTINE PYCELL(NJET)
2

3 C..... Double precision and integer declarations.
4 IMPLICIT DOUBLE PRECISION(A-H, O-Z)
5 IMPLICIT INTEGER(I-N)
6 INTEGER PYK ,PYCHGE ,PYCOMP
7 DOUBLE PRECISION P_E(4000)
8

9 C..... Parameter statement to help give large particle
numbers

10 PARAMETER (KSUSY1=1000000,KSUSY2=2000000,KTECHN=300000
0,

11 &KEXCIT=4000000,KDIMEN=5000000)
12

13 C..... Commonblocks
14 COMMON/PYJETS/N,NPAD ,K(4000,5),P(4000,5),V(4000,5)
15 COMMON/PYDAT1/MSTU(200),PARU(200),MSTJ(200),PARJ(200)
16 COMMON/PYDAT2/KCHG(500,4),PMAS(500,4),PARF(2000),VCKM(

4,4)
17 SAVE /PYJETS/,/PYDAT1/,/PYDAT2/
18

19 C..... Initialize , put values to zero for correct start point
20 C *-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*
21 DO 42 II = 1,4000
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22 P_E(II)=0D0
23 42 CONTINUE
24 C *-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*
25

26 C..... Loop over all particles
27 C..... Find cell that was hit by given particle
28 C *-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*
29 C.....Do not allow electrons (11) and muons (13) in jets
30 C *-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*
31 PTLRAT=1D0/SINH(PARU(51))**2
32 NP=0 ! Particle number
33 NC=N ! Number of cells
34 DO 110 I=1,N ! Run through particles in event
35 IF(K(I,1).LE.0.OR.K(I,1).GT.10) GOTO 110 ! Go to

next particle
36 IF(P(I,1)**2+P(I,2)**2.LE.PTLRAT*P(I,3)**2) GOTO 110
37 IF(MSTU(41).GE.2) THEN
38 KC=PYCOMP(K(I,2)) ! Compressed particle code , abs(

ID)
39 IF(KC.EQ.0.OR.KC.EQ.12.OR.KC.EQ.14.OR.KC.EQ.16.OR.
40 & KC.EQ.11.OR.KC.EQ.13.OR.KC.EQ.18.OR.K(I,2).EQ.
41 & KSUSY1+22.OR.K(I,2).EQ.39.OR.K(I,2).EQ.KSUSY1+39)
42 & GOTO 110 ! Invisible particles , e and mu not

wanted. Go to next particle.
43 IF(MSTU(41).GE.3.AND.KCHG(KC,2).EQ.
44 & 0.AND.PYCHGE(K(I,2)).EQ.0)
45 & GOTO 110
46 ENDIF
47 NP=NP+1 ! We survived , update particle number
48 PT=SQRT(P(I,1)**2+P(I,2)**2)
49 ETA=SIGN(LOG((SQRT(PT**2+P(I,3)**2)+ABS(P(I,3)))/PT)

,P(I,3))
50 IETA=MAX(1,MIN(MSTU(51),1+INT(MSTU(51)*0.5D0*
51 & (ETA/PARU(51)+1D0))))
52 PHI=PYANGL(P(I,1),P(I,2))
53 IPHI=MAX(1,MIN(MSTU(52),1+INT(MSTU(52)*0.5D0*
54 & (PHI/PARU(1)+1D0))))
55 IETPH=MSTU(52)*IETA+IPHI
56

57 C *-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*
58 P_XYZ=SQRT(P(I,1)**2+P(I,2)**2+P(I,3)**2)
59 C *-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*
60

61 C...Add to cell already hit , or book new cell.
62 C... Executes zero times the first time (we have no cell to
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begin with , so we book a new one)
63 DO 100 IC=N+1,NC ! # of iterations: max(0,int( (

final val - initial val + step size) / step size)
)

64 IF(IETPH.EQ.K(IC,3)) THEN
65 K(IC,4)=K(IC,4)+1
66 P(IC,5)=P(IC,5)+PT
67

68 C *-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*
69 P_E(IC) = P_E(IC) + P_XYZ
70 C *-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*
71 GOTO 110
72 ENDIF
73 100 CONTINUE
74 IF(NC.GE.MSTU(4)-MSTU(32)-5) THEN
75 CALL PYERRM(11,’(PYCELL :)␣no␣more␣memory␣left␣in␣

PYJETS ’)
76 NJET=-2
77 RETURN
78 ENDIF
79 NC=NC+1 ! Update cell number
80 K(NC,3)=IETPH ! Some flag
81 K(NC,4)=1 ! Another flag
82 K(NC,5)=2 ! Another flag
83 P(NC,1)=(PARU(51)/MSTU(51))*(2*IETA -1-MSTU(51)) !

WTF
84 P(NC,2)=(PARU(1)/MSTU(52))*(2*IPHI -1-MSTU(52)) !

WTF
85 P(NC,5)=PT
86 C *-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*
87 P_E(NC)=P_XYZ
88 C *-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*
89 110 CONTINUE
90

91 C..... Smear true bin content by calorimeter resolution.
92 IF(MSTU(53).GE.1) THEN
93 DO 130 IC=N+1,NC
94 PEI=P(IC,5)
95 IF(MSTU(53).EQ.2) PEI=P(IC,5)*COSH(P(IC,1))
96 C Redefine the standard deviation of the normal

distribution
97 C E = E + sigma*N(0,1), where N(0,1) is a normal

distribtion
98 C around zero , with standard deviation 1
99 C *-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*
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100 120 PEF = PEI + PARU(55)*SQRT(PEI+(0.0004/PARU(55)**2)
*PEI**2

101 & *(-2D0*LOG(MAX(1D-10,PYR(0)))))*COS(PARU(2)*
PYR(0))

102 IF(PEF.LT.0D0.OR.PEF.GT.PARU(56)*PEI) GOTO 120
103 P(IC,5)=PEF
104 IF(MSTU(53).EQ.2) P(IC,5)=PEF/COSH(P(IC,1))
105 C *-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*
106 130 CONTINUE
107 ENDIF
108

109 C *-*-*-*-*-*-*-* IGNORED *-*-*-*-*-*-*-*-*-*
110 C..... Remove cells below threshold.
111 IF(PARU(58).GT.0D0) THEN
112 NCC=NC
113 NC=N
114 DO 140 IC=N+1,NCC
115 IF(P_E(IC).GT.PARU(58)) THEN
116 NC=NC+1
117 K(NC ,3)=K(IC,3)
118 K(NC ,4)=K(IC,4)
119 K(NC ,5)=K(IC,5)
120 P(NC ,1)=P(IC,1)
121 P(NC ,2)=P(IC,2)
122 P(NC ,5)=P(IC,5)
123 P_E(NC)=P_E(IC)
124 ENDIF
125 140 CONTINUE
126 ENDIF
127

128 C... Find initiator cell: the one with highest p of not yet
used ones.

129 NJ=NC
130 150 EMAX=0D0
131 DO 160 IC=N+1,NC
132 IF(K(IC ,5).NE.2) GOTO 160
133 C *-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*
134 IF(P_E(IC).LE.EMAX) GOTO 160
135 C *-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*
136 ICMAX=IC
137 ETA=P(IC,1)
138 PHI=P(IC,2)
139 C *-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*
140 EMAX=P_E(IC)
141 C *-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*
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142 160 CONTINUE
143 IF(EMAX.LT.PARU(52)) GOTO 220 ! PARU(52) is now =

minimum E for a cell to be considered as a jet
initiator. D=1.5 GeV

144 IF(NJ.GE.MSTU(4)-MSTU(32)-5) THEN
145 CALL PYERRM(11,’(PYCELL :)␣no␣more␣memory␣left␣in␣

PYJETS ’)
146 NJET=-2
147 RETURN
148 ENDIF
149 K(ICMAX ,5)=1
150 NJ=NJ+1
151 K(NJ,4)=0
152 K(NJ,5)=1
153 P(NJ,1)=ETA
154 P(NJ,2)=PHI
155 P(NJ,3)=0D0
156 P(NJ,4)=0D0
157 P(NJ,5)=0D0
158 C *-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*
159 P_E(NJ)=0D0
160 C *-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*
161

162 C...Sum up unused cells within required distance of
initiator.

163 DO 170 IC=N+1,NC
164 IF(K(IC ,5).EQ.0) GOTO 170
165 IF(ABS(P(IC,1)-ETA).GT.PARU(54)) GOTO 170
166 DPHIA=ABS(P(IC,2)-PHI)
167 IF(DPHIA.GT.PARU(54).AND.DPHIA.LT.PARU(2)-PARU(54))

GOTO 170
168 PHIC=P(IC,2)
169 IF(DPHIA.GT.PARU(1)) PHIC=PHIC+SIGN(PARU(2),PHI)
170 IF((P(IC,1)-ETA)**2+(PHIC -PHI)**2.GT.PARU(54)**2)

GOTO 170
171 K(IC,5)=-K(IC,5)

! Used cell in jet , ’flip ’ it to
illustrate

172 K(NJ,4)=K(NJ,4)+K(IC,4)
173 P(NJ,3)=P(NJ,3)+P(IC,5)*P(IC,1)
174 P(NJ,4)=P(NJ,4)+P(IC,5)*PHIC
175 P(NJ,5)=P(NJ,5)+P(IC,5)
176 C *-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*
177 P_E(NJ)=P_E(NJ)+P_E(IC)
178 C *-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*
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179 170 CONTINUE
180

181 C..... Reject cluster below minimum E, else accept.
182 C *-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*
183 IF(P_E(NJ).LT.PARU(53)) THEN
184 C *-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*
185 NJ=NJ-1 ! Remove one number of jet if it does not

pass the energy test
186 DO 180 IC=N+1,NC ! Loop over all cells
187 IF(K(IC,5).LT.0) K(IC,5)=-K(IC ,5) ! Unuse cell
188 180 CONTINUE
189 ELSEIF(MSTU(54).LE.2) THEN
190 P(NJ,3)=P(NJ,3)/P(NJ,5) ! Scaling?
191 P(NJ,4)=P(NJ,4)/P(NJ,5) ! Scaling?
192 IF(ABS(P(NJ,4)).GT.PARU(1)) P(NJ,4)=P(NJ,4)-SIGN(

PARU(2),
193 & P(NJ,4)) !

SIGN(A,B) returns value of A and sign of B
194 DO 190 IC=N+1,NC ! Loop over all cells
195 IF(K(IC,5).LT.0) K(IC,5)=0 ! Put something to

zero
196 190 CONTINUE
197 ELSE
198 DO 200 J=1,4
199 P(NJ,J)=0D0 ! Run through four indices for each

jet; put to zero
200 200 CONTINUE
201 DO 210 IC=N+1,NC ! Loop over cells
202 IF(K(IC,5).GE.0) GOTO 210
203 P(NJ,1)=P(NJ,1)+P(IC,5)*COS(P(IC,2)) ! ..+ ET*cos

(phi)
204 P(NJ,2)=P(NJ,2)+P(IC,5)*SIN(P(IC,2)) ! ..+ ET*sin

(phi)
205 P(NJ,3)=P(NJ,3)+P(IC,5)*SINH(P(IC,1)) ! ..+ ET*

sinh(phi)
206 P(NJ,4)=P(NJ,4)+P(IC,5)*COSH(P(IC,1)) ! ..+ ET*

cosh(phi)
207 K(IC,5)=0
208 210 CONTINUE
209 ENDIF
210 GOTO 150
211

212 C..... Arrange clusters in falling E sequence.
213 220 DO 250 I=1,NJ-NC
214 EMAX=0D0
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215 DO 230 IJ=NC+1,NJ
216 IF(K(IJ,5).EQ.0) GOTO 230
217 IF(P_E(IJ).LT.EMAX) GOTO 230
218 IJMAX=IJ
219 EMAX=P_E(IJ)
220 230 CONTINUE
221 K(IJMAX ,5)=0
222 K(N+I,1)=31
223 K(N+I,2)=98
224 K(N+I,3)=I
225 K(N+I,4)=K(IJMAX ,4)
226 K(N+I,5)=0
227 C *-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*
228 P_E(N+I)=P_E(IJMAX)
229 C *-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*
230 DO 240 J=1,5
231 P(N+I,J)=P(IJMAX ,J)
232 V(N+I,J)=0D0
233 240 CONTINUE
234 250 CONTINUE
235 NJET=NJ-NC
236

237 C..... Convert to massless or massive four -vectors.
238 IF(MSTU(54).EQ.2) THEN
239 DO 260 I=N+1,N+NJET
240 ETA=P(I,3)
241 P(I,1)=P(I,5)*COS(P(I,4))
242 P(I,2)=P(I,5)*SIN(P(I,4))
243 P(I,3)=P(I,5)*SINH(ETA)
244 P(I,4)=P(I,5)*COSH(ETA)
245 P(I,5)=0D0
246 260 CONTINUE
247 ELSEIF(MSTU(54).GE.3) THEN
248 DO 270 I=N+1,N+NJET
249 P(I,5)=SQRT(MAX(0D0,P(I,4)**2-P(I,1)**2-P(I,2)**2-

P(I,3)**2))
250 270 CONTINUE
251 ENDIF
252

253 C..... Information about storage.
254 MSTU(61)=N+1
255 MSTU(62)=NP
256 MSTU(63)=NC-N
257 IF(MSTU(43).LE.1) MSTU(3)=MAX(0,NJET)
258 IF(MSTU(43).GE.2) N=N+MAX(0,NJET)
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259

260 RETURN
261 END
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