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Abstract

We study presentations of Cox rings of K3 surfaces of Picard number two. In
particular we consider the Cox rings of classical examples of K3 surfaces, such as quartic
surfaces containing a line and doubly elliptic K3 surfaces.

1 Introduction

Linear systems and projective models of K3 surfaces are classical objects in algebraic ge-
ometry and have been studied by many authors, see e.g. [10], [14] and [15]. In this paper
we make use of these results to study explicitly the Cox ring of a K3 surface, which is
essentially defined as the ring of all sections of all line bundles on the surface. It’s well-
known that the generic K3 surface X has Picard number one, so in this case the Cox ring
is just the section ring

⊕
m≥0H

0(X,mD), where D is an ample divisor generating Pic(X).
Generators and relations of this ring were investigated by Saint-Donat in [14]. In this paper
we will consider the case when X has Picard number two.

Cox rings of K3 surfaces were first studied by Artebani, Hausen and Laface in the
recent paper [1]. In that paper it was shown that a K3 surface has a finitely generated
Cox ring if and only if its effective cone is rational polyhedral. When the Picard number
is two, it is known that this cone is rational polyhedral if an only if Pic(X) contains a
class of self-intersection 0 or −2. On the other hand, for higher Picard number, the cone
is rational polyhedral only when Pic(X) belongs to some finite list of hyperbolic lattices
(see [1, Theorem 2.12]). This makes the case when X has Picard number two particularly
interesting.

Knowing when the Cox ring is finitely generated raises the problem of finding an explicit
presentation for it. This problem was considered in [1] for many classes of K3 surfaces,
including double covers of Del Pezzo surfaces. The aim of this paper is to extend some of
these results and also present some new examples.

The paper is organized as follows: In Section 2 we give a new proof of finite generation
of the Cox ring when the effective cone is rational polyhedral. The results of this section can
be used to study Cox rings of any Picard number. Our proof is also constructive in the sense
that we provide a set of generators for Cox(X) which can be used to find a presentation of
the Cox ring. The main idea here is to use Koszul cohomology to study the multiplication
maps on global sections of line bundles on X which gives the ring structure on Cox(X). In
Section 3 we consider three examples where Theorem 2.3 is used to compute the Cox rings
explicitly. In Section 4, we study in detail K3 surfaces with intersection matrix of the form(
0 d
d 0

)
. Using classical results on elliptic fibrations in rational normal scrolls we are able

to study the minimal resolution of the Cox ring. Our main result here is that the Betti
numbers of this resolution coincide with the Betti numbers of elliptic normal curves.



2 Cox rings of K3 Surfaces

Let X be a smooth projective K3 surface with Pic(X) freely generated by the classes of
effective divisors Γ1, . . . ,Γρ. The Cox ring of X is defined by

Cox(X) =
⊕
m∈Zρ

H0 (X,m1Γ1 + . . .+mρΓρ)

where the ring structure is given by viewing sections as rational functions. Note that
Cox(X) comes with a multigrading given by the semigroup of effective divisors. By Theorem
2.7 in [1] the Cox ring is a finitely generated k-algebra if and only if this semigroup is finitely
generated, or equivalently, the cone of effective divisors Eff(X) ⊂ Pic(X) ⊗R is rational
polyhedral. In this case, a result of Kovács [10] says that this cone is spanned by classes of
self-intersection −2 or 0.

To find a concrete presentation of Cox(X), we look for a minimal set of generators
x1, . . . , xr from respective vector spaces H0(X,D1), . . . ,H

0(X,Dr) and describe the ideal
of relations I between them. Letting R = k[x1, . . . , xr] with the natural Pic(X)-grading
given by deg xi = Di, there is an exact sequence of Pic(X)-graded k-algebras

0→ I → R→ Cox(X)→ 0.

As explained in [8], this presentation gives an embedding of X into a toric variety. Indeed,
consider the affine variety V (I) ⊂ Ar = Spec(R). There is a natural action of the Neron-
Severi torus G = Hom(Pic(X),Gm) ' Gρ

m on R and Cox(X), making the inclusion V (I) ⊂
Ar G-equivariant. Taking GIT quotients, we get an inclusion i : X = V (I)//G ↪→ Ar//G.
The quotient Y = Ar//G is a normal toric variety with R as its Cox ring. By [8, Prop.
2.11], this embedding induces an isomorphism i∗ : Pic(Y ) → Pic(X), taking the effective
cone of Y to the effective cone of X. This toric embedding will be useful in Section 4. Also,
in the case we are interested in, the torus G is 2-dimensional, and so it is easy to see that
the Krull dimension of the Cox ring is 4 (for a complete proof see [2]).

We recall a few standard facts about linear systems on K3 surfaces:

Proposition 2.1. Let X be a smooth projective K3 surface, D 6= 0 be an effective divisor
on X.

i) If D is nef, then the linear system |D| has a base-point if and only if there exist curves
E, Γ and an integer k ≥ 2 such that

D ≡ kE + Γ, E2 = 0, Γ2 = −2, E · Γ = 1. (1)

ii) If D2 ≥ 0, then H1(X,D) 6= 0 if and only if either i) D ≡ kE for some divisor E with
E2 = 0 and k ≥ 2 or ii) D · Γ ≤ −2 for some divisor Γ with Γ2 = −2.

iii) If D is nef and D2 = 0 then D is base-point free and D ≡ kE for some smooth elliptic
curve E. If D2 > 0, then the generic element of |D| is a smooth and irreducible curve.

iv) A nef divisor class D with D2 > 0 is hyperelliptic (i.e., the generic member of |D| is
a hyperelliptic curve) if and only either D2 = 2; or there is a smooth elliptic curve E
such that D · E = 2; or D = 2B for a smooth curve B with B2 = 2

2



v) If D is not hyperelliptic, then the section ring R(X,D) =
⊕

n≥0H
0(X,nD) is generated

in degree 1. If D is hyperelliptic and g(D) = 2, then R(X,D) is generated in degree 1
and 3. If D is hyperelliptic and if g(D) ≥ 3, then R(X,D) is generated in degrees 1
and 2.

Proof. i) follows from [14, 2.7] and ii) from the main result of [9]. Then iii) and iv) follow
from [14, Proposition 2.6], while v) follows from [14] and [1, Proposition 3.4]

We prove the following result on the surjectivity of the multiplication maps on a K3
surface:

Proposition 2.2. Let X be a smooth projective K3 surface. Let D and E be nef divisors
on X such that |E| is base-point free. Then the multiplication map

H0(X,D)⊗H0(X,E)→ H0(X,D + E) (2)

is surjective if H1(X,D − E) = H1(X,D) = 0 and H2(X,D − 2E) = 0.

Proof. Proving the lemma is equivalent to showing that the Koszul cohomology group
K0,1(X,D,E) is zero (see [12]). By definition, this is the homology of the complex

1∧
H0(X,E)⊗H0(X,D)→

0∧
H0(X,E)⊗H0(X,D + E)→ 0.

Now, the assumptions on the cohomology vanishing ensure us that we are in position to ap-
ply the duality theorem of [12], which states that under these circumstances, K0,1(X,D,E) ∼=
Kr−2,2(X,−D,E)∗ where r = h0(X,E)− 1 and Kr−2,3(X,−D,N) is the homology of the
complex

r−1∧
H0(X,E)⊗H0(X,−D + E) →

r−2∧
H0(X,E)⊗H0(X,−D + 2E)

→
r−3∧

H0(X,E)⊗H0(X,−D + 3E).

But by assumption, H0(X,−D+ 2E) = 0 and so the homology of the complex is zero.

We now define a set G that contains the degrees of the generators of Cox(X).

A) Let G be the set of all classes of curves with self-intersection −2.

B) Add to G the nef divisors D such that for every base-point-free divisor E with D − E
effective, either H1(X,D − 2E) 6= 0; or H1(X,D − E) 6= 0; or H2(X,D − 3E) 6= 0.

C) If D from B) was non-hyperelliptic, remove all higher multiples mD m ≥ 2 from G .

D) If D from B) was hyperelliptic, remove 2D from G if D2 = 2 and 3D if D2 > 2.

Some remarks are in order here. First, we will prove in Theorem 2.3 below that G is actually
a finite set. Moreover, we point out that thanks to the classical results in Proposition
2.1, finding the set G is straightforward once one has a description of the effective cone.
Indeed, (−2)-curves in A) are extremal in the effective cone and can be found by inspection.
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Furthermore, the nef divisors satisfying B) can be obtained easily using Proposition 2.1ii)
and the observation that H2(X,D−3E) 6= 0 if and only if 3E−D is effective. The examples
in Section 3 will make this clear. Finally, the conditions C) and D) are there to eliminate
the redundant degrees of R(X,D), in accordance with Proposition 2.1v).

Theorem 2.3. Let X be a smooth projective K3 surface with rational polyhedral effective
cone and let G be defined by A)−D) above. The G is finite and the Cox ring of X is finitely
generated by sections of degrees contained in G .

Proof. We first show that the set G is finite. First, the classes of curves of self-intersection
−2 are extremal in the effective cone, so if this cone is assumed to be rational polyhedral,
we see that the classes satisfying A) is finite.

We show that the set of nef divisors D satisfying B) and C) above is finite. We may
assume D2 > 0 since if D2 = 0, D is linearly equivalent to kE for some elliptic curve E and
in that case D 6∈ G if k ≥ 2, by C) above (also there are only finitely many such E since
these are extremal in the nef cone). We will need the fact that on a K3 surface, |3N | is
base-point free for N a nef divisor [14]. Then if N runs over the set of non-zero nef divisors,
the union of the translates 10N + Nef(X) covers all but finitely many integral nef divisor
classes. So it suffices to show that if D is a nef divisor class contained in this union, then
D 6∈ G . So suppose D is a nef divisor of the form 10N +D′ with N,D′ nef. Then if we let
E = 3N , we see that D− kE = N +D′ is nef and big for k = 1, 2, 3 and so D and E = 3N
satisfy B), and hence D 6∈ G . In all, this shows that G is finite.

We now show that the Cox ring ofX is finitely generated by sections of degrees contained
in G . Fix a very ample divisor H on X, so that we may talk about the degree, H ·D > 0, of
an effective divisor class D. Let D be an effective divisor class. We show that any section
s ∈ H0(X,D) can be written as a polynomial in the sections in the above degrees using
Proposition 2.2 and induction on the degree.

If D is not base-point free, then by Proposition 2.1 there is a (−2)-curve curve Γ (hence
Γ ∈ G ) in the base locus of |D|. If x is a section defining Γ then multiplication by x gives an

isomorphism H0(X,D−Γ)
·x−→ H0(X,D). Hence every section of H0(X,D) can be written

as a product of x ∈ H0(Γ) and an element of H0(X,D − Γ). Replacing D by D − Γ, we
may therefore reduce to the case where D is base-point free.

Now G is constructed such that if D is a base-point free divisor which is not in G then
there is a base-point-free divisor E such that the multiplication map

H0(X,D − E)⊗H0(X,E)→ H0(X,D). (3)

is surjective. By induction, elements of H0(X,E) and H0(X,D − E) are generated by
sections of degrees contained in G and hence so the same applies to H0(X,D).

In particular, if the Picard number of X is 2, the Cox ring is finitely generated if and
only if Pic(X) contains a class of self-intersection −2 or 0.

3 Examples

In this section we will demonstrate how Theorem 2.3 can be used to find explicit presenta-
tions of Cox rings, provided that the defining ideal is not too complicated.
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3.1 A quartic surface containing a line

We consider a quartic K3 surface X with Pic(X) = ZΓ1⊕ZΓ2 with the intersection matrix
given by (Γ1 · Γ2) =

(−2 3
3 0

)
. Here we fix smooth curves Γ1 and Γ2 of genus 0 and 1

respectively. Such surfaces were studied in [6], where the authors refer to them as the Mori
quartics. Indeed, in this case it is straightforward to check that the divisor H = Γ1 + Γ2

embeds X as a quartic surface in P3 and that Γ1 is sent to a projective line under this
embedding. It is also not hard to check that the effective cone is generated by the classes
of Γ1 and Γ2 and that the nef cone is spanned by Γ2 and 3Γ1 +2Γ2 (see e.g., [1, Proposition
3.1]).

The diophantine equation (xΓ1 + yΓ2)
2 = −2x2 + 6xy = −2 has (±1, 0) as the only

solutions and so the only (−2)-curve on X is Γ1. Moreover, using Proposition 2.1iv), we
find that there are no hyperelliptic classes on X. In particular, by Proposition 2.1v) the
section rings R(X,D) are all generated in degree 1. Also, we find that for every ample
divisor D except the classes in G we have H1(X,D − 2E) = H1(X,D − E) = 0 and
H2(X,D − 3E) = 0 for some E ∈ {Γ2,Γ1 + Γ2}. In the notation of Theorem 2.3, this
means that

G = {Γ1,Γ2,Γ1 + Γ2, 3Γ1 + 2Γ2}

and using Riemann-Roch we find that we need sections x, y1, y2, z1, z2, t such that

H0(X,Γ1) = 〈x〉 H0(X,Γ1 + Γ2) = 〈xy1, xy2, z1, z2〉
H0(X,Γ2) = 〈y1, y2〉 H0(X, 3Γ1 + 2Γ2) = 〈x3y21, x3y1y2, . . . , z22y2, t〉

For computing the defining ideal of the Cox ring we will need the following trick: If R
is a ring and I ⊂ R[t] is an ideal containing an element of the form ty + f with f ∈ R and
y a non-zero divisors modulo I, then I is prime if and only if the elimination ideal I ∩R is
prime. This can be seen by localizing R[t] at powers of y.

Theorem 3.1. Let X be a quartic surface with intersection matrix
(−2 3

3 0

)
. Then the Cox

ring of X is isomorphic to the k−algebra

k[x, y1, y2, z1, z2, t]/(h1, h2) (4)

where deg z = Γ1, deg yi = Γ2, deg zi = Γ1 + Γ2,deg t = 3Γ1 + 2Γ2. The ideal is generated
by two relations h1, h2 of degree 3Γ1 + 3Γ2.

Proof. The sections x, y1, y2, z1, z2, t generate Cox(X) by Theorem 2.3 by the above discus-
sion. Let H = Γ1 + Γ2 be the hyperplane divisor of X in the embedding of X as a quartic
surface. The fact that there are two minimal relations in degree 3H = 3Γ1 + 3Γ2 comes
from the fact that R(X,H) is generated in degree 1, and so it must be possible to write
the sections ty1 and ty2 in terms of xy1, xy2, z1, z2. It follows that we have at least two
relations of the form

hi = tyi − fi(xy1, xy2, z1, z2) = 0.

To show that these generate all the relations in Cox(X), it is sufficient to show that (h1, h2)
is a prime ideal, since then the ring defined by (4) is an integral domain that surjects onto
Cox(X), and hence is isomorphic to Cox(X) since it has Krull dimension 4.

To prove this, note that the polynomial F = xy1h2 − xy2h1 is a relation of degree 4H
which is a polynomial in xy1, xy2, z1, z2. It follows that F is the pullback of the quartic
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polynomial defining X under the embedding given by H. In particular, the elimination
ideal (xy1h2 − xy2h1) = (h1, h2) ∩ k[x, yi, zi] is prime. Also, it is straightforward to check
that y1 is not a zero-divisor modulo (h1, h2), so by the trick quoted above, we conclude
that also (h1, h2) is prime.

3.2 A quartic surface containing two plane conics

Let X be a quartic surface such that a hyperplane section of X splits into two plane
conics Γ1,Γ2. If X is general it has Picard number 2 with Pic(X) = ZΓ1 ⊕ ZΓ2 with
Γ2
i = −2,Γ1 · Γ2 = 4. The effective cone is generated by Γ1 and Γ2 and these are the only

(−2)-curves. The nef cone is generated by 2Γ1 + Γ2 and Γ1 + 2Γ2. Moreover, there are
no hyperelliptic divisor classes on X, by Proposition 2.1iv). It is also easy to check that
for every ample divisor D = aΓ1 + bΓ2 with a ≥ 3 or b ≥ 3, we have H1(X,D − 2H) = 0
and H2(D − 3H) = 0. By Theorem 2.3, these observations show that the degrees of the
minimal generators of Cox(X) are contained in

G = {Γ1,Γ2,Γ1 + Γ2,Γ1 + 2Γ2, 2Γ1 + Γ2}.

The generators are chosen as follows:

H0(X,Γ1) = 〈x〉 H0(X,Γ1 + Γ2) = 〈xy, z1, z2, z3〉
H0(X,Γ2) = 〈y〉 H0(X,Γ1 + 2Γ2) = 〈xy2, yz1, yz2, yz3, v〉

H0(X, 2Γ1 + Γ2) = 〈x2y, xz1, xz2, xz3, w〉

Proposition 3.2. Let X be a quartic surface with Pic(X) = ZΓ1⊕ZΓ2 with Γ2
i = −2,Γ1 ·

Γ2 = 4. Then the Cox ring of X is given by

Cox(X) = k[x, y, z1, z2, z3, v, w]/I

where I = (xv − f, yw − g, vw − h) is a complete intersection.

Proof. The sections x, y, z1, z2, z3, v, w generate the Cox ring by Theorem 2.3. The three
relations come from the fact that ⊕m≥0H0(X,mH) is generated in degree 1, hence it
must be possible to write the sections xv, yw, vw in terms of xy, z1, z2, z3 (which form a
basis for H0(X,H)). The fact that these relations generate the whole ideal of relations in
Cox(X) comes from the fact that I ∩ k[x, y, z1, z2, z3] contains the polynomial fg − xyh,
which must be a constant multiple of the equation defining X as a quartic surface. Hence
I ∩ k[x, y, z1, z2, z3] = (fg − xyh) is prime. As in the proof of Theorem 3.1, it follows that
I is prime and hence contains all the defining relations of Cox(X).

3.3 A double cover of F4

Let X be a K3 surface with Pic(X) generated by Γ1,Γ2 where Γ1,Γ2 are smooth curves
with self intersection 0 and −2 respectively and Γ1 ·Γ2 = 1. The nef cone of X is generated
by Γ1 and 2Γ1 + Γ2 and there is a unique hyperelliptic class on X, which is given by
4Γ1 + 2Γ2. If D = aΓ1 + b(2Γ1 + Γ2) represents a nef divisor class with a, b > 0, we have
H1(X,D − f1) = H1(X,D − 2Γ2) = 0 and thus in the notation of Theorem 2.3, we have

G = {Γ1,Γ2, 4Γ1 + 2Γ2, 6Γ1 + 4Γ2}.
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As in the previous examples, we see that the Cox ring of X is given by a quotient

Cox(X) = k[x, y1, y2, z, w]/F

where deg x = Γ2, deg yi = Γ1, deg z = 4Γ1+2Γ2, degw = 6Γ1+3Γ2 and degF = 12Γ1+6Γ2.
The relation F comes from the fact that the section ring R(X, 4Γ1 + 2Γ1) is generated

in degrees 1 and 2 and so it must be possible to write w2 ∈ H0(X, 12Γ1 + 6Γ2) in terms
of other monomials. In fact, we can understand this relation geometrically if we examine
the morphism given by D = 4Γ1 + 2Γ2. This divisor is hyperelliptic and therefore defines
a double cover φD : X → S ⊂ P5, where S ' F4 is a Hirzebruch surface. If we choose
sections so that x, y1, y2, z generate the Cox ring of S (which is a polynomial ring since S is
a toric variety) and w defines the ramification divisor of this cover, we see that the relation
F will be other form F = w2 − f(x, y1, y2, z). Cox rings of K3 surfaces occuring in this
manner were studied more generally in [1, Section 4].

4 Doubly elliptic K3 surfaces

Consider a K3 surface X with Pic(X) generated by the classes of two smooth elliptic
curves Γ1,Γ2. The intersection form on Pic(X) is given by the matrix

(
0 d
d 0

)
. Cox rings

of K3 surfaces of this type were also studied in [1], where the authors find generators for
Cox(X) and show that the defining ideal is generated by quadrics. In this section we extend
this result using classical results on linear systems on such surfaces. In particular, we are
able to study the higher syzygies of Cox(X).

We will in following consider the case d ≥ 2. If d = 1, then either Γ1 − Γ2 or Γ2 − Γ1

represents an effective (−2)-curve and X is the K3 surface studied in the previous section.
When d ≥ 2 it is easy to check that there are no (−2)-curves on X and that Γ1 and Γ2

generate the effective cone of X. Using Riemann–Roch, we see that the sections of Γ1,Γ2

define base-point free pencils X → P1, so X is an elliptic fibration in two different ways.
Also, since Γ1 and Γ2 are nef, this means that every effective divisor D = aΓ1 + bΓ2 with
a, b ≥ 0 is nef and ample if a, b > 0.

We fix independent sections x1, x2 ∈ H0(X,Γ1) and y1, y2 ∈ H0(X,Γ2). These give four
linearly independent monomials xiyj in degree H = Γ1 + Γ2. If d = 2, these monomials
span H0(X,H), and when d ≥ 3, we add d−2 sections z1, . . . , zd−2 for a basis. In the latter
case, the algebra R(X,H) is generated in degree 1, while when d = 2, H is hyperelliptic
and we must add a generator z of degree 2H, in accordance with Proposition 2.1v).

Lemma 4.1. Let d ≥ 2 and X be a K3 surface with intersection matrix
(
0 d
d 0

)
and let

H = Γ1 + Γ2.

• If d = 2, Cox(X) is generated by x1, x2, y1, y2, z

• If d ≥ 3, Cox(X) is generated by x1, x2, y1, y2, z1, . . . , zd−2

where deg xi = Γ1, deg yi = Γ2,deg z = 2H and deg zi = H.

Proof. This is immediate from Theorem 2.3 and the discussion above, by noting that Γ1+Γ2

is hyperelliptic only if d = 2, that there are no (−2)-curves on X, and the fact that when
D = aΓ1 + bΓ2 is a nef divisor with a > 1 or b > 1, either E = Γ1 or E = Γ2 gives
H1(X,D − 2E) = 0.
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Example. When d = 2, the divisor class H = Γ1 + Γ2 is hyperelliptic and the sections
x1y1, x1y2, x2y1, x2y2 define a morphism φH : X → P3 onto the quadric surface Q = {u1u4−
u2u3 = 0}. The branch locus of φ is a curve of bidegree (4, 4) on Q. By the lemma above
the Cox ring of X is a quotient of the multigraded polynomial ring k[x1, x2, y1, y2, z]. Since
the Cox ring has dimension 4, the defining ideal is generated by exactly one relation. To see
what this relation is, we note that by Proposition 2.2 the multiplication map H0(X, 3H)⊗
H0(X,H) → H0(X, 4H) is surjective, which means that we can write the section z2 in
terms of the other 34 monomials xiyjz of degree 4H.

In the following we will assume d ≥ 3, in which case the divisor H is very ample (e.g., by
[14]). We will consider the polynomial ring

R = k[x1, x2, y1, y2, z1, . . . , zd−2] (5)

with the multigrading deg xi = Γ1,deg yi = Γ2, deg zi = Γ1 + Γ2. By Lemma 4.1, R surjects
onto Cox(X). The induced G2

m-action on R is given by

(t1, t2) · xi = t1xi, (t1, t2) · yi = t2yi, and (t1, t2) · zi = t1t2zi.

It is easy to check, using toric geometry [5] ,that the toric variety Y = SpecR//G2
m is

isomorphic to a rank 4 quadric in Pd+1, which is a rational normal scroll. This gives us an
embedding of X into Y .

In fact, we can make this embedding a little more explicit. Consider X as embedded
as a surface of degree 2d in Pd+1 using sections of degree H. Taking the sections uij =
xiyj , ui = zi ∈ H0(X,H), we see that X lies on the rank 4 quadric

Y = Z(u11u22 − u12u21).

The two rulings of this scroll cut out the linear systems |Γ1| and |Γ2| and where the general
fibers are elliptic normal curves of degree d.

The point of all this is that the sections xi, yi, zi define Cox coordinates on the quadric
Y and relations in the ideal of IX|Y correspond to relations in the Cox ring. We will use
this observation to describe the defining relations in Cox(X) geometrically. For example,
if d = 3, we find that X is embedded as a degree 6 complete intersection of the above rank
4 quadric and a cubic hypersurface Y in P4. The Cox ring of X therefore has a single
defining relation F = 0 where F is the bihomogeneous polynomial of degree 3H defining X
in Y .

Consider the minimal multigraded resolution of Cox(X) as an R-module:

· · · →
⊕
D

R(−D)b2,D →
⊕
D

R(−D)b1,D → R→ R/I → 0. (6)

Using the embedding of X into Y , we will see below that Cox(X) has Betti numbers equal
to those of elliptic normal curves. To prove this, we need one preparatory lemma:

Lemma 4.2. [13, Lemma 4.1] For a 0-dimensional non-degenerate subscheme Z of Pd−2

of degree d, the following are equivalent:

1. The homogeneous coordinate ring of D is Gorenstein.
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2. OZ has an O = OPd−2-module resolution of type

0→ O(−d)→ O(−d+ 2)βd−3 → . . .→ O(−2)β1 → O → OZ → 0

with βi = i
(
d−1
i+1

)
−
(
d−2
i−1
)
.

3. No subscheme E ⊂ Z of degree d− 1 is contained in a hyperplane.

Consider the elliptic fibration X → P1 given by Γ1 and let Eλ, λ ∈ P1 be any fiber. We
consider Eλ as subscheme of the ruling given by the rank 4 quadric, and abusing notation,
we write Eλ ⊂ Pd−1

λ . The lemma above enters when finding the Betti numbers of Eλ as
an OPd−1

λ
-module: By [15, Prop. 8.8], Eλ is arithmetically normal, hence Cohen-Macaulay,

so the Betti numbers of OEλ are equal to that of a general hyperplane section. Taking a
hyperplane H ' Pd−2 general so that H ∩ X is a smooth canonical curve C and H does
not contain any of the fibres in Y , we get a 0-dimensional scheme D in H ' Pd−2 of degree
d and a complete base-point free pencil |D| on C. Now we verify that the Betti numbers
of D are precisely of the form stated in the lemma.

To see this, it suffices to verify (3). Suppose to the contrary that (3) does not hold, so
that there is a subscheme F ⊂ D of degree d − 1 with linear span of dimension ≤ d − 3.
Then by the geometric form of Riemann-Roch, |F | is also of dimension 1. But then the
remaining point P = D − F is a base-point of |D|, a contradiction.

We now state our main theorem of this section.

Theorem 4.3. Let X be a a K3 surface with intersection matrix
(
0 d
d 0

)
for d ≥ 4. Consider

X embedded in the rank 4 quadric Y , whose Cox ring R = Cox(Y ) is the polynomial ring
in (5). Then Cox(X) has a minimal resolution of the form

0 −→ R(−dH) −→ R((−d+ 2)H)βd−3 −→ · · · −→ R(−2H)β1 −→ R −→ Cox(X) −→ 0,

where βi = i
(
d−1
i+1

)
−
(
d−2
i−1
)
. In particular, the defining ideal is generated in degree 2Γ1 +2Γ2.

Proof. By sheaf-Cox(Y )-module correspondence on a toric variety [5], we find that (6) gives
the minimal resolution of OX :

· · · →
⊕
D

OY (−D)β2,D →
⊕
D

OY (−D)β1,D → OY → OX → 0 (7)

We use the method of Schreyer [13] to determine the Betti numbers of the above resolution.
Let Eλ be any member of the linear system |Γ1| ' P1. Restriction of (7) to the fibre
containing Eλ gives a map of complexes

· · · →
⊕

D OY (−D)β2,D →
⊕

D OY (−D)β1,D → OY → OX → 0
↓ ↓ ↓ ↓

· · · → OPd−1(−3)α2 → OPd−1(−2)α1 → OPd−1 → OEλ → 0

with αi = i
(
d−1
i+1

)
−
(
d−2
i−1
)
. By [13, Thm. 3.1], the minimal resolution of OEλ as an OPd−1-

module lifts to a minimal resolution of OX as an OY -module, provided that the Betti
numbers βλ are the same for all λ ∈ P1. But this condition is clear from the discussion
above. Now, since the syzygies of Cox(X) restrict to syzygies of OEλ , and since we may
repeat the argument with Γ2 instead of Γ1, we see that the resolution must be of the form
above. The proof is complete.
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Example. When d = 5, H embeds X as a degree 10 surface in P6. If X is general, it is
known from results by Mukai that X is a 3-fold linear section of the Grassmannian G(2, 5)
and the rank 4 quadric. It follows that the ideal IX is generated by the five maximal
pfaffians of a 5× 5 matrix and the quadric Q. This gives five relations in the Cox ring and
the resolution is given by

0→ R(−5H)→ R(−3H)5 → R(−2H)5 → R→ Cox(X)→ 0.
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