Mild hypotermi under PCI ved akutt koronarokklusjon – er det gunstig?

*En litteraturstudie*

Julie Krekvik Mowinckel

Prosjektoppgave ved det Medisinske fakultet

UNIVERSITETET I OSLO

01.10.2015
Mild hypotermi under PCI ved akutt koronarkarsokklusjon – er det gunstig?

http://www.duo.uio.no/

Trykk: Reprosentralen, Universitetet i Oslo
Summary

Hypothermia has been an object of research for decades. Today, therapeutic hypothermia is used as a part of the standard treatment patients with cardiac arrest, to prevent nerve damage during poor circulation. It has been suggested that therapeutic hypothermia also may have a positive effects on an ischemic myocardium during a ST-elevation myocardial infarction (STEMI). This assignment tries to answer the question if it is favourable to cool down a patient with an on going STEMI at the same time, or earlier, as reperfusional therapy, which is the standard treatment for STEMI today.

This paper gives an overview and discusses 12 recent studies on this object.

The results of the animal studies are quite positive, but the positive effect of therapeutic hypothermia on as an myocardial protector during STEMI in human beings remains unproven in both the pilot studies and the clinical trials included.

The conclusion of this study is that it is not possible to conclude, because there is not many good randomised trials on this subject yet. But, it seems safe to cool down patients to mild hypothermia during reperfusional therapy. More studies on the subject should be done.
## Innholdsfortegnelse

1 Innledning .............................................................................................................................................. 1

1.1 Valg av oppgave ................................................................................................................................... 1

1.2 Takk .................................................................................................................................................... 1

1.3 Forkortelser ................................................................................................................................. Feil! Bokmerke er ikke definert.

1.4 Hva er skademekanismene bak et hjerteinfarkt? ........................................................................ 1

1.5 Dagens behandling av STEMI ....................................................................................................... 2

1.6 Terapeutisk hypotermi ................................................................................................................ 3

1.7 Hvordan virker systemisk hypotermi .......................................................................................... 3

1.7.1 På kroppen ....................................................................................................................................... 3

1.7.2 På hjertet ....................................................................................................................................... 5

2 Metode .................................................................................................................................................. 7

2.1 PubMed ............................................................................................................................................. 7

2.2 Andre kilder ....................................................................................................................................... 7

3 Resultater .............................................................................................................................................. 8

3.1 Dyrestudier ....................................................................................................................................... 8

3.2 Pasientstudier/studier på mennesker ............................................................................................ 12

4 Diskusjon ............................................................................................................................................. 16

4.1 Kommentarer til pasientstudiene - metode .................................................................................. 16

4.2 Er tilleggsbehandling med mild hypotermi ved PCI gunstig i forhold til infarktstørrelse? ................................................................................................................................. 17

4.3 Er det trygt å kjøle ned pasiente? ................................................................................................. 21

5 Konklusjon .......................................................................................................................................... 22

Litteraturliste .......................................................................................................................................... 24
1 Innledning

1.1 Valg av oppgave

I 2013 ble det registrert 13043 hjerteinfarkter i Norge (1). Iskemisk hjertesykdom er fortsatt en hyppig dødsårsak i Norge i dag (2). En rekke dyrestudier har vist lovende effekt av nedkjøling av pasienter med ST-elevasjonsinfarkt, kunne dette brukes på mennesker?

Jeg valgte denne oppgaven fordi jeg er interessert i akuttmedisin, og ved hjelp av veileder fant vi denne problemstillingen.

1.2 Takk

Takk til veileder. Takk til min mann for gode innspill på struktur og språk. Takk til medstudentene mine for gode diskusjoner.

1.3 Forkortelser

AMI – akutt myokardielt infarkt

CO – cardiac output

STEMI – ST-elevasjons myokardielt infarkt

PCI – perkutan koronar intervensjon

ROSC – return of spontaneous circulation

EKG – elektrokardiogram

TPM – total perifer motstand

MAP – middel arterie trykk

1.4 Hva er skademekanismene bak et hjerteinfarkt?
En arteriell okklusjon vil gi det vi kaller en iskemisk skade. Graden av skade er avhengig av tiden vevet er uten perfusjon, og hvor stor del av vevet som blir affisert. I tillegg til den iskemiske skaden vi ser ved en akutt okklusjon av et koronarkar, kan vi også se en iskemisk reperfusjonsskade. Dette skjer, pussig nok, når okklusjonen er opphevet og friskt blod strømmer inn i et allerede skadet myokard. Jeg vil under forsøke å forklare de to prosessene.

Iskemi er gresk, og betyr å ”holde tilbake blod”(3). Denne tilbakeholdingen resulterer i at to viktige prosesser går i stå; begrenset tilgang til oksygen og metabolske substrater, og redusert utvasking av ioner og metabolitter som fører til en opphopning av disse. Når cellen får mindre O2, vil først den oksidative fosforyleringen bli nedsatt. Dette fører til mindre adenosintrifosfat (ATP). Nedsatt ATP vil påvirke ATP-avhengige pumper, blant annet Na-K-ATP’asen, som intracellulært vil føre til tap av K\(^+\), innstrømming av Na\(^+\) og vann, cellesvelling og Ca\(^{2+}\) innstrømmning. Dette vil føre til endret hvilemembranpotensial for cellen. Skadene over er reversible dersom vi får tilgang til oksygen i løpet av relativ kort tid. Irreversibel skade blir det når iskemien oppretholdes. Celledød via nekrose er det vanligste, men man antar at også pro-apoptotiske signalveier aktiveres, og at noen av cellene dør via denne mekanismen(4).

Iskemisk reperfusjonsskade er et fenomen man kan se når et iskemisk område blir reperfundert. Celleskadene ser ironisk nok ut til å akselerere etter at reperfusjonen blir etablert. Man antar også at nye, celleskadende prosesser settes i gang – det har blitt publisert studier som viser at reperfusjon forverrer den allerede oppståtte iskemiske skaden, og reduserer den positive effekten reperfusjon har på myokard(5-9). Klinisk kan man blant annet se arytmier ved reperfusjon, kontraktile dysfunksjon (myokardiell stunning), mikrovaskulær obstruksjon og ”no-reflow” fenomen. Dette er uheldig, da reperfusjon i dag er den viktigste behandlingsstrategien til myokardielt infarkt. Det er antydet at opptil så mye som 50% av den totale skaden vi ser på myokard ved et hjerteinfarkt er på grunn av reperfusjonsskade(8). Senere i oppgaven skal vi på om hypotermien kan hjelpe mot denne typen skade.

1.5 Dagens behandling av STEMI

Dagens behandling av STEMI følger retningslinjene fra den Europeiske hjerteforeningen (10-12). Når diagnosen STEMI stilles på bakgrunn av typiske elektrokardiografiske forandringer (EKG-forandringer), settes det straks i gang et rent medikamentelt behandlingsregime fra prehospitalt personell. Ved ankomst sykehus foretrekkes det perkutan koronar intervencjon
(PCI) og/eller trombolyse, blant annet ut fra tiden det har tatt fra symptomene startet til pasienten når fram til sykehuset. Ved norske sykehus i 2013 var 90% av pasientene innlagt og behandlet for hjerteinfarkt fortsatt i live etter 30 dager(1).

1.6 Terapeutisk hypotermi

Definisjonen på hypotermi er kroppstemperatur på under 35°C. Mild hypotermi defineres fra 32-35°C, moderat fra 28-32°C og alvorlig som under 28°C (13).


I dag brukes mild hypotermi blant annet som en del av behandlingen til rescusiterte hjertestanspasienter, dog det er ikke mange som blir vellykka rescusitert – overlevelsesraten i Danmark fra 2011 for hjertestans utenfor sykehus lå på 11%, og man antar at Norge har liknende tall (15). Etter vellykket rescusitering bruker universitetssykehusene i Oslo et standardisert regime for nedkjøling (16), samtidig som pasienten går rett i PCI-behandlingssløyfen. Flere studier har vist en gunstig effekt av nedkjøling etter hjertestans, både hva gjelder økt overlevelse og bedret nevrologisk funksjon (17, 18). Det har akkurat blitt publisert en stor multisenterstudie som ikke viser noen forskjell om hjertestanspasienten kjøles ned til 36 eller 33 grader; den tidligere positive effekten kan komme fra fravær av feber, og ikke på grunn av hypotermiens egenskaper (19) – vi kommer tilbake til hypotermiens effekter i kapittelet under.

1.7 Hvordan virker systemisk hypotermi

1.7.1 På kroppen

Dette avsnittet baserer seg på artikler fra Polderman(12), Turk(18,) og Erlinge(19).

Går vi litt nøyere inn i fysiologien beskrives det følgende viktige punkter som blir relevante for hjertet og sirkulasjonen:

- **Redusert systemisk metabolisme.** Ifølge Polderman og medarbeidere (14) er den systemiske metabolismen redusert med 50-65% ved 32°C, mens minuttvolumet (MV) bare er redusert med 25-40%. Dette vil gi en netto gunstig effekt mellom krav og leveranse.

- **Immunsuppresjon:** Er helt klart ugunstig grunnet infeksjonsfaren pasienten møter på sykehus. Hypotermi har vist å øke risikoen for eksempel sårinfeksjoner (20) og for infeksjoner i luftveiene (14, 21), det siste helst ved hypotermi i >24timer. Likevel kan immunsuppresjon være gunstig for pasienter med akutt koronarkarsokklusjon, da økt inflammasjon kan være noen av mekanismene bak reperfusionsskade.


- **Metabolsk acidose** oppstår på grunn av økte nivåer av fettsyrer og laktat ved langvarig mild hypotermi. Dette må sees i sammenheng med økte nivåer av stresshormoner og glykogen selv om muskelskjelvingen blir forhindret med ulike antiskjelvestrategier ved induserd hypotermi. Acidosen er som oftest selvkorrigerende ved oppvarming. Dersom en skal gjøre elektrolytt og blodgassanalyser, glukosemålinger eller lignende bør man korrigerer for hypotermien, og det finnes egne tabeller for dette.
- **Økte glukosenivåer** på grunn av en relativ insulinresistens er også et fenomen man ser ved hypotermi, uten at jeg skal gå nærmere inn på dette.

- **Hypokalemi.** Elektrolytforstyrrelser under nedkjøling kan opptre på grunn av økt tap (kuldediurese og økt tubulær dysfunksjon) og på grunn av et intracellulært skift (23). Typisk er å se hypomagnesemi, hypofosfatemi, hypokalsemi og hypokalemi. Hypokalemien er dog reversibel ved oppvarming på grunn av et intracellulært skift(21), og er et argument for å varme pasientene opp så fort, slik at nyrene får tid til å kvitte seg med overskuddet. Hyperkalemi gir økt fare for arytmier.

- **Kuldediurese** som nevnt over på grunn av økt sentralisering og økt GFR samt nedsatt reabsorpsjon i nyrene. Dette kan føre til dehydrering, og bidra til elektrolytforstyrrelser og syre-base forstyrrelser, koagulasjonsforstyrrelser med mer.

- **Arytmier og død kan inntre** dersom temperaturen går under 28-30°C. Arytmier under denne temperaturen er også vanskeligere å behandle fordi defibrillering og antiarytmiske medisiner har dårligere effekt.

### 1.7.2 På hjertet

Kelly(5) og Erlinge(19) gir følgende punkter på hvordan mild kontrollert hypotermi virker på hjertet til en euvolem, tilstrekkelig sedert pasient:

- **Bradykardi.** Under mild hypotermi ser man ofte en stabil hjerterytme på 50-60 slag/min (22). Hjertets O2 behov er avhengig av arbeidet det gjør, og således vil en lett bradykardi være gunstig

- **Økt inotropi – økt slagkraft,** er en mulig mekanisme, både in vitro og in vivo (24, 25). Dette kan være gunstig da hjertet får pumpet mer blod per slag, og at vi dermed trenger færre slag for å møte kroppens behov. Men, en ny grisestudiestudie ved Rikshospitalet i Oslo har ikke vist samme resultat(26), og metodene brukt i studiene for å bekrefte økt inotropi er omdiskuterte i fagmiljøet.

- **Brutto er minuttvolumet redusert** på grunn av reduserte krav som følge av nedsatt metabolisme. Men, idet hjerteraten synker like mye eller mindre enn det systemiske kravet, kan vi se et **netto overskudd** av minuttvolum i forhold til krav.
- **Mild diastolisk dysfunksjon.** Med dette menes at hjertet ikke fylles som normalt i diastolen. MH er vist å gi økt endediastolisk stivhet, som igjen gir mindre fylling av ventriklene. I tillegg ser vi en økning av systolen i tid på bekostning av diastolen. Men, med økt inotropi og lavere HR blir dette trolig kompensert for (25).

- **Økt perfusjon av myokard.** Det er vist at den myokardielle perfusjonen øker med 20% ved en grads nedkjøling av friske, våkne testpersoner (27). Dog blir denne effekten opphevet av beta-blokere, som gis rutinemessig ved ankomst sykehus med påvist hjerteinfarkt.

- **Økt perifer motstand, men uendret MAP.** TPM øker som et resultat av perifer arteriekonstringering ved MH. Man skulle tro at økt TPM ville gi en økt afterload, og dermed en økt belastning på hjertet.


**Oppsummert,** kan man tenke seg at mild hypotermi under kontrollerte former kunne vært gunstig ved STEMI i forhold til å senke krav, samt å øke leveranse til et iskemisk myokard. Forskningen på feltet er dessverre ikke entydig – men hva vet vi så langt?
2 Metode

2.1 PubMed

Det ble gjort et søk på Pubmed i mai 2014 med følgende søketekst:

“(mild OR therapeutic) AND hypothermia AND ((coronary and occlusion) OR stemi OR (St-elevated and myocardial and infarction) OR (myocardial infarction)) AND (pci OR (percutaneous and coronary and intervention))”.

Det ble huket av for "full text available", 54 artikler var tilgjengelige. Etter manuell gjennomlesning av tittel og abstrakter ble 12 artikler valgt.

2.2 Andre kilder

Anbefalte lærebøker i basalfag ved medisinstudiet.

Internettkilder hva gjelder oppdaterte retningslinjer på behandlingsmetoder, gjort som google-søk.
3 Resultater

Infarktstørrelse har vist seg å være en av de viktigste prediktorene for både korttids og langtidsutsikter hos pasienter med AMI (34-36). Det er derfor gunstig å se på hypotermiens eventuelle påvirkning på infarktstørrelse. Vi ser på dyrestudiene først, fordi det er her det er gjort mest basalforskning, og fordi det er her vi ser de tydeligste resultatene.

3.1 Dyrestudier


**Figurtekst:** Relasjon mellom infarktstørrelse og temperatur (se figur 1). Symbolene representerer individuelle dyr. Lineær regresjon er brukt innad i gruppene. Disse er ikke signifikant forskjellige fra hverandre.
**Konklusjon:** Infarktstørrelsen er temperaturpåvirkelig mellom 35 og 42°C, og uavhengig av hjertefrekvensen.

**Hale og Kloner med medarbeidere (38)** genererte en hypotese om at regional hypotermi også minket infarktstørrelsen i forhold til area at risk. **Metode:** Myokard ble direkte kjølt ned med isposer og vann hos 14 kaniner. Isposen lå på myokard først under 20 min nedkjølingsfase, så under 30 min koronarkarsokklusjon, etterfulgt av 15 minutter reperfusjon. Deretter ble isposen fjernet, og reperfusjonen fikk fortsette i ytterligere 2 timer og 45 minutter. **Resultat:** Intervensjonsgruppen hadde i snitt 2°C lavere myokardtemperatur ved koronarkarsokklusjonen enn kontrollgruppen. Infarktstørrelsen var redusert med 65% hos intervensjonsgruppen i forhold til kontrollgruppen, tross lik iskemisk utbredelse. **Konklusjon:** Myokardtemperaturen spiller en viktig rolle i nekroseutviklingen. Lokal nedkjøling i risikområde reduserer infarktstørrelse hos kaniner.

---

**Figurtekst:**
Spredningsplotdiagram viser sammenheng mellom myokardtemperatur i risikområde rett før koronarkarsokklusjon, og infarktstørrelse. Infarktstørrelsen korrelerte med temperaturen.

---

**Dae (39)** luret på om de samme prinsippene for myokardbeskyttelse ved nedkjøling også gjaldt dyr med større termal masse. De ville se på infarktstørrelse og minuttvolum under nedkjøling i menneskestore griser. **Metode:** Arteria coronaria sinistra (LAD) ble okkludert hos 60-80kg, sederte griser i 60 min, etterfulgt av 3 timers reperfusjon. Kontrollgruppen ble holdt på 38°C under hele forsøket. Intervensjonsgruppen ble kjølt ned ved hjelp av endovaskulært
varme-ekstraherende ballongkateter til 34°C etter 20 minutter med iskemi, og gruppen ble aktivt nedkjølt 15 minutter ut i reperfusjonen. **Resultat:** Infarktstørrelsen ble signifikant redusert (p<0,001) hos intervensionsgruppen (9%±6% av area at risk) i forhold til kontrollgruppen (45%±8% av area at risk), tross signifikant like area at risk (p=0,65). **Konklusjon:** Endovaskulær, mild nedkjøling til 34°C senker tempeturen i myokard tilstrekkelig til å gi en uttalt, kardioprotektiv effekt.

**Maeng(40)** ville se på om regional nedkjøling under reperfusjon ville reduserere infarktstørrelse hos 75 kg griser. **Metode:** LAD ble okkludert i 45 minutter, deretter ble de reperfundert i 3 timer. 15 griser ble randomisert til enten kateterbasert regional nedkjøling under reperfusjon (8 stk) eller kontroller (7 stk). Som ytterligere kontroller ble systemisk hypotermi til 36°C indusert før iskemi (3 stk) eller 5 min etter reperfusjonsstart (3 stk), med måltemperatur <34°C. **Resultat:** Det var ingen signifikant ending i infarktstørrelse i forhold til area at risk mellom den kateterbaserte intervensionsgruppen og hovedkontrollgruppen både når de ble vurdert histologisk og med SPECT¹. Systemisk hypotermi under iskemi reduserte infarktstørrelse i forhold til area at risk (histologisk: 0,09±0,11, SPECT: 0,25±0,22) i forhold til kontrollgruppen (p=0,01). Innføring av systemisk hypotermi under reperfusjonen hadde ingen signifikant effekt. **Konklusjon:** Hypotermi under iskemi har en god kardioprotektiv effekt, mens hypotermi under reperfusjon ikke reduserer infarktstørrelse hos griser.

**Götberg(41)** ville se på om en kombinasjon av rask intravenøs infused kalde væsker og endovaskulær hypotermi kunne reducere infarktstørrelse og mikrovaskulær obstruksjon hos griser. **Metode:** Forsøksdyrene ble randomisert til tre grupper; en pre-reperfusions hypotermigruppe –PRE (n=7), en post-reperfusions hypotermigruppe-POST (n=7) eller en normoterm kontrollgruppe -KONT (n=5). LAD ble okkludert i 40 minutter. Hypotermi med måltemperatur 33°C ble enten indusert etter 25 minutter med iskemi, eller rett etter reperfusjon med infusion av kaldt saltvann og endovaskulær nedkjøling. **Resultater:** PRE gruppen hadde signifikant reduksjon i infarktstørrelse vurdert i forhold til area at risk med 43% (46±8%) mot POST gruppen (80±6%, p<0,05) og 39% mot KONTgruppen (75±5%.

¹ SPECT er en metode som ved hjelp av radioaktive isotoper og databehandling gjenkjenner bilder av fordelingen av isotopen i forskjellige deler av kroppen, bl.a. i hjerne og hjerte. Etter å ha fått tilført isotopen, vanligvis via en intravenøs injeksjon, registreres pasienten i en maskin der de radioaktive strålene fanges opp og rekonstrueres til bilder.
p<0,05). Mikrovaskulær obstruksjon var ikke tilstede hos PREgruppen (0%, p<0,001), og var redusert hos POST gruppen (10,3±5%) i forhold til KONTgruppen (30,2±5%, p<0,05).

**Konklusjon:** Hypotermi med intravenøs infusion av kalde væsker og endovaskulær nedkjøling før reperfusjon reduserer infarktstørrelse og mikrovaskulær obstruksjon. Hypotermi indusert samtidig som reperfusjon reduserer mikrovaskulær obstruksjon, men ikke infarktstørrelse.

**Tissier og medarbeidere(42)** gjorde en sammenfatning av studier der de debatterte hvorvidt mild hypotermi beskytter mot reperfusjonsskade. De lagde et diagram basert på flere kaninstudier der kaninene ble utsatt for 30min iskemi før å bli nedkjølt til 32-33°C. Tiden til kaninene nådde måltemperaturen varierer. Diagrammet viste reduksjon i infarktstørrelse i forhold til når optimal temperatur ble nådd:

![Diagram](image)

**Figurtekst:** Den kardioprotektive effekten av mild hypotermi er avhengig av når hypotermien oppnås. Mild hypotermi (32-33°C) har blitt indusert etter 30minutter med iskemi i flere kaninstudier. Her er infarktreduksjonen plottet mot tiden det tok før kaninene nådde måltemperaturen. Nummeret inne i klamrene er referanse til studien (ikke gjengitt i denne oppgaven).

**Konklusjon:** Jo senere hypotermien ble induert, jo mindre effektiv ble den, noe som kan tyde på at hypotermien har en mer iskemibesparende enn reperfusjonsskadebegrensende effekt.

**Götberg og medarbeidere (43)** gjorde en grisestudie i 2011 der hensikten var å optimalisere protokollen til CHILL-ME studien (beskrevet under menneskestudier). **Metode:** 40-50kg griser ble randomisert til en hypoterm intervensionsguppe (n = 8) eller normoterm kontrollgruppe (n=8). Hypotermigruppen ble kjølt ned med kombinert kald intravenøs væske og endovaskulær metode, til måltemperatur 33°C. LAD ble okkludert med en PCI-ballong hos begge gruppane, i hhv 40 min i kontrollgruppen og 45 min i intervensionsgruppa; hvorav man begynte nedkjøling i de siste 5 minuttene i intervensionsgruppen. Ytterligere 7 griser ble inkludert til forlenget hypotermi i 45 minutter, og 8 griser ble inkludert til kun intravenøs
nedkjøling. **Resultater:** Alle grisene i intervensjonsgruppa ble kjølt ned til <35°C i løpet av 5 minutter. Tross 5 minutter lengre iskemitid, gav kombinasjonsnedkjølingen 18% reduksjon i infarktstørrelse/area at risk i forhold til kontrollgruppen (61±5% mot 74±4%, p=0,03).

Forlengelse av hypotermitiden gav ingen ekstra effekt. **Konklusjon:** Hypotermi har trolig en kardioprotektiv effekt gjennom å reducere både iskemisk skade og reperfusjonsskade. Denne studieprotokollen viser at det er mulig å bruke både intravenøs og endovaskulær nedkjøling uten å forsinkje reperfusjonsterapien.

**3.2 Pasientstudier/studier på mennesker**

Dixon (44) så på gjennomførbarheten av, og sikkerheten rundt, endovaskulær nedkjøling av pasienter som var innrullert til PCI etter akutt myokardielt infarkt (AMI) ved syv ulike sentra. **Metode:** 42 pasienter med fremre eller bakre infarkt ble randomisert til PCI med (n=21) eller uten (n=21) endovaskulær nedkjøling. Alle pasientene ble randomisert innen 6 timer etter symptomstart, og alle hadde hatt brystsmerter med varlighet over 30 minutter samt ST-elevasjon i EKG. Eksklusjonskriterier var blant annet AMI siste måneden eller blødningsforstyrrelser. Pasientene ble kjølt ned med måltemperatur 33°C og nedkjølingen ble opprettholdt 3 timer etter reperfusjonen. Sikkerheten ble vurdert ut fra insidensen av uønskede hendelser relatert til hjerte og karsykdom etter 30 dager (30 dagers MACE). **Resultat:** 20 av pasientene i intervensjonsgruppen (95%) nådde kjernetemperatur under 34°C. Snitttemperatur ved første ballongoppblåsning ved PCI var 34,7±0,9°C. Varigheten av nedkjølingen var 241±29 min. 30-dagers MACE var 0% og 10% i hhv intervensjons-, og kontrollgruppen (p=NS). Det var ingen signifikant reduksjon i infarktstørrelse mellom gruppene (2% i intervensjonsgruppen mot 8% i kontrollgruppen målt som andel av venstre ventrikel, p=0,8).

**Konklusjon:** Endovaskulær kjøling kan trygt brukes som tillegg til PCI ved AMI. Flere studier bør gjøres på området for å bestemme hvorvidt mild hypotermi kan redusere infarktstørrelsen hos denne pasientgruppen.

---

2MACE – major cardiac events. Det finnes en definisjon på MACE (45), men MACE blir likevel oftest egendefinert fra studie til studie. Typiske tilstander som omtales som MACE er hjertesvikt, reinfarkt eller behov for revaskularisering, ventrikelflimmer, ventrikeltakykardi,, atrieflimmer/flutter, transitorisisk iskemisk atakk, stor blødning, infeksjoner, og lignende.
COOL-MI (45). Denne studien ble aldri publisert, men den er den største påbegynte studien så langt på dette feltet. Se under del 4 – “metodekritikk”.

Studien så på sikkerheten rundt, og effektiviteten ved en ny endovaskulær nedkjølingsmetode samt om nedkjøling var gunstig i forhold til infarktstørrelse. **Metode:** 357 pasienter ble randomisert til enten hypotermi (n=117) med måltemperatur 33°C eller normotermi (n=180) i tillegg til PCI som behandling for STEMI. Den totale nedkjølingstiden var 3 timer. Primærdepunktet var infarktstørrelse samt 30 dagers MACE. **Resultater:** 88% av pasientene nådde måltemperaturet før PCI. Snittid for nedkjøling til <35°C var 31 minutter. Det var ingen signifikant forskjell mellom gruppene i MACE rate, død, reinfarkt eller ”target vessel revascularisation” (TRV), men det var en trend mot mer blodning, flere kardiogene sjokk og høyere TRV i intervensorungsgruppen. Det var en signifikant forskjell mellom gruppene dersom man analyserte på bakgrunn av infarktlokalisasjon; infarktstørrelsen hos de som ble nedkjølt til <35°C før reperfusion med fremre infarkt var 9,3% av VV, mot 21,9% av VV hos de som ikke ble nedkjølt, p=0,05. Det var ikke tilsvarende forskjeller hos gruppen med bakre infarkter, eller dersom man så på infarktstørrelse i hele gruppen som enhet. **Konklusjon:** Mild, systemisk hypotermi er trygt og godt tolerert under PCI som behandling for MI.

Infarktstørrelsen blir ikke mindre ved nedkjøling med denne protokollen, men det er en forskjell mellom fremre og bakre infarkter. Pasienter med fremre infarkt som er kjølt ned til <35°C har signifikant reduksjon i infarktstørrelse.

LOWTEMP(46): var en multisenter, ikke-randomisert pilotstudie med hensikt å undersøke sikkerheten rundt en endovaskulær nedkjølingsmetode. **Metode:** 18 pasienter med AMI symptomer <6 timer og ST-elevasjonsfunn på EKG ble rekruttert. Nedkjøling skulle initieres før PCI og opprettholdes i fire timer, med en måltemperatur på 32-34°C. Primærdepunktene, i tillegg til metodesikkerhet og gjennomforbarhet, var vurdering av infarktstørrelse og myokardskade. **Resultat:** Primær PCI ble utført etter gjennomsnittlig 18 minutter med nedkjøling, med snittemperatur 35,4°C. Infarktstørrelse vurdert etter 6 og 30 dager var hhv 8,5% (0-13%) og 4% (0-19%) av VV. En pasient døde, fire pasienter måtte repetere revaskulariseringsprosedyre. En pasient fikk ventrikelflimmer, 3 pasienter opplevde bradykardi som krevde pacemakerimplantasjon (2 midlertidig, 1 permanent). **Konklusjon:** Mild systemisk hypotermi kan trygt brukes som tilleggsbehandling til PCI. Endovaskulær nedkjøling er gjennomførbart og trygt. Dette studiedesignt er egnet til å evaluere potensialet til kateterbasert hypotermi som tilleggsbehandling til pasienter med AMI.
NICAMI (47) var en pilotstudie som så på gjennomførbarheten av, og tryggheten rundt å bruke overflateindusert mild hypotermi som tilleggsbehandling til PCI ved førstegangs STEMI. **Metode:** Pasienter med sykehistorie under 6 timer og med brystsmerten over 30 minutter og EKG-endringer ble inkludert i denne studien. Nedkjølingen, med måltemperatur 34,5°C, ble initiert før PCI, og skulle opprettholdes i tre timer. Endepunkter i tillegg til gjennomførbarhet og sikkerhet var blant annet infarktstørrelse. **Resultater:** 9 av 11 pasienter undersøkte PCI med nedkjøling. Snitt tid til målte mperauren på 34,5°C var nådd var 79 minutter. Snitt hypotermitid var 267 minutter. En pasient fikk ventrikkeltakykardi. En pasient fikk ytterligere medikamenter mot skjelving. Fire pasienter trengte ytterligere sedasjon, hvorav disse mistet evnen til kommunikasjon, men med opprettelse av ventilasjonen. Kommunikasjonsevnen kom tilbake etter motgift, mens antiskjellevirkningen av medikamentene ble opprettholdt. Infarktstørrelse var i snitt 23%. **Konklusjon:** Pasienter med STEMI innrullert til PCI kan trygt bli nedkjølt ved non-invasive overflatenedkølingsteknikker.

RAPID MI-ICE (48): Var en pilotstudie med hensikt å undersøke gjennomførbarheten og sikkerheten ved både endovaskulær og infusjonsbasert nedkjøling samtidig, til pasienter med AMI innrullert til PCI. **Metode:** Pasienter med sykehistorie <6 timer og EKG forandringer forenlig med STEMI ble randomisert til enten PCI med nedkjøling, eller PCI uten nedkjøling. Måltemperaturen ble satt til 33°C, og nedkjølingen ble opprettholdt i 3 timer. Infarktstørrelse og ”myocardium at risk” ble vurdert. **Resultater:** 18 av 20 pasienter ble inkludert i studien. 9 ble randomisert til PCI med hypotermi, 9 til PCI uten hypotermi. Tid fra symptomstart til reperfusjon, samt dør-till-ballong-tid var likt mellom gruppene. Pasientene som ble randomisert til hypotermi hadde temperatur på 34,7±0,3°C ved reperfusjon. Det var ingen signifikante forskjeller i ønskede kliniske hendelser mellom gruppene. Infarktstørrelse i forhold til ”myocardium at risk” var redusert med 38% i hypotermigruppen sammenlignet med kontrollene (29,8±12% mot 48,0±21,6%, p=0,041). En signifikant forskjell i maks- og total Troponin T-verdier (p=0,01 og p=0,03) understøttet dette. Man fant ingen signifikant endring i infarktstørrelse alene eller CKMB verdier. **Konklusjon:** Denne protokollen viser at det er mulig å kjøle ned pasienter til <35°C uten å forsinke PCI. Hypotermi som tilleggsbehandling til PCI ved AMI kan redusere infarktstørrelse.

CHILL-ME (49): Studiens hensikt var å bekrefte den kardioprotektive effekten av hypotermi. **Metode:** Pasienter ved 9 sykehus med STEMI med symptomstart <6 timer, ble
randomisert til enten PCI med nedkjøling, eller PCI uten nedkjøling. Måltemperatur ble satt til 33°C. Pasienten skulle kjøles ned 1 time etter etablert reperfusjon. Endepunkter var blant annet infarktstørrelse, CKMB, troponinT, og MACE. Resultater: 120 pasienter ble inkludert i studien, og randomisert til PCI og hypotermi (n=61), eller PCI og ikke hypotermi (n=59). Induksjon av hypotermi økte randomisering-til-ballong-tiden med 9 minutter. Snittemperatur ved reperfusjon var 34,7±0,6°C ,og 76% av pasientene nådde temperatur <35°C før reperfusjon. Det var ingen signifikant forskjell mellom infarktstørrelse vurdert ut fra "myocardium at risk" mellom gruppene Det var ingen signifikante forskjeller mellom CKMB eller troponinT, verken som toppunkt eller AUC³. Insidensen av hjertesvikt var lavere i hypotermigruppen ved 45±15 dager (3% mot 14% i hhv hypotermi og kontrollgruppen, p<0,05). Subgruppeanalyse av ferske (0-4 timer), fremre infarkter viste en reduksjon i infarktstørrelsen i forhold til area at risk med 33% mellom gruppene (p<0,05), og en absolutt reduksjon av infarktstørrelse i forhold til venstre ventrikels volum på 6,2% (p=0,15). Konklusjon: Hypotermi induserad med endovaskulært kateter og saltvann IV er trygt og gjennomførbart, og senker raskt temperaturen uten større forsinkelse for reperfusjon. Det var ikke en signifikant reduksjon i primære endepunktet, som var infarktstørrelse. Lavere innsidens av hjertesvikt og en mulig positiv effekt hos pasienter med fremre infarkter bør bekreftes av flere studier.

³ Et toppunkt referer til den maksimale verdien av et stoff målt i løpet av en tidsperiode. AUC– arealet under kurven- representerer den totale mengde stoff sluppet fri i blodet ila en gitt tidsperiode. I dette tilfellet er typiske myokardskademarkører, CKMB og troponin T, sammenlignet ved disse to metodene.
4 Diskusjon

Hvordan skal vi nå tolke resultatene som beskrevet over? Og viktigst av alt; kan vi stole på disse resultatene?

4.1 Kommentarer til pasientstudiene - metode


Den største metodiske mangelen er at COOL-MI studien aldri ble publisert, og at mine fakta baserer seg på en gjennomgang av studien på et fagseminar som ligger tilgjengelig på nettet. Jeg har likevel valgt å ta den med fordi den hadde det største pasientgrunnlaget på denne problemstillingen, og fordi den viser en trend det er mulig å lage nye studier på. I tillegg er denne mye referert til i oppsummeringer og kommentarer i ulike tidsskrifter.

Pasientgrunnlaget er svært varierende, alt fra 9 til 357 pasienter per studie. Totalen pasienter er også svært magert – 564 pasienter. Når COOL-MI trekkes fra fordi den er upublisert, er vi nede i 207 pasienter.

reperfusjonen varierer også fra en til tre timer, eller er ikke oppgitt. Det er således ikke gunstig å gjøre noen sammenligning mellom studiene, ei heller å konkludere på bakgrunn av dette.

Studiedesignene, bortsett fra CHILL-ME, er altså ikke laget for å svare på problemstillingen min, og jeg kan derfor ikke konkludere på bakgrunn av det materialet jeg har gått gjennom i denne oppgaven.

### 4.2 Er tilleggsbehandling med mild hypotermi ved PCI gunstig i forhold til infarktstørrelse?

**Menneskestudiene**

Over har jeg konkludert med at jeg ikke kan trekke noen sikker slutning på problemstillingen på bakgrunn av studiedesign. Men er det likevel mulig å se på resultatene som en inspirasjon til videre forskning?

La oss starte med en oppsummering av resultatdelen:

<table>
<thead>
<tr>
<th>Studie</th>
<th>Antall pas</th>
<th>Tid fra symptomdebut til reperfusjon</th>
<th>Temperatur ved reperfusjon</th>
<th>MH etter reperfusjon</th>
<th>Infarktstørrelse</th>
<th>Annet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dixon 2002</td>
<td>42</td>
<td>Ikke spesifisert (symptomdebut &lt;6 timer)</td>
<td>34,7±0,9° C.</td>
<td>3 timer.</td>
<td>Ikke signifikant</td>
<td>(2% vs 8% MH vs K)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Totaltid MH</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>241±29 min.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COOL-MI 2003</td>
<td>357</td>
<td>Ikke spesifisert. Symptomdebut – PPCI &lt;6 timer</td>
<td>Ikke oppgitt. 88% &lt;35°C.</td>
<td>Ikke oppgitt. Totaltid MH: 3 timer.</td>
<td>Ikke signifikant</td>
<td>(14,1% vs 13,8% i hhv MH vs K)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Fremre infarkter profiterte på MH (IS: 9,3% vs 21,9% i hhv MH og K)</td>
</tr>
<tr>
<td>LOWTEMP</td>
<td>18</td>
<td>Ikke spesifisert. Symptomdebut</td>
<td>35,4°C</td>
<td>Totaltid: 4 timer</td>
<td>Ikke oppgitt</td>
<td>18 min fra indusert hypotermi til</td>
</tr>
<tr>
<td>Studie</td>
<td>År</td>
<td>Tid</td>
<td>Temps</td>
<td>PCI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>----</td>
<td>-----</td>
<td>-------</td>
<td>-----</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NICAMI</td>
<td>9</td>
<td>187 min.</td>
<td>Ikke oppgitt.</td>
<td>80 min (totaltid)</td>
<td>Ikke oppgitt</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Måltemp</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>34,5°C nådd</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>etter 79 min.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| RAPID-MI-ICE | 2010 | 174±62min | 34,7±0,3°C | 3 timer | Ikke signifikant |
|              |      |          |           |        | (13,7±6,4% vs 20,5±10% i hhv MH vs K) |
|              |      |          |           |        | 38% reduksjon ift myokard i risikosone |

| CHILL-ME | 2014 | 132±64 min | randomisering | 1 time | Ikke signifikant. |
|          |      |           |               |        | Oppgitt som median IS/MaR |
|          |      |           |               |        | (40,5% vs 46,6%, relativ reduksjon 13% med p=0,15). |


Ingen av studiene på pasienter har så langt vist at hypotermi gir en signifikant reduksjon i infarktstørrelse i forhold til volum av venstre ventrikkel. To studier viser en trend: Dixon og RAPID-MI-ICE. Begge disse studiene var pilotstudier med relativt lite pasientgrunnlag, og man kunne således like gjerne argumentere for at det ikke var noen effekt av hypotermien i det hele tatt ved å se på COOL-MI studien, som med 357 pasienter ikke kunne vise en forskjell. Men, dersom man ser på infarktstørrelse i forhold til area at risk viser RAPID-MI-ICE en reduksjon i infarktstørrelse på hele 38%, og CHILL-ME en klar trend. Hva er så forskjellen ved å se på infarktstørrelse målt som volum av venstre ventrikkel, og infarktstørrelse i forhold til area at risk? Vi kan se på dette som en brøk, der skadet myokard er telleren og hvor volum av venstre ventrikkel (VV) eller myokard i risikosonen (MaR) er nevneren. Effekten av hypotermi vil følgelig øke der telleren utgjør en mindre andel av myokard. Hvis vi ser på VV-metoden vil det også være avgjørende i hvilken åre infarktet sitter – og hvor stor del av myokard denne forsyner- noe som er ulikt fra pasient til pasient. Ved å bruke MaR unngår vi denne feilkilden, men vi får til gjengjeld en mye større ”effekt”
av hypotermien fordi nevneren som sagt blir mindre. Dette er viktig å ha i bak hodet når vi vurderer tallene i tabellen over.

Tiden er også alltid et spørsmål; både tiden fra pasienten får symptomer til den er på sykehuset, og tiden det tar å kjøle ned pasienten før reperfusjonen. Av etiske årsaker er det ikke mulig å utsette PCI for å kjøle ned en pasient før man vet om dette faktisk er behandlingsmessig gunstig. RAPID-MI-ICE g CHILL-MI og LOWTEMP har klart å kjøle ned pasientene såpass raskt at de ved reperfusjon er betydelig nedkjølte (se tabellen over), og de to første studiene er de som viser en klarest trend hva gjelder protektiv effekt av nedkjølingen.

To studier har gjort subgruppeanalyser av fremrevinggsinfarkter. COOL-MI viser en reduksjon i infarktstørrelse i forhold til venstre ventrikkels volum når de selekterer på bakgrunn av infarktlokalisasjon, men de har ikke oppgitt p-verdi. CHILL-ME viser en relativ risikoreduksjon på 33% dersom man trekker ut pasienter med fremrevinggsinfarkter med varighet <4timer. Dette kan være et framtidig område og lage studier på; fremrevinggsinfarkter med kort tid fra symptomdebut til PCI.

**Oppsummert** ser vi følgende trender:

- Mild hypotermi har ikke behandlingseffekt dersom vi vurderer infarktstørrelse i forhold til venstre ventrikkels volum. Det kan muligens ha en effekt dersom vi vurderer infarktstørrelse i forhold til area at risk.

- Mild hypotermi kan ha en effekt på fremrevinggsinfarkter av kortere varighet, men tallene er ikke overbevisende.

**Dyre studiene** taler for at hypotermi har en kardioprotektiv effekt, men dog med helt ulike design og etiske retningslinjer enn menneske studiene. La oss starte med det helt basale.

Chien (37) fant at 1°C endring i kroppstemperaturen hos kaniner var assosiert med en infarkt reduksjon på opptil 10%. Disse var riktignok kalde FØR de fikk okkludert et koronarkar, men de kunne også vise at denne effekten var uavhengig av hjertefrekvensen, og således ikke en konsekvens av temperaturindusert bradykardi. De viste også en annen viktig ting; at hypertermi, eller feber, var ugunstig hos kaniner i forhold til infarktstørrelse. Dette understøttes av Hale & Kloner(38), som viste at selv lokal hypotermi, med så lite som 2
graders, reduserte infarktstørrelsen med 65%. De viste også en tett korrelasjon mellom infarktstørrelse og temperatur på myokard.

- Så jo lavere temperatur ved okklusjon – jo mindre infarkt blir det. Hvorfor?

Jeg har tidligere beskrevet den nedsatte metabolismen i vevet ved hypotermi, og begge disse funnene kan tilskrives vevets nedsatte behov for næringsstoff når det er nedkjølt, og således også mindre iskemisk skade ved akutt leveransestans. Dette argumentet støttes også av Tissiers analyse av kaninstudiene (42), der de viser en klar sammenheng mellom infarktstørrelse og når i forløpet hypotermien initiøres – hypotermi før iskemiens start gir en reduksjon i infarktstørrelse på nær 100%, mens hypotermiinduksjon etter 30 min er nærmest bortkastet på kaniner.

I og med at man etisk sett ikke kan forlengje den iskemiske tiden til pasientene fordi man ønsker å kjole dem ned begynte man etter hvert å se på design hvor dyrene ble kjølt ned etter en iskemisk periode samtidig som man initierte reperfusjon. Maeng(40) viste at nedkjøling etter 45 minutter iskemi samtidig som reperfusjon ikke hadde noen effekt på infarktstørrelsen på griser. Dog tok det oppimot 2 timer før grisene til Maeng nådde måltemperaturen på under 34°C, slik at både den iskemiske skaden og en eventuell tenkt reperfusjonsskade skjedde i tilnærmet normaltemperatur.

Når vi ser på Daes og Gotbergs studier blir bildet litt klarere. Dae(39) viste at hypotermien også hadde en gunstig effekt på infarktstørrelsen når den ble igangsatt 20 min ut i iskemiforløpet. Grisene var riktignok iskemiske i ytterligere 40 minutter, men likevel fant de en reduksjon i infarktstørrelsen. Dette kan selvfølgelig også forklaras ut ifra den nedsatte metabolismen, men kunne det være noe mer? Kunne noe av dette tilskrives hemming av reperfusjonsskade?

Gotbergs grisestudie fra 2008 (41) argumenterer også for at hypotermien hemmer reperfusjonsskade; den gruppen griser som ble raskt nedkjølt ved reperfusjonen så ut til å ha mindre mikrovaskulær obstruksjon enn de som ikke ble nedkjølt i det hele tatt, men de fant altså ingen endring i infarktstørrelsen hos denne gruppen. Men, det gjorde de i 2011 (43), der grisene tross lengre iskemiti tid hadde signifikant reduksjon i IS/MaR i forhold til kontrollgruppen. De ble kjølt ned med både kald intravenøs infusjon og endovaskulær metode, for å få nedkjølingen til å skje raskt nok. Dette underbygger de manglende resultatene
fra Maeng; nedkjølingen måtte altså skje raskt, slik at myokard var kaldt før reperfusjonen skjedde.

Oppsummert kan dyrestudiene over fortelle oss at:

- Mild hypotermi er kardioprotektivt hos kaniner og griser når det igangsettes før, eller svært tidlig i et iskemiforløp.
- Dersom nedkjølingen initiieres ved eller like før reperfusjon er det viktig at denne er rask dersom det skal ha noe effekt.

### 4.3 Er det trygt å kjøle ned pasienter?

Man kan tenke seg at jo større og flere intervensioner på pasienten, jo flere komplikasjoner. Studiene inkludert i oppgaven har oppgitt sikkerhet og kliniske hendelser som død og som MACE (se definisjon på MACE i fotnote på side 12). Alle studiene fra utvalget konkluderer med at det er trygt og gjennomførbart å kjøle ned pasienter med STEMI.

CHILL-ME studien konkluderer og med at det er signifikant lavere innsidens av hjertesvikt i hypotermigruppen versu s kontrollgruppen.

Men, fire av ni pasienter trengte ytterligere sedasjon under NICAMI-studien. Disse evnen til kommunikasjon, og måtte ha motgift (Narcanti). Dette viser at det kan være utfordrende med tilstrekkelig sedasjon. NICAMI brukte en overflatebasert og ikke en endovaskulær nedkjølingsmetode. Man kan tenke seg at det er større behov for sedasjon ved overflatenedkjøling enn ved endovaskulære metoder, som dessuten ofte benytter seg av varmeteppe på huden til pasienten for å redusere skjelving.
5 Konklusjon

Det foreligger per mai 2014 ingen virkelig gode randomiserte kontrollerte studier på mild hypotermi som et ledd i PCI og STEMIbehandling. Med de få studiene som foreligger kan vi si at som en trend virker ikke hypotermi som ledd i PCI til å ha gunstig effekt. Det kan hende at hypotermien er gunstig for infarkter av en viss lokalisasjon og av en kort varighet, men til dette trengs det større studier.

Indusert, mild hypotermi utgjør en liten risiko for flere uønskede hendelser, og kan sådan sees på som relativt trygt, men flere studier bør gjøres på fagfeltet.
Litteraturliste


