
I

Railway Interlocking Design Support Tools

AutoCAD Plugin based approach

Master Thesis

Shahzad Ali Khan

Autumn 2016

II

RAILWAY INTERLOCKING DESIGN SUPPORT

TOOLS

Shahzad Ali Khan

III

Master’s Thesis

Informatics: Programming & Networks
Department of Informatics, University of Oslo
Norway

Title:

Railway Interlocking Design Support Tools

AutoCAD Plugin based approach

Author:

Shahzad Ali Khan

Supervisor:

Primary Supervisor: Christian Johansen (University of Oslo, Norway)

Bjørnar Steinnes Luteberget (University of Oslo, Norway)

RailCOMPLETE AS (http://www.railcomplete.no)

Oslo, November 2016

IV

© Shahzad Ali Khan

2016

Railway Interlocking Design Support Tools

AutoCAD Plugin based approach

http://www.duo.uio.no/

Printed: Reprosentralen, Universitetet i Oslo

http://www.duo.uio.no/

V

Dedication

To my Parents, without their love and support I couldn’t have been able to even write these lines.

To my siblings and Tooba.

VI

Acknowledgement

Firstly, I am thankful to Almighty Allah, Who helps me in every single step and stage of my life, bestows

me with His blessings without considering my negligence. I also offer praise to the Holy Prophet

Muhammad صلى الله عليه وسلم (Peace Be Upon Him), who is my source of inspiration and a blessing for mankind.

I am in forever debt of my parents for all their love and support, who provided me means to have best

education possible. I cannot thank them in limited words for their effortless contributions to my

wellbeing, their sacrifices and support for me.

I want to express my heartiest gratitude to my supervisors Christian Johansen and Bjørnar Steinnes

Luteberget for their valuable guidance and encouragement in all phases of this research work. Their

humbleness has inspired me during stressful days of this project. I am also thankful to the Department

of Informatics, University of Oslo (UIO) for offering me opportunity to study in this oldest, largest and

leading university of Norway. UIO provided me a peaceful environment and always shown a helpful

attitude in my educational activities.

I would also like to thank Claus Feyling for his assistance, help and dedication to make this research

fruitful and I am grateful of his IT team at RailCOMPLETE for their input in testing and integration of

my project.

Last but not the least, I thank everyone who has given me their valuable time and helped me during

my journey of this degree. May Allah bless all. Amen

VII

Abstract

Railways are considered safest of all in land transport system, yet this safety is due to a complex

system of interlocking which ensures the safe train movements on track. Data related to interlockings

for a railway track is stored manually in (long) tabular forms, which is a time consuming and resource

intensive work, since in most cases this approach results in redundant records, data correctness issues

and expensive maintenance of interlocking related documents.

With the supplication of computer aided assistance, Engineers are now able to overcome this

problem. But due to variance of practices in different railway systems, there is a lack of generic

approach in this domain for easy manipulation of Interlocking records. We propose a software

implementation of interlocking schema, based on interoperable open XML based data exchange

format for railway applications, called railML. Our implementation is directed toward Norwegian

railway practices and provides functionality to dynamically create/modify and load interlocking

schema from a RailCOMPLETE document, while this XML schema is derived from interlocking

specifications presented by Bob Janssen [Bosschaart, Mark, et al. "Efficient formalization of railway

interlocking data in RailML." Information Systems 49 (2015): 126-141.]

Incorporating a user-friendly editor for interlocking in this prototype performed very promising by

limiting excessive work hours and resources being spent without a computer-aided tool and relates

improvement in reducing errors in interlocking data. Based on our interaction with railway engineers

we present future direction for forthcoming research in this specific domain as more generalized

improvements in domain model can make this system reach to wider user base and in turn lead to an

easy to understand and configure interlocking design editor for majority of railway systems.

VIII

Table of Contents
Dedication ... V

Acknowledgement ... VI

Abstract ... VII

Index: ... XI

Figures: ... XIII

1. Introduction .. 2

1.1. Initial Motivation and Research Question .. 2

1.2. AutoCAD® .. 3

1.3. RailCOMPLETE® ... 3

1.4. Project Structure ... 4

1.5. Project Objectives ... 5

1.6. Organization of the thesis ... 5

2. Background & Motivation ... 7

2.1. Background ... 7

2.1.1. Railway System ... 7

2.1.2. Interlocking ... 9

2.1.3. Route Locking .. 11

2.1.4. Flank Protection .. 11

2.1.5. Crosslock ... 12

2.1.6. Intermediate Points .. 13

2.1.7. Interlocking Signals ... 14

2.1.8. Shunt Signals ... 14

2.1.9. Internal Logic of Interlocking systems .. 15

2.2. Motivation ... 18

2.2.1. Problems and challenges in current design process ... 18

3. Planning & Analysis ... 20

3.1. Software Development Methodology .. 20

3.1.1. IBM Rational Unified Process (RUP) .. 20

3.2. Conclusions from using RUP ... 22

3.3. Software Requirements .. 23

3.3.1. Stockholders .. 23

3.3.2. Primary Actors ... 23

3.3.3. Secondary Actors .. 24

IX

3.4. Actor Goal List ... 24

3.5. Use Case Modeling .. 25

3.6. Brief Use Cases .. 26

3.6.1. Design Interlocking.. 26

3.6.2. Visualize Interlocking .. 26

3.6.3. Synthesis of Interlocking tables .. 26

3.7. Fully Dressed Use Cases .. 26

3.7.1. Design Interlocking (for already created track layout) ... 26

3.7.2. Design Interlocking (for an empty track layout) ... 27

3.7.3. Visualize Interlocking .. 28

3.7.4. Synthesis of Interlocking ... 29

3.8. Domain Model .. 31

3.9. Component Diagram ... 32

3.10. Class Diagram (Interlocking) ... 33

4. Implementation .. 35

4.1. Overview of RailCOMPLETE framework .. 35

4.2. Developing the Interlocking Module .. 35

4.3. Interlocking Elements and XMLSerialziation... 35

4.4. Prototypes ... 37

4.4.1. Version 1.0 .. 37

4.4.2. Version 2.0 .. 39

4.4.3. Version 3.0 .. 40

4.4.4. Version 4.0 .. 41

4.5. User Feedback ... 47

4.5.1. Version# 1 feedback .. 47

4.5.2. Version#2 Feedback .. 48

4.5.3. Version#3 feedback... 49

4.5.4. Version#4 feedback... 50

4.6. Technologies ... 51

5. Summary and Future Work ... 53

5.1. Achievement of project objectives ... 53

5.2. Critical Reflections .. 53

5.3. Summary ... 54

5.4. Future Work .. 55

X

5.4.1. Interlocking Visualization .. 55

5.4.2. Synthesis of Interlocking tables .. 55

5.4.3. Domain Model extensions .. 55

Bibliography .. 56

Appendix A .. 59

A.1 Microsoft Visual Studio 2015 .. 59

A.1.1 Installation ... 59

A.2 AutoCAD 2016 .. 59

A.2.1 Installation ... 59

A.3 Nuget Package for AutoCAD 21.02 ... 59

A.3.1 Installation ... 59

Appendix B .. 60

B.1 Components .. 60

B.1.1 Editor.cs (C#) .. 61

B.1.2 MainWindow.xaml (XAML) .. 63

B.1.3 MainWindow.cs (C#) .. 68

B.1.4 Interlocking Classes (C#) .. 72

B.1.5 BuildEvents .. 76

B.1.6 References ... 77

XI

Index:

.Net framework · 35

A

AutoCAD · 3

AutoCAD.net API · 35

B

Block system · 8

British Interlocking practices · 13

C

CAD · 2

Cascade locking · 15

CBI · 10

Circuit block signalling · 8

Class Diagram · 33

Component Diagram · 32

Computer based interlocking

CBI · 10

Crosslock · 12

D

Disc and crossbar signals · 7

Domain Model · 31

Dwarf signals · 14

DWG format · 4

E

Electric point machines · 8

Electric track circuits · 8

European rail systems · 17

F

Fixed Signals · 7

Flank protection · 9

Flank Protection · 11

G

Geographical Interlocking · 17

German interlocking System · 13

German locking practices · 17

German locking tables style · 17

H

High transmission glass colors · 9

I

IBM RUP · 20

interlocking · II

Interlocking · 2, 8, 9

Interlocking engineers · 23

Interlocking signals · 14

Intermediate points · 13

L

Locomotive drivers · 24

Locomotives · 7

M

Mechanical levers · 9

Mechanical relays · 8

Microsoft XML Schema Definition · 35

Microsoft.Office.Interop · 4

Model-View-View Model · 35

Morse code · 8

N

North American railways · 14

R

RailComplete · III

RailCOMPLETE · 2, 20

RailML · 4, 18

Railway track engineers · 24

XII

Railways Operation and Controls · 7

Railways points · 8

Raitional Unified Process · 20

RCTransaction · 35

Rolling stock · 7

Route locking · 9

Route Locking · 11

Route settings · 9

Route-related locking · 16

RUP · 20

S

Semaphore Signals · 8

Shunt signals · 14

Signal Box · 8

Signaler · 8

Software Requirements · 23

Solid state electronic interlocking systems · 9

SSI · 9, 10

Stackholders · 23

Switches · 2

T

Tabular interlocking specification · 2, 4

Tabular interlocking system · 15

Track clear detection · 9

Train detectors · 2

Transition phases · 22

U

Unified Modeling Language · 20

Use case Model · 25

W

Windows Presentation Framework · 4

WPF · 4

X

XMLSerialziation · 35

XIII

Figures:
Figure 1 Interlocking Editor Module ... 3

Figure 2: RailCOMPLETE screenshot .. 4

Figure 3 Disc & Crossbar signal ... 8

Figure 4 Railway semaphore signal [8] ... 8

Figure 5 Interlocking ... 10

Figure 6 Control table Sample [10] ... 11

Figure 7 Remote Flank protection [4] ... 12

Figure 8 Selective Protective Points [4] .. 12

Figure 9 Example of a Crosslock [4] .. 13

Figure 10 Home signal limits with intermediate interlocking signals [12] .. 13

Figure 11 Points to be protected by an interlocking Signal [12] ... 14

Figure 12 Shunt signals to be cleared for a train route [4] ... 15

Figure 13 Cascade Locking table [4] .. 16

Figure 14 Route-related Locking table [4] .. 17

Figure 15 IBM RUP Lifecycle [14] .. 22

Figure 16 Use case Model ... 25

Figure 17 Domain Model .. 31

Figure 18 Component Diagram ... 32

Figure 19 Class Diagram .. 33

Figure 20 Interlocking XML Schema .. 36

Figure 21 Prototype Version 1.0 Serializing XML Schema .. 37

Figure 22 Prototype Version 1.0 Deserializing of schema .. 38

Figure 23 Prototype Version 2.0 ... 39

Figure 24 Prototype Version 3.0 ... 40

Figure 25 RailCOMPLETE new project administration options ... 42

Figure 26: Creating New RailCOMPLETE Project... 42

Figure 27 Using command to load Interlocking Module... 43

Figure 28 Loading Interlocking Module without a RailCOMPLETE document. 43

Figure 29 Loading Unsigned modules ... 43

Figure 30 Using Module management to load Interlocking pluging .. 44

Figure 31 .Net application demand-load code [19] .. 46

Figure 32: Editing Interlocking schema ... 46

file:///F:/SHAHZAD/Thesis/Essay/Thesis%20main/Thesis%20++/Last/After%20Review%202/For%20Bjorn/Essay_sup.docx%23_Toc468295531

1

CHAPTER 1

INTRODUCTION

2

1. Introduction

This thesis is concerned with the research and development for the automation of Interlocking data

in RailCOMPLETE ® software. This project is done in cooperation with RailCOMPLETE AS, a Norwegian

firm developing railway signaling and designing software.

1.1. Initial Motivation and Research Question

Railway is among the safest forms of transport even though trains travel and pass each other at high

speeds and through webs of railway crossings. This is made possible by the interlocking, a relay

electronics or computer system which controls signals, turnouts, detectors, and other equipment, to

ensure that only safe movements will be allowed.

The design of a train station includes the creation of:

 A station infrastructure layout, consisting of tracks, switches and signaling components (such

as signals, train detectors, derailers and balises)

 A tabular interlocking specification, giving restrictions and conditions on the use of the train

station by referring to the elements of the infrastructure layout

The research in this thesis aims to address the following research question:

Q1 : How can we improve the efficiency of interlocking design?

Hence, improvement in efficiency of interlocking design formulates the goal of this thesis, which is to

create an efficient editor for the tabular interlocking specification in user-friendly form of schema, if

the infrastructure layout is already available and editable. Currently, engineers experience a lack of

specialized software tools to support the design process. The editor is meant to help the engineers by

providing a software tool integrated with the CAD tool where the infrastructure layout is designed.

Even more, much of the manual process of generating tabular interlocking specifications can be also

automated. This would allow the engineer to work much faster with the editor, as many times, upon

changes from the engineer, many other small changes would be done automatically by the editor to

ensure consistency of the whole tables. Automation aspect of this tool could be investigated in future

work.

We address Q1 by researching about current interlocking design process to identify problems.

Difference of practices and equipment makes the variance in whole design, and for making our

research and tool, as generic as scope of this project allows, railML specifications for interlockings are

used. This software , Figure 1, loads Interlocking specifications from a RailCOMPLETE document and

populate controls for editing the schema dynamically. Railway engineers makes modifications or

generate new schema per their needs and load backs the changes into RailCOMPLETE main document

for track or route.

3

Figure 1 Interlocking Editor Module

1.2. AutoCAD®

 AutoCAD [1] is a commercial software application for 2-D, 3-D drafting of designs and layouts. This

software is used in many field including but not limited to architecture, electrical, electronics,

mechanical, construction and other engineering disciplines for the preparation of blueprints and

layout plans. Since this project is about design railway interlocking design support tool development,

we are using RailCOMPLETE as a framework for development, which is a plugin for AutoCAD.

1.3. RailCOMPLETE®

Railway lines and stations are continuously constructed or upgraded. Substantial savings and quality

improvements are to be made during planning, detail engineering and construction phase with better

tools for managing signaling and its related data. Planning of such projects is complicated and it takes

more expensive resource allocation to ensure data-corrective and low redundancy measures for

carrying out a fine-tuned plan. RailCOMPLETE help engineers and project managers in this task by

providing industry specific tooling and assistance in AutoCAD software through RailCOMPLETE plugin.

Data flows digitally in standardized railML format in RailCOMPLETE.

4

RailCOMPLETE is an AutoCAD plugin letting users design tracks, define mileage system throughout the

construction stages by parameterized railway objects. It produces high resolution drawings, tables, 3-

dimentional views, reports and railML files for easy export and conversion.

In this thesis, we have used RailCOMPLETE framework to integrate our project within AutoCAD. The

RailCOMPLETE software consists of an editor for the infrastructure layout, and saves information in

the DWG format, a commonly used binary CAD file format. The RailCOMPLETE DWG files also contain

a railML representation of the station layout. The aim is to have the Interlocking Editor as a module

that can be integrated within RailCOMPLETE.

Figure 2: RailCOMPLETE screenshot

RailCOMPLETE have a comprehensive architecture of APIs for different prospects of railway object. It

is developed in Microsoft .Net framework, using WinForms and Windows Presentation Framework

(WPF). It uses Microsoft.Office.Interop [2] libraries as well for data export functionalities.

1.4. Project Structure
In order to achieve the project goal, the project was structured in following fashion:

1. Reading and investigating different key concepts of Railway infrastructure, their role in track

designing and operations as discussed in chapter 2.

2. Capturing requirements from railways engineers and RailCOMPLETE developers.

3. Starting to implement object representation of tabular interlocking specification based on RailML

extension, discussed in Efficient formalization of railway interlocking data in RailML paper [3]. This

object representation was done in Microsoft .Net 4.6 using C-Sharp (C#) and demonstrated in first

iteration of prototype.

4. Refined requirements in several sittings with RailCOMPLETE engineers and captured in chapter 3.

Iterated further prototypes and gained feedback from actors listed in chapter 3.

5. Documentation regarding evaluation and changes in domain model are done in this step.

6. Integration of Interlocking module with RailCOMPLETE is done in this step. This iteration of

prototype is captured in final implementation after testing.

5

1.5. Project Objectives

The goal of creating an interlocking editor with CAD integration can be divided into the following tasks:

a) Representing interlocking data in object-oriented code structure.

b) Read and write the XML format for the interlocking from a C# program.

c) Create a graphical user interface for editing the interlocking, creating element references to a

given railML infrastructure layout.

d) Integrate with RailCOMPLETE CAD framework, saving the interlocking table together with the

DWG file using the extension dictionary feature in AutoCAD.

These alone would constitute an improvement for the railway design process. Less time means less

resources spent from public funds, but also means better and faster railway infrastructures

constructions projects. Having a faster and more user-friendly way of interacting with an existing

railway design, and making changes, means that unexpected construction problems can be easier

decided and changed for the better. Moreover, this approach may lead to safer designs.

1.6. Organization of the thesis

This thesis contains 5 chapters including introduction. The content of the chapters following, are

organized in a fashion mentioned below:

 Chapter 2: Background & Motivation

 In this chapter, important railways signaling concepts and a brief history of

development in railway infrastructure is discussed. We later relate these

concepts with scope of this thesis

 Chapter 3: Planning & Analysis

 In this chapter, we present software development methodology we used and

our experience during this project, software requirements for interlocking

module, use cases, domain model and class diagram of the project

 Chapter 4: Implementation & Software Development Methodology

 This chapter contain an overview of RailCOMPLETE framework,

implementation details, user feedbacks and technologies used in this project.

 Chapter 5: Summary and Future work

 In this chapter, we present an overview of achievements for project

objectives, critical reflections, detail summary of this research work, as well

as discuss the potential enhancements for further development of

Interlocking module.

6

CHAPTER 2

BACKGROUND & MOTIVATION

7

2. Background & Motivation

2.1. Background
This chapter provides the necessary background concepts which will enable the reader to have better

understanding of the problems and topics brought up during this thesis. I used a very informative book

“Railways Operation and Controls” [4] on railways domain by Joern Pachl to discuss railway

infrastructure elements and their working. A research project by Andrew Lawrence from Swansea

University [5] helped in gathering information about Railway history and interlocking specially. Reader

will be able to access the proposed solution in the light of these concepts. This chapter begins with

Rail System basics, Interlocking and its applications. Different elements of interlocking control system

like conditions, signals, points and flank protectors are further described after wards. Before the final

part where I will present a sample route with diagram and its content being filled in RailML format, I

will discuss currently used technology and research being done on this domain.

2.1.1. Railway System

Since beginning, railway and its control systems have seen many changes and advancements. Its

infrastructure, control and safety has seen manual systems (human aided mechanical and non-

mechanical) and todays automatic electronic system with minimum human input. Yet a railway system

consists of their essential and most elementary elements in all over the world which are infrastructure

such as track work, signals, station and lines etc., rolling stock with cars and locomotives and last but

most important driving factor which is operating rules and procedures for a fail-safe operation.

According to Joern Pach, Infrastructure and rolling stocks makes the hardware while operating rules

are software of railway system [4]

2.1.1.1. History of Railway Signaling and Control Systems

Back in time, in early days, a human source (Police men) was used to provide signals to trains using

colored flags during day and lights at night. Purpose of using signals were to provide real-time track

information to train driver. But this was not enough for safety as this communication was one way

and there was no system to track train location, once it went out of sight. No real schedule was

possible as it was before the time of telecommunications and electricity. Hence clocked timers for

delay and slow speed were the only key factors progressing toward safety of passengers and

equipment.

The first major advancement in railway signaling was the conception of Fixed Signals. [5] Fixed Signals

were wooden boards mounted on rotating posts where a visible Board was a stop signal, and if board

was not visible, that means Track is clear to proceed. One improvement on the basic fixed signal is the

disc and crossbar. Rules were drawn as either disc or the crossbar must be visible at any given time

frame, where Disc denotes Proceed Aspect and Crossbar visibility translates into Stop Aspect.

8

Figure 3 Disc & Crossbar signal

Later a new signal called the semaphore was introduced back in 1841. Semaphore signals were used

by Napoleon’s army (when coupled with telescopes) which later were adopted by the railways [6] [7]

. This signal consists of a moveable signal arm which could be positioned at different angles and an oil

lamp for night operations.

Figure 4 Railway semaphore signal [8]

Up to this point one human resource was needed to control one signal. Then came the era of signal

box which as a central point for all the signals connections with cables which consist of a system with

pulleys, wires and lever. A signaler (one or two) sets the signals using physical levers in signal box. [5]

This allowed for the development of the interlocking, which was prevention of signaling system from

entering an unsafe state. Interlocking provides locks for lever in signal box which ensures that levers

can only be moved if it is safe to do so.

During the same time, communication between railway stations was established initially using Morse

code transmitting along telegraph lines. Convention of block system was introduced. A piece of track

between two signal boxes was called a block , defining three stats of operation naming blocked line

(failsafe default state), Clear line or train on line. Human intervention and manual inputs even after

interlocking was not ensuring the prevention from possibility of human error occurrence until 19th

century when track circuits were made electrified which enables the detection of trains automatically.

These electric track circuits were to be installed along whole segments of track which in turn made

automatic signaling achievable. Start and stop aspects were displayed automatically based on train

presence in a specific segment of track. This automatic signaling was named track circuit block

signaling.

Following the general trend of electrification in the railways, points were later electrified. Electric

point machines enabled points to be controlled remotely as they were moveable with a mere flick of

a switch. These electric point machines reduced the large amount of physical interventions performed

by signalers(human) allowing for a smart control over large area by each human source. Later, idea of

electro-mechanical become more and more popular and mechanical relays were replaced by electro-

mechanical versions, reducing space needed for a signal box.

So far semaphore signals were being in use during all these improvements in railway infrastructure,

even though with the invention of electric light bulbs, comes the era of scientists and engineers

struggling for color light signals which were bright enough to be seen under sunlight. Starting in 1904,

9

most of these initial iterations of light bulbs were used in low speed applications, but final

improvement came in the early 1920s with Corning’s “High Transmission” glass colors increasing the

range to 1100m under daylight [7] .This leads to replacement of semaphore to light signals in railway.

In 1930s the mechanical levers were replaced with an electronic control panel of switches, buttons

and indicators. Which later made a way for preconfigured route settings where a single press of a

buttons would activate signals and points for a route. With the invent of microprocessors in 1980s

caused a complete overhaul for railways as how it performs now in term of technology. Replacement

of relay and mechanical interlocking with solid state electronic interlocking systems (SSI) was the

major breakthroughs in Railway history.

In the following section, we will look through some of these infrastructural elements in details and

then relate our motivation and problem statement under the light of these concepts.

2.1.2. Interlocking

Interlocking is one of the most crucial and highly sensitive aspects of these operating rules which

ensure the safety of the railway. In simplest words, its job is to process and analyze the commands

and requests received in control system, according to predefined set of rules and check whether future

state of current railway movement is safe or not. It conveys command to the physical infrastructure if

control signal it receives does not violate the safety rules defined in a rail system or conflicts with

other routes.

 Term interlocking is usually used in two meanings as described in Railway Operation and Control,

“An interlocking is the interlocking plant where points and signals are interconnected in a way that

each movement follows the other in a proper and safe sequence. Secondly, the principles to achieve a

safe inter connection between points and signals are also generally called interlocking [4]

Interlocking on route must ensure the following condition on a train route.

 All points on track must be set and locked properly and appropriately

 Conflicting routes must be locked

 The track must be clear and not occupied or on fault state

Above mentioned conditions are brought by the usage of following functions.

 Interlocking b/w points and signals,

 Route locking

 Locking conflicting routes

 Flank protection,

 Track clear detection.

10

Figure 5 Interlocking. In this case, the interlocking could allow Points C4 to be set for the main line route and permit
Signal C3 to show a proceed aspect. [9]

In some places, the term "interlocking" is used to denote an area controlled by a signal cabin or by a

computer. As discussed in previous section (history of railway signaling), originally, interlocking was

done by a combination of mechanical connections to the operating levers and electro-magnetic

relays. Nowadays, most new systems employ "solid state interlocking" (SSI) or computer based

interlocking (CBI) using modern electronics instead of old electromagnetic relays.

Railway systems where train movement signals are different from shunt signals, interlocked routes

are considered separately from shunting routes as well. Shunt signals are used in shunting

movements, which refers to any activity on track, which is used for the management of rolling

stock/locomotives without power. Shunt route may execute a movement into an occupied track

without flank protection usually. There are examples of railway systems like older German interlocking

System [4] where interlocked routes are a requirement for only train movements, while shunt

movements are carried out without protection, while in North American railways, train movements

are not separated usually from the shunting movements so same interlocking are applied (might be)

for both movements.

A train route starts always from an interlocking signal, while its exit can be another interlocking signal

for exit /destination or the end of the interlocking/home signal limits.

Following is an example of tabular Control table used in Indian Railways.

11

Figure 6 Control table Sample [10]

2.1.3. Route Locking

After resetting the signal to stop position it is required to maintain the points locked because

engine/train may not have cleared those points yet. That mean, once a driver has been given a clear

signal indicating a route, it is highly important that route must not be changed. It should be certain

that route must not only be locked by the signal but also by a locking appliance that works

independently from the signal. This second locking must prevent the operation of the points until they

have been cleared by the train on track. [4] Electric locking take effects on signal when train passes it

and are used to prevent external manipulation of physical levers.

2.1.4. Flank Protection

Flank protection should prevent vehicles from running into a route that is cleared for an approaching

train. They shall usually be provided to protect the route and overlap for a signaled train movement

[11] .

This could be achieved by

 Operating rules

 Flank protection devices

 Safety points

 Derails

 Stop signals

12

Figure 7 Remote Flank protection [4]

Flank protection by operating rules means that if a train has a movement authority to run through an

interlocking any shunting movements on side tracks from where the train is approaching are strictly

prohibited. Since this form of protection is not very effective it should only be used when other forms

of flank protection are not possible or applicable.

Figure 8 Selective Protective Points [4]

Stop signals are only useful for flank protection against movements controlled by a driver who pays

attention to the signals. When it is necessary to have protection against vehicles which could get into

motion unintentionally or by accident like stock stored on track, flank protection must be effected by

safety points or derails

2.1.5. Crosslock

In a Crosslock, a pair of points is permanently interlocked with a derail or with another pair of points.

Crosslock improve the safety of movements made without locked routes by preventing movement

over derails and trailing points which are not properly configured. It also helps by providing flank

protection by locking derails and points in a protective position.

13

Figure 9 Example of a Crosslock [4]

A multiple Crosslock is a special kind of crosslock where the interlocking between two points depends

on the position of a third pair of points or derailers. The first two pairs of points are interlocked to the

third element in form of a simple Crosslock [12].

Crosslocks between points are very common in interlocking arrangements following British and North

American practices while in German interlocking Crosslocks between points are very rare [4]. But, they

are regularly used for interlocking between point and derails.

2.1.6. Intermediate Points

Intermediate points are points which are located between two interlocking signals in a way that a train

that is waiting at the signal ahead would not clear the points. (see Figure) [4]. On railways where

overlap is used the locking of intermediate points is usually released together with the points inside

the overlap behind the exit signal [4]. On lines without overlaps, intermediate points may be equipped

with a time release or they are kept locked until they have been cleared again. Intermediate points

must be locked when the signal ahead is cleared. Therefore, intermediate points must be interlocked

both to the entry and exit signal in front and rear.

Figure 10 Home signal limits with intermediate interlocking signals [12]

14

2.1.7. Interlocking Signals

Interlocking signals are used to

 Authorize train movements

 Provide flank protection

Interlocking signals are located at all entrance points of interlocked train routes. An interlocking signal

is always placed in the required overlap distance before the first point to be protected by this signal.

This point could be: [4]

 Facing points which are not locked when a train approaches this signal

 The fouling point limit of trailing points or crossings on which conflicting movements are

possible,

 The rear of a train that has a scheduled stop (this also applies to block signals outside of an

interlocking)

 A shunting limit board.

Interlocking signals which are not used for regular train movements are usually dwarf signals which

can often only show a restricting proceed aspect. However, this is not a shunt signal in the European

sense because it may authorize a train movement. Successive interlocking signals inside one

interlocking are not typical on North American railways but can be found in some interlocking at large

passenger terminals [12].

Figure 11 Points to be protected by an interlocking Signal [12]

2.1.8. Shunt Signals

Shunt signal can only be found on railways where the operating procedures require a different

signaling for trains and shunting movement. In a typical rail network where shunting signals are

employed, following are the key characteristics of shunt signals: [4]

 Authorize shunting movements,

15

 Provide flank protection

 Shunt signals are placed at all points

 where flank protection is required at a track without an interlocking signal

 At all locations where it is useful for the regulation of shunting operations.

Shunt signals are not only used where shunting movements are governed on main tracks but also in

sidings. In modern interlocking, there are a lot of shunt signals in the track layout because all shunting

movements are carried out on interlocked shunt routes. [12]

A shunt signal must also be cleared when a train is passed by, so that the stop aspect of the shunt

signal is removed, other than authorizing a shunt movement.

Figure 12 Shunt signals to be cleared for a train route [4]

2.1.9. Internal Logic of Interlocking systems

Following are the two different principles related to the internal logic of an interlocking system.

 Tabular interlocking

 Geographical Interlocking

2.1.9.1. Tabular Interlocking

In a tabular interlocking system, the lock between points and signals is achieved in form of a locking

sheet that contains the locking conditions for all routes. Tabular interlocking is further differentiated

into two very distinct kinds which are

 Cascade locking

 Route-related locking

2.1.9.1.1. Cascade Locking

The cascade locking was originated as a traditional British interlocking practice that was further

adopted by North American rail systems. In cascade interlocking, a route is established by a locking

cascade which take effects by conditional and permanent locking between different point and further

between points and signals. [4]

16

Figure 13 Cascade Locking table [4]

A permanent locking of points and signal is used when clearing the signal requires the points always

in same state/position. A conditional locking of points and signal however is dependent on the position

of other points. this is being employed that when a signal serve as an entry signal for different routes,

the position of the facing points serve as the condition for locking relative points.

2.1.9.1.2. Route-related Locking

In route-related locking, which is more often termed as route-based locking, for each route there is a

special route locking element instead of directly connecting points and signals by locking sequences.

This special route can only by operated when all points are sets properly for said route. Operating the

route locking element will cause lock on all points, throughout the route and release clear signal.

Whereas, while there is a clear signal, the route locking elements cannot be released or set to change

positions. In this fashion signal indirectly locks all route points.

17

This type of locking is based on German practice which has been adopted by several European rail

systems now.

Figure 14 Route-related Locking table [4]

In this table, each row of the table represents a single route. A row contains the position of all points

which are needed to be locked for that specific route and all conflicting routes. Conflict between

routes which require points to be locked in alternate position would lock each other by the self-

effected plain locking [4]. Figure 13 shows an example for the same route as in Figure 12. In this figure

symbols being used are in correspondence to the tradition German locking tables style.

2.1.9.2. Geographical Interlocking

In a geographical system of interlocking, elements related to track such as points, signals, entrance /

exit points, track, section and derails etc. are represented in a logical object oriented fashion which

are connected to each other in form of the track layout. When a route is set up, the start and exit

18

elements are marked to start search current from route entrance. This search currents runs in all

diverging tracks at facing points and result in a tree structure of search currents. When an exit element

is found by search current, a response current is dispatched to the entrance element. Whereas at

facing points, other search current branches are deprecated.

2.2. Motivation

2.2.1. Problems and challenges in current design process

As we know in general, manual input takes a lot of dedicated attention and accountable accuracy

which, often due to human processing capacity, are limited. Whereas interlocking domain is much

more complex than day to day book keeping. One silent error in data can cause catastrophic

results, if no other control systems are deployed.

During our meeting with Martin Ruff, one of the railway engineers from Norconsult, he mentioned

that since operating a station with several routes and interlocking routines is a complex task,

railway staff device these interlocking configurations on tabular forms for easy management.

While these tabular forms are one way of keeping track of interlocking, it’s not the efficient

practice. Usually these forms extend to several sheets and referencing and management of points

can be disrupted. Data redundancy and error factors require a considerable amount of time and

resources. He said that it takes almost 5-6 working hours for an engineer to sort one interlocking

form. While it takes this much, still this work is error-prone usually. Typing error, mismatched

references, and inclusion of conflicting routes are common problems in manual work, which

further lead to more work force and time.

Additionally, management of interlocking specifications is a delicate time consuming task.

Printing, keep and editing of printed tables is not an efficient approach. By just switching this

operation from manual to computer aided version, a significant amount of work time can be

saved, hence resulting in less expense and low noise.

RailCOMPLETE is an AutoCAD plugin software, which helps engineers in unifying their efforts in

transferable data format for designing, visualizing and maintenance of track and signaling

component layout. All these operations are being performed by following RailML protocol and

set of principles. Right now, RailCOMPLETE lacks the functionality to automate the editing of

interlocking aspect of complete route and users are using same traditional format of interlocking

tables. This basically leads them to the very same issue of manual process hazards.

19

CHAPTER 3

PLANNING & ANALYSIS

20

3. Planning & Analysis
In this chapter, we will briefly present RailCOMPLETE Framework, for which we are developing

Interlocking module. We will describe the overview of Interlocking Module, its requirements gathering

and limitation of documentation, following afterwards. Furthermore, the following sections will be

used to present the actor goal list, use-case description, class diagrams and domain model using RUP

framework.

In the following section, we will discuss requirements for this research project and the architecture of

our solution.

3.1. Software Development Methodology
The process of splitting software development work into different and distinct stages is known as

Software development methodology. A Major motivation behind these methodologies is to manage

the software development lifecycle more efficiently, per requirement and within defined constraints.

For this project, I will be using Rational Unified Process (RUP) for capturing requirements and

implementation of software and used agile rapid prototyping as a method for software requirement

rectification in contrast with Scrum methodology being used in RailCOMPLETE development team

In following section, we will briefly describe this framework based on the white paper by Rational

Software [13] and our experience with RUP in this project.

3.1.1. IBM Rational Unified Process (RUP)

IBM Rational Unified Process was proposed, developed and implemented in IBM division named

Rational. RUP is simply a disciplined approach to achieve software development related tasks

strategically which managing the resources based on pre-implementation research on scope, risks,

and business analysis [14]. RUP ensures that all team members have access to the same knowledge

base, domain and related aspects of software development lifecycle for a project. This is modeled

using Unified Modeling Language (UML) instead of textual version. This helps users to quickly assess,

qualify and read the document. Additionally, a properly modeled software artifact in UML, could be

used to generate automated code and more research is underway to make it more automated.

According to Rational softwares,

“The Rational Unified Process® is a Software Engineering Process. It provides a disciplined approach to

assigning tasks and responsibilities within a development organization. Its goal is to ensure the

production of high-quality software that meets the needs of its end-users, within a predictable schedule

and budget.” [13]

RUP defines the process of software development into four distinct phases. Each phase involves

business modeling, analysis & design, implementation, testing and deployment. Following are the four

phases of RUP

21

3.1.1.1. Inception

During this phase, the idea for the project is stated. System business case are established and project

scope is defined for both parties (development team and client). The development team determines

if the project is worth pursuing and what resources will be needed. While Client gets the estimation

of project worth and time. Inception phase produces following complete or partially complete

documents/ artifacts

 Vision document: This document scope of project, general requirements, key features and

system constraints.

 Initial Use-case model (partial)

 Business use case modeling

 Project glossary, risk assessment, project plan and business model if necessary (complete or

partial)

 Prototypes if required

3.1.1.2. Elaboration

In this phase, problem domain is explored and a foundation of architecture is established. This helps

in finalizing the project development phase and by using the risk assessment, elimination of the risk

factors. The project's architecture and required resources are further evaluated. Developers consider

possible applications of the software and costs associated with the development by dividing functional

and non-functional requirements, elaborating scope and functionality matrix

Following are the outcome of elaboration phase,

 Use case model (80% complete)

 Supplementary requirements are identified which are not associated with any specific use

case

 Architecture description

 Architectural Prototype

 Revision for business use cases and risks

 Overall project development plan

 User manual / Appendix (optional)

3.1.1.3. Construction

During the construction phase, project is developed and completed. The software is designed, written,

and tested according to the defined requirements. All components are stitched together and

integrated into the product and are thoroughly tested. This phase consists of following outcomes,

 Integrated software project

 User Manuals

 Release version and description

22

3.1.1.4. Transition

The software is released to the user. Final adjustments or updates are made based on feedback from

end users. [15]. Transition phase is based on Construction phase evaluation. If a project is found

mature enough and resource expectations are under control, project undergoes this transition phase.

Transition phases is an ongoing phase where system is tested, new requirements or maintenance tasks

are recorded, user trainings are conducted and product roll-out are registered.

Figure 15 IBM RUP Lifecycle [14]

3.2. Conclusions from using RUP
Unlike RailCOMPLETE where SCRUM is being used for software development, I preferred RUP for this

project due the fact that RUP prescribe predefined templates for capturing user requirements, and

highly engaging user feedback while focusing on a simple approach of modeling instead of textual

description of project during different phases.

RUP is a subset of best software development practices in industry based on their usage, user

community and success ratio. [13] With the help of widely available RUP templates, I maintained my

meetings with client (RailCOMPLETE) easily which later helped me to convert them into user cases

with the fine-grain detail of steps and pre/post conditions of the use case. During this process, I

learned that if a project is fully modeled for RUP in UML, we can generate code from those models

using tools like IBM® Rational® Software Architect [16] and hence it can save tremendous time for

large projects.

However, I do feel that using a full-fledged RUP approach for small teams and projects might become

time consuming and difficult to maintain because it requires a thorough procedural execution in every

23

stage of an iteration. Due to this fact, instead of producing all artifacts of RUP, I preferred to include

only those (chapter 3), which can help me capture software requirements for this project since it was

not a complex team project and with a single resource. While this approach does come with limitation

of time, I experienced that rational process can produce a comprehensive documentation for project

owners and user manuals for client. It has a clear way for eliciting architecture of whole project so

project maintenance and extensionality are not limited especially in academic projects like this, it also

provides necessary foundation for further enhancements in the project in an easy to understand form

factor.

3.3. Software Requirements
Since this project is addressing a real-world problem and is to be integrated with an actual product,

requirements have been specified during several project meetings involving my supervisors and with

development team and our key contact Claus Feyling for RailCOMPLETE in Norconsult AS. In this case,

Claus Feyling acted on client role to specify the desired functionality in Interlocking module, while IT

team in Norconsult and my supervisor Bjørnar Luteberget provided the technical understanding of

RailCOMPLETE Software. Clause and Bjørnar also participated as an active Interlocking user to

highlight the functionalities end user want to see in final version. Whereas, in these meetings, I took

the role of software requirement engineer to capture the user stories and document them using IBM

RUP framework. Since we followed the agile methodology for this project, it involved rapid

prototyping based on user feedback and suggestions on functionality, which consecutively I

implemented as software engineer.

In the following sub sections, we use RUP form of use cases to specify user intended functionality in

as close to client word as we can, without including redundant information.

3.3.1. Stockholders

Following are the stakeholders for Interlocking module of the RailCOMPLETE

 Shahzad Ali Khan (Me) As Student and developer of this module

 RailCOMPLETE Developers

 RailCOMPLETE Testers

 RailCOMPLETE Management

 University of Oslo

3.3.2. Primary Actors

There are two primary actors and one secondary actors of Interlocking design tool, in RailCOMPLETE

domain. These actors and their required operations are listed below

3.3.2.1. Interlocking Engineer

Interlocking engineers want to design, formulate, integrate and rectify interlocking segments within a

train track design model. They are the one sole responsible for overlooking of interlocking on route.

Interlocking Engineers are not necessarily one role. Usually Track Engineers can perform the said task

under this role, but since our aim is to produce as loosely coupled software as constraints allows, we

will keep the Interlocking Engineer as a user who is solely responsible for Interlocking schema of a

route only. Interlocking Engineer is not necessarily deemed to have information related to main

RailCOMPLETE document.

24

3.3.2.2. Track Engineer

Railway track engineers are responsible for overall modeling of track design, and they want to make

sure correct interlocking mechanism configurations are applied within a design model. They can access

interlocking schema loaded within a RailCOMPLETE document and based on their needed, can use or

ask for changes in said interlocking schema of document. Track Engineer can perform Interlocking as

well as other RailCOMPLETE functionalities.

3.3.3. Secondary Actors

3.3.3.1. Locomotive Drivers

Locomotive drivers are the ground force, who is responsible for executing railway operations and drive

rail based on route from RailCOMPLETE and associated Interlocking. They are not required as an active

user of the system, but will be influenced by product of RailCOMPLETE route project.

3.4. Actor Goal List

Actor Goal

Track Engineer  Design interlocking

 Visualize Interlocking

 Synthesis of Interlocking Tables

Interlocking Engineer  Design Interlocking

 Visualize Interlocking

 Synthesis of Interlocking Tables

Locomotive Drivers  Document Reports (No)

25

3.5. Use Case Modeling
Following is the use case diagram of the system. We can see that Track Engineer scope is not limited

to only Interlocking module only and (s)he can interact with RailCOMPLETE object outside interlocking

module, while Interlocking Engineer is only concerned with Interlocking Module. Functionalities

concerned with both actors in our module, are same, but to limit the scope of our module both users

are listed separately.

Figure 16 Use case Model

 uc Use Case Model

Interlocking Module

RailCOMPLETE

RailCOMPLETE

Infrastructrue

Object

Design Interlocking

Visualize Interlocking

(Proposed)

Synthesis of

Interlocking

(Proposed)

Track Engineer

Interlocking Engineer

26

3.6. Brief Use Cases

3.6.1. Design Interlocking

Interlocking Engineer logs into RailCOMPLETE and open the new/required diagram. User opens

Interlocking module and enter interlocking related data into XML based structure or User views the

interlocking data and adjusts the schema per requirements. Module process newly entered data per

standard and regulations specified and inform user regarding warning and constraints. User edit file

accordingly and save file.

3.6.2. Visualize Interlocking

User logs into RailCOMPLETE and open the new/required diagram. User opens Interlocking module or

create new Interlockings. User loads the interlocking elements from track diagram and system

presents elements in interlocking window. User make changes and select to visualize. System visualize

the track based on interlockings and predefined rules. User makes modification if need and save file.

3.6.3. Synthesis of Interlocking tables

User logs into RailCOMPLETE and open the new/required diagram. User opens Interlocking module or

create new Interlockings. User make modifications in interlocking and system process the

modifications based on track layout diagram or predefined rules. System warns user on violations and

display messages accordingly. User makes modification and save file

3.7. Fully Dressed Use Cases

3.7.1. Design Interlocking (for already created track layout)

Design Interlocking

Version 1.0

Date: 18/06/2016

Scenario 1: Interlocking in already created
track layout

Use Case Section Comment

Scope RailCOMPLETE Interlocking Module
Business use case

Level User Goal

Primary Actor Interlocking Engineer

Stakeholders and Interests  Interlocking Engineer: wants to create interlocking
section for already created Track design

 Track Engineer: requires interlocking section for his/her
designed Track

Preconditions  User is logged into RailCOMPLETE

 Track design is already created per standards predefined

Success Guarantee User successfully creates interlocking sections for integration
into main track design

Main Success Scenario Primary Actor System Response

1. User request search
dialogue box

2. System presents search
dialogue box

3. User selects Track design 4. System presents
interlocking editor for
track design

5. User edit interlocking 6. System checks the input
per rules defined

27

7. User save the file 8. System checks rules and
updates file status

Extensions/Alternate Flow 6e/8e-1: Rule violations

Actor Action System Response

 System inform user about rule
violation

8e-2: Fail to save file

Actor Action System Response

 1. System inform user about
error reason.

2. User fix the error and save
file

3. System checks rules and
updates file status

Special Requirements TBD

Technology and data variation N/A

Frequency Moderate

Miscellaneous N/A

Data/ Field requirements TBD

Prototype TBD

3.7.2. Design Interlocking (for an empty track layout)

Design Interlocking

Version 1.0

Date: 18/06/2016

Scenario 2: Interlocking in an empty Track
layout

Use Case Section Comment

Scope Interlocking Module
Business use case

Level User Goal

Primary Actor Interlocking Engineer

Stakeholders and Interests  Interlocking Engineer: wants to create interlocking
section for already created Track design

 Track Engineer: requires interlocking section for his/her
designed Track

Preconditions RailCOMPLETE document is created

Success Guarantee Interlocking schema is successfully loaded into empty track

Main Success Scenario Primary Actor System Response

1. User click new
RailCOMPLETE document
button

2. System presents new
document dialogue
options

3. User configure options
and click create

4. System presents an empty
RailCOMPLETE document

5. User enters Interlocking
module command in
command window

6. System loads Interlocking
Module

 7. User selects options to
create new interlocking
file

8. System presents options
for creating new
interlocking file

28

 9. User enters interlocking
data and clicks save
schema

10. System checks rules and
updates file status

Extensions/Alternate Flow Step # 10e Rule Violation

Actor Action System Response

 1. System inform user about
error reason.

2. User fix the error and save
file

3. System checks rules and
updates file status

Special Requirements TBD

Technology and Data Variation N/A

Frequency Moderate

Miscellaneous N/A

Data/ Field requirements TBD

Prototype TBD

3.7.3. Visualize Interlocking

Interlocking Integration

Version 1.0

Date: 18/06/2016

Scenario 1: Visualizing interlocking file

Use Case Section Comment

Scope RailCOMPLETE Interlocking Module
Business use case

Level User Goal

Primary Actor Interlocking Engineer, Track Engineer

Stakeholders and Interests  Interlocking Engineer: wants to visualize the
interlockings.

 Track Engineer: wants to validate and visualize the
interlockings in track diagram.

Preconditions  User is logged into RailCOMPLETE

 Track design and Interlocking xml is already created as per
standards predefined

 Main Track design is open

Success Guarantee User successfully integrates interlocking sections into main track
design

Main Success Scenario Primary Actor System Response

 1. User click new
RailCOMPLETE document
button

2. System presents new
document dialogue
options

 3. User configure options and
click load

4. System loads the
RailCOMPLETE document

 5. User enters Interlocking
module command in
command window

6. System loads Interlocking
Module

 7. User selects options to load
interlocking file

8. System presents the
interlocking file options

 9. User loads elements for
interlocking file from track

10. System load the elements
from RailCOMPLETE
object

29

 11. User selects Visualization
option

12. System process the
command and visualize
the interlocking

 13. User make modifications as
required and selects save
file

14. System save interlockings
in track diagram

Extensions/Alternate Flow 6e/8e/12e/14e-
1:

Rule violations

 Actor Action System Response

 System inform user about rule
violation

 12e-2: Fail to save file

 Actor Action System Response

 1. System inform user about
error reason.

 2. User fix the error and save
file

3. System checks rules and
updates file status

Special Requirements TBD

Technology and Data
Variation List

N/A

Frequency Moderate

Miscellaneous Extension Project

Data/ Field requirements TBD

Prototype NA

3.7.4. Synthesis of Interlocking

Interlocking Integration

Version 1.0

Date: 18/06/2016

Scenario 1: Synthesis of interlocking file

Use Case Section Comment

Scope RailCOMPLETE Interlocking Module
Business use case

Level User Goal

Primary Actor Interlocking Engineer, Track Engineer

Stakeholders and Interests  Interlocking Engineer: wants automated synthesis of
interlocking file

 Track Engineer: wants to automate the safety of track by
synthesizing interlocking information

Preconditions  User is logged into RailCOMPLETE

 Track design and Interlocking xml is already created as per
standards predefined

 Main Track design is open

Success Guarantee User successfully integrates interlocking sections into main track
design

Main Success Scenario Primary Actor System Response

30

 1. User click new
RailCOMPLETE document
button

2. System presents new
document dialogue
options

 3. User configure options and
click load

4. System loads
RailCOMPLETE document

 5. User enters Interlocking
module command in
command window

6. System loads Interlocking
Module

 7. User selects options to load
interlocking file

8. System loads the
interlockings

 9. User modify the
interlocking file

10. System process the file

 11. User selects synthesis
option

12. System process the file
and present the analysis

 13. User make modifications as
required and selects save
file

14. System save interlockings
in track diagram

Extensions/Alternate Flow 6e/8e/12e/14e-
1:

Rule violations

 Actor Action System Response

 System inform user about rule
violation

 14e-2: Fail to save file

 Actor Action System Response

 4. System inform user about
error reason.

 5. User fix the error and save
file

6. System checks rules and
updates file status

Special Requirements TBD

Technology and Data
Variation List

N/A

Frequency Moderate

Miscellaneous Extension Project

Data/ Field requirements TBD

Prototype NA

31

3.8. Domain Model
Following is the conceptual domain model of the interlocking schema and how it is used in Interlocking

Editor. This domain model is derived from interlocking specification presented by Bon Janssen in his

research paper on efficient formalization of railway interlocking data in RailML [3]

Figure 17 Domain Model

32

3.9. Component Diagram
In following diagram, we present different components of Interlocking editor as a plugin. Interlockings

processing and interface interaction is carried out in InterlockingEditor class while worker class is

responsible for RailCOMPLETE Integration.

Figure 18 Component Diagram

 c
m

p
 C

o
m

p
o

n
e

n
t

V
ie

w

c
la

s
s

 I
n

te
rl

o
c

k
in

g
E

d
it

o
r

C
u

s
to

m
C

o
m

m
a

n
d

s

+

L
o

a
d

X
M

L
C

o
m

m
a

n
d

:
 R

o
u

te
d

U
IC

o
m

m
a

n
d

 =
 n

e
w

 R
o

u
te

d
U

IC
o

m
..

.
{r

e
a

d
O

n
ly

}

+

S
a

v
e

X
M

L
C

o
m

m
a

n
d

:
 R

o
u

te
d

U
IC

o
m

m
a

n
d

 =
 n

e
w

 R
o

u
te

d
U

IC
o

m
..

.
{r

e
a

d
O

n
ly

}

U
s
e

rC
o

n
tr

o
l

E
d

it
o

r

+

E
d

it
o

r(
)

-
E

x
e

c
u

te
d

L
o

a
d

X
M

L
(o

b
je

c
t,

 E
x
e

c
u

te
d

R
o

u
te

d
E

v
e

n
tA

rg
s)

 :
 v

o
id

-
E

x
e

c
u

te
d

S
a

v
e

X
M

L
(o

b
je

c
t,

 E
x
e

c
u

te
d

R
o

u
te

d
E

v
e

n
tA

rg
s)

 :
 v

o
id

X
m

lS
e

ri
a

li
z
a

ti
o

n
H

e
lp

e
r

+

G
e

tX
m

l(
T

,
X

m
lS

e
ri

a
li

z
e

r,
 b

o
o

l)
 :

 s
tr

in
g

+

L
o

a
d

F
ro

m
F

il
e

(s
tr

in
g

)
:

T

-
S

a
v
e

X
M

L
(T

,
X

m
lS

e
ri

a
li

z
e

r)
 :

 v
o

id

«
e
x
te
n
si
o
n
»

+

G
e

tX
m

l(
b

o
o

l)
 :

 s
tr

in
g

+

G
e

tX
m

l(
)

:
st

ri
n

g

+

L
o

a
d

F
ro

m
X

M
L

()
 :

 T

+

L
o

a
d

F
ro

m
X

M
L

(X
m

lS
e

ri
a

li
z
e

r)
 :

 T

c
la

s
s

 I
n

te
rl

o
c

k
in

g
E

d
it

o
r

W
o

rk
e

r

-
IN

T
E

R
L

O
C

K
IN

G
_

H
E

A
D

E
R

:
 s

tr
in

g
 =

 "
In

te
rl

o
c
ki

n
g

"
{r

e
a

d
O

n
ly

}

+

In
te

rl
o

c
ki

n
g

E
d

it
o

rC
o

m
m

a
n

d
()

 :
 v

o
id

-
L

o
a

d
In

te
rl

o
c
ki

n
g

S
tr

in
g

(D
o

c
u

m
e

n
t)

 :
 s

tr
in

g

-
S

a
v
e

In
te

rl
o

c
ki

n
g

S
tr

in
g

(D
o

c
u

m
e

n
t,

 s
tr

in
g

)
:

v
o

id

R
a

il
C

O
M

P
L

E
T

E

O
b

je
c
t

C
o

n
tr

o
ll

e
r

U
se

rC
o

n
tr

o
l

a
n

d
 U

ti
li

ty

C
la

ss
e

s

c
la

s
s

 I
n

te
rl

o
c

k
in

g

T
a

rg
e

tR
e

f

«
p
ro
p
e
rt
y
»

+

R
e

f(
)

:
st

ri
n

g

A
s

p
e

c
tS

p
e

e
d

D
e

p
e

n
d

e
n

c
y

«
p
ro
p
e
rt
y
»

+

A
sp

e
c
t(

)
:

st
ri

n
g

+

T
a

rg
e

tR
e

f(
)

:
L

is
t<

T
a

rg
e

tR
e

f>

+

V
A

p
p

ro
a

c
h

()
 :

 s
tr

in
g

+

V
P

a
ss

()
 :

 s
tr

in
g

A
s

p
e

c
tS

p
e

e
d

D
e

p
e

n
d

e
n

c
ie

s

«
p
ro
p
e
rt
y
»

+

A
sp

e
c
tS

p
e

e
d

D
e

p
e

n
d

e
n

c
y
()

 :
 L

is
t<

A
sp

e
c
tS

p
e

e
d

D
e

p
e

n
d

e
n

c
y
>

S
ig

n
a

l

«
p
ro
p
e
rt
y
»

+

A
sp

e
c
tS

p
e

e
d

D
e

p
e

n
d

e
n

c
ie

s(
)

:
L

is
t<

A
sp

e
c
tS

p
e

e
d

D
e

p
e

n
d

e
n

c
ie

s>

+

R
e

f(
)

:
st

ri
n

g

S
ig

n
a

ls

«
p
ro
p
e
rt
y
»

+

S
ig

n
a

l(
)

:
L

is
t<

S
ig

n
a

l>

S
ig

n
a

lR
e

f

«
p
ro
p
e
rt
y
»

+

R
e

f(
)

:
st

ri
n

g

S
ta

rt

«
p
ro
p
e
rt
y
»

+

S
ig

n
a

lR
e

f(
)

:
L

is
t<

S
ig

n
a

lR
e

f>

T
a

rg
e

t

«
p
ro
p
e
rt
y
»

+

S
ig

n
a

lR
e

f(
)

:
L

is
t<

S
ig

n
a

lR
e

f>

S
w

it
c

h

«
p
ro
p
e
rt
y
»

+

C
o

u
rs

e
()

 :
 s

tr
in

g

+

R
e

f(
)

:
st

ri
n

g

S
w

it
c

h
R

e
f

«
p
ro
p
e
rt
y
»

+

S
w

it
c
h

()
 :

 L
is

t<
S

w
it

c
h

>

L
e

v
e

lc
ro

s
s

in
g

«
p
ro
p
e
rt
y
»

+

B
e

a
m

()
 :

 s
tr

in
g

+

R
e

f(
)

:
st

ri
n

g

L
e

v
e

lc
ro

s
s

in
g

R
e

f

«
p
ro
p
e
rt
y
»

+

L
e

v
e

lc
ro

ss
in

g
()

 :
 L

is
t<

L
e

v
e

lc
ro

ss
in

g
>

T
ra

c
k

C
ir

c
u

it
B

o
rd

e
r

«
p
ro
p
e
rt
y
»

+

R
e

f(
)

:
st

ri
n

g

T
ra

in
D

e
te

c
to

rR
e

f

«
p
ro
p
e
rt
y
»

+

T
ra

c
kC

ir
c
u

it
B

o
rd

e
r(

)
:

L
is

t<
T

ra
c
kC

ir
c
u

it
B

o
rd

e
r>

E
le

m
e

n
ts

«
p
ro
p
e
rt
y
»

+

E
le

m
e

n
tC

h
il

d
re

n
()

 :
 I

L
is

t

+

L
e

v
e

lc
ro

ss
in

g
R

e
f(

)
:

L
is

t<
L

e
v
e

lc
ro

ss
in

g
R

e
f>

+

S
w

it
c
h

R
e

f(
)

:
L

is
t<

S
w

it
c
h

R
e

f>

+

T
ra

in
D

e
te

c
to

rR
e

f(
)

:
L

is
t<

T
ra

in
D

e
te

c
to

rR
e

f>

R
o

u
te

P
ri

o
ri

ty

«
p
ro
p
e
rt
y
»

+

R
a

n
k(

)
:

st
ri

n
g

R
o

u
te

«
p
ro
p
e
rt
y
»

+

E
le

m
e

n
ts

()
 :

 L
is

t<
E

le
m

e
n

ts
>

+

F
la

n
kE

le
m

e
n

ts
()

 :
 s

tr
in

g

+

Id
()

 :
 s

tr
in

g

+

R
o

u
te

C
h

il
d

e
rn

()
 :

 I
L

is
t

+

R
o

u
te

P
ri

o
ri

ty
()

 :
 L

is
t<

R
o

u
te

P
ri

o
ri

ty
>

+

S
ta

rt
()

 :
 L

is
t<

S
ta

rt
>

+

T
a

rg
e

t(
)

:
L

is
t<

T
a

rg
e

t>

R
o

u
te

s

«
p
ro
p
e
rt
y
»

+

R
o

u
te

()
 :

 L
is

t<
R

o
u

te
>

In
te

rl
o

c
k

in
g

«
p
ro
p
e
rt
y
»

+

In
te

rl
o

c
ki

n
g

C
h

il
d

re
n

()
 :

 I
L

is
t

+

R
o

u
te

s(
)

:
L

is
t<

R
o

u
te

s>

+

S
ig

n
a

ls
()

 :
 L

is
t<

S
ig

n
a

ls
>

«
fl
o
w
»

33

3.10. Class Diagram (Interlocking)
Class diagram describes the structure of the system by presenting its classes and their relationships.

Figure 19 Class Diagram

 cl
as

s
Co

re

Ta
rg

et
Re

f

«p
ro
pe

rty
»

+
Re

f()
 :

str
in

g

As
pe

ct
Sp

ee
dD

ep
en

de
nc

y

«p
ro
pe

rty
»

+
As

pe
ct

()
: s

tri
ng

+
Ta

rg
et

Re
f()

 :
Li

st<
Ta

rg
et

Re
f>

+
VA

pp
ro

ac
h(

) :
 st

rin
g

+
VP

as
s()

 :
str

in
g

As
pe

ct
Sp

ee
dD

ep
en

de
nc

ie
s

«p
ro
pe

rty
»

+
As

pe
ct

Sp
ee

dD
ep

en
de

nc
y(

) :
 L

ist
<A

sp
ec

tS
pe

ed
De

pe
nd

en
cy

>

Si
gn

al

«p
ro
pe

rty
»

+
As

pe
ct

Sp
ee

dD
ep

en
de

nc
ie

s()
 :

Li
st<

As
pe

ct
Sp

ee
dD

ep
en

de
nc

ie
s>

+
Re

f()
 :

str
in

g

Si
gn

al
s

«p
ro
pe

rty
»

+
Si

gn
al

()
: L

ist
<S

ig
na

l>

Si
gn

al
Re

f

«p
ro
pe

rty
»

+
Re

f()
 :

str
in

g

St
ar

t

«p
ro
pe

rty
»

+
Si

gn
al

Re
f()

 :
Li

st<
Si

gn
al

Re
f>

Ta
rg

et

«p
ro
pe

rty
»

+
Si

gn
al

Re
f()

 :
Li

st<
Si

gn
al

Re
f>

Sw
itc

h

«p
ro
pe

rty
»

+
Co

ur
se

()
: s

tri
ng

+
Re

f()
 :

str
in

g

Sw
itc

hR
ef

«p
ro
pe

rty
»

+
Sw

itc
h(

) :
 L

ist
<S

wi
tc

h>

Le
ve

lc
ro

ss
in

g

«p
ro
pe

rty
»

+
Be

am
()

: s
tri

ng

+
Re

f()
 :

str
in

g

Le
ve

lc
ro

ss
in

gR
ef

«p
ro
pe

rty
»

+
Le

ve
lc

ro
ss

in
g(

) :
 L

ist
<L

ev
el

cr
os

sin
g>

Tr
ac

kC
irc

ui
tB

or
de

r

«p
ro
pe

rty
»

+
Re

f()
 :

str
in

g

Tr
ai

nD
et

ec
to

rR
ef

«p
ro
pe

rty
»

+
Tr

ac
kC

irc
ui

tB
or

de
r()

 :
Li

st<
Tr

ac
kC

irc
ui

tB
or

de
r>

El
em

en
ts

«p
ro
pe

rty
»

+
El

em
en

tC
hi

ld
re

n(
) :

 IL
ist

+
Le

ve
lc

ro
ss

in
gR

ef
()

: L
ist

<L
ev

el
cr

os
sin

gR
ef

>

+
Sw

itc
hR

ef
()

: L
ist

<S
wi

tc
hR

ef
>

+
Tr

ai
nD

et
ec

to
rR

ef
()

: L
ist

<T
ra

in
De

te
ct

or
Re

f>

Ro
ut

eP
rio

rit
y

«p
ro
pe

rty
»

+
Ra

nk
()

: s
tri

ng

Ro
ut

e

«p
ro
pe

rty
»

+
El

em
en

ts(
) :

 L
ist

<E
le

m
en

ts>

+
Fl

an
kE

le
m

en
ts(

) :
 st

rin
g

+
Id

()
: s

tri
ng

+
Ro

ut
eC

hi
ld

er
n(

) :
 IL

ist

+
Ro

ut
eP

rio
rit

y(
) :

 L
ist

<R
ou

te
Pr

io
rit

y>

+
St

ar
t()

 :
Li

st<
St

ar
t>

+
Ta

rg
et

()
: L

ist
<T

ar
ge

t>

Ro
ut

es

«p
ro
pe

rty
»

+
Ro

ut
e(

) :
 L

ist
<R

ou
te

>

In
te

rlo
ck

in
g

«p
ro
pe

rty
»

+
In

te
rlo

ck
in

gC
hi

ld
re

n(
) :

 IL
ist

+
Ro

ut
es

()
: L

ist
<R

ou
te

s>

+
Si

gn
al

s()
 :

Li
st<

Si
gn

al
s>

In
te

rlo
ck

in
gE

di
to

r::
W

or
ke

r

-
IN

TE
RL

O
CK

IN
G

_H
EA

DE
R:

 s
tri

ng
 =

 "I
nt

er
lo

ck
in

g"
 {r

ea
dO

nl
y}

+
In

te
rlo

ck
in

gE
di

to
rC

om
m

an
d(

) :
 v

oi
d

-
Lo

ad
In

te
rlo

ck
in

gS
tri

ng
(d

oc
 :D

oc
um

en
t)

: s
tri

ng

-
Sa

ve
In

te
rlo

ck
in

gS
tri

ng
(d

oc
 :D

oc
um

en
t,

co
nt

en
ts

:st
rin

g)
 :

vo
id

cl
as

s
In

te
rlo

ck
in

gE
di

to
r

Us
er

Co
nt

ro
l

Ed
ito

r

+
Ed

ito
r()

-
Ex

ec
ut

ed
Lo

ad
XM

L(
ob

je
ct

, E
xe

cu
te

dR
ou

te
dE

ve
nt

Ar
gs

) :
 v

oi
d

-
Ex

ec
ut

ed
Sa

ve
XM

L(
ob

je
ct

, E
xe

cu
te

dR
ou

te
dE

ve
nt

Ar
gs

) :
 v

oi
d

Cu
st

om
Co

m
m

an
ds

+
Lo

ad
XM

LC
om

m
an

d:
 R

ou
te

dU
IC

om
m

an
d

=
ne

w
Ro

ut
ed

UI
Co

m
...

 {r
ea

dO
nl

y}

+
Sa

ve
XM

LC
om

m
an

d:
 R

ou
te

dU
IC

om
m

an
d

=
ne

w
Ro

ut
ed

UI
Co

m
...

 {r
ea

dO
nl

y}

Xm
lS

er
ia

liz
at

io
nH

el
pe

r

+
G

et
Xm

l(T
, X

m
lS

er
ia

liz
er

, b
oo

l)
: s

tri
ng

+
Lo

ad
Fr

om
Fi

le
(st

rin
g)

 :
T

-
Sa

ve
XM

L(
T,

 X
m

lS
er

ia
liz

er
) :

 v
oi

d

«e
xt
en

sio
n»

+
G

et
Xm

l(b
oo

l)
: s

tri
ng

+
G

et
Xm

l()
 :

str
in

g

+
Lo

ad
Fr

om
XM

L(
) :

 T

+
Lo

ad
Fr

om
XM

L(
Xm

lS
er

ia
liz

er
) :

 T

1.
.*

1

1

1.
.* 1 1.

.*

1.
.

1
1

1

1

1

1.
.*

1

1.
.*

1.
.

1.
.*

«f
lo
w»

34

CHAPTER 4

IMPLEMENTATION

&

SOFTWARE DEVELOPMENT METHODOLOGY

35

4. Implementation

4.1. Overview of RailCOMPLETE framework

RailCOMPLETE is developed in Microsoft Visual Studio, using .Net Framework and C# to utilize

AutoCAD.net API so that we can provide Railway operations functionality right into the AutoCAD

software. Project consist of 18 Core modules. Test drive approach is being followed in throughout the

project, and for Window Presentation Framework (WPF), Model-View-View Model (MVVM)

There is one object Manager module responsible for managing RailCOMPLETE Object in AutoCAD

software. Core module provide the base projects for different resources and functionalities for the

whole plugin including Containers, Context Menus, Database rules, Database Reactors, Area Elevation,

Export functionalities, Object definition and management, Document commands, plugin

management, Railway Object and document, Transactions, Schematic views, styles, graphics and

utilities. Rest of the modules are sole responsible for graphical user interface and functionalities for

base defined in Core module.

4.2. Developing the Interlocking Module
Interlocking Module is part of the framework which lets the user dynamically create/load, edit and

save the interlocking schema of an active RailCOMPLETE document, based on Interlocking schema

devised by Bob Janssen [3] for including interlocking specifications into the RailML format. This module

will further act as a base for advance features for Interlocking management, which will be discussed

in future work section of Chapter 6. The Interlocking module is implemented using Microsoft .Net

framework over AutoCAD.net API. User Interface is written in XAML using Windows Presentation

Framework (WPF) and for code behind C-Sharp(C#) is used.

Interlocking Module is embedded in RailCOMPLETE solution as standalone plugin, which can be used

on demand through runtime commands and can be loaded along other core modules in AutoCAD. It

is using RCTransaction and Core Module from RailCOMPLETE to get Loaded into AutoCAD for saving

and retrieving Interlocking file from an active RailCOMPLETE document. In following sections of this

chapter, software development of Interlocking module prototype is discussed.

4.3. Interlocking Elements and XMLSerialziation
The infrastructure layout is modeled using a CAD program, and can be exchanged through the RailML

format. An extension of RailML for describing tabular interlocking specifications is described in the

paper Efficient formalization of railway interlocking data in RailML. An (incomplete) example of the

interlocking format is shown in Figure 17.

Interlocking Module is based on Serialization of Interlocking schema of the tabular data used in

Railway, based on Bon Janssen work [6]. To utilize his schema, we used XMLSerialziation classes from

.Net framework. We converted XML file to XSD schema using Microsoft XML Schema Definition

(XSD.exe) tool [17]. Later, using the same tool, XSD schema is used to generate .Net Classes as shown

in following figure.

36

 1 <?xml version="1.0"?>
2 <interlocking xmlns:xsd="http://www.w3.org/2001/XMLSchema"
3 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
4 <signals>
5 <signal ref="11005">
6 <aspectSpeedDependencies>
7 <aspectSpeedDependency aspect="Hs20" vApproach="40" vPass="0" />
8 <aspectSpeedDependency aspect="Hs21" vApproach="-" vPass="60">
9 <targetRef ref="11055" />
10 </aspectSpeedDependency>
11 <aspectSpeedDependency aspect="Hs22" vApproach="-" vPass="270">
12 <targetRef ref="11015" />
13 </aspectSpeedDependency>
14 </aspectSpeedDependencies>
15 </signal>
16 <signal ref="11055">
17 <aspectSpeedDependencies>
18 <aspectSpeedDependency aspect="Hs20" vApproach="40" vPass="0" />
19 <aspectSpeedDependency aspect="Hs21" vApproach="-" vPass="60">
20 <targetRef ref="11075" />
21 </aspectSpeedDependency>
22 <aspectSpeedDependency aspect="-" vApproach="-" vPass="-" />
23 </aspectSpeedDependencies>
24 </signal>
25 </signals>
26 <routes>
27 <route id="1">
28 <start>
29 <signalRef ref="pro.Routes.Route.Start.SignalRef.Ref" />
30 </start>
31 <target>
32 <signalRef ref="Target.SingalRef" />
33 </target>
34 <elements>
35 <switchRef>
36 <switch ref="Ref" course="Left" />
37 </switchRef>
38 <levelcrossingRef>
39 <levelcrossing ref="Ref" beam="Beam" />
40 <levelcrossing ref="Ref" beam="Beam" />
41 <levelcrossing ref="Ref" beam="Beam" />
42 </levelcrossingRef>
43 <trainDetectorRef>
44 <trackCircuitBorder ref="Ref" />
45 <trackCircuitBorder ref="Ref" />
46 <trackCircuitBorder ref="Ref" />
47 </trainDetectorRef>
48 </elements>
49 <flankElements>Flank</flankElements>
50 <routePriority rank="1" />
51 </route>
52 </routes>
53</interlocking>

Figure 20 Interlocking XML Schema

37

This Interlocking Schema object contains reference for all object types we need for this schema. We

take/generate this object based on user input and provide an interactive editor in RailCOMPLETE for

Interlocking.

4.4. Prototypes
In following section, we will discuss the different prototypes we implemented during this research

period

4.4.1. Version 1.0

Prior to first prototype, we researched for possible representations of Interlocking data and compared

it with original interlocking tables which are usually used in railway domain. Usually with some nominal

changes, most elements are common in different railway system. railML framework provides

functionality for interoperability between railway centric applications, so specifications from Bob

Janssen [3] help us conceiving a standardized format for Interlocking schema.

With thorough discussion on the layout of those tables with my supervisors and Clause Feyling from

RailCOMPLETE, we proposed to use the railML specification for interlocking. Since there is no complete

standardized interlocking domain model, so each railway administration is likely to have their own

additions and customizations to the railML model. We are using the elements intended within

Norwegian rail since RailCOMPLETE is currently supporting only Norwegian standards of track layouts.

Figure 21 Prototype Version 1.0 Serializing XML Schema

38

In this version, we converted the XML schema proposed in railML to .net based class structure. We

tested the XMLSerialziation and deserialization to access the data stored in classes from object to xml

and xml to objects.

Figure 22 Prototype Version 1.0 Deserializing of schema

Following table provides overview of functionality achieved in this prototype.

Legend Information

Version 1.0

Date 08/04/2016

User  Developer of Module

 RailCOMPLETE Developers

 Bjørnar Steinnes Luteberget

Functionalities  Defining interlocking schema in XML

 writing class representation of that data in C#

 Converting XML to C# object

 Converting C# object to XML file

 Writing and editing file on a specific location

Technical  Microsoft .Net

 C#

 XML Serialization classes

 WinForms

This prototype help us to understand the schematic specifications much better from implementation

point of view. Our primary objective during this phase was to understand the problem complexity and

39

to define and agree on schema for Interlockings. This prototype is developed in .Net WinForms and

.Net Serialization classes are used to create XML to/fro Object Classes.

4.4.2. Version 2.0

In version 1.0 we used XML specifications we proposed for interlocking in object-oriented classes.

Schemas generated from Interlocking tables can be of varying length and nested elements, so we

cannot present a static interface for different schemas. For making it editable, a dynamically populated

user interface with appropriate controls is necessary. Another key aspect of this prototype is

development in Windows Presentation Foundation Framework (WPF), since RailCOMPLETE is making

the development heavily in WPF, to make our final module integrable and ready for future research /

development, we used WPF. WPF gives us the flexibility to design interfaces completely detached

from business logic or backend functionality.

In Version 2.0, we designed the UI and created binding for XML schema with WPF tree view. User can

load the XML schema from an already created xml file, edit it and save it in the file. Results can be

observed immediately in adjacent section of the prototype

Figure 23 Prototype Version 2.0

We can solve the problem of dynamic control loading by Model-View-ViewModel (MVVM) in WPF,

where model refers either to a domain model or to the data access layer representation, view

constitutes for layout or user interface and view model is the abstraction or binding element for

view and model.

40

Implemented functionalities in version Version 2.0 are presented below.

Legend Information

Version 2.0

Date 20/05/2016

User  Developer of Module

 RailCOMPLETE Developers

 Claus Feyling

 Bjørnar Steinnes Luteberget

 Christian Johansen

Functionalities  Binding XML representation with Input/output controls

 Loading data from XML schema

 Saving input in XML Schema

Technical  Microsoft .Net

 C#

 XML Serialization classes

 Windows Representation Foundation (WPF)

4.4.3. Version 3.0

In Version 3.0 Interface is revamped and file loading/unloading process is rewritten per our meeting

with RailCOMPLETE. Aspect dependencies and References for dependencies were discussed and a

new requirement for creating file from scratch was captured. This version can serve as a stand-alone

tool to edit any XML based schema for Interlocking as well

Below given screenshot of Interlocking Module is with redesigned interface and input controls.

Figure 24 Prototype Version 3.0

41

Following tables shows information about functionalities implemented in this prototype.

Legend Information

Version 3.0

Date 26/08/2016

User  Developer of Module

 RailCOMPLETE Developers

 Claus Feyling (As Interlocking Engineer)

 Bjørnar Steinnes Luteberget

 Christian Johansen

Functionalities  Redefining XML Schema

 Editing the value and presenting changes in file

 Saving files

 Thematic changes for RailCOMPLETE design consistency

Implementation  Microsoft .Net

 C#

 XML Serialization classes

 Windows Representation Foundation (WPF)

4.4.4. Version 4.0

In Version 4.0 Interlocking module from Version 3.0 is integrated with RailCOMPLETE and successfully

loaded and used in AutoCAD. This version can be installed along with RailCOMPLETE software and

based on needs can be loaded/unloaded from active plugins directory. In order to access the

functionalities, we are using the same pattern which is being established in RailCOMPLETE, as of using

command bar. On submitting “SHAHZAD-INTERLOCKING-EDITOR”, our module is loaded and presents

schema definition and modification tool.

For this demonstration, we have produced a file within the AutoCAD plugin Directory for Interlocking

schema, using the XML serializers.

Following is the overview of functionalities in Version 4.0.

Legend Information

Version 4.0

Date 06/09/2016

User  Developer of Module

 RailCOMPLETE Developers (As developers and Layout engineers)

 Claus Feyling (As Interlocking Engineer)

 Bjørnar Steinnes Luteberget

 Christian Johansen

Functionalities  Integration of Interlocking module in RailCOMPLETE

 Editing XML structure based on input

 Loading module from command AutoCAD command prompt

 Loading/Unloading Interlocking module from Module window

Implementation  Microsoft .Net

 C#

42

 XML Serialization classes

 Windows Representation Foundation (WPF)

 AutoCAD 2016

 RailCOMPLETE

 AutoCAD.Net

Following screenshots demonstrates the use case of creating interlocking for a new route document.

RailCOMPLETE is providing support tools in designing a track for different rules and regulation by

different rail administrations (JBV and Sporveien).

Figure 25 RailCOMPLETE new project administration options

We can click on New RailCOMPLETE document and create one, in this example according to JBV

standards and press OK. This will open a New RailCOMPLETE document.

Figure 26: Creating New RailCOMPLETE Project

43

Interlocking module can be loaded from command line as well, as heavily used practice throughout

in RailCOMPLETE. Here we are using load on user request and from command prompt parameters of

the LOADCTRL defined by AutoCAD framework.

Figure 27 Using command to load Interlocking Module

When a user try to provoke Interlocking module, we make sure that there is an active RailCOMPLETE

document opened/created for which we need to make interlocking schema. Module can only be

loaded in an active RailCOMPLETE document or otherwise it will display error that this is not a

RailCOMPLETE document as shown in following figure.

Figure 28 Loading Interlocking Module without a RailCOMPLETE document.

Interlocking can be loaded/unloaded based on preferences and can act as a hot pluggable Module for

RailCOMPLETE. Program may ask for permission to load executable binary, which we can confirm to

load. This specific dialogue box may appear if binaries are modified and not loaded from AutoCAD

after modifications.

Figure 29 Loading Unsigned modules

Following screenshot displays all the available module for RailCOMPLETE. Interlocking Module uses

the same module structure which is being used in RAILCOMPLETE. Users are already familiar with this

approach so loading/unloading our module will be effortless for users.

44

Figure 30 Using Module management to load Interlocking pluging

One of the worth noting point here is to not require from user to load modules manually each time

they run AutoCAD, so our module must be ready to use and should be in a seamless position. For

manually loading .Net assembly, a user needs to use NETLOAD command at the command prompt or

within AutoLISP file. However, for auto-loading of modules, there are wide variance of ways how to

enable automatic module loading mechanism like acad.lsp, acad.ads acad.rx etc but most sustainable

and neat way to do this is demand-loading mechanism [18]. Demand-loading mechanism enable auto-

load of Microsoft .Net framework programs/ applications.

Implementation of Demand load is easy in recent versions of AutoCAD. We must define a key specific

to the application (Interlocking Module) we want to load at startup. This key must be placed under

Application key for AutoCAD release we are targeting and want to load our application in. Following

parameter needs to be included in application key [19].

i. Description: .Net assembly description (optional) [string]

ii. LOADCTRLS: Control parameter for loading behaviors [DWORD numeric]

a. 1 = Load application on proxy object detection

b. 2 = Load at startup

c. 4 – Load at start of a command

d. 8 – Load at request from user or application

e. 16 – Do not load

f. 32 – Transparently application loading

iii. LOADER: Path to the module [string]

iv. MANAGED: Specifies the file (.Net assembly or ObjectARX) to be loaded.

 [1= .Net Assembly files] [DWORD]

This information key can be stored in either under HKEY_LOCAL_MACHINE or HKEY_CURRENT_USER

registry for Microsoft platform of operating systems. HKEY_LOCAL_MACHINE key writing requires

appropriate privileges, since this key is at machine level and not for current user.

45

We have used both methods, where application is loaded automatically as well as if module is

unloaded, a user can load it through module management or from command prompt. Below is the

code in C# for the management of application key. This code sample is provided from AutoCAD user

manuals [19] and being used in RailCOMPLETE for module loading.

46

Figure 31 .Net application demand-load code [19]

Once Interlocking module is loaded, we can use the command prompt to display Interlocking editor

interface. This interface is being used to display interlocking file elements or for creating the desired

elements of interlocking for a track, view changes and save the file. We are using the interface from

prototype 2.0, since AutoCAD application limits some of the advanced feature to draw UI through

XAML.

Every interface is treated as user interface type, due to which resource dictionaries are hard to load

without workarounds or patches. Since our goal for this project was to attain maximum functionality

in limited time, we dropped the interface developed in Version 3.0 and used the normal and simple

interface without any resource dictionaries or theme packages.

Figure 32: Editing Interlocking schema

47

4.5. User Feedback
In this section, we will go through user feedback we received during the iteration of project.

4.5.1. Version# 1 feedback

4.5.1.1. Supervisor’s feedback

Legend Information

Version 1.0

Place University of Oslo

Date 08/04/2016

Users  Developer of Module

 Bjørnar Steinnes Luteberget

Level Internal (Supervisor’s feedback)

Goal  Assessing technical challenges

 Defining project technical expectancy

 Assessing programming skillset

Implementation:  Defining interlocking schema in XML

 writing class representation of that data in C#

 Converting XML to C# object

 Converting C# object to XML file

 Writing and editing file on a specific location

Remarks  Schema needed to be independent of built-in markup and can be
assessable for better textual representation in GUI

 Classes are generate correctly aligned within the scope of interlocking
schema

4.5.1.2. Supervisor’s feedback

Legend Information

Version 1.1

Place University of Oslo

Date 14/04/2016

Users  Developer of Module

 Bjørnar Steinnes Luteberget

Level Internal (Supervisor’s feedback)

Goal  Schema needed to be independent of built-in markup and can be
assessable for better textual representation in GUI

Implementation:  Classes are data bounded with WPF tree view control and string
representations are handled outside of core interlocking classes,
independent of making changes in XML schema

Remarks  Goal achieved

48

4.5.1.3. RailCOMPLETE Developer’s feedback

Legend Information

Version 1.1

Place University of Oslo

Date 15/04/2016

Users  RailCOMPLETE Developers

Level External (RailCOMPLETE developer’s feedback)

Implementation:  Defining interlocking schema in XML

 writing class representation of that data in C#

 Converting XML to C# object

 Converting C# object to XML file

 Writing and editing file on a specific location

Remarks  Classes are independent and can be reused in RailCOMPLETE code as a
.dll code library

4.5.2. Version#2 Feedback

4.5.2.1. Supervisor’s feedback

Legend Information

Version 2.0

Date 20/05/2016

User  Developer of Module

 Bjørnar Steinnes Luteberget

 Christian Johansen

Functionalities  Binding XML representation with Input/output controls

 Loading data from XML schema

 Saving input in XML Schema (N/A)

Remarks  GUI controls must be scrollable

 Saving input in XML schema in next iteration

 Output must be more user-friendly

 Get Claus Feyling feedback on Interlocking data

4.5.2.2. Claus Feyling feedback

Legend Information

Version 2.0

Date 24/05/2016

User  Claus Feyling

Functionalities  Binding XML representation with Input/output controls

 Loading data from XML schema

 Saving input in XML Schema (N/A)

Remarks  Files loaded successfully

49

 Train restrictions can be more than one constants in interlocking
schema.

 “Local release area” elements for interlocking can be useful
(Norwegian rail).

4.5.2.3. RailCOMPLETE Developers feedback

Legend Information

Version 2.0

Date 24/05/2016

User  RailCOMPLETE Developers

Functionalities  Binding XML representation with Input/output controls

 Loading data from XML schema

 Saving input in XML Schema (NA)

Remarks  Goal achieved for binding schema with controls

 For later stages, if possible, we can use MVVM approach to bind the
schema on code behind.

4.5.2.4. Supervisor’s feedback

Legend Information

Version 2.1

Date 25/05/2016

User  Developer of Module

 RailCOMPLETE Developers

 Claus Feyling

 Bjørnar Steinnes Luteberget

 Christian Johansen

Functionalities  Saving input in XML Schema

Remarks

 Goal achieved

4.5.3. Version#3 feedback

4.5.3.1. Supervisor’s feedback

Legend Information

Version 3.0

Place University of Oslo

Date 26/08/2016

Users  Christian Johansen

 Bjørnar Steinnes Luteberget

Level Internal (Supervisor’s review)

Implementation:  Multiple constant elements on train movements

 GUI reworked

50

 Logic made generic for any level of xml tree

Remarks  Goal achieved

 After integration, MVVM can be implemented

4.5.3.2. RailCOMPLETE developer’s feedback

Legend Information

Version 3.0

Place University of Oslo

Date 01/09/2016

Users  RailCOMPLETE Developers (additionally as Track Engineers)

 Claus Feyling (As Interlocking Engineer)

Level External (RailCOMPLETE)

Implementation:  Multiple constant elements on train movements

 GUI reworked

 Logic made generic for any level of xml tree

Remarks  Goal achieved

4.5.4. Version#4 feedback

4.5.4.1. Supervisor remarks

Legend Information

Version 4.0

Place University of Oslo

Date 06/09/2016

Users  RailCOMPLETE Developers (additionally As Track Engineers)

 Claus Feyling (As Interlocking Engineer)

Level External (RailCOMPLETE)

Implementation:  Integration with RailCOMPLETE

 GUI changes due to AutoCAD limitation

Remarks  Goal achieved

4.5.4.2. Clause Feyling remarks

Legend Information

Version 4.0

Place University of Oslo

Date 10/09/2016

Users  Claus Feyling (As Interlocking Engineer)

Level External (RailCOMPLETE)

Implementation:  Integration with RailCOMPLETE

 GUI changes due to AutoCAD limitation

Remarks  Goal achieved

 Add/Delete button for tree elements dynamically (extended
functionality)

51

4.5.4.3. RailCOMPLETE Developers remarks

Legend Information

Version 4.0

Place University of Oslo

Date 17/09/2016

Users  RailCOMPLETE Developers (additionally As Track Engineers)

Level External (RailCOMPLETE)

Implementation:  Integration with RailCOMPLETE

 GUI changes due to AutoCAD limitation

Remarks  Goal achieved

4.6. Technologies
As this project was a part of RailCOMPLETE, some of the used technologies were pre-requisite for

implementation, while other framework or technologies are used for supporting the vision of project.

Microsoft .Net 4.6: RailCOMPLETE is being developed in .Net framework, and although using .Net

framework was not requirement but due to compatibility benefits, I choose to carry development in

Microsoft .Net framework.

AutoCAD 2016: AutoCAD is design tool being used in RailCOMPLETE for design Railway routes. I used

AutoCAD API for communicating with AutoCAD model of infrastructure, so I can populate or create

Interlocking file from real data.

I am using AutoCAD.Net API for this project to access module management features to integrate

Interlocking module in AutoCAD environment.

RailCOMPLETE: RailCOMPLETE is an AutoCAD plugin which provide the functionality to draw and

define the railway related drawings, tables, 3D views, reports and railML® files.

RailML: An open xml based data exchange format for railway applications interoperability. [20]

WPF/XAML: UX design of the project is being done in Windows Presentation Foundation which takes

XAML syntax to interpret and draw design components. WPF gives flexibility of controls and their

customization. As RailCOMPLETE will be upgraded to WPF in future, keeping that prospective in mind,

I used WPF for this project.

52

CHAPTER 5

SUMMARY & FUTURE WORK

53

5. Summary and Future Work
In this last chapter, we briefly write about possible future work directions to improve this framework.

Certainly, this project has fair bit of room for improvement in term of extensibility and functionality.

We will close this chapter with a detailed summary of our work in this project.

5.1. Achievement of project objectives
In the beginning of this thesis, we stated preliminary objectives for this project. During the process of

requirement gathering and our interaction with railway engineers, we acquired the understanding of

how these goals stands in term of usability for users and achievable in term of project duration.

Following is the list of objective and description of our progress for the accomplishments of these

objectives.

1. First objective was to present interlocking tabular data in a format which can be created and

modified easily in comparison to tabular sheets. We derived interlocking schema from

specification presented in “Effective formulization of Interlocking data in RailML” [3].

2. Our next goal was to translate this interlocking XML schema in Object oriented code structure so

we can manipulate and perform processing on future usage. We accomplished this task by using

Microsoft .Net framework.

3. Once we created the library (.dll) for interlocking schema in object-oriented classes, we started

designing interface for the representation of these specifications. We first created WinForms

based UI but after discussion with RailCOMPLETE developers, we started designing interface in

Windows Presentation Foundation. Graphical User Interface was the tricky part of the project

since interlocking specifications can vary and so does the does in those specification files. So, we

must create a dynamic interface based on a specific XML structure. We solve this problem by

defining a generic hierarchy of tree-view control and assigning XML nodes programmatically to

tree-view childs. Due to this, we slightly changed the domain model to meet our requirements, as

an interlocking file can have multiple childs nodes under single root for example Interlocking root

can have both Signals and Routes. We introduced Collection Containers as Composite Collection

object to overcome this issue.

4. Next step was to integrate our module with RailCOMPLETE framework. We acquired the code for

framework and studied its architecture. Since RailCOMPLETE is a plugin for AutoCAD itself, we had

to understand AutoCAD.net API as well. We created a global string constant to save Interlocking

specifications created in second step, as discussed earlier.

5.2. Critical Reflections
Through above mentioned stages, based on my struggle I realized that I have invested much time on

interface designing of this project. Since XML specifications for interlockings can differ so we needed

a generic approach to bind user interactive controls with specifications. For solving this issue, I had to

sketch templates for binding, which are serving the purpose but later during my research I found that

If I had used Model-View-ViewModel approach from beginning, it could have saved a deliberate

amount of time for the development of future functionalities, given that learning of MVVM in WPF

takes as much time as the approach I used. As in right now, our controls can get data from XML

structure but in the backend, we are serializing and deserializing all information in one long step. While

MVVM could have provided us a two-way binding which can store data in models and those models

54

are further linked with XML nodes. In this fashion, a very useful feature for dynamically

creating/modifying new nodes of elements in already created interlockings, could have been achieved.

Furthermore, by using this technique we could have saved time for the enhancement of this project

and more user feedback.

One another important aspects of findings throughout this research is, I used IBM Rational Unified

Process methodology for the management of software development and requirement gathering

process. I found that if I had attempted to implement this methodology in its complete form for this

project work, that would have leads this project to further delay. As RUP is very extensive model and

for small teams and projects It might not be beneficial to use if implemented in full scope. During the

analysis phase, based on duration of our project and efforts for requirement gathering, I decided to

only use RUP for the system requirement gathering during our sessions with users and to capture

those requirements in UML diagrams. This has saved us going off-track from our project plan. This is,

however, admittedly, a difficult balance to negotiate in practice for projects and resources at this

scale, but the I do realize that RUP can provide some baselines and directions to students and

researchers in their projects for a systematic approach to solve a problem.

5.3. Summary
In this manuscript for thesis, we tried to describe the work done in partial fulfillment of the

requirement for degree of Masters in Informatics: Programming & Networks. We started this work

with a limited scope of an integrated module for RailCOMPLETE, for the automation of interlocking

tabular data. To achieve this goal, we developed the said module for RailCOMPLETE with basic

functionalities and integrated successfully with already developed RailCOMPLETE plugin for AutoCAD

tool.

In chapter 1 we stated the initial motivation for this project, briefly introduced RailCOMPLETE

framework and scope of functionality for our thesis as well as structure of this essay.

In chapter 2 we give a thorough briefing on railway signals and its development through the history.

Key concepts and elements being used in railway tracks are also discussed with figures where

applicable. Furthermore, Motivation behind this project, problem statement for the need of

Interlocking editor are also discussed in this chapter.

Software project requirements and details of RailCOMPLETE framework are discussed in planning and

analysis chapter. We used IBM RUP [21] framework to illicit user requirement first which followed by

the implementation in later stage of the development. RUP requires that before an application is build,

a through business modelling and requirement gathering must be done. Based on our meetings with

users (RailCOMPLETE employees), we proposed the functionality of project in RUP templates using

UML.

 Later we presented the detail of implementation throughout its several prototype versions and

technologies being used. We also discussed the framework we used for software development.

 Evaluation comments of this tool are captured and presented in chapter 4, as we demonstrated the

tool after each iteration of prototype. The evaluation of Interlocking editor showed good acceptance

results as by using a built-in Interlocking editor, management of different key elements from

interlocking schema, users could achieve the desired results with much more ease than the traditional

55

method of recording in tabular sheets. However since, advance features of the project were not

implemented due to time constraints and their level of complexity, full potential of project cannot be

gauged. We pointed toward those extensions of functionalities in following section. We encouraged

forthcoming, research students interested in railways information systems and graph search to

improve this project. Outcome can be refined by conducting further studies on different railways

systems and by including more user types and their requirements in this project. However, since

Interlocking is a sensitive and essential part of railway operations, safety must not be neglected as

advance features includes prediction of rail movements based on user input.

5.4. Future Work
As discussed in chapter 1, there are some advance aspects of functionality where are a desirable

extension to current program including but not limited to visualization of interlocking and synthesis

of interlocking tables from track layout. In this section these aspects are briefly discussed.

5.4.1. Interlocking Visualization

AutoCAD design file contains many different symbols and a RailCOMPLETE document is a complex

drawing of whole rail track. While working in Interlocking Editor, a highlighted route when selected an

element in interlocking editor, can help user in readability of the design.

Furthermore, visualization of train movements as per interlocking data, where a user can manipulate

information regarding interlocking element and a simulator simulates this movement on said track

can further enhance the safety of the design and help user in observe changes in real time.

5.4.2. Synthesis of Interlocking tables

Much of the contents of the tabular interlocking is easily derived by looking at the station layout. For

example, overlapping routes must be listed in the interlocking table, and this information can be

automatically deduced by a program checking overlaps between all combinations of routes.

A processing of rules related to a specific rail system, and based on those constraints processing track

diagram to list overlapping routes, suggesting elements on track, violations of rules and automation

of consistency in user input can enhance the usability of the program. Graph search and logic encoding

may be the techniques that can be used for this functionality.

5.4.3. Domain Model extensions

In one of the session with RailCOMPLETE engineers, Clause Feyling(C.E.O) mentioned Local release

area elements being used widely in Norway than other railways. This opens the possibility to further

enhance the domain model presented in this project based on railML specifications, to meet different

railway system’s specification. Since implementation for conversion of interlocking schema and

classes is generic, any extension and further work on domain model will increase the usability of the

project and help make it regulation specific for special needs.

56

Bibliography

[1] "AutoCAD," AutoDesk, [Online]. Available:

http://www.autodesk.com/products/autocad/overview. [Accessed 8 11 2016].

[2] "Office Primary Interop Assemblies," [Online]. Available: https://msdn.microsoft.com/en-

us/library/15s06t57.aspx. [Accessed 21 September 2016].

[3] M. B. E. Q. B. J. and R. M. G. , "Efficient formalization of railway interlocking data in RailML,"

2014.

[4] "Railway Operation and Control “by Joern Pachl".

[5] A. Lawrence, Verification of Railway Interlockings in Scade, Swansea, Wales: Swansea

University, 2011.

[6] H. Schofield, "How Napoleon's semaphore telegraph changed the world," [Online]. Available:

http://www.bbc.com/news/magazine-22909590. [Accessed 19 July 2016].

[7] "Railway signal," [Online]. Available: https://en.wikipedia.org/wiki/Railway_signal. [Accessed

18 July 2016].

[8] "Railway Semaphore Signal," Wikipedia, [Online]. Available:

https://en.wikipedia.org/wiki/Railway_semaphore_signal. [Accessed 22 September 2016].

[9] "ROUTE SIGNALLING," [Online]. Available: http://www.railway-technical.com/sigtxt5.shtml.

[Accessed 19 July 2016].

[10] "OVERHAULING AND TESTING OF INTERLOCKING," Indian Railways, [Online]. Available:

http://www.indianrailways.gov.in/railwayboard/uploads/codesmanual/SEM-

II/SignalEngineering%20ManualIICh13_data.htm. [Accessed 22 September 2016].

[11] M. Marks, "provision of Overlaps, Flank Protection and Trapping," Railway Group Standard,

vol. GK/RT0064, no. One, pp. 9-10, 2000.

[12] J. Pachl, "Railway Knowledge from Jörn Pachl," 16 9 2016. [Online]. Available:

http://www.joernpachl.de/German_principles.htm. [Accessed 16 9 2016].

[13] R. Software, "Rational Unified Process, Best Practices for Software Development Teams,"

Rational Software , 2001.

[14] P. Kruchten, "A Rational Development Process," vol. 9, no. 7, pp. 11-16, 1996.

[15] P. Christensson, ""RUP Definition." TechTerms," Sharpened Productions, 2006, [Online].

Available: http://techterms.com/definition/rup. [Accessed Web. 26 September 2016].

57

[16] "Rational Software Architect Designer," IBM, [Online]. Available: http://www-

03.ibm.com/software/products/en/ratsadesigner. [Accessed 17 10 2016].

[17] Microsoft, "XML Schema Definition Tool (Xsd.exe)," Microsoft Corporation, [Online]. Available:

https://msdn.microsoft.com/en-us/library/x6c1kb0s(v=vs.110).aspx. [Accessed 7 March 2016].

[18] "Automatic loading of .NET modules," Through the Interface, [Online]. Available:

http://through-the-

interface.typepad.com/through_the_interface/2006/09/automatic_loadi.html. [Accessed 17

October 2016].

[19] "AutoCAD Help," Autodesk, [Online]. Available:

http://help.autodesk.com/view/ACD/2016/ENU/?guid=GUID-70D60274-57E0-4B22-8D0C-

3C7F212A7CAF. [Accessed 17 October 2016].

[20] "RailML Concept," RailML.org, [Online]. Available:

https://www.railml.org/en/introduction/concept.html. [Accessed 14 October 2016].

[21] "Rational Unified Process," Wikipedia, [Online]. Available:

https://en.wikipedia.org/wiki/Rational_Unified_Process. [Accessed 2 10 2016].

58

Appendices

59

Appendix A

Installation for Windows 10

This section contains the instruction to setup a Microsoft Windows 10 based device for the installation

of Microsoft Visual Studio, AutoCAD, AutoCAD.Net API packages through Package manager console.

This installation also works for Windows 7 and Windows 8.x

A.1 Microsoft Visual Studio 2015
Microsoft Visual Studio is an Integrated Development Environment (IDE) by Microsoft which enables

developers to write code efficiently without losing the context. It helps to utilize different frameworks

easily, build, debug and create different project extensions based on preferences of the project on a

variety of platforms including but not limited to Windows, Linux, Mac etc.

A.1.1 Installation
a) Gain Administrator Access on machine

b) Download (Buy) the appropriate installation version per your system specifications, from

https://www.visualstudio.com

c) Start the installation by running Setup.exe in administrative mode, which is usually located in

the root directory of file where program was downloaded and follow the on-screen

instructions.

d) Finish the software installation and restart computer to start using MS Visual Studio.

A.2 AutoCAD 2016

A.2.1 Installation
a) Download (Purchase) the product version specific to your system specification from

https://www.autodesk.com/

b) Launch the Autodesk AutoCAD product installer by .exe or .dmg file you have downloaded

c) Select the desire language on top-right corner and press install.

d) Follow the instruction and Choose Autodesk AutoCAD 2016 from list of products.

e) Finish installation.

A.3 Nuget Package for AutoCAD 21.02

A.3.1 Installation
1. To install AutoCAD.Net API, run the following command in Package Manager Console or search

in Nuget Packet Manager for AutoCAD.Net

 PM> Install-Package AutoCAD.NET

https://www.visualstudio.com/
https://www.autodesk.com/

60

Appendix B

CODE

Microsoft .Net C# and XAML code for Interlocking Object representation of

railML interlocking schema and RailCOMPLETE Module

B.1 Components
This project consists of three main components to accomplish the goal specified in this thesis. We are

getting the RailCOMPLETE document from AutoCAD using AutoCAD.net API and then

serializing/deserializing interlocking data based on actions, in XML or C# object for further processing.

GUI components are specified in XAML syntax using WPF framework using custom templates, while

its processing is implemented in code behind file using C#. Interlocking schema is translated in

Interlocking.cs file in multiple nested classes using XML tags, so that the correctness of data must meet

the railML schema standards.

Code written in this project is given in following section.

61

B.1.1 Editor.cs (C#)
Class responsible for management of RailCOMPLETE document with our module.

62

63

B.1.2 MainWindow.xaml (XAML)

64

65

66

67

68

B.1.3 MainWindow.cs (C#)

69

70

71

72

B.1.4 Interlocking Classes (C#)

73

74

75

76

B.1.5 BuildEvents

77

B.1.6 References

