UiO ¢ Department of Informatlcs
University of Oslo
Railway Interlocking Design Support Tools
AutoCAD Plugin based approach
Master Thesis
Shahzad Ali Khan
Autumn 2016

RAILWAY INTERLOCKING DESIGN SUPPORT
TOOLS

Shahzad Ali Khan

Master’s Thesis

Informatics: Programming & Networks
Department of Informatics, University of Oslo
Norway

Title:

Railway Interlocking Design Support Tools

AutoCAD Plugin based approach

Author:

Shahzad Ali Khan

Supervisor:

Primary Supervisor: Christian Johansen (University of Oslo, Norway)
Bj@rnar Steinnes Luteberget (University of Oslo, Norway)
RailCOMPLETE AS (http://www.railcomplete.no)

Oslo, November 2016

© Shahzad Ali Khan
2016

Railway Interlocking Design Support Tools

AutoCAD Plugin based approach

http://www.duo.uio.no

Printed: Reprosentralen, Universitetet i Oslo

http://www.duo.uio.no/

Dedication

To my Parents, without their love and support | couldn’t have been able to even write these lines.
To my siblings and Tooba.

Acknowledgement

Firstly, | am thankful to Almighty Allah, Who helps me in every single step and stage of my life, bestows
me with His blessings without considering my negligence. | also offer praise to the Holy Prophet

Muhammad - (Peace Be Upon Him), who is my source of inspiration and a blessing for mankind.

| am in forever debt of my parents for all their love and support, who provided me means to have best
education possible. | cannot thank them in limited words for their effortless contributions to my
wellbeing, their sacrifices and support for me.

| want to express my heartiest gratitude to my supervisors Christian Johansen and Bjgrnar Steinnes
Luteberget for their valuable guidance and encouragement in all phases of this research work. Their
humbleness has inspired me during stressful days of this project. | am also thankful to the Department
of Informatics, University of Oslo (UIO) for offering me opportunity to study in this oldest, largest and
leading university of Norway. UIO provided me a peaceful environment and always shown a helpful
attitude in my educational activities.

| would also like to thank Claus Feyling for his assistance, help and dedication to make this research
fruitful and | am grateful of his IT team at RailCOMPLETE for their input in testing and integration of
my project.

Last but not the least, | thank everyone who has given me their valuable time and helped me during
my journey of this degree. May Allah bless all. Amen

Vi

Abstract

Railways are considered safest of all in land transport system, yet this safety is due to a complex
system of interlocking which ensures the safe train movements on track. Data related to interlockings
for a railway track is stored manually in (long) tabular forms, which is a time consuming and resource
intensive work, since in most cases this approach results in redundant records, data correctness issues
and expensive maintenance of interlocking related documents.

With the supplication of computer aided assistance, Engineers are now able to overcome this
problem. But due to variance of practices in different railway systems, there is a lack of generic
approach in this domain for easy manipulation of Interlocking records. We propose a software
implementation of interlocking schema, based on interoperable open XML based data exchange
format for railway applications, called railML. Our implementation is directed toward Norwegian
railway practices and provides functionality to dynamically create/modify and load interlocking
schema from a RailCOMPLETE document, while this XML schema is derived from interlocking
specifications presented by Bob Janssen [Bosschaart, Mark, et al. "Efficient formalization of railway
interlocking data in RailML." Information Systems 49 (2015): 126-141.]

Incorporating a user-friendly editor for interlocking in this prototype performed very promising by
limiting excessive work hours and resources being spent without a computer-aided tool and relates
improvement in reducing errors in interlocking data. Based on our interaction with railway engineers
we present future direction for forthcoming research in this specific domain as more generalized
improvements in domain model can make this system reach to wider user base and in turn lead to an
easy to understand and configure interlocking design editor for majority of railway systems.

Vil

Table of Contents

D<o [ot o] H TS OO P PRSP PPOPRRRPRRRT v
FA Yol g Lo 1T 1= o F =T o Y=Y o PSPPI VI
Y o1 o - [ot PPV TTOP PR Vil
T Te =) PO P PO PUPOPSRPR Xl
T (8L TP PPPPPPPPPPPPPPRt Xl
N) o oo [¥ Tt d T o PSSP PRSP PPUPROPRRRT 2
1.1. Initial Motivation and Research QUESTIONccccuereiriiiiiieieenierecrc e 2
0 YU 1 o 171 I SR 3
O T = 11 [0 1Y o 1 I PP 3
L4, PrOJECT STTUCTUIE ...uviiiiiie ettt ettt e ettt e e e s s s st b e e e e e e s s abbeteeeeesssssssbeaaaeeesssnnnnnnes 4
O T o oY1=t 0] o1 <Y 4 V7 YR 5
1.6. Organization Of The ThESiS ... et e e e e e e e e e eareeas 5

2. Background & MOtIVAtIONceiieiiie ettt ettt e e et e e e et a e e e s abb e e e e atae e e e nraeeeeeareeeean 7
D2 N = 7= ol 14 o YU o T ISP 7
2.1.1. R T AT LYYy =T o USRS 7
2.1.2. Ta] =Y o Yol 4] o = R 9
2.1.3. ROUTE LOCKING .eeiieeeiiie ettt e e st e e e et e e s aae e e e e nba e e e eabaee e enreeas 11
2.1.4. FIAaNK PrOt@CTION . .eeeiieiiee ettt ettt st sttt e saeesaee e 11
2.1.5. CrOSSIOCK ...ttt ettt sttt e es 12
2.1.6. INtermMediate POINTScocuiiiieeeeee et 13
2.1.7. Tal =Yg ool Nl g = T={ g T- | SRS 14
2.1.8. Y 0[] Y F=d = | LRSSt 14
2.1.9. Internal Logic of Interlocking SYSTEMScocccuiiieeiiiieee e 15

2.2, IMOBIVALION...ceiiieee e s e s e s 18
2.2.1. Problems and challenges in current design ProCess........cccveecuveeeeicieeeeeciieeeeeriee e 18

3. Planning & ANAIYSIS ...uciiiiiiiei ittt e e e e e et e e e et re e e e ebae e e e abreeeeaareeeennraeas 20
3.1. Software Development MethOdOIOZYcccuveiiiiiiiiiiiiie e e 20
3.1.1. IBM Rational Unified Process (RUP)........uueieeiiiiie ettt 20

3.2, Conclusions from USING RUPueiiiiiiiiieecieee ettt ettt e ettt e e ett e e e e arae e e eeataeeeenaaeaeeas 22
3.3, SOftWare REQUIFEMENTSccuiiiiieieee e cceeee ettt ettt e e ettt e e e ette e e e e eatbeeeesaseeeeeeasaeeesansseeesansreeanas 23
3.3.1 SEOCKNOIARES. ...ttt st r e s s e 23
3.3.2. L ST 0T T YA Vol o] RN 23
3.3.3. Y=ToleT Ve F=T VA Yot o] U UUPRRRNE 24

N Y | Yot (o] gl €T -1 I I SF TR 24

K T U LN - [1Y e Yo =] 1o - USRI 25
3.6, Brief USE CaS@S . ciuiiiuiiiiieieeitestte ettt ettt ettt st et e b ettt st st b e b ne e st e et eenneen 26
3.6.1. DESIZN INTEIIOCKING. .. iiiiiiiieeeeee e e e e e e e e e e e abe e e e e arae e e eeareeas 26
3.6.2. VisUGHZE INTEIIOCKING ..vveieieiieee e e e e et e e e aaaeeeean 26
3.6.3. Synthesis of INterlocking tablescvevi i 26
3.7, FUIlY DreSSeA USE CaSES ..cciicuriieiiiiiieiiieiiieeecieeesssiteeessssseeessssseeesssssseessssssesesssssesessssseessssssenesns 26
3.7.1. Design Interlocking (for already created track 1ayout)ccccceeecieeveeccie s 26
3.7.2. Design Interlocking (for an empty track [ayout)ccoccveeeieiiiei i, 27
3.7.3. VisUNZE INTEIIOCKING ...vveieieieie et e e e s bae e e e aaaeeaean 28
3.7.4. Synthesis Of INTEIIOCKINGvvii ittt e e e eaees 29
3.8, DOMAIN MOGEI ...ttt ettt st e s e e bt e e st e e sbe e e s bt e sbeesnnteesbeeenes 31
R R Oe] 00T o ToT o [T o | A DI F-T=4 -1 o F OO PP PPP PP 32
3.10. Class Diagram (INtErlOCKING) ...ccuvveeeeiiieee ettt e e aree e e areeas 33
[aaY o1 [T =T} - 14 o o NP PSP 35
4.1. Overview of RailCOMPLETE frameWork........cccueeuiriiieiieieeneenee et 35
4.2. Developing the Interlocking Modulecccviiiiiiiiiice e 35
4.3. Interlocking Elements and XMLSerialziation.........cccceeeeeiiieiiiiiiie e 35
N o (o] (o] 1Y/ o<1 TP PPPPPPPPPPTPPPPPPRt 37
4.4.1. VEISION 1.0 .t s e e s e e e 37
4.4.2. VEISION 2.0 ..ttt e s s e e e 39
4.4.3. VEISION 3.0 ettt e e s s e e 40
4.4.4. VEISION 4.0 ..ciiiiiiiiiiiiiiinitcte e 41
4.5, USEr FEEADACK. .. .i ittt e e e 47
4.5.1. Version# 1 feedbDaCK.........oouiiiiiieee e 47
45.2. Version#2 FEEADACKc.cuii e 48
4.5.3. Version#3 feedback.........cooi i 49
4.5.4. Version#4 feedback..........oo i 50
T =Tl Vo Vo] [0} 4 =TSSR 51
SUMMArY AN FULUIE WOTK...iiiiiiiie ettt ettt itee e et e e e ette e e s sbtee e e sbtaeeesabaeeessnneaeeesanes 53
5.1. Achievement of project 0bJeCtIVESciiviiii i 53
5.2, Critical REFIECLIONS ...eeiieeiieeee ettt sttt ettt be e st eee s 53
Lo T 01 4] o - o VSRR 54
5.4, FULUIE WOTK oottt st sttt saee s e e e s 55

5.4.1. Interlocking VisUaliZationc..ueiicciiiiiciee e e 55

5.4.2. Synthesis of INterlocking tablesccueviiiiiiii i 55
5.4.3. Domain Model @XEENSIONSccueiiiiiiiiiieiie ettt 55

23] o] Lo =T o] o1V 56
F YT 1< o Yo [SRS RUPO: 59
A.1 Microsoft Visual STUAIO 2005......ooiiiiiiieiiie ettt ettt e s e e s e s b e sne e e sne e e sanes 59
AL INSTAIAEION 1.ttt ettt et st e s be e e s b e e he et e e s beeesareenn 59

F AN A AN T (o] 672N D 1 0 1 N I PPN 59
A2, T INSTAIATION 1.ttt ettt ettt b e s he e sae e st et ebeens 59
A.3 Nuget Package fOr AULOCAD 21.02ooi ittt ettt e e ettt e e e et e e e e ebte e e e ebteeeeebaeeesssaneaeannes 59
FN B A (015 =1 - o o OO P U UPOP PO PP PRSP 59
FAY oY1= oo [Pt = PO PPUPPPO: 60
2 20 R @o] g T e T =T o | K- PP PPPPPPPPPPTRt 60
5 0 o [oY ot (@ - USRS 61
B.1.2 MainWindow.Xaml (XAML)ccocuieie ottt ettt e e ette e e e etee e e e eabee e s esabaee s eenbaeaeenrenas 63
B.1.3 MaiNWINAOW.CS (CH) . .vveeiiiiieeceiiee ettt e e tee e e e eatee e e e et ee e e e enbae e e eeabaee e esabaeeseenraeeeennsenas 68
B.1.4 INterlocking Classes (CH) ...cuuieiieeiiieeeireeeiteeeitteeecteeeste e s teeetaeesveeetaeesaseesabaeesaseesaseeeasseesnseeesases 72
B.1.5 BUIAEVENTS ..eeeieeiee ettt ettt st st et b e b s s e e e neeneesreesnee e 76
B.1.6 REFEIEINCES .ttt et ettt sttt b e bt e s b e e e s an e et e r e e s reenree e 77

Index:

.Net framework - 35

A

AutoCAD - 3
AutoCAD.net API - 35

G

Geographical Interlocking - 17
German interlocking System - 13
German locking practices - 17
German locking tables style - 17

B

Block system - 8
British Interlocking practices - 13

H

High transmission glass colors - 9

C

CAD -2

Cascade locking - 15

CBI- 10

Circuit block signalling - 8

Class Diagram - 33

Component Diagram - 32

Computer based interlocking
CBI- 10

Crosslock - 12

IBM RUP - 20

interlocking - 11
Interlocking - 2, 8, 9
Interlocking engineers - 23
Interlocking signals - 14
Intermediate points - 13

Locomotive drivers - 24
Locomotives - 7

D

Disc and crossbar signals - 7
Domain Model - 31

Dwarf signals - 14

DWG format - 4

E

Electric point machines - 8
Electric track circuits - 8
European rail systems - 17

M

Mechanical levers - 9
Mechanical relays - 8

Microsoft XML Schema Definition - 35

Microsoft.Office.Interop - 4
Model-View-View Model - 35
Morse code - 8

N

North American railways - 14

F

Fixed Signals - 7
Flank protection - 9
Flank Protection - 11

R

RailComplete - Il
RailCOMPLETE - 2, 20
RailML- 4, 18

Railway track engineers - 24

Xl

Railways Operation and Controls - 7

Railways points - 8

Raitional Unified Process - 20
RCTransaction - 35

Rolling stock - 7

Route locking - 9

Route Locking - 11

Route settings - 9
Route-related locking - 16
RUP - 20

T

Tabular interlocking specification - 2, 4
Tabular interlocking system - 15

Track clear detection - 9

Train detectors - 2

Transition phases - 22

S

Semaphore Signals - 8
Shunt signals - 14

Signal Box - 8

Signaler - 8

Software Requirements - 23

Solid state electronic interlocking systems - 9

SSI-9, 10
Stackholders - 23
Switches - 2

U

Unified Modeling Language - 20
Use case Model - 25

w

Windows Presentation Framework - 4
WPF - 4

X

XMLSerialziation - 35

Wl

Figures:

Figure 1 Interlocking EAItOr MOAUIEcoiiiiiii ettt e et e e e tre e e e ebra e e e e reeeeesanes 3
Figure 2: RAIICOMPLETE SCrEENSNOLeiiiiiieiiiiiiiee ettt ettt et e e e st e e s s bt e e s sbeeeessbeeeessanes 4
Figure 3 Disc & Crossbhar SiZNal........cocciiiiiiiiiii ettt e e e etre e e s et re e e e ebtee e e eentaeeesanes 8
Figure 4 Railway semaphore SigNal [8]ccueii it e e e stre e e e et e e e e e reeeeeeanes 8
FIBUIE 5 INTEITOCKING 1. netiiie ittt e e st e e s ata e e e e abae e e sanseeesstaeeesanseeeesnnsseeenas 10
Figure 6 Control table SAampPle [L10] ...ttt e e e e e sar e e e s eata e e e senbaeeesnanseeaean 11
Figure 7 Remote FIank prote@Ction [4]oo ettt e s te e e et e e s saa e e e ssnta e e e ssanaeeaean 12
Figure 8 Selective Protective POINTS [4] .oeeii ittt e e e e estrre e e e e e e e s sbaaae e e e e e e e ennnnnnes 12
Figure 9 Example of @ CroSSIOCK [4]uviieieiee ettt et e e et e e e eta e e e st e e e s eanaeeaean 13
Figure 10 Home signal limits with intermediate interlocking signals [12]......ccccccvvieiiiieieiiiieee e, 13
Figure 11 Points to be protected by an interlocking Signal [12]......cccccviiiriiiiiiiiiiiieereec e 14
Figure 12 Shunt signals to be cleared for a train route [4]ccccceeeeeciieee e 15
Figure 13 Cascade LOCKING table [4].......eie oottt et eetr e e e sata e e s enra e e e eaneeeeean 16
Figure 14 Route-related Locking table [4] ..ot 17
Figure 15 IBM RUP LIfECYCIE [14] .uveeeieeieie ettt e e e e et e e e e ta e e e eaat e e e seataeeesnsaeeeeannseeaean 22
FIgure 16 USE CASE IMOMEL......cii ittt ettt s e e st e e e e saas e e e sstaeeesansseeesnnnneeaens 25
= U I A 0 To T o T T T 1Y, Lo o 1= RSP 31
Figure 18 CoOmMPONENt DIGgIramcciuiiiiiiiiiiiiieeieieeeeeeeeeeeeeeeeeeeeeeeeeeeeeseeeeeeeseeeseseeeseeeeeeereeeeeeerereereeeeereeeenen 32
=V R @ T DT T-{ - [o o [SRS 33
Figure 20 Interlocking XIML SChEMA.......cii ittt e e s saeae e e ssnbaeeessaneeeaeas 36
Figure 21 Prototype Version 1.0 Serializing XML SChEMaccociiiiiiiiieee e 37
Figure 22 Prototype Version 1.0 Deserializing of schemacccoveiiiiiiiiiciiccee e 38
Figure 23 Prototype VEISION 2.0 ..c.euiiiiieieiiiiiiiiieeee e s eesiiirttee e e s sssiireeeeeessssssssreaeeesssssssssseaseesssssnsnsnns 39
Figure 24 ProtOtype VErsion 3.0uiiiiiiiiiiiiiieeereeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeesesessesseeeeeseeeaeeeseseeesseeeeseseereeenenes 40
Figure 25 RailCOMPLETE new project administration options.......cccccveeeiiiieiiiiiieee e 42
Figure 26: Creating New RailCOMPLETE ProjecCt......ccccuiiiiiiiiieiiiiieeeeciieeescitee s ssire e e ssvre e e ssaereeessnneee s 42
Figure 27 Using command to load Interlocking Module...........cccuvviieciiiiecciiee e 43
Figure 28 Loading Interlocking Module without a RailCOMPLETE document.ccoecveerieennieenineenne 43
Figure 29 Loading UNSiZNed MOAUIESccccuiiiiiiiiiie ettt ettt e s e s e e s aae e e st a e e e ssaaaeeaeas 43
Figure 30 Using Module management to load Interlocking plugingcccoeveeiiiiieeiiieee i 44
Figure 31 .Net application demand-load code [19]cceiiiiiiiiiiiiiiieiree e e 46
Figure 32: Editing Interlocking SChEMA.........vviiiiieie et e e e saaee e 46

XMl

file:///F:/SHAHZAD/Thesis/Essay/Thesis%20main/Thesis%20++/Last/After%20Review%202/For%20Bjorn/Essay_sup.docx%23_Toc468295531

CHAPTER 1

INTRODUCTION

1. Introduction

This thesis is concerned with the research and development for the automation of Interlocking data
in RailCOMPLETE ® software. This project is done in cooperation with RailCOMPLETE AS, a Norwegian
firm developing railway signaling and designing software.

1.1.Initial Motivation and Research Question

Railway is among the safest forms of transport even though trains travel and pass each other at high
speeds and through webs of railway crossings. This is made possible by the interlocking, a relay
electronics or computer system which controls signals, turnouts, detectors, and other equipment, to
ensure that only safe movements will be allowed.

The design of a train station includes the creation of:

e A station infrastructure layout, consisting of tracks, switches and signaling components (such
as signals, train detectors, derailers and balises)

e A tabular interlocking specification, giving restrictions and conditions on the use of the train
station by referring to the elements of the infrastructure layout

The research in this thesis aims to address the following research question:
Q1 : How can we improve the efficiency of interlocking design?

Hence, improvement in efficiency of interlocking design formulates the goal of this thesis, which is to
create an efficient editor for the tabular interlocking specification in user-friendly form of schema, if
the infrastructure layout is already available and editable. Currently, engineers experience a lack of
specialized software tools to support the design process. The editor is meant to help the engineers by
providing a software tool integrated with the CAD tool where the infrastructure layout is designed.
Even more, much of the manual process of generating tabular interlocking specifications can be also
automated. This would allow the engineer to work much faster with the editor, as many times, upon
changes from the engineer, many other small changes would be done automatically by the editor to
ensure consistency of the whole tables. Automation aspect of this tool could be investigated in future
work.

We address Q1 by researching about current interlocking design process to identify problems.
Difference of practices and equipment makes the variance in whole design, and for making our
research and tool, as generic as scope of this project allows, railML specifications for interlockings are
used. This software , Figure 1, loads Interlocking specifications from a RailCOMPLETE document and
populate controls for editing the schema dynamically. Railway engineers makes modifications or
generate new schema per their needs and load backs the changes into RailCOMPLETE main document
for track or route.

{ Load XML Save XML _
4 Interlocking -\:.?‘xml \:ers.isn:"T.O” Er]coding:"utf-‘lé"?:)
4 Signal <|nte.rlock|ng xminssi="http:/fwww.w3.0rg/2001/XMLSchema-instance™ xminsixsd="http://www.w3.0rg/2|
4 Ref 11005 (SQﬁEIS‘» :
- <signal ref="11005">
4 AspectSpeedDependencies <aspectSpeedDependencies>
AspectSpeedDependency: <aspectSpeedDependency aspect="Hs20" vApproach="40" vPass="0" />
Aspect| noop [VAporeach:| ap VPass(o <aspectSpeedDependency aspect="Hs21" vApproach="-" vPass="60">
- <targetRef ref="11035" />
AspectSpeadDependeancy: «</aspectSpeedDependency>
“ Aspect:| Hg21 |VApproach:| - |VPass: g0 <aspectSpeedDependency aspect="Hs22" vApproach="-" vPass="270">
<targetRef ref="11015" />
Ref: 11055 <faspectSpeedDependency>
</aspectipeedDependencies>
AspectSpesdDependeancy: </signal>
“ Aspecti| Heo2 |VApproach:| - |VPass:| 270 <signal ref="11055">
<aspectSpeedDependencies>
Ref: 11015 <aspectSpeedDependency aspect="Hs20" vApproach="40" vPass="0" />
<aspectSpeedDependency aspect="Hs21" vApproach="-" vPass="60">
a Ref 11055 <targetRef ref="11075" />
4 AspectSpeedDependencies */aspectSpesdDepandency > . wn Wy
AspectSpesdDependzncy: 4,-f::fi;f::;gs:::::::z\asped: -" vApproach="-" vPass="-" />
Aspect!| He20 |VApproach:| 4 (VPass:| g <Jsignal>
AspectSpesdDependency: </signals>
“ Aspect:| ys21 |VApproach:| _ |VPass:[g <routess
<route id="1">
Ref: 11075 <start>
<signalRef ref="pro.Routes Route.Start.SignalRef. Ref™ /=
AspectSpeedDependency: < /start>
Aspect| - |VApproach:| - |VPass| - <target»
4 Routes «<signalRef ref="Target.SingalRef" />
<ftarget>
Id 1 <elements>
“ . <switchRef>
FlankElements: Flank witch ref="Ref" course="Left" />
4 Start tchRef>
Ref: pro.Routes.Route.StartSignalRef.Ref <Ii \e{:;;jcsrjz‘gsgis\:f:eh ‘Ref" beam="Beam" />
4 Target <levelcrossing ref="Ref" beam="Beam" />
Ref: TargetSingalRef <levelcrossing ref="Ref" beam="Beam" />
</levelcrossingRef>
4 Elements <trainDetectorRef>
4 SwitchRef <trackCircuitBorder ref="Ref" />
- - l <trackCircuitBorder ref="Ref" />

Figure 1 Interlocking Editor Module

1.2. AutoCADe

AutoCAD [1] is a commercial software application for 2-D, 3-D drafting of designs and layouts. This
software is used in many field including but not limited to architecture, electrical, electronics,
mechanical, construction and other engineering disciplines for the preparation of blueprints and
layout plans. Since this project is about design railway interlocking design support tool development,
we are using RailCOMPLETE as a framework for development, which is a plugin for AutoCAD.

1.3. RailCOMPLETEe

Railway lines and stations are continuously constructed or upgraded. Substantial savings and quality
improvements are to be made during planning, detail engineering and construction phase with better
tools for managing signaling and its related data. Planning of such projects is complicated and it takes
more expensive resource allocation to ensure data-corrective and low redundancy measures for
carrying out a fine-tuned plan. RailCOMPLETE help engineers and project managers in this task by
providing industry specific tooling and assistance in AutoCAD software through RailCOMPLETE plugin.
Data flows digitally in standardized railML format in RailCOMPLETE.

RailCOMPLETE is an AutoCAD plugin letting users design tracks, define mileage system throughout the
construction stages by parameterized railway objects. It produces high resolution drawings, tables, 3-
dimentional views, reports and railML files for easy export and conversion.

In this thesis, we have used RailCOMPLETE framework to integrate our project within AutoCAD. The
RailCOMPLETE software consists of an editor for the infrastructure layout, and saves information in
the DWG format, a commonly used binary CAD file format. The RailCOMPLETE DWG files also contain
a railML representation of the station layout. The aim is to have the Interlocking Editor as a module
that can be integrated within RailCOMPLETE.

E R A 10mB0 @

Figure 2: RailCOMPLETE screenshot

RailCOMPLETE have a comprehensive architecture of APIs for different prospects of railway object. It
is developed in Microsoft .Net framework, using WinForms and Windows Presentation Framework
(WPF). It uses Microsoft.Office.Interop [2] libraries as well for data export functionalities.

1.4.Project Structure
In order to achieve the project goal, the project was structured in following fashion:

1. Reading and investigating different key concepts of Railway infrastructure, their role in track
designing and operations as discussed in chapter 2.

2. Capturing requirements from railways engineers and RailCOMPLETE developers.
Starting to implement object representation of tabular interlocking specification based on RailML
extension, discussed in Efficient formalization of railway interlocking data in RailML paper [3]. This
object representation was done in Microsoft .Net 4.6 using C-Sharp (C#) and demonstrated in first
iteration of prototype.

4. Refined requirements in several sittings with RailCOMPLETE engineers and captured in chapter 3.
Iterated further prototypes and gained feedback from actors listed in chapter 3.

5. Documentation regarding evaluation and changes in domain model are done in this step.

6. Integration of Interlocking module with RailCOMPLETE is done in this step. This iteration of
prototype is captured in final implementation after testing.

1.5.Project Objectives

The goal of creating an interlocking editor with CAD integration can be divided into the following tasks:
a) Representing interlocking data in object-oriented code structure.
b) Read and write the XML format for the interlocking from a C# program.
c) Create a graphical user interface for editing the interlocking, creating element references to a
given railML infrastructure layout.
d) Integrate with RailCOMPLETE CAD framework, saving the interlocking table together with the
DWG file using the extension dictionary feature in AutoCAD.

These alone would constitute an improvement for the railway design process. Less time means less
resources spent from public funds, but also means better and faster railway infrastructures
constructions projects. Having a faster and more user-friendly way of interacting with an existing
railway design, and making changes, means that unexpected construction problems can be easier
decided and changed for the better. Moreover, this approach may lead to safer designs.

1.6.0rganization of the thesis

This thesis contains 5 chapters including introduction. The content of the chapters following, are
organized in a fashion mentioned below:

e Chapter 2: Background & Motivation
= |n this chapter, important railways signaling concepts and a brief history of
development in railway infrastructure is discussed. We later relate these
concepts with scope of this thesis
e Chapter 3: Planning & Analysis
= |n this chapter, we present software development methodology we used and
our experience during this project, software requirements for interlocking
module, use cases, domain model and class diagram of the project
e Chapter 4: Implementation & Software Development Methodology
= This chapter contain an overview of RailCOMPLETE framework,
implementation details, user feedbacks and technologies used in this project.
o Chapter 5: Summary and Future work
= |n this chapter, we present an overview of achievements for project
objectives, critical reflections, detail summary of this research work, as well
as discuss the potential enhancements for further development of
Interlocking module.

CHAPTER 2

BACKGROUND & MOTIVATION

2. Background & Motivation

2.1.Background

This chapter provides the necessary background concepts which will enable the reader to have better
understanding of the problems and topics brought up during this thesis. | used a very informative book
“Railways Operation and Controls” [4] on railways domain by Joern Pachl to discuss railway
infrastructure elements and their working. A research project by Andrew Lawrence from Swansea
University [5] helped in gathering information about Railway history and interlocking specially. Reader
will be able to access the proposed solution in the light of these concepts. This chapter begins with
Rail System basics, Interlocking and its applications. Different elements of interlocking control system
like conditions, signals, points and flank protectors are further described after wards. Before the final
part where | will present a sample route with diagram and its content being filled in RailML format, |
will discuss currently used technology and research being done on this domain.

2.1.1. Railway System
Since beginning, railway and its control systems have seen many changes and advancements. Its
infrastructure, control and safety has seen manual systems (human aided mechanical and non-
mechanical) and todays automatic electronic system with minimum human input. Yet a railway system
consists of their essential and most elementary elements in all over the world which are infrastructure
such as track work, signals, station and lines etc., rolling stock with cars and locomotives and last but
most important driving factor which is operating rules and procedures for a fail-safe operation.
According to Joern Pach, Infrastructure and rolling stocks makes the hardware while operating rules
are software of railway system [4]

2.1.1.1. History of Railway Signaling and Control Systems

Back in time, in early days, a human source (Police men) was used to provide signals to trains using
colored flags during day and lights at night. Purpose of using signals were to provide real-time track
information to train driver. But this was not enough for safety as this communication was one way
and there was no system to track train location, once it went out of sight. No real schedule was
possible as it was before the time of telecommunications and electricity. Hence clocked timers for
delay and slow speed were the only key factors progressing toward safety of passengers and
equipment.

The first major advancement in railway signaling was the conception of Fixed Signals. [5] Fixed Signals
were wooden boards mounted on rotating posts where a visible Board was a stop signal, and if board
was not visible, that means Track is clear to proceed. One improvement on the basic fixed signal is the
disc and crossbar. Rules were drawn as either disc or the crossbar must be visible at any given time
frame, where Disc denotes Proceed Aspect and Crossbar visibility translates into Stop Aspect.

Figure 3 Disc & Crossbar signal

Later a new signal called the semaphore was introduced back in 1841. Semaphore signals were used
by Napoleon’s army (when coupled with telescopes) which later were adopted by the railways [6] [7]
. This signal consists of a moveable signal arm which could be positioned at different angles and an oil
lamp for night operations.

Stop Clear

Figure 4 Railway semaphore signal [8]

Up to this point one human resource was needed to control one signal. Then came the era of signal
box which as a central point for all the signals connections with cables which consist of a system with
pulleys, wires and lever. A signaler (one or two) sets the signals using physical levers in signal box. [5]
This allowed for the development of the interlocking, which was prevention of signaling system from
entering an unsafe state. Interlocking provides locks for lever in signal box which ensures that levers
can only be moved if it is safe to do so.

During the same time, communication between railway stations was established initially using Morse
code transmitting along telegraph lines. Convention of block system was introduced. A piece of track
between two signal boxes was called a block , defining three stats of operation naming blocked line
(failsafe default state), Clear line or train on line. Human intervention and manual inputs even after
interlocking was not ensuring the prevention from possibility of human error occurrence until 19
century when track circuits were made electrified which enables the detection of trains automatically.
These electric track circuits were to be installed along whole segments of track which in turn made
automatic signaling achievable. Start and stop aspects were displayed automatically based on train
presence in a specific segment of track. This automatic signaling was named track circuit block
signaling.

Following the general trend of electrification in the railways, points were later electrified. Electric
point machines enabled points to be controlled remotely as they were moveable with a mere flick of
a switch. These electric point machines reduced the large amount of physical interventions performed
by signalers(human) allowing for a smart control over large area by each human source. Later, idea of
electro-mechanical become more and more popular and mechanical relays were replaced by electro-
mechanical versions, reducing space needed for a signal box.

So far semaphore signals were being in use during all these improvements in railway infrastructure,
even though with the invention of electric light bulbs, comes the era of scientists and engineers
struggling for color light signals which were bright enough to be seen under sunlight. Starting in 1904,

8

most of these initial iterations of light bulbs were used in low speed applications, but final
improvement came in the early 1920s with Corning’s “High Transmission” glass colors increasing the
range to 1100m under daylight [7] .This leads to replacement of semaphore to light signals in railway.
In 1930s the mechanical levers were replaced with an electronic control panel of switches, buttons
and indicators. Which later made a way for preconfigured route settings where a single press of a
buttons would activate signals and points for a route. With the invent of microprocessors in 1980s
caused a complete overhaul for railways as how it performs now in term of technology. Replacement
of relay and mechanical interlocking with solid state electronic interlocking systems (SSI) was the
major breakthroughs in Railway history.

In the following section, we will look through some of these infrastructural elements in details and
then relate our motivation and problem statement under the light of these concepts.

2.1.2. Interlocking
Interlocking is one of the most crucial and highly sensitive aspects of these operating rules which
ensure the safety of the railway. In simplest words, its job is to process and analyze the commands
and requests received in control system, according to predefined set of rules and check whether future
state of current railway movement is safe or not. It conveys command to the physical infrastructure if
control signal it receives does not violate the safety rules defined in a rail system or conflicts with
other routes.

Term interlocking is usually used in two meanings as described in Railway Operation and Control,

“An interlocking is the interlocking plant where points and signals are interconnected in a way that
each movement follows the other in a proper and safe sequence. Secondly, the principles to achieve a
safe inter connection between points and signals are also generally called interlocking [4]

Interlocking on route must ensure the following condition on a train route.

e All points on track must be set and locked properly and appropriately
e Conflicting routes must be locked
o The track must be clear and not occupied or on fault state

Above mentioned conditions are brought by the usage of following functions.

e Interlocking b/w points and signals,
e Route locking

e Locking conflicting routes

e Flank protection,

e Track clear detection.

Direction of Travel
_

Branch Line

Junction

Signal C1
Points C5

jiraing] Signal C2

—»

Main Line

e
Signal C3

Points C4

Figure 5 Interlocking. In this case, the interlocking could allow Points C4 to be set for the main line route and permit
Signal C3 to show a proceed aspect. [9]

In some places, the term "interlocking" is used to denote an area controlled by a signal cabin or by a
computer. As discussed in previous section (history of railway signaling), originally, interlocking was
done by a combination of mechanical connections to the operating levers and electro-magnetic
relays. Nowadays, most new systems employ "solid state interlocking" (SSI) or computer based
interlocking (CBI) using modern electronics instead of old electromagnetic relays.

Railway systems where train movement signals are different from shunt signals, interlocked routes
are considered separately from shunting routes as well. Shunt signals are used in shunting
movements, which refers to any activity on track, which is used for the management of rolling
stock/locomotives without power. Shunt route may execute a movement into an occupied track
without flank protection usually. There are examples of railway systems like older German interlocking
System [4] where interlocked routes are a requirement for only train movements, while shunt
movements are carried out without protection, while in North American railways, train movements
are not separated usually from the shunting movements so same interlocking are applied (might be)
for both movements.

A train route starts always from an interlocking signal, while its exit can be another interlocking signal
for exit /destination or the end of the interlocking/home signal limits.

Following is an example of tabular Control table used in Indian Railways.

10

S.No. | SIGNAL | ROUTE ROUTEHELDBY | CONTROLLED LOCK & LOCKS | REMARKS
NO. BY TRACKS DETECTS ROUTE
POINTS POINTS
APPRO |BACK NOR | REV
ACH LOCK MAL | ERSE
TRACKS |TRACK
1 2w 2WEI A2WT(2NT 2WT, AZET 1 2 4EB 2E | Controlled
120SECS |AZET 2T, 2BT,BT by closed
time 2T28T BT position
delay) of LC gate
2 2w 2WBI AZWT 2NT 2WT, AZET - 1.2 4EB 2E | Controlled
(120 A2ET 2T, 2BT,BT 3WB by closed
SECS 21287 IBT, ITATWT position
time of LC gate
delay)

Figure 6 Control table Sample [10]

2.1.3. Route Locking
After resetting the signal to stop position it is required to maintain the points locked because
engine/train may not have cleared those points yet. That mean, once a driver has been given a clear
signal indicating a route, it is highly important that route must not be changed. It should be certain
that route must not only be locked by the signal but also by a locking appliance that works
independently from the signal. This second locking must prevent the operation of the points until they
have been cleared by the train on track. [4] Electric locking take effects on signal when train passes it

and are used to prevent external manipulation of physical levers.

2.1.4. Flank Protection
Flank protection should prevent vehicles from running into a route that is cleared for an approaching

train. They shall usually be provided to protect the route and overlap for a signaled train movement

[11].

This could be achieved by

e Operating rules

e Flank protection devices

= Safety points

= Derails

= Stop signals

11

Remote flank
protection by safety
points and shunting

signal
v
"Protection oO—
e
transportation —
points”
e >
—aD

Route to be protected

Figure 7 Remote Flank protection [4]

Flank protection by operating rules means that if a train has a movement authority to run through an
interlocking any shunting movements on side tracks from where the train is approaching are strictly
prohibited. Since this form of protection is not very effective it should only be used when other forms
of flank protection are not possible or applicable.

Selective protective points

L T ———

Sueesssssssssnsaafe

T ———

Figure 8 Selective Protective Points [4]

Stop signals are only useful for flank protection against movements controlled by a driver who pays
attention to the signals. When it is necessary to have protection against vehicles which could get into
motion unintentionally or by accident like stock stored on track, flank protection must be effected by
safety points or derails

2.1.5. Crosslock
In a Crosslock, a pair of points is permanently interlocked with a derail or with another pair of points.

Crosslock improve the safety of movements made without locked routes by preventing movement
over derails and trailing points which are not properly configured. It also helps by providing flank
protection by locking derails and points in a protective position.

12

Points NORMAL lock derail CLOSED

Derail OPEN locks points REVERSE

Figure 9 Example of a Crosslock [4]

A multiple Crosslock is a special kind of crosslock where the interlocking between two points depends
on the position of a third pair of points or derailers. The first two pairs of points are interlocked to the
third element in form of a simple Crosslock [12].

Crosslocks between points are very common in interlocking arrangements following British and North
American practices while in German interlocking Crosslocks between points are very rare [4]. But, they
are regularly used for interlocking between point and derails.

2.1.6. Intermediate Points

Intermediate points are points which are located between two interlocking signals in a way that a train
that is waiting at the signal ahead would not clear the points. (see Figure) [4]. On railways where
overlap is used the locking of intermediate points is usually released together with the points inside
the overlap behind the exit signal [4]. On lines without overlaps, intermediate points may be equipped
with a time release or they are kept locked until they have been cleared again. Intermediate points
must be locked when the signal ahead is cleared. Therefore, intermediate points must be interlocked
both to the entry and exit signal in front and rear.

Home signal limits

Exit signals
l Home signal
———
ja— !
F Y -— -
(o { & e
L A A
- =7 [-
Home signal Intermédiate Exit signal

interlocking signals

Figure 10 Home signal limits with intermediate interlocking signals [12]

13

2.1.7. Interlocking Signals
Interlocking signals are used to

e Authorize train movements
e Provide flank protection

Interlocking signals are located at all entrance points of interlocked train routes. An interlocking signal
is always placed in the required overlap distance before the first point to be protected by this signal.
This point could be: [4]

e Facing points which are not locked when a train approaches this signal

o The fouling point limit of trailing points or crossings on which conflicting movements are
possible,

e The rear of a train that has a scheduled stop (this also applies to block signals outside of an
interlocking)

e A shunting limit board.

Interlocking signals which are not used for regular train movements are usually dwarf signals which
can often only show a restricting proceed aspect. However, this is not a shunt signal in the European
sense because it may authorize a train movement. Successive interlocking signals inside one
interlocking are not typical on North American railways but can be found in some interlocking at large
passenger terminals [12].

a) Facing points ¢) Rear of a train at a regular stop
} z — I
| - 1
b) Fouling point of trailing points or crossing d} Limit-of-Shunt board

/A T

Figure 11 Points to be protected by an interlocking Signal [12]

2.1.8. Shunt Signals
Shunt signal can only be found on railways where the operating procedures require a different
signaling for trains and shunting movement. In a typical rail network where shunting signals are
employed, following are the key characteristics of shunt signals: [4]

e Authorize shunting movements,

14

e Provide flank protection

e Shunt signals are placed at all points

o where flank protection is required at a track without an interlocking signal
e At all locations where it is useful for the regulation of shunting operations.

Shunt signals are not only used where shunting movements are governed on main tracks but also in
sidings. In modern interlocking, there are a lot of shunt signals in the track layout because all shunting
movements are carried out on interlocked shunt routes. [12]

A shunt signal must also be cleared when a train is passed by, so that the stop aspect of the shunt
signal is removed, other than authorizing a shunt movement.

Entrance signal

VS I

N A

Shunt signals to
be cleared

Figure 12 Shunt signals to be cleared for a train route [4]

2.1.9. Internal Logic of Interlocking systems
Following are the two different principles related to the internal logic of an interlocking system.

e Tabularinterlocking
e Geographical Interlocking

2.1.9.1. Tabular Interlocking
In a tabular interlocking system, the lock between points and signals is achieved in form of a locking
sheet that contains the locking conditions for all routes. Tabular interlocking is further differentiated
into two very distinct kinds which are

e Cascade locking
e Route-related locking

2.1.9.1.1. Cascade Locking
The cascade locking was originated as a traditional British interlocking practice that was further
adopted by North American rail systems. In cascade interlocking, a route is established by a locking
cascade which take effects by conditional and permanent locking between different point and further
between points and signals. [4]

15

32

1 4
21 —a» '\A 5 = - J—
1 @&@— 12
1 —a» 2 3 [—
IF LOCKS
11 1230
4 12
@50®

5 22
® 32
21 113 4
1 250
1-5 22
15 32
©) @ 12
12 2@ 3 4
2 1 11
@) @D 21
22 124@5
4 3 21
@ ® 11
32 124@5
3 21

®n

2 Points No. 2 locked in normal position
Points No. 2 locked in reversé p_osﬂwn
2 @ Points No. 2 locked in any position

@[~

Figure 13 Cascade Locking table [4]

A permanent locking of points and signal is used when clearing the signal requires the points always
in same state/position. A conditional locking of points and signal however is dependent on the position
of other points. this is being employed that when a signal serve as an entry signal for different routes,
the position of the facing points serve as the condition for locking relative points.

2.1.9.1.2. Route-related Locking
In route-related locking, which is more often termed as route-based locking, for each route there is a
special route locking element instead of directly connecting points and signals by locking sequences.
This special route can only by operated when all points are sets properly for said route. Operating the
route locking element will cause lock on all points, throughout the route and release clear signal.
Whereas, while there is a clear signal, the route locking elements cannot be released or set to change
positions. In this fashion signal indirectly locks all route points.

16

This type of locking is based on German practice which has been adopted by several European rail
systems now.

1 4
‘Toirem §] 5 e 2
3

1 1 |—@» 2

T CONFLICTING ROUTES POINTS
SF'NC*)“'NC’)‘—N*T(\II‘TC\II

S LleltlnlalalR R R[]]S]1]%]3]4)°
GENEINRNEN il I +|+|+|+

TENTESTRIRR AR R EE R AN s d i K s
TEYTRTEES AR IR R DA el el el R
21 | -l --+i+

21-2 P {1 b= LTI+]|+
21-3 (- IO+ +|+]+] -
A2-1 J01R | +|+|+|+

220 efejnpepr| - =-r=1++

20 [T TIfepefr]r]fep-frpijj+i+i-1-1+
22-2 EEREELAN FLE -]+
2t (L feprfr{ryr]p-1h{++-1-1-
32-2 NEREREEL BEST IR s e e s
Routes: | Conflicting routes locked by plain locking

[| Conflicting routes locked by special locking
- Main diagonal in route matrix

Points: + Points locked in normal position
- Points locked in reverse position

Figure 14 Route-related Locking table [4]

In this table, each row of the table represents a single route. A row contains the position of all points
which are needed to be locked for that specific route and all conflicting routes. Conflict between
routes which require points to be locked in alternate position would lock each other by the self-
effected plain locking [4]. Figure 13 shows an example for the same route as in Figure 12. In this figure
symbols being used are in correspondence to the tradition German locking tables style.

2.1.9.2. Geographical Interlocking
In a geographical system of interlocking, elements related to track such as points, signals, entrance /
exit points, track, section and derails etc. are represented in a logical object oriented fashion which
are connected to each other in form of the track layout. When a route is set up, the start and exit

17

elements are marked to start search current from route entrance. This search currents runs in all
diverging tracks at facing points and result in a tree structure of search currents. When an exit element
is found by search current, a response current is dispatched to the entrance element. Whereas at
facing points, other search current branches are deprecated.

2.2.Motivation

2.2.1. Problems and challenges in current design process
As we know in general, manual input takes a lot of dedicated attention and accountable accuracy
which, often due to human processing capacity, are limited. Whereas interlocking domain is much
more complex than day to day book keeping. One silent error in data can cause catastrophic
results, if no other control systems are deployed.

During our meeting with Martin Ruff, one of the railway engineers from Norconsult, he mentioned
that since operating a station with several routes and interlocking routines is a complex task,
railway staff device these interlocking configurations on tabular forms for easy management.
While these tabular forms are one way of keeping track of interlocking, it's not the efficient
practice. Usually these forms extend to several sheets and referencing and management of points
can be disrupted. Data redundancy and error factors require a considerable amount of time and
resources. He said that it takes almost 5-6 working hours for an engineer to sort one interlocking
form. While it takes this much, still this work is error-prone usually. Typing error, mismatched
references, and inclusion of conflicting routes are common problems in manual work, which
further lead to more work force and time.

Additionally, management of interlocking specifications is a delicate time consuming task.
Printing, keep and editing of printed tables is not an efficient approach. By just switching this
operation from manual to computer aided version, a significant amount of work time can be
saved, hence resulting in less expense and low noise.

RailCOMPLETE is an AutoCAD plugin software, which helps engineers in unifying their efforts in
transferable data format for designing, visualizing and maintenance of track and signaling
component layout. All these operations are being performed by following RailML protocol and
set of principles. Right now, RailCOMPLETE lacks the functionality to automate the editing of
interlocking aspect of complete route and users are using same traditional format of interlocking
tables. This basically leads them to the very same issue of manual process hazards.

18

CHAPTER 3

PLANNING & ANALYSIS

19

3. Planning & Analysis

In this chapter, we will briefly present RailCOMPLETE Framework, for which we are developing
Interlocking module. We will describe the overview of Interlocking Module, its requirements gathering
and limitation of documentation, following afterwards. Furthermore, the following sections will be
used to present the actor goal list, use-case description, class diagrams and domain model using RUP
framework.

In the following section, we will discuss requirements for this research project and the architecture of
our solution.

3.1.Software Development Methodology
The process of splitting software development work into different and distinct stages is known as
Software development methodology. A Major motivation behind these methodologies is to manage
the software development lifecycle more efficiently, per requirement and within defined constraints.

For this project, | will be using Rational Unified Process (RUP) for capturing requirements and
implementation of software and used agile rapid prototyping as a method for software requirement
rectification in contrast with Scrum methodology being used in RailCOMPLETE development team

In following section, we will briefly describe this framework based on the white paper by Rational
Software [13] and our experience with RUP in this project.

3.1.1. IBM Rational Unified Process (RUP)

IBM Rational Unified Process was proposed, developed and implemented in IBM division named
Rational. RUP is simply a disciplined approach to achieve software development related tasks
strategically which managing the resources based on pre-implementation research on scope, risks,
and business analysis [14]. RUP ensures that all team members have access to the same knowledge
base, domain and related aspects of software development lifecycle for a project. This is modeled
using Unified Modeling Language (UML) instead of textual version. This helps users to quickly assess,
qualify and read the document. Additionally, a properly modeled software artifact in UML, could be
used to generate automated code and more research is underway to make it more automated.

According to Rational softwares,

“The Rational Unified Process® is a Software Engineering Process. It provides a disciplined approach to
assigning tasks and responsibilities within a development organization. Its goal is to ensure the
production of high-quality software that meets the needs of its end-users, within a predictable schedule
and budget.” [13]

RUP defines the process of software development into four distinct phases. Each phase involves
business modeling, analysis & design, implementation, testing and deployment. Following are the four
phases of RUP

20

3.1.1.1. Inception
During this phase, the idea for the project is stated. System business case are established and project
scope is defined for both parties (development team and client). The development team determines
if the project is worth pursuing and what resources will be needed. While Client gets the estimation
of project worth and time. Inception phase produces following complete or partially complete
documents/ artifacts

e Vision document: This document scope of project, general requirements, key features and
system constraints.

e Initial Use-case model (partial)

e Business use case modeling

e Project glossary, risk assessment, project plan and business model if necessary (complete or
partial)

e Prototypes if required

3.1.1.2. Elaboration
In this phase, problem domain is explored and a foundation of architecture is established. This helps
in finalizing the project development phase and by using the risk assessment, elimination of the risk
factors. The project's architecture and required resources are further evaluated. Developers consider
possible applications of the software and costs associated with the development by dividing functional
and non-functional requirements, elaborating scope and functionality matrix

Following are the outcome of elaboration phase,

e Use case model (80% complete)

e Supplementary requirements are identified which are not associated with any specific use
case

e Architecture description

e Architectural Prototype

e Revision for business use cases and risks

e Qverall project development plan

e User manual / Appendix (optional)

3.1.1.3. Construction
During the construction phase, project is developed and completed. The software is designed, written,
and tested according to the defined requirements. All components are stitched together and
integrated into the product and are thoroughly tested. This phase consists of following outcomes,

e Integrated software project
e User Manuals
e Release version and description

21

3.1.1.4. Transition
The software is released to the user. Final adjustments or updates are made based on feedback from
end users. [15]. Transition phase is based on Construction phase evaluation. If a project is found
mature enough and resource expectations are under control, project undergoes this transition phase.

Transition phases is an ongoing phase where system is tested, new requirements or maintenance tasks
are recorded, user trainings are conducted and product roll-out are registered.

Organization along time

L
I

Elaboration Construction

.
LB
Core Process H
Workflows H

Business Modeiing | RS —

Requirements

5

Analysis & Dasign

Organization

> f

Implementatio
along content pementaton * :
Test - .._..-——-.._.;-—--._..--'""_..-—""_."‘H""'--_
_______________________________________ : :
Deployment E . _.—-""—_E_\
bot: ot LI - t |
Core Supporting H . H
Workflows H : 1
: LRI H
' * H B, |
N R EESSNNNG MEE W
L] " : -~
Envircaiment _.-"1"“--._ : »
Praliminary iter#l iter#? iterén iterén+1 iterfn+? iterém iter#ms1
[terations

Y ITERATIONS

Figure 15 IBM RUP Lifecycle [14]

3.2.Conclusions from using RUP
Unlike RailCOMPLETE where SCRUM is being used for software development, | preferred RUP for this
project due the fact that RUP prescribe predefined templates for capturing user requirements, and
highly engaging user feedback while focusing on a simple approach of modeling instead of textual
description of project during different phases.

RUP is a subset of best software development practices in industry based on their usage, user
community and success ratio. [13] With the help of widely available RUP templates, | maintained my
meetings with client (RailCOMPLETE) easily which later helped me to convert them into user cases
with the fine-grain detail of steps and pre/post conditions of the use case. During this process, |
learned that if a project is fully modeled for RUP in UML, we can generate code from those models
using tools like IBM® Rational® Software Architect [16] and hence it can save tremendous time for
large projects.

However, | do feel that using a full-fledged RUP approach for small teams and projects might become
time consuming and difficult to maintain because it requires a thorough procedural execution in every

22

stage of an iteration. Due to this fact, instead of producing all artifacts of RUP, | preferred to include
only those (chapter 3), which can help me capture software requirements for this project since it was
not a complex team project and with a single resource. While this approach does come with limitation
of time, | experienced that rational process can produce a comprehensive documentation for project
owners and user manuals for client. It has a clear way for eliciting architecture of whole project so
project maintenance and extensionality are not limited especially in academic projects like this, it also
provides necessary foundation for further enhancements in the project in an easy to understand form
factor.

3.3.Software Requirements

Since this project is addressing a real-world problem and is to be integrated with an actual product,
requirements have been specified during several project meetings involving my supervisors and with
development team and our key contact Claus Feyling for RailCOMPLETE in Norconsult AS. In this case,
Claus Feyling acted on client role to specify the desired functionality in Interlocking module, while IT
team in Norconsult and my supervisor Bjgrnar Luteberget provided the technical understanding of
RailCOMPLETE Software. Clause and Bjgrnar also participated as an active Interlocking user to
highlight the functionalities end user want to see in final version. Whereas, in these meetings, | took
the role of software requirement engineer to capture the user stories and document them using IBM
RUP framework. Since we followed the agile methodology for this project, it involved rapid
prototyping based on user feedback and suggestions on functionality, which consecutively |
implemented as software engineer.

In the following sub sections, we use RUP form of use cases to specify user intended functionality in
as close to client word as we can, without including redundant information.

3.3.1. Stockholders
Following are the stakeholders for Interlocking module of the RailCOMPLETE

e Shahzad Ali Khan (Me) As Student and developer of this module
e RailCOMPLETE Developers

e RailCOMPLETE Testers

e RailCOMPLETE Management

e University of Oslo

3.3.2. Primary Actors
There are two primary actors and one secondary actors of Interlocking design tool, in RailCOMPLETE
domain. These actors and their required operations are listed below

3.3.2.1. Interlocking Engineer

Interlocking engineers want to design, formulate, integrate and rectify interlocking segments within a
train track design model. They are the one sole responsible for overlooking of interlocking on route.
Interlocking Engineers are not necessarily one role. Usually Track Engineers can perform the said task
under this role, but since our aim is to produce as loosely coupled software as constraints allows, we
will keep the Interlocking Engineer as a user who is solely responsible for Interlocking schema of a
route only. Interlocking Engineer is not necessarily deemed to have information related to main
RailCOMPLETE document.

23

3.3.2.2.

Track Engineer

Railway track engineers are responsible for overall modeling of track design, and they want to make
sure correct interlocking mechanism configurations are applied within a design model. They can access
interlocking schema loaded within a RailCOMPLETE document and based on their needed, can use or
ask for changes in said interlocking schema of document. Track Engineer can perform Interlocking as

well as other RailCOMPLETE functionalities.

3.3.3. Secondary Actors

3.3.3.1.

Locomotive Drivers

Locomotive drivers are the ground force, who is responsible for executing railway operations and drive
rail based on route from RailCOMPLETE and associated Interlocking. They are not required as an active
user of the system, but will be influenced by product of Rail COMPLETE route project.

3.4.Actor Goal List

Actor Goal

Track Engineer

Design interlocking
Visualize Interlocking
Synthesis of Interlocking Tables

Interlocking Engineer

Design Interlocking
Visualize Interlocking
Synthesis of Interlocking Tables

Locomotive Drivers

Document Reports (No)

24

3.5.Use Case Modeling
Following is the use case diagram of the system. We can see that Track Engineer scope is not limited
to only Interlocking module only and (s)he can interact with Rail COMPLETE object outside interlocking
module, while Interlocking Engineer is only concerned with Interlocking Module. Functionalities
concerned with both actors in our module, are same, but to limit the scope of our module both users
are listed separately.

uc Use Case Model /

RailCOMPLETE

/’ \\

|

|

|

|

|

| Y \
| / RailCOMPLETE \
! Infrastructrue !
| \ . /
| \\ Object y:
| ~ 7
|
|
|

R

Interlocking Module

Design Interlocking

Track Engineer

Visualize Interlocking
(Proposed)

Synthesis of
Interlocking
(Proposed)

Interlocking Engineer

Figure 16 Use case Model

25

3.6.Brief Use Cases

3.6.1. Design Interlocking
Interlocking Engineer logs into RailCOMPLETE and open the new/required diagram. User opens
Interlocking module and enter interlocking related data into XML based structure or User views the
interlocking data and adjusts the schema per requirements. Module process newly entered data per
standard and regulations specified and inform user regarding warning and constraints. User edit file
accordingly and save file.

3.6.2. Visualize Interlocking
User logs into RailCOMPLETE and open the new/required diagram. User opens Interlocking module or
create new Interlockings. User loads the interlocking elements from track diagram and system
presents elements in interlocking window. User make changes and select to visualize. System visualize
the track based on interlockings and predefined rules. User makes modification if need and save file.

3.6.3. Synthesis of Interlocking tables
User logs into RailCOMPLETE and open the new/required diagram. User opens Interlocking module or
create new Interlockings. User make modifications in interlocking and system process the
modifications based on track layout diagram or predefined rules. System warns user on violations and
display messages accordingly. User makes modification and save file

3.7.Fully Dressed Use Cases

3.7.1. Design Interlocking (for already created track layout)

Version

18/06/2016

Design Interlocking Date:
Scenario 1: Interlocking in already created
track layout
Use Case Section Comment
Scope RailCOMPLETE Interlocking Module
Business use case
Level User Goal
Primary Actor Interlocking Engineer
Stakeholders and Interests o Interlocking Engineer: wants to create interlocking

section for already created Track design
e Track Engineer: requires interlocking section for his/her

designed Track
Preconditions e Useris logged into RailCOMPLETE
e Track design is already created per standards predefined
Success Guarantee User successfully creates interlocking sections for integration
into main track design
Main Success Scenario Primary Actor System Response
1. Userrequest search 2. System presents search
dialogue box dialogue box

3. User selects Track design 4. System presents
interlocking editor for
track design

5. User edit interlocking 6. System checks the input
per rules defined

26

7. User save the file 8. System checks rules and
updates file status

System inform user about rule
violation

1. System inform user about
error reason.
2. User fix the error and save | 3. System checks rules and

file updates file status
Special Requirements TBD
Technology and data variation | N/A
Frequency Moderate
Miscellaneous N/A
Data/ Field requirements TBD
Prototype TBD

3.7.2. Design Interlocking (for an empty track layout)

Version
Design Interlocking Date:
Scenario 2:

18/06/2016
Interlocking in an empty Track
layout

Scope Interlocking Module
Business use case
Level User Goal
Primary Actor Interlocking Engineer
Stakeholders and Interests o Interlocking Engineer: wants to create interlocking
section for already created Track design
e Track Engineer: requires interlocking section for his/her
designed Track
Preconditions RailCOMPLETE document is created
Success Guarantee Interlocking schema is successfully loaded into empty track
Main Success Scenario | PrimaryActor [SystemResponse
1. User click new 2. System presents new
RailCOMPLETE document document dialogue
button options
3. User configure options 4. System presents an empty
and click create RailCOMPLETE document
5. User enters Interlocking 6. System loads Interlocking
module command in Module
command window
7. User selects options to 8. System presents options
create new interlocking for creating new
file interlocking file

27

9. User enters interlocking
data and clicks save
schema

10. System checks rules and
updates file status

Extensions/Alternate Flow

Step#10e | Rule Violation

Actor Action

System Response

1. System inform user about
error reason.

2. User fix the error and save
file

3. System checks rules and
updates file status

Special Requirements TBD
Technology and Data Variation | N/A
Frequency Moderate
Miscellaneous N/A
Data/ Field requirements TBD
Prototype TBD

3.7.3. Visualize Interlocking

Interlocking Integration

Use Case Section

Version

18/06/2016

Date:
Scenario 1: Visualizing interlocking file
Comment

Scope RailCOMPLETE Interlocking Module
Business use case
Level User Goal

Primary Actor

Interlocking Engineer, Track Engineer

Stakeholders and Interests

e Interlocking
interlockings.

e Track Engineer: wants to validate and visualize the
interlockings in track diagram.

Engineer:

wants to visualize the

Preconditions

e Useris logged into RailCOMPLETE
e Track design and Interlocking xml is already created as per

standards predefined

e Main Track design is open

Success Guarantee

User successfully integrates interlocking sections into main track

design

Main Success Scenario

Primary Actor

System Response

1. User click new
RailCOMPLETE document
button

2. System presents new
document dialogue
options

3. User configure options and
click load

4. System loads the
RailCOMPLETE document

5. User enters Interlocking
module command in
command window

6. System loads Interlocking
Module

7. User selects options to load
interlocking file

8. System presents the
interlocking file options

9. User loads elements for
interlocking file from track

10. System load the elements
from RailCOMPLETE

object

28

11. User selects Visualization
option

12. System process the
command and visualize
the interlocking

13. User make modifications as
required and selects save
file

14. System save interlockings
in track diagram

Extensions/Alternate Flow

System inform user about rule
violation

1. System inform user about
error reason.

2. User fix the error and save | 3. System checks rules and

file updates file status
Special Requirements TBD
Technology and Data | N/A
Variation List
Frequency Moderate
Miscellaneous Extension Project
Data/ Field requirements TBD

Prototype

NA

3.7.4. Synthesis of Interlocking

Interlocking Integration

Version

Date: 18/06/2016

Scenario 1: Synthesis of interlocking file

Scope RailCOMPLETE Interlocking Module
Business use case
Level User Goal

Primary Actor

Interlocking Engineer, Track Engineer

Stakeholders and Interests

o Interlocking Engineer: wants automated synthesis of
interlocking file

e Track Engineer: wants to automate the safety of track by
synthesizing interlocking information

Preconditions

e Useris logged into RailCOMPLETE

e Track design and Interlocking xml is already created as per
standards predefined

e Main Track design is open

Success Guarantee

Main Success Scenario

User successfully integrates interlocking sections into main track
design

29

1. User click new
RailCOMPLETE document
button

2. System presents new
document dialogue
options

3. User configure options and
click load

4. System loads
RailCOMPLETE document

5. User enters Interlocking
module command in
command window

6. System loads Interlocking
Module

7. User selects options to load
interlocking file

8. System loads the
interlockings

9. User modify the
interlocking file

10. System process the file

11. User selects synthesis
option

12. System process the file
and present the analysis

13. User make modifications as
required and selects save
file

14. System save interlockings
in track diagram

Extensions/Alternate Flow

6e/8e/12e/14e-
1:

Rule violations

Actor Action

System Response

System inform user about rule
violation

14e-2:

| Fail to save file

Actor Action

System Response

4. System inform user about
error reason.

5. User fix the error and save
file

6. System checks rules and
updates file status

Special Requirements TBD

Technology and Data | N/A

Variation List

Frequency Moderate
Miscellaneous Extension Project
Data/ Field requirements TBD

Prototype NA

30

3.8.Domain Model
Following is the conceptual domain model of the interlocking schema and how it is used in Interlocking

Editor. This domain model is derived from interlocking specification presented by Bon Janssen in his

research paper on efficient formalization of railway interlocking data in RailML [3]

class Domain Model /

belongs

Signals

I
type of

Signal

Ref- dhing

has

RaillCOMPLETE

+ getlLayout{) - RaillCOMPLETE

Ay

InteriockingEditor

+ Deggnintedockng() - Interlocking
+ getlLayout(): RailCOMPLETE

Ly P P

aspect drning
vAppoach: dring
vPas shiing

has

TargeRef

Ref. sting

'
crelats
|

Vv

Interlocking

belongs
Routes
I
WDT of
Route
’7 - id: dring |
has I has has has

has

st [] Target Elements FlankElemerts Routepriority
- value: dnng - rank shing
has has has
belongs
belongs
SwitchRef LevelCrossingRef] TainDetectorRef
SignalRef
- Ref string
T T T
has h:—|3.s has
Switch LevelCrossing TrackCircuitBorder
- Course: dring - Beam: diing - Ref sinng
- Ref shing - Ref. dning

Figure 17 Domain Model

31

3.9.Component Diagram
In following diagram, we present different components of Interlocking editor as a plugin. Interlockings

IS

d interface interaction is carried out in InterlockingEditor class while worker class

responsible for RailCOMPLETE Integration.

processing an

18110803 13140

3137dWODIey

p1oA : (Buws qualinooq)bumsbudoopsiujenes

Buus

PIOA :)pUBLILIOD.

p36ubopRIl +

{Ajuopeai} ,Buppopaiul, = Buuls MIAVIH ONINOOTHILINI

19310M

To1p3buDIo0l BNl SSEI

sasse[O

1N pue jonuooIssn

plon: 1alqo) -
pIon : 103[q0) TNXPEO 8
Qionp3 +
101p3
lonuooiasn
1 (19z1[eHaS|WX) TNXWOI4PROT +
L:07Wxwoidpeo] +
Buws : Qlwxeo +
«uosuBXE»
DPIOA : (19Z1[BUBS WX * 1) TWXBARS
1 : (Buus)a|idwoidpeo] +
Buuss : (jooq 8: BS|WX ‘DIWx1e9 +
1adjaHUONEZIRLIAS WX
{Aluopeai} *WwoDINP3IN0Y MaU = PUBWIWODINPIIN0Y PUBWIWOD TAXINES +

{AjUOPLaI} *WODINPAIN0Y MaU = PUBLILIODINP3IN0Y :PUBWIWIOD TAXPEOT]

SpUBWIWOOWOISND

Joup3bunooaIl SSRID

<iobre >s17: (rebel +
<uels>s:Quels +
<ALoUdeINOY>SIT +
w11 : Qwapyoe o
<sjeubis>xsiT : (sfeubls + Buws : Op1 +
<somoy>wsi: (sanoy + Buus : (SIBWaUR +
B Qualply + 7:0anoy + SWaWa|I>BIT : (SUBWRIT +
«Apedoid» pedoid» «Auedoid»
Bujoopauy sainoy anoy
<jouio81aquUIRI L>11T | (Jexiopalequiell +
<JoyUAIMS>EI : (JaYUIIMS +
>80 () 7o+
Buus : (huey + 12 QuatpiyouBWalg + oYorI > : () PRIl + Buus :)y +
«Auedoid» «Kusdoid» «Auedoid» «Auadoid»
Aoudainoy sawal3 JouI010319quIRIL 19pI0gHNOIIDNORIL
Buus: (sod + Buus : (yoy +
<busson|ana>si : (Bussonjana + uus : Qweag + <youms>s17 : (yaIms + Buus : (Jasinod + <joureubis>isi : (yedreubls +
«Auadoid» «Kuadoid» «Kuadoid» «Auedoid» «Auadoid»
1oybUISS010j3 A8 Buissoio|ane Jouyoums youms 19b1e)
Buus :)y +
<joy[eubis>siT : (eu eublS + Buws : (yoy + <[eubis>s17: Oreubls + 7 (x +
«Apadoid» «Auadoid» «Apadoid» «Apadoid»
uels Joueubls sieubls reubis
Buus :)SSedA +
Buws : (yoeoiddyA +
<oxebre |>K17 : (youiebrel +
+ Buws : adsy + Buws : ()od +
«Apadoid» «Apadoid» «Auadoid»
sarouapuadagpaadsioadsy Kouspuadagpaadsioadsy Jornabie)
Bup{o0|IaIU| SSE[D

MaIA wauodwod dud

Figure 18 Component Diagram

32

Class Diagram (Interlocking)
Class diagram describes the structure of the system by presenting its classes and their relationships.

3.10.

IpioA : (Buus: sjuaiuod ‘Juawnoog: sop)ButsBusopaiulnes -
Buuss : (uswnaog: 2op)BumgBudpopsiuipeot -
pioA : (jpuewwogiolpIBundopalY] +

{Auopeal} ,Busoopaiul, = Buus ¥3QYIH ONINOOTHIINI -

Jayo:Jop3Bupyo0RI)

1 : (18zIjeuag|wy) WX woipeOT +
1:(Txwoipeor +
Bups : (jwyieg +

Buus : (joog)wxiee +
«uosuaxe»

PIOA : (19zI[eUsS|WX ‘1) TWX3NeS -
1: (Buus)ajjwoi4peo] +
Buus : (jooq ‘Iazijeuas|wy ‘Djwxis9 +

Jadj3HuonezelIBS| WY

4P3IN3X3 103100) :

paIN2ax3 13lq0) WX peoTpaIIeXT -
(uoup3 +

PIoA :(sBiy
plon : (B
{Kjuopeal} " woQ|NPaIN0Y MaU = PUBWIWOD|NPIIN0Y PUBLILIOYTNXINES +
{fjuopeai} " wod|NPaIN0Y MaU = pUBLIWODINPAIN0Y PUBLILIODTIXPEOT +
SPUBLIWOJWOISN) e

Jonp3

Joyp36uryoojsaly sseja

buws: (joy + S O+ O ¢
Buus : (asinog + Buus -0y + Em..oegm K - Buus : (yoeoiddyp +
«hpadoidy et . Buys: 0oy + <Jayiefire >8I : (Jeiebie] +
«fuadoidn T Buus (acsy +
(R TR chyadoid
JopiogunalIyoe.L Buissoiofanal e
Kouapuadag
T
1 K N
<Bussonjena>si : (Bussonana] +
<YoIMS>BIT: (YIS + <IOPIOgINAIINORI 1517 : (OpIOGUNUINEIL + dadoid
«Ryadoid» «yadaidy
JoybuIss1aaAa] <1
134yanms 19y10)9318QUIRLL 1 "
«fpadoidy
Buus:)y + salouapuadagpaadgioadsy
«huadosd»
JENTETNNS
T
<Jai0alaquiel 15817 : (Jeuionalsquiel L + 7
<JRdyIMS>BI - (JedyaIms + -
<aybusson|anaT>BIN : (joybussonjana] + Buus: Oy +
+
B Quaippyowswal3 + <jay[eubis>siT : (joyreubls + <jay[eubis>siT : (jeyreubls + D
«Ayadosdn «Ayuadoidn «Auadoid»
[eubis
BUEIEE) 10628L Jeis.
T T
<afire | >s17: (1abre] + ¥T
<WeIS>BN: (uels +
<aInoy>sin: (amnoy + <fuoudainoy>si : (fuoudainoy + <[eubis>B1: (eubls +
«fyadody B0 (wapyosnoy + «hyadody
T buys: (pr +
sanoy Buus : (s1uawa|uely + sfeubls
Buus : (uey + RTEITETER Ty M SITEITET=
«Ruadoidn «Ruedosdy
T
fuongainoy anoy
T
<s[eubis>siT: (seubls +
<SaINoy>sIT : (sanoy + !
N 1 (uapiyobuspoopiaiu +
«Ayadoidy
Buryoopsan)

/ 910] SSe|d

Figure 19 Class Diagram

33

CHAPTER 4

IMPLEMENTATION
&
SOFTWARE DEVELOPMENT METHODOLOGY

34

4. Implementation

4.1.0verview of RailCOMPLETE framework

RailCOMPLETE is developed in Microsoft Visual Studio, using .Net Framework and C# to utilize
AutoCAD.net APl so that we can provide Railway operations functionality right into the AutoCAD
software. Project consist of 18 Core modules. Test drive approach is being followed in throughout the
project, and for Window Presentation Framework (WPF), Model-View-View Model (MVVM)

There is one object Manager module responsible for managing RailCOMPLETE Object in AutoCAD
software. Core module provide the base projects for different resources and functionalities for the
whole plugin including Containers, Context Menus, Database rules, Database Reactors, Area Elevation,
Export functionalities, Object definition and management, Document commands, plugin
management, Railway Object and document, Transactions, Schematic views, styles, graphics and
utilities. Rest of the modules are sole responsible for graphical user interface and functionalities for
base defined in Core module.

4.2.Developing the Interlocking Module

Interlocking Module is part of the framework which lets the user dynamically create/load, edit and
save the interlocking schema of an active RailCOMPLETE document, based on Interlocking schema
devised by Bob Janssen [3] for including interlocking specifications into the RailML format. This module
will further act as a base for advance features for Interlocking management, which will be discussed
in future work section of Chapter 6. The Interlocking module is implemented using Microsoft .Net
framework over AutoCAD.net API. User Interface is written in XAML using Windows Presentation
Framework (WPF) and for code behind C-Sharp(C#) is used.

Interlocking Module is embedded in RailCOMPLETE solution as standalone plugin, which can be used
on demand through runtime commands and can be loaded along other core modules in AutoCAD. It
is using RCTransaction and Core Module from RailCOMPLETE to get Loaded into AutoCAD for saving
and retrieving Interlocking file from an active RailCOMPLETE document. In following sections of this
chapter, software development of Interlocking module prototype is discussed.

4.3.Interlocking Elements and XMLSerialziation
The infrastructure layout is modeled using a CAD program, and can be exchanged through the RailML
format. An extension of RailML for describing tabular interlocking specifications is described in the
paper Efficient formalization of railway interlocking data in RailML. An (incomplete) example of the
interlocking format is shown in Figure 17.

Interlocking Module is based on Serialization of Interlocking schema of the tabular data used in
Railway, based on Bon Janssen work [6]. To utilize his schema, we used XMLSerialziation classes from
.Net framework. We converted XML file to XSD schema using Microsoft XML Schema Definition
(XSD.exe) tool [17]. Later, using the same tool, XSD schema is used to generate .Net Classes as shown
in following figure.

35

1 <?xml version="1.0"?>

2 <interlocking xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"

3 xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<signals>

4
) <signal ref="11005">
6 <aspectSpeedDependencies>
Vi <aspectSpeedDependency aspect="Hs20" vApproach="40" vPass="0" />
8 <aspectSpeedDependency aspect="Hs21" vApproach="-" vPass="60">
<targetRef ref="11055" />
</aspectSpeedDependency>
<aspectSpeedDependency aspect="Hs22" vApproach="-" vPass="270">
<targetRef ref="11015" />
</aspectSpeedDependency>
</aspectSpeedDependencies>
</signal>
<signal ref="11055">
<aspectSpeedDependencies>
<aspectSpeedDependency aspect="Hs20" vApproach="40" vPass="0" />
<aspectSpeedDependency aspect="Hs21" vApproach="-" vPass="60">
<targetRef ref="11075" />
</aspectSpeedDependency>
<aspectSpeedDependency aspect="-"
</aspectSpeedDependencies>
</signal>
</signals>
<routes>
<route id="1">
<start>
<signalRef ref="pro.Routes.Route.Start.SignalRef.Ref" />
</start>
<target>
<signalRef ref="Target.SingalRef" />
</target>
<elements>
<switchRef>
<switch ref="Ref" course="Left" />
</switchRef>
<levelcrossingRef>
<levelcrossing ref="Ref" beam="Beam" />
<levelcrossing ref="Ref" beam="Beam" />
<levelcrossing ref="Ref" beam="Beam" />
</levelcrossingRef>
<trainDetectorRef>
<trackCircuitBorder ref="Ref" />
<trackCircuitBorder ref="Ref" />
<trackCircuitBorder ref="Ref" />
</trainDetectorRef>
</elements>
<flankElements>Flank</flankElements>
50 <routePriority rank="1" />
51 </route>
52 </routes>
53</interlocking>

vApproach= vPass="-" />

Figure 20 Interlocking XML Schema

This Interlocking Schema object contains reference for all object types we need for this schema. We
take/generate this object based on user input and provide an interactive editor in RailCOMPLETE for
Interlocking.

4.4.Prototypes
In following section, we will discuss the different prototypes we implemented during this research
period

4.4.1. Version 1.0
Prior to first prototype, we researched for possible representations of Interlocking data and compared
it with original interlocking tables which are usually used in railway domain. Usually with some nominal
changes, most elements are common in different railway system. railML framework provides
functionality for interoperability between railway centric applications, so specifications from Bob
Janssen [3] help us conceiving a standardized format for Interlocking schema.

With thorough discussion on the layout of those tables with my supervisors and Clause Feyling from
RailCOMPLETE, we proposed to use the railML specification for interlocking. Since there is no complete
standardized interlocking domain model, so each railway administration is likely to have their own
additions and customizations to the railML model. We are using the elements intended within
Norwegian rail since RailCOMPLETE is currently supporting only Norwegian standards of track layouts.

[Interlockin De/Serializer mE =10 x|

Input fle [E\Thesis\Master_Shahzad'Assignments'\Code'Asig#0 1 Thesis\Assign_1_XmiSeriz | il E' @ Aoply
XSLTfie | =] ouput [Hm =] 5| 1] Aoply
XsDfie | =] il @l Aoply
Xpath | x| Sshow |value =l Apply

=?7xml version="1.0" encoding="utf-8" 7>
- <interlocking xmins:xsi="http:/ fwww.w3.org/2001/XMLSchema-instance"
xmins:xsd="http:/ fwww.w3.org/2001 /XMLSchema"=
- <signals=
- «signal ref="SignalRef_1">
- <aspectSpeedDependencies
- <aspectSpeedDependency aspect="REF" vApproach="VApproach"
vPass="Vpas">
<targetRef ref="TargetRef" /=
<targetRef ref="TargetRef" />
<targetRef ref="TargetRef" /=
</aspectSpeedDependency >
- «zaspectSpeedDependency aspect="REF" vApproach="VApproach" -

[

@l 2. Open | L") Copy |] Edit ||_ Show as Tree @ Ok

oo oncmocncmomocmomomaEd

Figure 21 Prototype Version 1.0 Serializing XML Schema

37

In this version, we converted the XML schema proposed in railML to .net based class structure. We
tested the XMLSerialziation and deserialization to access the data stored in classes from object to xml
and xml to objects.

[® Interlockin De/Serializer {me Y [3]
Serae

XSLT file I {Assign_1_¥mlSerialization_Interlocking. Core. Interlocking. Interlocking(HashC
ode:64479624)}
XD file I Signals: {}

XPath I {Assign_1_¥mlSerialization_Interlocking.Core. Interlocking. Model, Signals(Has 3 Apply |

hCode:43445707)}

rputtie [Eree: IR ﬂg © _aw |

— <interlockir Code:55467050)} nce"

xmins:xs
- <signals:
- <signal {Assign_1_xmlSerialization_Interlocking. Core. Interlocking. Mode!, Signal (Hash
- <asp Code:29441404)}

AspectSpeedDependendies: { }

Ref: "SignalRef_1"

% FRoutes: {}

<

Signal: ... -
<?xml Versi fassign_1_¥miSerialization_Interlocking.Core. Interlocking. Madel Signal (Hash :'

AspectSpeedDependendies: { }
Ref: "SignalRef_1"

— <a:

{Assign_1_XmlSerialization_Interlocking. Core. Interlocking. Model. Routes(Has
hCode:63646052)}
h Route: {}
=i
_ <3 {Assign_1_XmlSerialization_Interlocking.Core. Interlocking. Mode!.Route(Hash h"
Code: 35943562} R
— Start: {}
Target: {}

EI Elements: { } @l ok |
FlankElements: "Flank™
RoutePriority: { } l
Id: "1”

2

[oc |

Figure 22 Prototype Version 1.0 Deserializing of schema

Following table provides overview of functionality achieved in this prototype.

Legend Information
1.0
o Developer of Module
o RailCOMPLETE Developers
Functionalities e Defining interlocking schema in XML
e writing class representation of that data in C#

IR 08/04/2016
_ e Bjgrnar Steinnes Luteberget
e Converting XML to C# object

e Converting C# object to XML file

e Writing and editing file on a specific location
Technical e Microsoft .Net

o CH

o XML Serialization classes

e WinForms

This prototype help us to understand the schematic specifications much better from implementation
point of view. Our primary objective during this phase was to understand the problem complexity and

38

to define and agree on schema for Interlockings. This prototype is developed in .Net WinForms and
.Net Serialization classes are used to create XML to/fro Object Classes.

4.4.2. Version 2.0

In version 1.0 we used XML specifications we proposed for interlocking in object-oriented classes.
Schemas generated from Interlocking tables can be of varying length and nested elements, so we
cannot present a static interface for different schemas. For making it editable, a dynamically populated
user interface with appropriate controls is necessary. Another key aspect of this prototype is
development in Windows Presentation Foundation Framework (WPF), since RailCOMPLETE is making
the development heavily in WPF, to make our final module integrable and ready for future research /
development, we used WPF. WPF gives us the flexibility to design interfaces completely detached
from business logic or backend functionality.

In Version 2.0, we designed the Ul and created binding for XML schema with WPF tree view. User can
load the XML schema from an already created xml file, edit it and save it in the file. Results can be
observed immediately in adjacent section of the prototype

B Window1 — m] X
{ Load XML Save XML _
4 Interlocking & | <?xmlversion="1.0" encoding="utf-16"7>
4 Signal <interlocking xminsasi="http:/fwww.w3.org/2001/XMLSchema-instance™ xminsxsd = "http://www.w3.org/2)
Ref = <signals>
4 SignalRefd <signal ref="SignalRefd">
4 AspectSpeedDependencies <aspectSpeedDependencies>
AspectSpeedDependency: <aspectSpeedDependency aspect="REF" vApproach="VApproach" vPass="Vpas">
4 Aspect:| per |VApproach: VApproach [VPass:| Vpas ::::g:tg:: ::ijr::g::::: ii
Ref: TorgetRef <targetRef ref="TargetRef" />
«/aspectSpeedDependency>
Ref: TargetRef <aspectSpeedDependency aspect="REF" vApproach="VApproach" vPass="Vpas™>
«<targetRef ref="TargetRef" />
Ref: Toraetfef <targetRef ref="TargetRef" />
arge <targetRef ref="TargetRef" />
AspectSpeedDependency: </aspectSpeedDependency>
“ Aspect| ReF |VApproach:| vapproach |VPass: Vpas <a;;:5ct5?;:defepe_PdentcEfe :sEect:"REP' vApproach="VApproach" vPass="Vpas">
<targef ref="Targe e
Ref: TargetRef <targetRef ref="TargetRef" />
<targetRef ref="TargetRef" />
Ref: TargetRef </aspectSpeedDependency>
</aspectSpeedDependencies>
Ref: TargetRef </signal>
<signal ref="SignalRef_2">
. AspectSpeedDependency: <aspectipeedDependencies>
Aspect: Rer |VApproach:| vapproach [VPass:| Vpas <aspectSpesdDependency aspect="REF" vApproach="VApproach" vPass="Vpas™>
<targetRef ref="TargetRef" />
Ref: TargetRef <targetRef ref="TargetRef" />
«<targetRef ref="TargetRef" />
Ref: TargetRef «/aspectSpeedDependency>
<aspectSpeedDependency aspect="REF" vApproach="VApproach" vPass="Vpas™>
Ref: TargetRef <targetRef ref="TargetRef" />
<targetRef ref="TargetRef" />
a Ref SignalRef 2 <targetRef ref="TargetRef" />
4 AspectSpeedDependencies «/aspectSpeedDependency>
AspectSpeedDenendency: <aspectSpeedDependency aspect="REF" vApproach="VApproach" vPass="Vpas™>
M ASP . P vf\ i: VBasel <targetRef ref="TargetRef" />
PeCt| REF | VAPProacit| WApproach |VFass:| Vpas <targetRef ref="TargetRef" />
Ret: <targetRef ref="TargetRef" />
) TargetRef «/aspectSpeedDependency >
Ref: TorgetRet <'li:l_;‘?"s;:‘licﬁpEedDependEnc\es)
< ls=
Ref: TargetRef <r;|3::s:
e __in . i <route id="1">

Figure 23 Prototype Version 2.0

We can solve the problem of dynamic control loading by Model-View-ViewModel (MVVM) in WPF,
where model refers either to a domain model or to the data access layer representation, view
constitutes for layout or user interface and view model is the abstraction or binding element for
view and model.

39

Implemented functionalities in version Version 2.0 are presented below.

Legend Information

20

IEEC 20/05/2016

e Developer of Module

RailCOMPLETE Developers

Claus Feyling

Bjgrnar Steinnes Luteberget

Christian Johansen
Functionalities Binding XML representation with Input/output controls
Loading data from XML schema
e Saving input in XML Schema

Technical e Microsoft .Net
o CH
o XML Serialization classes
e Windows Representation Foundation (WPF)

4.4.3. Version 3.0

In Version 3.0 Interface is revamped and file loading/unloading process is rewritten per our meeting
with RailCOMPLETE. Aspect dependencies and References for dependencies were discussed and a
new requirement for creating file from scratch was captured. This version can serve as a stand-alone
tool to edit any XML based schema for Interlocking as well

Below given screenshot of Interlocking Module is with redesigned interface and input controls.

InterlockingEditor

aspectspesdDependancy:
Aspect] s20|vapproach 48] vpass]
AspestspesdDependancy:

* spect st [Uappoach | vPess 3]

" [
P ——
* apec | 2 ippeoac s 57

at [
2 st it

+ ispectSpeedDependencies
‘aspactsposdouy

pr e W

910 ROUteS RO LT STAITSgnamet 2e!
TargeLsingalRer

Figure 24 Prototype Version 3.0

40

Following tables shows information about functionalities implemented in this prototype.

Legend Information

3.0

IEEC 26/08/2016

e Developer of Module

RailCOMPLETE Developers

Claus Feyling (As Interlocking Engineer)

Bjgrnar Steinnes Luteberget

Christian Johansen
Functionalities Redefining XML Schema
Editing the value and presenting changes in file
Saving files
Thematic changes for RailCOMPLETE design consistency
Microsoft .Net

o C#
e XML Serialization classes

Implementation

e Windows Representation Foundation (WPF)

4.4.4. Version 4.0

In Version 4.0 Interlocking module from Version 3.0 is integrated with RailCOMPLETE and successfully
loaded and used in AutoCAD. This version can be installed along with RailCOMPLETE software and
based on needs can be loaded/unloaded from active plugins directory. In order to access the
functionalities, we are using the same pattern which is being established in RailCOMPLETE, as of using
command bar. On submitting “SHAHZAD-INTERLOCKING-EDITOR”, our module is loaded and presents
schema definition and modification tool.

For this demonstration, we have produced a file within the AutoCAD plugin Directory for Interlocking
schema, using the XML serializers.

Following is the overview of functionalities in Version 4.0.

Legend Information

4.0

AEEE 06/09/2016

o Developer of Module

RailCOMPLETE Developers (As developers and Layout engineers)
Claus Feyling (As Interlocking Engineer)

Bjgrnar Steinnes Luteberget

Christian Johansen

Integration of Interlocking module in RailCOMPLETE

e Editing XML structure based on input

e lLoading module from command AutoCAD command prompt

e Loading/Unloading Interlocking module from Module window

Implementation e Microsoft .Net
o CH

Functionalities

41

XML Serialization classes

Windows Representation Foundation (WPF)
AutoCAD 2016

RailCOMPLETE

AutoCAD.Net

Following screenshots demonstrates the use case of creating interlocking for a new route document.
RailCOMPLETE is providing support tools in designing a track for different rules and regulation by
different rail administrations (JBV and Sporveien).

Start New RDF

Unnamed project

BV

JBV
Sparveien

Figure 25 RailCOMPLETE new project administration options

We can click on New RailCOMPLETE document and create one, in this example according to JBV
standards and press OK. This will open a New RailCOMPLETE document.

Start New RDF

new route

JBY

Figure 26: Creating New RailCOMPLETE Project

42

Interlocking module can be loaded from command line as well, as heavily used practice throughout
in RailCOMPLETE. Here we are using load on user request and from command prompt parameters of
the LOADCTRL defined by AutoCAD framework.

E ~ SHAHZAD-INTERLOCKING-EDITOR a

Figure 27 Using command to load Interlocking Module

When a user try to provoke Interlocking module, we make sure that there is an active RailCOMPLETE
document opened/created for which we need to make interlocking schema. Module can only be
loaded in an active RailCOMPLETE document or otherwise it will display error that this is not a
RailCOMPLETE document as shown in following figure.

Figure 28 Loading Interlocking Module without a RailCOMPLETE document.

Interlocking can be loaded/unloaded based on preferences and can act as a hot pluggable Module for
RailCOMPLETE. Program may ask for permission to load executable binary, which we can confirm to
load. This specific dialogue box may appear if binaries are modified and not loaded from AutoCAD
after modifications.

An unsigned executable file that you previously trusted is now modified. What
do you want to do?

Mame: RailComplete AutoCAD Core. dll

Location: C:\ProgramData Autodesk ApplicationFlugins
“RailComplete.bundle*Contents

Make sure this file comes from a trusted source and does not contain
malicious code.

[Aways load this application
Load Do Mot Load Help

Figure 29 Loading Unsigned modules

Following screenshot displays all the available module for RailCOMPLETE. Interlocking Module uses
the same module structure which is being used in RAILCOMPLETE. Users are already familiar with this
approach so loading/unloading our module will be effortless for users.

43

Figure 30 Using Module management to load Interlocking pluging

One of the worth noting point here is to not require from user to load modules manually each time
they run AutoCAD, so our module must be ready to use and should be in a seamless position. For
manually loading .Net assembly, a user needs to use NETLOAD command at the command prompt or
within AutoLISP file. However, for auto-loading of modules, there are wide variance of ways how to
enable automatic module loading mechanism like acad.lsp, acad.ads acad.rx etc but most sustainable
and neat way to do this is demand-loading mechanism [18]. Demand-loading mechanism enable auto-
load of Microsoft .Net framework programs/ applications.

Implementation of Demand load is easy in recent versions of AutoCAD. We must define a key specific
to the application (Interlocking Module) we want to load at startup. This key must be placed under
Application key for AutoCAD release we are targeting and want to load our application in. Following
parameter needs to be included in application key [19].

i Description: .Net assembly description (optional) [string]

ii. LOADCTRLS: Control parameter for loading behaviors [DWORD numeric]
a. 1=Load application on proxy object detection
b. 2 =Load at startup
c. 4 -Lload at start of a command
d. 8—Load at request from user or application
e. 16-Do notload
f. 32— Transparently application loading

iii. LOADER: Path to the module [string]

iv. MANAGED: Specifies the file (.Net assembly or ObjectARX) to be loaded.

[1=.Net Assembly files] [DWORD]

This information key can be stored in either under HKEY_LOCAL_MACHINE or HKEY_CURRENT_USER
registry for Microsoft platform of operating systems. HKEY_LOCAL_MACHINE key writing requires
appropriate privileges, since this key is at machine level and not for current user.

44

We have used both methods, where application is loaded automatically as well as if module is
unloaded, a user can load it through module management or from command prompt. Below is the

code in C# for the management of application key. This code sample is provided from AutoCAD user

manuals [19] and being used in Rail COMPLETE for module loading.

1. using Microsoft.Win32;

2. using System.Reflection;

33

4. using Autodesk.AutoCAD.Runtime;

5. using Autodesk.AutoCAD.ApplicationServices;

6. using Autodesk.AutoCAD.DatabaseServices;

7.

8. [CommandMethod("RegisterMyApp")]

9. public void RegisterMyApp()

10. {

11. // Get the AutoCAD Applications key

12, string sProdKey = HostApplicationServices.Current.RegistryProductRootKey;
13. string sAppName = "MyApp";

14.

15. RegistryKey regAcadProdKey = Registry.CurrentUser.OpenSubKey(sProdKey);
16. RegistryKey regAcadAppKey = regAcadProdKey.OpenSubKey("Applications”, true);
1 7

18. // Check to see if the "MyApp" key exists

19. string[] subKeys = regAcadAppKey.GetSubKeyNames();

20. foreach (string subKey in subKeys)

21 {

22. // If the application is already registered, exit

23. if (subKey.Equals(sAppName))

24. {

25 regAcadAppKey .Close();

26. return;

27 }

28. }

29.

30. // Get the Location of this module

31. string sAssemblyPath = Assembly.GetExecutingAssembly().Location;

32.

33. // Register the application

34. RegistryKey regAppAddInKey = regAcadAppKey.CreateSubKey(sAppName) ;

35. regAppAddInKey.SetValue("DESCRIPTION", sAppName, RegistryValueKind.String);
36. regAppAddInKey.SetValue("“LOADCTRLS", 14, RegistryValueKind.DWord);

37. regAppAddInKey.SetValue(“LOADER", sAssemblyPath, RegistryValueKind.String);
38. regAppAddInKey.SetValue("MANAGED", 1, RegistryValueKind.DWord);

39.
40. regAcadAppKey .Close();
41. }
42.

45

43,
44,
45,
46.
47.
48.
49,
5@.
51.
52.
53.
54.
55.
56.

[CommandMethod{ “UnregisterMyApp”)]
public void UnregisterMyApp()

{

// Get the AutoCAD Applications key
string sProdkKey = HostApplicationServices.Current.RegistryProductRootKey;
string sAppName = "MyApp";

Registrykey reghAcadProdKey = Registry.CurrentUser.OpenSubKey(sProdKey);
RegistryKey regAcadAppKey = regAcadProdKey.OpenSubKey(“Applications"”, true);

// Delete the key for the application

reghcadAppKey .DeleteSubKeyTree(sAppName) ;
regAcadAppKey .Close();

Figure 31 .Net application demand-load code [19]

Once Interlocking module is loaded, we can use the command prompt to display Interlocking editor

interface. This interface is being used to display interlocking file elements or for creating the desired

elements of interlocking for a track, view changes and save the file. We are using the interface from

prototype 2.0, since AutoCAD application limits some of the advanced feature to draw Ul through

XAML.

Every interface is treated as user interface type, due to which resource dictionaries are hard to load

without workarounds or patches. Since our goal for this project was to attain maximum functionality

in limited time, we dropped the interface developed in Version 3.0 and used the normal and simple

interface without any resource dictionaries or theme packages.

Figure 32: Editing Interlocking schema

46

4.5.User Feedback

In this section, we will go through user feedback we received during the iteration of project.
4.5.1. Version# 1 feedback

4.5.1.1. Supervisor’s feedback

Legend Information

Version 1.0

University of Oslo

08/04/2016
e Developer of Module
e Bjgrnar Steinnes Luteberget

Internal (Supervisor’s feedback)
e Assessing technical challenges
e Defining project technical expectancy
e Assessing programming skillset

Implementation: e Defining interlocking schema in XML

e writing class representation of that data in C#

e Converting XML to C# object

e Converting C# object to XML file

e Writing and editing file on a specific location

e Schema needed to be independent of built-in markup and can be
assessable for better textual representation in GUI

e Classes are generate correctly aligned within the scope of interlocking
schema

4.5.1.2. Supervisor’s feedback

Legend Information

Version 1.1

University of Oslo

14/04/2016
e Developer of Module
e Bjgrnar Steinnes Luteberget

Internal (Supervisor’s feedback)
e Schema needed to be independent of built-in markup and can be

assessable for better textual representation in GUI

Implementation: e (Classes are data bounded with WPF tree view control and string
representations are handled outside of core interlocking classes,
independent of making changes in XML schema

e Goal achieved

47

4.5.1.3. RailCOMPLETE Developer’s feedback

Legend Information

11
FEIE university of Oslo

15/04/2016
e RailCOMPLETE Developers
External (RailCOMPLETE developer’s feedback)
Implementation: e Defining interlocking schema in XML
writing class representation of that data in C#
Converting XML to C# object
Converting C# object to XML file
Writing and editing file on a specific location
Classes are independent and can be reused in RailCOMPLETE code as a
.dll code library

4.5.2. Version#2 Feedback

4.5.2.1. Supervisor’s feedback

Legend Information
o Developer of Module
Functionalities e Binding XML representation with Input/output controls
GUI controls must be scrollable
Get Claus Feyling feedback on Interlocking data

2.0
e Bjgrnar Steinnes Luteberget
Loading data from XML schema
“ Saving input in XML schema in next iteration

ILEIE 20/05/2016
- e Christian Johansen
Saving input in XML Schema (N/A)
Output must be more user-friendly
4.5.2.2. Claus Feyling feedback

Legend Information

20
IEEE 24/05/2016

o C(Claus Feyling

Binding XML representation with Input/output controls
Loading data from XML schema

Saving input in XML Schema (N/A)

Files loaded successfully

Functionalities

48

e Train restrictions can be more than one constants in interlocking
schema.

o “Local release area” elements for interlocking can be useful
(Norwegian rail).

4.5.2.3. RailCOMPLETE Developers feedback

Legend Information
Version 2.0
24/05/2016
o RailCOMPLETE Developers
Functionalities e Binding XML representation with Input/output controls

e Loading data from XML schema

e Saving input in XML Schema (NA)

e Goal achieved for binding schema with controls

e For later stages, if possible, we can use MVVM approach to bind the
schema on code behind.

4.5.2.4. Supervisor’s feedback

Legend Information
Version 2.1
25/05/2016

o Developer of Module
RailCOMPLETE Developers
Claus Feyling
Bjgrnar Steinnes Luteberget
Christian Johansen
Saving input in XML Schema
e Goal achieved

Functionalities

4.5.3. Version#3 feedback

4.5.3.1. Supervisor’s feedback

Legend Information
Version 3.0
University of Oslo
26/08/2016

e Christian Johansen

e Bjgrnar Steinnes Luteberget
Internal (Supervisor’s review)
Implementation: e Multiple constant elements on train movements
e GUI reworked

49

_ e Logic made generic for any level of xml tree

e Goal achieved
e After integration, MVVM can be implemented

4.5.3.2. RailCOMPLETE developer’s feedback

Legend Information
Version 3.0

FEES university of Oslo
R 01/09/2016
“ e RailCOMPLETE Developers (additionally as Track Engineers)
e Claus Feyling (As Interlocking Engineer)
External (RailCOMPLETE)
Implementation: e Multiple constant elements on train movements

e GUI reworked
e Logic made generic for any level of xml tree

LELETS « Goal achieved

4.5.4. Version#4 feedback

4.5.4.1. Supervisor remarks

Legend Information
Version 4.0
University of Oslo
06/09/2016

e RailCOMPLETE Developers (additionally As Track Engineers)
e Claus Feyling (As Interlocking Engineer)

External (RailCOMPLETE)

Implementation: e Integration with RailCOMPLETE

e GUI changes due to AutoCAD limitation

e Goal achieved

4.5.4.2. Clause Feyling remarks

Legend Information
Version 4.0
University of Oslo
10/09/2016
e Claus Feyling (As Interlocking Engineer)
Level External (RailCOMPLETE)
Implementation: e Integration with RailCOMPLETE

e GUI changes due to AutoCAD limitation

e Goal achieved

e Add/Delete button for tree elements dynamically (extended
functionality)

4.5.4.3. RailCOMPLETE Developers remarks

Legend Information
Version 4.0
University of Oslo
17/09/2016
e RailCOMPLETE Developers (additionally As Track Engineers)
Level External (RailCOMPLETE)
Implementation: e Integration with RailCOMPLETE

e GUI changes due to AutoCAD limitation
e Goal achieved

4.6.Technologies
As this project was a part of RailCOMPLETE, some of the used technologies were pre-requisite for
implementation, while other framework or technologies are used for supporting the vision of project.

Microsoft .Net 4.6: RailCOMPLETE is being developed in .Net framework, and although using .Net
framework was not requirement but due to compatibility benefits, | choose to carry development in
Microsoft .Net framework.

AutoCAD 2016: AutoCAD is design tool being used in RailCOMPLETE for design Railway routes. | used
AutoCAD API for communicating with AutoCAD model of infrastructure, so | can populate or create
Interlocking file from real data.

| am using AutoCAD.Net API for this project to access module management features to integrate
Interlocking module in AutoCAD environment.

RailCOMPLETE: RailCOMPLETE is an AutoCAD plugin which provide the functionality to draw and
define the railway related drawings, tables, 3D views, reports and railML® files.

RailML: An open xml based data exchange format for railway applications interoperability. [20]

WPF/XAML: UX design of the project is being done in Windows Presentation Foundation which takes
XAML syntax to interpret and draw design components. WPF gives flexibility of controls and their
customization. As RailCOMPLETE will be upgraded to WPF in future, keeping that prospective in mind,
| used WPF for this project.

51

CHAPTER 5

SUMMARY & FUTURE WORK

52

5. Summary and Future Work

In this last chapter, we briefly write about possible future work directions to improve this framework.
Certainly, this project has fair bit of room for improvement in term of extensibility and functionality.
We will close this chapter with a detailed summary of our work in this project.

5.1. Achievement of project objectives
In the beginning of this thesis, we stated preliminary objectives for this project. During the process of
requirement gathering and our interaction with railway engineers, we acquired the understanding of
how these goals stands in term of usability for users and achievable in term of project duration.

Following is the list of objective and description of our progress for the accomplishments of these
objectives.

1. First objective was to present interlocking tabular data in a format which can be created and
modified easily in comparison to tabular sheets. We derived interlocking schema from
specification presented in “Effective formulization of Interlocking data in RailML” [3].

2. Our next goal was to translate this interlocking XML schema in Object oriented code structure so
we can manipulate and perform processing on future usage. We accomplished this task by using
Microsoft .Net framework.

3. Once we created the library (.dll) for interlocking schema in object-oriented classes, we started
designing interface for the representation of these specifications. We first created WinForms
based Ul but after discussion with RailCOMPLETE developers, we started designing interface in
Windows Presentation Foundation. Graphical User Interface was the tricky part of the project
since interlocking specifications can vary and so does the does in those specification files. So, we
must create a dynamic interface based on a specific XML structure. We solve this problem by
defining a generic hierarchy of tree-view control and assigning XML nodes programmatically to
tree-view childs. Due to this, we slightly changed the domain model to meet our requirements, as
an interlocking file can have multiple childs nodes under single root for example Interlocking root
can have both Signals and Routes. We introduced Collection Containers as Composite Collection
object to overcome this issue.

4. Next step was to integrate our module with RailCOMPLETE framework. We acquired the code for
framework and studied its architecture. Since RailCOMPLETE is a plugin for AutoCAD itself, we had
to understand AutoCAD.net APl as well. We created a global string constant to save Interlocking
specifications created in second step, as discussed earlier.

5.2.Critical Reflections
Through above mentioned stages, based on my struggle | realized that | have invested much time on
interface designing of this project. Since XML specifications for interlockings can differ so we needed
a generic approach to bind user interactive controls with specifications. For solving this issue, | had to
sketch templates for binding, which are serving the purpose but later during my research | found that
If | had used Model-View-ViewModel approach from beginning, it could have saved a deliberate
amount of time for the development of future functionalities, given that learning of MVVM in WPF
takes as much time as the approach | used. As in right now, our controls can get data from XML
structure but in the backend, we are serializing and deserializing all information in one long step. While
MVVM could have provided us a two-way binding which can store data in models and those models

53

are further linked with XML nodes. In this fashion, a very useful feature for dynamically
creating/modifying new nodes of elements in already created interlockings, could have been achieved.
Furthermore, by using this technique we could have saved time for the enhancement of this project
and more user feedback.

One another important aspects of findings throughout this research is, | used IBM Rational Unified
Process methodology for the management of software development and requirement gathering
process. | found that if | had attempted to implement this methodology in its complete form for this
project work, that would have leads this project to further delay. As RUP is very extensive model and
for small teams and projects It might not be beneficial to use if implemented in full scope. During the
analysis phase, based on duration of our project and efforts for requirement gathering, | decided to
only use RUP for the system requirement gathering during our sessions with users and to capture
those requirements in UML diagrams. This has saved us going off-track from our project plan. This is,
however, admittedly, a difficult balance to negotiate in practice for projects and resources at this
scale, but the | do realize that RUP can provide some baselines and directions to students and
researchers in their projects for a systematic approach to solve a problem.

5.3.Summary
In this manuscript for thesis, we tried to describe the work done in partial fulfillment of the
requirement for degree of Masters in Informatics: Programming & Networks. We started this work
with a limited scope of an integrated module for RailCOMPLETE, for the automation of interlocking
tabular data. To achieve this goal, we developed the said module for RailCOMPLETE with basic
functionalities and integrated successfully with already developed RailCOMPLETE plugin for AutoCAD
tool.

In chapter 1 we stated the initial motivation for this project, briefly introduced RailCOMPLETE
framework and scope of functionality for our thesis as well as structure of this essay.

In chapter 2 we give a thorough briefing on railway signals and its development through the history.
Key concepts and elements being used in railway tracks are also discussed with figures where
applicable. Furthermore, Motivation behind this project, problem statement for the need of
Interlocking editor are also discussed in this chapter.

Software project requirements and details of RailCOMPLETE framework are discussed in planning and
analysis chapter. We used IBM RUP [21] framework to illicit user requirement first which followed by
the implementation in later stage of the development. RUP requires that before an application is build,
a through business modelling and requirement gathering must be done. Based on our meetings with
users (RailCOMPLETE employees), we proposed the functionality of project in RUP templates using
UML.

Later we presented the detail of implementation throughout its several prototype versions and
technologies being used. We also discussed the framework we used for software development.

Evaluation comments of this tool are captured and presented in chapter 4, as we demonstrated the
tool after each iteration of prototype. The evaluation of Interlocking editor showed good acceptance
results as by using a built-in Interlocking editor, management of different key elements from
interlocking schema, users could achieve the desired results with much more ease than the traditional

54

method of recording in tabular sheets. However since, advance features of the project were not
implemented due to time constraints and their level of complexity, full potential of project cannot be
gauged. We pointed toward those extensions of functionalities in following section. We encouraged
forthcoming, research students interested in railways information systems and graph search to
improve this project. Outcome can be refined by conducting further studies on different railways
systems and by including more user types and their requirements in this project. However, since
Interlocking is a sensitive and essential part of railway operations, safety must not be neglected as
advance features includes prediction of rail movements based on user input.

5.4.Future Work
As discussed in chapter 1, there are some advance aspects of functionality where are a desirable
extension to current program including but not limited to visualization of interlocking and synthesis
of interlocking tables from track layout. In this section these aspects are briefly discussed.

5.4.1. Interlocking Visualization
AutoCAD design file contains many different symbols and a RailCOMPLETE document is a complex
drawing of whole rail track. While working in Interlocking Editor, a highlighted route when selected an
element in interlocking editor, can help user in readability of the design.

Furthermore, visualization of train movements as per interlocking data, where a user can manipulate
information regarding interlocking element and a simulator simulates this movement on said track
can further enhance the safety of the design and help user in observe changes in real time.

5.4.2. Synthesis of Interlocking tables
Much of the contents of the tabular interlocking is easily derived by looking at the station layout. For
example, overlapping routes must be listed in the interlocking table, and this information can be
automatically deduced by a program checking overlaps between all combinations of routes.

A processing of rules related to a specific rail system, and based on those constraints processing track
diagram to list overlapping routes, suggesting elements on track, violations of rules and automation
of consistency in user input can enhance the usability of the program. Graph search and logic encoding
may be the techniques that can be used for this functionality.

5.4.3. Domain Model extensions
In one of the session with RailCOMPLETE engineers, Clause Feyling(C.E.O) mentioned Local release
area elements being used widely in Norway than other railways. This opens the possibility to further
enhance the domain model presented in this project based on railML specifications, to meet different
railway system’s specification. Since implementation for conversion of interlocking schema and
classes is generic, any extension and further work on domain model will increase the usability of the
project and help make it regulation specific for special needs.

55

Bibliography

[1]

(2]

(3]

[4]

(5]

(6]

(7]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

"AutoCAD," AutoDesk, [Online]. Available:
http://www.autodesk.com/products/autocad/overview. [Accessed 8 11 2016].

"Office Primary Interop Assemblies," [Online]. Available: https://msdn.microsoft.com/en-
us/library/15s06t57.aspx. [Accessed 21 September 2016].

M. B. E. Q. B. J. and R. M. G., "Efficient formalization of railway interlocking data in RailML,"
2014,

"Railway Operation and Control “by Joern Pachl".

A. Lawrence, Verification of Railway Interlockings in Scade, Swansea, Wales: Swansea
University, 2011.

H. Schofield, "How Napoleon's semaphore telegraph changed the world," [Online]. Available:
http://www.bbc.com/news/magazine-22909590. [Accessed 19 July 2016].

"Railway signal," [Online]. Available: https://en.wikipedia.org/wiki/Railway_signal. [Accessed
18 July 2016].

"Railway Semaphore Signal," Wikipedia, [Online]. Available:
https://en.wikipedia.org/wiki/Railway_semaphore_signal. [Accessed 22 September 2016].

"ROUTE SIGNALLING," [Online]. Available: http://www.railway-technical.com/sigtxt5.shtml.
[Accessed 19 July 2016].

"OVERHAULING AND TESTING OF INTERLOCKING," Indian Railways, [Online]. Available:
http://www.indianrailways.gov.in/railwayboard/uploads/codesmanual /SEM-
Il/SignalEngineering%20ManualllCh13_data.htm. [Accessed 22 September 2016].

M. Marks, "provision of Overlaps, Flank Protection and Trapping," Railway Group Standard,
vol. GK/RT0064, no. One, pp. 9-10, 2000.

J. Pachl, "Railway Knowledge from J6rn Pachl," 16 9 2016. [Online]. Available:
http://www.joernpachl.de/German_principles.htm. [Accessed 16 9 2016].

R. Software, "Rational Unified Process, Best Practices for Software Development Teams,"
Rational Software , 2001.

P. Kruchten, "A Rational Development Process," vol. 9, no. 7, pp. 11-16, 1996.

P. Christensson, ""RUP Definition." TechTerms," Sharpened Productions, 2006, [Online].
Available: http://techterms.com/definition/rup. [Accessed Web. 26 September 2016].

[16] "Rational Software Architect Designer," IBM, [Online]. Available: http://www-
03.ibm.com/software/products/en/ratsadesigner. [Accessed 17 10 2016].

[17] Microsoft, "XML Schema Definition Tool (Xsd.exe)," Microsoft Corporation, [Online]. Available:
https://msdn.microsoft.com/en-us/library/x6c1kb0s(v=vs.110).aspx. [Accessed 7 March 2016].

[18] "Automatic loading of .NET modules," Through the Interface, [Online]. Available:
http://through-the-
interface.typepad.com/through_the_interface/2006/09/automatic_loadi.html. [Accessed 17
October 2016].

[19] "AutoCAD Help," Autodesk, [Online]. Available:
http://help.autodesk.com/view/ACD/2016/ENU/?guid=GUID-70D60274-57E0-4B22-8D0C-
3C7F212A7CAF. [Accessed 17 October 2016].

[20] "RailML Concept," RailML.org, [Online]. Available:
https://www.railml.org/en/introduction/concept.html. [Accessed 14 October 2016].

[21] "Rational Unified Process," Wikipedia, [Online]. Available:
https://en.wikipedia.org/wiki/Rational_Unified_Process. [Accessed 2 10 2016].

57

Appendices

58

Appendix A

Installation for Windows 10

This section contains the instruction to setup a Microsoft Windows 10 based device for the installation
of Microsoft Visual Studio, AutoCAD, AutoCAD.Net API packages through Package manager console.
This installation also works for Windows 7 and Windows 8.x

A.1 Microsoft Visual Studio 2015

Microsoft Visual Studio is an Integrated Development Environment (IDE) by Microsoft which enables
developers to write code efficiently without losing the context. It helps to utilize different frameworks
easily, build, debug and create different project extensions based on preferences of the project on a
variety of platforms including but not limited to Windows, Linux, Mac etc.

A.1.1 Installation
a) Gain Administrator Access on machine
b) Download (Buy) the appropriate installation version per your system specifications, from

c) Start the installation by running Setup.exe in administrative mode, which is usually located in
the root directory of file where program was downloaded and follow the on-screen
instructions.

d) Finish the software installation and restart computer to start using MS Visual Studio.

A.2 AutoCAD 2016

A.2.1 Installation
a) Download (Purchase) the product version specific to your system specification from

b) Launch the Autodesk AutoCAD product installer by .exe or .dmg file you have downloaded
c) Select the desire language on top-right corner and press install.

d) Follow the instruction and Choose Autodesk AutoCAD 2016 from list of products.

e) Finish installation.

A.3 Nuget Package for AutoCAD 21.02

A.3.1 Installation
1. Toinstall AutoCAD.Net API, run the following command in Package Manager Console or search
in Nuget Packet Manager for AutoCAD.Net

PM> Install-Package AutoCAD.NET

59

https://www.visualstudio.com/
https://www.autodesk.com/

Appendix B

CODE

Microsoft .Net C# and XAML code for Interlocking Object representation of
railML interlocking schema and RailCOMPLETE Module

B.1 Components

This project consists of three main components to accomplish the goal specified in this thesis. We are
getting the RailCOMPLETE document from AutoCAD using AutoCAD.net APl and then
serializing/deserializing interlocking data based on actions, in XML or C# object for further processing.
GUI components are specified in XAML syntax using WPF framework using custom templates, while
its processing is implemented in code behind file using C#. Interlocking schema is translated in
Interlocking.cs file in multiple nested classes using XML tags, so that the correctness of data must meet
the railML schema standards.

Code written in this project is given in following section.

60

(=
5w

Al

B.1.1 Editor.cs (C#)

Class responsible for management of RailCOMPLETE document with our module.

using
using
using
using
using
using
using
using
using
using

[
=

(=
Pt

[l e i e e
[= T T« T B S ¥

19,
28.

[assembly:

System;

System.Collections.Generic;

System.Ling;

System.Text;

System.Threading. Tasks;

RailCOMPLETE. Common;

Autodesk.AutoCAD. Runtime;
Autodesk.AutoCAD. ApplicationServices.Core;
RailCOMPLETE.AutoCAD;
Autodesk.AutoCAD.ApplicationServices;

[assembly: ExtensionApplication(typecf(InterlockingEditor.Editor))]

[assembly: CommandClass(typeof(InterlockingEditor.Editor)}]

namespace InterlockingEditor

{

public class Editor : RailCOMPLETEModule

{

21.
22.
23.
24.
25.
26.

private static readonly string INTERLOCKING_HEADER = "Interlocking™;

[CommandMethod (" SHAHZAD-INTERLOCKING-EDITOR™)]
public void InterlockingEditorCommand()

{

var doc =

Autodesk.AutoCAD. ApplicationServices.Core.Application. DocumentManager.MdiAdctiveDocument;

27.
28.
29,
3@.
31.
32.
33.
34.
35.
36.
37.
38.
39.

var serializer = new System.Xml.Serializetion.XmlSerializer(typeof{Interlocking));
if (!doc.IsRailCompleteDocument())

1
doc.Editor.WriteMessage("\nMot @ RailComplete document.\n™};
return;

X

else

1

var existingObjectfAs5tring = LoadInterlockingString(doc);
Interlocking interlocking = null;

if (existingObjectAsString !'= null)

i

interlocking = (Interlocking)¥XmlTools.DeserializeString(serializer,

existingObjectAsstring);

4a.
41.
4z,
43,

45.
46.
47.
48.
49,
5a.
51.
52.

H

else

i

interlocking = new Interlocking();

var myCon = new MainWindow();
Autodesk. AutoCAD. ApplicationServices.Core. Application.ShowModalWindow(myCon);

var objectAsString = XmlTools.SerializeToString(serializer, interlocking);
savelnterlockingstring(doc, objectAsString);

RailCOMPLETE.Common.Module (" Interlocking Editor™, true, "2816-83-82", "Interlocking”, true)]

61

53.
54.
55.
56.
57.
58.
59.
aa.
6l.
62,
63.

65,
66,
a7,
a3,
69,
7a.
71.
TZ.
73.
74.
75.
76,
77.
78.
79,
8a.
a81.
az.
83,
84,
5.
86.

public override void Terminate()
i
h

protected override void Init()
i
1

private string LoadInterlockingString(Document doc)

i
string 5 = null;
using (var transaction = RCTransaction.5tartOpenCloseTransaction(doc))
{
= = doc.Database.GetDatastring(transaction, INTERLOCKIMG_HEADER);
transaction.Commit();
¥
return s;
3

private void SavelnterlockingString(Document doc, strimg contents)

d

using (var transaction = RCTransaction.5tartOpenCloseTransaction(doc))

{
doc.Database.SetData(transaction, INTERLOCKIMG_HEADER, contents);

transaction.Commit();

62

b L= I B R W)

=2}

18.
11.
1z.
13.

14.
15.
16.
17.
18.
19.
28.
21.
22.
23.
24,
25.
26.

27.
28.
29,

38.
31.
32.
33.
34.
35.
36.
37.
38.
39.
48.
41.
42,
43,

45,

B.1.2 MainWindow.xaml (XAML)

<Window x:Class="InterlockingEditor.MainWindow"
xmlns="http://schemas.microsoft.com/winfx,/2886/xaml/presentation”
xmlns:x="http://schemas .microsoft.com/winfx/ 2806/ xaml™
xmlns:d="http://schemas.microsoft.com/expression/blend/2088"
xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2886" xmlns:o="clr-
namespace: InterlockingEditor” mc:Ignorable="d" Title="Mainkindow" Height="35@" Width="525">»
<Window.CommandBindings>
<CommandBinding Command="0:CustomCommands.LoadMLCommand” Executed="ExecutedLoadXML™ />
<CommandBinding Command="0:CustomCommands.SaveXMLCommand” Executed="ExecutedSaveXML™ />
</Window.CommandBindings>
<Window.Resourcess
¢HierarchicalDataTemplate DataType="{x:Type o:Interlocking}” ItemsSource="{Binding
Path=InterlockingChildren}"»
¢TextBlock Text="Interlocking"»<,/TextBlock:>
</HierarchicalDataTemplate:
<HierarchicalDataTemplate DataType="{x:Type 0:5ignals}" ItemsSource="{Binding Path=Signal}"»
¢TextBlock Text="Signal"»</TextBlock>
</HierarchicalDataTemplate:
<HierarchicalDataTemplate DataType="{x:Type 0:5ignal}” ItemsSource="{Binding
Path=AspectSpeedDependencies}">»
<Grid Margin="3" MinWidth="388">
<Grid.RowDefinitions>
<RowDefinition />
</Grid.RowDefinitions>»
<Grid.ColumnDefinitionss
<ColumnDefinition />
<ColumnDefinition /3>
</Grid.ColumnDefinitions>
<TextBlock Text="Ref" Grid.Column="8" Grid.Row="8" />
<TextBox Text="{Binding Path=Ref, Mode=Twoblay}" Grid.Column="1" Grid.Row="8" />
</fGrid»
</HierarchicalDataTemplate>
¢HierarchicalDataTemplate DataType="{x:Type o:fspectSpeedDependencies}” ItemsSource="{Bindin
Path=AspectSpeedDependency}™ >
<TextBlock Text="AspectSpeedDependencies”»</TextBlock>
</HierarchicalDataTemplate>
<HierarchicalDataTemplate DataType="{x:Type o:AspectSpeedDependency}” ItemsSource="{Binding
Path=TargetRef}"»
<Border BorderThickness="1" Minkidth="388">
<StackPanel Height="auto” Width="auto"»
<TextBlock Text="AspectSpeedDependency:" f»
<StackPanel Orientation="Horizontal"»
<TextBlock Text="Aspect:” Margin="1" />
{TextBox Text="{Binding Path=Aspect, Mode=Twollay}" Margin="1" />
<TextBlock Text="VApproach:" Margin="1" />
<TextBox Text="{Binding Path=VApproach, Mode=Twollay}™ Margin="1" />
<TextBlock Text="VPass:" Margin="1" />
<TextBox Text="{Binding Path=\Pass, Mode=Twolay}" Margin="1" />
<f5tackPanel>
</5tackPanel>
</Border>
</HierarchicalDataTemplate>
<DataTemplate DataType="{x:Type o:TargetRef}">
<Border BorderThickness="1" Minkidth="388">

g

63

46,
47.
43.
49,
5.
51.
52.
53.
54.
55.
56.
57.
58.
59.
6.
61.
B2,
63,

B5.

66,
67.
6.
69,
7a.
71.
7Z.
73.
74,
75.
6.
77
78.

79.
Ba.
B81.
B82.
B3.

a5,
86,
a7.
B8.
B89.
98.
91.
92.
93.

95.
96.
97.

<Grid Margin="3">»
<Grid.RowDefinitions>
<RowDefinition />
<RowDefinition />
<RowDefinition />
<RowDefinition />
</Grid.RowDefinitions>
<Grid.ColumnDefinitions>
<ColumnDefinition />
<ColumnDefinition />
</Grid.ColumnDefinitions>
<TextBlock Text="Ref:" Grid.Column="8" Grid.Row="8" />
<TextBox Text="{Binding Path=Ref, Mode=Twolay}" Grid.Column="1" Grid.Row="8" /»
</Grid>
</Border>
</DataTemplate>
¢HierarchicalDataTemplate DataType="{x:Type o:Routes}" ItemsSource="{Binding Path=Route}">
<TextBlock Text="Routes"»</TextBlock>
</HierarchicalDataTemplate>
¢HierarchicalDataTemplate DataType="{x:Type o:Route }" ItemsSource="{Binding

Path=RouteChildern}">

¥

<Grid Margin="3" MinWidth="388">
<Grid.RowDefinitions>
<RowDefinition />
<RowDefinition />
</Grid.RowDefinitions»
<Grid.ColumnDefinitions>
<ColumnDefinition /3
<ColumnDefinition />
</Grid.ColumnDefinitions>
<TextBlock Text="Id" Grid.Column="8" Grid.Row="8" /3
<TextBox Text="{Binding Path=Id, Mode=Twollay}" Grid.Column="1" Grid.Row="@" />
<TextBlock Text="FlankElements:" Grid.Column="8" Grid.Row="1" />
<TextBox Text="{Binding Path=FlankElements, Mode=Twokay}" Grid.Column="1" Grid.Row="1"

</Grid>
</HierarchicalDataTemplate:
<HierarchicalDataTemplate DataType="{x:Type o:5tart}" ItemsSource="{Binding Path=SignalRef}">»
<TextBlock Text="5tart"»</TextBlock>
</HierarchicalDataTemplate>
<DataTemplate DataType="{x:Type o:5ignalRef}">»
<Border BorderThickness="1" MinWidth="388">
<Grid Margin="3"3
<Grid.RowDefinitions>
<RowDefinition />
<RowDefinition />
<RowDefinition />
<RowDefinition />
</Grid.RowDefinitions>
<Grid.ColumnDefinitions>
<ColumnDefinition />
<ColumnDefinition />
</Grid.ColumnDefinitions:
<TextBlock Text="Ref:" Grid.Column="8" Grid.Row="8" />

64

98.

9.
1aa.
1a1.
laz.
183,
la4.
1@5.

186.
1a7.
1aa.
1@9.
1l@.
111.
11z,
113.
114,
115.
116.
117.
118,
119.
12@.
121,
122,
123,
124,
125.
126.
1z27.
128,
129,
13@.
131.

132,
133,
134,
135,
136.
137,
138,
139,
14@.
141.
142,
143,
144,
145,
146.
147,
148,
149,

<TextBox Text="{Binding Path=Ref, Mode=Twollay}" Grid.Column="1" Grid.Row="8" />
</Grid>
<{/Border>
</DataTemplate>

<HierarchicalDataTemplate DataType="{x:Type o:Target}" ItemsSource="{Binding Path=5ignalRef}">»

{TextBlock Text="Targst"»<{/TextBlock>
</HierarchicalDataTemplate:
¢HierarchicalDataTemplate DataType="{x:Type o:Elements}" ItemsSource="{Binding
Path=ElementChildren}"»
{TextBlock Text="Elements"»<{/TextBlock>
</HierarchicalDataTemplate:>

<HierarchicalDataTemplate DataType="{x:Type o:SwitchRef}" ItemsSource="{Binding Path=Switch}">»

<TextBlock Text="SwitchRef"»</TextBlocks>
</HierarchicalDataTemplate:
<DataTemplate DataType="{x:Type o:Switch}"»
<Border BorderThickness="1" Minkidth="388"3
<Grid Margin="3"3
<Grid.RowDefinitions>
<RowDefinition />
<RowDefinition />
<RowDefinition />
<RowDefinition />
</Grid.RowDefinitions>
<Grid.ColumnDefinitions>
<ColumnDefinition />
<ColumnDefinition />
</Grid.ColumnDefinitions>
<TextBlock Text="Ref:" Grid.Column="@" Grid.Row="8" />
<TextBox Text="{Binding Path=Ref, Mode=Twolay}" Grid.Column="1" Grid.Row="@" />
<TextBlock Text="Course:" Grid.Column="8" Grid.Row="1" /3

<TextBox Text="{Binding Path=Course, Mode=Twolay}" Grid.Column="1" Grid.Row="1" />

</Grid»
{/Border:
</DataTemplate>
¢HierarchicalDataTemplate DataType="{x:Type o:lLevelcrossingRef}" ItemsSource="{Binding
Path=Levelcrossing}"»
<TextBlock Text="LevelcrossingRef"»</TextBlock>
</HierarchicalDataTemplate>
¢DataTemplate DataType="{x:Type o:Levelcrossing}"»
<Border BorderThickness="1" MinWidth="3e@"»
<Grid Margin="3"»
<Grid.RowDefinitions>
<RowDefinition />
<RowDefinition />
<RowDefinition />
<RowDefinition />
</Grid.RowDefinitionss>
<Grid.ColumnDefinitions>
<ColumnDefinition />
<ColumnDefinition />
</Grid.ColumnDefinitions>
<TextBlock Text="Ref:" Grid.Column="@" Grid.Row="8" />
<TextBox Text="{Binding Path=Ref, Mode=TwolWay}" Grid.Column="1" Grid.Row="@" />
<TextBlock Text="Beam:" Grid.Column="8" Grid.Row="1" />

65

158.
151.
152.
153.
154.

155.
156.
157.
158.
1549.
1a68.
161.
162.
163.
164.
165.
166.
167.
168.
169.
178.
171.
172.
173.
174.
175.
176.
177.
178.
179.
188.
181.
182.
183.
184.
185.
186.
187.
188.
189.
198.
191.
192.
193.
194.
135.
196.
197.
198.

159.

2e9.

<TextBox Text="{Binding Path=Beam, Mode=Twolay}" Grid.Column="1" Grid.Row="1" /%
</Grid>
</Border>
</DataTemplate>
<HierarchicalDataTemplate DataType="{u:Type o:TrainDetectorRef}” ItemsSource="{Binding
Path=TrackCircuitBorder}"»
<TextBlock Text="TrainDetectorRef”»</TextBlock>
</HierarchicalDataTemplate>
<DataTemplate DataType="{x:Type o:TrackCircuitBorder}"»
<Border BorderThickness="1" MinWidth="32@">
<Grid Margin="3"»
<Grid.RowDefinitions>
<RowDefinition />
<RowDefinition />
<RowDefinition />
<RowDefinition />
</Grid.RowDefinitions>
<Grid.ColumnDefinitions>
<ColumnDefinition />
¢ColumnDefinition />
</Grid.ColumnDefinitions>
<TextBlock Text="Ref:" Grid.Column="8" Grid.Row="8" />
<TextBox Text="{Binding Path=Ref, Mode=Twollay}" Grid.Column="1" Grid.Row="8" />
</Grid>
</Border>
</DataTemplate>
<HierarchicalDataTemplate DataType="{x:Type o:RoutePriority}"»
<Border BorderThickness="1" Minkidth="328">
<Grid Margin="3"»
<Grid.RowDefinitions>
<RowDefinition />
<RowDefinition />
<RowDefinition />
<RowDefinition />
</Grid.RowDefinitions>
<Grid.ColumnDefinitions>
<ColumnDefinition />
<ColumnDefinition />
</Grid.ColumnDefinitions>
<TextBlock Text="Route Priority:" Grid.Column="8" Grid.Row="8" /%
<TextBlock Text="Rank:" Grid.Column="8" Grid.Row="1" /%
<TextBox Text="{Binding Path=Rank, Mode=Twoblay}" Grid.Column="1" Grid.Row="1" /3
</Grid>
</Border>
</HierarchicalDataTemplate>
</Window.Resources>
<Grid>
<StackPanel VerticalAlignment="Top" Margin="0,68,8,8">
¢DockPanel HorizontalAlignment="Right">»
<Button Command="o0:CustomCommands.LoadXMLCommand” Content="{Binding RelativeSource=
{RelativeSource Self}, Path=Command.Text}" Width="158" s>
<Button Command="o:CustomCommands.SaveXMLCommand” Content="{Binding RelativeSource=
{RelativeSource Self}, Path=Command.Text}" Width="158" />
</DockPanel>

66

2e1.
282.
283.
2e4.
285.

286.
287.
288.
289.
218.
211.
212.
213.
214.
215.
216.

</StackPanel>
<5tackPanel Margin="8,97,8,8"%
<ScrollViewers
<Grid Height="8@2" DockPanel.Dock="Bottom">
<TreeView Margin="3" Name="treeViewl" Height="autoc" DockPanel.Dock="Left"
Background="{DynamicResource LightColorBrush}"»
<TreeView.ItemContainerStyles
<5tyle TargetType="{x:Type TreeViewltem}"»
<Setter Property="IsExpanded" Value="Trus" />
£/5tyle>
</TreeView. ItemContainerStyle>
</TreeView>
</Grid>
</ScrollViewers
</StackPanel>
</fGrid>
< /Window>

67

R N e
£l P b W 00wl M fa B3 R @

25.
26.
27.
28.
29,
3.
31.
32.
33.
34,
35.
36.
37.
38.
39.

4a.
41.
42,
43,

45.
46.
47.
48.
49,
58.
51.
52.
53.

L - R I - T

B.1.3 MainWindow.cs (C#)

using RailCOMPLETE.Commaon ;

using System;

using System.Collections.Generic;
using System.Diagnostics;

using System.I0;

using System.Lling;

using System.Reflection;

using System.Text;

using System.Threading.Tasks;
using System.Windows;

using System.Windows.Controls;
using System.Windows.Data;

using System.Windows.Documents;
using System.Windows.Input;
using System.Windows.Media;
using System.Windows.Media.Imaging;
using System.Windows.MNavigation;
using System.Windows.Shapes;
using System.Xml;

using System.X¥ml.Ling;

using System.X¥ml.Serialization;

namespace InterlockingEditor
{
L <summary >
44 Interaction Legic for MainWindow.xaml
A </ summary
public partial class MainWindow : Window
{
public MainWindow()
{

InitislizeComponent();

private void ExecutedloadXML{object sender, ExecutedRoutedEventirgs e)

{

string executablelocation =

System.I0.Path.GetDirectoryiame(Assembly .GetExecutingAssembly (). Location);

string xsllocation = System.I0.Path.Combine(executablelocation, "Interlocking.xml™);

¥Document xmlData = XDocument.Load(xsllLocation, LoadOptions.Mone);

var Interlocking = XmlSerializationHelper.lLoadFrom¥ML<Interlocking> (xmlData.ToString());

var children = new List<Interlocking>();
children.Add(Interlocking);

treeViewl.ItemsSource = null;
treeViewl.Items.Clear();
treeViewl.ItemsSource = children;

private void ExecutedSaveXML(object sender, ExecutedRoutedEventArgs

e)

68

54.
55.
5G.
57.
58,
59.
6@,
B6l.
BZ.
63,

B5.
66,
67,
63,
69,
7a.
71.
7z,

73.
74,

75.
76,
7.
78,
79.
8.
B81.
82,
B83.

85.
86,
B87.
B3,
89,
9a.
91.
9Z.
93.

95.
96,
97.
98.
99,
1ea.
lal.
1az.
183,
la4,
1a5.

i

{
var planList = treeViewl.ItemsSource as IList<Interlockings;
if (planList != null &% planlist.Count » @)
{
/7 Peding edit’s Logic
treeviewl.Focus();
// Replace with display code!
I/
/s
string s = planlist[@].0etXml();
H
b

public static class CustomCommands

{

public static readonly RoutedUICommand LoadXMLCommand = new RowutedUICommand("Load XML™,

"LoadXML", typeof{MainWindow));

public static readonly RoutedUICommand SaveXMLCommand = new RoutedUICommand("Save XML™,

"SaveXML", typeof(MainWindow));

h

public static class XmlSerializationHelper

i

public static string GetXml<T>(T cbj, X¥XmlSerializer serializer, bool omitStandardNamespaces)

i

using (var textWriter = new StringWriter())

{
XmllriterSettings settings = new XmlWriterSettings();
settings.Indent = true; // For cosmetic purposes.
settings.IndentChars = " "y A/ For cosmetic purposes.
using (var xmlWriter = XmlWriter.Create(textWriter, settings))
{

if (omitStandardMamespaces)

{

XmlSerializerNamespaces ns = new XmlSerializerNamespaces();

ns.Add("", ""); // Disable the xmins:xsi and xmins:xsd Lines.

seriglizer.Seriglize(xmliriter, obj, ns);

¥

else

{

seriglizer.Serialize(xmlkriter, obj);

SaveXML(obj, serializer);

return textWriter.To5string();

private static void SaveXML<T:>(T cbj, XmlSerializer serializer)

69

106, {

187.

188. string executablelocation =
System.I0.Path.GetDirectoryName({Assembly .GetExecutingAssembly (). Location);

109, string xsllocation = System.ID.Path.Combine(executablelocation, "Interlocking.xml™);

11a. System.I0.FileStream file = System.IO.File.Create(xslLocation);

111,

112. serializer.Serialize(file, obj);

113, file.Close(};

114, }

115.

116. public static string GetXml<T>(this T cbj, bool omitNamespace)

117. £

118. ¥mlSerializer serializer = new XmlSeriglizer(obj.GetType()});

119, return Get¥Xml{obj, serislizer, omitNamespace);

128. b

121.

122, public static string GetXml<T>({this T cbj)

123, [

124, return Get¥ml{obj, false);

125, }

126.

127. public static T LoadFromXML<T>(this string xmlString)

128. £

129, return xmlString. LoadFromXML<T>{new ¥XmlSerializer(typecf(T)));

130. }

131.

132. public static T LoadFromXML<T>(this string xml5tring, XmlSerializer serial)

133, £

134, T returnValue = default(T);

135.

136. using (StringReader reader = new StringReader(xmlString))

137. {

138. object result = serial.Deserialize(reader);

134, if (result is T)

144, {

141, returnValue = (T)result;

142, }

143. 3

144, return returnValue;

145, }

146.

147. public static T LoadFromFile<T>(string filename)

148. i

149, ¥mlSerializer serial = new XmlSerializer(typeof(T)}):

158. try

151. {

152, using (var fs = new FileStream(filename, FileMode.Open))

153, I

154, object result = serial.Deserialize(fs);

155. if (result is T)

156. {

157. return (T)result;

158. T

159,
168.
161.
162,
163.
164,
165.
166.
167.
168.
169.

T
catch (Exception ex)

{
S Debug.Writeline(ex. ToString());
throw:

T
return default(T);

71

=
&=

11.
1z.
13,
14.
15.
16.
17.
18.
19.
2@,
21.
22,
23,
24,
25.
26.
27.
28.
29,
3a.
31.
32.
33.
34,
35.
36.
37.
38.
39.
4a.
41.
42,
43,

45,
45,
47.
45.
43,
5.
51.
52.
53.
54.

DN AR

B.1.4 Interlocking Classes (C#)

using System;

using System.Collections;

using System.Collections.Generic;
using System.Ling;

using System.Text;

using System.Threading.Tasks;
using System.Windows.Data;

using System.Xml.Serialization;

namespace InterlockingEditor

{

[¥mlRoot(ElementMame = "targetRef")]
public class TargetRef
{
[¥mlAttribute(AttributeName = “ref")]
public string Ref { get; set; }

[¥mlRoot(ElementName = "aspectSpeedDependency™)]

public class AspectSpeedDependency

{
[¥mlElement (ElementName = “targetRef")]
public List<TargetRef: TargetRef { get; set; 7
[¥mlattribute(AttributeName = “aspect™)]
public string Aspect { get; set; }
[¥mlAttribute(AttributeMame = "vApproach™)]
public string VApproach { get; set; }
[¥mlAttribute(AttributeMame = "vFasz")]
public string VPass { pet; set; }

[¥mlRoot (ElementName = “aspectSpeedDependencies™)]
public class AspectSpeesdDependencies

i
[¥mlElement (ElementName = “aspectSpesdDependency™)]
public List<AspectSpeedDependency» AspectSpeedDependency { get; set; }

[¥mlRoot (ElementName = “signal™)]
public class Signal

i
[¥mlElement(ElementName = “aspectSpeedDependencies™)]
public List<AspectSpeedDependencies> AspectSpeedDependencies { get; set; 7
[¥mlattribute(AttributeName = “ref")]
public string Ref { get; set; }
¥

[¥mlRoot (Elementlame = “signals™)]

public class Signals

{
[¥mlElement (ElementName = “signal”)]
public List<Signal» Signal { get; set; }

72

55.
56.
57.
58.
59.
8.
6l.
62.
63.

65,
66.
67.
&3,
69,
7a.
71.
T2.
73.
74.
75.
76.
77.
78.
79.
8a.
a8l.
82.
83.

85.
B86.
87.
B8.
89.
98.
91.
92.
93.

95.
96.
7.
98,
g9,
1aea.
1al.
1az.
1a3.
1a4.
1a5.
1a6.
1a7.
1@8.

[¥mlRoot(Elementlame = "signalRef")]
public class SignalRef

{

[¥mlAttribute{AttributeMame = "ref")]
public string Ref { get; set; }

[¥mlRoot (ElementName = “start™)]
public class Start

{

[¥mlElement(ElementName = “signalRef")]
public List<SignalRef> SignalRef { get; set; 7

[¥mlRoot(ElementHame = "target”)]
public class Target

i

[¥mlElement(ElementName = "signalRef")]
public List<SignalRef> SignalRef { get; set; }

[¥mlRoot (ElementNams = “switch™)]
public class Switch

{

[¥mlAttribute{AttributeMame = "ref")]
public string Ref { get; set; 7
[¥mlAttribute(AttributeMName = "course™}]
public string Course { get; set; }

[¥mlRoot (ElementName = "switchRef")]
public class SwitchRef

i

[¥mlElement(ElementName = "switch")]
public List<Switch»> Switch { get; set; }

[¥mlRoot (ElementName = “levelcrossing”)]

public class Levelcrossing

{

[¥mlAttribute{AttributeMame = "ref")]
public string Ref { get; set; 7
[¥mlAttribute(AttributeMName = "beam")]
public string Beam { get; set; }

[¥mlRoot (ElementName = "levelcrossingRef™)]

public class LevelcrossingRef

{

[¥mlElement(ElementName = "levelcrossing™)]
public List<Levelcrossing> Levelcrossing { get; set; }

73

189,
11a.
111.
11z,
113.
114,
115.
116.
117.
118.
119.
1z2@.
121.
122,
123,
124,
125,
126.
127.
128,
129,
13@.
131.
132,
133,
134,
135.
136.
137,
138,
139,
14a,
141.
142,
143,
144,
145,
146.
147.
148,
144,
138,
151.
152.
133,
154,
155,
136,
157.
158,
139,
16@.
161.
162.

[¥mlRoot(ElementMame = "trackCircuitBorder™)]
public class TrackCircuitBorder

i
[XmlAttribute(AttributeMame = "ref")]
public string Ref { get; set; }

[¥mlRoot(ElementMame = "trainDetectorRef")]
public class TrainDetectorRef

{

[¥mlElement(ElementMame = "trackCircuitBorder™)]
public List<TrackCircuitBorder: TrackCircuitBorder { get; set; }

[¥mlRoot(ElementName = "elements")]

public class Elements

{
[XmlElement(ElementMame = "switchRef")]
public List<SwitchRef: SwitchRef { get; set; }
[¥mlElement(Elementhame = "levelcrossingRef"™)]

public List<lLevelcrossingRef> LevelcrossingRef { get; set; }

[¥mlElement(ElementName = "trainDetectorRef")]

public List<TrainDetectorRef> TrainDetectorRef { get; set; }

[¥mlIgnore]
public IList ElementChildren
{

get

{

return new CompositeCollection()

new CollectionContainer() { Collection
new CollectionContainer() { Collection

new CollectionContainer() { Collection

[¥mlRoot(ElementMame = "routePriority™)]
public class RoutePriority
i
[¥mlAattribute(AttributeName = "rank”)]
public string Rank { get; set; }

[¥mlRoot (ElementName = “route”)]

public class Route

{
[¥mlElement(ElementMame = "start")]
public List<Start> Start { get; set; }
[XmlElement(Elementhame = “target™)]
public List<Target> Target { get; set; }

SwitchRef 1,
LevelcrossingRef },
TrainDetectorRef }

74

163,
164,
165,
166,
167.
168.
169,
178.
171.
172,
173.
174,
175.
176.
177.
178.
179,
188.
181.
182.
183.
184,
185.
186.
187.
188.
189,
198.
191.
192,
193,
194,
195,
196.
197.
198.
1949,
289,
281.
282.
2a3.
284,
2@5.
286.
2a7.
288,
289,
218.
211.
212.
213.
214,
215.
216.

[XmlElement (ElementName = “elements™)]
public List<Elements> Elements { get; set; }
[XmlElement (ElementMame = "FlankElements™)]
public string FlankElements { get; set; }
[¥mlElement (Elementlame = "routePriority™)]

public List<RoutePriority> RoutePriority { get; set; }

[¥mlAttribute(AttributeName = "id")]
public string Id { get; set; }

[¥mlIgnore]
public Ilist RouteChildern
{
get
{
return new CompositeCollection()
{
new CollectionContainer() { Collection = Start 7,
new CollectionContainer() { Collection = Targst },
new CollectionContainer() { Collection = Elements 7,
new CollectionContainer() { Collection = RoutePriority 3
I
H

[XmlRoot (Elementlame = “routes")]

public class Routes

{
[¥mlElement (Elementlame = "route™}]
public List<Route> Route { get; set; }

[XmlRoot(Elementlame = “interlocking™)]

public class Interlocking

{
[¥mlElement (Elementlame = "signals")]
public List<Signals> Signals { get; set; }
[XmlElement (ElementName = "routes")]
public List<Routes> Routes { get; set; }

ST XmlAttribute(AttributeName = "xsi”, Namespace =

A/public string Xsi { get; set; }
ST XmiAttribute(AttributeName = "xsd”, Namespace
A/public string Xsd { get; set; }

[¥mlIgnore]
public IlList InterlockingChildren
1

get

i

return new CompositeCollection()

Thttp: S, w3 . org/ 2000/ xmlns/")]

Thttp: /S, w3.org/s 2000,/ 3mlns,/ ")]

75

217.
218.
219,
228,
221,
222,
223,

new CollectionContainer() { Collection = 5Signals 7},
new CollectionContainer() { Collection = Routes }
I
T

B.1.5 BuildEvents

<PostBuildEvent»
if "$(ConfigurationMame)” == "Debug” {
mkdir "$({AutoCADBundleDir)™
wcopy JE /Y /D "$(SolutionDir)RailCOMPLETE.bundle*.*" "$(AutoCADBundleDir)™
xcopy fE /Y /D "$(TargetDir)*" "${AutoCADBundleDir)\Contents\"
J ELSE {
xcopy JE /Y /D "$(TargetDir)*.d11" "$(SolutionDir)RailComplete.bundle\Contents\”
"C:\Program Files (x86)\NSIS\makensis.exe" "%(SolutionDir)Installer’\RailCOMPLETE
)
</PostBuildEvent»

.nsi"”

76

T T T T T T T I N I O = T = I
@ WD 00 s Oh U d L R b @ WD D0 Oh L S R @ WD 00 D s W R @

oo s O B W R

B.1.6 References

<Reference Include="AcCoreMgd, Version=21.8.8.8, Culturesneutral, processorArchitecturesMSIL"»
<HintPath»..\packages\AutoCAD.NET.Core.21.8.2\1ib\45\AcCoreMgd . d11</HintPath»
<PrivaterFalse</Private>

</Reference>

<Reference Include="AcCui, Version=21.8.8.8, Culturesneutral, processorArchitecturesMsIL"»
<HintPath»..\packages\AutoCAD.NET.21.8.2\1ib\45\AcCul.d11</HintPath>
<Privates>False</Private>

</Reference>

<Reference Include="AcDbMgd, Version=21.8.8.8, Culturesneutral, processorArchitecturesMSIL™»
<HintPath>». .\ packages\AutoCAD.NET.Model.21.8. 2\1ib\a5\AcDbMgd . d11</HintPath>
<Privates>False</Private>

</Reference>

<Reference Include="AcDbMgdBrep, Version=21.8.8.8, Culturesneutral, processorArchitecturesMsIL"»
<HintPath>»..\packages\AutoCAD.NET.Model.21.8.2\1ib\45 \AcDbMgdBrep. d11</HintPath>
<Privates>False</Private>

</Reference>

<Reference Include="AcDx, Version=21.9.8.8, Culturesneutral, processorArchitecturesMSIL™»
<HintPath»..\packages\AutoCAD.NET.21.8.2%\1ib\45\AcDx . d11</HintPath»
<PrivaterFalse</Private>

</Reference>

<Reference Include="AcMgd, Version=21.8.8.8, Culturesneutral, processorArchitecturesMSIL"»
<HintPath>»..\packages\AutoCAD.NET.21.6.231ib\45\AcMgd . d11</HintPath>
<PrivaterFalse</Private>

</Reference>

<Reference Include="AcMr, Version=21.9.8.8, Culturesneutral, processorArchitecturesMSIL™»
<HintPath>..\packages\AutoCAD.NET.21.8.2%1ib\45\AcMr.d11</HintPath>
<PrivaterFalse</Private>

</Reference>

<Reference Includes"AcTcMgd, Version=21.8.8.8, Culturesneutral, processorArchitecturesMSIL"»
<HintPath>..\packages\AutoCAD.NET.21.8.241ib\45AcTcMgd . d11l</HintPath>
<PrivaterFalse</Private>

</Reference>

<Reference Includes"AcWindows, Version=21.8.8.8, Culturesneutral, processorArchitecturesMSIL"»
<HintPath>..\packages\AutoCAD.NET.21.8.241ib\a5\Ackindows .d11«/HintPath>
<Private:False</Private>

</Reference>

<Reference Includes="AdWindows, Version=2815.11.2.8, Culturesneutral, processorArchitecturesMSIL"»
<HintPath>..\packages\AutoCAD.NET.21.8.241ib\45\AdWindows .d11</HintPath>
<Private:False</Private>

</Reference

77

