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ABSTRACT

Geologically, the Barents Sea with deep sedimentary basins, highs and platforms is a complex
mosaic and formed as a result of different geologic and tectonic processes with complex
geological history. The history of the Barents Sea started 400 millioa ggarand continued

until continental crustal separation which led to develop the Atlantic and Arctic oceans. The
Barents Sea is a challenging area for hydrocarbon exploration. The reservoirs are mainly
Jurassic age sandstones. The predominance of gaeibaad leakage of hydrocarbons from

the traps are source of the problems in the exploration. These problems are related to
Cenozoicerosion and uplift of the Barents Sea area.

The Triassic Snadd and Kobbe Formations located on the southern part garel&nd
Platform in SW Barents Sea are the focus of this study. The Snadd and Kobbe reservoirs are
several meters thick and has good (Snadd) and poor (Kobbe) reservoir quality.

Sedimentological, petrographic and petrophysical analysis have been derdgngraore
material, thin sections and well log dataset from well 7222/(@aurus) The main objective
was to characterize reservoir properties within these formations.

The depositional environment for both sandstones has been interpreted-@gsntidaed

delta system with several subenvironments. The Kobbe Formation deposited during low
energy conditions such as muddy shelf, intersupratidal flats, while the Snadd sandstones
have been interpreted adal channel sandstori@dies.

The Snadd Formatn is wellsorted very fineto fine-grained sandstone with moderate clay
and carbonate content and the Kobbe Formation is modesatedd, very finegrained
sandstone with high clay content. Both formations are lithic arenites. Compositionally there is
no significant difference between the two formations #wedource area has been interpreted

as eastern source area (Uralides) for both Kobbe and Snadd Formations.

The main diagenetic minerals in both Kobbe and Snadd Formations are chlorite coating, pore
filling chlorite, kaolinite, pyrite carbonateand quartzcement. The chlorite coating is well
developed in the Snadd Formation and preventing quartz cementation, while in the Kobbe
Formation the chlorite coating is naontinuous hence there are slightiyore quartz
overgrowths present. The chlorite may have formed when fresh river water brougfthron
material into seawater and the clay particles flocculated in the flonaahe mixing zone.

The source of porélling authigenic kaolinite is mainly # dissolved mica and feldspar
grains. Kaolinite is generally associated with pfillimg fibrous chlorite and microporosity.

Two types of siderite cements are present in the formations, rhombic skdepé which
sometimes appears within expanded ngcains, and small spherulitic patchef siderite

within the samples. The iremch material brought by river water could be a source of
siderite. The source of calcite cement is mainly the carbonate fossils are present in the
samples. The pyrite is pregdioth as framboidal and blocky crystals in the sandstones.



The Snadd Formation sandstones show good porosit8.@2%6) due less effect of mechanical
compaction and chlorite coating preserves porosity. The permeability is mostly good but
where the pordil ling authigenic clay minerals are present in the pore space the permeability
shows low value. The Snadd Formation has been interpreted to have good reservoir quality.
The Kobbe Formation sandstonleas very fine grain size, high clay and matrix content,
therefore mechanical compaction affects more in the Kobbe sandstones, rekting
porosity and permeability value3he Kobbe Formation has been interpreted to have poor
reservoir quality.

The presence of quartz overgrowths indicate that theftwuoations have been buried at
deeper depth than at present. The absence of illite suggests that the temperature did not
exceed 130 °C before uplift. The maximum uplift has been estimatetl.6L.&n in well
7222/111. The Kobbe Formation was more deeplyiéd (3.53.8 km) than the Snadd
Formation (2.62.9 km).
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1. Introduction

1.1 Purpose of the study and project description

This master thesis has been accomplished for Department of Geosciences at the University of
Oslo as a part of my masteéegree in geology. The thesis is a one year thesis work and based
on sedimentological and petrographic analysis and geophysical logs. The aims of the project
to increase the understanding of the distribution, quality and differences within and between
the Middle to Late Triassic Snadd Formation and the underlying Middle Triassic Kobbe
Formation located in the Barents Sea. The work will contribute to a better understanding of
the reservoir quality found in the Kobbe and Snadd Formations. The thesis will als
contribute to mapping out the potential for reservoir enhancing processes in the Triassic
successions in the Barents Sea.

Reservoir properties of sandstones from the Barents Sea area are a function of initial
composition and texture, mechanical and clsaincompaction processes. Important factors
include grain size, sortingand mineralogicaktomposition, amount of matrix, amount of
quartz cement and amount of early cement (carbonate and kaolinite). These factors are also
function of provenance, transp@rocesses, climate, and depositional environment. A good
understanding of the factors controlling reservoir properties of different sandstones units is

essential for prediction of reservoir properties prior to drilling.

1.2 Study area

The data for thisnaster thesis is taken from well 7222/ 1Figure 1.1) that is operated by
Statoil Petroleum AS. The well named Caurus was drilled on the Bjarmeland Platform in the
Barents Sea to determine hydrocarbons in Snadd Formation of Carnian age and in Kobbe
Formadion of Anisian age. The well was drilled in 2008 and both oil and gas were discovered.
In Snadd Formation two gas bearing levels were found; at the top of the formation of Early
Norian age sandstones and at 77éteandepth of Late Carnian age sandstonath va
gas/water contact at 785eter depthIn Kobbe Formation both gas and oil were discovered;

at 2112 to 2115 eterdepth oil was found in channelized sandstones of Anisian age. Oil and



gas were found in Anisian marine sandstones at 2210 to 2@@8dapth. The gas/oil contact
is at 2233.2 rater depth

Figurel.1: Overview of the main structural elements of the SW Barents Sea. The study area is marked
by red dot on the map (modifiedter NPD Factmaps 2016



2. Geological settings

2.1 Regional geology of the Barents Sea

The Barents Sea is an epicontinental shelf bounded by young passive margin to the west and

north and developed as a result of Cenozoic opening of the Norw@geéemland Sea and the

Eurasia Basir(Faleide et al., 1984, Breivik

- Elevation/

i et al.,, 1995) The Barents Sea located

2000

o petween the Norwegia@reenland Sea,

500

J)EN.”  Novaya Zemlya andthe Arctic Ocean,

bordered by Svalbard to the northwest and

Franz Josef Land to the northeast (Figure
@ 2.1) (Johansen dl., 1992) The area covers

about 1.3 million km2 with 300 m average
water depth(Faleide et al., 1984, Breivik et
al., 1995) The continental shelf of the
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Barents Sea spreads out about 1000 km to
northrsouth and easvest direction and

displays a continuous  sedimentary
succession from late Palaeozoic to
/ Quaternary age. In some places the
© GIWA 2008 I' sedimentary succession exceeds about 15
km in thickness (Faleide et al.,, 1993a,

Figure 2.1: Location of the Barents Sea
(USGS, 2003) Faleide et al., 1993b, Gudlaugsson et al.,

1998)

The Barents shelf with deep sedimentary basins, highs and platforms are formed as a result of
different geological and tectonic processes with complex geological history. The complex
geological and tectonic history of the Barents Sea started fronCalelonian mountain
building 400 million years ago and continued until continental crustal sepanatiamh led to

opening of Northern North Atlantic OcedDoré, 1995) The thick sedimentary sequence of

the Barents Sea including siliciclastic rocks, carbonates and evaporates range from the
Devonian to the Quateany age(Larsen et al., 1993)The metamorphic basement of the

western Barents Sea consolidated during the Caledonian orogeny in the Early Devonian. The
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Figure2.2: Regional geology of the Barents Sea to-Betimian

Barents Sea was tectonicall time (Gudlaugsonet al., 1998)

active from the Late

PalaeozoidGabrielsen et al., 1990puring the Late Palaeozoic crustal extension effected in
the Barents Sea area with rift movements to the west, formation eflefeled rift and pul

apart basin to the south resulted stske faults in the nortliFaleide et al., 1984)n the Late
DevonianEarly Carboniferous Svalbardian transpression and transtension developed faulting
and graben formation. In the Middle Carboniferous carbonate shelf was settled and appeared
from the Sverdrup Bas to the Pechora Basin. The carbonate sedimentation with evaporates
and clastic sedimentation was dominating until the Early Permian. The Early Permian reefs
are located on the southern edge of the Nordkapp Basin, while the Late Permian reefs are

situatedparallel to the preserfinnmark Platform to the north. More clastic sedimentation
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showed up on the shelf area from the Late Permian. Lower impedance sediments deposited
between the Permian and the Triassic and it is marked the boundary between th@dgio ge
periods. During this period thick Triassic sediments deposited irbdlsen as aresult of
regional subsidence with high sedimentation rates. In the Eastern Barents Sea the Early and
Middle Triassic subsidence was more dominated than at the westérand it represented

thick sedimentation towards the east. In the Lower Triassic marine conditions was prevailed
with shale deposition while in the Late Triassic more sand was deposited with development of
coals and the shale content increases to tleetthn of north. The Triassic was a tectonically

stable period.

During the Middle and Late Kimmerian the next major tectonic phase showed up and it has
affected the rift systems with restricted basin circulation and reducing regimes developing.
This tectmic event resulted large, despated normal faults. During this tectonic and rifting
phase subsidence has been increased with igneous movements and started in the Sverdrup
Basin and ended up with dolerite intrusions and basaltic lava flows on Svallblaod &nanz

Josef Land. During Cretacequsibsidence developed in the complete basin. Fault events in
the Late Early Cretaceous resulted awakening of the Kimmerian fault systems. In the Late

Cretaceous subsidence of the basin was continued but at sltever ra

The Kimmerian fault systems were reactivated again in the Palaeocene during the Laramide
phase due to uplift of the Hammerfest and Nordkapp Basin and erosion of the Upper
Cretaceous sediments. In the Norwegzeenland Sea the Laramide phase prevetited
beginning of the sea floor spreading. In the Western Barents Sea uplift and erosion took place
in the Cenozoic and Pleistocene. Due to uplift and erosion thick parts of the sedimentary
column has been removed and transported in the @anting, 1993)

2.2 Triassic evolution of the Barents Sea

The Triassic was a tectonically quiet period in the western Barents Sea region, except some
local tectonicevents and faulting or tectonic unconformities, while strong subsidence has
been affected in the northern and southern Barents Sea and formed important depocenters
(Johansen et al.,, 1992, Riis et al.,, 2008gctonic movements, climatic changes and
northward drift have been affected on the Triassic sedimentary succession in the Barents Sea

with controlling the types of the sedimerii@cobsen and van Veen, 1984, Mgrk et al., 1992,
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GlarstadClark et al., 2011)The Svalbard Archipelago shifted from about 40° to 60° N at the
same time and the depositional environment developed in arid to humid c{Btaeét and
Worsley, 1984, Glgrsta@lark et al., 2011he total thickness of the Triassic sedimentary
succession in Svalbard is 23200 m and increases to 268000 m in the western Barents
Sea(Riis et al., 2008)

The tectonic events of the Barents Sea was dominated by exténstinaic movements in

the Late Palaeozoic and Mesozoic with represented the collapse of the Caledonian and
Uralian orogenic belts and progressive brapkof the Pangea supercontinent. These events
created the major rift basins and the series of plagoand highs in the Barents Sea area
(Doré, 1995)

During the Triassic the Barents Sea area acted as intracratonic basin and the sediments
sourced from the eastern part of the di&agler, 1988a, Skjold, 1998Most of the Barents

Sea area was affected by crustal extension iétintyrduring the Late Palaeozoic, developed
uplift and tilting of the Loppa HigkZiegler, 1988b, Skjold, 1998, Glgrstadark et al., 2010,
GlgrstadClark et al., 2011)This extensional event marks the Late Pernarly Triassic
transition(Gudlaugsson et al., 1998, Johansen et al., 1994he Middle Carboniferous the

rift zone was the continuation of the northeast Atlantic rift between Greenland and Norway.
Late Palaeozoic structures shovaa-shaped array of NiSW trending and horst and graben
structures due to rifting phag&udlaugsson et al., 1998}ontinental clastic sediments were
deposited during this extensional event in the rift grabens and from the Late Carboniferous it
was followed by postift carbonate platform and evaporates deposition through the Permian
(Faleide et al., 1984, Larssen et al., 20@ye to uplift of the Uralian Mountains in the
southeast and landmasses in the soenblution of the clastic sediments developed in the
Late Permian as well as the Norwegf@reenland riftsystem and a continuous seaway
opened between the Arctic and the northwest European basins. During the Triassic the seaway

was closedFaleide et al., 1984, Johansen et al., 1992, Larssen et al., 2002)

The Triassic depositional system was developed due to erosion of landmasses from the
Uralian Mountains and resulted thick siliciclastic deposits in the Russian and the Norwegian
Barents Sea defined by stacked clastic wedges prograding toward the westtlawest. The
landmasses are presenting multiple sediment source @aasbsen and van Veen, 1984,
Johansen et al., 1992, Skjold9B, Riis et al., 2008, Smelror et al., 2009, Glgrsittk et

al., 2010, Glgrsta€lark et al., 2011)According to Glgrstalark et al., (2011) the northern
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Barents Sea represents the development of seismic prograding clinoforms from the east and
southeast through the Triassindicating a continuous shallow shelf area with shelfal to
paralic deposition from the southern Barents Sea to the main Svalbard Archifeiliaget

al., 2008)

From the Early Triassic through the Ladinian the Triassic sedimentary succession represents a
gradualinfill of the basin. Due to late Palaeozoic rifting the paleotopography has been
affected on Early Mesozoic sedimentation. The Loppa and the Stappen Highs mark
boundaries at the west part for the sediments prograding from the south and southeast areas
(Faleide et al., 1984, Skjold, 1998, Glgrs@drk et al., 2010, Glarsta@lark et al., 2011)In

the Early and Middle Triassic uplift has been affected on the Loppa High, developing a local
source area for smallkscale depositional environmef@larstadClark etal., 2010, Glgrstad

Clark et al., 2011)The accommodation space at the eastern part of the Loppa High was filled
with sediments and the further deposition took place at the western part of the Loppa High in
the Middle Ladinian. The Loppa High was a imalepocenters in the Middle Triassic
(Larssen et al., 2002, I@stadClark et al., 2010, Glgrsta@lark et al., 2011)The Svalis

Dome and the Maud Basin represent the nedstern barrier of the Loppa High, developing

salt structures and its rim syncli(@abrielsen et al., 1990)

In the Late Triassic and Early Jurassic the climate changed from arid to humid and resulted
transportation otlastic sediments from the continent into the Barents Sea. In the late Middle
JurassieEarly Cretaceous widespread rifting phase took place with slifxesettings along

old features in the SW Barents Sea, resulted Bjgrngya, Tromsg and Harstad mgt basi
(Faleide et al., 1993a, Faleide et al., 1993t)e continuous riitg phase throughout the
Cretaceous observed in very deep basins in the SW Barents Sea. In the Late Jurassic organic
rich shales were deposited across the Barents Sea, indicating a very important source rock for
this area. The Triassic succession was tgalifind eroded in the Barents Sea area as well as
the northwestern and northern areas in Spitsbergen with development of a large igneous area
in the Franz Josef Lar{@®ore, 1991, Faleide et al., 2008, Wess/2008)

In the Early Cenozoic the western part of the Barents Sea developed into sheared margin,
associated with rifting and continental bregk pursued by seafloor spreading in the
NorwegianGreenland Sea and Eurasia Basin. Duringdéeozoic regional uplift and erosion

were the defining processes in the Barents Sea area, resulting sodglthtilting of the

crustal block(Faleide et al., 1993a, Faleide et al., 1998b}he Oligocene the region became

v



tectonically quiet and stable period but during the Neagkasinwide uplift took place,

observedthe deposition of a large sedimentary wedge consisting glacial deposits from the

Late PliocenePleistocendFaleide et al., 1996)The Figure 2.3 is representing the possible

paleogeographic reconstruction of the depositional environments

according to Glagrsta@lark et al.(2010).
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Figure 2.3: Paleogeographic reconstruction of the depositional environments
during the Triassic (Glgrstadlark et al., 2010). The marginal marine facies
presented by yellowolour. The green represents the continental facies and the

shelfal facies presented by grey color.



2.3 Structural geology of the Barents Sea

Southern part of the Barents Sea is dominated by-BIMV trendsand itis characterized by

the major fault complexes which areunding theHammerfest and Nordkapp Basinsis|

almost parallel to another major zone to the north characterized by the Veslemgy High and
the fault complexes splitting the Loppa High from the Bjgrngya B@Sabrielsen et al.,

1990, Faleide et al., 1993a, Faleigteal., 1993h) During the Mesozoic an@enozoic the
western part of the Barents Sea was a tectonically active regiute the eastern and
northern part of the Barents Sea was relatively stable region since the Late Carboniferous,
with few tectonic activities. The SW Barents Sea has threernggological provinces

separated by major fault complex€sleide et al.1993a, Faleide et al., 1993b)

1. The Oceanic Lofoten Basin and Vestbakken volcanic province

2. The SW Barents Sea basin province of deep Cretaceous and Early Tertiary basin
(Harstad, Tromsg, Bjgrngya, Sgrvestsnaget Basins)

3. Mesozoic basins and highs (FinmkaBjarmeland Platform, Hammerfest Basin,

Loppa High, Fingerdjupet Subbasin)

The Triassic and Early Jurassic weadectonically quiet period. Tilting events were acting in

the Stappen and Loppa High and subsidence took place in the Early Triassieastimm

areas with sediment influx from the east. In the Nordkapp and Maud Basin salt tectonism was
dominant. In the Middle Jurassic the block faulting developed again, continued and increased
during the period from the Late Jurassic to Early Cretacéoumed the present major basins

and highs. In the Late Jurassic three complicated structures of the central SW Barents Sea
were developed. The Hammerfest Basin was formed in the Late Jurassic and linked to the
Loppa High by the Asterias Fault Complex andngl these faults sytectonic sediments

were deposited from the pRermian agéFaleide et al., 1996)'he Loppa High was created

due to the Late Jurassic to Early Cretaceous and the Late Cretdegtars tectonic events.

The major fault complex was developed during the Late Jurassic iwuotdout it was
established at shallow part of the Bjgrngya Basin in the Early Creta@abselsen et al.,

1990) The Tromsg Basin had developed due to extension in the Late JiHadgic
Cretaceous and contains salt diapirs in the Late Palaeozoic times. North of the Basirs
situated the Bjgrngya Basin, the two basins were joined together in the Late Palaeozoic and in
the Late Cretaceous they separated from each other by the Bjgrngyrenna Fault Complex. The



sediments in the Bjgrngya Basin have an age of Early Creta¢Ealesde et al., 1993a,
Faleide et al., 1993bYhe Sgrvestsnaget Bass located in the west and contains very thick
Cretaceous succession and sediments from the Tertiary, restricted by the Vestbakken
Volcanic region in the nortfGabrielsen et al., 1990)

In the Barents Sea region the major regional fault zones were formed in the Caoosniie
in earlier ages. The area was divided into separate fault blocks analogues to the major fault
complexes and defined by desgated fault complexd&abrielsen, 284).

The major structural elements of the Barents Sea, the study area and the well database are

shown on Figure 2.4. The study area is described in section 2.3.1.
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Figure2.4: The major structural elements of the Barents Sea, the study area (red circle) and the
well database (red dot) (modified from Smelror et al., 2009).

2.3.1 The Bjarmeland Platform

The well 7222/111 was drilled on the Bjarmeland Platform which is located between
Hammerfest and Nordkapp Basins to the south and southeast and the Sentralbanken and the
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Garderbanken Highs to the norths (Figure 2.4). The platform is bordered by the Fingerdjupet
Subbasin and the Loppa High to the west. The area includes several stnattures such as

the Norsel and Mercurius Highs, the Svalis, Samson and Norvang Domes, the Swaen Graben,
the Maud Basin anché parts of the Hoop FaultoBiplex (Gabrielsen et al., 1990, Gading,
1993) The Svalis Dome characteed by evaporates and salt diapirism. The platform has
Permianagebut has been tilted due to Tertiary uplift. Due to the uplift the sediments dip to
the south and the older sediments subcrop the north at the unconformity at the base of the
Quaternary. Thdjarmeland Platform represents a relatively stable structural element since
the Late Palaeozoic. The boundary from the Early Carboniferous siliciclastics to the Late
Carboniferous to Permian carbonates has been characterized as a transition frem a pre
platform development. The Triassic siliciclastics sediments show more than 2 km thickness in
the well 7222/111 and sourced from the west and east areas and covered the platform. The
postTriassic succession is thin as a result of the erosion in the Teandryften contains
Jurassic to Cretaceous sediments with less than few hundred meter thicknesses overlain by the
Pleistocene to recent sedime(@abrielsen et al., 1990, Larssen et al., 2008¢ Bjarmeland
Platform is underlined by Palaeozoic and Precambrian rocks and started to develop as a stable
platform in the Late Carbonifeus. In the Late Permian to Early Triassic the platform has
been affected by fault events, developed structural highs which are parallel with east of the
fault zone. This structurallglevated area consssbf Lower and Middle Triassic sequences

and maximm thickness of Upper Triassic sediments and it has been transported into the
basin. During the Late Mesozoic and Tertja@gctonic events were active in the basin and
developed to the present Loppa High and Fingerdjupet Subbasich displays the end of

the Bjarmeland Platform to the west now. The structural elements are mainly connected to
salt tectonics and weak extension within the platf¢@abrielsen et al., 1990, Gading, 1993,
Larssen et al., 2002)
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2.4 Stratigraphic framework

The Triassic succession consists of several lithostratigraphic formations presented in the
Figure 2.5.

Figure 2.5: The Triassic lithostratigraphy and the Triassic sequence stratigraphic
subdivision (2nd order) in the SW Barents S@algrstadClark et al., 2010)
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