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ABSTRACT

The ionization state of the gas in the dynamic solar chromosphere can depart strongly from the instantaneous
statistical equilibrium commonly assumed in numerical modeling. We improve on earlier simulations of the solar
atmosphere that only included non-equilibrium hydrogen ionization by performing a 2D radiation-
magnetohydrodynamics simulation featuring non-equilibrium ionization of both hydrogen and helium. The
simulation includes the effect of hydrogen Lyα and the EUV radiation from the corona on the ionization and
heating of the atmosphere. Details on code implementation are given. We obtain helium ion fractions that are far
from their equilibrium values. Comparison with models with local thermodynamic equilibrium (LTE) ionization
shows that non-equilibrium helium ionization leads to higher temperatures in wavefronts and lower temperatures in
the gas between shocks. Assuming LTE ionization results in a thermostat-like behavior with matter accumulating
around the temperatures where the LTE ionization fractions change rapidly. Comparison of DEM curves computed
from our models shows that non-equilibrium ionization leads to more radiating material in the temperature range
11–18 kK, compared to models with LTE helium ionization. We conclude that non-equilibrium helium ionization
is important for the dynamics and thermal structure of the upper chromosphere and transition region. It might also
help resolve the problem that intensities of chromospheric lines computed from current models are smaller than
those observed.

Key words: magnetohydrodynamics (MHD) – methods: numerical – radiative transfer – Sun: atmosphere – Sun:
chromosphere

1. INTRODUCTION

The solar atmosphere is the Sun’s dynamic outer layer,
residing above the convection zone. Here, (partially) ionized
gas interacts with magnetic fields, and we see different kinds of
waves, jets, and other phenomena. Numerical modeling is a
powerful tool for determining which physical processes are
important in the solar atmosphere, either together with
observations (e.g., Ortiz et al. 2014; De Pontieu et al. 2015),
or in their own right (where Martínez-Sykora et al. 2012 and
Bourdin et al. 2015 are examples).

Depending on the intended use, various levels of model
sophistication are required. A model should include treatment
of physics relevant for the regime under consideration.

We aim at modeling the solar atmosphere, all the way from
the convection zone to the corona. One difficulty with this is
the treatment of the chromosphere and transition region. Here
the gas goes from nearly neutral to almost completely ionized,
the temperature increases from a few thousand Kelvin to a
million Kelvin, and the dynamics goes from being dominated
by the gas pressure to being dominated by the magnetic
pressure. A reasonable description of the chromosphere and
transition region is important, for instance, for coronal heating,
a longstanding problem in solar physics (Klimchuk 2006;
Parnell & De Moortel 2012), since all the energy that
ultimately ends up heating the corona at some point must
have been transported through these regions.

In this paper we present a method for treating the time-
dependent ionization state of the atmosphere. Hydrogen is the
most abundant element in the Sun, and its non-equilibrium
ionization has been found to result in higher temperature
wavefronts and lower temperature gas between wavefronts,

compared to assuming local thermodynamic equilibrium (LTE;
Carlsson & Stein 2002; Leenaarts et al. 2007). Although the
number of helium particles is around 10 times less than the
number of hydrogen particles, its ionization state does have an
effect on the energy balance of the upper chromosphere and
transition region (Golding et al. 2014). In fact, for a parcel of
neutral solar gas, ionizing half of the helium atoms requires an
amount of energy equivalent to raising the temperature from
10 kK to 20 kK.
An account of the non-equilibrium ionization state involves

solving a set of rate equations for the atomic population
densities. The transition rate coefficients involve frequency
integrals over the intensity, so a general description must
necessarily take radiative transfer into account. The wavecode
presented in Rammacher & Ulmschneider (2003) and the code
RADYN (Carlsson & Stein 1992, 1995, 1997) are examples of
codes that include this complexity. They solve the hydro-
dynamic equations and the rate equations together with the
radiative transfer. One serious drawback of these codes is that
they operate only in one dimension. In 2D or 3D a detailed
treatment of radiative transfer, such as that featured in the
mentioned codes, is challenging because the amount of
computational work needed exceeds the capacity of current
supercomputers.
Leenaarts et al. (2007) overcame this difficulty and used

simplifying assumptions of the radiation field that enabled them
to carry out 2D radiation-magnetohydrodynamics (RMHD)
simulations, including the effects of non-equilibrium hydrogen
ionization. These simulations were performed using the Oslo
Stagger Code (Hansteen 2004; Hansteen et al. 2007), a
predecessor of the stellar atmosphere code Bifrost (Gudiksen
et al. 2011). This method was later implemented in the Bifrost
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code (Golding 2010). An example of a 3D simulation with this
package has been made available for download3 (Carlsson
et al. 2016). We expand on this work by also including a
description of non-equilibrium helium ionization. The paper is
laid out in the following way: we explain the developed method
in Section 2 and present the results in Section 3. Finally, we
summarize and draw conclusions in Section 4.

2. METHOD

The stellar atmosphere code Bifrost solves the equations of
RMHD:
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where ρ is the mass density, u is the velocity field, T is the
stress tensor, P is the gas pressure, J is the current density, B is
the magnetic field, g is the gravitational acceleration, e is the
internal energy density per unit volume, Qr is the heating due to
radiation, Qother is the heating due to heat conduction and
viscous and ohmic dissipation, η is the magnetic diffusivity,
and μ is the vacuum permeability. We express radiative heating
as the sum of different contributions,

Q Q L Q Q , 6r phot chrom Ly EUV ( )= - + +a

where Qphot is the radiative heating from the photosphere
described in Gudiksen et al. (2011), Lchrom is losses from the
chromosphere due to strong lines,QLya is heating from the Lyα
line of hydrogen, and QEUV is the heating from EUV photons,
corresponding to the thin radiative losses from the transition
region and corona (negative QEUV) absorbed in the chromo-
sphere (positive QEUV). Recipes for the three latter contribu-
tions are described in Carlsson & Leenaarts (2012; hereafter
CL12). These recipes are based on empirical fits. In this work
we discuss the effects of non-equilibrium ionization and the
absorption of coronal radiation in the chromosphere. These
effects enter the RMHD equations through P, QLya, and QEUV.
In the remaining part of the method section we describe how
we compute these quantities self-consistently with the popula-
tion densities of hydrogen and helium. For further details on the
Bifrost code we refer the reader to Gudiksen et al. (2011).

2.1. Equations of State

To close the RMHD equation set, we need to relate P to ρ
and e. P is in general given by the relation,

P k T n n , 7
i j k

ijkB e
, ,

( )
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟å= +

where kB, T, ne, and nijk are the Boltzmann constant, the gas
temperature, the electron density, and the population density of
an atom or molecule i in the ionization stage j occupying the
excitation state k. The quantities T, ne, and nijk are not present
in the RMHD equations, and must be specified through extra
equations. The MHD model requires a single temperature for
all species, so we express the internal energy density as
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where Eijk is the dissociation, ionization, or excitation energy of
an element or molecule i in the ionization stage j occupying the
excitation state k. In addition, MHD assumes charge neutrality,
so that the electron density is given by
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i j k

ijke
, ,

( ) ( )å= -

where j=1 denotes a neutral particle, and j=2 denotes a
singly ionized particle, etc. The total number of atomic nuclei
of each element (including atoms bound in molecules) is
conserved, so we add conservation equations for each element.
The additional equations required to constrain nijk and close the
set of equations depend on the physical system one wants to
model.
We refer to Equations (7)–(9) and the extra equations used to

constrain nijk (see 2.1.1 and 2.1.2) collectively as the equations
of state (EOS).

2.1.1. The Local Thermodynamic Equilibrium EOS

The most common way of constraining the population
densities is to assume LTE. In that case the temperature,
electron density, and population densities are related through a
set of Saha–Boltzmann equations and molecular equilibrium
equations (e.g., Mihalas 1978). This combination of equations
leads to an EOS that is local: once the internal energy, mass
density, and the elemental abundances are given, T, ne, and nijk,
and hence P, can be computed directly. Based on these
variables other relevant quantities, such as opacities, can be
computed. This method is computationally fast because all
relevant variables can be pre-computed and read from a table.
Most stellar atmosphere codes use this assumption
(e.g., Nordlund 1982; Vögler et al. 2005; Gudiksen
et al. 2011; Freytag et al. 2012; Wray et al. 2015). The Bifrost
implementation employs tables that depend on ρ and e.

2.1.2. Non-equilibrium Ionization of Abundant Elements

The assumption of LTE breaks down in the layers above the
solar photosphere. Radiative transition rates become dominant
over collisional rates, leading to non-local coupling of different
parts of the atmosphere through radiation. The transition rates
themselves become so small that the ionization-recombination
and molecular association–dissociation timescale can become
long compared to typical hydrodynamical timescales in the
atmosphere (Joselyn et al. 1979).
In that case the population densities should be determined

from a continuity equation:
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The gains and losses represent processes that add or remove
particles out of state ijk, such as collisions with electrons,
radiative transitions, or processes that form or destroy
molecules. This type of lack of any equilibrium in the
population densities is generally referred to as non-equilibrium.

The terms that matter the most in the EOS are those that are
associated with the most abundant elements. In the solar
atmosphere these are hydrogen and helium (Asplund
et al. 2009), which are both susceptible to non-equilibrium
effects: non-equilibrium hydrogen ionization leads to increased
temperature fluctuations throughout the chromosphere, as
shown in detailed 1D wave simulations of the solar atmosphere
(Carlsson & Stein 2002). Leenaarts et al. (2011) investigated
the non-equilibrium formation of H2 molecules, which can lead
to very low temperatures in the chromosphere because the
exothermic H2 formation rate is too low to counteract the rapid
adiabatic cooling between internetwork shocks. Golding et al.
(2014) showed that non-equilibrium helium ionization leads to
significant differences in temperature in the upper chromo-
sphere and transition region.

Solving the continuity equations involves solving the
complete radiative transfer problem because radiative rates
enter into the gain and loss terms in Equation (10). Each
radiative transition rate coefficient is found by integrating the
mean intensity over frequency. The mean intensity for each
frequency is essentially found by integrating the source
function over the computational domain. This procedure is
too costly to apply directly in a multi-dimensional RMHD code
where it must be repeated every time step, and typical time
steps are of the order of milliseconds. Fortunately, simplifica-
tions that lead to a computationally tractable problem are
possible.

2.2. Non-equilibrium Hydrogen in Bifrost

The Bifrost code already includes an option to compute the
EOS, including non-equilibrium hydrogen ionization and H2

molecule formation using such simplifications. A detailed
description of the method can be found in Leenaarts et al.
(2007, 2011) and Gudiksen et al. (2011). Here we briefly
restate the essential points as a foundation for the further
extensions to the method that are the topic of this paper.

The non-equilibrium hydrogen ionization method is based
on approximations by Sollum (1999), who observed that the
mean intensity in non-Lyman hydrogen transitions decouples
from the gas temperature in the photosphere, and that the mean
intensity above this decoupling point stays constant. This
means that each radiative rate coefficient in the chromosphere
and above can be described by one parameter—the radiation
temperature above the photosphere. In the photosphere and
below the radiation, temperature is simply the gas temperature.

The continuity equations for atomic hydrogen read

u
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where P C Rij ij ij= + is the sum of the collisional (Cij) and
radiative (Rij) rate coefficients and ni are population densities in
the excitation and ionization stages of hydrogen. The
collisional rate coefficients depend on the local electron density
and temperature only, and the non-Lyman radiative rate
coefficients are computed from Sollum’s radiation

temperatures, so that the equations are again local. For all
other elements we assume LTE.
The assumption that the radiation field decouples from the

temperature in the photosphere does not hold for the Lyman
transitions. Instead, these are assumed to be in detailed
radiative balance, i.e., n R n Rj j j1 1 1= , which is equivalent to
setting R R 0j j1 1= = in the hydrogen continuity equations
(where subscript 1 denotes the ground state).
A continuity equation for H2 is also included, with three-

body association and collisional dissociation with neutral
hydrogen atoms as source and sink terms. The continuity
equations are solved using operator splitting. First the
populations are advected using an explicit first order upwind
scheme. The source and sink part are solved implicitly together
with Equations (8) and (9), for the population densities,
electron density, and temperature. The pressure then follows
from Equation (7).
We now describe the new additions to Bifrost: the inclusion

of hydrogen Lyman transitions in Section 2.3 and non-
equilibrium helium ionization in Section 2.4.

2.3. Heating and Cooling in Lyα

The assumption that the Lyman transitions are in detailed
balance breaks down in the upper chromosphere (see, for
example, Vernazza et al. 1981), and the method described in
Section 2.2 will thus not be accurate there.
Lyα photons are, roughly speaking, released from the

transition region or from shocks, and absorbed by surrounding
cold chromospheric material (CL12). The upward rate
coefficient for a bound–bound transition depends on the
radiation field. Computing the frequency-dependent radiation
field every time we advance the RMHD equations with a
timestep is computationally too expensive. Therefore we use a
simple one-frequency approach. Lyα photons that contribute to
the transport of energy are those that manage to escape from the
location where they are emitted. Deep in the solar atmosphere
most Lyα photons are emitted and absorbed at the same
location, i.e., the radiation temperature is equal to the gas
temperature. These photons do not affect the energy balance of
the gas, so we do not model them. We only consider the
photons that are able to escape from where they are emitted.
CL12 use an escape probability to parameterize hydrogen

losses. We adopt this escape probability to account only for the
photons that make a difference in the energy budget. The
escape probability at a specific location, E, is modeled as a
function of the column density of neutral hydrogen (τ). This
escape probability is monotonically decreasing with increasing
τ. In the corona and transition region there is very little neutral
hydrogen in the column above, so E=1. Further down in the
atmosphere, τ increases and the escape probability goes to zero.
We let the downward radiative rate coefficient in the Lyα
transition be proportional to the escape probability,

R A E , 1221 21 ( ) ( )t=

where A21 is the Einstein coefficient for spontaneous de-
excitation. From this rate coefficient we express the frequency-
integrated Lyα emissivity,

h
n R

4
, 13L
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where h is Planck’s constant, 0n is the line center frequency,
and n2 is the number density of the upper level of the line. We
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ignore stimulated emission and express the Lyα opacity as

h
n B

4
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where B12 is the Einstein coefficient for radiative excitation and
f is a frequency-averaged profile function. We set

2 10 12f = ´ - Hz−1 which is half of the maximum value of
the corresponding frequency-dependent Doppler profile at 10
kK. From the emissivity and opacity we obtain the frequency-
integrated mean intensity, JLya, by solving the equation of
radiative transfer using a short-characteristics method for
decomposed domains (Hayek et al. 2010; Carlsson &
Leenaarts 2012). The upward radiative rate coefficient is then
expressed as

R B J . 1512 12 Ly ( )= a

When these non-zero radiative rate coefficients in the Lyα
transition are included in the hydrogen rate equations, we
compute the Lyα heating,

Q h n R n R , 16Ly 0 1 12 2 21( ) ( )n= -a

where n1 and n2 denote the population densities of the lower
and upper level. All other Lyman lines are still assumed to be in
detailed balance. The Lyman continuum, however, is taken into
account, as described in Section 2.4.

Our handling of the Lyα transfer represents an extreme
simplification. Nevertheless, we find it worthwhile. Our
description qualitatively produces what we want: cooling in
the transition region and in wavefronts, and heating in the
colder ambient gas.

2.4. Non-equilibrium Helium Ionization

We obtain non-equilibrium helium population densities by
solving the rate equations for helium (Equation (10)). We use a
three-level model atom, consisting of the ground states of He I

and He II, and the doubly ionized state He III (see Figure 1).
Golding et al. (2014) showed that the model atom reproduces
the correct ionization state remarkably well, given its extreme
simplification.

The model atom includes collisional ionization/recombina-
tion (Arnaud & Rothenflug 1985; see Appendix B.2),

photoionization/recombination, and an extra recombination
rate coefficient that mimics the net radiative recombination to
excited states. Further details and the derivation of the extra
recombination rate coefficient are given in Golding et al.
(2014). The photoionization rate coefficient is a frequency
integral over the mean intensity weighted by the photoioniza-
tion cross-section. As mentioned earlier, this is a quantity that
is too computationally costly to be computed in detail. To make
the problem computationally tractable we use a bin formula-
tion, reducing the integral to a sum with only a few terms. It is
the EUV photons emitted downward from the transition region
and corona that are responsible for ionizing helium in the
chromosphere. Photons with wavelengths shorter than 504Å
are prone to ionize neutral helium. However, they might just as
well ionize hydrogen in the Lyman continuum. The Lyman
continuum has its ionization edge at 911Å. We include the
hydrogen Lyman continuum transition and for that reason we
choose the first bin to have its upper limit at 911Å. We let the
last bin have a lower limit at the wavelength 20Å, well below
the photoionization edge wavelength for He II at 228Å.
Figure 2 shows the continuum opacity per hydrogen atom as

a function of wavelength for a parcel of solar gas where
hydrogen is 30% ionized, helium is 75% neutral and 25%
singly ionized—values typical for the upper chromosphere.
Here, and in the transition region, is where the ionization state
of helium is most important for the energy balance. Radiation
bins are indicated in the figure. They are chosen in the
following way: bin boundaries are set at the photoioniziation
edges of He I and He II, resulting in three main bins that are
further split into a number of sub-bins.
In each of the main bins the continuum opacity falls off with

decreasing wavelength. We set the boundary between sub-bins
at the wavelengths where the relative change of opacity is equal
in each of the sub-bins. The upper and lower frequencies of the
bin j are denoted as j,0n and j,1n . We adopt a formulation where
x denotes the transition and j is the bin number. ng,x and nc,x are
the population densities of the ground and continuum states.
There are three continuum transitions, the ground state He I

continuum, the ground state He II continuum, and the hydrogen
Lyman continuum. That means that we in principle need 3Nbin

photoionization cross-sections (Nbin denotes the total number of
bins). The photoionization cross-section for transition x in bin j
is denoted as jx,s . Some of these photoionization cross-sections
are zero. For instance, jx,s corresponding to the transition

Figure 1. Simplified helium three-level model atom. It consists of the ground
states of each ion stage. Transitions taken into account are photoionization,
radiative recombination, collisional ionization by electrons, three-body
recombination, and an effective recombination modeling recombination to
excited states and the subsequent radiative cascade to the ground state.

Figure 2. Opacity per hydrogen atom in typical upper chromospheric material.
The red numbers name the bins used for the simulations presented in this paper.
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between ground states He I and He II is zero in all bins that have
their lower wavelength boundary at 504Å or higher.

We find jx,s for a transition x in a specific bin j by equating
the upward radiative rate coefficients in the binned and
continuum formulation,
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where Jν and x,s n are the the frequency-dependent mean
intensity and the frequency-dependent photoionization cross-
section for the transition x. Jj is the mean intensity that is found
using jx,s in the opacity. This equation is solved by iteration for
a point in the chromosphere of a reference atmosphere. As a
reference atmosphere we use the initial snapshot of the
simulations from Golding et al. (2014). Having all the atomic
constants determined, we can compute the photoionization and
radiative recombination rate coefficients,
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whereW jx, is a bin-dependent constant, n ng,x c,x LTE[ ] is the LTE
ground state to continuum population density ratio for the
transition x, given by the Saha relation (see for instance
Mihalas 1978), and Bj is the mean of the Planck function
corrected for simulated emission. We ignore stimulated
emission, so that the radiative recombination coefficient is
independent of the mean intensity. A detailed derivation of
these expressions is given in Appendix B.1.

Test computations showed that the bin divisions drawn in
Figure 2 reproduce the actual photoionization rate coefficients
of the reference atmosphere fairly well. These six bins are the
ones we use in the simulations presented in this paper.

2.4.1. EUV Radiative Transfer

We compute the heating and cooling in the EUV spectrum
based on the actual population densities of H and He. The bin
opacity and bin emissivity are necessary to compute the mean
intensity, Jj. The opacity contribution for transition x in the jth
bin is

n , 20j jx, g,x x, ( )c s=

where ng,x is the lower level population density of the
transition. We include two contributors of photons to the
radiation. First, the photons released when hydrogen and
helium ions recombine. They give rise to an emissivity that is
transition- and bin-dependent,

n
n

n
B , 21j j jx, c,x

g,x

c,x LTE

x, ( )
⎡
⎣⎢

⎤
⎦⎥h s=

where nc,x is the upper-level population density of the
transition.

Then, second, we include photons produced by collisional
excitation followed by radiative de-excitation in lines in the

transition region and corona. An exact account of the resulting
emissivity is not possible, as it would require of us to solve the
rate equations for all relevant ions. Rather, we assume
ionization equilibrium and sum up the line losses from relevant
ions in each radiation bin. Photons from lines with wavelengths
larger than 911Å or shorter that 20Å are treated as photons
which, after emission, do not interact with matter, i.e., we have
no opacity for these wavelengths. We can express this coronal
emissivity in the jth bin as

n n L T
e , 22j
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j j

P P
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0
( )

( )h
n n
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-
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where Lj(T) is a temperature-dependent loss function per
electron per hydrogen atom per steradian. The exponential
factor ensures that we avoid including losses from hot regions
that are dense. We set P0 to a value typical of the upper
chromosphere to make sure these losses only come from the
transition region and corona. We use CHIANTI to compute
Lj(T) with the abundances given in Sun_coronal.abund
and the ionization equilibrium values from chianti.ioneq
(Dere et al. 1997, 2009). Figure 3 shows Lj(T) for the bins we
use in the simulations presented here. Losses due to helium are
dominated by the He II 304Å line, and therefore we include
helium line losses using the non-equilibrium He II population:

L T n
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4
. 23304 He
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Here the first factor is the photon energy per steradian, the
middle factor is the number density of singly ionized helium
per hydrogen atom, and q(T) is the collisional excitation rate
coefficient per electron taken from CHIANTI. L304 is added to
the appropriate Lj. The total bin emissivity is then finally
expressed as the sum of both the contributions,

. 24j j j
x

x, cor, ( )åh h h= +

We obtain the bin mean intensity, Jj, with the same formal
solver that is used for the Lyα radiation.
We now have all relevant quantities and can compute the

heating rate in the upper chromosphere, transition region, and

Figure 3. Coronal radiative losses for the six bins used in our simulations.
These losses do not include contributions from hydrogen and helium. The
helium losses that are used in the simulations without non-equilibrium helium
ionization are shown in red.
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corona caused by the EUV spectrum:
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( )( ) ( )åp c h n n= - -
=

2.5. Four Simulation Runs

In order to compare the various approximations to the
ionization balance of hydrogen and helium we perform a
differential study. Therefore we performed four two-dimen-
sional simulation runs starting out from the same initial
snapshot. The simulations are meant to be comparable to quiet
Sun conditions. The spatial domain spans a region
15.8 Mm×16.6 Mm with an equidistant horizontal resolution
of 33 km and a vertical resolution of 28 km at z 5< Mm,
continuously increasing to 150 km in the corona at z 9> Mm.
z=0Mm is set in the photosphere where the optical depth at
5000Åis unity. The initial magnetic field has a mean absolute
value of 65 G at z=0Mm. The flux is concentrated in four
regions separated roughly by 4Mm, the strongest of which has
a negative sign (x= 10Mm) and the three remaining
concentrations slightly weaker and with a positive sign. The
two concentrations at x=2Mm and x=10Mm form
footpoints for looplike structures, and we refer to them as a
network. In 2D models there is not enough magnetic
dissipation to sustain coronal temperatures self-consistently.
We therefore use a hotplate boundary condition in the corona
that will heat or cool the plasma toward a temperature of 1 MK
on a timescale of around 400 s. The runs differ in the way the
EOS, and thus also QLya and QEUV,are modeled.

The first run (LTE) treats all elements, including H and He,
in LTE. QLya and QEUV are computed from the recipes
in CL12.

The second run (HION) treats hydrogen in non-equilibrium
as described in 2.2, with the Lyman transitions in detailed
balance. All other elements are in LTE. QLya and QEUV are
computed from the recipes given in CL12.

The third run (LYA-HION) treats hydrogen in non-
equilibrium as described in Section 2.2, but with the Lyα
transition computed using our one-frequency recipe (see
Section 2.3). QLya is computed as described in Equation (16)
and QEUV is computed from the recipe in CL12.

Finally, the fourth run (HELIUM) treats both hydrogen and
helium in non-equilibrium. QLya is computed from Equa-
tion (16) and QEUV is computed from Equation (25).

All the runs include tabulated losses from helium in the
coronal emissivity (see Figure 3), except the HELIUM run,
which includes helium losses as given by Equation (23).

Compared to running with an LTE EOS, the computing time
needed per time step is 2–3 times longer when using a non-
equilibrium hydrogen EOS and 4–5 times longer when using
the non-equilibrium hydrogen and helium EOS. The four
simulations are run for at least 3000 solar seconds and

snapshots are written every 10 s. The details of each run are
summarized in Table 1.

3. RESULTS

3.1. Effect of Non-equilibrium Hydrogen Ionization

Figure 4 shows temperatures and ion fractions at t=1400 s
for all four simulation runs. We first focus our attention on the
two left columns, corresponding to the LTE-run and the HION
run. Comparing panels (a) and (b), we see that the HION run
has a hotter chromosphere and more contrasted structure in the
temperature than the LTE-run. This is due to long hydrogen
ionization-recombination timescales, resulting in a slowly
changing ionization state. The fraction of H as H II in the
chromosphere of the HION run (panel (r)) is more stable and
less responsive to waves (and other perturbations) than the ion
fraction from the LTE-run (panel (q)). The change of internal
energy associated with the waves will either go into ionizing
atoms (i.e., bound in ions) or increase the temperature. We see
this clearer in the vertical spacetime cut shown in Figure 5. The
location of the cut is indicated by the green vertical lines of
Figure 4. We can see waves propagating in the chromosphere
in panels (a) and (b) as the tilted brighter lines. The amplitude
in temperature of the wavefronts is higher for the HION run
than for the LTE-run. Again, the hydrogen ion fraction of the
HION run (panel (r)) is less structured than the LTE-run ion
fraction (panel (q)). This confirms what was reported in
Leenaarts et al. (2007).
Helium is in LTE in both the LTE-run and in the HION run.

Panels (i) and (j) in Figures 4 and 5 show the fraction of He as
He II for the two simulations. For the region below the arched
structures separating the chromosphere from the corona, this
fraction is larger in the HION run than in the LTE-run. This is
simply because of the higher chromospheric temperatures
featured in the HION run. Neutral helium ionizes at 10kK in
LTE. The two ion fractions are different in value, but they
correlate well with the patterns and structures seen in
temperature.

3.1.1. Lyα Heating

All four simulations feature Lyα cooling, but only the LYA-
HION run and the HELIUM run include the Lyα heating and
cooling self-consistently with the rate equations. This self-
consistent treatment is the only thing separating the HION run
from the LYA-HION run, so these two runs are used to identify
the effects. We compare the temperatures in Figure 4 (panels
(b) and (c)), and the temperature spacetime cuts from Figures 5
and 7 (panels (b) and (c) in both figures). We do not see any
systematic difference between the two runs. We do observe,
however, when comparing the fraction of H as H II, that
including the Lyα heating leads to a more extended region
where the fraction of H as H II is of order 10 1~ - (panels (r) and
(s) from Figures 4 and 5). This is expected for two reasons,
which we illustrate in Figure 6. First, Lyα cooling in the
transition region will contribute to a stronger net downward
rate, making it easier for atoms to remain neutral, even at high
temperatures. Second, absorption deeper down, in colder
regions, will contribute to a stronger net upward rate and more
hydrogen occupying the first excited state. This results in more
ions, since photoionization in the Balmer continuum is the most
important ionization process for hydrogen in the chromosphere
(Carlsson & Stein 2002).

Table 1
Simulation Overview

Simulation H QLya He He304 QEUV

LTE LTE recipe LTE eq. recipe
HION non-eq. recipe LTE eq. recipe
LYA-HION non-eq. detailed LTE eq. recipe
HELIUM non-eq. detailed non-eq. non-eq. non-eq.
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3.2. Effects of Non-equilibrium Helium Ionization

We now investigate the effects of non-equilibrium helium
ionization and focus first on the two right columns of Figure 4,
corresponding to the LYA-HION run and the HELIUM run.
Panels (c) and (d) show the temperature. The difference is not
dramatic, but there is a tendency toward structural features in
the chromosphere standing more out in the HELIUM run.
These structures are less pronounced in the HELIUM run ion
fractions. See, for instance, the fraction of He as He II in panel
(l). It shows little or no correlation with the structures that can
be seen in the chromosphere temperature in panel (d). Panel (k)
displays this fraction in the LYA-HION run and there is a solid
correlation between it and the chromosphere structures
showing in panel (c). The vertical and horizontal spacetime
temperature diagrams of Figures 5 and 7 (panels (c) and (d) in
both figures) indicate that the gas in the wavefronts is hotter,
and gas between wavefronts is colder in the HELIUM run than
what they are in the LYA-HION run. We compare the vertical
spacetime diagrams of the fraction of He as He II (panels (k)
and (l) of Figure 5) and see that these waves are essentially not

showing up in the HELIUM run, but they are in the LYA-
HION run.
We explain the effect of non-equilibrium helium ionization

in the same way we explain the effect of non-equilibrium
hydrogen ionization. The long ionization-recombination time-
scale of helium prevents the ionization state from responding to
waves and other perturbations. The increased internal energy
associated with the wave compression will, instead of ionizing
the gas, lead to increased temperatures. Conversely, the
expanding gas between shocks cools off the material instead
of maintaining its temperature by releasing energy from
recombining helium ions.

3.3. Preferred Temperatures

In the simulations where LTE ionization is used in the EOS,
certain temperatures are more frequently occurring than others.
We can see this in the horizontal temperature spacetime
diagrams shown in Figure 7. In the LTE-run (panel (a)) there
are many points with a temperature around 6 kK in blue. In the
two HION-runs there are many points with a temperature of

Figure 4. State of the atmosphere in the four different simulation runs at 1400s of solar time. Each column corresponds to a given simulation. The rows show, from
top to bottom: temperature, fraction of He as He I, fraction of He as He II, fraction of He as He III, and fraction of H as H II. Including non-equilibrium ionization leads
to more structure in temperature and less structure in the various ion fractions. This is because the finite transition rates limit how fast the ionization state can change.
Changes in the internal energy will manifest themselves as changes in temperature. Hydrogen is the most abundant element and its non-equilibrium description has the
strongest effect, as is seen by comparing panels (a) and (b). Also including a non-equilibrium description of helium leads to a larger temperature difference between
the shock fronts and the plasma between the shocks than what we see in the LYA-HION run (compare panels (c) and (d)). The two green lines indicate the cuts used
for the spacetime diagrams shown in Figures 5 and 7.
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about 10 kK in orange/red. Finally, in panel (d) we see that the
temperature spans more of the color table range.

The preferred temperatures are also clearly visible as dark
bands in Figure 8, where we map out the occurrence rate of
points on a z Tlog10– grid. Using an LTE EOS clusters grid
cells around these temperatures. There is a cut in these panels at

Tlog 3.310 = (2 kK). This is due to an artificial heating term
that kicks in when the temperature drops below this value,
effectively setting 2 kK as a lower limit temperature.

If we heat a parcel of gas with LTE hydrogen ionization, the
temperature will not rise above 6 kK before all of the hydrogen
atoms are ionized. It is similar for LTE helium ionization. As
we heat the parcel of gas, the temperature will not exceed
10 kK before all of the He I atoms are ionized. Heating it even
more, eventually the temperature rises until we reach 22 kK,

where all of the He II ions are ionized before the temperature
can increase to higher values. This happens because the Saha
equation that governs the LTE ionization is particularly
sensitive to temperature. Atoms or ions will ionize over a
small temperature range, while the corresponding range of
internal energy is large. In the chromosphere these small
temperature ranges are centered at the preferred temperatures.
There hydrogen and helium act as thermostats when their
ionization state is described by LTE.

3.4. EOS and Radiative Capability

Using a non-equilibrium ionization EOS might change how
a model atmosphere radiates. We use the differential emission
measure (DEM) to get a qualitative understanding of this
change. Assuming ionization equilibrium, the emergent

Figure 5. Evolution in temperature and ion fractions along a vertical cut in the four simulation runs. The cut used is indicated by the green vertical line drawn in all the
panels of Figure 4. The columns, from left to right, are the different simulation runs. The rows show, from top to bottom: temperature, fraction of He as He I, fraction
of He as He II, fraction of He as He III, and fraction of H as H II. The LTE temperature in the chromosphere lies around two preferred values, 6 and 10 kK. When non-
equilibrium hydrogen is included (the three other runs), 6 kK is no longer a temperature at which the chromospheric gas stabilizes. The preferred value of 10 kK is not
present in the HELIUM run. These effects can be explained by the ionization fractions: the larger variations in the temperature are compensated by less variations in
the ion fractions. The green vertical line in the LYA-HION run panels indicates the column used in Figure 6.
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intensity of a thin line from a column in our simulation can be
expressed as

I G T T dT , 26( ) ( ) ( )ò= F

where G(T) is the line-dependent contribution function
determined by atomic data. The DEM, T( )F , is defined as
n n dz dTe H . We compute this quantity on a temperature grid
ranging from 10 to 25 kK. To get a statistically reasonable
result, we average over all columns of all the snapshots
covering the timespan 1000–3000 s.

Figure 9 shows the DEMs corresponding to the four
simulation runs. The HELIUM run DEM falls off smoother
than the DEMs from the other runs. At temperatures above
11 kK it deviates from the two HION run DEMs, whereas they
are very similar at lower temperatures. In the temperature range
11–18 kK the HELIUM run DEM has a higher value by a
factor of around 2 compared to the LYA-HION run. The
bumps in the DEM curves at 22 kK in all but the HELIUM run
are due to LTE ionization of helium and the resulting 22 kK
preferred temperature. Since the LTE-run has less material at
temperatures between the two preferred temperatures 6 kK and
10 kK, its DEM in that temperature range is down by an order
of 10−2 of the DEMs from the runs, including non-equilibrium
hydrogen ionization (not shown here). Although DEMs are
used mostly for analysis concerning coronal lines formed at
higher temperatures than the ones featured here, the quantity is
correlated to the amount of mass and its ability to radiate at a
given temperature—also for the low temperatures we are
considering here.

3.5. Consequence for Modeling Helium Lines

Using a DEM to model helium resonance lines with
Equation (26) is not ideal for two reasons. First, the lines are
not thin, and second, the assumption of ionization equilibrium
is not valid. We elaborate on the latter in Figure 10. Here we
show the probability density functions of helium ions as a
function of temperature, from the HELIUM run. The time-
dependent fraction of He as He II peaks at a temperature near

10 kK—well below the corresponding ionization equilibrium
value at around 50 kK. This happens because the coronal
radiation is photoionizing the “cold” and neutral helium in the
upper chromosphere.

3.5.1. Helium Ionization-recombination Timescales

We use the helium transition rates to compute tR, the
ionization-recombination timescale (Judge 2005). This time-
scale is shown in Figure 11 at t=1400 s for the HELIUM run
(the same snapshot as in Figure 4). Around the two network
regions at x=2Mm and x=10Mm the timescales in the
chromosphere are the shortest, ranging from ∼10 s to ∼200 s.
The transition region and corona above these regions are hot
and dense, leading to high EUV emissivities ( jcor,h ) and strong
EUV heating of the chromosphere, i.e., large transition rates
and short timescales. In the more elevated parts of the
chromosphere residing under the arched structures, the time-
scale is an order of magnitude higher at 10 s3~ . Here the gas
has a low density and the incident radiation field is weaker than
in the network regions, both of which lead to slow rates and
long timescales.

4. CONCLUSION

We present a method for including non-equilibrium ioniza-
tion of abundant elements in the EOS of RMHD simulations.
The method is implemented in the stellar atmosphere code
Bifrost. To assess the effects of the dynamics of the chromo-
sphere on the ionization, we present four 2D numerical
simulations of the solar atmosphere. They feature different
setups for ionization in the EOS: it is either described by a set
of Saha equations (LTE) or by a set of rate equations for
hydrogen and/or helium, resulting in a non-equilibrium
ionization state where possible long ionization-recombination
timescales are taken into account.
We find that the use of a non-equilibrium ionization EOS

affects the state of the chromosphere in the following way:
there is a larger variation in the chromospheric temperature,
which is caused by smaller variation in the ionization state than
what is the case for LTE simulations. A slowly changing
ionization state means that the internal energy bound in ions is
also slowly changing. Any short lived chromospheric perturba-
tion in the internal energy will therefore manifest itself as a
perturbation in temperature. Both non-equilibrium hydrogen
and helium ionization contribute to this effect. The ionization
state of helium impacts the upper chromosphere the most
because hydrogen is already highly ionized there.
A side effect of using LTE ionization in the EOS is that grid

cells that make up the chromosphere and lower transition
region, where the ionization state of the gas plays a decisive
role in the energy balance, are likely to have one of three
preferred temperatures, 6, 10, or 22 kK, associated with the
ionization of H I, He I, and He II, respectively. This leads to
chromospheric T,( )r configurations that are not necessarily
very physical, and that in turn may significantly affect how
certain chromospheric lines form. We illustrate this with a
DEM calculation that shows an increase by a factor of two
between 11kK and 18kK when including non-equilibrium
helium ionization. This change in atmospheric structure might
resolve part of the problem in which chromospheric spectral
lines calculated from RMHD models typically show too little
emission (e.g., Leenaarts et al. 2013; Lin & Carlsson 2015).

Figure 6. Net radiative rate per hydrogen atom in the Lyα transition (solid line,
scales to the left) and temperature (dashed line, scales to the right). Near the
transition region there is a net downward radiative rate in response to hydrogen
in the ground state being excited by electron collisions followed by radiative
de-excitation. Deeper down, in the chromosphere, there is a net upward rate,
where Lyα photons are absorbed. The data is from the column indicated in the
LYA-HION panels of Figure 5.
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Changes in the electron density and temperature might affect
the first ionization potential effect (FIP) observed in the corona
(e.g., Laming 2015). The non-equilibrium ionization of helium
might influence the mechanisms that cause abundance
differences of helium in the corona (Laming & Feldman 2003),
and on the anomalous helium line intensities derived from
DEM models (Giunta et al. 2015).

The timescale of helium ionization and recombination in the
chromosphere spans a range of 101–103 s. The lower end of this
range is consistent with the timescale we computed in Golding
et al. (2014). There we found and gave examples of non-
equilibrium effects on the He I 10830 and He II 304 lines. Since
a timescale in the low end of the range is sufficient to cause
non-equilibrium effects, these effects might be more pro-
nounced in atmospheric regions where the timescale is on the
higher end of the range. We thus expect a strong influence of
non-equilibrium helium ionization on the formation of the
He I10830Å line, which is a popular diagnostics of chromo-
spheric magnetic fields (e.g., Lagg et al. 2004; Centeno
et al. 2010; Schad et al. 2013).

Our conclusions are based on a differential study using 2D
simulations. Since the physical mechanisms do not change
when going to 3D, we expect our conclusions to hold then
as well.

While our simulations with non-equilibrium hydrogen and
helium ionization are an improvement over previous work, they
have some limitations. Our treatment of the radiative transfer in
the hydrogen Lyα and He II 304 lines is highly simplified. Also,
ion–neutral interaction effects are not included, but they have
been found to affect the thermodynamics of the chromosphere
(Martínez-Sykora et al. 2012).

At the time of writing a 3D simulation including non-
equilibrium ionization of hydrogen and helium is underway.
The natural next step would be the inclusion of ion–neutral
interactions.

This research was supported by the Research Council of
Norway through the grant “Solar Atmospheric Modeling” and

through grants of computing time from the Programme for
Supercomputing. The research leading to these results has
received funding from the European Research Council under
the European Union’s Seventh Framework Programme (FP7/
2007-2013)/ERC, grant agreement No. 291058
(CHROMPHYS).

APPENDIX A
CODE IMPLEMENTATION OF NON-EQUILIBRIUM

HELIUM IONIZATION

The variables included in experiments with non-equilibrium
helium ionization are the temperature, T, the electron density,
ne, the atomic hydrogen population densities, ni,H, for five
bound states (i= 1 to i= 5) and the continuum (i= 6), the
molecular hydrogen population density nH2, and, finally, the
helium population densities ni,He for the ground states of He I,
He II, and He III (i 1, 2, 3= ). This adds up to 12 variables, so
we need to solve 12 equations. The equations are linearized and
solved with the iterative Newton–Raphson scheme. The first
nine equations are the internal energy conservation equation
(Equation (8)), charge conservation equation (Equation (9)), a
hydrogen atom conservation equation, and six rate equations,
one for molecular hydrogen and five for atomic hydrogen. For
the last three equations we use two rate equations for atomic
helium and one helium atom conservation equation.
The helium and hydrogen atom conservation equations have

identical forms. For brevity we let ni refer to either ni,H or ni,He
and express the atom conservation equations:

F
n

n
1 0, 27i

N
i

cons
1

tot
( )å

= - ==

where ntot is the total number density of either hydrogen or
helium, which is proportional to the mass density with an
abundance-dependent coefficient, and N is the number of
atomic states. For hydrogen N is 6 and for helium it is 3. The
atom conservation equations only depend on the number

Figure 7. Temperature evolution along a horizontal cut (z=2.66 Mm) in the four simulation runs. Waves propagating along the magnetic field lines reveal
themselves as relatively brighter inclined lines. These waves stand out the most in the HELIUM run. Here the wavefronts are hotter than in any of the other runs, and
the expanding gas between the waves is cooler. The horizontal cut is indicated by the horizontal green line seen in all panels of Figure 4.
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Figure 8. Joint probability density function of height and logarithmic temperature. The figure includes data from the time interval 1000–3000 s. The three horizontal
plateaus (at 6, 10, and 22 kK) in the LTE simulation indicate preferred temperatures when using the LTE equation of state. These temperatures are associated with the
LTE ionization of H I, He I, and He II. The plateaus vanish when we introduce non-equilibrium hydrogen and helium ionization.

Figure 9. Differential emission measure averaged over the time interval
1000–3000 s. The HELIUM run DEM does not have a bulge associated with
the preferred temperature at T=22 kK, like the other three runs. It has a higher
value than the other three runs in the temperature range 11–18 kK.

Figure 10. Occurrence of helium ion fractions as a function of temperature for
He II in the top panel, and He III in the bottom panel. Each column has been
normalized to increase readability. Median values and CHIANTI values are
overplotted.
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density and the derivative is
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The atomic rate equations of hydrogen and helium also have
identical forms. We define
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where Pij is the sum of the collisional and radiative rate
coefficient for the transition from atomic state i to atomic state
j: P C Rij ij ij= + . The atomic rate equations then take the form
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These equations depend on electron density, temperature, and
number densities. The derivatives are:
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In the old non-equilibrium hydrogen description (the HION
run), all Lyman transitions are assumed to be in detailed
radiative balance, i.e., the radiative rate coefficients to or from
the ground state of hydrogen (i= 1) are all set to zero. We have
derived approximate expressions for the Lyα and Lyman
continuum radiative rate coefficients, R12, R21, R16, and R61

given in Equations (15), (12), (18), and (19), respectively. Of
these rate coefficients, only R61 has non-zero derivatives. These
are given in the next section. For all other derivatives we refer
the reader to the appendix of Leenaarts et al. (2007). For the
rate equation for molecular hydrogen and its derivatives we
refer the reader to Appendix B of Gudiksen et al. (2011).

APPENDIX B
TRANSITION RATE COEFFICIENTS

The total transition rate coefficient needed for the rate
equations, Pij, is the sum of a collisional part, Cij and a radiative
part Rij. In this section we give a derivation of the radiative rate
coefficients and provide expressions for the collisional rate
coefficients.

B.1. Derivation of Photoionization Rate Coefficients

The general expression for the photoionization rate coeffi-
cient (e.g., Mihalas 1978) is given by

R
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where x,s n is the frequency-dependent photoionization cross-
section and Jν is the frequency-dependent mean intensity, h is
Planck’s constant, and 0n corresponds to the difference in
energy between the ground and continuum states. The subscript
x denotes the transition under consideration. We have adopted
a bin formulation. In each bin the photoionization cross-section
is constant and determined by Equation (17). The mean
intensity is also constant for each bin, Jj. j,0n and j,1n denotes
the lower and upper frequency boundaries of the jth bin. We
can then express the photoionzation rate coefficient as a
weighted sum over the binned mean intensity,
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The radiative recombination coefficient, ignoring stimulated
emission, is expressed
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where the Planck function neglecting stimulated emission is
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Here c is the speed of light and kB is Boltzmann’s constant.
n ng,x c,x LTE[ ] is the LTE ground state to continuum ratio.
Given the statistical weights, gg,x and gc,x, the electron mass,
me, and the difference in energy between the ground and
continuum state, xc , the LTE ratio is expressed as
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In the bin formulation we use the binned photoionization cross-
section, jx,s and a bin-integrated B sp

n . The radiative recombina-
tion coefficient then becomes a weighted sum, much like the
photoionization coefficient,
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Figure 11. Ionization-recombination timescale of helium at t=1400 s.
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In the code we interpolate in pre-computed tables of Bln j( ) and
dB dTln j( ) as functions of Tln ( ).

B.2. Collisional Ionization/Recombination Rate Coefficients

The collisional ionization and recombination rate coefficients
are
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where qij(T) is a temperature-dependent function described in
Arnaud & Rothenflug (1985). The derivatives are
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In the code we interpolate pre-computed tables containing
qln ij( ) and dq dTln ij( ) as functions of Tln ( ).
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