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Abstract

Memory models as a part of programming language specifications have
become increasingly popular the last two decades. They describe how the
values that are obtained by reads are related to the values that are written
by writes. To properly define this has proven particularly difficult for
programming languages that allows for shared variables between multiple
processes. In this thesis we formalize parts of the memory model specified
by the Go language by making a structural operational semantics for it. We
further use this semantics to prove that programs that are data race free
will run under this semantics as they would under a strong memory model.
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Chapter 1

Introduction

Data races have been bugging programmers since the early days of
concurrent programming, and will most likely continue to be something
for a programmer to worry about if the programmer should embark to
use memory that is shared between processes. Sure enough, idioms, like
functional programming, and channel communication, have been created
and/or adapted to lessen the need of shared memory, but still, there are
some advantages to using shared memory that can’t to date be entirely
replaced by using any of the other idioms.

Most modern languages support shared memory in one way or the other,
typically along with an encouragement to keep programs “data race free”.
However, ensuring that a program is data race free is easier said than done.
In the general case, it is provably impossible for compilers to check for this
feature, so determining this is left to the programmer. Some tools can be of
help to accomplish this, like a runtime data race checker.

Since data races can slip into the code of even the most experienced
of programmers using shared memory, and in favor of some lock-free
algorithms, some languages tries to define some behavior for programs with
data races as well. The rest of the languages typically keeps the behavior of
such programs undefined, in a “it might work, but you’re on your own”-
manner. The programming language Go falls into the former category, but
the creators clearly discourages programmers from taking advantage of it,
as they write in the document that defines this behavior1 that: “If you must
read the rest of this document to understand the behavior of your program,
you are being too clever. Don’t be clever.”

So, even though they do specify some behavior, they seem to deem it too
obscure to be very helpful. The purpose of this thesis is to investigate some
properties of the Go memory model, and thereby hopefully also bring some
clarity to the model. To achieve this, we will do the following:

• Make a structural operational semantics for the happens before-

1“The Go Memory Model” [21].
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relation.

• Demonstrate how the semantics works with examples.

• Prove that programs that are data race free will run under the
semantics as they would in the semantics given by sequential
consistency.

• Show that the semantics can be extended to a functional setting with
closures.

1.1 Ordering of Events

When multiple processes run concurrently, it is common that they try
to read from and write to variables they share with some of the other
processes. Ideally it would be possible to write out the execution of all
statements in all processes on a single time line. Then (still ideally) it should
be possible to reason that if there was a read on a variable by any process
at time t , the value of that read would be the same as the value of the latest
write to that variable prior to t . It should not matter which processes that
did the read and the writes.

We will hereby will refer to this ideal situation as sequential consistency.
Sequential consistency is a term coined by Leslie Lamport [11], and is a
notion that has generally proven important in discussion of programs with
shared variables [1].

There is an issue, however, if multiple cores are allowed to run processes,
and that would be that it is common for cores to cache values. In general, a
core will only operate on the cached values, and only fetch or store to global
memory when needed.

So how does this collide with the aforementioned notion of sequential
consistency? Say that we still were able to splash out the statements on
a time line as they occurred, regardless of which core they occurred on,
and say that process P is running on one core, and process Q is running on
another. Then consider a situation where P make a read from variable a at
time t , and that, on the time line, process Q was the last process to write a
value to a prior to t . By the sequential consistency model, process P should
read the same value as process Q wrote. Nevertheless, on modern hardware
the value written by process Q could still reside only on the cache of the core
that is running Q.

One would say that the write Q did is not necessarily visible to P . There is
often a delay between the write to a variable and the time the write is visible
to other processes. If P is really required to see the write that Q performed,
the cores needs some means of synchronization.

The conflict between the expectation given by sequential consistency and
the actual execution is a problem. There are two possible solutions.
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One is to make hardware that allow both efficiency and is conforming
with the sequential consistency model. This might well be physically
impossible. The other solution is to make models that are easier to
implement efficiently. Such mathematical models that states which writes
that are expected to be visible at which reads are memory models.

1.2 Memory models

Memory models specify what possible values one can expect to observe
on any given read of a variable or memory location. For simplicity I will
from here leave out the option of “memory location” and let it be implicitly
understood as part of what I mean when I write “variable”. A memory
model will specify how values that can be obtained by reads are related
to the values that are written by writes.

Sequential consistency is the base line for what we would expect from a
strong memory model. Memory models that does not guarantee sequential
consistency are referred to as relaxed or weak memory models.

Most modern memory models are weak memory models, and are today
implemented both in hardware and in programming languages. The
models generally focus on minimizing the times a process implicitly have to
wait when other processes performs writes to shared variables, while also
giving reasonable guarantees for the behavior of the programs that are to
run on the model. By contrast, in strong memory models, any process that
is about to access a variable must wait while and whenever another process
is busy writing to it.

Memory models for concurrency were first introduced on hardware, and
in the mid 90’s programming languages started to try to follow suit.
Java was one of the first languages trying to accomplish this, but, as it
has been discovered, making a coherent memory model for a concurrent
programming language is no mean feat [1, 6, 19].

The Java memory model currently builds on a notion that they refer to as
happens before[8], another notion that can be traced back to Lamport [12].
We will investigate this notion in detail in this thesis, as it has become an
integral part of the memory models of programming languages.

1.3 The Go memory model

Go [4, 22] is a programming language that allows for easy spawning of
parallel processes, or, as they call it, goroutines. Although goroutines has
some extra properties, we will think of them solely as processes, and for the
rest of the text I will use the words process and goroutine interchangeably.
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Since Go is a programming language dealing with concurrency, it is useful
to the programmers that the language also specifies some behavior on
shared variables. The Go memory model [21] is a weak memory model,
and specifies a partial ordering on the execution of statements, which is
referred to as happens before. Essentially, if the execution of statement X
happens before the execution of statement Y, X is not allowed to “see” any
side effects (e.g. write) of Y . On the flip side, if this is not the case, then
there is a possibility that it can.

This happens before-relation is known to have a bit misleading name,
and is thus very prone to misinterpretation. Therefore it is necessary to
keep a certain cautiousness when dealing with it, so one does not draw
conclusions that are not true. The problem with the name is that it tend to
tend to give people expectations on the execution order of statements. Two
statements can be in a happens before-relationship with each other, but
still be executed in the reverse order of what is indicated by this relation.
We will provide an example of this in the following section. To free oneself
from this mind trap, it can be useful to happens before-relation abbreviate
it to hb, and think of it as just a relation.

Assignment reordering

Consider the following program where a and b are initially 0, and
let read() and write() be performed concurrently by two different
goroutines.

var a = 0
var b = 0

func write() {
a = 1
b = 2

}

func read() {
fmt.Printf("b = %d\n", b) // print b
fmt.Printf("a = %d\n", a) // print a

}

According to the specification of the Go memory model, the assignments
a=1 and b=2 can be executed in reversed order (for instance due to
compiler optimization). Meanwhile it also states that the happens before
order is the same as the ones specified by the program. In effect this means
that, even though they don’t need to be executed in that order, the execution
of a=1 happens before b=2. We will examine why this isn’t a contradiction.

The reason that the specification allow this reordering is that a and b
are different variables, and they are updated without any synchronization
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between them. So if there had been only one goroutine there would be no
way to tell from within that goroutine whichever order they were executed
anyway.

So, what happens when we have two goroutines? From the go memory
model we know that a=1 happens before b=2, and print b happens
before print a. Nonetheless, the following table contains all possible
printouts, one in each column.

b = 0 b = 2 b = 0 b = 2
a = 0 a = 0 a = 1 a = 1

We will focus on column two, as this is the column that best suggests that
even though the goroutine that executes the read-function can observe that
the assignment b=2must have happened, it still can not necessarily observe
that the assignment a=1 have happened. We can explain this behavior by
pointing out that a=1 and b=2 may have been reordered, but again, we
want to be able to explain why this still does not contradict a=1 happens
before b=2 and print b happens before print a.

The reason is that even though we know the assignment b=2must somehow
have been “executed before” the “print b”-statement it does not induce a
happens before relation between those two events. Consequently one can
not use transitivity to claim that the assignment a=1 happens before the
“print a”-statement.2

This is exactly what is meant in the specification: “If one goroutine executes
a = 1; b = 2;, another might observe the updated value of b before the
updated value of a”. Note that this is what makes the Go memory model
a weak memory model, as this is not the case in a strong memory model.

1.4 Concurrent environments

We will investigate memory models for environments where multiple
processes are allowed to run concurrently and read and write to a shared set
of variables. It tend to differ from system to system exactly how concurrent
processes are actually executed. Two of the most common ways are:

• To let all processes be executed by a single core, having some
scheduler to swap the processes in and out so that all of them gets
time to execute.

• To have multiple cores to execute a subset of the processes in parallel,
also with a scheduler.

In a single core environment one could in some sense apply the memory
model of sequential consistency, but programmers are seldom developing

2Hypothetically, if also b=2 happens before print b, then we could have used
transitivity to claim that a=1 happens before print a.
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concurrent programs for such environments exclusively. Most often they
are developing for any of those.

Another example of concurrent environments is distributed environments.
In such instances can e.g. databases be regarded as shared memory.
Even though this thesis focuses on the Go memory model, which generally
assumes that the programs are run on one device, some of the concepts
discussed here can be abstracted to hold for distributed environments as
well.

1.5 Chapter overview

In Chapter 2 we make a structural operational semantics for the core parts
of the Go language that we will discuss. In Chapter 3 we provide examples
on how the semantics we made in Chapter 2 works. In Chapter 4 we
prove that goroutine-local variables can share the same semantics as shared
variables, and that data race free programs are sequentially consistent. In
Chapter 5 we extend the semantics we made in Chapter 2 to work in a
functional environment with closures. This extension also permits dynamic
spawning of goroutines. In Chapter 6 we summarize what we have done,
and point out possible directions for future work.
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Chapter 2

Structural Operational
Semantics

In this chapter we will formalize the happens before relation given by
the Go memory model. To achieve this, we will use something known as
structural operational semantics (SOS for short). An operational semantics
is a semantics which states that the meaning of a program is determined by
the operations it performs. That it is structural means that the operations a
program performs is determined by the syntactic structure of the program.
SOS is also known as small step semantics.

An SOS is given as a set of rules called inference rules. How these rules
work will be detailed later, though they can be thought of as specifying an
interpreter. After the rules are clear, we can use them to make proofs about
programs. The report by Gordon Plotkin [18] can prove both as a good
introduction, as well as reference, to SOS.

Even though we use Go as the inspiration for what we will model, it would
be unnecessarily cumbersome to use the concrete syntax of Go. Instead we
will use an abstract syntax that is much simpler. It should still be possible to
fairly easily map a real Go program that is only using the selected features
to a program using our abstract syntax.

2.1 Syntax

For the purpose of this thesis we will only need to focus on some parts of
the Go Language. We will need some basic language features like for, if,
functions, variables, and assignments. Furthermore we will need syntax for
some Go-specific features like goroutines and channels.

We will use the following abstract syntax to define our rules:
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Program = stmts
StatementList stmts = stmt | stmt; stmts
Statement stmt = for e {stmts} | if e {stmts} else {stmts}

| e | ẋ = e | ch ← e
Expression e = v | e op e | ẋ | ← ch
Value v = ◦ | m | b | ch

The value ◦ is what we will call the empty value. It will be used to make
empty statements as well. ch ← e is a channel send, and ← ch is a channel
receive. Channels will be further described in Section 2.2.3.

2.1.1 Expressions

Expressions will always evaluate to a value. ẋ are variables, and will
evaluate to (one of) the value(s) “lastly” written to it. Sometimes we will
also refer to ẋ as a write token, since we will use it as token in writes
(see Section 2.2.1). op can be taken to be a standard binary operation,
e.g. +,−,∗,/,<,=. m is taken to be an integer, b as a boolean, and ch as a
reference to a channel.

2.1.2 Types

The type specification for Go is worthy of a study in itself, though in this
thesis we will strip it down to less than the bare bones so we can since we
will rather focus on aspects dealing with shared memory, which is a runtime
aspect.

As in most other languages, every value is associated with a type, which is
referred to as the type of the value. Common types that are also present
in Go includes integers, booleans, strings, and arrays of these. Variables
are commonly said to be of the type of the value it can store, and it is also
common to associate a type to the result of an operation.

The type of a value is for the most part regarded in terms of what one can do
with the value. Go is statically typed, which means that it is the task of the
compiler to ensure that values are only used in ways that they can be used.
For instance, an integer could be viewed as a value that can be e.g. added
to another integer, while it is not part of being an integer that it should be
possible to add a string to it.

In our semantics the variables should be thought of as typed. If a variable
has a certain type, then only values of that type can be written to or read
from this variable. Also, the only expressions that can appear in our
programs are expressions where the values involved are only used like they
can be used.
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2.2 Approach to semantics

To understand shared variables in Go, one can profit from viewing the
shared variables not only as a single point of storage. They can rather be
viewed such that every goroutine has a buffer holding an instance of these
variables, and that an update in one buffer can propagate to other buffers.
Actually, we shall come to see that the picture is even more sophisticated
than that, but this should prove as a good starting point.

The semantic rules does not to distinguish between goroutine-local vari-
ables and shared variables. Although it is not immediately clear why those
two kinds of variables can share the same semantics, it is the case they can,
and this will be elaborated on later (Chapter 4).

This semantics, which we will call the HB-semantics, will have another
take on the semantics of a variable than one of the most traditional ones.
Typically variables are regarded in the sense that there exist a mapping
from the variable to its value, i.e. a variable is a location in which a value can
be stored. A write is typically modeled such that it alters the mapping, and
a read is typically modeled such that it applies the mapping on the variable
to obtain its value.

We will only keep the idea that a variable is something that can be written a
value to, and read a value from. However, in order to model the Go memory
model in its purest sense, a novel take would prove necessary. Instead of
making a write to alter a mapping, we are going to collect the write itself.
Then, when we are doing a read, we will try to find the write that was “last”
writing to the variable in question, and see what value it wrote.

2.2.1 Writes

Let’s look at what I henceforth will call the core rule of observable writes.
It is taken from the reference for the Go memory model [21].

A read r is allowed to observe a a write w to v if both of the
following hold:

1. r does not happen before w .
2. There is no other write w ′ to v that happens after w but

before r .

It will be assumed that the value obtained by a read can only be the
value written from any write it is allowed to observe. We will not deal
with the potential of out-of-thin-air results, although results like the ones
described in [2] seems not to be accounted for in the Go memory model.
This is actually a backside to the semantics described here, though, for the
purposes of detecting data races, this semantics should still be fine.

If only one write can be observed from a read, then the read is guaranteed
to observe that write.
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So if we consider a read r we have to account for two sources of writes that
this read is allowed to observe, namely writes that happens before r , and
writes that happens concurrently with r . We shall see in our analysis that
these two sources behave differently. But first some definitions are due.

Definition 2.1 (Concurrent). If neither e1 happens before e2 nor e2

happens before e1, then we say e1 happens concurrently with e2 [21].

e1 and e2 should be taken to be events, e.g. execution of a statement.

Definition 2.2 (Shadowed). Given a read r and two writes w and w ′, if w
happens before w ′ and w ′ happens before r , then we say that w is shadowed
by w ′ (with respect to r ).

With our definition of shadowed it is possible to restate the second part of
the core rule of observable writes. That is: “There is no other write w ′ such
that w is shadowed by w ′.”

Now, let’s say we have a way to tag each write so that they all are uniquely
identifiable. Then there are some things that makes sense to track for each
goroutine. Given a read r in a goroutine we want to know the following:

1. Which writes that happened before r (all of them).

2. Which writes that are shadowed by other writes with respect to r .

3. Which writes that happens concurrently with r .

So, given a read r we will refer to these sets as H(r ), S(r ), and C(r )
respectively. Then the set of observable writes for read should be (H(r ) \
S(r ))∪C(r ) (i.e. the writes that either have happened before the read but is
not shadowed by other writes, or are concurrent with the read).

Instead of determining these sets when a read should be resolved, it is
possible to continuously keep track of such sets so they are always up to
date. Every goroutine could have a triplet of such sets associated with them.
In doing so, they are no longer associated with a particular read.

Now, these sets will contain writes, and for each write we will want to
know which variable that was written to, which value that was written
to it, and also the tag of the write. The tag is meant to make the writes
distinguishable. So we will model a write as a triple 〈id, ẋ, v〉, where these
corresponds to tag, variable, and value respectively.

For convenience, let W be the set of all writes ever made so far by any
goroutine. This set will be global in our model.

If we take X to be a set of writes, we will make the notation that X ẋ =
{〈id, ẋ ′, v〉 ∈ X : ẋ ′ = ẋ} (i.e. the subset of writes on a certain variable).
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2.2.2 Goroutines

Goroutines will be modeled so that they each have an a program (i.e. list
of statements – stmts), and a state σ. The state σ will be a tuple with sets
H and S that will behave as described above. A set C could be calculated by
doing W \ H.

Even though states are tuples of sets, they will be operated under some of
the set operations, like subset and union. In doing this, we will mean the
element-wise operation on the elements (which are the sets) of the tuple.
More precisely, if σ= 〈H,S〉 and σ′ = 〈H′,S′〉, then

• σ∪σ′ = 〈H∪H′,S∪S′〉.
• σ⊆σ′ = H ⊆ H′∧S ⊆ S′

Also if σ= 〈H,S〉 then σẋ = 〈Hẋ ,Sẋ〉
The sets W, H, and S correspond respectively to the sets “allWrites”,
“previous”, and “overwritten” in [13]

We observe that H and S both must be subsets of W, so they must both be an
element in P (W) (P denotes the power set of a set). Hence, states, which
are tuples of these, must be an element of P (W)2.

In Go, the goroutines resides in a hierarchy in the sense that if a goroutine
spawns another goroutine, then the spawner becomes the parent of the
spawnee. If a parent terminates, then so will also all the other goroutines
further down in the hierarchy. Nonetheless, in this description of the
semantics, we will assume a flat structure. This is to focus on certain other
aspects of happens before.

2.2.3 Channels

Every channel will be modeled as a tuple 〈s,r,c,M ,V 〉, where

• s is the number of sends that have been performed.

• r is the number of receives that have been performed.

• c is the capacity. Unbuffered channels have capacity 0.

• M : {−c, . . . ,0}∪N→P (W)2 is a mapping such that given i , if

r ≤ i : M is a mapping from the i-th send, to the state of the goroutine
performing the send (at the time of the send).

i < r : M is a mapping from the i-th receive, to the state of the
goroutine performing the receive.

• V is the mapping from the i-th send, to the value that was actually
sent on that send.
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An illustration of a channel is given in Figure 2.1 on page 16. It will be
explained in further detail later, but σi and vi corresponds to M (i ) and V (i )
respectively. r and s will be initially be 0 when the channel is created. For
i < 0, M (i ) = 〈;,;〉. This is to make the rules we make in Section 2.3.5
simpler.

We let C be a mapping from channel identifiers (ids for short) to channels.
In the semantics we will assume that these ids are referred to directly in the
programs, though in a more thorough description there would be a layer
of dereference from channel name in program to channel. M will initially
map to tuples with only empty sets. Later we will use the notation M [i 7→σ]
to mean a new mapping such that

M [i 7→σ](x) =
{
σ if x = i

M (x) otherwise

2.3 Inference rules

Inference rules are a tool to formalize semantics of programs. Each rule has
the form

RULE-NAME
Premises

Conclusion

A running program is always in some state. The state describes everything
one would expect from the state of an executing program, like the values of
the variables, and at what point the execution is in the program. The state
of a program is an element of a state space, usually denoted Γ. This state
space holds all possible states of the running program.

The inference rules describes the possible transitions between the states in
Γ. There are other ways to describe such transitions than using inference
rules, but in this work we will assume transitions to be solely described
by these. The transitions makes a binary relation (usually irreflexive,
sometimes also asymmetric) on Γ, and is commonly denoted →. We say
that a program in state γ1 can transition (or step) to state γ2 if γ1 → γ2.

This constitutes a graph, where the possible states are the nodes, and the
transitions are directed edges between them. The program execution can
then be thought of as a chess piece on one of the nodes, and it can transition
to other nodes if there are edges that indicates that this is possible.

The transitive closure of → is often denoted →∗. γ1 →∗ γ2 thus means that
a program in state γ1 can get to state γ2 by zero or more transition steps.
The execution of a program will start at a specific state, which we can call
γs . We say that the execution of a program can reach a state γ if γs →∗ γ.

There are three different kinds of states to consider, namely those with no
transitions from it, those with one transition from it, and those with more
than one transitions from it. Given the program is in a state γ, and we let
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Γγ = {γ′ ∈ Γ : γ→ γ′} (i.e. Γγ is the set of states that γ can transition to), then
if Γγ has

• no element, the execution will be forced to halt. γ is to be considered
a terminating state.

• exactly one element, the execution is forced to make the transition
from γ to the state in Γγ.

• more than one element, the execution can make the transition
from γ to any one of the states in Γγ. If there exist programs
whose execution of the program can reach such a state, then we
will say that the inference rules are nondeterministic. Inference
rules for concurrent systems are usually nondeterministic, while for
nonconcurrent systems they are usually not.

Now we have what we need to refine what a inference rule will look like. It
will typically have a form where the conclusion has the form γ→ γ′, i.e.

RULE-NAME
Premises

γ→ γ′

This simply means that if the premises are true, then there is a transition
from γ to γ′. Such a transition exists if and only if there is a rule that permits
it.

2.3.1 The states

Now it its time do define what the states in our semantics of the memory
model look like. Actually, we have in large already defined what states will
contain by starting to formalize writes, goroutines, channels, and syntax
above. It is only a matter of putting it together. We will call the states in
our semantics for configurations. This is to avoid confusion when we refer
to other things as states.

The configurations will be put together of two parts, namely a global state
part, and a part that will be managing the individual goroutines. These two
parts will be separated by a triangle (.). This is actually just a tuple, but it
is often relieving to break things up by introducing some different notation.
As we will come to see, there will be plenty of other tuples with the standard
tuple notation anyway.

Goroutines running in parallel could have the notation g1‖· · ·‖gn , but to
keep things short I will use the notation g‖G where g is thought to be any
one of g1, . . . , gn , running in parallel with the rest (which are implied by the
big G).

2.3.2 Basic rules

Let’s take a shot at what will be our first rule.
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PAR-STEP
γ. g → γ′. g ′

γ. g‖G → γ′. g ′‖G

Here the the global parts are denoted γ, and γ′. What this rule says
is that a goroutine g that is running in parallel with other goroutines is
allowed to take a step as if it was the only running goroutine. This rule
actually makes it possible to make rules that only considers configurations
with one goroutine, as this rule neatly extends those rules to work with
configurations with more than one running goroutine.

When we later say that a goroutine g takes a step, we mean that we can
apply this rule to alter g to g ′.

For the next rules we will write goroutines as tuples 〈stmts,σ〉. The σ

has been described before, it’s the local state of the goroutine. stmts will
typically be altered when the goroutine takes a step. It is a list of statements
that are yet to be executed.

The next rule is a little like the previous rule. After this rule is defined we
can rather look at rules with only one statement.

SEQ
γ. 〈stmt,σ〉→ γ′. 〈stmts,σ′〉

γ. 〈stmt; stmts?,σ〉→ γ′. 〈stmts; stmts?,σ′〉
It is worth noticing that the stmts? stays the same as before the step. The
stmt is allowed to expand to more statements, as when the rule is used in
combination with for instance IF-TRUE, IF-FALSE, or FOR-TRUE. It is also
allowed to transform one statement to another. This is actually the common
case.

Then we have a rule that describes when a program is allowed to proceed to
the next statement. This is when the current statement is just a value, and
in particular the value ◦.

SKIP
γ. 〈v; stmts?,σ〉→ γ. 〈stmts?,σ〉

2.3.3 Control structures

The rules here will not be used very much in the rest of the text, but there is
one important aspect to them that needs to be mentioned all the same: They
don’t directly alter the global state γ, or the local state σ of the goroutine,
they only allow for an alternation, just in case this is needed for evaluating
an expression that contains a channel receive. The fact that they themselves
don’t do any alternations will mean that these rules can safely be ignored in
proofs we will do later in Chapter 4.

IF-EVAL-EXPR
γ. 〈e,σ〉→ γ′. 〈e ′,σ′〉

γ. 〈if e {stmts1} else {stmts2},σ〉→ γ′. 〈if e ′ {stmts1} else {stmts2},σ′〉

IF-TRUE
v =TRUE

γ. 〈if v {stmts1} else {stmts2},σ〉→ γ. 〈stmts1,σ〉
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FOR-PREP
γ. 〈for e {stmts},σ〉→ γ. 〈for 〈e,e〉 {stmts},σ〉

FOR-EVAL-EXPR
γ. 〈e1,σ〉→ γ′. 〈e ′1,σ′〉

γ. 〈for 〈e1,e2〉 {stmts},σ〉→ γ′. 〈for 〈e ′1,e2〉 {stmts},σ′〉

FOR-TRUE
v =TRUE

γ. 〈for 〈v,e〉 {stmts},σ〉→ γ. 〈stmts; for e {stmts},σ〉

FOR-FALSE
v =FALSE

γ. 〈for 〈v,e〉 {stmts},σ〉→ γ. 〈◦,σ〉
The rules should be quite clear, so I won’t give much explanation to them.
The only thing I will elaborate on is the structure of the for statements. In
order to maintain the original expression for an eventual later evaluation,
we need to copy it. This is done by the rule FOR-PREP. So we have one copy
to do the evaluation on, and one copy that should be maintained.

The for statement is our first example of something called runtime syntax.
Runtime syntax is not allowed to be present in a starting configuration, but
is allowed to be present in any other configuration. The for statement is not
the same as the for statement, though they are related. Runtime syntax will
continue to be presented as we go, and it can be recognized by an underline.

2.3.4 Reads and writes

WRITE-EVAL-EXPR
γ. 〈e,σ〉→ γ′. 〈e ′,σ′〉

γ. 〈ẋ = e,σ〉→ γ′. 〈ẋ = e ′,σ′〉
This rule will eventually reduce the expression to a value. Similar rules
will not be explicitly written out later, e.g. the SEND rule that is given later
should be thought to have a corresponding SEND-EVAL-EXPR rule.

WRITE

id = fresh σ= 〈H,S〉
w = 〈id, ẋ, v〉 σ′ = 〈H∪ {w},S∪Hẋ〉

〈W,C〉. 〈ẋ = v,σ〉→ 〈W∪ {w},C〉. 〈◦,σ′〉
This is a rule that assumes that the next instruction of a goroutine is an
assignment to a variable ẋ. This rule suggests that in that case we construct
a new write w and put it among the other writes in W, as outlined in
Section 2.2.1. It also puts the write into the H of the current goroutine.
This is natural, since this step is to be considered as happening before
subsequent steps by this goroutine. As for the writes to ẋ that happened
before this step, they are in this goroutine henceforth shadowed by this
write to ẋ, and are thus put into S.

READ
σ= 〈H,S〉 〈id, ẋ, v〉 ∈ Wẋ \ Sẋ

〈W,C〉. 〈ẋ,σ〉→ 〈W,C〉. 〈v,σ〉
When a variable is read, it can assume the value of any write to it that has
not been shadowed. Later, in chapter 5, we will make rules to ensure that
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there exists at least one such write to ẋ. In the case where there are more
than one such write, this rule will contribute to induce nondeterministic
behavior, as the rule is agnostic to which write it picks the value from.

This rule can be debated, since it is based on the aforementioned
assumption of no out-of-thin-air results.

2.3.5 Channel communication

The rules of happens before for channel communication that we will focus
on are:

(R1) A send on a channel happens before the corresponding receive from
that channel completes.

(R2) The k-th receive on a channel with capacity C happens before the
k +C-th send from that channel completes.

Figure 2.1: Illustration of a channel.

SEND

C (ch) = 〈s,r,c,M ,V 〉 s ≤ c + r
M ′ =M [s 7→σ] V ′ = V [s 7→ v]

C ′ =C [ch 7→ 〈s +1,r,c,M ′,V ′〉]
〈W,C〉. 〈ch ← v,σ〉→ 〈W,C ′〉. 〈pend 〈ch, s〉 ,σ〉

This rule, and the following rules, are based on quite simple ideas, and still
they may be quite daunting when typed out. The first thing to sort out is that
this rule is for the situation when the next command is a send statement (i.e.
ch ← v). If that is the case, and all of the premises are true, the statement is
transformed to a pend statement, and the channel is updated.

The way the channel is updated is outlined by the premises. Note that this
rule can only be applied if s ≤ c + r , i.e. the channel has capacity to do the
send (this is the only premise that should be read as a conditional, the rest
should rather be read like steps of an algorithm).

Actually, the rule allows to put one more than the capacity allows, and this
is where the pend statement comes into the picture. It puts the goroutine
into a pending state. If the capacity wasn’t overflowed by the send, the
goroutine can step out of the pending state immediately. If the capacity
was overflowed by the send (by one), the goroutine must wait for a receive.
It will be as if the send hasn’t really been performed yet. Both of these cases
are modeled by the rule PEND later.

Note that both a value is sent, as well as the σ with the happens before-set
and the shadowing set. This is in accordance with (R1).
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RECV

C (ch) = 〈s,r,c,M ,V 〉 r < s
M (r ) =σ′ V (r ) = v M ′ =M [r 7→σ]

C ′ =C [ch 7→ 〈s,r +1,c,M ′,V 〉]
〈W,C〉. 〈← ch,σ〉→ 〈W,C ′〉. 〈v,σ∪σ′〉

This rule should be read in the same pattern as the rule SEND. Evidently
r must be less than s for this rule to be applied, otherwise we would try to
receive something that hasn’t been sent yet.

In this rule we take the union of two σ’s, recall that this is defined to mean
the element-wise union of the elements (see Section 2.2.2).

In the same breath the goroutine writes back it’s old σ. This is in accordance
with (R2), and this state can be picked up by a pending goroutine. It can
be discussed whether the goroutine should rather send back it’s new σ, the
rules are actually not entirely clear on this.1 The σ that is written back is
depicted in Figure 2.1 on the preceding page as a σ with a mark.

PEND
C (ch) = 〈_,r,c,M ,_〉 r > s − c M (s − c) =σ′

〈W,C〉. 〈pend 〈ch, s〉 ,σ〉→ 〈W,C ′〉. 〈◦,σ∪σ′〉
In this rule we find that we must have r > s − c. This just means that the
s − c-th element must have been received, this is to make sure that the
receiving goroutine has written its σ to M (s − c), since it is required that
the sending goroutine is updated on what has happened before this point
in the receiving goroutine. Note that the s here is taken from the pend -
statement, not the channel. It’s actually possible for the s of the channel to
be much higher at the time when this rule is applied, as it doesn’t have to
be applied immediately when it can, but for instance after a lot of sends and
receives on this channel by other goroutines.

Recall that if s − c < 0 then M (s − c) = 〈;,;〉.
If we look at Figure 2.1 and imagine that it is a channel with capacity of
one, then the buffer is currently overflowed. That means there must be a
goroutine with a pend 〈ch,3〉 as its next statement. When another goroutine
does a receive, r in that channel becomes 3. Since now r = 3 > s−c = 3−1 = 2,
the PEND rule may now be applied.

1The ambiguity lies in the phrasing. For instance is the completion of a send somehow
after, or a part of the send? And should we take “a send happens before” to mean that the
entire send happens before, or that the start of the send happens before? The rules are built
on the assumption that the answers to the questions are “somehow after”, and “the start
of the send” respectively. Another set of rules would be necessary if the answers should be
“part of”, and “the entire send” instead.
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Chapter 3

Examples

This chapter is provided as to give the reader a feeling for how the semantics
works. We will provide a way to write configurations, and explanations as
to how we use the rules to prove that one configuration can step to another.
We will start by explaining how a simple Go program can be translated to a
starting configuration, and afterwards provide three examples of programs.
The three examples are explained on different levels of detail, the first one
being most low-level, and the last being most high-level.

3.1 Introductory example

3.1.1 Translating to a starting configuration

The rules described so far are sufficient to describe the behavior of a lot
of programs, if we just convert a program into an appropriate starting
configuration. Since we do not yet have a means of spawning new
goroutines, we must for the time being assume that the goroutines we
need are already there in the starting configuration. Dynamic spawning
of goroutines will be discussed in chapter 5, along with function calls, and
more ado about variables. Until then, Figure 3.1 on the following page can
give a tentative understanding of how programs can be translated.

According to the figure, the main function will not be a part of the starting
configuration. However, we see that its purpose is to create two goroutines
that are running in parallel. The translation will have these two goroutines
in the configuration. Notice also that two writes have already been done;
they reflect the writes that are done in the global scope.

3.1.2 New notation for goroutine states

Since it can be a little cumbersome to write out the entire local states (the
σ’s), we can abbreviate it. For instance, imagine that the goroutine with
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package main

import "fmt"

var a = 0
var b = 0
var ch = make(chan int)

func write() {
a = 1
b = 2
ch <- 0

}

func read() {
<-ch
fmt.Println(b)
fmt.Println(a)

}

func main() {
go write()
read()

}

〈W,C〉. 〈P1,σ1〉‖〈P2,σ2〉

W = {〈id1, ȧ,0〉 ,〈id2, ḃ,0〉}
C : ch 7→ 〈0,0,0,M ,V 〉

P1 (the write function)

ȧ = 1; ḃ = 2; ch ← 0

σ1 :
H = {〈id1, ȧ,0〉 ,〈id2, ḃ,0〉}
S = {}

P2 (the read function)

← ch; ḃ; ȧ

σ2 :
H = {〈id1, ȧ,0〉 ,〈id2, ḃ,0〉}
S = {}

Figure 3.1: Translation of a program to a starting configuration

〈P1,σ1〉 (we will later refer to it as g1, the other one as g2) executes one
WRITE-step. Then the state of the goroutine would change, as well as the
W. We will go through the details later, but for now we will skip to the
results.

The σ1 would be transformed to

σ1′ :
H = {〈id1, ȧ,0〉 ,〈id2, ḃ,0〉 ,〈id3, ȧ,1〉}
S = {〈id1, ȧ,0〉 ,〈id2, ḃ,0〉}

The σ2 will remain unchanged. The W would be transformed to

W′ = {〈id1, ȧ,0〉 ,〈id2, ḃ,0〉 ,〈id3, ȧ,1〉}

Now, arguably the following representation for σ1′ should be easier to read:

ȧ ḃ
σ1′ 1 0 0

Each number correspond to the value of a write, while the columns tells
which variable the write was to. The gray numbers correspond to the values
of the writes in the S of the σ. If there are concurrent writes to a variable
that is not in σ, these will be depicted in a parenthesis behind the writes
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that are in σ. In addition, it is possible to have more than one row with σ’s.
To illustrate, we will add in a row with σ2:

ȧ ḃ
σ1′ 1 0 0
σ2 0 (1) 0

Notice how all elements of W are present in every row. If we have a row
with σ= 〈H,S〉, what we can see from the row in terms of H, S and W is:

W: The entire row.

H: All elements that are not in parenthesis.

S: All elements that are gray.

W \ S: All black elements (including those in parenthesis). These are the
observable writes. One can use O to denote such sets. We will do
it on occasion in this chapter, and the reader can use it if the reader
later needs to take notes in the margin of this thesis.

W \ H: All elements in parenthesis. These are the writes that are concurrent.
Can be denoted by C.

H \ S: All black elements that are not in parenthesis. This set can be thought
of as the moment of σ. One can use M to denote such sets.

When considering a cell for a variable ẋ, one will find that corresponding
explanations works to understand the contents of the cell, e.g. Wẋ is the
entire cell, Sẋ are all elements that are gray.

On the step we did above, we used a ′ to mark that σ1 and σ1′ are not the
same. If make a new change, this time on σ1′, we would end up on σ1′′

if we are to apply the same reasoning. After more changes there would
become only more marks, and it would become tedious to count them in
order to see which states are the same, and which are not. From this point,
instead of writing σ1′, we will write σ1,1, and instead of σ1′′, we will write
σ1,2. Hopefully the reader get the idea. The first number is the number
of the goroutine, the second number is how many times the state of that
goroutine has been changed. Similarly we will use Wn to denote the W after
n changes to it.

◦; ḃ = 2; ch ← 0

ȧ ḃ
σ1,1 1 0 0

← ch; ḃ; ȧ

ȧ ḃ
σ2 0 (1) 0

C : ch 7→ 〈0,0,0,M ,V 〉

Figure 3.2: New notation of goroutine states.

We will write the new configuration as depicted by Figure 3.2. Everything
that is a part of a configuration is present in this representation, though the
mappings M , and V are not yet written entirely out. Also, some information
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is lost as to which writes that are corresponding to each other. This will be
more evident later, when we are to take the union of two σ’s. We will deal
with channels in a way similar to the σ’s later. The contents of g1 is on the
left side, the contents of g2 on the right. The contents of the global state is
in the middle on the bottom. Note that we have omitted explicit mention of
the W, as it would be redundant. After all, it is present in the row of a σ.

3.1.3 Reasoning about possible steps

In the previous section we said we let g1 make a WRITE-step, but we did
neither explain why we could do so with any reference to the inference rules,
nor did we explain how we arrived at the result by applying the rules. We
will do this now. We know that the configuration at the time when we would
do the WRITE-step had the following form:

〈W,C〉. 〈ȧ = 1; stmts?,σ1〉‖G (1)

Here G is just g2. We will take a bottom-up approach, and we will use
numbers (1)-(6) to indicate configurations that look identical. This is also
the order we figure out what the configurations must look like. We know
that

PAR-STEP
(2) 〈W,C〉. 〈ȧ = 1; stmts?,σ1〉→ γ′. g ′

1

(1) 〈W,C〉. 〈ȧ = 1; stmts?,σ1〉‖G → γ′. g ′
1‖G

Further we know that

SEQ
(3) 〈W,C〉. 〈ȧ = 1,σ1〉→ γ′. 〈stmts,σ1′〉

(2) 〈W,C〉. 〈ȧ = 1; stmts?,σ1〉→ γ′. 〈stmts; stmts?,σ1′〉
Here we take σ1′ to mean that the state may or may not change, we will
know that later, and we reserve σ1,1 to the occasion that we actually know
we must make a new σ. Lastly, we know that

WRITE
σ1 = 〈H,S〉 w = 〈id3, ȧ,1〉 σ1,1 = 〈H∪ {w},S∪Hȧ〉
(3) 〈W,C〉. 〈ȧ = 1,σ1〉→ 〈W∪ {w},C〉. 〈◦,σ1,1〉 (4)

Going down again, we see for the SEQ-rule what γ′, stmts, and σ1′ must
equate to (indeed, we need to replace σ1′ by σ1,1).

SEQ
(3) 〈W,C〉. 〈ȧ = 1,σ1〉→ 〈W∪ {w},C〉. 〈◦,σ1,1〉 (4)

(2) 〈W,C〉. 〈ȧ = 1; stmts?,σ1〉→ 〈W∪ {w},C〉. 〈◦; stmts?,σ1,1〉 (5)

Finally, the PAR-STEP-rule would be

PAR-STEP
(2) 〈W,C〉. 〈ȧ = 1; stmts?,σ1〉→ 〈W∪ {w},C〉. 〈◦; stmts?,σ1,1〉 (5)

(1) 〈W,C〉. 〈ȧ = 1; stmts?,σ1〉‖G →〈W∪ {w},C〉. 〈◦; stmts?,σ1,1〉‖G (6)

Putting it all together we have the following proof that we can take the
WRITE-step:
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PAR-STEP

SEQ

WRITE
σ1 = 〈H,S〉 w = 〈id3, ȧ,1〉 σ1,1 = 〈H∪ {w},S∪Hȧ〉

〈W,C〉. 〈ȧ = 1,σ1〉→ 〈W∪ {w},C〉. 〈◦,σ1,1〉
〈W,C〉. 〈ȧ = 1; stmts?,σ1〉→ 〈W∪ {w},C〉. 〈◦; stmts?,σ1,1〉

〈W,C〉. 〈ȧ = 1; stmts?,σ1〉‖G →〈W∪ {w},C〉. 〈◦; stmts?,σ1,1〉‖G

The effect of taking this step can be illustrated as

Before:

ȧ ḃ
σ1 0 0
σ2 0 0

After:

ȧ ḃ
σ1,1 1 0 0
σ2 0 (1) 0

That is, for the σ that is changed, all writes that were in Mȧ will be moved
into S (i.e. black writes that were not in parentheses are grayed out), and
the new write is added to the M. For other goroutines, the new write is
added to C (i.e. added to the writes in parentheses).

If we now wonder whether g2 can now make a RECV-step, we have to see if
we can make a proof that it can. The configuration looks like this

〈W,C〉. 〈← ch; stmts?,σ2〉‖G (1)

where this time G is just g1. Climbing up the PAR-STEP-, and SEQ-rule as
we did in the demonstration of the WRITE-step, we arrive at

〈W,C〉. 〈← ch,σ2〉 (3)

However, C (ch) = 〈s,r,c,M ,V 〉 = 〈0,0,0,M ,V 〉, so s = 0, and r = 0. But the
RECV-rule requires r < s, and since this condition is not fulfilled, we cannot
prove that we can make a RECV-step. Thus, we can’t.

We can rather use the following proof to make a SKIP-step for g1:

PAR-STEP

SKIP
γ. 〈◦; stmts?,σ1,1〉→ γ. 〈stmts?,σ1,1〉

γ. 〈◦; stmts?,σ1,1〉‖G → γ. 〈stmts?,σ1,1〉‖G

From this point on we will not provide full proofs of steps, the reader may
rather refer to this section to see how it is done if the reader is uncertain
that a step that is claimed to be possible is indeed so.

3.1.4 New notation for channels

If we let g1 take another WRITE-step and subsequently another SKIP-step,
we will arrive at the following configuration:

ch ← 0

ȧ ḃ
σ1,1 1 0 2 0

← ch; ḃ; ȧ

ȧ ḃ
σ2 0 (1) 0 (2)
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C : ch 7→ 〈0,0,0,M ,V 〉
We will hereby use the following notation for channels:

s r c 0 1 2
ch 3 2 10 σ1,1,12 σ1,4,42 σ2,1,9

Again multiple lines can be used, this time in the case where there are
more than one channel. The tuple at column i corresponds to M (i ),V (i )
of that channel. Values and states that are grayed out are to be considered
as obtained. Hence we can interpret the cells in the following way:

σ, v: The σ and v were just posted from a sending goroutine.

σ, v: The σ was just posted from a receiving goroutine. The value v has
been consumed by this goroutine.

σ, v The σ has been consumed by a pending goroutine.

As usual,s is the index of the next cell that will be posted to by a sending
goroutine, and r is the index of the next cell that will be consumed by a
receiving goroutine.

g1 is allowed to do a SEND-step, and after that we will have the configuration
depicted in Figure 3.3.

pend 〈ch,0〉

ȧ ḃ
σ1,2 1 0 2 0

← ch; ḃ; ȧ

ȧ ḃ
σ2 0 (1) 0 (2)

s r c 0
ch 1 0 0 σ1,2,0

Figure 3.3: New notation for channels.

Now g2 is at last allowed to do its RECV-step we get to the configuration
in Figure 3.4. There are several things to notice in that picture. Firstly
σ2 is inserted to the channel, while at the same time σ2 is replaced by
σ2,1 = σ2 ∪σ1,2 as the state of g2. We could refer to earlier figures to see
what σ2 is, but we have chosen to include it in the figure for completeness.
When a state σ is not a state of a particular goroutine, which writes that are
in the C of that σ becomes irrelevant, and we will thus omit it (i.e. omit the
writes in the parentheses).

Another thing to notice is that it is not immediately clear from Figure 3.3
what the union of σ1,2 and σ2 would be, since, as mentioned, some
information about which numbers that corresponds to the same write is
lost in our notation. Anyway, the correct result is depicted.

We let g2 do a skip and then the READ from ḃ. Note that g1 can do a PEND-
step, but as long as other goroutines also can do steps, it can’t be forced by
this semantics to make a step.
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pend 〈ch,0〉

ȧ ḃ
σ1,2 1 0 2 0

0; ḃ; ȧ

ȧ ḃ
σ2,1 1 0 2 0

s r c 0
ch 1 0 0 σ2,0

ȧ ḃ
σ2 0 0

Figure 3.4: Configuration after RECV.

g2 can only observe a write with value 2 associated with ḃ, so the READ-step
is bound to transform ḃ to this value. Hence, the new configuration would
be that of Figure 3.5.

pend 〈ch,0〉

ȧ ḃ
σ1,2 1 0 2 0

2; ȧ

ȧ ḃ
σ2,1 1 0 2 0

s r c 0
ch 1 0 0 σ2,0

ȧ ḃ
σ2 0 0

Figure 3.5: Configuration after READ of ḃ.

Now we let both goroutines run until they are finished. The order of the
steps is irrelevant; we will arrive at the same final configuration for all cases.
It is depicted in Figure 3.6.

◦

ȧ ḃ
σ1,2 1 0 2 0

1

ȧ ḃ
σ2,1 1 0 2 0

s r c 0
ch 1 0 0 σ2,0

ȧ ḃ
σ2 0 0

Figure 3.6: Final configuration of first example.

This was actually an example of a properly synchronized program.

3.2 Guard variables

In the days of strong memory models, a frequently applied technique was
to use guard variables to ensure that other data could only be accessed
when it was ready. Such techniques can still be applied under certain
circumstances. We will examine one such pattern, and see if it can safely be
applied in Go.

This time we will start directly from a starting configuration in our
semantics, depicted in Figure 3.7.
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ȧ = 42; ḃ = 1

ȧ ḃ
σ1,0 0 0

for (ḃ == 0){◦}; ȧ

ȧ ḃ
σ2,0 0 0

Figure 3.7: Starting configuration of guard example.

The purpose of this program is that the left goroutine, which we in the spirit
of the previous example will refer to as g1, should be able to write the value
42 to ȧ before ȧ is read by g2. We want to see whether the read from ȧ must
evaluate to 42. In this example ḃ plays the role of the guard variable.

Actually, this program can livelock under our semantics, as we have no
means of preventing the for-statement from being the only goroutine that
takes a step. Such a case would happen in a cycle depicted in Figure 3.8.

for (ḃ == 0){◦}; ȧ

for 〈ḃ == 0, ḃ == 0〉 {◦}; ȧ

for 〈0 == 0, ḃ == 0〉 {◦}; ȧ

for 〈TRUE, ḃ == 0〉 {◦}; ȧ

◦; for (ḃ == 0){◦}; ȧ

for (ḃ == 0){◦}; ȧ

Figure 3.8: Steps of an infinite loop.

To get past this infinite loop, g2 must be able to observe another value for ḃ
than 0. So we let g1 run to and with the write on ḃ. We will also run g2 to the
point where it is about to read from ḃ. After this we get the configuration of
Figure 3.9.

◦

ȧ ḃ
σ1,0 42 0 1 0

for 〈ḃ == 0, ḃ == 0〉 {◦}; ȧ

ȧ ḃ
σ2,0 0 (42) 0 (1)

Figure 3.9: The guard variable is set.

When g2 now read from ḃ, we see that both 0 and 42 is among its observable
values, so it can evaluate to either. If it evaluates to 0, it will just cause
another spin in the loop depicted in Figure 3.8. Although there is nothing
in the semantics that stops this from going on forever, lets say that g2

eventually reads 42, then the steps of Figure 3.10 will take place.
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for 〈ḃ == 0, ḃ == 0〉 {◦}; ȧ

for 〈1 == 0, ḃ == 0〉 {◦}; ȧ

for 〈FALSE, ḃ == 0〉 {◦}; ȧ

◦; ȧ

ȧ

Figure 3.10: Exiting the loop.

Since the state of g2 have not changed since Figure 3.9 we still have that

ȧ ḃ
σ2,0 0 (42) 0 (1)

.

Since 0 is still among the observable values for ȧ, this variable can indeed
evaluate to something else than 42. Bottom line seems to be that it is not
safe to assume that synchronization by means of guard variables would
work.

3.3 Lamport’s Bakery Algorithm

In an article from 1974, Lamport reports a solution to the mutual exclusion
problem, namely the Bakery Algorithm [10]. This algorithm is specified
without any requirement for any other synchronization primitives, like
locks or semaphores. Also, it does not require any central process to
coordinate the other processes.

Nevertheless, the algorithm presented has certain requirements on the
execution model, and is generally known to break under weak memory
models. We will demonstrate that this will also be the case in our semantics.
In this example we will make a full naive implementation, and then reduce
it to a starting configuration that is easier to work with. This is also in part
to touch on the limitations of what programs we can model. This is also the
only the only full fledged algorithm we are going to have a look at.

3.3.1 Description of algorithm

When Lamport describes the algorithm, he pictures a bakery. The baker
can only serve one customer at a time, so the customers must follow some
kind of policy to know who will be up next. So, upon entering the bakery, a
customer must stop at the doorstep to write a number on a ticket. She must
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func bakery(i int) {
for {

choosing[i] = 1
number[i] = 1 + max(number)
choosing[i] = 0
for j := 0; j < n; j++ {

for choosing[j] != 0 {
}
for number[j] != 0 &&

pairLess(number[j], j, number[i], i) {
}

}
critical(i) // critical section here
number[i] = 0
// noncritical section here

}
}

Listing 3.1: Bakery algorithm

do this by looking at the tickets of the other customers and write a number
that is higher than every number she sees. If there are other customers on
the doorstep, they will be writing as well, but it does not really matter what
she sees on their tickets.

When the customer is finished writing the number, she will proceed into
the bakery, where she will wait until it is her turn. She will know that it
is her turn when she is the one in the bakery who has the lowest number
on her ticket. In case there is two or more people who are tied on having
the lowest number, they will use a predefined order among them, e.g. the
person with the person with the lowest cell phone number goes first.

When a customer is served and leaves the bakery, her ticket becomes
irrelevant.

In Lamport’s algorithm, the customers are analogous to processes, and
getting served by the baker is analogous to entering a critical section.

3.3.2 Naive implementation

The algorithm is seemingly nicely mapped to the Go function in listing 3.1.
choosing and number are arrays with n elements. i is the index of the
process. It should be a unique integer in the range [0,n) and is given to the
goroutine when it is spawned. Note that the pairLess function evaluates
if the pair (number[j],j) is less than the pair (number[i],i) (a pair
(a,b) < (c,d) if either a < c or a = c and b < d).

Even in theory there are several problems with this Go code:
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1. We are not given that the statements within a goroutine are actually
executed in the order given in the code [21].

2. Lack of synchronization (e.g. channel communication) actually
allows a compiler to optimize away the spawning of the goroutines
[21].

3. Even within a goroutine, a statement is not necessarily done with
execution before the execution of another statement starts.

A potential issue could also have been that the different elements of an array
would not act as a variable in itself. That could have meant that a writes
to different elements in the array would have to be regarded as different
writes to the array as a whole. However, that seems to not be the case as the
specification states that each element of an array acts as a variable [23].

3.3.3 Run with semantics

We will show that the mutual exclusion property does not hold, not even in
the special case where there are only two goroutines running. We will show
this by showing that it is possible to reach a configuration where the next
statement in both goroutines is a write to a variable which we will name
critical.

Since we not yet have support for function calls, the calls to max
and pairLess will have to be inlined, and we will let choosing[0],
choosing[1], number[0], and number[1] be represented by write
tokens c0, c1, n0, and n1 respectively. We will for aesthetic reasons omit
the dot above these write tokens, as they have more than one letter.

Also, since there are in this case only two goroutines, some for-statements
can be reduced to simpler statements. The trouble can be detected within
the first iteration of the outer for-loop, so we omit this as well. The resulting
starting configuration should correspond to that of Figure 3.11

c0 = 1
if n0 > n1
{ max0 = n0 }
{ max0 = n1 }
n0 = 1+max0
c0 = 0
for c1 != 0 {◦}
for n1 != 0 && n1 <= n0
{◦}
critical = 1

c0 n0 c1 n1
σ1,0 0 0 0 0

c1 = 1
if n0 > n1
{ max1 = n0 }
{ max1 = n1 }
n1 = 1+max1
c1 = 0
for c0 != 0 {◦}
for n0 != 0 && n0 < n1
{◦}
critical = 2

c0 n0 c1 n1
σ2,0 0 0 0 0

Figure 3.11: Initial configuration of the Bakery Algorithm.
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If we first run the first (i.e. left) goroutine to the first for statement,
and then do the same for the second goroutine we can (for instance if the
goroutines only consider values from their M) obtain

for c1 != 0 {◦}
for n1 != 0 && n1 <= n0
{◦}
critical = 1

c0 n0 c1 n1
σ1,4 0 1 0 1 0 0 (0 1) 0 (1)

for c0 != 0 {◦}
for n0 != 0 && n0 < n1
{◦}
critical = 2

c0 n0 c1 n1
σ2,4 0 (0 1) 0 (1) 0 1 0 1 0

From this point there are no writes to any of the write tokens, so for any of
the reads, the goroutines can pick any of the numbers given in their W \ S
(i.e. their set of observable writes O). If we let the first goroutine select 0-
writes (i.e. write tuples where the value component is zero) when doing a
READ on the write tokens c1, and n1. That would make the for-statements
be reduced to nothing. If we do the same for c0, and n0 in the second
goroutine we find that the configuration is now

critical = 1

c0 n0 c1 n1
σ1,4 0 1 0 1 0 0 (0 1) 0 (1)

critical = 2

c0 n0 c1 n1
σ2,4 0 (0 1) 0 (1) 0 1 0 1 0
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Chapter 4

Some Properties of the
Model

Some properties are outlined below, along with proofs. Even though the
rules were written with these properties in mind, the fact that they are true
is not always trivial. Section 4.2 can be considered the crux of this thesis, as
it proves that the semantics described herein is actually sound with respect
to the semantics given by sequential consistency.

However, we will start a bit easier, by examining programs in which for
any given variable only one goroutine will ever write to it. The intuitions
collected by doing this will be useful when we later consider the general
case.

4.1 Goroutine-local variables

These propositions in this section will build up to the fact that goroutine-
local variables modeled in this way will exhibit the same behaviors as if they
were modeled by a mapping from variables to values that is associated with
the goroutine. This will be proven in Theorem 4.6.

Lemma 4.1. If only one goroutine is ever writing to a variable ẋ, then all
writes in Wẋ are present in Hẋ of that goroutine. The converse is also the
case, so Wẋ = Hẋ

Proof. The only rule that adds writes to W is WRITE. If we assume the
invariant is initially true, we only have to check that it is still true after
applying that rule. As we can clearly see, the write is also added to H of that
goroutine. No rule removes writes from either set.

The converse holds trivially, as W will hold all writes.
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Lemma 4.2. If an invariant holds for the σ’s in all goroutines, then given
a channel, the same invariant must hold for the all σ’s from 0 to s − 1
(inclusive) in the M of that channel.

Proof. The lemma is vacuously true when there has been no send to the
channel, since in that case s = 0. The only rule that alters s is SEND. Given
that the lemma is true when s = k we see that after applying the SEND rule
the lemma is also true when s = k +1, since the rule inserts a σ where the
invariant holds into M (k).

The only other rule that can alter the M of the channel in the interval in
question is RECV. Since this rule also only inserts σ’s where the invariant
holds, this lemma must be true.

The reader should notice that since the choice of channel in the preceding
lemma is arbitrary, the lemma holds for all channels.

Proposition 4.3. If only one goroutine g is ever writing to a variable ẋ,
then the following three invariants holds:

1. For all goroutines, either Hẋ \ Sẋ contains only one element, or Hẋ =
;∧Sẋ =;.

2. The σẋ of any goroutine is a subset of the σẋ of g (by subset we mean
element-wise subset, see Section 2.2.2).

3. Given a σ in a goroutine, for every other σ′ (i.e. σ’s in other
goroutines) we have either σẋ ⊆σ′

ẋ or σ′
ẋ ⊆σẋ .

Proof. This proposition builds on the assumption that Hẋ = ;∧ Sẋ = ; is
initially true in all goroutines, in which case we can verify that all three
invariants are initially true. We examine the rules that can alter the σ’s of
the goroutines:

WRITE After this rule is applied S′
ẋ will be the same as Hẋ , and H′

ẋ will be
the same as Hẋ with one more write. Hence, after the rule is applied
H′

ẋ \ S′
ẋ will contain one element, and the first invariant is still true.

The second invariant will also still be true, as the only σ that had
added to its elements is the σ of g .

The third invariant is maintained, as the subset relation between the
σ’s in the other goroutines are not altered.

RECV If this rule can be applied (i.e. r < s), we know that the σ′ = M (r )
must keep the three invariants, as according to Lemma 4.2. Since the
σ of the goroutine doing the receive also holds the invariants, σẋ ∪σ′

ẋ
is simply the bigger of the two (one of them must be a subset of the
other). Thus the invariants still holds. Note that if σ is belonging to
g , then σẋ will be the bigger one (that applies to PEND as well).
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PEND Let σ′ = M (s − c). If s − c ≥ 0 the invariants holds for σ′ because of
Lemma 4.2. If s − c < 0 then σ′ = 〈;,;〉, and also in this case the
invariants holds for σ′. Again σẋ ∪σ′

ẋ is just the bigger of the two,
so the invariants are maintained.

Note that the following theorem is dealing with W, not H as the preceding
proposition do.

Theorem 4.4. If only one goroutine is ever writing to a variable ẋ, then
Wẋ \Sẋ has invariantly one element in that goroutine (from the first time ẋ
is written to).

Proof. From Lemma 4.1 we know that Wẋ = Hẋ . Since Wẋ contains all writes
to ẋ neither set can be empty after the first write to ẋ. Hence, according
to the first invariant of Proposition 4.3, Hẋ \ Sẋ must contain exactly one
element, and so must Wẋ \ Sẋ .

Definition 4.5 (Goroutine-local variable). A goroutine-local variable is a
variable that can only ever be written to or read from by a single goroutine.
It is said to belong to this goroutine. It must be written to at least once
before it can be read from.

Theorem 4.6. Given a goroutine-local variable ẋ, assume a varying
function V (ẋ) that always give the value that is lastly written to ẋ (i.e.
whenever the goroutine writes a value v to ẋ, V is altered to V [ẋ 7→ v]).
Then, whenever the goroutine does a read from ẋ it will find 〈id, ẋ, v〉 as
the only element of Wẋ \ Sẋ , and v =V (ẋ).

Proof. The only rule that alters Wẋ and Sẋ of the goroutine is the WRITE

rule. The fact that neither the RECV or the PEND alters Sẋ of this goroutine
is remarked at the end of the RECV part of the proof of Proposition 4.3. Let
w = 〈id, ẋ, v〉 be the write we put into W when applying the WRITE rule, and it
will not be put into S. At this point the theorem is trivially true. Wẋ \Sẋ = {w}
will be invariant until the next WRITE, and so will V (ẋ) = v .

4.2 Data race free programs

We will in this section show that if a program is data race free, it would
be sequentially consistent, and we could use another semantics, using the
following rules instead of the previously defined rules WRITE, and READ.
This other semantics, which I will call the SC-semantics, is similar to the
HB-semantics, but instead of keeping track of the writes (i.e. W and local
states σ’s), it only keeps track of a global mapping V from variables to
values. The SC-semantics corresponds to what one would expect of a strong
memory model.
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WRITE-SC
V ′ =V [ẋ 7→ v]

〈V ,C〉. 〈ẋ = v〉→ 〈V ′,C〉. 〈◦〉

READ-SC
V (ẋ) = v

〈V ,C〉. 〈ẋ〉→ 〈V ,C〉. 〈v〉
The other rules can be translated to rules in this semantics by omitting the
write-tracking sets from the configurations. We can use the HB-semantics
to show properties in the SC-semantics and vice versa. In this thesis we will
show that if a program is data race free in the sense of the HB-semantics, it
will also be data race free in the sense of the SC-semantics. We will define
this clearer later, in Section 4.2.1, and Section 4.2.3.

The main difference between the two semantics is that the rule READ-SC is
always deterministic, that is, whenever we apply the rule READ-SC there is
only one possible value we can obtain from using the rule.

Configuration in the HB-semantics will be denoted γHB, and for the SC-
semantics they will be denoted γSC. We will take them to be elements of the
respective state spaces SPACEHB, and SPACESC. Additionally, we will refer
to executions under the different semantics as HB-executions, resp. SC-
executions.

In order to compare HB-executions to SC-executions, we will use bisimula-
tion. We will define this notion in Section 4.2.2. This notion of simulation
was pioneered by Robin Milner [14, 15], where he describes under which
conditions one system can be used to simulate another system. Initially he
used bisimulation to define an equivalence relation on single process pro-
grams, such that programs in the same equivalence class could be said to
be running the same algorithm. Later the notion was extended to cover
programs with more processes.

In the following propositions, conditions that are labeled with HB, resp.
SC are thought to be predicates on configurations under the HB-semantics,
resp. SC-semantics. Given a configuration and a condition C , we use C (γ)
to mean that the condition is satisfied on the configuration. We will further
use the notation C∗(γ) to mean that there exists a configuration that can be
reached from gamma that satisfies the condition, i.e. ∃γ′(γ→∗ γ′∧C (γ′)).

We will in this section also introduce the notation H(σ), and S(σ) to denote
the H and S of a given σ.

4.2.1 Data race in HB-semantics

The Go reference [3] defines a data race to be when a write to a variable is
concurrent with either another write or a read on the same variable. We
will translate this to the following definition:

Definition 4.7 (HB-race condition). A program (i.e. starting configura-
tion) has a data race if it can reach a configuration that satisfies one of the
following:
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WWHB A goroutine can perform a write on ẋ, but Wẋ \ Hẋ already has one or
more elements. This is a write-write conflict.

RWHB A goroutine can perform a read from ẋ, but Wẋ \Hẋ already has one or
more elements. This is a write-read conflict.

A program without any data races will be referred to as data race free. If a
starting configuration γ is data race free, we will use the notation DRF∗

HB(γ)
to denote this.

Note that we in this definition implicitly defined the predicates WWHB,
RWHB, WW∗

HB, and RW∗
HB. Note also that DRF∗

HB(γ) =¬WW∗
HB(γ)∧¬RW∗

HB(γ).

We will examine configurations where WWHB is not satisfied. It should be
fairly easy to see from the definition that this is the case if and only if for
any goroutine that can perform a WRITE on ẋ, we have Hẋ = Wẋ . This works
similarly for RWHB.

Definition 4.8 (Ambiguous read). A program can perform an ambiguous
read if it can reach a configuration that satisfies the following:

RAMB A goroutine can perform a read from ẋ, but Wẋ \ Sẋ has two or more
elements.

Note that the following lemma speaks about strict subsets.
Lemma 4.9. For all goroutines S ⊂ H is invariant.

Proof. The only three rules that alters W, H, and S for the goroutine are
WRITE, RECV, and PEND. If we assume the invariant is initially true, we
have to verify that it still holds after applying any of these.

For the WRITE rule, the invariant holds trivially, since the only elements
added to S are elements that are already in H. For the RECV and PEND it
suffices to keep in mind that the σ attained from the channel must also be
from a goroutine where the invariant also was initially true (Lemma 4.2). If
S ⊂ H in both σ and σ′, then that must also be the case in the union.

Lemma 4.10. Given a configuration γHB, and assuming that ¬WW∗
HB(γHB),

then we have the following invariants on all σ’s in all configurations of
reach(γHB):

1. |Hẋ (σ) \ Sẋ (σ)| = 1.

2. For every other σ′, we have either σẋ ⊆σ′
ẋ or σ′

ẋ ⊆σẋ .

Proof. We will prove these invariants by induction:

WRITE If the first invariant is true, it will continue to be true, analogous to
the proof of the first invariant of Proposition 4.3.

Let σg be the state of the goroutine performing the write. Because
of our assumption that WWHB is not satisfied, we must have that
Wẋ = Hẋ (σg ). Under the assumption that the first invariant is true, we
have that for any other σ′, no Sẋ (σ′) can have any more elements than
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Sẋ (σg ). This means that σ′
ẋ ⊆ σ

g
ẋ (after all, according to the second

invariant, one must be a subset of the other), and the rest of the proof
can be done analogously to the proof of WRITE for the first and second
invariants in Proposition 4.3.

RECV The proof of the first and second invariants are analogous to the
proof of RECV for respectively the first and second invariants in
Proposition 4.3.

PEND Analogous to RECV.

Corollary 4.11. Given a configuration γHB, and assuming that ¬WW∗
HB(γHB),

then we have the following invariant on all σ’s in all configurations of
reach(γHB):

|Wẋ \ Sẋ (σ)| ≥ 2 implies |Wẋ \ Hẋ (σ)| ≥ 1
(contrapositive: |Wẋ \ Hẋ (σ)| = 0 implies |Wẋ \ Sẋ (σ)| = 1).

Proof. We can prove the contrapositive of the invariant from the first
invariant of Lemma 4.10. If |Wẋ \ Hẋ (σ)| = 0, then Wẋ = Hẋ (σ). Substituting
Wẋ into the first invariant of Lemma 4.10, we see that we must have
|Wẋ \ Sẋ (σ)| = 1.

Theorem 4.12. A program γHB can perform an ambiguous read only if
it has a data race (i.e. R∗

AMB(γHB) ⇒¬DRF∗
HB(γHB))

Proof. Assume that ¬WW∗
HB(γHB), then by Corollary 4.11 we know that

|Wẋ \ Sẋ (σ)| ≥ 2 implies |Wẋ \ Hẋ (σ)| ≥ 1. So under this assumption, this
means that any configuration in reach(γHB) that satisfies RAMB will also
satisfy RWHB. The only other option is that the assumption is false, but
this immediately implies a data race.

4.2.2 Bisimulation

We proceed by making a definition of bisimulation that fits our purposes,
and that is in spirit of traditional definitions. It will help us to compare
programs that are running under different semantics. We can take X and
Y to be state spaces, and →X and →Y to be their respective transition
relations.
Definition 4.13 (Bisimulation). Given two systems (X ,→X ), (Y ,→Y ), a
relation R on X ×Y is a bisimulation if x R y implies both of the following:

1. ∀x ′(x →X x ′ ⇒∃y ′(y →Y y ′∧x ′ R y ′))

2. ∀y ′(y →Y y ′ ⇒∃x ′(x →X x ′∧x ′ R y ′))

The preceding definition says that if R is a bisimulation, and given two
configurations x, y such that x R y , then whichever step that can be taken
from the configuration x, there exist a similar step that can be taken from
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y , such that the new configurations are still related, and vice versa. The
following lemma just extends this by stating that they can follow each other
in this manner any number of steps.
Lemma 4.14. Given two systems (X ,→X ), (Y ,→Y ), and a bisimulation R
on X ×Y , if x R y then both of the following holds:

1. ∀x ′(x →∗
X x ′ ⇒∃y ′(y →∗

Y y ′∧x ′ R y ′))

2. ∀y ′(y →∗
Y y ′ ⇒∃x ′(x →∗

X x ′∧x ′ R y ′))

Proof. Simple induction.

Definition 4.15 (Bisimilar). Given two systems (X ,→X ), (Y ,→Y ), then
x ∈ X , y ∈ Y are bisimilar if there exist a bisimulation R such that x R y .
We write x ∼ y for this.

If we regard x and y in the above definition as program states, the intuition
is that if x ∼ y , these states are kind of equal to each other. We will not use
this definition in any serious proofs, but we will leave still leave it here for
completion, and since it is interesting in itself.

For the following theorems we will define a binary relation R on SPACEHB ×
SPACESC such that if γHB = 〈W,C HB〉.GHB and γSC = 〈V ,C SC〉.GSC, then
γHB R γSC if ¬R∗

AMB(γHB) and all of the following relations holds:

RG They have equally many goroutines which are running the same
programs as each other.

RC The channels in C HB are corresponding to the channels in C SC.

RV For all ẋ, the value of ẋ in V is in a write to ẋ in W that is visible to all
goroutines in γHB, i.e.

∀ẋ ∈ Dom(V )(V (ẋ) = v →∃w ∈ W(Val(w) = v ∧w 6∈ ⋃
g∈GHB

Sẋ (σg ))).

Theorem 4.16. R is a bisimulation of (SPACEHB,→HB) and (SPACESC,→SC).

Proof. Assume γHB R γSC. We must show that for any step γHB may take,
γSC can take a similar step, such that the two new configurations are still
related by R. Similarly, we have to show that for any step γSC can make, γHB

can make a similar step.

We will use → to mean →HB or →SC, and we will take it to be evident from
the context which that is meant.

If γHB → γHB′ and the transition is not a WRITE-, READ-, RECV-, or PEND-
step, we can apply a similar step from γSC to obtain a γSC′ such that
γHB′ R γSC′. This applies the other way as well.

WRITE γHB → γHB′: The new write w with value v to ẋ is not in Sẋ of any
of the goroutines. When we make the corresponding WRITE-step
γSC → γSC′, we obtain V ′(ẋ) = V [ẋ 7→ v](ẋ) = v , and thus γHB′ R γSC′.
This also applies the other way around.
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READ γHB → γHB′: Let g be the goroutine taking the step, ẋ be the variable
written to, V be the variable map of γSC, and V (ẋ) = v . Since, by the
definition of R, we have that ¬R∗

AMB(γHB), we must have that there
is only one write in W \ S(σg ), and this is required by the relation R
to have the value v . So we have for the corresponding READ-step
γSC → γSC′ that γHB′ R γSC′.

Note that if the requirement that ¬R∗
AMB(γHB) was not a part of the

definition of R, then R would not be necessarily be a bisimulation,
since if RAMB(γHB), there would be two or more writes in W\S(σg ), and
only one of them would required by the relation R to have the value v ,
while one of the other writes could have another value. 1 On the other
hand, the corresponding READ-step γSC → γSC′ must obtain the value
v .

RECV Here we only have to confirm that the corresponding steps does not
alter the status of the relation RV . For any ẋ we know that there is a
w such that the formula of RV is true. Since w is not in the S of any σ,
it will not be present in the union of two σ’s either, so the RV relation
will hold after the steps as well.

PEND Analogous to RECV.

Corollary 4.17. If γHB R γSC then γHB ∼ γSC.

Proof. Follows immediately from Definition 4.15.

Actually, we have now proved that if a program under the HB-semantics
is data race free, then it will run similarly to (not to say identically as) the
program under the SC-semantics.

4.2.3 Data race in SC-semantics

This section will show that if a program is data race free when running
under the HB-semantics it will also be data race free in an another sense
when run under the SC-semantics.
Definition 4.18 (SC-race condition). A SC-program (i.e. starting config-
uration) has a data race if it can reach a configuration that satisfies one of
the following:

WWSC A goroutine can perform a WRITE on ẋ, while another goroutine can
also perform a WRITE on ẋ. This is a write-write conflict.

RWSC A goroutine can perform a READ from ẋ, while another goroutine can
perform a WRITE to ẋ. This is a write-read conflict.

1Note, however, that under some circumstances, all of them can have the value v , for
instance if the program writes the value v at every WRITE to ẋ
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We will use the notation DRF∗
SC(γSC) to denote a program γSC that can not

reach a configuration that satisfies either WWSC or RWSC.

Let R− be the same relation as R, but without the requirement that
¬R∗

AMB(γHB).

Theorem 4.19. Given starting configurations γHB
s and γSC

s such that
γHB

s R− γSC
s , then DRF∗

HB(γHB
s ) ⇒ DRF∗

SC(γSC
s ).

Proof. We will assume DRF∗
HB(γHB

s ), and ¬DRF∗
SC(γSC

s ), and then show
that this leads to contradiction. According to the contrapositive of
Theorem 4.12, we have that ¬R∗

AMB(γHB
s ), and so we have γHB

s R γSC
s . By the

assumption that ¬DRF∗
SC(γSC

s ), we know that there exist a configuration γSC

such that γSC
s →∗ γSC, and that satisfies either WWSC, or RWSC. We consider

the two cases separately:

WWSC In this case, we know by Lemma 4.14 that there exist configuration
γHB such that γHB

s →∗ γHB and γHB R γSC. γHB will actually itself
satisfy WWSC. Say that g1 and g2 are the goroutines that can make
the WRITE-steps on ẋ, we can clearly see that if we first let g1 perform
its WRITE-step, the write w it puts in W will not be in H(σg2 ). So if
we now look at g2, that is still allowed to perform its WRITE-step, we
know that {w} ⊆ Wẋ \ Hẋ (σg2 ), making this (reachable) configuration
satisfy WWHB, which contradicts the assumption DRF∗

HB(γHB
s ).

RWSC This is analogous to the previous case, though we must let the
goroutine that is allowed to do the WRITE-step take its step before
the goroutine that is allowed to do the READ-step.
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Chapter 5

First Class Functions

Go treats functions as first class citizens,1 and it even has support for
lambdas and closures. Therefore modeling a function call can’t be done as
simply as introducing a stack frame for variables that just disappears when
the function is done.

This chapter will show how to extend the HB-semantics described in
Chapter 2 to a functional setting with closures. In addition to simply
demonstrate that it can be done at all, it will make far more language
constructs in Go to be more directly translated to a starting configuration
in our abstract syntax. Also it will show that reasoning about whether
a variable is goroutine-local may not be trivial, not to say sometimes
impossible.

Closures in Go has been examined before in [20], along with the language
constructs defer, panic, and recover. It does not deal with shared
variables, so for analysis of programs without shared variables, the
semantics described there has fewer and simpler rules.

Consider Listing 5.1 on the following page. The output would be “2, 3,
11”. The lambda function we have written to f_inner we will refer to as
f_inner. This program demonstrates at least the following:

• The variable x inside the body of f_inner is referring to the x in f at
the time when the lambda is defined. This is known as lexical binding.

• x is still referable even after f has returned, so the program isn’t just
depending on a stack to store function-local variables.

• The two lambdas that are eventually bound to g and h are referring to
two different “versions” of x.

• When the lambdas are called, they can not only read, but also write to
their version of x.

1First class citizens of a language are entities that “supports all the operations generally
available to other entities” [5]. For Go, these operators includes being passed as argument,
returned from a function, written to a variable, and sent over a channel.
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package main

import "fmt"

func f(param int) func() int {
x := param
f_inner := func() int {

x++
return x

}
return f_inner

}

func main() {
g := f(1)
h := f(10)
fmt.Printf("%d, ", g())
fmt.Printf("%d, ", g())
fmt.Printf("%d\n", h())

}

Listing 5.1: Closure example

The way this usually works is that when a function or lambda is defined, a
reference to a frame is stored with it. We will call such a frame a referenced
frame. A frame traditionally stores the bindings of variables. Whenever a
function is called a new frame is created and will hold the bindings of the
parameters passed to the functions, as well as the local variables. It will also
hold a reference to the referenced frame of the function. We will call such
a frame a local frame. The local frame of a currently executing function we
will call an active frame.

All functions declared at top level will have the global frame (i.e. the frame
holding the bindings of all global variables) as their referenced frame. If
a lambda is defined during the execution of a function call, a reference to
the active frame is stored with it. Whenever a variable is referenced, the
execution will first try to find its value in the active frame. If the binding
isn’t defined there, it will look for the value in the referenced frame instead,
and if it isn’t there either, it will keep looking all the way to the global frame.

The frames that are created when Listing 5.1 is executed is illustrated in
Figure 5.1 on the next page. The figure captures the following moments:

a) Before main is called.

b) Just after main is called.

c) After the first call to f is done.

d) After the second call to f is done.
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Figure 5.1: When functions are called, a new frame is created.

e) After the first call to g.

5.1 Contexts

The model with frames depends on the view that each variable neatly maps
to its value (i.e. there exists a map from variables to values). Since this
is not the case in our model, we can rather make each variable map to a
something we will call a write token instead. Earlier we said that we wrote
to variables, from this point we will only write to write tokens.

Figure 5.2: Contexts corresponding to A), B), and C) in figure Figure 5.1.
Red bindings are bindings copied from the context also highlighted in red.

If we take a look on Figure 5.2 we will see something that resembles frames
which are the big, squared boxes. We will call these contexts. In this figure
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we find the write tokens as the names with an underscore, and we see that
within the contexts each variable maps to a write token. In the text we will
denote a write token by putting a dot above it, e.g. ẋ is a write token.

The figure depicts writes as small, rounded boxes. a box with “x1 : 10” will
correspond to a write 〈id, ẋ1,10〉. each of the boxes will have a distinct id,
although it is not explicitly depicted. All writes are collected in W.

Each of the contexts are denoted with a ρ. When a function is declared,
the context in which it was declared is stored with the function. When a
function is called, a new context is created, and until other variables are
declared in the function, it is just a copy of the context stored with it. Note
that the reason that it is possible to just copy the contexts (as opposed to
making the contexts refer to each other like the frames do) is that the write
tokens are immutable [7].

As we can see, Figure 5.2 is already getting cluttered compared to Figure 5.1.
Still the figure can be helpful if one keeps in mind that the figures, for
the time being, corresponds to each other. When describing the rules for
functions, we will extend on Figure 5.2 as a means of providing examples.

5.2 Syntax

We will extend the syntax from Chapter 2 to cover variable declaration,
variable assignment, function declarations, and function calls. The go -
statement is also introduced here, and will finally make it possible for us to
make programs that dynamically spawns goroutines. We use the notation
| = to mean that we keep the possible productions from Chapter 2, in
addition to the productions we introduce here.

Statement stmt |= var x = e | var form = elist | e = e | elist = elist
| elist = f (elist) | go f (elist) | return elist

VariableList form = · | x.form
ExpressionList elist = · | e.elist
Expression e |= x | func (form){stmts}
Value v |= f

5.3 Semantics

Previously we have had C to be a function from ids to channels. From this
point the C can map to other things as well, like function definitions, arrays,
or references to write tokens (although, we will only provide rules here for
function definitions). It should always be clear from the context what we
are trying to retrieve from C , for instance, we will use ch to denote an id
to a channel, or f to denote an id to a function. Such ids are values, so
whenever we find v in a rule, it can be one of these as well. This also applies
to previous rules.
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5.3.1 Variables

DECL-FORM
γ. 〈var x.form = v.vals,σ,R〉→ γ. 〈var x = v; var form = vals,σ,R〉

DECL
ẋ = fresh ρ′ = ρ[x 7→ ẋ]

γ. 〈var x = v,σ,ρ.R〉→ γ. 〈ẋ = v,σ,ρ′.R〉
This corresponds to adding a row in the current context, like for instance
the row with g was added to the ρ2 context in Figure 5.2 (i.e. the row is not
present in B), but is present in C)).

EVAL-LVAR
e 6= ẋ e → e′

γ. 〈e = e,σ,R〉→ γ. 〈e′ = e,σ,R〉
This rule requires that the expression on the left hand side will eventually
evaluate to a write token. Like types, this will be the job of the compiler to
make sure of. Similar syntax could be introduced for channels, i.e. e ← e
where the left hand side must evaluate to a channel, and ← e.

DEREF-VAR
ρ(x) = ẋ

γ. 〈x,σ,ρ.R〉→ γ. 〈ẋ,σ,ρ.R〉

5.3.2 Functions

A function will be modeled by λ〈form,stmts,ρ〉. The λ in front of the tuple is
just to mark that it is a function, and thus make it visually separable from
channels. For the following rules, it should be noted that vals is an elist
in which all expressions are values. Rules that evaluates an elist to vals is
given in the rules EVAL-LIST-HEAD, and EVAL-LIST-TAIL below. Rules that
utilizes these works analogously to the *-EVAL-EXPR rules from Chapter 2,
and should be made for the APPLY-* rules (both to resolve the function id
(i.e. f ), and the parameters), and the return elist statement, but neither will
be explicitly typed out here.

FUNC-DECL
f = fresh C ′ =C [ f 7→λ〈form,stmts,ρ〉]

〈W,C〉. 〈x = func (form){stmts},σ,ρ.R〉→ 〈W,C ′〉. 〈x = f ,σ,ρ.R〉
The declared function captures the current (i.e. topmost) context of the
goroutine.

APPLY-ASYNC
C ( f ) =λ〈form,stmts,ρ〉

γ. 〈go f (vals),σ,R〉→ γ. 〈◦,σ,R〉‖〈var form = vals; stmts,σ,ρ〉

APPLY-SYNC

C ( f ) =λ〈form,stmts,ρ〉
fcall ≡ {var form = vals; stmts}

γ. 〈elist = f (vals),σ,R〉→ γ. 〈elist = fcall,σ,ρ.R〉
Note that the ρ is pushed onto the context stack of the goroutine.
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FUNC-STEP

stmts 6= return vals; stmts′′
γ. 〈stmts,σ,R〉→ γ′. 〈stmts′,σ′,R ′〉

γ. 〈elist = {stmts},σ,R〉→ γ′. 〈elist = {stmts′},σ′,R ′〉

FUNC-RETURN
stmts = return vals; stmts′

γ. 〈elist = {stmts},σ,ρ.R〉→ γ. 〈elist = vals,σ,R〉
Here ρ is popped off the stack of the goroutine.

5.3.3 Expression lists

ASSIGN-LIST
γ. 〈e1.elist1 = e.elist2,σ,R〉→ γ. 〈e1 = e2; elist1 = elist2,σ,R〉

ASSIGN-LIST-DISCARD
γ. 〈· = vals,σ,R〉→ γ. 〈◦,σ,R〉

EVAL-LIST-HEAD
γ. 〈e,σ,R〉→ γ. 〈e ′,σ,R〉

γ. 〈e.elist,σ,R〉→ γ. 〈e ′.elist,σ,R〉

EVAL-LIST-TAIL
γ. 〈elist,σ,R〉→ γ. 〈elist′,σ,R〉

γ. 〈e.elist,σ,R〉→ γ. 〈e.elist′,σ,R〉
5.4 New translation to starting configuration

With the extended semantics, it is now possible to map a program more
directly to a starting configuration. All starting configurations can now
initially have only one goroutine, where the σ is 〈;,;〉. The program of
the goroutine can be mapped along the lines of Figure 5.3 on the next page.

5.5 Visibility of write tokens

Earlier it was much easier to reason about which goroutines that was
reading from or writing to which write tokens; it was plainly written in the
code. Now we have provided rules that makes it possible to make closures,
and if we keep in mind that closures can be sent through channels, we must
realize that we have introduced the possibility of creating programs where
it may be virtually impossible to track which goroutines that can get a hold
of which references. First class arrays, or variable references introduces the
same problem.

Still, the introduction of these rules does not invalidate the theorems in
Chapter 2.
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package main

import "fmt"

func f(p int) func() int {
x := p
f_i := func() int {

x++
return x

}
return f_i

}

func main() {
g := f(1)
h := f(10)
fmt.Println(g())
fmt.Println(g())
fmt.Println(h())

}

var f = func(p){
var x = p
var f_i = func(·){
x = x + 1
return x

}
return f_i

}

var main = func(·){
var g = ◦
g = f(1)
var h = ◦
h = f(10)
· = g(·)
· = g(·)
· = h(·)

}

· = main(·)

Figure 5.3: New translation to starting configuration.
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Chapter 6

Conclusion

In this thesis we started by providing a structural operational semantics
that reflects the Go memory model for reads, writes, and channel
communication. We found that we would model the happens before
relations by means of sets, in particular the sets:

W: The set of all writes.

H: The set of all writes that has happened before.

S: The set of all writes that has been shadowed (or in terminology of [13]
overwritten).

We modeled W to be a part of the global state of the configurations we
defined, while H and S was modeled as part of the goroutine local states
which we referred to as σ’s. When modeling channel communication we
made the channels pass σ’s in addition to passing the ordinary values.

We proceeded by providing examples on how to use the semantic rules to
step through programs. In doing this we also introduced notation to make
it easier to type out the configurations.

Next, we proved that if a program is data race free under our semantics,
then it is sequentially consistent. This property is generally deemed to be
required by any sound memory model.

Lastly, we provided a framework for extending our semantics into a
functional setting with closures, and dynamic spawning of goroutines.

Discussion and future work

The semantic rules may not encompass the issue of out of thin air results
correctly, in the sense that the Go language seems to allow behavior that is
not allowed by our semantics. We will illustrate this by referring to one
of the situations discussed in [2]. Consider the situation in Figure 6.1.
According to the Go memory model the statements of the assignments of
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r1 = x
y = r1

r2 = y
x = 42

Initially x=y=0. Should r1=r2=42 be allowed?

Figure 6.1

the right thread can be reordered, since neither of the assignments depends
on the other. After such a reordering we can clearly have r1=r2=42 as a
possible outcome. In [2] they claim that this possibility is even “generally
accepted as benign”. Our semantics can not, however, produce this result,
as r2 can not assume the value 42.

To which extent the Go memory model allows the other situations described
in [2] is unclear. That depends on which compiler optimizations the Go
language allows, aside of the mentioned kind of assignment reordering. It
also depends on whether the language specification in some way prohibits
the speculations that are described in [2]. Since such speculations seems
not to be explicitly prohibited, it can seem like some of the problematic
situations are allowed.

Out of thin air results and how to prohibit them is also discussed in [17].

Locks has not been discussed in this thesis, even though behavior for them
is defined on the specification web page [21]. Arguably, adding semantic
rules for them should not invalidate the theorems of Chapter 2, but still
formalizing rules for them could be interesting. The reason that we did not
do this is that locks are required to be imported through the sync package,
so we did not consider them a part of the core language.

We used Lamport’s bakery algorithm to demonstrate the workings of our
semantics. It is one of many algorithms that are known to work under
a strong memory model (e.g. the SC-semantics), but break under a weak
memory model. A technique known as inferring fences has been developed
to mend such algorithms [9, 16]. Such techniques may not exist out of the
box in Go, but even so, it would be interesting to see how the semantics
would be different.

In Appendix B we suggest a version of the Bakery algorithm that uses
channels as a means for fences. It may or may not be proven that this
version will have the mutual exclusion property under our semantics, but
if it does, it would prove as an example of an algorithm that is not properly
synchronized, but still do what is expected from it.

Chapter 5 shows how to extend the semantics to include for instance
functions, and shows how this makes it hard to reason about the visibility
of write tokens. For instance, it is harder to reason whether a variable is
goroutine local or not.

It should be entirely possible to add arrays and references into the
semantics as well.
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The semantics can be used as a theoretical base for implementing a data
race checker. However, since this implementation would have to update
sets at every assignment, it would slow down a program considerably.
Variables that are goroutine local would not be required to be tracked.
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Appendix A

Inference rules

In this appendix we have collected all the inference rules from both
Chapter 2 and Chapter 5, as well as the complete abstract syntax.

Syntax

Program = stmts
StatementList stmts = stmt | stmt; stmts
Statement stmt = for e {stmts} | if e {stmts} else {stmts}

| var x = e | var form = elist | e = e | elist = elist
| elist = f (elist) | go f (elist) | return elist
| e | ẋ = e | ch ← e

VariableList form = · | x.form
ExpressionList elist = · | e.elist
Expression e = v | e op e | ẋ | ← ch | x | func (form){stmts}
Value v = ◦ | m | b | ch | f

Rules

Basic rules

PAR-STEP
γ. g → γ′. g ′

γ. g‖G → γ′. g ′‖G

SEQ
γ. 〈stmt,σ〉→ γ′. 〈stmts,σ′〉

γ. 〈stmt; stmts?,σ〉→ γ′. 〈stmts; stmts?,σ′〉

SKIP
γ. 〈v; stmts?,σ〉→ γ. 〈stmts?,σ〉
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Control structures

IF-EVAL-EXPR
γ. 〈e,σ〉→ γ′. 〈e ′,σ′〉

γ. 〈if e {stmts1} else {stmts2},σ〉→ γ′. 〈if e ′ {stmts1} else {stmts2},σ′〉

IF-TRUE
v =TRUE

γ. 〈if v {stmts1} else {stmts2},σ〉→ γ. 〈stmts1,σ〉
FOR-PREP

γ. 〈for e {stmts},σ〉→ γ. 〈for 〈e,e〉 {stmts},σ〉

FOR-EVAL-EXPR
γ. 〈e1,σ〉→ γ′. 〈e ′1,σ′〉

γ. 〈for 〈e1,e2〉 {stmts},σ〉→ γ′. 〈for 〈e ′1,e2〉 {stmts},σ′〉

FOR-TRUE
v =TRUE

γ. 〈for 〈v,e〉 {stmts},σ〉→ γ. 〈stmts; for e {stmts},σ〉

FOR-FALSE
v =FALSE

γ. 〈for 〈v,e〉 {stmts},σ〉→ γ. 〈◦,σ〉

Reads and writes

WRITE-EVAL-EXPR
γ. 〈e,σ〉→ γ′. 〈e ′,σ′〉

γ. 〈ẋ = e,σ〉→ γ′. 〈ẋ = e ′,σ′〉

WRITE

id = fresh σ= 〈H,S〉
w = 〈id, ẋ, v〉 σ′ = 〈H∪ {w},S∪Hẋ〉

〈W,C〉. 〈ẋ = v,σ〉→ 〈W∪ {w},C〉. 〈◦,σ′〉

READ
σ= 〈H,S〉 〈id, ẋ, v〉 ∈ Wẋ \ Sẋ

〈W,C〉. 〈ẋ,σ〉→ 〈W,C〉. 〈v,σ〉

Channel communication

SEND

C (ch) = 〈s,r,c,M ,V 〉 s ≤ c + r
M ′ =M [s 7→σ] V ′ = V [s 7→ v]

C ′ =C [ch 7→ 〈s +1,r,c,M ′,V ′〉]
〈W,C〉. 〈ch ← v,σ〉→ 〈W,C ′〉. 〈pend 〈ch, s〉 ,σ〉

RECV

C (ch) = 〈s,r,c,M ,V 〉 r < s
M (r ) =σ′ V (r ) = v M ′ =M [r 7→σ]

C ′ =C [ch 7→ 〈s,r +1,c,M ′,V 〉]
〈W,C〉. 〈← ch,σ〉→ 〈W,C ′〉. 〈v,σ∪σ′〉

PEND
C (ch) = 〈_,r,c,M ,_〉 r > s − c M (s − c) =σ′

〈W,C〉. 〈pend 〈ch, s〉 ,σ〉→ 〈W,C ′〉. 〈◦,σ∪σ′〉

Variables

DECL-FORM
γ. 〈var x.form = v.vals,σ,R〉→ γ. 〈var x = v; var form = vals,σ,R〉
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DECL
ẋ = fresh ρ′ = ρ[x 7→ ẋ]

γ. 〈var x = v,σ,ρ.R〉→ γ. 〈ẋ = v,σ,ρ′.R〉

EVAL-LVAR
e 6= ẋ e → e′

γ. 〈e = e,σ,R〉→ γ. 〈e′ = e,σ,R〉

DEREF-VAR
ρ(x) = ẋ

γ. 〈x,σ,ρ.R〉→ γ. 〈ẋ,σ,ρ.R〉

Functions

FUNC-DECL
f = fresh C ′ =C [ f 7→λ〈form,stmts,ρ〉]

〈W,C〉. 〈x = func (form){stmts},σ,ρ.R〉→ 〈W,C ′〉. 〈x = f ,σ,ρ.R〉

APPLY-ASYNC
C ( f ) =λ〈form,stmts,ρ〉

γ. 〈go f (vals),σ,R〉→ γ. 〈◦,σ,R〉‖〈var form = vals; stmts,σ,ρ〉

APPLY-SYNC

C ( f ) =λ〈form,stmts,ρ〉
fcall ≡ {var form = vals; stmts}

γ. 〈elist = f (vals),σ,R〉→ γ. 〈elist = fcall,σ,ρ.R〉

FUNC-STEP

stmts 6= return vals; stmts′′
γ. 〈stmts,σ,R〉→ γ′. 〈stmts′,σ′,R ′〉

γ. 〈elist = {stmts},σ,R〉→ γ′. 〈elist = {stmts′},σ′,R ′〉

FUNC-RETURN
stmts = return vals; stmts′

γ. 〈elist = {stmts},σ,ρ.R〉→ γ. 〈elist = vals,σ,R〉

Expression lists

ASSIGN-LIST
γ. 〈e1.elist1 = e.elist2,σ,R〉→ γ. 〈e1 = e2; elist1 = elist2,σ,R〉

ASSIGN-LIST-DISCARD
γ. 〈· = vals,σ,R〉→ γ. 〈◦,σ,R〉

EVAL-LIST-HEAD
γ. 〈e,σ,R〉→ γ. 〈e ′,σ,R〉

γ. 〈e.elist,σ,R〉→ γ. 〈e ′.elist,σ,R〉

EVAL-LIST-TAIL
γ. 〈elist,σ,R〉→ γ. 〈elist′,σ,R〉

γ. 〈e.elist,σ,R〉→ γ. 〈e.elist′,σ,R〉

Alternative rules for channels

The rules for channels given in chapter 2 may be a bit inconvenient since the
function M really have to “remember” arbitrarily many σ’s, as the pending
goroutines can wait arbitrarily long before stepping out of the pending state
even when they can.
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This alternative semantics will only allow a limited number of goroutines to
pend on it, and it will make a FIFO for it. In this semantics, a channel will
be represented by a tuple 〈c,V ,S,R,P〉 where

• c is the capacity of the channel.

• V is a FIFO of the values sent over the channel.

• S is a FIFO of σ’sthat are put in by sending goroutines and picked up
by the corresponding receiving goroutines.

• R is a FIFO ofσ’sthat are put in by the receiving goroutines and picked
up by the corresponding pending goroutines.

• P is a FIFO of tokens corresponding to goroutines that are pending
on the channel.

SEND

C (ch) = 〈c,V ,S,R,P〉 ‖S‖ ≤ c
token = fresh C ′ =C [ch 7→ 〈c, v.V ,σ.S,R, token.P〉]
〈W,C〉. 〈ch ← v,σ〉→ 〈W,C ′〉. 〈pend 〈ch, token〉 ,σ〉

RECV

C (ch) = 〈c,V .v,S.σ′,R,P〉 ‖R‖ ≤ c
C ′ =C [ch 7→ 〈c,V ,S,σ.R,P〉

〈W,C〉. 〈← ch,σ〉〈W,C ′〉. 〈◦,σ∪σ′〉

PEND

C (ch) = 〈c,V ,S,R.σ′,P .token〉
C ′ =C [ch 7→ 〈c,V ,S,R,P〉]

〈W,C〉. 〈pend 〈ch, token〉 ,σ〉〈W,C ′〉. 〈◦,σ∪σ′〉
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Appendix B

Listings

Complete listing of naive implementation

package main

import (
"fmt"
"math/rand"
"time"

)

var n = 5
var choosing = make([]int, n)
var number = make([]int, n)

func max(number []int) int {
res := 0
for _, v := range number {

if v > res {
res = v

}
}
return res

}

func pairLess(a, b, c, d int) bool {
isLess := false
if (a < c) || (a == c && b < d) {

isLess = true
}
return isLess

}

func critical(i int) {
fmt.Printf("%d: Start critical\n", i)
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fmt.Printf("%d: number[%d]=%d\n", i, i, number[i])
duration := time.Duration(rand.Intn(1000)) *

time.Millisecond
fmt.Printf("%d: Sleeping %v\n", i, duration)
time.Sleep(duration)
fmt.Printf("%d: End critical\n", i)

}

func bakery(i int) {
for {

choosing[i] = 1
number[i] = 1 + max(number)
choosing[i] = 0
for j := 0; j < n; j++ {

for choosing[j] != 0 {
}
for number[j] != 0 &&

pairLess(number[j], j, number[i], i) {
}

}
critical(i) // critical section here
number[i] = 0
// noncritical section here

}
}

func main() {
rand.Seed(time.Now().UnixNano())
for i := 1; i < n; i++ {

go bakery(i)
}
bakery(0)

}

Complete listing of mended implementation

package main

import (
"fmt"
"math/rand"
"time"

)

var n = 5
var choosing = make([]int, n)
var number = make([]int, n)
var ch = make(chan int)
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func MB() {
ch <- 0

}

func max(number []int) int {
res := 0
for _, v := range number {

if v > res {
res = v

}
}
return res

}

func pairLess(a, b, c, d int) bool {
isLess := false
if (a < c) || (a == c && b < d) {

isLess = true
}
return isLess

}

func critical(i int) {
fmt.Printf(" %d: Start critical\n", i)
fmt.Printf(" %d: number[%d]=%d\n", i, i, number[i])
duration := time.Duration(rand.Intn(1000)) *

time.Millisecond
fmt.Printf(" %d: Sleeping %v\n", i, duration)
time.Sleep(duration)
fmt.Printf(" %d: End critical\n", i)

}

func noncritical(i int) {
fmt.Printf("N%d: Start noncritical\n", i)
fmt.Printf("N%d: number[%d]=%d\n", i, i, number[i])
duration := time.Duration(rand.Intn(1000)) *

time.Millisecond
fmt.Printf("N%d: Sleeping %v\n", i, duration)
time.Sleep(duration)
fmt.Printf("N%d: End noncritical\n", i)

}

func bakery(i int) {
for {

choosing[i] = 1
MB()
number[i] = 1 + max(number)
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MB()
choosing[i] = 0
MB()
for j := 0; j < n; j++ {

for choosing[j] != 0 {
MB()

}
for number[j] != 0 &&

pairLess(number[j], j, number[i], i) {
MB()

}
}
critical(i) // critical section here
MB()
number[i] = 0
MB()
noncritical(i) // noncritical section here
MB()

}
}

func listen() {
for {

<-ch
}

}

func main() {
rand.Seed(time.Now().UnixNano())
for i := 0; i < n; i++ {

go bakery(i)
}
listen()

}
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