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Abstract

The aim of the thesis was to build a complete chess engine and parallelize it
using the lazy SMP algorithm. The chess engine implemented in the thesis
ended up with an estimated ELO rating of 2238. The lazy SMP algorithm
was successfully implemented, doubling the engines search speed using 4
threads on a multicore processor.

Another aim of this thesis was to act as a starting compendium for
aspiring chess programmers. In chapter 2 Components of a Chess Engine
many of the techniques and algorithms used in modern chess engines are
discussed and presented in a digestible way, in a try to make the topics
understandable. The information there is presented in chronological order
in relation to how a chess engine can be programmed.
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Chapter 1

Introduction

This chapter will first give a brief presentation of the history of chess
computers. It starts by giving the background of the game of chess and how,
even in pre-computer days, people tried to build chess playing machines.
Following this is the early days of chess computers starting in the 1950s
with Claude Shannon and Alan Turing. It will present how the cold war was
fought on computers playing the game of chess, and how machines came to
outplay even the strongest human players in the game.

The background and motivation of this thesis is then given. Which states
that research on parallel chess algorithms has stagnated, but that a new
algorithm, lazy SMP, has shown promise. It also makes a point of how,
while there is a lot of information available for aspiring chess programmers,
the information regarding chess engines can be scattered and very specific,
which can make it hard to see the whole picture when implementing a chess
engine.

The chapter then details the problem statement of the thesis, explaining
that focus will be given on implementing the lazy SMP algorithm as well as
acting as a compendium for aspiring chess programmers.

The limitations of the thesis is discussed. The main limitations regard
optimization of the engine and how a versatile enough test set can be hard
to produce.

The research method section gives a quick explenation of why the design
paradigm by the ACM education board is used in this thesis.

The main contributions of the thesis is given, explaining how the research
presented in this thesis contributes to give an overview of the theoretical
background of designing and implementing a chess engine, as well as
contributing to a better understanding of how and why the lazy SMP
algorithm works.

The chapter ends with an outline of the rest of thesis.

1



1.1 The History of Chess Computers

The game of Chess is an ancient game with roots so far back that it is hard to
tell where it originated. It is believed to have come to Europe at the end of
the first millennium and can be traced back to an ancient indian game from
around 500 AD called ’Chaturanga’[18]. During the middle ages the rules
of chess were developed towards modern chess. Even today there are still
changes made to chess, although these are quite small and mostly concern
time limits or small modifications to the draw-rules.

A chess board has 64 squares and 32 pieces, and while the board and pieces
may not seem so complex, the number of variations in chess is huge. If
we construct a game tree of chess, assuming a game length of 80 and an
average of 35 possible moves per position we will get the enormous number
of 10123 leaf nodes[41]! This is so huge it is unimaginable, for comparison
there are an estimated 1080 atoms in the universe. Today’s computers have
no chance iterating through the whole game tree to find the perfect move.
Chess is therefore an interesting problem to try to solve, as it has to be
solved by giving the machine some sort of intelligence. The machine has to
assume a best move based on limited data. A game like chess, a game with
well defined rules - but too big to be solved, can be considered the first step
toward artificial intelligence.

1.1.1 The Beginning of Chess Playing Machines

The most known pre-computer chess machine was Chess Automata, also
known as the Chess Turk[25]. It had its origins in the late 1700 and was
shaped like a big box, with a chess board on top. A mechanical upper
body of a human moved pieces. The Chess Turk traveled around Europe
and America and played games to awe and admiration of people watching.
Some big names that it played against and beat were Napoleon Bonaparte
and Benjamin Franklin. It also played the chess legend André Danican
Philidor, but lost this game. Its creator opened the machine before and
after the game, which showed an intricate design of mechanical wheels.

The Chess Turk was unsurprisingly fake. It was operated by a strong human
chess player who hid in a hidden compartment in the box when it was
opened, and operated the human upper body during the game. It does,
however, show that an interest for such a machine has existed for a long
time.

2



Figure 1.1: From a book that tried to explain the illusions behind the
Kempelen chess playing automaton (known as the Turk) after making
reconstructions of the device.[36]

The first real mechanical chess machine did not exist until 1890, when
Torres y Quevedo built a machine that played the winning side of King and
Rook vs King endgame, always ending in a mate[25]. Simple as this may
seem, it paved the road for future chess machines, showing that it is indeed
possible to make a chess playing machine. However, it wasn’t until the late
1940s, when computers saw the light of day that we could start building
real chess playing machines.

1.1.2 The Age of Computers

Chess computers as we know them today had their beginning in 1949,
with Claude Shannon presenting his article Programming a computer for
playing chess[41]. In this article Claude Shannon describes his idea of how
two different types of chess computers, that he referred to as Type A and
Type B, could be programmed:

The Type A chess computer was based on a minimax algorithm, where every
possible move is calculated down to a predefined ply 1. The positions it
led to would then be evaluated and given a score by the computer. The
algorithm would then alternate sides as it went up one level (down one

1Ply - the number of half-moves made; in chess you don’t consider it a move until both
black and white has moved a piece, so if white moves a piece and black moves a piece it is
considered to be 1 move or 2 ply.

3



ply), and choose the move that gives the best evaluated position for that
sides color based on the values given in the previous level. Basically, you
assume the opponent is always making the best possible move (defined by
the evaluation of your chess computer) and choose your best move based
on that.

Figure 1.2: Minimax example. The red arrows show the player trying
to play the ’best’ move by chosing the best evaluation at each level. Odd
levels are picking the smallest evaluation it can find (minimizing), while
even levels ar picking the highest (maximizing).

The Type B chess computer was more strategic. Instead of calculating all
moves down to a specific ply it would choose certain candidate moves and
only calculate these based on some kind of chess knowledge that would have
to be programmed into the computer. The number of candidate moves for
a position should become fewer the deeper the ply, for example: At ply 1
the engine considers all moves of a position, at ply 2 only half of the moves
are considered, at ply 3 only 1/4 of the moves are considered and so on.
This way, it could calculate much deeper than the brute force Type A chess
computer, since the growth of positions is not exponential. You could think
of Type B chess computers as a more human approach, where only a few
candidate moves are chosen to calculate and evaluate deeper variations.

Claude Shannon favored the Type B chess computers. His opinion was that
the best chess engines would have to be programmed like this in order to
improve the calculation-efficiency[41]. This way, only the supposedly best
moves were considered, and lots of processing time would be saved not
having to calculate bad variations.

In 1951, independently of Claude Shannon, Alan Turing wrote the worlds
first Simulation of a chess computer[45]. It was written before he had
a computer that could run it, so he did the calculations by hand. This
chess computer was close to Shannon’s Type A, however, it only considered
captures and ran until the position was dead (no more captures)[32]. Alan
Turing said about his algorithm that "Numerous criticisms of the machines

4



play may be made"[45], and it was easily defeated by an amateur chess
player in the only match ever recorded.

1.1.3 The First Chess Computer

The first known computer that could play a complete game of chess came in
1957. It was made by Alex Bernstein and some of his colleagues at IBM and
is popularly referred to as the Bernstein program[32]. It calculated moves
to a depth of 4 ply, but as to not take too long to make a move it generated
a max of 7 moves in each position. The move generation used several steps
to generate moves and stopped when the allocated memory of 7 moves was
reached[3]. The move generation worked like this:

1. Am I in check? If yes:

(a) Try capturing the checking piece

(b) Generate interposing moves

(c) Move the King away

2. Look at all exchanges; do I win them? Should I move the piece away?

3. Castling

4. Develop minor pieces

5. Move Rooks to open files

6. Find possible critical squares created by Pawn-chains, try to put
pieces on these

7. Pawn moves

8. Any other moves

This routine was then repeated (as the opponent) for the 7 positions created
at ply 1, then repeated (as yourself again) for the 49 possible positions
created at ply 2, and lastly repeated (as the opponent again) for the 343
position created at ply 3. In total the move generation could create up
to 2401 positions at ply 4. The positions were then evaluated and the
move was chosen using a minimax algorithm. Given the limitations of
considering only 7 moves, this falls under the category of Shannon’s Type B
chess computer.

The machine used 8 minutes to make a move[3]. If the number of moves
considered at each ply was raised to 8 it would have to evaluate up to 4096
positions and Bernstein reported that the chess computer would use about
15 minutes per move instead. If the depth was set 1 ply deeper (with 7
moves considered) it would have to evaluate up to 16807 positions and
Bernstein reported that this took around 61⁄2 hours. Time was the limit for
the Bernstein program, and that is why the team chose to consider 7 moves
per position and only calculate to a depth of 4 ply.
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1.1.4 The Interest in Chess Computers Grow

Although papers and magazines wrote about the Bernstein Chess Computer
when it first came out[26, p. 28], the interest in chess computers was still
rather small. Computers playing chess (and playing it rather poorly) did
not really get much hype. In 1966, however, a 4 game match between
a chess computer written by Alan Kotok at MIT and reworked by John
McCarthy at Stanford University and a soviet chess computer written by
Vladimir Arlazarov, Georgy Adelson-Velsky, Alexander Bitman (a soviet
master), Anatoly Uskov and Alexander Zhitovsky took place[26, p. 55]. It
is one of the first computer vs. computer matches recorded and it fueled
interest for chess computers as it built up under the cold war tension. Soviet
won the match with a score of 2-0-2 (win-loss-draw), even though the
Soviet computer was slower and used the more primitive Shannon’s Type
A-algorithm in comparison to Kotok-McCarthys Type B-algorithm[5].

After this, the number of chess computers exploded, and the strength of
the chess computers grew substantially. Already in 1967 a chess computer
written by Richard Greenblatt known as Mac Hack Six became an honorary
member of the United States Chess Federation and achieved a rating of
1400 over the course of four months with a score of 3-12-3[13]. The interest
fueled the starting of the North American Computer Chess championship
in 1970, and later (at the request of the Soviet creators of a chess computer
named Kassia) the World Computer Chess Championship in 1974. Kassia
won the first championship with a score of 4-0-0, however, it avoided a
match against the favorite, the American Chess 4.0, because Chess 4.0
dropped a game in round 2 of the championship. An exhibition match was
held after the championship, in which Kassia and Chess 4.0 drew against
each other.

While America used the loss against Kassia and the Soviet Union to get
better funding for its research, the Soviet Union stopped making progress
in the chess computer area. The Soviet Union felt that the limited computer
power they had should not be used on games. Hence, this was the only chess
championship won by the Soviet Union and people soon lost interest in the
cold war rivalry in chess computers. A new rivalry soon took its place.

1.1.5 Man versus Machine

During the 1960s computers were far off from winning a game vs. a
human chess master, but some thought the advancements of computers
were strong enough to beat capable humans within a few years. In 1968
at a "machine intelligence workshop" at Edinburgh University the then
Scottish chess champion, and somewhat of an expert within the field of
artificial intelligence and chess computers, David Levy, came in talk with
John McCarthy, one of the creators of the Kotok/McCarthy program from
the 1966 match discussed earlier. John McCarthy believed that computers
would be able to beat David Levy within 10 years at tournament time
controls, but David Levy was skeptical. They made a bet of £250 that no
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chess program would beat David Levy in a 2 series match at tournament
time controls within 1978[27, p. 68]. This would be known as the famous
Levy bet.

Later, many more would join David Levy’s bet. By 1978 the pot had grown
to £1250 and David Levy had become an international master. A new goal
for chess computers had risen and during the mid 1970s many of the best
chess computers were written with the specific purpose of beating David
Levy.

Although the chess computers came somewhat close by 1978, most notably
chess 4.7 managed to draw a game vs. Levy after he made an early mistake,
they did not really stand a chance. However, after the bet was over,
Levy felt "that it would be a rather pity to remove the goal that chess
programmers everywhere had been aiming for"[27, p. 102]. Together
with Omni magazine David Levy offered a 5000$ prize to the first chess
computer that could beat him in a match with regular time controls. And
so, the joint quest of chess programmers around the world, to beat David
Levy, continued.

During the 1980s the interest in computer chess continued to explode.
Previously, few people had had access to the computer-power that was
required to make a good chess engine, but as David Levy noted; the
computers now became so cheap that almost everyone could buy a machine.
That, coupled with the enormous amount of chess computer literature that
started to exist, made the development easier.[27, p. 114]

David Levy knew how to play against computers. He usually played
openings that led to closed positions, where chess computers have a
disadvantage due to its limited depth in calculations, and one can argue that
his extensive knowledge in computer chess made him a better opponent
than many other players in his rating range. In 1989 Deep Thought finally
won against David Levy to claim the prize of $5000. Over 2 decades had
gone since the original bet of £250 was made, but the computers eventually
beat the international master.

After this the chess computers next goal quickly became Garry Kasparov,
the World Chess Champion at the time and without question one of the
best chess players to ever have lived.

Garry Kasparov was a tough opponent. In 1985, in Hamburg, he played
and beat 32(!) computers at a simul, which is an exhibition in which one
player plays against multiple opponents simultaneously. In 1989, he also
played the program that previously won against David Levy, Deep Thought,
beating the computer twice in a two-game match. In 1996 Kasparov Beat
Deep Blue in a six-game match, but not without some trouble. He actually
lost the first game, but quickly recovered and he ended with a score of 3-2-1,
beating Deep Blue with a score of 4-2. However, with the loss he showed
some signs of weakness.
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The year after, in 1997 an updated version of Deep Blue beat Kasparov
in a six-game match 3,5 - 2,5. The game was tied after 5 games, and
Kasparov tried to use one of David Levy’s tricks - to play an opening which
resulted in a closed midgame. Mistake! As black, he tried to use the
Caro-Kann defense against the computer, which usually allows black to
develop somewhat undistracted and have a good Pawn structure during
the midgame. However, Kasparov did not usually play Caro-Kann and in
move 7 he made a fatal and well known mistake allowing Deep Blue to gain
a serious advantage. Kasparov resigned after only 19 moves!

The funny thing is; Deep Blue was still using its opening book2 when
Kasparov made his mistake[11, p. 127]. It did not even calculate the line
it used! If Kasparov had not felt so threatened by the computer and instead
of Caro-Kann used one of his more well known lines the game might have
ended up with a completely different result.

With its focus on the alpha beta algorithm one can say that Deep Blue was
a chess Computer of Shannon’s Type A, albeit a bit more advanced. Chess
computers took another direction entirely than Claude Shannon foresaw in
1948.

1.1.6 Shannon’s Type A versus Shannon’s Type B Chess
Computers

Claude Shannon really hit the hammer on the nail with his article
Programming a computer for playing chess. Even though the article was
released over half a century ago, the ideas presented in that article is still
prevalent in today’s chess engines and the two types of chess engines that
Claude Shannon described is still used to classify engines today, although
in a bit broader sense then what Claude Shannon used; Type A being the
bruteforce search to a selected depth, Type B being the more selective
only calculate a few variations, but explore them thoroughly. Claude
Shannon was convinced that a Type B program would need to be created
for computers to play well, however, all the best chess computers today
use algorithms that closely resembles Shannon’s Type A. How did Claude
Shannon guess so wrong? There are multiple reasons for this.

The biggest one, is that the minimax algorithm got some major improve-
ments after Shannon wrote his article. Computer scientist quickly realized
that the game tree in the minimax algorithm could be easily pruned. The
algorithm got the same result, but without having to calculate all possible
moves down to a certain ply, only a selected few. The most notable prun-
ing technique is the Alpha Beta algorithm. Alpha Beta was independently
invented a number of times[33] and was among other used in the Kotok-
McCarthy program from 1966.

2Opening Book - a file of predetermined moves a chess engine have, to help it in the
opening; it is loaded at startup and contains moves/replies to various depths in the opening.
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Figure 1.3: Alpha beta example. The greyed out areas do not have to be
evaluated, and therefore do not have to be generated at all[22].

A formula for optimal pruning was discovered by Michael Levin[8]. Below
are the results of how many leaf-nodes that must be examined compared to
number of actual leaf-nodes with optimal alpha beta search given 40 moves
per position.

ply bn b[n/2] +b[n/2] −1
0 1 1
1 40 40
2 1,600 79
3 64,000 1,639
4 2,560,000 3,199
5 102,400,000 65,569
6 4,096,000,000 127,999
7 163,840,000,000 2,623,999
8 6,553,600,000,000 5,119,999

Table 1.1: Optimal alpha beta-pruning given 40 moves per position.

As can be seen in 1.1 one can save extreme amounts of leaf-nodes examined
when using optimal search. However, optimal search is quite difficult to
achieve and it is actually one of the things today’s top chess engines still
improve upon. Engines have multiple different move-heuristics to achieve
near optimal search.

Another reason is the effect of Moore’s law. A loose definition of Moore’s
law (enough to explain the effect evolving CPUs had on chess engines),
is that every 1-2 years the number of transistors on integrated circuits
doubles[21]. Intel’s first processor, the Intel 4004 had 2300 transistors,
in 2012 it released its 3rd generation Intel core processor with over 1,4
billion transistors[20]; in effect, the computing power of PCs has grown
exponentially. This has made Shannon’s Type A much more viable than it
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was in Claude Shannons days. Moores law also has another effect which
is worth mentioning; the price of computers has gone down significantly.
Today, everyone can afford a computer, everyone can program a chess-
playing machine. This favors Shannon’s Type A algorithms, why?

To write a good Shannon’s Type B algorithm you are required to have a lot
more chess knowledge than to write a good Shannon’s Type A algorithm.
One really needs to be an expert within both chess and programming to
make an effective Type B chess computer. This severely limits the number
of people that can make advancements in the area and thus has limited
the progress of Type B chess computers, while the Type A chess computers
thrive. The most notable try to make a Type B chess algorithm came from
Mikhail Botvinnik. Not only was he a former World Chess Champion
and teacher of Karpov and Kasparov (which both became World Chess
Champions themselves), he also had a doctorate in electrical engineering.
Botvinnik wrote multiple books on how to make a chess computer and
he used advanced tactical problems to test out his algorithms. His tries,
however, somewhat failed. While the chess computer was great at solving
difficult problems by exploiting subtle weaknesses in the enemy position,
its move generation had multiple flaws. The computer would miss simple
tactics, and therefore be dropping pieces or even be checkmated out of the
blue[6]. Sadly, he never got to fix these problems. There is no way of
knowing where the Shannon’s Type B computers would have been now if
Botvinnik used more time to make his chess computer better.

1.1.7 Today’s Chess Computers

Deep Blue, the chess computer that beat Garry Kasparov in 1997, was
a specialized computer built for solving chess. What is used by people
around the world today is not chess computers anymore, it is chess
engines. Like most other computer programs it is no longer desired to
have a specialized computer made for solving chess, hence chess engines
are software programs that run on standard PCs. They no longer use
specialized hardware, they are just programs calculating moves while
communicating to a GUI using a communication protocol (2 examples of
such protocols are the UCI and CEC). The chess computer championship
that started in the 1970s and uses specialized hardware still exists, but
it is nowhere near as popular as it was. Other tournaments exists now,
like the World Chess Software Championship, which runs chess engines
up against each other on standardized hardware. Even though these new
engines calculate less positions in a second than Deep Blue did[19], they
would have no trouble beating it. And neither Garry Kasparov or today’s
world chess champion Magnus Carlsen stand a chance against them. The
smarter search as well as a better evaluation is what makes these engines
better than Deep Blue.

The search, which mostly consists of better pruning, has been improved by
ingenious people from all around the world, who invent better and better
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search-algorithms. The smarter evaluation, however, comes mostly from
testing. Testing what value each of the pieces should have, testing where the
pieces stand the best, etc. Not much help from a chess master is necessary
(it helps, of course) beyond the basic chess principles which most club-level
players know.

Today, there is two top chess engines in the world, Komodo and Stockfish
(with an honorary mention to Houdini). While these two play at almost the
same level, surpassing each other on the leaderboards after they come with
a big update, they have two very different styles of play.

Komodo can be called the slow thinker. It focuses a lot of its time on
evaluating positions and does not go as deep as Stockfish. Its strong points
can be said to be the middlegame, at more closed positions. It is more
analytical, but that is not so strange, considering it is written by the chess
grandmaster Larry Kaufmann.

Stockfish is more of a double-edged sword. It is an open source project
with dozens of contributers. It focuses a lot on the pruning part of its
algorithms, trying to get as deep as possible. Sometimes it makes small
blunders where it thinks it has a winning move, only to later find out it did
not get the compensation it thought it would get. A clear example of this
can be taken from TCEC 2015 (Top Chess Engine Championship) where
in game 46 of the final reaches deeper plies than Komodo in move 56-62,
thinking it makes good moves, while komodo more correctly says the moves
are losing[7].

Considering its creators, the difference in style is not really that strange.
Komodo is created by a chess grand master and focuses more on the
evaluation, creating more of a ’thinking’ machine. Stockfish is created as an
open source project and focuses more on the algorithmic part of the engine.

1.2 Background and Motivation

The playing strength of chess engines has moved well beyond even the
strongest human players. While some of this may be attributed to
computers getting more computing power each year, the progress can also
be attributed to the improvement of chess playing algorithms. Since the
clock speed of CPUs has stopped increasing the last years there has been a
general shift toward parallelism in the computer world[44], this is also true
for chess engines.

Parallelization of chess engines has been a hot topic to study since the
1980s[29], and while early research gave some good result, the progress
halted in the 1990s. One example of this is that most of the top
chess engines use the YBWC-algorithm for parallelization, an algorithm
introduced in 1989[40]. In recent years, however, a new algorithm has
shown some promise. In 2013 Daniel Homan introduced, in a chess engine
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forum, a new parallelization concept he coined Lazy SMP. In January 2016
Stockfish implemented the algorithm in its release of Stockfish 7.

During the background research for this thesis not a single paper or thesis
that gives a thorough examination of the Lazy SMP algorithm was found.
Even though there exist a good amount of resources and information on
how to implement the lazy SMP algorithm on the internet, and one can look
up the raw results of Stockfish’s cluster testing on its implementation of the
lazy SMP algorithm, the information is scattered and not user friendly. This
thesis aims to take the first step toward a better understanding on how and
why the lazy SMP algorithm works.

Another point to be made is about the information of how a general chess
engine works. Even though this information exists to a much bigger degree
than the specifics of the lazy SMP algorithm, and some of the best engines
are open source, the information is compiled in a way that makes it hard
for aspiring chess programmers to start programming a new chess engine.
The information is online and available for anyone who wants to create
a chess engine, but it is hard to know where to begin. Multiple sources
explains different parts of a chess engine, applying it to different specific
programming languages and, in general, being very case specific on how
various components are implemented.

1.3 Problem Statement

This thesis will aim toward compiling a lot of the information that exist
on chess engines into a more digestible source. It will function as a
compendium on how to create a chess engine entirely from scratch. The
thesis will present the most popular concepts and algorithms used in
modern chess engines.

Some topics will be explored more thoroughly than others and focus will be
given on how the engine is parallelized using the Lazy SMP algorithm. The
thesis will explain how Lazy SMP came to be, how it can be implemented in
a chess engine, and will also give explanations on how and why it works.

1.4 Limitations

All the tests performed will be done using the chess engine implemented
during this thesis. The chess engine does not perform on the level of the
best chess engines in the world. It has not been the scope of this thesis
to perfect the evaluation metrics the engine uses. Neither has there been
much focus on optimizing the search heuristics or optimize the algorithms
to run on the hardware tested.

The test that reports ELO rating gives only a rough guesstimate and is not
to be considered reliable.
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The lazy SMP test is performed on a test set of a thousand different chess
positions. This is hopefully versatile enough to catch the most common
game scenarios, but even though the positions are from various phases of
the game and have multiple different traits, obviously not all situation the
engine may encounter have been tested.

There has not been put an emphasis on making the engine find the optimal
or close to the optimal moves in the positions tested. The engine has not
been tweaked for this work, and only the comparative speed and positions
explored is presented in the results.

1.5 Research Method

The research in this thesis will be based on the paper Computing as a
discipline from 1989 by the ACM education board. The paper defines 3
paradigms that can be applied to computer research; theory, abstraction
and design.

• The theory paradigm is rooted in mathematics. The research
process consists of defining an object of study, making a theorem of
possible outcomes, proving/disproving the theorem and interpreting
the result.

• The abstraction paradigm is rooted in the experimental scientific
methods. The process consists of forming a hypothesis, constructing
a model and making predictions, collecting data on the model and
finally analyze the result.

• The design paradigm is rooted in engineering. Its process
consists of stating requirements, stating specifications, design and
implementation of the system and finally testing the system.

The aim is to investigate how a chess engine can be improved on multicore
systems using the lazy SMP algorithm. The lazy SMP algorithm is, as
explained later in the thesis, based on some random factors of the structure
of the game tree and implementation. The theory paradigm is therefore out
of the question, because the random factors makes it very hard to precisely
make a theorem of possible outcomes. The abstraction paradigm could be
used in some extent to model a chess game tree and collecting data, but
the size of the problem and the multiple different nuances of a chess game
makes modeling a thorough enough model to be relevant for the task a huge
job. The design paradigm was found to be the most fitting methodology to
research the problem of this thesis. The aim is to generalize the problem
to a set of requirements and specification, then implement and test it. This
will hopefully lead to some valuable information and can be used to further
the understanding of the lazy SMP algorithm.
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1.6 Main Contribution

In 1.2 Background and Motivation two main motivations of writing this
thesis is given. One is the lack of a basic overview of the theoretical
information behind the design and implementation of a complete chess
engine. The other is the lack of information concerning the implementation
and theoretical knowledge of the lazy SMP algorithm. With this in mind,
the main contributions of the thesis are as follows.

• The thesis has compiled an overview of the basic components of
a chess engine, explaining the theory behind how and why most
parts of a chess engine work. This information is presented in a
digestible way, so that future researchers can get a basic knowledge-
base concerning the implementation and theory of chess engine
algorithms.

• The lazy SMP algorithm has been researched and explained. The
suggested lazy SMP design is implemented, tested, and is giving a
speedup of the alpha beta algorithm using threads on a multicore
CPU.

1.7 Outline

The rest of the thesis is organized as follows:

Chapter 2 will detail how a normal chess engine is built. It will present
multiple variations of the general components that is normally used to build
a complete chess engine.

Chapter 3 will focus on the more limited area of research that is how to
parallelize a chess engine, mainly the alpha beta algorithm. It will introduce
the concept of perfect and near perfect game trees, the traits of these and
how the knowledge of these traits can be used when trying to parallelize a
chess engine.

Chapter 4 will present the design and implementation of the engine built in
this thesis. Giving the specifics of how the engine is implemented, as well
as reasoning on why it was done this way.

Chapter 5 will present the results of the tests performed in the thesis. It
will give reasons for what tests were performed and why these tests where
chosen. It will present graphs of the result with quick explanations of what
they show.

Chapter 6 will present a discussion of the results presented in the previous
chapter.

Finally, Chapter 7 will present The conclusions that can be drawn from the
results. It will give a quick summary of the entire thesis and then present
future work that can be done on this branch of research.
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1.8 Summary

This chapter first gave a brief presentation of the history of chess comput-
ers. Where it was detailed how computer chess took it first steps in the
1950s, to become the best chess player in the world in the end of the 20th
century.

Following this was a section regarding the background and motivation of
the thesis. Which explains how lazy SMP was a breath of fresh air in the
research field of parallelizing chess engines, a field which has stagnated
since the early 1990s.

The problem statement of the thesis was given, where it was explained that
the thesis can act as a compendium, giving an overview of all information
needed to implement a modern chess engine. It will focus on parallelizing
the engine using the lazy SMP algorithm, an algorithm that to the author’s
knowledge there exists no previous papers about.

The research method in this thesis will be based on the design paradigm by
the ACM education board. The paradigm focuses on the implementation
and testing of the research problem.

The main contributions of this thesis is the theoretical overview given by
the paper as well as the contribution towards the understanding of the lazy
SMP algorithm.
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Chapter 2

Components of a Chess
Engine

This chapter will describe and explain the different components of a typical
chess engine. To be able to play a complete game of chess versus other
engines or humans an engine normally includes the following components.

An internal board representation A chess engine must have a way
of internally representing the chessboard as well as where all the pieces on
the chessboard are placed.

A way to evaluate a position A chess engine should have a way to
evaluate any given position, to give it a single score. The unit of measure
for this score is usually represented in centipawns. A centipawn is 1/100th
of a Pawn, so 100 centipawns is equal to 1 Pawn. A negative centipawn score
means that the opponent has an advantage, a positive centipawn score is an
advantage to the side to move.

A way to guess the best move A chess engine must have a way of
guessing the best move of a structure. This guess is usually based on an
alpha beta search over a given position, where it uses the evaluation score
as weights on the leaf nodes of the search tree to guess the best possible
move.

A way to communicate with both humans and other chess
engines To be able to play versus humans or other chess engines an
engine must have a way to communicate. A typical chess engine will
implement a communication protocol which it uses to talk to a GUI. This
allows both humans and other engines to play with it.

This chapter will go over every aspect of what is needed to implement a
modern chess engine.

Before outlining the components of a chess engine an explanation of the
algebraic notation is given. Algebraic notation is a way to write down the

17



moves of a game of chess in a simple way that can be understood by the
reader. This notation is used throughout the thesis and a quick explanation
of its basic is needed to read the rest of the paper.

In section 2.2 Board Representation in a Computer Program multiple
different ways of how to implement a chess engine’s internal board
representation is outlined. An emphasis is given on how moves of the board
is generated on each of these board representations.

The next section details and gives an example of how one evaluates a given
position of chess. The evaluation is used in the alpha beta search, where
the leaf nodes of the search are evaluated in order to search the game tree.
The section gives some examples of what metrics can be used to find out if
a position is good or bad. It returns a single number which can then be
compared to another positions evaluation. The section also details how
endgame tablebases can be used to enhance the evaluation of endgame
positions.

The chapter goes on to explain how the search function works, so the engine
can select a best possible move. With a thorough example of the alpha beta
algorithm.

The engines communicate using a communication protocol, usually to
some kind of GUI displaying the board. This chapter will explain how the
UCI protocol works, and how the GUI communicates with the engine and
tells it what to do. Each of the most relevant commands are explained, with
given expected responses by the engine.

The chapter goes into more detail on how the alpha beta algorithm can be
improved. The alpha beta algorithm works best if the best moves (meaning
the one that will give a leaf node with the highest possible score for the side
to move) are searched first. And so section 2.6 Improving the alpha beta
algorithm gives detailed information of various heuristics that can be used
to better guess what move should be searched first.

2.1 Algebraic Notation

The algebraic notation is the most common way to write and record moves
in a game of chess. A chessboard is made of 64 squares and in the algebraic
notation each square has its own unique coordinate pair. The horizontal
coordinates are named with letter a-h and is referred to as files. The vertical
coordinates are numbered 1-8 and is referred to as ranks. For the white
player the bottom left square is a1 and the top right square is h8.
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80Z0Z0Z0Z
7Z0Z0Z0Z0
60Z0Z0Z0Z
5Z0Z0Z0Z0
40Z0Z0Z0Z
3Z0Z0Z0Z0
20Z0Z0Z0Z
1Z0Z0Z0Z0

a b c d e f g h

Figure 2.1: Empty chessboard showing the a-h and 1-8 coordinates.

Each piece has a short 1 letter name starting with the first character of the
piece, with the exception of Knights(N) because it has the same first letter
as Kings. They can also be named by using a picture of their piece:

• K / K- King

• Q / Q- Queen

• R / R- Rook

• B / B- Bishop

• N / N- Knights

Pawns are not named. When writing a move you first start with the name
of the piece, then say which square the piece is moved to. You don’t say the
start square. Example, the Spanish opening:
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1 e4

8rmblkans
7opopopop
60Z0Z0Z0Z
5Z0Z0Z0Z0
40Z0ZPZ0Z
3Z0Z0Z0Z0
2POPO0OPO
1SNAQJBMR

a b c d e f g h

1. . . e5

8rmblkans
7opopZpop
60Z0Z0Z0Z
5Z0Z0o0Z0
40Z0ZPZ0Z
3Z0Z0Z0Z0
2POPO0OPO
1SNAQJBMR

a b c d e f g h

2 Nf3 Nc6 3 Bb5

8rZblkans
7opopZpop
60ZnZ0Z0Z
5ZBZ0o0Z0
40Z0ZPZ0Z
3Z0Z0ZNZ0
2POPO0OPO
1SNAQJ0ZR

a b c d e f g h

Figure 2.2: Example of the algebraic notation, the Spanish opening.

There are various exceptions to this rule, which will not be named here as
they are not important to explain how a chess engine works.
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2.2 Board Representation in a Computer Pro-
gram

A chess engine needs some sort of internal board representation to be able
to play. The board representation is used by a chess engine to generate
moves as well as to evaluate positions.

The board representation in a chess engine contains information on where
all the pieces are placed on the board. It also needs to contain some extra
information, such as; if castling is allowed, if a Pawn can be captured en
passant in the current move, info about the 50-move draw rule and 3 folds
repetition moves.

Board representation may seem like a trivial task. Even entry level
programmers will have little problem creating an internal representation
of a chess board that can be used to generate moves and evaluate positions.
However, as with most other parts of a chess engine one have to consider
both speed and memory when selecting a board representation.

In the early days of computers memory was sparse and speed was slow
when compared to today’s standards. However, we still face the same issues
today as they did when computer programming was in its infant stage:
To make the chess engine faster, so it gets better. The search algorithm,
explained more thoroughly in section 2.4 The Search Function, Selecting
the Best Move, is of course very important. Due to the cache, the fast
memory on the CPU, another important thing is memory usage. Generally
with less memory usage we get less cache misses, where the computer has
to search fetch data from RAM instead of using the faster CPU cache. Hence
the memory usage of the board structure is also important.

This section will give an overview of multiple different ways a chess
engine can be programmed to represent the board of a chess game. The
implementation is directly related to how the moves are generated, and
this is the main reason many different representations exist. A quick
explanation of how the moves are generated for each representation is
naturally included.

2.2.1 The Naive Board Representation

A chess board has 64 squares and there are only 12 different types of
pieces. The simplest solution would be an array of size 64 which contains
13 different enums, 6 enums for the white side and 6 enums for the black
side, plus 1 enum for an empty square. With the opening position of chess,
a solution can look something like the following example.
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1 enum {P, R, B, N, K, Q, p, r, b, n, k, q, -} squares;
2

3 int board[64] = {
4 R, N, B, Q, K, B, N, R,
5 P, P, P, P, P, P, P, P,
6 -, -, -, -, -, -, -, -,
7 -, -, -, -, -, -, -, -,
8 -, -, -, -, -, -, -, -,
9 -, -, -, -, -, -, -, -,

10 p, p, p, p, p, p, p, p,
11 r, n, b, q, k, b, n, r
12 };

Figure 2.3: In this code example the Capital characters are white pieces
(so it is mirrored upside down), the lower case characters are black pieces,
the empty squares are given the name ’-’. Since the enums only go to a size
of thirteen the integers in the array can be represented using 4 bits.

In the code example the board is mirrored upside down so that the square a1
is at index 0 - board[0] points to R, a white Rook. The mirrored board may
look a bit off at first, but to make a1 index 0 is quite logical and the standard
way of drawing arrays places index 0 as the leftmost index. The position is
correct and it does not matter to a computer where the coordinates are, as
long as the program is consistent.

The naive board representation may seem okay, and will work, but as
earlier mentioned; the chessboard representation is used by the engine to
generate moves. This means all possible moves of a game tree, depending
on the size and the depth the engine searches at this leads to millions of
moves to be generated. The speed of the move generation is therefore
essential. There is practically no end to how deep you can generate a chess
game tree, the faster you can make the chess engine generate the moves -
the more positions it gets to evaluate. With the board represented above, it
will take unnecessary time and calculations to generate moves. Following
is an example of the generation of Knight moves using the naive board
representation.

Knight Move Generation Example

Let’s say a white Knight is placed at index 36 in the naive board
representation. To generate all the moves of this Knight the (somewhat
simplified) code snippet below would find all possible moves.
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1 nIndex = 36; //the Knight-index
2

3 if(!whitePiece(board[nIndex + 6]))
4 addMove()
5 if(!whitePiece(board[nIndex + 10]))
6 addMove()
7 if(!whitePiece(board[nIndex + 15]))
8 addMove()
9 if(!whitePiece(board[nIndex + 17]))

10 addMove()
11 if(!whitePiece(board[nIndex - 6]))
12 addMove()
13 if(!whitePiece(board[nIndex - 10]))
14 addMove()
15 if(!whitePiece(board[nIndex - 15]))
16 addMove()
17 if(!whitePiece(board[nIndex - 17]))
18 addMove()
19

20 int whitePiece (int value) {
21 return value < p;
22 }

Figure 2.4: Knight move generation

The function whitePiece(int) returns true if the piece is white. addMove() is
called to add the move checked, it should probably take some kind of move
structure as an argument but it is omitted for simplification.

a b c d e f g h

1 0 1 2 3 4 5 6 7

2 8 9 10 11 12 13 14 15

3 16 17 18 19 20 21 22 23

4 24 25 26 27 28 29 30 31

5 32 33 34 35 36 37 38 39

6 40 41 42 43 44 45 46 47

7 48 49 50 51 52 53 54 55

8 56 57 58 59 60 61 62 63

Table 2.1: Picture showing the ’from square’ marked in red, and the ’to
square’ marked in blue for all Knight moves

This may seem quite simple and looks correct. But what if the piece is
placed on index 31? The code above would add illegal Knight moves, for
example the Knight could jump from index 31 all the way across the board
to index 41. In fact, you would have to add exceptions checking the index
for everyone of these addMove calls, suddenly the code is messy and quite
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complex. The next two board representation examples are quite similar to
the naive solution but includes quite elegant fixes for this problem.

a b c d e f g h

1 0 1 2 3 4 5 6 7

2 8 9 10 11 12 13 14 15

3 16 17 18 19 20 21 22 23

4 24 25 26 27 28 29 30 31

5 32 33 34 35 36 37 38 39

6 40 41 42 43 44 45 46 47

7 48 49 50 51 52 53 54 55

8 56 57 58 59 60 61 62 63

Table 2.2: Erroneous moves generated

2.2.2 The 120-board

The 120-board or 10x12-board[42] is a mailbox representation that fixes
the problems the move generation experienced in the naive board repre-
sentation. In computer chess ’mailbox representation’ used as a general
term for board representations that are implemented as arrays, in a way
that they look like a chess board, shown in the following example. The 120-
board consists of an array that’s 120 squares big and can be visualised like
the following example.

1 int 120board[120] = {
2 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
3 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
4 -1, R, N, B, Q, K, B, N, R, -1,
5 -1, P, P, P, P, P, P, P, P, -1,
6 -1, -, -, -, -, -, -, -, -, -1,
7 -1, -, -, -, -, -, -, -, -, -1,
8 -1, -, -, -, -, -, -, -, -, -1,
9 -1, -, -, -, -, -, -, -, -, -1,

10 -1, p, p, p, p, p, p, p, p, -1,
11 -1, r, n, b, q, k, b, n, r, -1,
12 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
13 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1
14 };

Figure 2.5: Here is the values of the 120 board from the starting position
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1 int 120to64[120] = {
2 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
3 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
4 -1, 0, 1, 2, 3, 4, 5, 6, 7, -1,
5 -1, 8, 9, 10, 11, 12, 13, 14, 15, -1,
6 -1, 16, 17, 18, 19, 20, 21, 22, 23, -1,
7 -1, 24, 25, 26, 27, 28, 29, 30, 31, -1,
8 -1, 32, 33, 34, 35, 36, 37, 38, 39, -1,
9 -1, 40, 41, 42, 43, 44, 45, 46, 47, -1,

10 -1, 48, 49, 50, 51, 52, 53, 54, 55, -1,
11 -1, 56, 57, 58, 59, 60, 61, 62, 63, -1,
12 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
13 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1
14 };

Figure 2.6: A simple array to convert to the naive representation

To make it more simple to understand there is also a converter array
included, used to convert the indexes to an array of size 64. The advantages
of the 120-board representation are the -1 values. The -1s are off-board
values which are used to easily find the edge of the board, so that pieces
do not move there. The reason the top and bottom edges are 2 rows big
is for the Knights, the sides does not need that as the left side is just a
continuation of the right side. Following is a new Knight move generation
example, now using the 120 board representation.

Knight Move Generation Example

1 //the Knight-index (the Knight is at the 31 value in the 120to64 array
above)

2 nIndex = 64to120[31];
3

4 if(onBoard(board[nIndex + 6]) && !whitePiece(board[nIndex + 6]))
5 addMove()
6 if(onBoard(board[nIndex + 10]) && !whitePiece(board[nIndex + 10]))
7 addMove()
8 if(onBoard(board[nIndex + 15]) && !whitePiece(board[nIndex + 15]))
9 addMove()

10 if(onBoard(board[nIndex + 17]) && !whitePiece(board[nIndex + 17]))
11 addMove()
12 if(onBoard(board[nIndex - 6]) && !whitePiece(board[nIndex - 6]))
13 addMove()
14 if(onBoard(board[nIndex - 10]) && !whitePiece(board[nIndex - 10]))
15 addMove()
16 if(onBoard(board[nIndex - 15]) && !whitePiece(board[nIndex - 15]))
17 addMove()
18 if(onBoard(board[nIndex - 17]) && !whitePiece(board[nIndex - 17]))
19 addMove()
20

21 int onBoard(int value) {
22 return value != -1;
23 }

Figure 2.7: Simplified code to show the now correct Knight move
generation of a 120 board
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It is the same simple code as in the failed naive solution, only with 1
exception; now we also check if the square the Knight jumps to is off the
board. Note that we could not do this offboard check for the naive solution
because 31 + 10 = 41 which is in fact on the board.

0 1 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18 19

20 21 22 23 24 25 26 27 28 29

30 31 32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47 48 49

50 51 52 53 54 55 56 57 58 59

60 61 62 63 64 65 66 67 68 69

70 71 72 73 74 75 76 77 78 79

80 81 82 83 84 85 86 87 88 89

90 91 92 93 94 95 96 97 98 99

100 101 102 103 104 105 106 107 108 109

110 111 112 113 114 115 116 117 118 119

Table 2.3: With the 120 board one can correctly tell if the pieces moves off
the board
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2.2.3 The 0x88-board Representation

0x88[4] is another mailbox representation. This board representation is
also used to easily calculate off-board positions, albeit in a bit different
way. While the 120-board uses an array with an ’off-board’-value in the
board, the 0x88 board is made in such a way that you can use the bitwise
AND operation to check if the square is on the board or not. The 0x88-
board is a 128 sized array, but only half of the array is used to represent
the board, the other half is garbage - used only to offset the board so that
the bitwise operation succeeds. A 0x88 board can be visualised like the
following example.

1 int 0x88board[128] = { /*GARBAGE BITS:*/
2 R, N, B, Q, K, B, N, R, -1, -1, -1, -1, -1, -1, -1, -1,
3 P, P, P, P, P, P, P, P, -1, -1, -1, -1, -1, -1, -1, -1,
4 -, -, -, -, -, -, -, -, -1, -1, -1, -1, -1, -1, -1, -1,
5 -, -, -, -, -, -, -, -, -1, -1, -1, -1, -1, -1, -1, -1,
6 -, -, -, -, -, -, -, -, -1, -1, -1, -1, -1, -1, -1, -1,
7 -, -, -, -, -, -, -, -, -1, -1, -1, -1, -1, -1, -1, -1,
8 p, p, p, p, p, p, p, p, -1, -1, -1, -1, -1, -1, -1, -1,
9 r, n, b, q, k, b, n, r, -1, -1, -1, -1, -1, -1, -1, -1

10 };

Figure 2.8: an array showing the 0x88 board, the value of the garbage
bits are newer accessed, as the indexed are bitwise ANDed with 0x88 to
find if the index is off the board

1 int 88to64[128] = { /*GARBAGE BITS*/
2 0, 1, 2, 3, 4, 5, 6, 7, -1, -1, -1, -1, -1, -1, -1, -1,
3 8, 9, 10, 11, 12, 13, 14, 15, -1, -1, -1, -1, -1, -1, -1, -1,
4 16, 17, 18, 19, 20, 21, 22, 23, -1, -1, -1, -1, -1, -1, -1, -1,
5 24, 25, 26, 27, 28, 29, 30, 31, -1, -1, -1, -1, -1, -1, -1, -1,
6 32, 33, 34, 35, 36, 37, 38, 39, -1, -1, -1, -1, -1, -1, -1, -1,
7 40, 41, 42, 43, 44, 45, 46, 47, -1, -1, -1, -1, -1, -1, -1, -1,
8 48, 49, 50, 51, 52, 53, 54, 55, -1, -1, -1, -1, -1, -1, -1, -1,
9 56, 57, 58, 59, 60, 61, 62, 63, -1, -1, -1, -1, -1, -1, -1, -1

10 };

Figure 2.9: An array converting from 0x88 board to the naive board
representation

The advantages of the 0x88-board representation are much the same as the
120-board. We can easily find the edges of the board. Following is another
Knight move generation example, now using the 0x88 board.
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Knight Move Generation Example

1 //the Knight-index (the Knight is at the 31 value in the 88to64 array above)
2 nIndex = 64to88[31];
3

4 if(onBoard(nIndex + 6) && !whitePiece(board[nIndex + 6]))
5 addMove()
6 if(onBoard(nIndex + 10) && !whitePiece(board[nIndex + 10]))
7 addMove()
8 if(onBoard(nIndex + 15) && !whitePiece(board[nIndex + 15]))
9 addMove()

10 if(onBoard(nIndex + 17) && !whitePiece(board[nIndex + 17]))
11 addMove()
12 if(onBoard(nIndex - 6) && !whitePiece(board[nIndex - 6]))
13 addMove()
14 if(onBoard(nIndex - 10) && !whitePiece(board[nIndex - 10]))
15 addMove()
16 if(onBoard(nIndex - 15) && !whitePiece(board[nIndex - 15]))
17 addMove()
18 if(onBoard(nIndex - 17) && !whitePiece(board[nIndex - 17]))
19 addMove()
20

21 int onBoard(int index) {
22 return !(index & 0x88);
23 }

Figure 2.10: Correct Knight move generation using 0x88 board represen-
tation

Just as simple and maybe even more elegant than the 120-board solution.
In the onBoard function, the number we want to check is bitwise AND’ed
with 0x88, if the AND operation returns 0, we know for sure we are inside
the board and onboard returns TRUE. As explained, while the -1 in 120-
board representation is a value used to check if the input is valid, in the
0x88-board its only garbage used to offset the actual board and are never
accessed to check the value, you can see that the onBoard function above
does not access the array (it uses only the index).

2.2.4 Bitboards

Bitboard board representation[4] is an example of a piece-centric board
representation. Here, each type of piece is represented in a different 64bit
value usually contained in an array. One array index hold the 64bit value
for white Pawns, one for black Pawns, one for white Knights and so on.
Bitboards are used to generate moves very fast, as this can be done using
bitwise operations.

28



Pawns from opening position

1

2 int64 whitePawns = 0x00FF000000000000; //The hex value
3

4 Which in bits is this:
5 0000000011111111000000000000000000000000000000000000000000000000
6

7 Visualised as a board (now with a1 as commonly shown in the lower left
corner):

8 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0
12 0 0 0 0 0 0 0 0
13 0 0 0 0 0 0 0 0
14 1 1 1 1 1 1 1 1
15 0 0 0 0 0 0 0 0
16

Figure 2.11: Bitboard example, white Pawns. Each type of piece has its
own 64-bit value

Here it can be seen that all the bits at the white Pawns starting position are
ticked off, while below all the bits at the white Knights starting position is
ticked off. A bitboard only contains information of a single type of piece,
hence why bitboards are piece centric.

Knights from opening position

1 int64 whiteKnights = 0x4200000000000000; //The hex value
2

3 Visualised as a board:
4 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0 0
11 0 1 0 0 0 0 1 0

Figure 2.12: Another bitboard example, now with white Knights

Bitboards generate moves very efficiently. Now that 64 bit CPU’s have
become the standard a full bitboard can fit in a single register in the CPU,
which makes the bitwise operations even faster. As of now, bit-boards is
the standard board representation method used by all top engines in the
world, for example Houdini, Komodo and Stockfish.

While bitboards are very fast when calculating moves, they are not very
practical when it comes down to finding out what specific piece is on a
specific square. The information is spread out onto different 64 bit integers
- it is not very practical to access one and one bit to find info on the various
pieces. Therefore it is practical to include another board, one that is not
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piece-centric, just for the engine to be able to access a specific square faster.
For this the naive board representation is perfect as you do not generate the
moves, you only use it to access information of a specific square.

Knight Move Generation Example

The way bitboard move generation works is that there is a lookup-table at
each square for all the different pieces on the board. The table contains
possible moves for all positions on the board.

Lets assume we start from the opening position:

8rmblkans
7opopopop
60Z0Z0Z0Z
5Z0Z0Z0Z0
40Z0Z0Z0Z
3Z0Z0Z0Z0
2POPOPOPO
1SNAQJBMR

a b c d e f g h

Figure 2.13: Opening Position

To generate moves for the Knight on b1 the engine must first create a target
bitmap, which contains all the squares on the board the Knight can move
to, ie. squares that does not contain white pieces. Then do a lookup of
b2 in a lookup-table for Knight moves, this lookup-table is generated when
first initializing the engine on startup. Finally the engine AND these two
bitmaps together to get all possible Knight moves.

1 1. squares allowed 2. KnightMoves[b1]: 3. ~whitePieces
2 ~whitePieces: & KnightMoves[b1]:
3 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 1 1 1 1 1 1 1 1 & 0 0 0 0 0 0 0 0 = 0 0 0 0 0 0 0 0
7 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8 1 1 1 1 1 1 1 1 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 2.14: Moves for the Knight on b1 generated

The result is a bitboard that has all the possible Knight moves, Na3 and
Nc3, ticked off.
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Sliding Piece Move Generation

With sliding pieces the move generation gets a bit more advanced.
There are 2 popular ways to generate moves for sliding pieces, rotated
bitboards[4], and magic bitboards[10]. This thesis will focus on the
magic bitboards move generation. Magic bitboards are a perfect hashing
technique that contains bitboardmasks for all possible moves of a sliding
for each square, depending on which squares has a piece that stops them
on the way. To generate moves for a Rook the engine must AND all pieces
of the board with the Rook moves for the square of the Rook to get occupied
squares. This is multiplied with a magic number, explained below, and then
bitshifted to get an index in the Rook move array. It is the same as with the
Knight, but because the sliding pieces can be stopped we add one additional
step and access the Rook moves in a double array instead.

1. ((allPieces & RookMask[a1])*magicNumber) » magicShiftRook[a1]
=
arrayIndex

2. RookMoves[square][arrayIndex] & whitePieces
=
move-bitboard for the Rook

1 Nc3 e5

8rmblkans
7opopZpop
60Z0Z0Z0Z
5Z0Z0o0Z0
40Z0Z0Z0Z
3Z0M0Z0Z0
2POPOPOPO
1S0AQJBMR

a b c d e f g h

Figure 2.15: Position for the magic bitboard Rook example
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1 1. allPieces 2. RookMask[a1]: 3. occupancy
2 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
3 1 1 1 1 0 1 1 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 1 0 0 0 & 1 0 0 0 0 0 0 0 = 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
9 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1

10

11

12 4. occupancy 5. RookMagic[a1]:
13 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
14 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15 0 0 0 0 0 0 0 0 0 0 SOME 0 0 0
16 0 0 0 0 0 0 0 0 * 0 0 MAGIC 0 0 >> magicShift[a1] = arrayIndex
17 0 0 0 0 0 0 0 0 0 0 BITS 0 0 0
18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
19 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
20 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0
21

22 6. RookMoves[a1][arrayIndex]
23 7. ~whitePieces 8. moves
24 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
25 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
26 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
27 0 0 0 0 0 0 0 0 & 1 1 1 1 1 1 1 1 = 0 0 0 0 0 0 0 0
28 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
29 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 1 0 0 0 0 0 0 0 0
30 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
31 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0

Figure 2.16: Moves for the Rook on a1 generated

The magic numbers have to be generated in advance (not when initializing
the engine) and is done in a bruteforce way. The reason to use the magic
multiplier is to make the lookup-table more dense and take less space. If
one had infinite memory one could make the lookup directly on the index of
the occupancy in step 3 instead of generating an array index by multiplying
with a magic number.

Magic number In computer chess what is called a magic number simply
refers to a pre-generated, and therefore hardcoded, number that is used to
generate a smaller, but still unique, index value to look up possible moves
for a sliding piece.

As explained in the Knight move generation example, for non-sliding pieces
this is pretty easy, and one only needs 64 different bitboards containing
the moves for the piece on each square.For sliding pieces, however, this is
not enough. A Rook, for example, has multiple different move-bitboards
depending on how the other pieces on the board block it. The following
example shows how three different occupations on the file of the Rook
ultimately should lead to the same move-bitboard for the Rook.
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80Z0Z0ZNS
7Z0Z0Z0Z0
60Z0Z0ZkZ
5Z0Z0Z0Z0
40Z0Z0ZKZ
3Z0Z0Z0Z0
20Z0Z0Z0Z
1Z0Z0Z0Z0

a b c d e f g h

80M0Z0ZNS
7Z0Z0Z0Z0
60Z0Z0ZkZ
5Z0Z0Z0Z0
40Z0Z0ZKZ
3Z0Z0Z0Z0
20Z0Z0Z0Z
1Z0Z0Z0Z0

a b c d e f g h

80Z0ZNZNS
7Z0Z0Z0Z0
60Z0Z0ZkZ
5Z0Z0Z0Z0
40Z0Z0ZKZ
3Z0Z0Z0Z0
20Z0Z0Z0Z
1Z0Z0Z0Z0

a b c d e f g h

Figure 2.17: Three different positions, with different occupancy, which has
the same move-bitboard for the white Rook on h8

1 0 0 0 0 0 0 1 0
2 0 0 0 0 0 0 0 1
3 0 0 0 0 0 0 0 1
4 0 0 0 0 0 0 0 1
5 0 0 0 0 0 0 0 1
6 0 0 0 0 0 0 0 1
7 0 0 0 0 0 0 0 1
8 0 0 0 0 0 0 0 1

Figure 2.18: The move-bitboard for the Rook, note that g8 is still ticked
off. This is because the move-bitboard is later ANDed with the bitboard
containing ~whitePieces, when finding the move-bitboard we do not
seperate between black and white pieces until the end

Applying the magic numbers acts as a surjective function (a many to one
relation), where each of the states of the board that should give the same
move-bitboard (that was the case in the previous example) will in fact point
to a place in the array that contains the specific move-bitboard.
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The magic numbers are square specific (meaning that we need 64 of them
for the Rooks, and another 64 for the Bishops) and are generated in this
way: For each of the 64 indexes of chess squares, generate a random 64-bit
number. For each of the relevant occupancy mask for this square multiply
it by the random number and bitshift it to get a random index that fits to
the pre-decided size of the move-bitboard. If the array index is not taken
(or is taken by one of the others with the same move-bitboard) for every
occupancy mask, this is a new magic number.

Perfect hashing of move-bitboards Since all indexes of the move-
bitboard array (where index is the bithshifted bitboard-occupancy*magic
number) are known at initialization, and everyone is either unique or is to
point to the same move-bitboard, the move-bitboard array acts as a perfect
hashing hash table where no collisions occur.

2.3 Evaluation of a Position

For the minimax algorithm to work a chess engine needs a way to compare
different positions. The most common way this is done by chess engines
is by having a function which evaluates a given position and gives it a
single score. This evaluation is used to search for an optimal move at a
given position. Humans have studied chess for hundreds of years and have
already built up a good understanding of what makes a chess position good
or bad. Most chess engines employ this knowledge to be able to evaluate a
position. Chess is not solved yet, there does not exist a clearcut answer of
what makes some positions better than others. Therefore, the evaluation
function is heuristic in nature, and is the piece of code that requires the
most understanding of chess. What makes a chess position good? That is a
question every chess-player, even grandmasters, ask and study. The single
score given by a chess engine is usually negative if the opposition has the
better position and positive if the side to move as the best position.

Example of what an engine could use to score points in a
position:

• Material count

– An engine scores the material count of each side up against
eachoter

• Advanced Knight positions

– Since Knights moves a shorter distance than the Bishop or Rook
it can count positively if it is close to ’the action’ on the board, or
negatively if it is far away from the other pieces.

• Rook-connectivity

– Connected Rooks is usually a good thing, and can count posi-
tively
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• Piece mobility (Rooks on open files, Bishops on open diagonals)

– pieces with many available moves counts positively

• King safety

– In the early to midgame King safety is crucial to avoid checks that
can be detrimental to your position, a safe King, tucked behind
Pawns counts positively. On the other hand, a King without any
support, or far up the board counts negatively.

• Pawn structure

– Passed Pawn, connected Pawns and advanced Pawns counts
positively

– Double Pawns, backward Pawns, isolated Pawns counts nega-
tively

The positive and negative scores are added up to a single score of the
position. People with some knowledge of chess can see that these things
are like taken out of a chess book explaining how to evaluate imbalances
in a chess position. What the various items are evaluated in proportion to
each other and the value of the pieces is usually done with trial and error.

Bitboards makes it very easy to evaluate some of these metrics. To find if
the Rook is on an open file, simply AND a bitboard mask marking the file
of the Rook with the bitboard of all the pieces. To find if a Pawn is isolated
AND the masked files of each side of the Pawn with the Pawn bitboard of
the same color.

The imbalances are evaluated differently in different phases of the game.
Standard chess textbooks generally divide the game of chess into 3 phases;
opening, midgame and endgame. For chess engines the opening can
be handled by using an opening database, containing most frequently
used/best answers to a move. The midgame and endgame is evaluated
according to the metrics given above, but for the endgame there are some
differences to the evaluation.

These can be some of the differences:

• An active King, as opposed to a safe King can count positively

• Rooks behind passed Pawns can count positively

• Knights in closed position (positisons with many Pawns) can count
positively

• Bishops can count positively in open positions

To avoid a point in the game where the engine suddenly evaluates the
position differently, engines usually implements some kind of tapered
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evaluation, a gradual transition from the midgame to the endgame. An
example of tapered evaluation can be found in crafty[15]:

1 phase = Min(62, TotalPieces(white, occupied) + TotalPieces(black,
occupied));

2 score = ((tree->score_mg * phase) + (tree->score_eg * (62 - phase))) / 62;

Figure 2.19: How tapered evaluation is done in crafty[15]

The phase is a simple int with a maximum score of 62, the fewer pieces
on the board, the more the chess engine uses the endgame score (tree-
>score_eg) instead of the midgame score (tree->score_mg). The engine
always evaluates both the endgame and the midgame score for every
position, and puts more and more weight on the endgame evaluation as
the game passes and pieces are captured.

2.3.1 Endgame Tablebases

There also exist endgame tablebases for position with 6 pieces or less. One
of these is called the Syzygy Bases, created by Ronal de Man[28]. They
work by containing all possible positions for 6 pieces or less on the board,
with information on if the position is a win, draw or loss. The syzygy tables
also has a second table containing a move for the position and a count for
moves down to zero, meaning the number of moves before the 50 repetition
count is reset. By using the moves in the position the engine will always win
if the syzygy tables says the position is a win, but it can make the engine
play unnatural, for example sacrificing a Queen, to play a Rook versus King
endgame because the Queen sacrifice was the fastest way to reset the 50
move counter.

2.4 The Search Function, Selecting the Best
Move

To get to what the evaluator thinks is a good position, the engine has to
make the right moves on the board. This is done by the move-selector part
of the engine. The prevalent way to search for the best moves among chess
engines is some variation of the alpha beta algorithm. Usually with some
metrics to make the branches of the tree well-ordered. Meaning that the
engine tries to explore the branches that creates the most optimal pruning
first.

It is the alpha beta algorithm that uses all of the other parts of the program.
It makes and takes moves on the board given, to move up and down the
game tree, and when it comes to a leaf-node, evaluates the position and
uses this evaluation to choose the most optimal move.
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2.4.1 Example of how an Engine Searches a Position

Here is an example of how the alpha beta algorithm communicates with the
rest of the program to choose the best possible move. It is simplified to get
an easy overview of how an engine can work.

The example begins after the search function has been given a position. The
search is to be done to a ply of 4. In this example there are only two possible
moves by each side in all positions (which is unlikely, but we will use it for
the sake of an easy example).

green fill: current position

black fill: position not visited, thus not generated by the chess engine

not filled: position visited

squares: minimizing side

circles: maximizing side

(a) The move-selector starts with the current board, here represented by a green
circle. The algorithm is at ply 0 on the maximizing side.

L R

(b) The move-selector calls the move-generator which return a list of possible
moves. In this example there are only two moves called L and R.

(c) The move-selector now calls the make-move function of the board, with L as
argument. The algorithm has now made a half-move and the current board is
the leftmost node. The algorithm is at ply 1, and now on the minimizing side.

L R

(d) The move-selector once again calls the make-move function of the board. It
returns two possible moves, these are obviously not the same moves from the
previous position (its blacks turn) but again, for simplicity we call them L and R.
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(e) Once again the move-selector calls make-move, with the new L as argument.
We are now at ply 2. To speed up the illustration the move-selector has also
called the move-generator for moves. The figure omits the move names L and R
for simplicity

(f) We speed it up a bit more. The move-selector has now called make-move L,
generate-moves, and make-move L again. We are now at ply 4. The depth that
the this alpha beta-search was to search. Now we can evaluate the position for
the first time.

11

(g) The move-selector calls the evaluate-position function. It returns the value of
the position in centipawns. In our example it returns 11.
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11

11

(h) The algorithm now calls unmake-move to move up a level. We are at ply 3
again. 11 is saved as the minimum value this node can make.

11

11 12

(i) The algorithm now calls make-move with the move R as argument and we
move down a level, to ply 4 again. This poisition is then evaluated to a value of
12.

11

11

L

12

R

(j) We then unmake the move again, and move up a level, to ply 3. Since we now
are on the minimizing side, the value 12 is discarded, as this value is bigger than
11.
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11

11

11 12

3

3

(k) There were no more moves to explore in the previous branch, so we once again
unmake the move and save the value found, 11. To speed things up a bit, in this
drawing the move-selector has called make-move with R as argument, Generated
the moves of this position, then called make-move with L as argument, evaluated
the position to a score of 3, and then unmade the last move. Now, since the
minimizing side can make a move with 3 as a score, the maximizing node above
the current node would never choose this branch. It is therefore unnecessary to
explore more in this branch, we get a cutoff.

11

11

11

11 12

3

3

15

15

16 15

(l) Again we skip a bit ahead. We move up the tree and down a branch that
needs exploring. Two of the leafnodes evaluated to 16 and 15 respectively, this
is reported upwards the tree as we the algorithm unmake moves and goes back
up the tree to the current node. Now we can prune an even bigger branch to
the right of the current node. As the minimizing side would never choose this
way to go down (it would always choose 11 over 15, and as the current node is a
maximizing node its value would be 15 or above).
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11

11

11

11

11 12

3

3

15

15

16 15

3

3

3

3

1

1

(m) We skip to the end. The move-selector has moved down the right branch
from the top, and some more pruning has occurred. The result saved as the best
sequence of moves is drawn with the red line. This path is called the principal
variation. And the engine saves this path. The path is reported to the GUI, as
well as saved. Used for iterative deepening of the tree, a concept explained in 2.6
Improving the alpha beta algorithm

Figure 2.20: Complete Alpha Beta Example

2.5 The Communicator

To be able to play with the engine, it needs to be able to communicate
with the other player. Fortunately, there are standards defined that makes
engines able to talk to an interface, so that it can play with humans as well
as other engines.

Two common protocols used to talk with a chess interface is the Chess
Engine Communication Protocol (CECP) and the Universal Chess Interface
protocol (UCI). Both work with most chess interfaces. There are some
differences between the different communication protocols, but in the end
it is about personal preference to choose one. The engine in this thesis will
implement the UCI protocol.

2.5.1 The Universal Chess Interface

UCI is a communication protocol that defines communication between a
chess interface and a chess engine. The communication is handled over
the standard input (stdin) and standard output (stdout) channels. It was
developed in 2000 by Rudolf Huber and Stefan Meyer-Kahlen, and the
specifications are available free to download on Stefan Meyer-Kahlens web
page shredderchess[30]. The extensive documentation of the protocol
can be found there, but here is a rough explanation the most important
commands.

Interface commands

• uci
Used to ask the engine if it is capable with the uci protocol.
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Engine answer: uciok

• position startpos|fen (moves ..)
Gives the engine a position either as a FEN-string or just from the
startposition, it can be followed by moves that has been made.

• go (options)
Tells the engine to start searching the position, usually followed by
some options to tell how much time the engine has left or the depth
the engine should search at. In a game it is up to the engine to decide
how much time it will use of what is left.

• stop
Tells the engine to stop search immediately. The engine should
answer with what move it has found as the best.
Engine answer: bestmove ...

• quit
Tells the engine to quit the program.

2.6 Improving the alpha beta algorithm

The alpha beta algorithm can be significantly improved from a standard
"search to a selected depth"-method. There are various techniques to
improve cutoffs as well as simply improving some of the limitations of
the algorithm. Many of them relate to the ordering of moves to be
searched, since the alpha beta algorithm gets the most cutoffs if the
best branch is searched first. Some of the improvements may make
the search less reliable, for example by pruning to much. With some
optimization techniques it is only through extensive testing one can find
if the optimization is worth it or not.

2.6.1 Iterative Deepening

An effective way to achieve a good move ordering is to use iteratively
deepening searches. The way iterative deepening works is that the engine
starts a search at a low depth, stores the best line of the search, and explore
these moves first when searching at a deeper depth. This is done iteratively
and highly improves the move-ordering, and thus the efficiency of the
program. It can seem a bit backwards to search the same position again
and again, but since the minimax algorithm is exponential to the order of
35, the engine saves so much time by improving the move ordering that
only a small percent extra cutoff in the next depth will save the engine
time. Fortunately enough the iterative deepening deepening also coincides
with another restriction in chess, time. The engine can easily control time
management by trying to search to a level deeper and just stop mid search
if the time runs out, it still has the result from the shallower search.
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2.6.2 Aspiration Window

Based on the results from the iterative deepening, the engine can further
improve cutoffs by limiting the search space to a value close to the search-
value obtained in previous searches[23]. The engine can force cutoffs by
guessing that the value of a best move by setting the alpha and beta values
before the search begins. This window of moves is called an aspiration
window.

The aspiration window is based on guessing, and the engine can therefore
end up with a best move that is outside off the window selected. If this
happens it will have to do an entire research of the tree, which might be
costly. The size of the window has to consider the cost of a research versus
the time gained from a narrow window.

2.6.3 Capture Heuristic

Captures often cause a significant change in a position. Many chess engines
therefore make sure to search the capture moves first to see if this improves
the position or causes a cutoff. The ordering of the captures can for
example be done in a mvvlva-fashion, most valuable victim - least valuable
attacker. This means that one always captures the most valuable piece of
the opposition first. If a Pawn can capture a Queen this is likely to be the
best move and should therefore be searched first.

A more advanced capture heuristic is the Static Exchange Evaluation. It
works by applying a function that explores all captures, the moves are then
ordered by which exchanges appears to give the highest score. Robert
Hyatt, the creator of Crafty suggested that in his engine the SEE is not
significantly better than mvvlva but saves about 5% of time used searching
in Crafty[16].

2.6.4 Killer Move and History Heuristic

Killer moves and history heuristic exploit the fact that chess positions only
change marginally by each move made. This means that moves that caused
a beta cutoff or improved the alpha score of one position may very well
cause a cutoff or improve alpha in another position. If a quiet move causes
a beta cutoff the engine saves this move as a killer move. The moves saved
should then have a higher priority in other moves of the search, such that
they are one of the first to be searched. The reason only quiet moves are
saved are because the capture heuristic usually has higher priority. History
moves works much the same as killer moves, but here the engine saves quiet
moves that improved the alpha of the search.

2.6.5 Transposition Table/Hash Table

By the nature of chess, what is usually referred to as a game tree, is really
a directed acyclic graph. Since two different move sequences can end up in
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the same position, the alpha beta algorithm can often end up with a position
that it has already explored. This is especially true for an engine which
explores positions with iterative deepening. Info about the best moves, the
cutoffs etc. can significantly improve move ordering. The transposition
table is basically a big hash table which contains info about previously
explored positions.

Depending on the size the transposition table can fill up quickly and the
table often ends up storing positions not used and not likely (or impossible,
for example after a Pawn has been captured) to be explored again. This
can make the engine slow and not be able to perform efficiently, since the
transposition table only consists of false hits, thus making it slower than
it would be without a transposition table. It is important to have some
techniques to evaluate if a entry is valuable for the program or can be
replaced. To find out if the entry is valuable it can be given a score based on
one the following criteria. If an entry is close to a leaf node it is more likely
to come up again and be searched multiple times, saving the program a lot
of time. If an entry is searched to great depth there is done a lot of work
on this branch, if the engine hits this branch again it can therefore save lots
of time by saving the previous result from the position. The criteria are
rather conflicting so some tweaking is usually done on the engine to find
an acceptable median. There should also be a check on age to make sure
that positions searched a long time ago is replaced. This is usually done by
considering the ply of the current position versus the ply of the searched
position.

2.6.6 Quiescence Search

Since the alpha beta algorithm searches to one specific depth it is prone to
be a victim of what is popularly named the horizon effect. The evaluation
function does not make any moves and can not tell if a piece is hanging or
not. Say the engine has searched to a depth of 7 and finds out its a whole
Knight ahead of the opposition and happily makes the move. What if it
were to search to a depth of 8 and find out that it loses a Queen in the next
move? Not such a good move to make after all.

To limit the horizon effect the engine therefore should only evaluate quiet
positions, position where no captures can be made. Quiescence search
simply makes all captures possible in a position before it is evaluated. The
ordering of the captures can be the same as explained in Capture Heuristic.

2.6.7 Search Extensions

Search extensions is a way to make the alpha beta algorithm search
interesting positions more deeply. If the alpha beta search encounters what
is believed to be an interesting position it simply decides to search this
position deeper than the others. What qualifies as an interesting position
is up to the engine to decide. The obvious drawback of a search extension
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is that more nodes have to be searched before the algorithm can return and
it is therefore wise to use search extensions sparsely. A good use of search
extensions is an ’in check’-extension. If the King of the side to move in a
position encountered is in check, the alpha beta algorithm searches one ply
deeper. Since there usually is a limited number of moves that can be done
when the King is in check the branching factor of this subtree is smaller
than others.

2.6.8 Null Move Heuristic

The null move pruning technique was described by the programmers of the
chess engine Kaissa in 1975[1]. It is used as a way to limit search space of
the game tree. The idea is that if the side to move passes a move, which is
not actually allowed in chess, and the opponent still does not improve the
beta score, the alpha beta algorithm can probably assume that this branch
will be cut off. The null move search is done on a minimal search window
where alpha = beta-1. And is usually done in a shallower tree than the actual
depth of the position.

There exist positions where passing a move actually benefits the side to
move, so called zugzwang position, and if such a position is encountered it is
detrimental to the engine to cut of this branch thinking it has the stronger
position. It can be wise not to use the null move in endgame positions,
where zugzwang is most often encountered. Or have some kind of zugzwang
check to verify that the position is not in zugzwang before doing null move
pruning.

2.7 Summary

This chapter presented most parts that is necessary to build a modern chess
engine from scratch. It gave a detailed view of how one can solve the issue
of representing the board, giving three examples of one can implement and
generate moves on each of the board representation, to avoid unnecessary
and slow checks that one would need if implementing what is named in this
thesis as the naive board representation.

It then explained the concept of evaluating a position, giving the engine a
metric it can use to create a minimax game tree with weighted leaf nodes,
which it can apply an alpha beta algorithm on.

The chapter gave a detailed example of exactly how the alpha beta algorithm
is applied for the engine to guess a best possible move.

It was explained that an engine needs a communication protocol to be able
to play with other chess engines. One of these communication protocols,
the UCI protocol, was then presented with an explanation of the most
common commands the UI gives, and the expected outcome/replies of the
engine when it gives these commands.
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The chapter then gave multiple ways of improving the alpha beta algorithm.
It was explained that if the engine searches the ’best’ moves first it will get
the most cutoffs, the improvements of the alpha beta algorithm is mostly
heuristics to better the engines guess of what is the best move in a given
position.
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Chapter 3

Parallelization of a chess
engine

This chapter will present research and techniques used to parallelize a chess
engine.

It will begin by presenting the challenges met when trying to parallelize
a chess engine using the alpha beta algorithm. The challenges consist of
different types of overhead a multithreaded alpha beta search experiences.
The overhead is centered around the pruning of the game tree. The
sequential algorithm has intermediate results from pervious searches that
it can use to better prune the game tree, a multithreaded algorithm must
weigh the cost of sharing of this information up against the cost of less
pruning.

The chapter then presents some characteristics of a perfectly ordered game
tree and how this information can be used when creating a parallel search
algorithm.

After this four different alpha beta parallelization algorithms are presented,
noting benefits and drawbacks of each of them. The newly found lazy SMP
algorithm, the one used to parallelize the engine in this thesis, will be given
a more detailed explanation.

For the purpose of simplicity this chapter will use the word thread
exclusively, meaning an independently executed block of code, but in the
topics presented this can be interchangeably switched with processors run
on a distributed system, allthough the cost of information-sharing will be
higher.

We define that the tree is ordered so that the sequential alpha beta
algorithm will always search nodes from left to right in the game tree. The
left-most branch of a node is by this definition always searched first and the
right-most node is searched last.
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3.1 Overheads Experienced in Parallelization of
a Chess Engine

The alpha beta algorithm can be said to be sequential in nature. The search
uses the intermediate findings to limit the remainder of the search. If the
left-most child of a node causes a cutoff, a search over the rest of the nodes
children is avoided completely. The heuristics explained in 2.6 Improving
the alpha beta algorithm make this very likely to happen.

Optimizing the alpha beta algorithm on multi-core architectures using
parallelization has shown to be challenging. There are multiple algorithms
both suggested and used, but they all have some drawbacks, be it bad
scalability or insufficient speedup.

Jonathan Schaeffer noted obstacles the parallel alpha beta search has to
cope with[40]:

• Communication overhead

• Synchronization overhead

• Search overhead

Communication overhead The communication overhead comes as a
result of threads sharing information. Depending on the implementation
this can be different types of communication, for example messaging
between a master and its slaves. A sequential alpha beta algorithm regularly
updates the bounds that limit the search window of further search. If
this information is to be shared to all threads working below that node
it can cause what Schaeffer dubbed communication overhead. Shared
memory can also lead to synchronization overhead, with threads waiting
for locks to acquire data. In a lockless shared memory environment the
communication overhead can be almost eliminated.

Synchronization overhead Synchronization overhead happens when
thread has to idle before it can continue working or get new work after its
job is finished. This can be a result of various different issues. For example
waiting for a lock, which is directly related to the communication overhead.
It can also be other things that prevent a thread from working; waiting for
other threads to finish their search at a specified depth before it can move
on in a iteratively deepening search. The amount of idling can be reduced
by making the implementation include more concurrent work, however this
will probably lead to more search overhead.

Search overhead Search overhead happens because of the larger tree
explored in a parallel algorithm. Since the sequential algorithm always
has the results of all previous searches it can highly prune the search
tree. This is harder to do when multiple threads search the tree in
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parallel. Ultimately, more nodes are searched and this reduces the effect
of parallelism. Schaeffer gave the following formula to calculate the cost of
search overhead:

sear ch over head = par alel l tr ee si ze−sequenti al tr ee si ze
sequeanti al tr ee si ze

The search overhead is strongly related to the communication overhead,
without any information-sharing between threads, redundant or unneces-
sary search of branches is hard to avoid.

3.2 Characteristics of a Minimal Alpha Beta
Tree

A minimal alpha beta tree is what is produced when the alpha beta search
is done on a perfectly ordered game tree, meaning that the leafnodes to the
left always holds a higher value than the ones to the right. In the paper
’An Analysis of Alpha-beta Pruning’, Donald Knuth and Ronald Moore
observed that a minimal alpha beta tree consists of three types of nodes
and named them 1, 2 and 3[24]. This paper will use the terminology used
by among others Robert Hyatt[17], where the names 1, 2 and 3 are dubbed
PV-, CUT- and ALL-nodes.

Knuth and Moore observed that nodes in a perfectly ordered game tree
searched using the alpha beta algorithm share one of the three following
characteristics.

• PV-nodes: All children of a PV-node must be explored, the left-most
child is a PV-node, the rest are CUT-nodes. The root node is a PV-
node.

• CUT-nodes: Only the left-most child of a CUT-node has to be
explored. This child is an ALL-node.

• ALL-nodes: All children of an ALL-node must be explored. All
children of an ALL-node is a CUT-node.

This gives us some ideas of how a parallel alpha beta algorithm can be
implemented. The thing to note here is that all the children of PV-nodes
and ALL-nodes have to be searched, while only a single child of the CUT-
node has to be searched.
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Figure 3.1: Node types in a minimal alpha beta tree.

3.3 Principal Variation Splitting (PVS)

Principal variation splitting, abbreviated PVS, is a simple multiprocessing
algorithm first proposed by T. Anthony Marsland and Murray Campbell in
their paper ’Parallel Search of Strongly Ordered Game Tree’[29]. The idea
behind the algorithm is that no cutoffs in a successor of a node can happen
before at least one lowest acceptable bound (alpha value) is known at the
root node of that branch. Before any parallelization happens in PVS the
leftmost branch of the full game tree is explored.

The algorithm in itself is very simple. A main thread is given the rootnode.
It walks down the left-most branch until a leaf-node is found. The main
thread then evaluates the leaf-node and returns with the result to the father
of the leaf node. When backing up, the tree it first updates the alpha-score
of the current node, before it distributes the rest of the nodes children to
idling threads. When all threads have finished searching their branches,
giving the result to the main thread, the main thread can return to the
previous ply with a new best score. The main thread then distributes the
rest of the children of this node, and so on, all the way up to the rootnode.
The algorithm can be further improved by doing the parallel search in a null
window, where beta = alpha + 1, and only if the search fails low, meaning
the branch returned alpha, the window is adjusted.

The PVS approach has several issues, as noted by Robert Hyatt[17]. One
is the issue of scalability. Since the algorithm only splits the PV-nodes,
and chess positions have an average of about 35 moves in each position the
algorithm can not scale beyond this number of threads. Another issue is
load balancing. Each thread is given one child of the PV-line to search. The
corresponding subtrees of these childs can be vastly different in regards to
size. This leads to synchronization overhead as threads have to wait for the
others to be done with their sub nodes before the main thread can move up
the tree and create more concurrent work.
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sequential parallel

parallel
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Figure 3.2: Principal variation split, a single thread searches down
the leftmost path, evaluating the first leaf-node. As it returns upwards
it updates the nodes alpha value and splits the remaining children to
threads.

3.4 Young Brothers Wait Concept (YBWC)

Young brothers wait concept is a parallel algorithm proposed by Roger
Feldmann. He presented an engine playing with the algorithm in his paper
from 1991, ’A Fully Distributed Chess Program’[9].

YBWC is a further improvement of the PVS algorithm. The concept of the
algorithm is: The eldest son of any node must be completely evaluated
before the young brothers of that node may be transmitted. The idea is
much the same as PVS, that the search overhead is reduced dramatically
by allowing the leftmost branch of a node to be completely explored before
the other nodes can be searched. YBWC is even more strict than PVS in
that every new node must explore their eldest son (meaning the left-most
node) first, there is no distinguishing between the PV-nodes and the rest.
In Feldmanns implementation, with the exception of starting the search at
the rootnode, threads get jobs by what he dubbed work-stealing. When a
thread completes its search of the eldest son, it adds the rest of the children
to a queue. That way all idle threads can go to the queue and ’steal’ work.

3.5 Dynamic Tree Splitting (DTS)

Dynamic tree splitting is an algorithm invented by Robert Hyatt and his
Cray Blitz team[17]. It was implemented in his engine in the 1994 ACM
computer chess event. Despite the impressive speed-up achieved in Cray
Blitz this algorithm has not gained popularity among the top chess engines
of today. A reason for this could be that the algorithm is rather complex,
and even Robert Hyatt does not have the full implementation in his new
engine Crafty[35].
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The idea behind the algorithm is that a thread should never be idle, and
splits should only happen at PV- or ALL-nodes, these splitpoints are a
guesstimate. All threads start as idle and are queued to get work from a
list of active splitpoints. This list starts with only the root-node, thus only
one thread gets work at the beginning. After the first thread has searched
the left-most path it pushes the nodes as splitpoints and the idle threads
can start searching them. Now comes the more complex part: Immediately
after a thread is finished and there are no more jobs left on the active
splitpoint-list it broadcasts this to the other threads. The working threads
share their active search trees to the idle thread. This thread then searches
the trees for a a suitable splitpoint, hopefully an ALL-node, and pushes this
to the queue. If a splitpoint causes a cutoff this is immediately shared to
the threads working on this node and the search of the nodes below those
threads are stopped.

3.6 Lazy SMP

Lazy SMP is a newly discovered parallel algorithm where threads have
minimal to no communication between them except a shared hash table.
It was first described by Daniel Homan in a computer chess forum[14]. He
experimented with implementing parallelization in his engine, and to his
surprise a very simple implementation gave him good results with about
1,6 times speedup with 4 threads on 4 cores. His implementation has been
tweaked further and in January of 2016 Stockfish 7 was released with lazy
SMP, replacing their previous YBWC-implementation[43].

The idea behind the algorithm is quite simple. With the use of a shared
hash-table, let all threads search the full game tree and race to the finish
line. The hash table makes sure that positions fully explored previously by
any threads do not have to be re-explored. Some effort is put into nudging
the threads to search down slightly different paths. For example; in Daniel
Homans implementation he let half the threads search at depth+1, they also
had local history and killer tables, which may make the threads evaluate
children differently and thus search down sub-trees in a different order.

Lazy SMP is very different from the other search algorithms. By using
a lockless hash-table it avoids having any communication overhead or
synchronization overhead. It trades this by having a larger search overhead.

3.6.1 Search Overhead in Lazy SMP

Because there is close to no communication or synchronization overhead in
lazy SMP, the main challenge of the algorithm is to reduce search overhead.
Lazy SMP does not know if another thread has started its search down the
branch of a node if that search is not completed (if the search is completed
this is reflected in the hash-table). This causes search redundancy between
threads that searches at the same depth.
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One can completely avoid this type of search redundancy by making all
threads search at different depths. This will not completely solve the
problem of search overhead because it causes a different problem; that
the threads does not get any value from iterative deepening. The threads
will not get the benefits of a better move-ordering and aspiration window
that a single thread will, because searches in shallower depths has not yet
finished.

If one consider the properties of a perfectly ordered game tree, one can
quickly make the connection that making threads search down the same
sub-tree is not always a bad thing. If the current node is in fact a CUT-
node, there is no benefit of searching down a different path, as this causes
unnecessary work that is avoided in a single threaded implementation.
The benefit of searching down different paths is only there if the thread is
currently in an ALL-node. The game tree of a chess engine is not perfectly
ordered, and there can therefore be some benefit of searching down all
viable paths in every node, because the beta cutoff can occur in the sub-
branch that is not necessarily the first one to be explored.

3.6.2 Lazy SMP, Private Heuristics

Since threads only share the information in the hash table, each thread
has its own private killer move and history heuristic. By happenstance this
actually benefits the lazy SMP algorithm. If a position encountered already
exist in the hash-table it will not search down this path and will therefore
not update its history and killer values as it otherwise would if the branch
was searched normally. This causes the threads heuristics to be slightly
inferior to the heuristics of the thread that actually explored the branch
and updated the hash-table. Because of this the threads are very likely to
choose slightly different paths when searching the game tree. Both threads
searches close the optimal path, so they can benefit from each others result.

3.7 Summary

The different overheads of a parallel chess engine can be categorized to
three different types; communication overhead, a result of information-
sharing between threads, synchronization overhead, a result of threads
idling - either waiting for specific resources such as locks or waiting for
other threads to finish their work, and search overhead, which happens
because the game tree searched is bigger in a multithreaded algorithm.

The characteristics of a minimal alpha beta tree can help give an idea on
how to implement a parallel alpha beta algorithm. All nodes of a minimax
game tree can be put into three categories, PV- CUT- and ALL-nodes.
If work is split by making threads search down unique sub-branches,
unnecessary work is only done if threads are split at a CUT-node. Since
the chess engines game tree is not perfectly ordered, guessing what is a
CUT-node is hard.
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PVS, YBWC and DTS are all algorithms that make an attempt at reducing
the splitpoints at CUT-nodes. DTS was the most successful, but is so
complex that it is not popular among chess engines today.

Lazy SMP has another approach entirely, where threads do not share to the
other threads what branches they are currently searching. However, if a
thread comes to a node that is fully explored it can use the results directly,
as the results are shared in a hash table.
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Chapter 4

Design and Implementation

This chapter gives the design and implementation choices of the chess
engine built in this thesis. As per the design paradigm formalized by the
ACM board of education, it will first state the requirements of the chess
engine. The requirements are a rough description of what the engine has to
do to achieve the goals of this thesis.

Following are the specifications of the engine. While the requirements tells
what the engine has to do, the sepcifications details how we plan to do
it. The specifications gives some criterias that the implementation of the
engine has to follow to be able to meet the requirements.

After this, a more specific design and implementation of the engine is
presented. Here, it is discussed what the design and implementation
choices of the engine were. On each of the implementation-decisions some
reasoning is given as to why it was decided to implement the engine this
way.

The last specification of the engine is a couple of debugging functions. Some
of these are accompanied with a more detailed explanation of how they
where used to find bugs.

4.1 Requirements

The aim of the thesis is to implement a complete chess engine and
investigate how this engine can be improved by using threads on a
multicore system by using the parallel algorithm lazy SMP.

The means of which to achieve this goal were decided to be the design
paradigm formalized by the ACM board of education explained in 1.5
Research Method. The first step of this research method is to state
requirements of the program. To be able to achieve the goal of this thesis,
the engine implemented has the following requirements.

A complete understanding of all the rules The chess engine should
know all the rules of chess. It should never make an illegal move. It must
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know all the current FIDE draw rules, this also include time limits - of
which it should have a way of determining how much time it can use per
move.

Play decent chess The engine should be somewhat good at chess, at
least equivalent of a strong club player with an estimated 2100 rating.

Communicate with a UI The engine should be able to play with both
humans and other engines, this should be done through the means of a
chess UI.

Take advantage of multicore CPUs The engine should have a way of
spawning threads and utilize these in a way that makes it play better chess.

4.2 Specifications

To fulfill the given requirements the engine has the following specifications.

A board representation, with corresponding move generation
The chess engine should have a way of internally representing the board.
The board structure implemented must be able to efficiently generate
moves so that the engine can quickly search through a game tree.

A move structure The moves generated should be saved in a structure
containing all the information needed to make and unmake the move on
the corresponding board structure. The move structure has to be small, no
more than 32 bits long, so that the engine keeps memory usage low while
traversing the game tree.

An evaluation function The evaluation function of the engine should
take a board structure and return a single score representing the evaluation
of the position. This evaluation is to be used to weigh the leafnodes of the
game tree. The evaluation function should differentiate between early- and
midgame using tapered evaluation.

Alpha beta search function The engine is to be implemented with an
alpha beta search function. To limit the search space and enhance the
pruning capabilities of the algorithm the alpha beta algorithm must have
the following improvements.

• Iterative deepening

• Aspiration window

• Capture heuristics

• Killer move and history heuristics
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• Quiescence search

• Search extensions when the King is in check

• Null move pruning

While searching it should call a function to check if theres time left in the
search. This call should happen every 2048 nodes searched, so it does not
spend too much time checking if there is time left, but still exits before the
time runs out.

Thread safe hash table The engine should have a hash table that
contains the score of positions already searched. Since the engine utilizes
multiple threads that access this table it needs to be thread safe.

UCI shell The engine should have a UCI shell. One thread, independent
of the other threads and not used in the search, is set to communicate with
a UI using the UCI protocol. The communication is to be done through
the standard communication ports (stdin and stdout). This thread gets the
amount of time left in the game by the UI. To make sure the engine never
run out of time, it should always set the time limit of the search to 1/30 of
the total game time left.

Lazy SMP algorithm The engine is to be parallelized using the lazy
SMP algorithm.

Debugging functions To make certain that the program contains a
minimal amount of bugs it should be equipped with debugging functions
that picks up if the engine is incorrectly implemented. The debugging
functions have to be able to do the following.

• Make sure that the engine is implemented in a way that it does not
make an illegal move

• Assert that the input of the most vital functions are correct

• Make sure that evaluation is the same for both sides of the board,
always. The engine should play equally good given black and white
pieces.

4.2.1 Programming Language and Frameworks

The engine will be implemented using the C programming language. It was
quickly decided that the implementation should be done on a programming
language the author is comfortable with and has experience using. The
choice therefore came down to either C or Java. The choice tipped in C’s
favor because it performs better than Java on most applications[34] and
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the author has previous experience of implementing a chess engine using
the C language.

The threads will be implemented using POSIX threads, the standardized
C language threads programming interface. This decision was made
based on the authors previous experience using POSIX threads. No other
alternatives were considered.

The GCC compiler is used to compile the program. By defining a single
compiler for the program some compiler-specific optimizations can be
used.

4.3 Boardrep Representation

The engine in this thesis will use the bitboard board representation. The
bitboard board representation is in many ways more complex, and is there-
fore a source of more errors, than the 120-board or 0x88 board represen-
tations. While there are some reports of a 2x speedup when switching from
a 0x88 board representation to a bitboard board representation[12], Tord
Romstad, one of the authors of Stockfish, claims that board representation
barely matters and is more a matter of taste[39]. Besides speed there are
other advantages to the bitboard board representation. When evaluating
a position some metrics are faster and easier to calculate when having bit-
boards available. One example of this can be ’Rooks on open files’ and is
explained more detailed in section 4.5 Evaluation.

There are some things the engine needs to do that the bitboard board
representation does somewhat poorly. Since it is a piece-centric board
representation it is inefficient to use when trying to find what piece (if any)
stands on a specific square. To simplify this, the engine also has a naive
board representation used only to extract what piece stands on a specific
square. For example, this makes it faster to find out if any pieces are
captured when making a move, so that the engine can remove that piece
from the corresponding bitboard.

4.3.1 Move Generation

There are mainly two ways to generate moves from bitboards, the rotated
bitboard fashion and the magic bitboard fashion. Early on in the thesis
it was decided to focus on only one of these ways to generate moves in
bitboards, the magic bitboards. When the choice of board representation
fell on bitboards, it was natural to use magic bitboards to generate moves.

The engine will generate moves in a magic bitboard fashion, utilizing the
perfect hashing move generation technique explained in 2.2.4 Bitboards
(note that these hash tables contains bitboards of moves and are not the
same as the hash table used in the alpha beta search).

58



The move generation will be pseudo legal, meaning it will not check if the
side to move’s King is put in check by making the move. One of the reasons
for doing it this way is that the move generation will have less special cases.
To still adhere to the requirement of never playing an illegal move, an
extra check will be implemented in the make-move function; if the side to
move’s King is in check after the move has been made it will unmake the
move on the board and return false, making the engine ignore the move.
Because of the alpha beta pruning many of the moves generated will never
be explored, so it can possibly save time to not do the ’King in check’-check
when generating the moves.

4.4 Move Structure

The engines move structure will contain the following information.

• From square - a 6 bit index (0-63) of where the piece moves from.

• To square - a 6 bit index (0-63) of where the piece moves to.

• Piece moved - 4 bit representing the piece moving.

• Captured piece 4 bit representing the captured piece (0 is no piece).

• Promoted piece - 4 bit representing the piece promoted to (0 is no
promotion).

• En Passat bit - ticked off if the piece was captured en passant.

• Castling bit - ticked off if the move was a castling move.

This information will be packed into a 32 bit integer to take up as little space
as possible. Following is a visualization of the contents of the move-integer.

1 0000 0000 0000 0000 0000 0011 1111 -> From square
2 0000 0000 0000 0000 1111 1100 0000 -> To square
3 0000 0000 0000 1111 0000 0000 0000 -> Piece moved
4 0000 0000 1111 0000 0000 0000 0000 -> Captured piece
5 0000 1111 0000 0000 0000 0000 0000 -> Promoted piece
6 0001 0000 0000 0000 0000 0000 0000 -> En passant bit
7 0010 0000 0000 0000 0000 0000 0000 -> Castling bit

Figure 4.1: A visualization of the move structure, the ticked off bits
represent what bits are reserved for each piece of information

4.5 Evaluation

To adhere to the requirement of playing decent chess, the engine will need
a sufficient evaluation beyond just a simple material count. It will not
implement any opening or endgame tables.
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The evaluation function will give every position it evaluates a single
centipawn score. The score is calculated by weighing two different
positional scores against each other, one midgame score and one endgame
score, this is explained more thoroughly in 4.5.4 Tapered Evaluation. The
evaluation metrics presented here is not taken from any source and is based
on the authors somewhat limited understanding of chess. It was not the
focus of the thesis to perfect the engines evaluation function.

The score is calculated piece by piece and added up to a single score. White
pieces gets a positive score, black pieces gets a negative score. The pieces
are scored this way.

• Base material score

• + Piece-specific tablebase lookup, of the piece’s position on the board

• + Piece-specific tweak

4.5.1 Base Material Score

This is the base material score (in centipawns)

• Pawns 100

• Knights 325

• Bishops 325

• Rooks 500

• Queens 1000

• King 20000

The King score is more than all pieces combined and can be seen as infinite
(even with 10 Queens on the board).

4.5.2 Tablebase Lookup

A tablebase lookup is added to the base material score of the piece. If the
piece stands on a square considered good a positive score is added to the
base material score, if it is on what is considered a bad square the score
added is negative while a neutral square gets a score of 0. Following is the
tablebases used to look up this score.

1 const int mirror[64] = {
2 56 , 57 , 58 , 59 , 60 , 61 , 62 , 63 ,
3 48 , 49 , 50 , 51 , 52 , 53 , 54 , 55 ,
4 40 , 41 , 42 , 43 , 44 , 45 , 46 , 47 ,
5 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 ,
6 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 ,
7 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 ,
8 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 ,

60



9 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7
10 };
11

12 const int PAWN_SQ_VAL[64] = {
13 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,
14 10 , 10 , 0 , -10 , -10 , 0 , 10 , 10 ,
15 5 , 0 , 0 , 5 , 5 , 0 , 0 , 5 ,
16 0 , 0 , 10 , 20 , 20 , 10 , 0 , 0 ,
17 5 , 5 , 5 , 10 , 10 , 5 , 5 , 5 ,
18 10 , 10 , 10 , 20 , 20 , 10 , 10 , 10 ,
19 20 , 20 , 20 , 30 , 30 , 20 , 20 , 20 ,
20 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0
21 };
22

23 const int KNIGHT_SQ_VAL[64] = {
24 0 , -10 , 5 , 0 , 0 , 5 , -10 , 0 ,
25 0 , 0 , 0 , 5 , 5 , 0 , 0 , 0 ,
26 0 , 0 , 10 , 10 , 10 , 10 , 0 , 0 ,
27 0 , 5 , 10 , 20 , 20 , 10 , 5 , 0 ,
28 5 , 10 , 15 , 20 , 20 , 15 , 10 , 5 ,
29 10 , 15 , 15 , 25 , 25 , 15 , 15 , 10 ,
30 0 , 0 , 5 , 10 , 10 , 5 , 0 , 0 ,
31 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0
32 };
33

34 const int BISHOP_SQ_VAL[64] = {
35 -5 , 0 , -10 , 0 , 0 , -10 , 0 , -5 ,
36 0 , 20 , 0 , 15 , 15 , 0 , 20 , 0 ,
37 0 , 0 , 15 , 10 , 10 , 15 , 5 , 0 ,
38 0 , 10 , 0 , 15 , 15 , 10 , 5 , 5 ,
39 0 , 10 , 0 , 15 , 15 , 10 , 10 , 0 ,
40 0 , 0 , 15 , 5 , 5 , 15 , 0 , 0 ,
41 0 , 15 , 0 , 10 , 10 , 0 , 15 , 0 ,
42 -5 , 0 , 0 , 0 , 0 , 0 , 0 , -5
43 };
44

45 const int ROOK_SQ_VAL[64] = {
46 0 , 0 , 5 , 10 , 10 , 5 , 0 , 0 ,
47 0 , 0 , 5 , 10 , 10 , 5 , 0 , 0 ,
48 0 , 0 , 5 , 10 , 10 , 5 , 0 , 0 ,
49 0 , 0 , 5 , 10 , 10 , 5 , 0 , 0 ,
50 0 , 0 , 5 , 10 , 10 , 5 , 0 , 0 ,
51 0 , 0 , 5 , 10 , 10 , 5 , 0 , 0 ,
52 25 , 25 , 25 , 25 , 25 , 25 , 25 , 25 ,
53 0 , 0 , 5 , 10 , 10 , 5 , 0 , 0
54 };
55

56 const int QUEEN_SQ_VAL[64] = {
57 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,
58 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,
59 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,
60 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,
61 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,
62 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,
63 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,
64 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0
65 };
66

67 const int KING_SQ_VAL_END[64] = {
68 -50 , -10 , 0 , 0 , 0 , 0 , -10 , -50 ,
69 -10, 0 , 10 , 10 , 10 , 10 , 0 , -10 ,
70 0 , 10 , 15 , 15 , 15 , 15 , 10 , 0 ,
71 0 , 10 , 15 , 20 , 20 , 15 , 10 , 0 ,
72 0 , 10 , 15 , 20 , 20 , 15 , 10 , 0 ,
73 0 , 10 , 15 , 15 , 15 , 15 , 10 , 0 ,
74 -10, 0 , 10 , 10 , 10 , 10 , 0 , -10 ,
75 -50 , -10 , 0 , 0 , 0 , 0 , -10 , -50
76 };
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77

78 const int KING_SQ_VAL[64] = {
79 0 , 10 , 10 , -10 , -10 , 10 , 20 , 5 ,
80 0 , 0 , 5 , 0 , 0 , 0 , 5 , 0 ,
81 -10 , -10 , -10 , -10 , -10 , -10 , -10 , -10 ,
82 -70 , -70 , -70 , -70 , -70 , -70 , -70 , -70 ,
83 -70 , -70 , -70 , -70 , -70 , -70 , -70 , -70 ,
84 -70 , -70 , -70 , -70 , -70 , -70 , -70 , -70 ,
85 -70 , -70 , -70 , -70 , -70 , -70 , -70 , -70 ,
86 -70 , -70 , -70 , -70 , -70 , -70 , -70 , -70
87 };

Code 4.1: Table-base lookup. For white a1 is top left, the mirror
array is used when looking up values for the black pieces. The other
arrays are values for each piece standing on a specific square. For
example, when making the move e2e4 the engine will gain 30 points as
PAWN_SQ_VAL[e2] equals -10, while PAWN_SQ_VAL[e4] equals 20

4.5.3 Piece Specific Score-Tweaks

To further tweak the score of the piece. The pieces are weighted by using
piece-specific metrics.

Pawns The Pawns are the most advanced. An isolated Pawn, which
means that there are no Pawns on either of the ranks directly next to the
Pawn is given a score of -20 because it cannot be supported by another
Pawn. A passed Pawn, meaning there is no opposing Pawn in the three
ranks in front of the Pawn, gets a score bonus. The further down the board
a passed Pawn is the higher score it gets.

1 int WHITE_PAWN_PASSED[8] = {0, 5, 10, 20, 40, 80, 160, 0};

Code 4.2: A passed Pawn gets its base and table score added with the
PAWN_PASSED score. The further down the board it is, the higher the
score added. A passed Pawn on the 7th rank gets an added score of 160.

As an example; a passed Pawn on the 7th ranks gets a base score of 100 + a
table base lookup of 20 + a passed Pawn score of 160, a total of 280 points.
The passed Pawn score is doubled in the endgame, meaning a passed Pawn
on the 7th rank can be worth more than a minor piece.

Bishop and Knights The Bishop and the Knight gets its tweak in the
endgame. Knights are given the following score,

score = ((number_of_pawns-10)*6)

Bishops are given the same but opposite score,

((10-number_of_pawns)*6)
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Basically it means that, in the endgame, a position with many Pawns gives
the Knight a high score, while a position with few Pawns gives the Bishop a
high score.

Rooks Rooks get a plus score of 100 in an open rank, meaning there
are no Pawns in this rank. It gets a plus score of 50 in a semi-open rank,
meaning there are only opposite colored Pawns in that specific rank.

Queens Queens are not tweaked in any way, they will always have a base
score of 1000.

Kings The King is the only piece with two tables, one for the early game
and one for the endgame. It favors to castle and stand on the first rank in
the early game and favors to walk towards the center and get what is called
an active King in the endgame when there are fewer threats.

4.5.4 Tapered Evaluation

The engine has a tapered evaluation function to get a gradual transition
from the midgame to the endgame. This means that it evaluates both a early
game and an endgame score for every position, which are then weighted by
the value of all big pieces (Knights, Bishops, Rooks and Queens) on the
board.

1 phase = (Queens*10) + (Rooks*5) + (minors*3);
2 phase = MIN(64, phase);
3

4 score = (score_mg/(phase+1)) + (score_eg/((64-phase)+1));

Code 4.3: The tapered evaluation functions weighs midgame-score versus
endgame score. Phase is an integer calculated this way: number Queens
on the board multiplied by ten + number of Rooks multiplied by 5 +
number of Knights and Bishops multiplied by three. The integer is capped
at 64. The lower the number, the more weight is put on the endgame score.

This is derived from the tapered evaluation function in crafty. With fewer
big pieces more weight is put on the endgame score.

4.5.5 Material Draw

The engine has a function which tries to detect material draws. This is to
avoid trading a Pawn for another piece to gain material advantage if this will
cause a draw in the position, or vice versa. It is based on simple rules which
can tell if the position is most likely a material draw or not. As an example
it will detect that a King versus two Knights and a King is a material draw.
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4.6 Hash Table

The hash table will consist of the following items:

• Move

• Evaluation

• Flag

• Age

• Depth

• Hash key

• Checksum

Move The move that, from the search, was valued the best move to take.

Evaluation Evaluation is the score the position, from the search, was
evaluated as.

Flag The flag tells if the evaluation saved is either an exact score, a beta
cutoff or an alpha value. The exact score means the branch was fully
evaluated, the alpha or beta score means the score was outside the search
window and is not an exact score.

Age The age tells what ply the board was when the score was updated.
The age can be used to remove old entries, meaning entries with a low ply.

Depth The depth tells how deep the search went from the position. If a
thread finds an entry in the hash table, but the depth is shallower than what
is to be searched, the score can not be used.

Hash key The hash key is a 64 bit hash of the position. The hash is made
with a hashing technique called Zobrist hashing. Zobrist hashing works
by XORing different random 64 bit integers to create an (almost) unique
hash of the current state of the position. At startup multiple random 64-bit
integers are created to represent each of the following states the position
can have.

• 64 integers for each of the 12 different types of pieces (separating
between white and black), one corresponding to every square of the
chess board.

• 1 integer for side to move

• 4 integers corresponding to castling rights
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• 8 integers corresponding to a file with a valid en passant capture

One of the reasons to use Zobrist hashing is that the XOR-operation is own
inverse, meaning the operation is undone simply by XORing the same value
once more. This means that the hash of the position can be continually
updated. When a piece is moved, the engine XORs (to remove) the value
corresponding to the square the piece moves from, and then XORs (to add)
the value of the square the piece moves to.

Checksum The checksum is what makes the hash table thread safe. If
two threads write to the table at the same time the checksum will not
compute and the entry is discarded. A more detailed explanation follows.

4.6.1 Lockless Hash Table

To make the hash table thread safe it will be implemented as a lockless hash
table. The lockless hash table works by having a checksum of all the values
in the table. The checksum is calculated locally, before inserting the values
into the table. It then inserts all the values, including the checksum, into
the table. If multiple threads writes to the table at the same the entry is
broken. If a thread later finds the entry in the hash table, the values in the
table will not match with the checksum and the entry is discarded.

The reason it was decided to make the hash table thread safe this way, was
to avoid synchronization overhead when accessing the hash table. The hash
table is big and entries are sparse, threads will very rarely write to the same
hash entry at the same time. Making the hash table thread safe by using
locks was therefore deemed an unnecessary step.

4.7 Opening Book and Endgame Tablebases

To reduce the scope of the thesis it was decided to not implement either an
opening book or endgame tablebase. The engine would play better chess if
this was implemented, but it still plays decent without it, thus following the
requirements given.

4.8 UCI-Shell

To be able to play with other chess engines, the engine has implemented
support for the Universal Chess Interface. This is necessary, because
without some kind of communication interface or GUI an engine is
pretty much useless. There are not many differences between the
various communication standards and the UCI standard was selected for
convenience, as it is the one the author knows the best. The engine supports
the following commands defined by UCI[30].
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• uci

– Explanation: Asked by the UI, to see if our engine supports UCI

– Action: prints ’uciok’

• ucinewgame

– Explanation: Tells our engine to start a new game from the
startposition

– Action: The engine clears all stored information, for example
from the hash table, then sets up the chess startposition

• position FEN-string [moves]

– Explanation: Tells the engine to set up the following position
with an option to tell the engine to also make the following moves

– Action: The engine sets up the position defined in the FEN-string
and makes the moves if given any

• stop

– Explanation: Tells the engine to immediately stop the search

– Action: The engine tells searching threads to stop searching and
return

• isready

– Explanation: Used by the UI to ask if the engine is ready, for
example after the command ucinewgame command

– Action: prints ’readyok’ when ready.

• go [possible arguments as time left etc, or depth to search to]

– Explanation: Used by the UI to tell the engine to start searching

– Action: The engine starts searching with the given arguments as
settings

• setoption name Hash value [size]

– Explanation: Used by the UI to tell the engine to use a hash table
of a specific size in MB.

– Action: The engine frees up the its current hashtable and
allocates a new one, with the size specified by the UI.

• setoption name Threads value [count]

– Explanation: Used by the UI to tell the engine to use a specific
amount of threads

– Action: The engine kills all searching threads and creates new
ones.
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• quit

– Explanation: Tells the engine to quit immediately

– Action: The engine releases all resources, kills the threads then
quits the program

All these commands are handled by an IO-thread which does not do any
of the actual search itself. The IO-thread is not counted toward threads
searching in the parallel search.

4.9 Parallel Search Algorithm, Lazy SMP

A significant part of this thesis is to implement and report test results from
the parallelization algorithm lazy SMP. Why the lazy SMP algorithm was
chosen is explained in chapter 1, but to reiterate the main point; it has given
promising results in multiple engines, but there is a lack of research and
knowledge of the algorithm.

The lazy SMP implementation in this thesis has the following traits. Every
thread start its search from root, and search to various depths. Every thread
is able to report its results to the interface, so for any given depth it is a race
to find the answer faster than other threads.

4.9.1 What Information is Shared Between Threads

In this implementation of lazy SMP the threads share only two pieces of
information, a depth counter and a hash table.

Depth Counter

We only want a single result from each depth of the iteratively deepening
search, as the results from the same depth will always be the same. Since
multiple threads are set to search to the same depth we have to have a way
for the threads to know what depths are already reported to the interface.
This is done with the depth counter. When a thread is done searching a
specific depth it will check if the result it found is the deepest yet, if so it
will try to grab the lock to the depth counter. When given the lock it will
increment the depth counter to its own search depth and then report its
result to the interface. Once this is done the lock to the depth counter is
released, and new threads can report their results if theirs is the deepest
result found yet. This ensures that only one thread reports to the interface
at a time and only a single result from each depth is reported.

Hash Table

All threads use the hash table to report the result of every position they
explore. When the branch of a position is fully explored, the result of the
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search is reported to the hash table. The result can then be reused by any
thread. The evaluation from the hash entry can only be used if the depth of
the entry is big enough for the current search (meaning the same, or deeper
than the current search’s depth). The move, however, can still be used to
improve move-ordering.

4.9.2 Private Heuristics

For the lazy SMP algorithm to work well it is important that threads search
down slightly different paths of the search tree, so that when other threads
eventually search down the same path they find the information already in
the hash table. The simplest way this is done is by setting the threads to
search to different depths. This is not efficient, especially when having a
large amount of threads. The engine implemented search down to a depth
of 10-12 fairly quickly. After that the size of the game tree gets too big for a
thread to return a result within reasonable time. As a result of this the lazy
SMP algorithm commonly sets multiple threads to search the same depth.

4.9.3 Thread to Depth Ratio

As explained, the threads search to various depths. This is to nudge threads
to different branches of the tree and make them benefit from the shared
hash table. The weighting of the thread to depth ratio is one important
aspect of reducing the search overhead. Multiple suggestions have been
made as to what is the best ratio, and in Stockfishs implementation of
lazy SMP this was discussed in detail[38][31]. The thread to depth ratio
needs more testing before an optimal value is found, and will most likely
be implementation specific. This is because different engines behaves
differently when searching, for example some engines value depth highly,
whereas others value evaluation.

The engine in this thesis will uses the following thread to depth ratio: Half
of the threads should search at current depth + 1, a quarter of the threads
should search at current depth + 2, 1/8 of the threads should search at
current depth + 3, and so on. For example, with eight threads the thread to
depth ratio would be like this:
current depth + 1:
4 threads searching
current depth + 2:
2 threads searching
current depth + 3:
1 thread searching
current depth + 4:
1 thread searching

This is implemented using a modulo N counter, a counter which has a
maximum of N states and then resets to zero, where N is the number of
threads. The counter, which in the implementation is called a search_id,
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is synced across all the threads. For a thread to get the depth it uses the
following formula.

current_depth + 1 + count_trailing_zeroes_from_binary(search_id)

Since the binary number 1 has no trailing zeroes the thread that gets
search_id 1 searches at current depth + 1 + 0. Whereas a thread with
search id 4 searches at current depth + 1 + 2 (since 4 in binary has 2 trailing
zeroes).

4.10 Debugging Functions to Assert Correct-
ness of the Program

To assert the correctness of the engine some debugging functions have been
implemented. There are two major test-functions as well as an assert-
function - a function that throughout the program asserts that values of
variables are correct.

4.10.1 Assert Function

The assert function is used throughout the program to assert that the values
of variables and parameters are as expected. The assert function is only
present when the engine is compiled with a debug flag.

1 static void add_move(const S_BOARD *b, S_MOVELIST *list, int from, int to,
int piece,

2 int capture, int promoted, int ep, int castling)
3 {
4 assert(valid_sq(from));
5 assert(valid_sq(to));
6 assert(valid_piece(piece));
7 assert(valid_piece_or_empty(capture));
8 assert(valid_piece_or_empty(promoted));
9 assert(valid_bool(ep));

10 assert(valid_bool(castling));
11

12 ...
13 }

Code 4.4: An example of how the assert function is used. All the param-
eters of the add-move function are checked for correctness, checking that
the to and from squares are valid squares, that the pieces are valid, as well
as that the booleans are valid. The assert function is only called when the
debug flag is set during compile time.

4.10.2 Perft Function

A performance test, commonly known as perft, was used to test and control
that the engine correctly generates and makes moves. The way perft works
is that the engine gets a position, a depth, and a target node count. The

69



engine then calculates all legal moves, ignoring repetition rules, down to
that depth and check the number of leaf nodes in its move-tree compared
to the target node count. For example; from the starting position white
has 20 legal moves, and black has 20 legal responses. A perft test from the
start position with depth 1 will have a target leaf node count of 20. A perft
test from the start position with depth 2 will have a target leaf node count
of 400. Note that only the number of possible end-positions are counted
(leaf nodes), and not total number of positions encountered. Hence why
the target node count is 400 and not 420 (perft depth 1 + perft depth 2).
Since only the end-positions are counted, a branch that terminates before
reaching the specified depth, i.e. by mate or stalemate, is not counted.
A test suite containing various test positions and their leafnode called
perftsuite.epd from rocechess.ch was used in this testing[37]. Following
is an example of how this function was used to find a bug in the move
generation. The position in the example failed at depth 2 of the perft test.

1 Perft from this position:
2 +---+---+---+---+---+---+---+---+
3 8 | n | | n | | | | | |
4 +---+---+---+---+---+---+---+---+
5 7 | P | P | P | k | | | | |
6 +---+---+---+---+---+---+---+---+
7 6 | | | | | | | | |
8 +---+---+---+---+---+---+---+---+
9 5 | | | | | | | | |

10 +---+---+---+---+---+---+---+---+
11 4 | | | | | | | | |
12 +---+---+---+---+---+---+---+---+
13 3 | | | | | | | | |
14 +---+---+---+---+---+---+---+---+
15 2 | | | | | K | p | p | p |
16 +---+---+---+---+---+---+---+---+
17 1 | | | | | | N | | N |
18 +---+---+---+---+---+---+---+---+
19 a b c d e f g h
20 side:W, castle_perm:0, ep:0, fifty_move:0
21

22

23 depth || target | count |
24 -------------------------------------
25 1 || 24 | 24 |
26 2 || 496 | 493 |

Figure 4.2: Perft function example, at depth 2, one can see the count of
leaf nodes is off the target count

Already at depth 2 at this position the engine is missing 3 legal moves, as
one can see from the last line in the figure. The target number of moves
was 496, but the engine only found 493. There was a bug in the move-
generator, but it can be almost anywhere and it can be very hard to find
if given only this information. To narrow down the search for the bug, the
engine was compared against another engine using another function named
perft-divide.

70



4.10.3 Perft-Divide

Perft-divide is a subfunction of perft. Perft-divide outputs all legal moves at
at depth 0, and the number of leaf nodes of the sub-branch of each position.
The thesis perft-divide function was compared against roce chess engine’s
perft-divide.

1 Roces perft-divide Our engines perft-divide
2 e2f2 24 Move: b7a8N, count: 21
3 e2d2 24 Move: b7a8B, count: 21
4 e2e3 24 Move: b7a8R, count: 22
5 e2d1 24 Move: b7a8Q, count: 21
6 e2f3 24 Move: b7b8N, count: 5
7 e2d3 24 Move: b7b8B, count: 22 <==
8 b7b8 23 <== Move: b7b8R, count: 24
9 b7b8 24 Move: b7b8Q, count: 22 <==

10 b7b8 23 <== Move: b7c8N, count: 19
11 b7b8 5 Move: b7c8B, count: 6
12 b7c8 4 <== Move: b7c8R, count: 19
13 b7c8 19 Move: b7c8Q, count: 3 <==
14 b7c8 6 Move: f1d2, count: 24
15 b7c8 19 Move: f1h2, count: 24
16 b7a8 21 Move: f1e3, count: 24
17 b7a8 22 Move: f1g3, count: 24
18 b7a8 21 Move: h1f2, count: 24
19 b7a8 21 Move: h1g3, count: 24
20 f1g3 24 Move: e2d1, count: 24
21 f1h2 24 Move: e2d2, count: 24
22 f1d2 24 Move: e2f2, count: 24
23 f1e3 24 Move: e2d3, count: 24
24 h1f2 24 Move: e2e3, count: 24
25 h1g3 24 Move: e2f3, count: 24
26 Moves: 24 move count: 24
27 Nodes: 496 total node count=493

Figure 4.3: Perft-divide. The left side is roces perft-divide output, the
right side is the thesis’s engine output. The arrows shows where the count
differs.

The output of the perft-divide function, Roces output is on the left, the
engine implemented in this thesis is on the right. The arrows are used
to highlight where the count is off. Its only false where a Bishop or a
Queen is moving, so the search is already narrowed to a single pieces
move-generation (the Queen moves are just Bishop and Rookmoves added
together). To specify it even more we make another move, b7c8Q (bxc8Q).

1 d7e7 1 Move: Kd7d6, count: 1
2 d7d6 1 Move: Kd7e7, count: 1
3 d7c6 1 <== Move: Kd7c8, count: 1
4 d7c8 1 move count: 3
5 Moves: 4

Figure 4.4: Perft-divide 2. Again, left is the roce engines output, right is
this thesis’s engine output. The arrow shows the missing move.
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The engine is missing the move d7c6 (Kc6). The bug was related to the King
in check-function. The engine falsely thought the King was in check by the
Bishop/Queen after moving to c6, while it was in fact not.

4.10.4 Evaluation Flip

Another debug function is the evaluation flip function. This functions
asserts that the evaluation is the same when playing black and white pieces.
The engine should play equally good given either color.

The evaluation flip function takes a position, evaluates it, and saves the
score. It then changes the side to move, and mirrors the board by replacing
all white pieces with black pieces, and flipping the ranks and files of the
board. It evaluates the board again (now as playing the opposite color) and
checks that this score is equal to the original evaluation score.

4.11 Summary

To be able to achieve the goals of the thesis the following requirements were
given to the engine; a complete understanding of all the rules, play decent
chess, communicate with a UI, take advantage of multicore CPUs.

To fulfill the requirements a set of specifications where given. The
specifications were loosely based instructions on what the engine should
implement. A part of the specifications dealt with programming language
and frameworks. Here it was specified that the engine is to be developed in
the C programming language. It was also specified that the multithreaded
part is to be implemented using POSIX threads.

Then the design and implementation choices of the engine where given.
The engine is to be implemented using the bitboard board representation
with magic biitboard move generation. The move structure is to be a 32 bit
integer which contains the from square, the to square, the piece moved, the
captured piece (if any), the promoted piece (if any), an en passant bit (if a
capture was done en passant) and a castling bit (if the move was a castling
move).

The evaluation function is calculated using a base material score, added
with a tablebase lookup as well as a piece-specific tweak. The engine is to
implement tapered evaluation, by always evaluating an early- and midgame
score and weigh this score based on the number of Queens, Rooks, Knights
and Bishops left on the board. The evaluation also is to have a material
draw function which tries to detect material draws.

The hash table will be implemented as a lockless hash table to make it
thread safe. This is done by having an entry named checksum, which is
calculated locally by each thread inserting in to the hash table. Later, when
a threads gets this entry it can assert its correctness by calculating and
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comparing the checksum.

The implementation of the UCI shell was given. Following this was an
explanation of the lazy SMP algorithm. The 2 pieces of information shared
between the threads are a depth counter, stating which depths are already
searched, and the lockless hash table. This means that the each thread
has its own private heuristics which can help nudge threads down slightly
different paths of the game tree.

The engine has multiple debugging functions. One of the debugging
functions is the perft function. Perft is used to assert the correctness of
the move generation. The perft function is accompanied by the perft-divide
function, a function to localize bugs in the move generation.
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Chapter 5

Testing and Results

This chapter presents the result of the testing done on the chess engine. It
will first give an explanation of what test metrics are used, then, in short
describe the test set, hardware and engine settings used to test the engine.

The test results are presented. The first test gives the reader an idea of the
ELO of the engine. The second test gives results that indicate the scaling
capabilities of the engine.

5.1 Test Metrics

There are many ways to test a chess engine, and various tests gives different
information about the engine.

One of the requirements of the engine was that it should play decent chess.
To give the reader an idea of how strong the engine is, a test to estimate the
chess engines ELO is given.

The goal of the thesis was to improve the chess engine on multicore CPUs
using the lazy SMP algorithm. The main metric chosen to represent this
improvement is time to depth. Time to depth gives information as to how
long it took the engine to complete a search to a certain depth. This gives a
direct indication of speedup of the engine.

With the lazy SMP algorithm threads gets information via the hash table
from other threads searching at a higher depth. This means that the results
from an engine using multiple threads are at least as good, and maybe
better, at any given depth. So the time to depth may not be the perfect
metric when compared to playing strength.

5.2 Test Sets

5.2.1 ELO Test

One of the requirements of the engine was that it should play well. A good
metric for this is ELO. To measure ELO precisely the engine needs to a lot
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of games versus similarily skilled opponents, for example by adding it to
the Computer Chess Rating List, a site which test engines up against one
another. Unfortunately there was not enough time to do it this way. Instead
of this it was chosen to run a test to approximate the ELO of the engine.

The ELO test used here is taken from a german computer chess site, and
is called BT2630[2]. The way it works is that the chess engine is fed 30
poisitions with a ’move to find’. For each position the engine is given 15
minutes to search for the move. The time in seconds it takes the engine
to find the correct move is recorded. If it does not find the correct move
a maximum of 900 seconds (15 minutes) is recorded. One then finds the
average of the times and subtract the average from 2630 to find the chess
engines rating.

r ati ng = 2630−aver ag e ti me to sol ve i n second s

The ceiling rating of the test is 2630. This is not an exact test, and is only
here to give the reader an idea of the strength of the engine.

The engine did this test by reading one position’s FEN-string at a time from
a file and then set itself to search for 15 minutes. The output of the search
were then gone over manually to calculate the rating.

5.2.2 Lazy SMP Test

This test is done on a set of a thousand positions taken from a test set used
by Stockfish[31]. For each position a search was done down to a depth of 9
ply. In this test the actual result of the search was not considered. As the
engine searches with the same evaluation function the result of the alpha
beta function should be the same, with the exception that when the search
is done multithreaded threads can get trickles of information from deeper
searches of other threads via the hash table.

5.3 Engine Settings

The engine only has 2 settings. Thread count, which indicates number of
threads searching and hash table size, which indicates the memory usage of
the hash table.

Settings, ELO test:

Thread(s) 1
Hash table size 64 MB

Settings, lazy SMP test:

Thread(s) 1, 2 and 4
Hash table size 64 MB

Table 5.2
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5.4 Computer Hardware

Following is the specifications of the hardware the tests were run on. A
thing to note here is the ’threads per core’-entry. Normally, new Intel CPUs
have hyperthreading. This was turned off after preliminary tests gave bad
results. The CPU used has only four cores, and therefore a maximum of
four threads were used while testing the engine.

CPU specifications:

Architecture: x86_64
CPU op-mode(s): 64-bit
CPU(s): 4
On-line CPU(s) list: 0-3
Thread(s) per core: 1
Core(s) per socket: 4
Socket(s): 1
Model name: Intel(R) Core(TM) i7-6820HQ CPU @ 2.70GHz
L1d cache: 32K
L1i cache: 32K
L2 cache: 256K
L3 cache: 8192K

Table 5.3

RAM specifications (two of this memory chip, total 16 GB):

Data Width: 64 bits
Size: 8192 MB
Type: DDR4
Type Detail: Synchronous
Speed: 2133 MHz
Manufacturer: SK Hynix

Table 5.4

5.5 Results, ELO Test

Of the 30 problems given, the engine solved 21 of the problems within
the allotted time of 15 minutes. The result of the test gave the engine an
estimated ELO of 2238, the positions, moves and times can be found in
appendix B.
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5.6 Results, Lazy SMP Test

Figure 5.1: Average time to depth, at depth 6-9. Running with 4 threads
is about twice as fast as 1 thread.

Average time to depth 9, over the 1000 positions:

Threads Time (ms) Speedup (compared to 1 thread)
1 5209 1
2 4586 1.14
4 2590 2.01

Table 5.5
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Figure 5.2: The number of nodes searched to reach depth. Also called
game tree size.

Average size of search tree, over the 1000 positions:

Threads Nodes searched (x10 000)
Search overhead
(compared to 1 thread)

1 882 0
2 1567 0.78
4 1777 1.01

Table 5.7
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Figure 5.3: The number of nodes per second. Because of the nature of the
lazy SMP algorithm, this number should scale 1 to 1 compared to number
of threads

Nodes per second:

Threads Nodes per second Scaling (compared to 1 thread)
1 1695 1
2 3418 2.02
4 6861 4.05

Table 5.8
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5.7 Summary

There are two tests performed in this thesis. One is a smaller ELO test to
give the reader an idea of how strong the engine is. Another one is a bigger
test which tests the scaling of the multithreaded engine. The metric chosen
to represent the scaling is time to depth, which shows how fast the engine
searches down to a selected depth.

During preliminary testing it was found that hyperthreading throttled the
scaling of the program. All results shown in this the chapter are with
hyperthreading turned off.

The ELO test gave the engine an estimated ELO of 2238. The lazy SMP
results showed that the engine doubled in search speed using 4 threads
compared to 1.
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Chapter 6

Discussions

In this chapter the results shown in the previous chapter are discussed. The
chapter will first discuss the ELO test, explaining that the test should be
taken with a grain of salt. It then discusses the lazy SMP test, discussing
how search overhead is the main bottleneck of the lazy SMP algorithm.

6.1 The ELO Test

The ELO test was only included to give the reader an idea of the engines
playing strength. It does not do much beyond giving an indication of the
engines true ELO and should not be given too much of an emphasis.

The chess engine in this thesis does not have an opening or endgame table.
Since the ELO test only contains midgame positions the true ELO of the
engine may be lower than indicated.

6.2 The Lazy SMP Test

The main result taken from the lazy SMP test is the time to depth. This
shows the actual speedup gained from the threads searching to depth 9.
With 2 threads there was a speedup of 1.14, and 4 threads doubled the speed
of using 1 thread, with a speedup of 2.01.

The other 2 graphs give some interesting insights to how this was achieved.
The first thing to notice in the results is how the nodes per second scales
1:1 with number of threads as shown in figure 5.3 Lazy SMP with a lockless
hash table should have no synchronization or search overhead, and this is
clearly shown to be the case in the nodes per second result. In fact, the
result reports a slightly higher than one to one scaling, however, this is
most likely because threads are not suspended from the search when the
nodes are counted, so the node count reported is a bit higher than the actual
count.

The search tree size graph shown in figure 5.2 shows the search overhead
to be 0.78 using 2 threads and 1.01 using 4 threads. This means that when
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searching with 2 threads the amount of nodes searched to reach depth 9
were 78% bigger than with 1 thread, and with 4 threads the tree size was
101% bigger than with one thread.

While the nodes per second scales 1:1 with number of threads searching,
the bottleneck of the lazy SMP algorithm is the search overhead. Since the
algorithm with 4 threads search over twice as many nodes, the speedup of
the engine is only doubled using 4 threads versus 1 thread.

6.3 Summary

The ELO test should not be given too much of an emphasis, especially
considering how the engine has not implemented an opening or endgame
table.

The lazy SMP algorithm had a speedup of 2, using 4 threads. The main
bottleneck is the search overhead caused by the lazy SMP algorithm.
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Chapter 7

Conclusion

This thesis has shown how the lazy SMP algorithm can be used to speed up
a chess engine using threads on a multicore CPU.

The results show that the main caveat of the lazy SMP algorithm is the
search overhead. The minimal communication between threads allows the
nodes per second to scale 1:1 with number of threads, however, it also
causes threads to do redundant work which negates a lot of the speedup.

7.1 Summary

The background research for this thesis found that there were little
information concerning the new and promising parallel algorithm lazy
SMP. The aim of the thesis was to build a complete chess engine, parallelize
it using the lazy SMP algorithm and, with this, shed some light on how and
why the algorithm works.

The thesis explained how modern chess engines work and how the nature
of the search chess engines use makes them hard to parallelize. Multiple
algorithms that try to solve this problem were presented, each with their
own drawbacks.

The lazy SMP algorithm is a newly discovered algorithm that with its
simplicity quickly made its way into many of today’s strongest chess
engines. It works differently from the other algorithms in that threads keep
communication and synchronization between themselves to the minimum.

The chess engine in this thesis implemented its own lazy SMP algorithm
with success, cutting the time to depth 9 in half, showing that even simple
chess engines can benefit from this algorithm.

7.2 Future Work

The lazy SMP algorithm works because of some random factors. An
example of this can be whether or not a thread gets to write its result to
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the hash table before another thread starts searching the position. Another
example is the randomness of the private heuristics.

As explained in section 4.9.3 Thread to Depth Ratio, a lot of focus has
been given to improve thread to depth ratio of the lazy SMP algorithm. I
do not think this is very important. After the initial tweak it will probably
not give any significant speedup. Focus should instead be put on reducing
the random factor of the algorithm. Lazy SMP could heavily benefit from
achieving close to the perfect scenarios more often. This should not be done
at the expense of a higher communication and synchronization overhead.
Communication between threads should still be kept minimal, as is the
spirit of the lazy SMP algorithm. Following are two suggestions I think can
help reduce the random factor of the lazy SMP algorithm.

The threads searching should at times go back and search through its move
history to check the hash table for possible new hits. This will make the
threads stop redundant search as fast as possible.

The lazy SMP algorithm could heavily benefit from guessing if it is in a CUT
node or an ALL node before deciding which child it should explore. If the
node explored is a CUT node the best move heuristics should be used, but
if the thread is in an ALL node it should choose a random child to explore.
Note that I say random, as I do not think more communication between
the threads is the solution and selecting a random child should be enough
to ensure threads are most likely not searching down the same path. As to
how the thread should guess if a node is an ALL or a CUT node, this can
maybe be done in the same fashion the DTS algorithm selects splitpoints,
although the details of this is not known to me.
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Appendix A

Running the Chess Engine

The engine’s source code can be found on my github page.

https://github.com/emilfo/master

A.1 Linux

The program is compiled with the GNU C Compiler (gcc). To compile; open
a terminal, navigate to the master/src folder and type make. The executable
is named KholinCE.

To play against the engine you need a chess GUI. I recommend using the
small and lightweight Pychess. To install on Ubuntu open a terminal and
type sudo apt-get install Pychess. If you are on another distro instructions
can be found on their site.

A.2 Windows

For windows, a pre-compiled version of the program can be found in the
github repository, under the folder executables.

You need a chess GUI to play against the engine. I recommend Pychess. A
windows installer file for Pychess can be found on their site.

A.3 Pychess

Pychess is a simple chess GUI. Instructions to install it can be found on
their download site.

http://www.pychess.org/download

To run the engine, open Pychess, click Edit->Engines. A new window,
manage engines pops up. Push the ’New’ button, and navigate to the
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compiled version of my engine and add it. Close the pop up window.

In the main window select KholinCE as your opponent. Choose color and
click Start Game.
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Appendix B

Test Positions, ELO Test

Following are the test problems with solutions for the ELO test. It also
includes the move the engine suggested, and the time it used to solve the
problem if the solution was found within the allotted 15 minutes.

8rl0ZrZkZ
7Z0Z0Zpo0
6pZ0Z0Z0Z
5Z0Z0aNO0
40o0ZPZ0O
3Z0Z0ZQZ0
2PO0Z0ZKZ
1Z0Z0ZRZR

a b c d e f g h

80Z0Z0ZkZ
7Z0a0ZpZp
6poPZ0ZpZ
5Z0Z0o0Z0
4PO0A0Z0Z
3Z0Z0ZPO0
20Z0Z0Z0O
1Z0Z0Z0ZK

a b c d e f g h

80Z0Z0s0j
7o0l0Zpo0
60obZ0Z0o
5m0Z0S0MQ
40Z0Z0Z0O
3Z0ZBZPZ0
20ZPZ0ZPZ
1Z0Z0Z0ZK

a b c d e f g h

Best move: Nxg7 Best move: Bxb6 Best move: Re6
Engine move (time): Engine move (time): Engine move (time):
Nxg7 (44 seconds) Bxb6 (11 seconds) Re6 (229 seconds)

80Z0Z0s0j
7ZPZ0Z0op
60Z0O0o0Z
5Z0Z0o0Z0
40O0Z0Z0O
3Z0ZqZ0O0
2QZ0a0ZKZ
1A0Z0S0Z0

a b c d e f g h

80Z0A0Z0Z
7Z0Z0Z0Z0
60ZBZ0Z0Z
5ZKZ0Z0Z0
40Z0Z0Z0Z
3Z0Z0Z0Z0
20Z0o0Z0Z
1Z0ZkZ0Z0

a b c d e f g h

80j0s0Z0Z
7Zpo0Z0Zp
60ZnZ0Z0Z
5O0Z0Z0ZR
40ZRZpZrZ
3Z0O0ZpZ0
20OPZ0A0O
1Z0Z0J0Z0

a b c d e f g h

Best move: Qf7 Best move: Ka6 Best move: e3
Engine move (time): Engine move (time): Engine move (time):
Qa7 (-) Ka6 (1 second) e3 (11 seconds)
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80Z0Z0ZkZ
7o0Z0l0Zp
60mrZ0ZpA
5Z0Z0Z0Z0
40Z0L0O0Z
3Z0Z0Z0O0
2PO0Z0Z0O
1Z0ZRZ0J0

a b c d e f g h

80ZksrZ0Z
7ZpZ0Z0op
6pZbSpo0m
5Z0o0Z0Z0
4PZBZPO0Z
3Z0Z0Z0Z0
20OPZ0ZPO
1S0J0Z0A0

a b c d e f g h

8rZ0Z0ZkZ
7opZ0o0ap
60Z0Z0ZpZ
5m0o0O0Z0
40ZqO0MPZ
3Z0OQA0Z0
2PZ0Z0ZPO
1S0Z0ZKZ0

a b c d e f g h

Best move: Rd6 Best move: Rxc6 Best move: g5
Engine move (time): Engine move (time): Engine move (time):
Rd6 (>1 second) Rxc6 (1 second) g5 (1 second)

80ZrZ0ZkZ
7Zqs0a0o0
6pZ0oPm0Z
5mpoPo0Z0
40Z0Z0Z0Z
3ZPO0A0ZP
2PZBL0O0Z
1Z0Z0ZKSR

a b c d e f g h

80arZ0ZkZ
7o0Z0ZpZ0
60ZpZrZ0Z
5Z0ZpZbZ0
40Z0AnZpZ
3ZPZ0O0Oq
2PZ0ZQZBO
1Z0S0MRJ0

a b c d e f g h

80Z0Z0Z0Z
7opZ0ZkZ0
60ZpZqo0Z
5Z0O0Z0Z0
40Z0Z0O0Z
3ZRZ0o0sp
2PO0ZRZ0Z
1Z0Z0J0ZQ

a b c d e f g h

Best move: Rxg7 Best move: Qxh2 Best move: Qe4
Engine move (time): Engine move (time): Engine move (time):
Rxg7 (44 seconds) Qxh2 (1 second) Qe4 (1 second)

80Zbl0Z0j
7Z0o0Z0Zp
6pZ0o0Z0Z
5Z0Z0Z0ZP
40mBOPLPZ
3s0o0Z0Z0
20Z0Z0Z0Z
1ZKZRZ0S0

a b c d e f g h

80Z0s0skZ
7ZpZ0Zpmp
6pZ0ZpApZ
5ZqOpO0Z0
40O0O0ZRZ
3O0ZQZ0ZR
20Z0Z0ZPO
1Z0Z0Z0J0

a b c d e f g h

80ZbZqZ0Z
7o0Z0Z0Z0
60o0o0Zka
5mPoNZ0Zp
4PZPZPZ0O
3Z0Z0Z0O0
20Z0Z0S0J
1Z0Z0ZQZ0

a b c d e f g h

Best move: Be6 Best move: Rxh7 Best move: e5
Engine move (time): Engine move (time): Engine move (time):
c2 (-) Rxh7 (367 seconds) Rf6 (-)
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80ZksrZ0Z
7opobZpop
60Z0a0Z0Z
5Z0ZqZ0Z0
40Z0O0Z0m
3Z0O0ZNZP
2PO0ZBZPZ
1S0AQZRJ0

a b c d e f g h

80Z0ZrZkZ
7o0lrZpZ0
60Zpa0ApZ
5ZpZ0Z0Zp
40Z0O0m0S
3Z0ZBZPZ0
2PO0Z0OKZ
1Z0L0Z0ZR

a b c d e f g h

80Z0Z0Z0Z
7Z0Z0o0Z0
60Z0Z0Z0Z
5Z0ZPZ0Zp
4PZ0oKZ0Z
3Z0Z0Z0O0
20Z0Z0Z0a
1Z0ZkZ0Z0

a b c d e f g h

Best move: Nxg2 Best move: Qxf4 Best move: d6
Engine move (time): Engine move (time): Engine move (time):
Nxf5 (-) Qxf4 (4 seconds) d6 (1 second)

80Z0s0ZkZ
7opZ0Z0A0
60Z0Z0Zpo
5OPZNo0Zn
40ZPo0o0Z
3Z0ZPZ0Oq
20Z0LPObO
1S0Z0ZRJ0

a b c d e f g h

8rZ0Z0skZ
7Z0Z0ZpZ0
60m0Z0ZpL
5Z0o0Z0Z0
4pZ0Z0ZPZ
3O0Z0ZNZ0
20lbZBO0O
1S0Z0S0J0

a b c d e f g h

8kZ0Z0Z0Z
7Z0Z0Z0Z0
6PO0a0ZPZ
5J0ZPm0ZP
40Z0ZRZ0Z
3Z0Z0Z0Z0
20Z0Z0Zno
1Z0Z0Z0Z0

a b c d e f g h

Best move: f3 Best move: Ra2 Best move: Re1
Engine move (time): Engine move (time): Engine move (time):
f3 (157 seconds) Ra2 (729 seconds) g7 (-)

8rmbZkZ0s
7opZ0lpop
60Z0o0m0Z
5Z0opZ0A0
40aPZ0Z0Z
3Z0M0O0Z0
2PO0ZNOPO
1S0ZQJBZR

a b c d e f g h

80Z0Z0Z0Z
7Z0Z0Z0Zp
60Z0Z0Z0Z
5o0Z0ZpZ0
40Z0Z0J0Z
3Apj0Z0O0
20Z0ZPZ0O
1Z0Z0Z0Z0

a b c d e f g h

8RZ0Z0Z0Z
7Z0ZpZ0Zp
60Z0Z0Z0Z
5Z0ZPZ0O0
40Z0j0Z0Z
3ZpZ0Z0Zp
20O0MKO0O
1Z0Z0Z0Zq

a b c d e f g h

Best move: a3 Best move: g4 Best move: g6
Engine move (time): Engine move (time): Engine move (time):
Bxf6 (-) g4 (22 seconds) g6 (38 seconds)
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80Z0Z0Z0Z
7Z0Z0Z0Z0
60Z0j0o0Z
5o0ZBmPZ0
40Z0ZPM0Z
3ZPZ0J0o0
20Z0Z0Z0Z
1Z0Z0ZbZ0

a b c d e f g h

80ZrZ0ZkZ
7obs0l0Zp
60o0ZpmpZ
5Z0ZpZ0Z0
40Z0O0O0Z
3ZPZBS0Z0
2PA0L0ZPO
1Z0Z0ZRJ0

a b c d e f g h

80Z0s0ZkZ
7o0ZrZ0o0
60o0A0ZPo
5Z0Z0OQZP
40ZbZpZ0Z
3O0Z0O0Z0
20Z0Z0Z0J
1Z0Z0Z0Z0

a b c d e f g h

Best move: Nd3 Best move: f5 Best move: e6
Engine move (time): Engine move (time): Engine move (time):
Nd3 (142 seconds) Rfe1 (-) e6 (8 seconds)

8rmbZkZns
7o0ZpZpop
60Z0A0Z0Z
5ZpZNZNZP
40Z0ZPZPZ
3Z0ZPZQZ0
2PlPZ0Z0Z
1S0Z0ZKa0

a b c d e f g h

8rZbZka0s
7opZnZpop
60ZqZ0Z0Z
5Z0o0Z0A0
4QZBZ0Z0Z
3Z0o0ZNZ0
2PO0Z0OPO
1S0Z0J0ZR

a b c d e f g h

80ZkZ0Z0Z
7Z0o0Z0Sp
6pZpa0Z0Z
5ZpZ0o0Z0
40Z0ZPZ0Z
3ONZPZPZ0
20O0ZKO0s
1Z0Z0Z0Z0

a b c d e f g h

Best move: e5 Best move: O-O-O Best move: f4
Engine move (time): Engine move (time): Engine move (time):
Nc7 (-) Bf7 (-) f4 (80 seconds)
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