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Preface

“On this path no effort is wasted, no gain is ever reversed.” (Bhagavad Gita)

A PhD is such a large project -lengthy in time and dominating in everyday life- that life gets

woven into the project just as much as the project is taking its place in life. I started as a

PhD student in August 2012: Moved to a new city, bought my first apartment and met a boy.

After a couple of months, I also got a “roommate” at NR in a fellow PhD student, the talented

and friendly Martin Jullum. The first paper was submitted in October 2013, but kept haunting

me for two more years. I started the task that had been scaring me the most, namely “finding

something useful in the Junction Tree Algorithm in order to come up with some clever idea”.

My boyfriend’s inspiring younger brother Ådne was undergoing chemotherapy at Rikshospitalet

while I was sorting out the ideas for the “strongest possible messages” for MTP2-distributions.

Torgeir finished his Master’s degree, we moved to California and I experienced a rough start of

pregnancy. After months of guilt for slow progress, I refused to let my PhD experience further

delays when I was hit by a car as a pedestrian in a foreign country five months pregnant. My

first two papers were published during my maternity leave. I loved my work, but hated how I

experienced it as a competitor to my daughter and my family.

I have had the pleasure of having three supervisors, each taking on very different roles. Ragnar

Hauge is especially good at the so-called “green phase” of brainstorming, and I have enjoyed

our many discussions of ideas based on mathematical theory yet unfamiliar to one or both of

us. Jo Eidsvik is someone I look up to due to his academic skills as well as his friendliness

and his balance of life. Jo taught me how to write scientific papers, and the importance of

explicitly expressing the ideas you want the readers to take from a bunch of equations. Arne

Bang Huseby at department of Mathematics, UiO, has been “our man” at UiO, an expert of the

rules, procedures and forms. I also want to thank Arne for interesting and useful meetings and

e-mail exchanges.

Thanks to my family and friends for participating in building a wonderful patchwork of memo-

ries. Torgeir and Edda, mamma Helena, pappa Jørn, Stine and Karina, you are my everything.

I wish I could mention every friendship supporting me the last four years. Among the many I

find Gireeja, Solveig, Johanne & Vidar, Mimi, Roger, Kristine, Heidi and fellow phd students

in statistics at UiO including Martin and Tonje. I would also like to thank NR and the SAND

department for providing a great environment for my phd work. I have felt well taken care of

from the first month to the last; especially thanks to Petter Abrahamsen. Also many thanks to

Solveig Hofvind and Sofie Sebuødegård at Kreftregisteret, for being co-authors of my fourth

paper, and for encouraging words inspiring me to look forward to the next chapter.

Marie Lilleborge, Oslo, July 2016
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1 Motivation

The last 25 years, we have experienced both amazing improvements within the technology of

transmitting, storing and retrieving data as well as huge advances in statistics. Data in general

is now more accessible as sensoring of different environments and automatic data gathering is

increasing in popularity. However, these types of large data sets often contain inconsistent data;

they have different types of variables, and might have lots of missing data as well. This means

that the interpretation of the data is crucial to gain useful information, as well as the question

of how to best use the data or information at hand. This challenge has introduced a growing

popularity of statistics but also an increased interest in black box approaches which tries to

mimic the data without any evaluation of uncertainty or variability.

In many applications, however, data is still costly, not easily collected and/or not available in

large quantities. For petroleum exploration in the North Sea, drilling an exploration well could

cost $100 million and is limited due to seasonal constraints. In medicine, a test is associated

with both economical costs as well as inconveniences for the patient. In these scenarios, inter-

pretation of how the result of different data gatherings will update our view of the situation will

help guide which observations is more informative and how data should be collected.

Modelling uncertainty is key to better understanding, as knowledge is a combination of facts

and logical implications together with the establishment of what is unknown. A model should

incorporate both the uncertainty resulting from lack of knowledge and the variability in the sit-

uation modeled in order to be a proper representation of the phenomenon. New information

updates the model and could possibly reduce the uncertainty. Reduction of uncertainty in the

model then mimics increased knowledge and better understanding, while the variability will al-

ways remain. Probability is the mathematical language of uncertainty, and through probabilistic

models we can reason about how updates and learning propagates between correlated variables.

During the last years, researchers have excelled in building complex models to describe reality,

and invented computational methods for inference in these models. The Bayesian Network

models are a result of mathematical research since the 1980s, and are among the key inventions

from statistics the last 30 years. It was established as a field by Judea Pearl, and among the

major well-known contributors we also find Finn Jensen and Steffen Lauritzen. BNs are now

widely applied; -in medicine, defence, petroleum exploration, web-services, robotics, social

networks and forensic science, to list a few. Pourret et al. (2008) presents twenty real-life case

studies from different fields, together with discussions about strengths and limitations of the BN

models for the specific applications and in general.

BNs can be used to find a diagnosis or an explanation for observations. By observing symptoms

(evidence XE), computation of conditional probabilities helps infer the most probable state of

the variable causing them. Similarly, one can use BNs to learn how a variable Xi depends

on earlier in time occurring variables XE , and using the current state XE = xE to make a

1



1. MOTIVATION

forecast about the future state of Xi. BNs for classification are learning the connection between

covariates and labels in a labeled dataset to predict labels on unlabeled data. BNs are also good

tools for data mining tasks and for risk analysis.

BNs are attractive models for encoding qualitative and quantitative information. The BN mod-

elling phase can incorporate several experts and different types of data in a consistent model.

BNs are convenient for modeling complex dependencies between several random variables, and

allow the construction of intuitive and modular probability statements at the local level. They

can model different covariance patterns for different types of variables. In fact, these models

can account for any correlation structure within the variables. As a graphical model, the BN is

also a convenient tool to visualize the probabilistic dependencies on the model.

The very limitation of BNs is the computational complexity; both of building the model as well

as probability updates in the built network. However, restricted to networks built from data by

guidance of experts, the resulting size stays within the computational limits as experts naturally

form models that are tractable even for the human brain to evaluate at least superficially. Enor-

mous graphical models are also formed automatically by software at corporations like Google,

Amazon and Netflix, where preprocessing allows for approximate calculations with great suc-

cess.

Whether data is cheap or costly, easily accessible or hard to collect, obtaining information from

data requires interpretation and clever reasoning. Further, different sources provide different

data, which means the choice of future observations stochastically determines the information

gained. The optimal information gain depends on which information is most useful for the

current application. These considerations make information gathering a rich field for statistical

research.
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2 Bayesian Networks

Bayesian Networks (BNs) are used in several applications like medicine, forensic science, sen-

sor validation, terrorism risk management, robotics as well as the oil industry. A BN is a directed

graphical model, a way to specify a joint probability distribution of several random variables. It

consists of a directed graph describing the conditional probabilistic dependencies between the

variables, and a set of Local Probability Distributions (LPDs) which parametrizes the full joint

distribution. Inference in BNs is known to be NP-hard, see Cooper (1990).

A Bayesian Network can be learnt from data, specified by an expert or a combination of the

two. Cowell et al. (2007) split the development of a BN into three phases. First, the relevant

variables are specified. Second, the dependence structure between the variables is specified.

This is referred to as the qualitative stage, where the relevance of one variable to another is

considered. The third phase is to assign component probabilities, the numerical values required

to build the full model. This last step is referred to as the qualitative stage.

In the qualitative building stage, the graph allows for intuitive modelling by a single expert, or

similarly, allows several experts to have transparent discussions in order to agree on a common

model. The graph can also be learnt from data, see chapter 7 in Jensen & Nielsen (2007) or

chapter 3 in Højsgaard et al. (2012). For the qualitative building stage, the simplest idea is to

estimate the required conditional probabilities directly as the corresponding frequencies in the

data or use the maximum likelihood approach. In some applications, a few or all conditional

probabilities are known to the expert, and can be directly specified. The conditional probabilities

can also be estimated by a Bayesian approach, see chapter 9 in Cowell et al. (2007). Building

the graph is not the focus of this thesis, and the reader is referred to the text books Jensen &

Nielsen (2007), Cowell et al. (2007) and Højsgaard et al. (2012) for further reading.

2.1 Directed Acyclic Graphs

Directed graphs are commonly used without a proper definition, we present a definition from

Cormen et al. (2009).

Definition 1. A directed graph G is a pair (V,E), where V is a finite set and E is a binary
relation on V . The set V is called the vertex set of G, and its elements are called nodes. The set
E is called the edge set of G, and its elements are called edges.

The elements in E are ordered pairs of nodes, and if e = (i, j) ∈ E, there is an edge e from

node i to node j. We say that i is a parent of j and that j is a child of i. A root is a node with no

parents, and a leaf is a node with no children. To illustrate a directed graph, each node is drawn

as a circle and each edge (i, j) as an arrow from i to j; like in Figure 2.1.

A walk (from n1 to nN ) is a sequence of nodes n1, · · · , nN such that (ni, ni+1) ∈ E ∀i < N ,

3



2. BAYESIAN NETWORKS

3 5 6
8

1 2 4
7 9

Figure 2.1: An example DAG G = (V,E) with nine nodes V = {1, · · · , 9} and six edges

E = {(1, 3), (2, 3), (4, 5), (4, 6), (7, 8), (8, 9)}. The DAG has three connected components: Collider

({1, 2, 3}, {(1, 3), (2, 3)}), Fork ({4, 5, 6}, {(4, 5), (4, 6)}) and Chain ({7, 8, 9}, {(7, 8), (8, 9)}).

and a path is a walk along distinct nodes.1 If there is a path from node j to node k, we say that

j is an ancestor of k, and k is an descendant of j. In Figure 2.1, we see that the leaf node 3 has

two parents, Pa(3) = {1, 2}, and the same ancestors, Anc(3) = {1, 2}. Similarly, the root node

7 has one child, Ch(7) = {8}, and two descendants, Desc(7) = {8, 9}.

Let 2V denote the power set of V , i.e. the collection 2V = {W : W ⊆ V } of all subsets of V .

The above family relations define functions from a node i to a set of nodes for which the family

relation to i is met, namely

Pa : V → 2V s.t. Pa(i) = {j ∈ V : (j, i) ∈ E} ,
Ch : V → 2V s.t. Ch(i) = {j ∈ V : (i, j) ∈ E} ,

Anc : V → 2V s.t. Anc(i) = {j ∈ V : ∃{k�}m�=1 with k1 = j, km = i, (k�, k�+1) ∈ E ∀�},
Desc : V → 2V s.t. Desc(i) = {j ∈ V : ∃{k�}m�=1 with k1 = i, km = j, (k�, k�+1) ∈ E ∀�}.

It is common and practical to extend the definition of the functions to sets C by taking union

over the evaluation for each element and excluding all variables already present in C, such that

Anc(C) =
(⋃

k∈C Anc(k)
)
\ C and similarly for the other functions. In Figure 2.1, this means

e.g. Pa({3, 5}) = {1, 2, 4} and Desc({7, 8}) = {9}.

A cycle is a path with the modification that the first and last nodes are equal. Whenever a

directed graph has no directed cycles, it is called a Directed Acyclic Graph (DAG). All DAGs

have a topological ordering of the nodes, i.e. a bijective numbering of the nodes � : V →
{1, · · · , |V |} such that �(j) < �(k) for any edge e = (j, k) ∈ E. The following straightforward

topological sort algorithm for the nodes of a DAG is from Cowell et al. (2007):

• Initialize a copy of the graph: All vertices are unnumbered, and i = 1

• While there are vertices in the graph:

– Give number i to a vertex with no parents and delete it from the graph

– Update i← i+ 1

Cormen et al. (2009) proves that a depth-first search finishes the nodes in an opposite topological

order. That is, another way to perform topological sort on a set of nodes in a DAG is to do a

1In the literature one will also find definitions that says a path is a sequence of edges (where each end node

matches the next start node) or an alternating sequence of edges and nodes(where each edge is preceded by the

start node and succeeded by its end node). However, these definitions have no practical differences implied.
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2.1. Directed Acyclic Graphs

1

2 3

4

1

2 3

4

1

2 3

4

Figure 2.2: Left picture: An example DAG G = (V,E) with V = {1, 2, 3, 4}, E =
{(1, 2), (1, 3), (2, 4), (3, 4)}. Middle picture: Undirected version of the DAG. Right picture: Moral

graph of the DAG.

depth-first search and insert each node at the top of a linked list whenever the search is finished

processing it.

This thesis is about BNs, which are specified by directed graphs. However, the thesis is also

about fast computation for BNs, and this will lead us to corresponding undirected graphs. An

undirected graph has undirected edges {i, j}, which are usually visualized as lines between

the corresponding pair of nodes. Some authors refer to undirected edges as links, perhaps to

emphasize the difference of the relation introduced within the node-pair; namely the “equality”

of the end points for an undirected edge compared to a directed one. An undirected edge can

be interpreted as two directed edges, one in each direction, and be visualized as both directed

edges. Similarly, a third option is to visualize the undirected edge as a double-headed arrow.

In this thesis, we will visualize undirected edges as a line (with no arrowheads). If {i, j} ∈ E,

we say that i and j are neighbors, and we define Ne(i) = {j ∈ V : {i, j} ∈ E} to be the set

of neighbors of i. An undirected graph is complete if all pairs of nodes are neighbors. A set of

nodes C in an undirected graph constitute a clique if all pairs of nodes in C are neighbors. If

an undirected graph has a path between nodes i and j, we say that i and j are connected. The

undirected version (Ṽ , Ẽ) of a directed graph (V,E) has the exact same nodes Ṽ = V and each

edge is represented without direction, Ẽ = {{i, j} : (i, j) ∈ E}.

A directed graph is also associated with another undirected graph called the moral graph, see

Figure 2.2. To obtain the moral graph, a procedure called moralization is performed before

the direction of edges are removed. For all triplets i, j, k where j, k ∈ Pa(i), an edge is added

between j and k if there is not already one present (i.e. (j, k) ∈ E or (k, j) ∈ E). This

procedure ensures that all parents with a common child are married2. The moral graph is the

undirected version of the graph after moralization.

According to Bondy & Murty (2008) a tree is an undirected graph which is connected and

acyclic. It is easy to see that any pair of nodes in a tree are connected by exactly one path, and

some references prefer this equivalent definition. As a simple example of a tree, we have the

star graph {{1, · · · , n}, {{1, j} : j ≥ 2}} of size n, where a single center node is connected

to all other nodes and these other nodes are only connected to the center node. It is common to

2According to Oxford Dictionary, marriage is the “union of [two] partners in a relationship”. In a graph, a

relationship is to be joined together with an edge. For dynamic relationships, the reader is referred to Durrett

(2007).
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2. BAYESIAN NETWORKS

refer to a directed graph as a tree if it has a single root and its underlying undirected graph is a

tree.3

A graph itself (directed or not) is connected if every pair of nodes are connected in the undi-

rected version of the graph. A subgraph (Ṽ , Ẽ) of a graph (V,E) has a subset of the nodes

Ṽ ⊂ V and a restricted edge-set Ẽ = {(i, j) ∈ E : i, j ∈ Ṽ }. Any graph can be decomposed

into connected components (subgraphs) where each node is represented in exactly one subgraph

and all subgraphs are connected.

2.2 Bayesian Networks

In a BN, a DAG is used to express possible conditional independence assumptions among a

set of random variables XV . We let XA = [Xi]i∈A denote the random vector indexed by an

index set A ⊆ V , such that each entry Xi is a random variable for the index i ∈ A. In this

thesis, we assume all random variables are discrete. Also, we let the assignment to a random

variable be implicit, as we let P
(
Xi|XPa(i)

)
denote P

(
Xi = xi|XPa(i) = xPa(i)

)
or P (XV ) de-

note P (XV = xV ) for some implicit values of xi and xPa(i) or xV . This is especially convenient

when we are going to integrate out variables, i.e. sum over all possible assignments. The ex-

pected value E[XV ]f(XV ) is explicitly written out as
∑

XV =xV
f(xV )P (XV = xV ), but in the

following it will be shortened down to
∑

XV
f(XV )P (XV ).

The following definition is from Russell & Norvig (2003).

Definition 2. A BN is a graph, consisting of a set of nodes V = {1, · · · , n} and a set of directed
edges E = {ei}ne

i=1 between pairs of the nodes. It is required that the graph has no directed
cycles, i.e. it is a DAG. In addition, each node i represents a random variable Xi and has a
set of LPDs P

(
Xi|XPa(i)

)
associated with it. The full joint probability distribution over all the

Random Variables represented in the network is

P(X1, · · · , Xn) =
n∏

i=1

P
(
Xi|XPa(i)

)
. (2.1)

Often in applications, one does not distinguish between the node i and the random variable Xi.

For each node i and for each assignment to the random variables of its parents, P
(
Xi|XPa(i)

)
is a probability distribution for the variable Xi, hence sums to 1. The LPDs are functions

defining a local behavior (with respect to the parents) of a variable. We will see by conditioning

and marginalization of the full distribution in (2) that actually the LPDs actually equals the

corresponding conditional distributions, i.e. P
(
Xi|XPa(i)

)
= P

(
Xi|XPa(i)

)
. We continue to

refer to the LPDs as they are the defining pieces of the full distribution.

Observe by summing out variables in the opposite topological order that any set of nodes C has∑
XC

∏
k∈C

P
(
Xk|XPa(k)

)
= 1 (2.2)

3Some references even allow all edges to point in the opposite direction (the somehow contradictory directed

edges “towards the root”) and distinguish the two types of directed trees as in-trees (edges into root) and out-trees

(edges out from root).
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2.2. Bayesian Networks

(for any assignment to XPa(C)), and

P (XC) =
∑

XAnc(C)

∏
k∈C∪Anc(C)

P
(
Xk|XPa(k)

)
. (2.3)

In fact, combining the above equation with Bayes’ theorem proves

P
(
Xj|XPa(j)

)
=

P
(
Xj, XPa(j)

)
P
(
XPa(j)

) = P
(
Xj|XPa(j)

)
,

that is, each LPD P (Xj|XPa(j)) equals the corresponding conditional probability distribution.

Recall that an edge in the DAG encodes a possible conditional dependence relationship between

two variables in the BN, as the edges determine the variables each factor depends on in the

formula of Definition 2. Whether a set of variables actually are conditionally dependent of each

other, is determined by the parameters in the LPDs. Let i ⊥ j denote if the graph ensures that

two Random Variables Xi, Xj are independent (P (Xi) = P (Xi|Xj)), and i ⊥ j | k if the graph

ensures that Xi, Xj are conditionally independent given Xk (P (Xi|Xk) = P (Xi|Xj, Xk)).

Correspondingly, we let i �⊥ j denote that the graph does not encode that the Random Variables

Xi, Xj are independent, as well as for i �⊥ j | k in the conditional case.

The Bouncing Ball Algorithm in Jordan (t.a.) is an algorithm for finding all conditional inde-

pendence relationships in a DAG. This algorithm is equivalent to the more tedious routine of

using Bayes Rule on the general joint probability distribution as found in Definition 2 to check

each possible independence statement in the given graph. Another algorithm for checking con-

ditional independency statements is d-separation, and is based on a generalization of the three

possible types of three-node interactions. We have seen the categorical three-node-interactions

in Figure 2.1:

1. The “Collider” visualized by nodes 1, 2, 3,

2. The “Fork” visualized by nodes 4, 5, 6,

3. The “Chain” visualized by nodes 7, 8, 9.

For any edge (i, j) we always have i �⊥ j, and for any two nodes k, l in different connected

components we have k ⊥ l. For Figure 2.1, we also have 1 ⊥ 2 and 1 �⊥ 2 | 3 for the Collider,

5 ⊥ 6 | 4 and 5 �⊥ 6 for the Fork, 7 ⊥ 9 | 8 and 7 �⊥ 9 for the Chain.

Note that we let ⊥ and �⊥ denote independences implied by the graph, and in addition there

are always LPDs that makes independences not ensured by the graph. In fact, if we let Xi or

Xj be deterministic, the pair will be (conditionally and non-conditionally) independent. This

however, does not prevent us from representing their joint distribution by a DAG where Xi and

Xj are connected by an edge (Xi, Xj). The edge between Xi and Xj just allow for probabilistic

dependence between them.

The following Theorem from Russell & Norvig (2003) describe the two standard conditional

independence relations that are characteristic for BNs.

Theorem 1. If the distribution function is positive (P (XV ) > 0 for all assignments), then:

7
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2 31

5

6

7 8

94

1210 11

Figure 2.3: A BN with 12 nodes. The Markov Blanket of the dark gray node 6 is given black color,

while the remaining nodes are in light grey. Theorem 1 gives two independence statements for node 6,

namely 6 ⊥ 1, 5, 3, 9, 12 | 2, 4, 7, 8, 10, 11 and 6 ⊥ 1, 3, 4, 5, 7, 8, 9, 10, 12 | 2.

• A Random Variable is conditionally independent of its non-descendants, given its parents.

• A Random Variable is conditionally independent of all other nodes in the network, given
its Markov Blanket. The Markov Blanket of a node is the set consisting of its parents, its
children and the parents of its children.

The Markov Blanket of a node is illustrated in for an example DAG in Figure 2.3. The Theorem

can be proved by applying Bayes rule on the joint probability distribution as found in Definition

2. For a further introduction to BNs, I recommend Jensen & Nielsen (2007), Cowell et al.

(2007) or Koller & Friedman (2009) as textbooks purely on graphical models, or the broader

Artificial Intelligence textbook Russell & Norvig (2003). I also recommend Bondy & Murty

(2008) as a purely graph theoretic book4 placing directed and undirected graphs in a more

general framework.

4This book is free from probability distributions except for a chapter on random graphs, a concept out of scope

for this thesis.
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3 Junction Tree Algorithm

The Junction Tree Algorithm (JTA) is commonly considered the most efficient way to calculate

a series of queries (probability statements) for a given graphical model, like a BN. The JTA was

originally developed by Lauritzen & Spiegelhalter (1988), and has since then been established

as the standard BN inference engine. There are several good JTA packages or open source

implementations available. The JTA can be viewed as an improvement on the more intuitive

Variable Elimination (VE) algorithm.

3.1 Variable elimination - a simpler inference engine

Assume we want to calculate the conditional distribution P (XR|XB) of the variables XR for

a given assignment to the variables in XB. This instruction to calculate a given probability

is referred to as a query. Note that potentially a query could have B = ∅, which instructs a

marginalization from P (XV ) to P (XR). On the other side, R could contain one or more nodes.

Also, the JTA can return a representation of the conditional joint distribution of XR or evaluate

it for a given assignment XR = xR.

Recall from Chapter 2 that the full joint distribution of the variables in a BN is a product of

factors P (Xi|XPa(i)), where each factor also is referred to as the LPD of the variable Xi. Thus,

the variable Xi appears both in its own LPD as well as in the LPDs of its children. These LPDs

are our initial tables, where for a given node i, the ”table” P (Xi|XPa(i)) has an entry for each

possible assignment to {i} ∪ Pa(i) from which we can read off the corresponding probability

P
(
Xi|XPa(i)

)
. Let D denote the set of tables, such that initially P (XV ) =

∏
D∈DD, where we

implicitly select the entry of each table which is consistent with the assignment to all variables

XV . The first step of the VE-algorithm is to incorporate the evidence to the tables by deleting

all entries not consistent with the evidence. That is, for every node b ∈ B and for every table

D in which Xb appears, update D to the smaller table just containing the entries where the

assignment to Xb is consistent with the evidence assignment XB = xB in the query. It is now

as if the nodes b, b ∈ B does not appear in any table, since no table has entries depending on

the assignment to Xb. This procedure is called instantiating the evidence.

Jensen & Nielsen (2007) further describe the routine of VE as:

• Repeat until only variables Xi, i ∈ R appear in the tables in D:

– Select a variable Xi, i �∈ R appearing in some table D ∈ D

– Let Di be the set of tables D ∈ D in which Xi appears

– Remove all tables D ∈ Di from D

– Calculate the product of all tables D ∈ Di

9



3. JUNCTION TREE ALGORITHM

– Marginalize Xi out of the new table

– Place the resulting table in D

• Normalize the resulting (product of) table(s) to obtain the distribution P (XR|XB).

Note that the VE-algorithm does not provide any guidance towards which order the variables

Xi should be eliminated, i.e. marginalized out.

3.2 Efficiency

In each cycle of the VE-algorithm, a variable Xi is marginalized out of the set of tables Di. If

all variables are binary, a table where n variables appear has size 2n. Let ni be the total number

of variables appearing in the tables in the collection Di. Calculating the product of all tables

in Di means constructing and assigning values to a table with an entry for each assignment

to the ni variables, and hence has exponential time complexity in ni. The marginalization of

each variable Xi introduces such a new table, which is potentially constructed from previously

constructed tables together with some original LPDs.

Assume a directed out-star with n binary variables, see the left picture of Figure 3.1 for n = 6.

1

23

4

5

6
1

23

4

5

6

Figure 3.1: The directed star graphs of size 6. Left: Out-star. Right: In-star.

(Without loss of generality, we can assume this is the resulting graph after instantiating some

evidence in some other variables.) Note that all LPDs depend on the center node X1. We will

first consider the elimination sequence X1, X2, · · · , Xn. If X1 is eliminated first, D1 would

contain all tables. The resulting table after X1 is marginalized out would depend on all other

variables, and have size 2n−1. Before X1 is marginalized out, each entry in the product-table

is calculated as a product of one entry in each of the n LPDs. After X1 is marginalized out,

each entry in the resulting table is a sum of two of the product-table entries. We say that the

time-complexity of constructing the resulting table after elimination of X1 is n · 2n +2n, where

the first term is for constructing the product-table, and the second term is for calculating the

resulting table as 2n−1 sums of two entries. Each further marginalization will produce a table

of half the size of the previous table until we are left with the desired (conditional) marginal

probability as a table of size 1. Iteratively for i = 2, · · ·n, a table of size 2n−i is calculated

from the previous table of size 2n+1−i, as each entry in the new table is a sum of two entries

in the previous table. The iterative step i where Xi is eliminated has time complexity 2n+1−i,

10



3.3. Standard JT construction

and we end up with the total time-complexity (n+ 2) · 2n − 2 for the full VE-algorithm for the

elimination sequence X1, X2, · · · , Xn.

Consider the opposite order of the elimination sequence, namely Xn, Xn−1, · · ·X1 for the out-

star of size n. Dn would contain the LPD of X1 and Xn, and the resulting table after Xn is

marginalized out would depend only on X1 and have size 2. The time-complexity of construct-

ing this resulting table is 2·22+22, again with the first term for constructing the product-table and

the second term for the pairwise sums. Correspondingly, each subsequent step i = 2, · · ·n− 1

would have Dn+1−i containing the previous table and the LPD of Xn+1−i. The complexity of

constructing the resulting table is again 2 · 22 + 22, and the resulting table would again only

depend on X1 after each step. Finally, step n is left with only the table constructed in step n− 1

and the sum of the two entries is calculated with time complexity 2. The total time-complexity

of the full VE-algorithm for the elimination sequence Xn, Xn−1, · · ·X1 is 12n − 10. We see

that the out-star is an example where the elimination sequence has dramatic consequences on

the time-complexity of the VE-algorithm. However, note that for some BNs, any elimination

sequence leads to exponential time- and memory-complexity. As an example, the in-star of size

n will have the first product-table contain all variables for any elimination sequence. The in-star

is visualized in the right picture of Figure 3.1 for n = 6.

Both the sizes of the tables constructed by the VE-algorithm (complexity of memory needed)

and the time-complexity of a full VE run depends on the elimination order in general. However,

the VE does not provide any guidance for the order of the marginalizations or variable elimina-

tions. In fact, computing the optimal variable elimination sequence is in general NP complete.

If we are to compute several queries P
(
XAj
|XBj

)
and can reuse the elimination sequence in

some sense, it can obviously pay off spending some computational resources on finding a good

elimination sequence. This is where the JTA comes in to play. It introduces an initial step

where a computational object called a Junction Tree (JT) is constructed. The JT is an alterna-

tive representation of the joint distribution of the variables XV , and it implicitly guides towards

an elimination sequence. The problem of finding a good elimination sequence is now turned in

to a problem of finding a good JT.

3.3 Standard JT construction

A JT is an undirected graph, more specifically a tree, and its nodes are representing a corre-

sponding variable set. The JT we are going to construct will have nodes which represents a

set of BN nodes. These sets will not be disjoint, but organize the BN nodes according to the

probabilistic dependencies. In fact, each JT node will represent a table like in Chapter 3.1, and

variables appearing in the same LPD of the BN will be appearing in a common JT node.

Almond & Kong (1991) present an alternative representation of the computational object which

I myself prefer to the standard JT due to improvements in both calculation time and memory

while not requiring significant changes to the JTA. One might argue that the difference is more

or less an implementation detail, but in my perspective the theory in Almond & Kong (1991)

simplifies not only the implementation but the theoretical presentation of the algorithm. How-

ever, since JTs as we will define in this section is the established standard, I find it most proper

11



3. JUNCTION TREE ALGORITHM

to start with this standard JT definition.

The construction of a JT for a given BN has an initial step where an undirected graph is con-

structed. This step is a combination of two general algorithms for graphs: First moralization of

a DAG and then triangulation of the resulting undirected graph. The final step of JT construc-

tion includes a third general algorithm for graphs, namely finding a maximal weight spanning

tree in an undirected graph. Moralization is known from Chapter 2 and efficient algorithms for

finding a maximal weight spanning tree can be found in Cormen et al. (2009) (e.g. Kruskal’s

and Prim’s algorithm in section 23.2). Triangulation is a procedure which adds edges until

all cycles vk1 , · · · , vk� of length � in the undirected graph (V, L) does have a crossing edge

{vki , vkj} ∈ L for a pair of indexes 1 ≤ i, i + 2 ≤ j ≤ n. This crossing edge is commonly

referred to as a chord, and a graph for which no edges are added during triangulation is called

chordal. Note that all resulting graphs are chordal after triangulation. Optimal triangulation for

JT construction is NP complete, originally proved in Yannakakis (1981). This is discussed in

section 4.4.1 in Cowell et al. (2007), where also a one-step look ahead triangulation algorithm

is presented. Triangulation is also discussed and attacked in section 4.6 of Jensen & Nielsen

(2007).

Before introducing the full JT construction procedure, we will see how the first two steps (mor-

alization and triangulation) illustrate the major difference of the similar-looking in-star and

out-star from Figure 3.1. The moral graph of the out-star on the left side of Figure 3.1 is its

undirected version, the undirected star on the left side of Figure 3.2. Correspondingly, the

1

23

4

5

6
1

23

4

5

6

Figure 3.2: The undirected star graph of size 6 (left) and the complete undirected graph of size 6 (right).

moral graph of the in-star on the right side of Figure 3.1 is the complete graph on the right side

of Figure 3.2. This is related to the fact that there are efficient elimination sequences for the

out-star but not for the in-star. Note that both undirected graphs in Figure 3.2 are triangulated,

as the left graph has no cycles and the edge set of the right graph contains all possible chords

for all of its cycles.

JT is actually a general concept for undirected graphs, also used in relational databases1. Our

definition is following Cowell et al. (2007).

Definition 3. A JT is an undirected tree (N , L) whose nodes Ni ∈ N are associated with a
variable set φ(Ni) each. A JT is required to have the running intersection property; for any two
nodes Ni, Nj having a non-empty intersection S = φ(Ni) ∩ φ(Nj) �= ∅, this intersection S is

1Join Trees is another name for Junction Trees
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3.3. Standard JT construction

contained in the corresponding node set φ(Nk) for any node Nk on the (unique) path between
the nodes Ni, Nj .

Note that some references, for example Jensen & Nielsen (2007), have definitions that require

the variable set φ(Ni) to be the cliques of an underlying undirected graph.

In practice, the JT T = (N , L) is constructed for a computational reason. The key point

of the JT for efficient computation in BNs is that ∪Ni∈Nφ(Ni) = V and that ∃Ni ∈ N :

{j}∪Pa(j) ⊆ φ(Ni) ∀j ∈ V . This allows the JT to represent the joint probability distribution

of all variables in the BN, and the latter requirement ensures that each LPD will have a JT node

where all its variables are represented. There are in general several possible choices of a JT for a

BN, for example the trivial T = ({V }, ∅). When the result of the moralization and triangulation

is a complete graph, the trivial JT is the only option. For most BNs there are several possible

JTs, see Figure 3.3. For efficient calculations, this choice matters. We will later see that it is

BN:
JTs:1

2
3

4 1,3 1,2 1,41 1

1,2 1,3 1,41 1

1,2 1,4 1,31 1

1,2 1,3 1,4

1

Figure 3.3: A BN with one parent and three children (left picture) has three possible standard JTs

(middle pictures). Note that all three standard JTs have both edges with the same separator-set (node 1),

and by merging equal separators as in Almond & Kong (1991) all three JTs result in the visually simpler

AT on the right.

desirable that each JT node represents a small subset of the BN nodes, and that the JT rather has

a larger number of nodes. In fact for JTA, it is optimal to choose a JT where the set of nodes

N represents (through φ) exactly the maximal cliques of a triangulated moralized version of

the BN. In general, also this choice leaves several possibilities. We will see that a there is a

link between a variable elimination sequence and a triangulation. However, finding the optimal

JT is an NP-complete problem due to triangulation, so in applications one tries to find a ”good

enough” solution. Note that in the following, for simplicity, we will not distinguish between the

JT node Ni and its corresponding maximal clique φ(Ni) in the underlying BN. As is common

in the literature, we will refer to the JT node as the node set Ni.

In the original formulation of the JTA, standard JTs as in Definition 3 are used. A standard JT is

constructed from a BN by first moralizing the DAG, then triangulating the undirected version of

the moralized graph, and finally presenting a maximal weight spanning tree from the complete

graph whose nodes are the maximal cliques in the triangulated graph and where the weight of

each edge (Ni, Nj) is |Ni ∩Nj|.

For the out-star (left side Figure 3.1), the triangulated moral graph is the undirected star (left

side Figure 3.2) with maximal cliques {1, 2}, {1, 3}, · · · {1, n}. Any pair of the maximal cliques

have exactly one BN-node in common, which leads to a complete graph with node set {{1, k}nk=2}

13



3. JUNCTION TREE ALGORITHM

and equal weights of all edges. Any spanning tree is therefore a maximal weight spanning tree,

and we can choose the chain-graph with node set {{1, k}nk=2} and edge set {{{1, k}, {1, k + 1}}}nk=2

as our JT. This is illustrated in Figure 3.3 for n = 4. A more complex JT-construction process

is visualized in Figure 3.4.

BN:

1 2
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9

Moral graph:

1 2
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9

Triangulated:

1 2

3

4

7

5

6

8

9

Clique graph:

2,7,8

2,4,51,3,4

4,6

5,8,9 2,5,8

JT:

2,8

2,5

4 4

5,8 2,7,8

2,4,51,3,4 4,6

5,8,9 2,5,8

Figure 3.4: The process of constructing a standard JT (bottom right, separators visualized in a square on

the corresponding edge) from a given BN (top left).

Finally each JT node N should be associated with a table DN where the domain is all possible

assignments to all variables XN . Similarly as for VE, we want P (XV ) =
∏

N∈N DN . As each

LPD of the BN has a JT node where all its variables are represented, we select one such JT

node for each LPD and let DN be the product of the LPDs for which N was selected. Also let

each separator (edge) {Ni, Nj} ∈ L store a table DNi,Nj
with domain all possible assignments

to Ni ∩Nj . All entries of the separator tables can be set to have value 1 initially.

3.4 Message passing in a standard JT

Assume a JT (N , L) constructed from a BN (V,E) by moralization, triangulation and finally

a construction of a maximal weight spanning tree in the complete clique graph. We refer to

the elements of N as clique nodes Ni and the undirected edges {Nj, Nk} of L as separa-

tors. We further assume that the clique nodes are numbered according to a topological or-

dering N1, · · · , Nm and refer to N1 as the root. Recall that for any node Nj , the (unique) path

(Nk1 , Nk2 , · · · , Nks), k1 = j, ks = 1 from Nj to N1 has monotonically decreasing indexes

k1 > k2 > · · · > ks. Define a neighbor-towards-root function r : N → N ∪ {∅} such that

r (Nj) is the unique lower-numbered neighbor of Nj for j > 1 and r (N1) = ∅. Note that
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3.4. Message passing in a standard JT

unless the JT is a chain, ∃i �= j such that r(Nj) = r(Ni). That is, several JT nodes have the

same neighbor-towards-root in general. We will treat ∅ as a fictious neighbor of the root N1,

catching the normalization constant as a result of the first sweep of the message passing. The

message passing consists of two sweeps, first towards the root guided by the function r (from

Ni to Nj = r(Ni)) and secondly away from the root as replies in opposite order of the towards

root messaging (replies from Nj to all Nis such that r(Ni) = Nj).

Assuming a query P (XA|XB), the message passing in a JT is instructed as follows. Note that

messages M are also tables.

• Instantiate evidence: For each variable Xk, k ∈ B, select a clique node Nj containing

k. Set the entries of DNj
to value 0 for all assignments to XNj

violating the assignment

to Xk in the evidence XB. We continue working with
∏m

j=1 DNj
as an non-normalized

representation of the joint conditional distribution for the non-evidenced variables. The

normalization constant has the same value as the probability P (XB) of the evidence, and

will be calculated as a result of the first sweep of the message passing.

• Message passing towards root: For j = m, · · · , 1, send message from node Nj: Collect

the current table DNj
and the incoming messages M→

Nk
in a temporary table φj , from

which the outgoing message M→
Nj

to r(Nj) is computed as a marginal of the variables

Nj ∩ r(Nj) represented in both ends of the separator {Nj, r(Nj)}, namely

M→
Nj

=
∑

XNj\r(Nj)

φj, φj = DNj
·

∏
Nk∈Ne(Nj)\{r(Nj)}

M→
Nk

DNj ,Nk

.

After the message M→
Nj

is sent (making M→
Nj

an incoming message to r(Nj)), reset the

current table to DNj
=

φj

M→Nj

.

• Intermediate result: After message passing towards root and the subsequent message

M→
1 passed from the root N1 to its fictious neighbor ∅, the probability of the evidence is

collected as P (XB) = M→
1 and we have a normalized representation of the conditional

joint distribution

P
(
XV \B|XB

)
=

m∏
j=1

DNj
=

m∏
j=1

P
(
XNj\r(Nj)|XNj∩r(Nj)

)
.

• Message replying outwards from root: For j = 1, · · · ,m, send a reply from node Nj

to each node Nk with r(Nk) = Nj , i.e. each node from which Nj received a message in

the message passing towards root. If j > 1, reset DNj
to φj calculated as a product of

the incoming reply and the current table, i.e. φj = M
Nj←
r(Nj)

· DNj
. After the update, the

current table stores the conditional joint of its BN variables. Then, for each k such that

r(Nk) = Nj , send as a reply the marginal of XNk∩Nj

MNk←
Nj

=
∑

XNj\Nk

DNj
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3. JUNCTION TREE ALGORITHM

from Nj to Nk over the separator {Nj, Nk}. Let the separator store a copy DNi,Nj
=

MNk←
Nj

.

• Result: In the intermediate result, we used that the product is constant as long as one term

is multiplied with the same amount as another term is divided by. We will use the same

principle here, but as the tables of the clique nodes were not divided by the messages they

send outwards from root, these messages were stored in the separators. For any sub-tree

TJ = (NJ , LJ) where J is a collection of indexes such that NJ = {Nj ∈ N : j ∈ J}
and LJ = L ∩ (NJ ×NJ), we have

P (∪j∈JNj \B|B) =

∏
j∈J DNj∏

(Nj ,Nk)∈LJ
DNj ,Nk

.

The simplest examples are single cliques J = {j}, or all variables J = {1, · · · ,m}. We

will later use that this formula is correct both globally and locally.

The message passing is illustrated for two JT nodes in Figure 3.5.

N1N2

1: N2 collects DN2

2: N2 passes M→
2 =

∑
N2\N1

DN2 to N1

3: N2 keeps
DN2

M→2 4: N1 collects DN1 ·M→
2

5: N1 passes M→
1 =

∑
N1

DN1 ·M→
2 to ∅

∅
5b: “∅” keeps

norm.const M→
1

6: N1 keeps
DN1

·M→2
M→1

7: N1 passes M2←
1 =

∑
N1\N2

DN1
·M→2

M→1
to N2 over sep.

8: Sep. keeps M2←
1

9: N2 collects and keeps
DN2

·M2←
1

M→2

TOWARDS ROOT

FROM ROOT

Result: Both JT nodes keep their

(cond) marginal distribution, and

full joint distribution is norm’d to
DN2

·M2←
1

M→2
· DN1

·M→2
M→1

/M2←
1

Figure 3.5: Message passing in a standard JT with two clique nodes. Note that in this picture, DN1

and DN2 refer to the tables untouched by message passing to bring intuition of how the potentials get

distributed after a message passing routine.

To compare with the VE-algorithm for the out-star with n binary variables (left side Figure 3.1)

and the corresponding chain-JT, each of the 2n collect-steps of the JTA has time-complexity

2 · 22 with a further marginalization of time-complexity 22. Further, n − 1 separators stores

a table of size 2, each introducing a time-complexity term 2. We end up with a total time-

complexity of 26n − 2, again linear in n and now presenting (conditional) marginals for all

cliques and separators. Recall that if the (conditional) success probability of X3 is a desired

quantity, it is calculated as the sum of the two entries in D{1,3} where X3 = 1 holds (namely

X1 = 1, X3 = 1 and X1 = 0, X3 = 1).
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In the following we will first discuss the similarities and differences between the two ap-

proaches, and then we will continue assuming the computational object as in Almond & Kong

(1991) and refer to it as an Almond Tree2 (AT) to avoid confusion.

3.5 AT construction

This paragraph presents an AT as a version of the standard JTs. Recall that a JT is an undirected

tree where each of its nodes represents a clique Ni in an undirected graph constructed from the

BN. Each of the edges (Ni, Nj) in the JT is associated with what we call a separator Si,j which

represents the node set Si,j = Ni ∩Nj . Sometimes several separators represent the exact same

node set. In these cases it would be more efficient to run JTA on the corresponding AT. The

out-star is again an obvious example where all separators are equal.

An AT is a computational object like a JT, except the separators are also viewed as (a spe-

cial kind of) nodes which we will refer to as almond nodes. Assume we are given a JT

and want to construct the corresponding AT. Then, we first expand each one-edge long path

Ni, (Ni, Nj), Nj between two neighboring cliques Ni, Nj in the original JT to a two-edge long

path Ni, (Ni, Si,j), Si,j, (Si,j, Nj), Nj , where Si,j is the separator Ni ∩ Nj associated with the

edge (Ni, Nj). Consequently, equal separators are merged into a single separator in the AT.

This kind of separator is called an almond (separator), and has a corresponding multiplicity

which equals the original number of merged separators, or equivalently, one less than the num-

ber of its neighbors. When the equal separators Si,j are merged to one single separator S, all

edges (Ni, Si,j) are translated to (Ni, S) and duplicate edges are deleted. See Figure 3.3 for

corresponding AT and standard JTs.

One can construct cases where one need to rearrange JT nodes on a path to avoid cycles when

separators are merged, but this always corresponds to another choice of maximum weight span-

ning tree in the construction of the JT. This can be avoided by choosing maximum weight edges

(separators) such that equal separators connect, as there is always such an maximal weight

spanning tree alternative.

The improvement in memory usage for ATs compared to standard JTs is that there are fewer

or the same amount of tables. A standard JT has one table for each clique node and one for

each edge (separator). Similarly, an AT has one table for each clique node and one for each

almond node (separator). As long as the standard JT has no edges with equal separator set,

the set of tables are exactly the same for the corresponding AT and standard JT. In this case,

the two structures have the same memory usage except for storing the tree-structure and the

multiplicity of the almonds (negligible difference). However, in the case of at least one pair

of equal separator set for edges, merging equal separators for the AT also means a reduction

in the number of tables. Tables which otherwise would be equivalent to other tables are not

constructed. This means less memory used and less computing time for message passing as

there are fewer tables to update.

According to Almond & Kong (1991):

2According to Russel Almond’s homepage, Finn Jensen also has also been referring to these trees as Almond

Trees.
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Definition 4. Let T = (N , L) be an undirected tree in which the nodes in N are labelled
subsets of some index set V . The tree T is a Markov Tree if for any two nodes N1, N2 ∈ N ,
any other node N3 which lies on the path between them must satisfy N1 ∩ N2 ⊆ N3. An AT is
a Markov Tree with the additional property that for every pair of neighboring nodes, one is a
subset of the other.

As pointed out in Almond & Kong (1991), the standard JTs with separators considered as nodes

are a special case of ATs, since JTs are Markov (Spanning) Trees of the complete clique graph.

In the following, we adhere to a distinction between almond nodes (separators in the AT) and

clique nodes. We will specify the AT as T = (C ∪ A, L) where the node set N is split into a

disjoint union of clique nodes C and almond nodes A. Correspondingly, almond nodes will be

marked as squares and clique nodes as circles in our visualizations.

The above procedure describing how we can go from standard JT to AT is only presented to

build understanding about the similarities of the objects. In practice, the AT is constructed from

the BN in a procedure where the similarities to the VE-algorithm become clearer, since it relies

on a variable elimination order. The AT construction algorithm relies on a choice of variable

elimination order through a heuristic, as finding the optimal order is NP complete in general.

Almond & Kong (1991) provide the following argument for simple variable elimination or-

der heuristics: Various variations of one step ahead algorithms “work optimal, or near op-

timal, in a large number of cases (· · · )[and] takes less time. The fewest fill-ins heuristic is

often as effective as the compound heuristics”. The fewest fill-ins heuristic iteratively from

the current working-copy of the graph (N , L) selects node n with smallest fill-in number

| {{�,m} �∈ L : {�, n}, {m,n} ∈ L} | as the next node to eliminate. We also chose to follow

the fewest fill-ins heuristic in our JTA implementation for Lilleborge & Eidsvik (2015) and for

the JTA-based calculations implemented for Lilleborge (2016).

The following AT construction algorithm is from Almond & Kong (1991) and starts with the

DAG of the BN:

• Moralize the DAG

• Remove the direction of all edges and obtain an undirected graph (N 0, L0)

• Select a variable elimination order j1, · · · j|V | according to your favourite variable elimi-

nation order heuristic (e.g. fewest fill-ins). At step k = 1, · · · , |V |:

– The heuristic points to jk = n for a node n in the undirected graph (N k−1, Lk−1)

– Define Dk = {i ∈ N k−1 : {i, n} ∈ Lk−1} as the set of neighbors of node n in the

current graph

– Update graph by removing node n: Nk = Nk−1 \ {n}, Lk = {{i,m} ∈ Lk−1 :

i,m �= n}

• Build the full AT T = (C ∪A, L) by moving backwards in the variable elimination order,

and step by step construct a sequence of ATs increasing in size. Initialize C|V | =
{
{j|V |}

}
,

A|V | = ∅, L|V | = ∅. Iteratively for k = |V | − 1, · · · , 1 construct T k = (Ck ∪ Ak, Lk)

from T k+1 = (Ck+1 ∪ Ak+1, Lk+1):
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3.5. AT construction

– Case 1: If Dk ∈ Ak+1: Attach the new clique Dk ∪ {jk} to the existing almond Dk,

i.e.

* Ak = Ak+1

* Ck = Ck+1 ∪ {Dk ∪ {jk}}

* Lk = Lk+1 ∪ {{Dk, Dk ∪ {jk}}}

– Case 2: Else-If Dk ⊂ A ∈ Ak+1 and A is the smallest such almond: Attach the new

clique Dk ∪ {jk} to the existing almond A via a new smaller almond Dk, i.e.

* Ak = Ak+1 ∪ {Dk}

* Ck = Ck+1 ∪ {Dk ∪ {jk}}

* Lk = Lk+1 ∪ {{Dk, Dk ∪ {jk}}, {Dk, A}}

– Case 3: Else-If Dk ∈ Ck+1: Augment the existing clique Ck+1 to also include jk, i.e.

* Ak = Ak+1

* Ck =
(
Ck+1 ∪ {Dk ∪ {jk}}

)
\ {Dk}

* Lk = {e ∈ Lk+1 : Dk �∈ e} ∪
{
{A,Dk ∪ {jk}} : {A,Dk} ∈ Lk+1

}
– Case 4: Else: Find the clique C ∈ Ck+1 with Dk ⊂ C: Attach the new clique

Dk ∪ {jk} to the existing node C via a new almond Dk:

* Ak = Ak+1 ∪ {Dk}

* Ck = Ck+1 ∪ {Dk ∪ {jk}}

* Lk = Lk+1 ∪ {{Dk, Dk ∪ {jk}}, {Dk, C}}

• Present T = T 1 = (C1 ∪ A1, L1) as the constructed AT.

The different options for add-ons are visualized in Figure 3.6.

Note that these ATs have edges between clique nodes and almond nodes as well as between

pair of almond nodes in general, i.e. L ⊂ { {N,A} : N ∈ A ∪ C, A ∈ A}. An example BN

together with its corresponding AT is visualized in Figure 3.7. Also note, as for standard JTs,

that there is a clique node in the AT for each LPD table from the BN such that each variable in

the LPD domain is represented in the clique.

The final part of the initialization of the AT is to associate each node N ∈ C∪Awith a table DN .

The assignment of values to the tables follows the same procedure as for standard JTs, where

the tables for the almond nodes in the AT are treated as the tables for the separators (edges) in

the standard JT, and the tables for the clique nodes in the AT are treated as the tables for the

nodes in the standard JT. Each almond node A ∈ A is given a table DA of 1s, i.e. the DA-entry

reads 1 for all assignments to the variables XA. As for standard JTs, the product over the tables

of the cliques is required to equal the product over all LPDs. This can be ensured by initializing

all clique tables DC as a table of 1s (as for the almonds), and subsequent for each LPD updating

the table of a clique containing the domain variables to be the product of itself and the LPD.
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Case 1:

Case 2:

Case 3:

Case 4:

C1 C2

Ck1

Ck4

Ck2

A

Dk2

Dk4

Figure 3.6: Options 1-4 in the AT construction algorithm adds on an existing smaller AT. Here the

existing AT is represented with clique nodes C1 and C2 and almond node A.
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Figure 3.7: A BN on the left, with its moral graph in the middle and corresponding AT on the right.

Note that the moral graph is triangulated, as both cycles are of length three.

The next section describes how the AT structure is used to evaluate a query P (XR|XB) for a

BN.

3.6 Message passing in ATs

After the construction and initialization of the AT above, we have P (XV ) =
∏

C∈C DC . In fact,

P (XV ) = Z ·
∏

C∈C DC/ZC∏
A∈ADA

m(A)
, Z =

∏
C∈C

ZC (3.1)

with unknown normalization constant ZC for each clique table DC , is the working assumption

of the message passing in JTA. The power m(A) equals the multiplicity of the almond as defined

in Chapter 3.5. Before the first message passing, the working assumption (3.1) is fulfilled since

• For each i ∈ V : ∃!C ∈ C where DC is a product of P (Xi|XPa(i)) and potentially other
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3.6. Message passing in ATs

LPDs

• Z = 1 (since each ZC = 1, as known from (2.2))

• For each C ∈ C: DC is a product
∏

i∈C′ P (Xi|XPa(i)) for a set C ′ ⊂ C where also

Pa(C ′) ⊂ C

• For each A ∈ A: DA evaluates to 1 for each assignment to the variables XA.

In fact, each sweep of the message passing routine assumes the starting point is of the form in

(3.1), and at the end point the form (3.1) is kept with:

• ZC = 1 ∀C ∈ C, hence Z = 1 (the distribution is normalized) and the previous normal-

izing constant is reported.

• Given N ∈ C or N ∈ A, DN is the marginal distribution of XN according to the joint

distribution (3.1) before message passing.

We run the message passing immediately after the initialization without any evidence instanti-

ated to obtain permanent values for the representation

P (XV ) =

∏
C∈C D

0
C∏

A∈AD0
A
m(A)

=

∏
C∈C P (XC)∏

A∈A P (XA)
m(A)

. (3.2)

The values of {D0
C}C∈C and {D0

A}A∈A are used as the initial starting point for each query.

That is, for each query P (XRk
|XBk

), the message passing is run from this state (3.2) with an

intermediate step of instantiating the evidence Bk.

As for standard JTs, the actual message passing relies on a choice of root in the AT, as the mes-

sage passing first goes sequentially from each AT node towards the root and then in the opposite

order back again. Note that for ATs, both clique nodes and almond nodes are represented in the

ordering. A message should leave each AT node after receiving messages from all its neighbors

which are further away from the root. Assume an ordering of the AT nodes N1, · · ·Nm such

that for each node’s assigned index the further-out-from-root neighbors each have a larger index.

That is, we a let the chosen root be N1, and index the other AT nodes such that ∀j ∈ {1, · · · ,m}
the (unique) path (Nk1 , Nk2 , · · · , Nks) from Nj to N1 has j = k1 > k2 > · · · > ks = 1. A pos-

sible choice which fulfils the message order requirement is to number the AT nodes in the order

they were constructed in the AT construction algorithm above. Note that an augmentation of a

clique (Case 3) does not count as a new clique construction for the numbering. This numbering

and choice of root ensures that for a pair of almond nodes which are neighbors, the larger one is

closest to the root. We will assume this property in the following, as it simplifies the first sweep

in the message passing algorithm. For a given ordering, define a function r : C ∪ A → C ∪ A
such that r(N) is the (unique) neighbor of N closest to the root, similarly as for standard JTs.

Assume a query of the form P (XR|XB). As for the VE-algorithm as well as message passing

in standard JTs, we have to instantiate the evidence XB. As for standard JT message passing, it

is sufficient to insert the evidence to one clique for each variable: For each variable Xb, b ∈ B,

find a clique C containing b and set to 0 all entries in DC violating the evidence assignment to

Xb. After instantiating the evidence, the unknown Z according to (3.1) is exactly P (XB). For
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3. JUNCTION TREE ALGORITHM

simplicity, update each almond table DA entry to 1/(DA)
m(A)

, such that P (XV ) ∝
∏

N∈C∪ADN

with unknown normalization constant P (XB).

Recall that every AT node is either a subset or a superset of its neighbor, for any of its neighbors.

There could be both almond nodes and clique nodes among the neighbors of an almond node.

The clique nodes only have almond neighbors, which are subsets of the clique. Message passing

in the AT then simplifies to:

• Message passing towards root from node N in order Nm, · · ·N2: Construct a table D

from the table DN which has the domain of Dr(N), i.e.

– If r(N) ⊃ N , we pass a message from almond N to larger almond or clique r(N):
Let D have an entry for each possible assignment Xr(N) = xr(N) to Xr(N), and

let its value D(xr(N)) be the value of DN in the entry DN(xN) corresponding to

the assignment XN = xN restricted to the variables in N . Now, D has several

identically valued entries and carries all of the information in DN . Update the values

of DN to be 1 for all entries.

– Else, we pass a message from clique N to almond r(N): Let D have an entry

for each assignment to the vector Xr(N), such that D is a smaller table than DN .

For each assignment Xr(N) = xr(N), let its value be the sum of the values of

DN for assignments XN = xN not violating Xr(N) = xr(N), i.e. D(xr(N)) =∑
XN\r(N)=xN\r(N)

DN(xN). Further, divide each entry of DN used to calculate this

sum by the value of the sum.

– Update Dr(N) to be the entry-wise product of itself and the newly constructed D

entry-wise: Dr(N)[xr(N)]← Dr(N)[xr(N)] ·D[xr(N)].

• Intermediate processing :

– Calculate Z =
∑

XN1
DN1(XN1)

– Report P (XB) = Z

– Update DN1(xN1) ← DN1(xN1)/Z , such that the full distribution
∏

N∈C∪ADN is

normalized

• Message passing outwards from root from node N in order N1, · · ·Nm−1: Node N

replies to all incoming messages:

– For each Nj ∈ Ne(N) \ {r(N)} (the nodes from which there was a towards-root-

message to N ), multiply an appropriate version of the table DN to the table DNj
by

creating a larger or smaller version as in the message passing towards root. Note

that now there is no updating of DN .

• Result: P (XN |XB) = DN for any node N ∈ C ∪ A, almond or clique node. Also, the

right side of (3.2) is now a representation of the distribution of XV conditional on the

evidence XB with all normalization constants ZC = 1 (and consequently Z = 1). As

for message passing in standard JTs, this formula also holds for all sub-ATs for which all

leaves are clique nodes.
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3.7. Time complexity

To compare with the VE-algorithm and standard JTA for the out-star with n binary variables

(left side Figure 3.1), we let the single almond {1} be the root. Each of the n − 1 messages

towards root is calculated with time-complexity 22, and the root collects with a total time com-

plexity 2n, and calculates the normalizing constant and normalizes in total time-complexity

2 + 2. Each of the messages from root are exactly the normalized potential in the root, so

no calculations for the outgoing message are needed. Finally, each of the n − 1 clique nodes

collects with time complexity 2 · 22, and we end up with a total time-complexity of 14n − 8,

again linear in n and presenting (conditional) marginals for all cliques and separators. We even

gained extra efficiency compared to the JTA with a standard JT in this very special case due to a

single AT almond node compared to n− 1 standard JT separators and the clever choice of root

in the AT.

3.7 Time complexity

As the VE-algorithm does not guide the elimination sequence, one cannot expect an efficient

sequence. However, no time is spent evaluating different elimination sequences. In general,

one must be prepared for the worst case time complexity of O(2n) for a joint distribution with

n binary variables. According to Lauritzen & Spiegelhalter (1988), the time-complexity of

message passing for the JTA with standard JTs is O(2γ ·K + g ·Θ), where

• K =
∑

N∈N |ΩN |, referred to as the total state space (ΩN is the state space of the variables

in N , such that |ΩN | = 2|N | when N has only binary BN-variables),

• g = |N |, the number of nodes in the JT,

• γ = supN∈N |N |, the maximal number of BN-nodes in a JT-node, and

• Θ = supN∈N |ΩN |, the largest state space of a clique.

Obviously, K ≤ g ·Θ. Also for binary BN-variables, Θ = 2γ . We see that it is preferable to have

few BN-nodes in each JT -node, as the expression is linear in g and exponential in γ. Recall

that finding the optimal JT is NP-complete due to the triangulation step, so in applications a

heuristic is used to try to find a sufficiently good JT.

The time-complexity of JTA is the same based on ATs as it is based for standard JTs, as the

almond nodes do not have a significant effect in general. However, for some BNs, we can utilize

the AT-structure. We summarize the time-complexity for the out-star with n binary variables in

Table 3.1.

Table 3.1: Time complexity for the three variations of algorithms for marginalizing a joint distribution

for an out-star with n BN-nodes. For the two versions of the JTA, the construction of the JT/AT is not

included.

VE JTA w JT JTA w AT

(n+ 2) · 2n − 2 26n− 2 14n− 8
Exponential Linear Linear
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4 Information Criteria

In several decision problems, it is useful to collect additional information. Then, a set of new

questions emerges. What information is worth collecting? Which information is more informa-

tive? Are the sources of information correlated? Which combination of tests are the best? Or,

in which sequence should we perform different tests?

Figure 4.1 visualizes an area in the North Sea where it could be interesting to search for hydro-

carbons. Due to planning and seasonal constraints, a set of m drilling sites must be selected for

the initial exploration phase. How should we compare different sets of drilling sites? How do

we evaluate the amount of information in an observation? The BN is originally from Martinelli

et al. (2011), and will be discussed further in Lilleborge et al. (2016a) and Lilleborge & Eidsvik

(2015).

Figure 4.1: A BN representing an oil exploration area in the North Sea. Each root node (light gray)

represents a smaller area where hydrocarbons might have been created, and the leaf nodes (black doors)

represent potential drilling sites. The rest of the network contains a representation of the potential mi-

gration paths (dark gray), which together with the root nodes build the correlation structure between the

variables of interest, the potential drilling sites, visualized as doors one could choose to open. A possible

choice of 3 potential drilling sites for initial exploration is marked with light gray filling and a dashed

circle. The information value of this set is evaluated by an information measure, and compared with the

information measure of other candidate observation sets before any observations are made.

Design of experiment is often associated with research about the procedure for assigning treat-

ment to subjects, most notably Fisher (1935). According to Box et al. (2005), one should “block

what you can and randomize what you cannot” when dealing with unavoidable sources of vari-
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ability, while “hard thinking” is required otherwise. While randomization is a general proce-

dure for eliminating systematic differences between treatment and control groups, see Gerber

& Green (2012), few would recommend collecting random information. When selecting be-

tween sources of information, thoughtful evaluation is necessary. In the next section, a tool for

analysing information gathering is presented.

4.1 Value of Information

Value of Information (VoI) is a way of evaluating the value of additional information for a

given decision problem. This decision theory concept allows for comparison between different

types of future data gatherings, by evaluating their impact on the result of the final decision

through probabilistic inference. That is, we are in a setting where we are to make a decision,

like a medical doctor evaluating whether a patient should undergo cancer treatment or not. Say,

we are to decide on an action a from the set of possible actions A. The outcome of action a

depends on the outcome of a random variable X , and has value u(a, x) in the case of X = x.

The function u is referred to as the utility function, and its value u(a, x) for a given action a

and outcome x is referred to as the utility of a and X = x. That is, the utility u(a, x) represents

an evaluation of the usefulness or how valuable the outcome x is for the decision maker after

taking action a, see Hamburg (1970) for a further discussion.

It is optimal to choose the action a that maximizes the expected value E[X]u(a,X), and the prior

value of the decision problem is defined as

PV = max
a∈A

{
E[X]u(X, a)

}
,

Before the final decision is to be made, we are given the option to do one or several tests t ∈ T ,

but of course, the different tests all have associated costs. For decision-making processes in for

instance medicine, it is very important to do the right tests and the right amount of tests before

the decision is made. In finance, the choice of additional information can influence the expected

profit. In applications, information is not perfect as the data includes noise and potentially the

data could also be incomplete. Because smoking is a risk factor for cancer, information about

a patient’s smoking habits can help his doctor estimate the patients risk for lung cancer, but it

is not sufficient information to ensure a correct diagnosis. The radiologist might be uncertain

about how to interpret the findings on a mammogram also after additional imaging (UL, MR)

is taken into account. That is, we need to model the uncertainty or variability of the test results.

We can model the test as another variable Y which is correlated with X . After the value of Y

is known, we expect a posterior value

PoV = E[Y ] max
a∈A

{
E[X|Y ]u(X, a)

}
The total VoI of observing Y is therefore given by the expected increase in value, i.e. the

difference between posterior value and prior value

VoI(Y ) = E[Y ] max
a∈A

{
E[X|Y ]u(X, a)

}
−max

a∈A
{
E[X]u(X, a)

}
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We say it is rational to pay up to the amount of VoI(Y ) to observe the realization of Y .

VoI quantifies the value of different data sources, as it takes into account the different outcomes

of the data gathering in a probabilistic framework. The VoI framework allows for questions like

how much information one should gather, and provides a formula for what a given set of data

is worth for the given application. Tests could also be taken simultaneously or sequentially. A

medical doctor might order a biopsy if the ultrasound is positive. Obviously, we expect new

information to reduce the uncertainty in a problem, and VoI analysis further ensures that it is

suboptimal to pay anything for information that cannot change the final decision. Eidsvik et al.

(2015) provide an introduction to VoI for applications like energy, geophysics, geology, mining,

and environmental science.

4.2 Static or sequential selection

After performing a given test, it might still be optimal to perform another. The medical doctor

might order MR, ultrasound, blood work and a variety of other tests before he has enough

confidence to set a diagnosis. What would be the next test could depend on the result of the

current test. The problem of finding the optimal test sequence taking the results into account

is commonly solved by a technique called dynamic programming. Dynamic programming is

described in Cormen et al. (2009), and dynamic programming for the petroleum exploration

case (e.g. Figure 4.1) is thoroughly explained in Martinelli et al. (2013). In other situations, one

has to select a static set of tests before any of them is performed, due to planning or seasonal

constraints.

Assume you want to find the subset Bm ⊂ K of size m which maximizes a set function v(). To

solve the problem exactly, you would have to compare the
(|K|
m

)
possible subsets of size m. A

Greedy1 Forward Search only evaluates parts of the subspace by iteratively solving m smaller

subproblems

B̃0 = ∅, B̃i = Bi−1 ∪ arg min
{j} : j∈K\Bi−1

v({j} ∪ Bi−1).

Note that this approach solves a forward sequential selection problem in order to find a rea-

sonable solution to the static problem. Also observe that |K| + 1 − i subsets are compared in

the ith level, and 1
2
m(2|K| − m + 1) subsets are evaluated in total. Thus, the Greedy Search

provides a fast approximate solution to the optimization problem. For some other problems, a

Greedy Search is proved to provide the optimal solution. An obvious example mentioned in the

previous chapter, is Prim’s algorithm for a minimum spanning tree. If v is submodular, Krause

& Guestrin (2005) prove that the Greedy Forward Search solution for subset selection comes

with a constant factor approximation guarantee.

Similarly, one can define a Greedy Backward Search by initializing B̃|K| = K and removing

one element at a time. The Backward Search is not close to being as popular as the Forward

Search in practice, as evaluation of v(B) usually has complexity increasing heavily with |B| in
many applications.

1Also referred to as One Step Look Ahead
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4.3 Information and ethics

Not all decision problems have utilities naturally measured in monetary value, like expected

profit in dollars. In medicine we can set a price on a test representing the equipment and labor

spent on performing the test. In addition, it is often also a price for the patient in the form of

discomfort, stress or even pain which can make one type of test preferable to another. However,

the hardest quantity to specify is usually a value to human life or survival. One may ask if

it is ethical to say that a patient’s life is not worth more than $X , but without such a limit

it would be rational e.g. for a country to spend the whole national budget on trying to avoid

cancer in the population. Further, money saved on more effective testing or treatment can be

spent on improving the health care service. In Lilleborge et al. (2016b), we use VoI to calculate

the optimal breast cancer screening program based on data from 200, 000 Norwegian women,

and propose that “resources saved by cutting suboptimal testing in low risk groups may justify

spending more resources on high risk groups”.

4.4 Information and measures of information

Parameter estimation problems obtain information about a parameter from data from the prob-

ability distribution in question. One can then ask how much information a data sample can

provide about the unknown parameter. Quantifying the amount of information allows us to

compare different experiments. In decision theory, information is obtained in order to choose

a better action and improve profits. The VoI criterion allows us to choose the experiment with

highest expected profit. In some situations the profit is not naturally measured in monetary

value. There are several ways of measuring information in terms of evaluating the effect of

learning in terms of probability updates. The selection of a measure should depend on the sta-

tistical model, but most importantly the current application. Information measures are important

in design of experiment, as they help evaluate which data are most informative. In this section,

we follow the notation of Ginebra (2007).

If the realization of a variable X in our experiment has a large probability according to our prior

belief, we can think of it as confirming and requiring only a small update of our belief. The new

information introduced by the observation of X is then small. On the other hand, when the

realization of X is of low probability and requiring a larger update of our belief, we can assign

the realization of X a larger information value. Similarly as in Maximum Likelihood analysis,

we consider �(x|θ) = log f(x|θ) and associate ∂
∂θ
�(x|θ) close to 0 as in indication of θ having a

value that assigns high probability to the realization of X . Fisher (1922) introduces the Fisher

information about the parameter θ in an experiment where the random variable X is realized

from the pdf f ,

I(θ) = E[X|θ]

[
∂

∂θ
�(X|θ)

]2
= Var[X|θ]

[
∂

∂θ
�(X|θ)

]
= −E[X|θ]

[
∂2

∂θ2
�(X|θ)

]
. (4.1)

The equalities are obtained between the tree different expressions of I(θ) under the assump-

tion that one can interchange derivation and integration for E[X|θ] ∂
∂θ
f(x|θ) and E[X|θ] ∂2

∂θ2
f(x|θ).
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Similarly when θ is a k-dimensional vector,
[

∂
∂θ
�(X|θ)

]
i
= ∂�(X|θ)

∂θi
and

[
∂2�(X|θ)

∂θ2

]
i,j

= ∂2�(X|θ)
∂θi∂θj

,

and we obtain the information matrices

I(θ) = E[X|θ]

[
∂�(X|θ)

∂θ

(
∂�(X|θ)

∂θ

)T
]
= Cov

[
∂�(X|θ)

∂θ

]
= −E[X|θ]

[
∂2�(X|θ)

∂θ2

]
. (4.2)

Lindley (1956) discusses Shannon’s Information Entropy −E[θ] logP (θ) for a parameter θ, and

studies the expected change in value for this quantity for a given experiment. This defini-

tion of entropy was first introduced by Shannon (1948) in the context of information theory

in communications engineering. Lindley (1956) interprets the information in a prior distribu-

tion by looking at how much information must be provided before the value of θ is known.

Among other properties, he establishes that one always expects to gain information, ΔX =

−E[θ] logP (θ) −
(
−E[X]E[θ] logP (θ|X)

)
≥ 0, but the gained information of two experiments

are not necessarily additive ΔY,X ≤ ΔY + ΔX . Shannon Entropy is probably the most used

information criteria, and a few application areas are medicine in Westover et al. (2012), piezo-

metric data in Bueso et al. (1998) and sulfate concentration records in Ko et al. (1995).

Fisher (1922) and Lindley (1956) both argue for their way of measuring information by ensuring

that their measure has good properties. Blackwell (1951), and later Le Cam (1964), provides

theoretical discussions comparing two experiments without reference to a measure of choice. In

this setting, an experiment can only be preferable to another if one of them is “sufficient” for the

other. Otherwise, they are not comparable. Kullback & Leibler (1951) introduce the Kullback-

Leibler divergence
∫
X

dP
dQ

dP of a distribution Q from a distribution P as a relative entropy

inspired by Shannon (1948). Csiszár (1967) uses this to introduce a more general concept of

divergence.

Ginebra (2007) studies what in general can qualify as a information measure for an experiment.

This places the specific information measures of Fisher (1922) and Lindley (1956) in a gen-

erous class adhering to the rigorous general theoretic considerations of Blackwell (1951). We

are in the setting of E = {(X,SX); (Pθ,Ω)) being a very general statistical experiment. We

observe a random variable X ∈ SX which has an unknown distribution Pθ among the possible

distributions {Pθ}θ∈Ω of X . However, as our focus in Lilleborge et al. (2016a), Ginebra (2007)

does comparison “made on statistical merit only, irrespective of experimental costs”. He argues

that an information measure I(E) should assign a real number to each experiment, it should

evaluate to 0 if there is no learning (no probability updates), and it should prefer experiment E

to experiment F (I(E) ≥ I(F )) if E is at least as good as F for any terminal decision problem.

These three are his minimal set of requirements for a measure of information.

He concludes that finding the most informative experiment can be expressed as a decision prob-

lem with the following characteristics:

• The utility function is convex.

• The reward of a given experiment is the likelihood ratio or posterior distribution statistic

of the outcome.

• The information of an experiment is its expected utility.
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• Choose the experiment that maximizes information.

Assume there are k options for θ, Ω = {θ1, · · · , θk}, and choose positive {πi}ki=1 which ensures

that the convex combination Pπ =
∑k

i=1 πiPθi dominates each Pθ. Let Kπ be the convex hull

of {(1/π1, · · · , 0), · · · , (0, · · · , 1/πk). Define as a minimum sufficient characteristic of the

statistical properties of E (through its distribution),

T : SX → Kπ s.t. Tπ(X) =
1

pπ(X)
(pθ1(X), · · · , pθk(X)) .

Ginebra argues that “the sufficiency principle dictates that the information has to be measured

through functions of Tπ(x) and common wisdom dictates that these functions have to be such

that the further Tπ(x) is away from (1, · · · , 1) towards an extreme point of Kθ, the larger values

they take.” He concludes that the generalized φ-divergence measure of the information about θ

in a realization X = x from an experiment is φ (Tπ(x)) for a non-negative convex φ(u) with

φ(1, · · · , 1) = 0, and interprets it as a measure of the surprise about θ in X . Further, Ginebra

gives interpretations of several well-known and much used information measures, such as the

Shannon Entropy, in the light of the theory presented.

The choice of information measure should depend on the application. In the oil exploration

case (see Figure 4.1) treated in the Lilleborge et al. (2016a) and Lilleborge & Eidsvik (2015),

each potential drilling site will eventually be drilled or not drilled, and this decision is made

individually for each potential drilling site Xi based on the probability of finding hydrocarbons

P (Xi = 1). In the case of no drilling, the probability of success will not be explored. The

information measure should strive to minimize the variability of each potential drilling site

(minimize or maximize probability of hydrocarbons), in order for the decision maker to be as

certain as possible about the decision of drilling or not for each potential drilling site. Thus, it is

natural to select an information measure that minimizes a sum of individual expected variability-

evaluations for each site. For example, this could be μ1(B) = E[XB ]

[∑L
i=1 Var(Xi|XB)

]
where

we sum over the collection of potential drilling sites L and the expectation is taken over an

initial exploration observation set B ⊂ L. As the variance of a Boolean variable is largest

for p = 1
2
, minimizing this measure means striving to get probability updates P (Xi = 1|XB)

away from 1
2
. A simple transformation of the conditional probabilities P (Xi|XB) can be used to

manipulate the measure to prefer updates away from e.g. the critical probability pc which makes

the decision maker indecisive. In applications where all variables will be explored and we care

about learning the number of successes, a version like μ2(B) = E[XB ]

[
Var

(∑L
i=1 Xi|XB

)]
is

more appropriate. As μ2(B) = μ1(B)+2
∑

i<j∈L E[XB ] [Cov(Xi, Xj|XB)], we see that the aim

of getting a stable estimate of the sum explicitly results in a penalty for positive covariances and

equally weighted benefit for negative covariances.

The theory of information measures has some links to, but should not be confused with, InfoQ

introduced in Kenett & Shmueli (2014). InfoQ is a quite general information quality con-

cept considering a goal g (e.g. causal explanation, prediction, descriptive statistics or tests),

some data X , an empirical analysis method f (e.g. statistical parametric/semiparametric/non-

parametric models, data mining etcetera) and a utility measure U (e.g. predictive accuracy,

goodness-of-fit, statistical power). The InfoQ is defined by InfoQ(f,X, g) = U [f(X|g)] (see
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4.4. Information and measures of information

Kenett & Shmueli (2014)) and is constructed to evaluate the potential of “a particular dataset to

achieve a particular goal using a given empirical analysis method”.

In Lilleborge et al. (2016a), we discuss information measures for applications similar to the oil

exploration case in Figure 4.1. Lilleborge & Eidsvik (2015) provide an algorithm constructing

converging upper and lower bounds to efficiently select the optimal observation set according

to a given information measure. If the BN distribution is MTP2, Lilleborge (2016) presents a

tailored lower bound for a more efficient search. Lilleborge et al. (2016b) use VoI analysis to

analyze the optimality of the Norwegian Breast Cancer Screening Programme.
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5 Aims of Thesis

This thesis is about BNs, a highly active research area. However, unlike most other recent

works on BNs, this thesis is not about building the network but rather on how to utilize an

already built model. I assume that the BN is known; a given structure consisting of a graph and

corresponding parameters learnt from data, expert knowledge or a combination. The aims of

this thesis are built upon exploration of the following question:

Given a BN defined by expert knowledge and/or data,

which observations should be made to gain maximum information?

Gabriele Martinelli’s thesis provided background knowledge on information gathering to maxi-

mize the expected profit of dependent prospects in an oil exploration problem where a collection

of prospects is selected for drilling (i.e. Martinelli et al. (2011), Martinelli et al. (2012), Mar-

tinelli et al. (2013)). However, maximizing profit in this setting is highly dependent the future

oil price and future development costs. Moreover, Martinelli focus on dynamic strategies, while

rig constraints and drilling seasons requires the drilling campaign to be planned as a static group.

To maximize information gain, one needs to understand how to measure information. This re-

quires a study of information criteria for BNs. What has made the Shannon Entropy so popular,

and how should this quantity be interpreted? Which other criteria are used for various appli-

cations? Which properties should one require from information criteria in general, and how

should one select an appropriate information criterion? Which criteria are best suited for the oil

exploration case?

After selecting an appropriate information criterion, the optimization still remains. How should

one ensure maximum gain of information for a given criteria? As for dynamic sequential oil

exploration, the statical subset selection problem is expected to have high time-complexity.

Can the probabilistic structure of the BN model be utilized for fast structured optimization?

Can attributes from JTA be cleverly applied in the optimization? Also, Martinelli & Eidsvik

(2014) studied clustering strategies, but the question of how to build an efficient optimization

algorithm was left open.

Aiming for a more purely statistical approach to maximal information gain, the resulting the-

ory should be general enough to be applied to different application areas. In addition to the

petroleum exploration case which initiated this project, an application within medicine is inter-

esting and appropriate to show applicability of the thesis.

In summary, the three main aims of this thesis are:

1. Explore information criteria for BNs and non-sequential exploration designs for BNs

2. Fast structured optimization of information criteria for subset selection
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5. AIMS OF THESIS

3. Show applicability of general theory by applying it to two different application areas,

namely petroleum exploration and medicine.
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6 Summary of papers

6.1 Paper I

LILLEBORGE, M., HAUGE, R. & EIDSVIK, J. (2016a). Information Gathering in Bayesian
Networks Applied to Petroleum Prospecting. Mathematical Geosciences 48, 233–257

The value of information approach with a monetary utility function is usually the most natural

information measure whenever costs and revenues for the underlying decision problem are well

known. In many contexts it is not easy to associate appropriate cost and income functions to the

decision problem; in other cases one chooses a best estimate. In these cases it can be appropriate

to apply purely information based measures. This paper explores different criteria for efficient

information gathering and for optimal design of BNs.

Lilleborge et al. (2016a) study criteria which allow for comparison of the information based

on probabilistic merits only. This might be necessary whenever the costs and/or possible gains

depend on quantities which are highly unknown. In oil exploration, the future price for oil is

such an unknown parameter where the estimated value has a large influence on the optimal

decision. An alternative approach is to aim for maximal reduction of the total uncertainty. The

information criteria in this paper are calculated as a function of the probability distribution

alone. Each criterion looks for observations or tests that give information about more than the

few variables we are observing in each such test. The information measures we studied assign

values based on correlations and conditional dependence structures in the BN. Each information

criteria discussed is related to Ginebra (2007), which provides general theory for properties of

information measures.

It is important to understand what each information measure is expressing and why the data

collection is carried out. The paper is discussing differences and similarities of the different

measures. Different properties means the measures are tailored for different approaches or

applications. This again means the choice of information measure should be highly dependent

on the application. In this paper we consider a set L of observable variables from which a subset

of variables should be chosen for observation. The different measures discussed evaluates the

total remaining uncertainty in all variables of L.

The Shannon Entropy-measure is well known and successfully applied in several applications.

In our setting, the Shannon entropy criteria chooses the observation set associated with the

highest uncertainty in itself, without consideration to probability updates in the unobserved

variables. This property is clearly undesirable in a setting where information criteria are used

to guide learning about several correlated variables (also the unobserved ones), like in the

petroleum exploration case. Lilleborge et al. (2016a) further provide guidelines for choosing an

information measure in applications similar to the petroleum exploration case, where one cares

about each of the observable variables after the selected observations are made.
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6.2 Paper II

LILLEBORGE, M. & EIDSVIK, J. (2015). Efficient designs for Bayesian networks with
sub-tree bounds. Statistics and Computing , To appear The information measures discussed

in Lilleborge et al. (2016a) all have time-complexity exponential in the size of the observation

set B. Further, the search for the optimal observation set B� ⊂ K of size m has
(|K|
m

)
possible

candidates. (The number of candidates is of order |K|m hence also exponential in the size of B

for m << |K|.) Solving the optimization problem by comparing the values of each candidate,

lead us to focus on small observation set sizes in Lilleborge et al. (2016a). In this paper we look

for fast structured optimization of information gain.

This paper aims to tackle the high time-complexity by use of upper and lower bounds. The

paper describes the construction of upper and lower bounds such that they can be iteratively im-

proved, and the resulting sequence of bounds is converging to the true information values. The

converging bounds are applied in a search strategy where the candidate set is reduced iteratively

as the bounds ensure that candidates are suboptimal. This way, we ensure that the algorithm

returns the true optimal candidate. This algorithm can also be stopped after a given amount

of time or after reaching a given threshold for a guarantee, and the current best candidate is

presented together with a percentage guarantee of its value compared to the (unknown) true

optimum. We also describe how the converging bounds can be applied in established fast ap-

proximation schemes like a greedy search or an exchange algorithm to further accelerate these

algorithms.

Similarly as in Martinelli & Eidsvik (2014), we use clairvoyant information and clustering

strategies to construct the bounds. In Martinelli & Eidsvik (2014), the network is divided into

disjoint clusters. For each cluster, the Markov blanket is analyzed manually to find appropriate

variables for clairvoyant information. For information measures, the clairvoyant information

results in a lower bound, while probability updates restricted to be from variables within each

local cluster results in an upper bound. In this paper, we utilize the JT constructed for JTA

to automatically find appropriate clairvoyant variables. It turns out the separators in the JT

are efficient choices of clairvoyant variables. By removing the restriction of the clusters to

be disjoint, and replacing it with a unique local cluster for each variable, we end up with a

construction that intuitively allows for iterative improvements of the bounds: As the clairvoyant

separators are further out in the graph, and we include all variables in a sub-graph within a

boundary of clairvoyant separators for exact probability updates, the bounds are approaching

the true measure values.

In the paper, we compare the results for the true optimum and the approximations for the North

Sea network as well as for some simulated examples. The run-times of the different strategies

are also compared. For small m (i.e. where it is available), we also present run-time of naive

optimization by comparison of measure values. By the tables of run-times, we see that the con-

verging bounds search for the true optimal candidate has clear reductions in run time compared

with the naive exact calculations, and this allows us to tackle larger problem sizes. Obviously,

the established approximation schemes result in much better time-complexity, with a trade-off

of no guarantee of optimality.
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6.3. Paper III

6.3 Paper III

LILLEBORGE, M. (2016). Efficient optimization with Junction Tree bounds in discrete
MTP2 distributions. Tech. rep., Norwegian Computing Center

This technical report presents methodology which was developed but never finished for publi-

cation during my time as a PhD student. The work was initiated as we realized that the time

complexity encountered in the calculations for Lilleborge et al. (2016a) was limiting our scope

for observation set sizes m. I was familiar with optimizing a set function by upper and lower

bounds through my master thesis, and started studying the messages in the JTA to look for pat-

terns or ways of approximating these in a controlled way. This lead to the idea of a strongest

possible message from different directions in a JT, and the MTP2 concept allowed for combina-

tion of strongest possible messages from different directions. For simplicity, we focus on binary

random variables.

If a discrete random variable has an MTP2 distribution, we say that it is positively associated

and we have Cov(f(X), g(X)) ≥ 0 for any functions g and f . Let ∨ and ∧ denote the operator

on two vectors which returns a vector of the entry-wise maximum and minimum, respectively.

A distribution is MTP2 if P (X) · P (Y ) ≤ P (X ∨ Y )P (X ∧ Y ) for all X, Y in its support.

Assume the random vector has binary variables as entries. The MTP2 assumption introduces

a rule for which assignments of some variables which would maximize the conditional suc-

cess probability of another, since a success always increase the success probability of all other

variables.

The JT groups the variables according to probabilistic dependencies such that updates from BN

nodes in one JT node propagates to a non-neighboring JT node through the probabilistic updates

for the intermediate JT-nodes on the unique path between them. An altering of a distribution

of a JT node introduces an altering of the distribution of the neighbor, and the altering of the

distribution of the neighbor introduces an altering of the distribution of a further out neighbor

in the JT, and so on.

Combining the streamlined updating pattern in the JTA with the uniform covariance pattern of

MTP2 distributions, we construct converging upper and lower bounds for information measures

using local calculations in the JT similar to the bounds in Lilleborge & Eidsvik (2015). For

the special case of MTP2 distributions, these bounds will be faster to calculate, and in some

cases they will be tighter. However, they will need some extra pre-processing together with the

initialization step of the JTA.

As I have not encountered a large enough BN with the MTP2 property to motivate optimization

through bounds nor data to construct such a network, the theory has not been published. The

more general clustering and clairvoyance bounds were applied on the North Sea case and several

other simulated BNs in Lilleborge & Eidsvik (2015).
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6.4 Paper IV

LILLEBORGE, M., HOFVIND, S., SEBUØ DEGÅRD, S. & HAUGE, R. (2016b). Using
Bayesian Networks to optimize performance of the Norwegian Breast Cancer Screening
Program - a modelling study. Submitted for publication in Statistics in Medicine

In this paper, we apply knowledge from the earlier works of this thesis to breast cancer screen-

ing. First, a graphical model is used to estimate cancer risk based on results of the previous

screening test and self-reported information about risk factors such as lifestyle and family his-

tory of breast cancer. Secondly, we implement this cancer risk in an estimated BN where the

true cancer status is represented together with current screening test results. Finally, we provide

a value of information analysis to optimize for the best test regime.

This paper provides a theoretical mathematical evaluation of the optimal performance of a breast

cancer screening program, and aims to contribute towards the possibility of improving the effi-

ciency of the Norwegian Breast Cancer Screening-Program. The work tries to answer a highly

relevant question of today, according to the following recent encouragements from breast cancer

research:

Recommendations about the frequency of mammography should be personalized

on the basis of a woman’s age, breast density, history of breast biopsy, and family

history of breast cancer, as well as the effect of mammography on her quality of

life (conclusion of paper; Schousboe et al. (2011))

The time has come for individualized screening (quote from review paper; Desreux

et al. (2012)).

Today, the mammograms of all participants of the Norwegian Breast Cancer Screening Program

are double-read and all women are screened every 2 years. The two independent radiologists

each give a score 1 − 5 on the images. If a woman gets at least one score at level 2 or higher,

the two radiologists meet for a consensus where they decide if the woman gets a recall letter for

additional imaging and possibly a biopsy. There is no stratification based on breast cancer risk

in the current program.

Our model defines four breast cancer risk groups (low risk(17.6%), middle÷ risk(69.2%),

middle+ risk(12.4%) and high risk(0.76%)) based on age and results of the previous screen-

ing mammogram. For the low risk group it is sufficient to do screening every 4 years. For

the other risk groups, the screening mammograms should first be single-read. A second inde-

pendent interpretation should be done if the highest score from the first radiologist is on level

2− 3 (middle÷ risk), 1− 3 (middle+ risk) or 1− 2 (high risk), respectively. For higher scores

the woman should be referred to additional imaging, and for a score at level 1 a woman in

the middle÷ risk group should be evaluated as cancer free by the single-read mammogram.

The paper further discusses bounds for cancer risk levels for when the two radiologists should

have a consensus meeting, as well as lower risk bounds for additional imaging and biopsy after

previous tests.
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7 Discussion

As discussed in Chapter 1, BNs are commonly used in a wide range of applications. However,

there have been limited contributions from statisticians in the design of experiments for these

models and for decision-making. It is certainly important to study these higher-level tasks, to

bring statistics closer to policy-making. Most existing research on BNs consider the problem of

how to build the network; from observational data, from expert knowledge or a combination of

both. The focus in the four papers of this thesis is rather on how to apply the information in the

network.

The question of maximum information gain is one of decision analysis, and theoretical works

like Ginebra (2007) provide general theory about information measures. Besides discussions

of properties for a selection of information measures, the first paper Lilleborge et al. (2016a)

provides guidelines for selection of information criteria. Different information criteria can rec-

ommend dissimilar strategies, so the final decision might be determined by the selection of in-

formation criteria. Also, a criteria which has been successfully applied numerous times, might

give undesirable results in a different setting. The take home message is that one needs to

consider the application to know why the information criterion is used, and from that evaluate

which criteria are applicable.

The wide flexibility of the BN models leaves a wealth of opportunities, but it also leaves us

to deal with a model where learning and information evaluation might seem less intuitive than

for a less complex model. It turns out it is important to be aware of this flexibility when an

information criteria is selected. One of the contributions of Lilleborge et al. (2016a) is that a

less desirable property of the Shannon Entropy for oil exploration and similar applications can

be much more dominating for BNs than for more uniform models like e.g. spatial statistics

models or Gaussian random field models.

For large graphs and large observation sets, the time-complexity of the naive optimization of

information criteria introduces a need for more efficient algorithms to find the optimal observa-

tion set. The second paper Lilleborge & Eidsvik (2015) and the third paper Lilleborge (2016)

contribute on optimization schemes for doing well in a large graph where the exact solution is

not tractable due to exponential growth of the solution space and enormous storage problems

on the computer. By thorough understanding of message passing and the general structure of

the JTA, properties of the joint distribution can be utilized by simple computations rather than

running JTA as a black box repeatedly until all possibilities are evaluated. For complex calcula-

tions, it is important to comprehend when enough is understood as well as avoid re-computing

the same quantities over and over.

The approaches of Lilleborge & Eidsvik (2015) and Lilleborge (2016) have similarities, but are

built on two different ways of studying the JTA. The bounds of Lilleborge & Eidsvik (2015) are

constructed based on how the JT orders the BN variables according to dependence structure.
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Further, the MTP2-tailored lower bound of Lilleborge (2016) is constructed on information

propagation in the message passing. In addition to presentation of its bounds and the different

algorithms, Lilleborge & Eidsvik (2015) provide background information about the JTA with

illustrations in the appendix.

By exploring attributes from the JTA, the algorithm in Lilleborge & Eidsvik (2015) tailors a

clustering approximation to the computational structure of the JTA. The algorithm does not

make any assumptions about the covariance structure of the variables and provides a run-time

reduction in sparse BN models. Some level of sparsity is a common assumption for large BN

models; a growing model incorporates more variables and hence more edges, but the density

of edges is often assumed to be bounded. However, with BN models both the sparsity pattern

induced by the edges and the covariance pattern induced by the parameters can vary throughout

the network according to data.

The main contribution to the run-time reduction in Lilleborge & Eidsvik (2015) is due to com-

putations on local subparts of the JT. The upper and lower bounds do not consider all possible

assignments of the observation set B at all evaluations, but it considers additional variables as

well. The relatively small problem sizes (33, 42 and 117 nodes, respectively) of the networks

presented in Lilleborge & Eidsvik (2015) do not bring out the full potential of the algorithm.

However, we did not have the computer power nor data to analyse much larger networks.

The MTP2-tailored bound in Lilleborge (2016) requires the distribution of the observable vari-

ables to have the MTP2-property. This is obviously a special case, but it allowed for applying

intuition about message passing in JTA to construct another type of bound.

The JTA is today established as the standard inference engine for BNs. Implementations of

the JTA are easily accessible, and this allows for repeatedly calling this routine blindly without

reference to the structure behind the calculations. This has allowed for easy calculations in

complex distributions, and has obviously been an important resource in many applications.

However, Lilleborge & Eidsvik (2015) and Lilleborge (2016) have illustrated how insights into

JTA can increase efficiency of how the JTA is used. This suggests that several of the many

diverse applications where the JTA is used today might benefit from specializing their algorithm

to their use.

To bring the deep level understanding of probability propagation in BNs to a practical applica-

tion, real world data from the Cancer Registry was analyzed in the fourth paper Lilleborge et al.

(2016b) together with domain experts. The analysis proposes a more efficient breast cancer

screening program stratified by an estimated breast cancer risk model.

7.1 Future work

As mentioned in Lilleborge et al. (2016a), applications where the observable nodes and the

scoring nodes are disjoint or partially overlapping are left as future work. Further, towards

the end of Chapter 4, we mentioned the difference between the measures in Lilleborge et al.

(2016a) of the form
∑

i E[XB ]f(P (Xi|XB)) and more portfolio-based versions of the form

E[XB ]f (
∑

i P (Xi|XB)). A future study of the latter types of measures could be interesting.
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7.1. Future work

Applications of the bounds of Lilleborge & Eidsvik (2015) to larger networks is something I

would appreciate. The general idea of the construction of the bounds should leave a wealth

of opportunities for applications for where the theory can be applied. The technical report

Lilleborge (2016) is still premature, but I certainly hope it gets an opportunity to evolve towards

a more attractive state.

The time-complexity of the naive optimization of information gain is a product of two exponen-

tial factors exponential in the size m of the observation set, the first representing the calculation

of a measure value and the second representing the number of candidates. The computation

of the bounds aims to tackle the first factor (faster calculation of measure value). I discussed

branch and bound and other optimization algorithms with prof. Geir Dahl at UiO, who has ex-

pert knowledge about optimization, but we ended up concluding that to tackle the second factor,

we had turn to approximation schemes. Note that if the information measure is submodular, the

optimization problem can be efficiently (meaning with polynomial time-complexity) solved,

see Schrijver (2000). To do exact and efficient optimization for information gain is still an open

question as long as the information measure is not submodular.

Lilleborge et al. (2016b) provide a mathematical analysis of breast cancer screening, and evalu-

ate a possibility of improving the efficiency of the Norwegian Breast Cancer screening-program.

The analysis provides an important evaluation of the program, as well as instructing a differ-

ent way of analyzing the program for the Cancer Registry of Norway and other organizers of

similar screening programs. However, the breast cancer risk model built for this study does not

include all well-known risk factors for breast cancer, and is built with the R-package “gRim” of

Højsgaard (2012). Obviously, there are many breast cancer risk models in the literature, usually

based on a Cox-model. These models tend to focus on how the risk develops over longer risk

horizons, like five years, ten years and life-time risks. For our study, we learned a graphical

model from anonymized data to predict the risk at a given screening round conditional on risk

factors as well as the results from the previous screening round two years earlier. A more care-

fully evaluated discriminative breast cancer risk model with more risk factors could utilize the

value of information analysis results further, and possibly result in a better stratified screening

recommendation.
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1 Introduction

Upper and lower bounds can be used to find the exact optimal solution of problems which are
infeasible through comparison of exact values. Bounds are also a way to approximately solve
complex problems with a guarantee, as bounds for the difference between the value of an
approximate best candidate and the value of the true optimum follows. In this paper, we focus
on subset selection for experimental design. The general design problem has been extensively
studied in the statistics literature, but here we focus on design of experiments for graphical
models like Bayesian networks (BNs).

The Junction Tree Algorithm (JTA) for BN probability assessments initially developed by Lau-
ritzen and Spiegelhalter (1988) is commonly considered the most efficient algorithm for calcu-
lating probability statements for BNs. The JTA has an initial step constructing a computational
object called a Junction Tree, and then for each probability assessment this object is looped over
twice in a message passing routine. This paper is the result of research on the JTA which ended
up being divided into two branches, one published in Lilleborge and Eidsvik (2015) and the
other resulting in this technical report. The similar assumptions as in Lilleborge and Eidsvik
(2015) are as follows: We assume a BN with node set V and random variables in a vector
XV = [Xv]v∈V . A subset K ⊆ V of the nodes are associated with the observable variables XK ,
while XV \K are latent variables which help specify the full probability model. The BN exam-
ples considered in this paper have binary random variables taking values in {0, 1}. We focus
on the observation set selection problem, i.e. finding the observation set B ⊂ K, |B| = m of
size m which optimizes the information measure selected for the application. The JT of the BN
is central, and the reader is referred to Lilleborge and Eidsvik (2015) for background on BNs
and the JTA, on information measures and on optimization with upper and lower bounds.

As in Lilleborge and Eidsvik (2015), the lower bound constructed in this paper will allow for
the message passings to happen on a smaller subset of the JT. As the bounds are converging
to the true value, this subset is increased to the full JT. When optimizing over many candi-
dates, this allows for removing elements from the candidate set iteratively as the bounds are
improved. Hopefully, the size of the candidate set is increasing more rapidly than the compu-
tational complexity of the bounds. This strategy was successful for exact solution as well as for
faster algorithms in Lilleborge and Eidsvik (2015).

Our focus in this paper is on static designs for BNs, just as in Lilleborge and Eidsvik (2015),
trying to tackle the time-complexity issues of optimizing subset selection for information mea-
sures, see e.g. Lilleborge et al. (2015). The static design problem consider a set of variables of
which an optimal subset should be selected, i.e. selecting the most informative sample accord-
ing to an information measure. As is common in experimental design, the goal is to select a
subset of nodes for experimentation, with no opportunities for adaptive selection. The reader
is referred to Peyrard et al. (2013) and Bonneau et al. (2014) for adaptive (sequential) sampling
designs for graphs or Markov random fields. Closer to the approach in this paper, Brown and
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Smith (2013) and Martinelli and Eidsvik (2014) evaluates adaptive designs for BNs by use of
bounds for the sequential selection of sites. We suggest that the lower bound constructed in this
paper also could be applied to the adaptive sequential sampling problem if the distribution of
the variables is MTP2.

The difference between the theory presented here and the one discussed in Lilleborge and
Eidsvik (2015), is the MTP2 assumption. Where the theory in Lilleborge and Eidsvik (2015)
is based on how the variables are arranged according to their covariance pattern in a JT, the
theory of this paper is based on the message passing. The message passing is the system of
probability updates in the JTA, directing how information is distributed by messages or signals
between the JT nodes. The JT groups the variables according to probabilistic dependencies,
and places variables that are more correlated closer to each other. In fact, it constructs chains of
groups of variables such that the outermost groups are dependent due to a mutual dependence
to the intermediate groups. These chains are all appearing in a tree-structure, the JT. Further,
updates from BN nodes in one JT node propagates to a non-neighboring JT node through the
probabilistic updates for the intermediate JT-nodes on the unique path between them. This can
be described sequentially for an observation of variables which appear in the same JT node C:
First, observing variables in JT node C, gives local updates for the marginal distribution for
XC . As the JT node knows its marginal distribution, this can be done locally. A neighboring
JT node N1 contains some of the same variables as C, and it is obvious that the marginal
of XN1 needs to be updated so that the marginal of XC∩N1 is the same in both JT nodes. In
fact, this exactly the update that is needed, and the distribution of XN1 can be updated to
P (XN1) = P (XC∩N1) · P

(
XC\N1 |XC∩N1

)
where the first factor is calculated from the updated

marginal in the JT C and the second factor is calculated from the un-touched marginal in the
JT N1. A further neighbor N2 �= C of N1 will get updates through the distribution of N1

through the same procedure, and so on. When the distribution of a JT node is updated, it
introduces updates for the distribution of the neighbor, and the updates for the distribution of
the neighbor introduces an update of the distribution of a further out neighbor in the JT, and
so on.

In this paper, the MTP2 assumptions allows for a tailored lower bound, as the assumption of
a MTP2 distribution defines a unified rule for the assignment of each observable node which
correspond to the strongest signals to the other observable nodes. This will be discussed in
Section 4. Success propagating tree-networks and Naive Bayes models (the latter possibly re-
quiring a re-labelling of states) are examples of distributions with the MTP2 property. The
North Sea network studied in Lilleborge et al. (2015) and Lilleborge and Eidsvik (2015), how-
ever, possess so-called explaining-away effects via intermediate nodes with multiple parents.
Assume X1, X2, X3 are binary variables, X1 and X2 are independent and P (X3 = 0|X1, X2) =

(1 − p)X1+X2 for some p > 0. Note that an observation of a success in X3 increases the suc-
cess probability of X1, but a subsequent observation of a success in X2 would again decrease
the success probability of X1. The first increase is due to X1 = 1 being a good explanation
for X3 = 1, however as X2 = 1 is an equally good explanation, this later evidence is used to
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“explain away” the first. Explaining-away effects are incompatible with MTP2. As explaining-
away effects are present in the North Sea Network of Lilleborge and Eidsvik (2015) and Lille-
borge et al. (2015), the theory presented in this technical report cannot be applied to provide
a lower bound for information value for this North Sea network. However, informal test runs
verify that the bound actually serves as a good approximation strategy in this case.

In the following, the probability of the event {A = a}, that the outcome of a Random Variable
A has value a, is denoted by P (A). That is, we let the assignment be implicit. This simplified
notation makes intuitively sense in this paper since we are not concerned about the actual
outcome a but the expected value of a function f of the distribution of A, as in E[A]f(A). We
do not include the assignment of the random variables because it will be integrated out, as
the upper and lower bounds are constructed as expected values. Thus, the function evaluation
f(XR = xR) is referred to as f(XR) also for the random vector XR = [Xi]i∈R. The expected
value of the function f() applied on a vector XR of binary variables Xi, i ∈ R is defined as

E[XR]f(XR) =
∑

XR=xR∈{0,1}|R|
f(XR)P (XR) .

Similarly, the conditional expectation of one variable Xi (given an assignment to XR) is

E[Xi|XR]f(XR∪{i}) =
∑

Xi=x∈{0,1}
f(XR∪{i})P (Xi|XR) .

As the evaluation of each design must be done before the variables are actually observed, an
information measure consists of an inner function expectation with respect to the distribution
conditional on the assignment of an observation set and an outer expectation where the condi-
tional assignment is finally integrated out.

The paper is structured as follows. In Section 2, the MTP2 assumption is defined and discussed.
In Section 3 the upper and lower bound of Lilleborge and Eidsvik (2015) are defined. The MTP2

lower bound is defined in Section 4. The upper bound of Lilleborge and Eidsvik (2015) can be
applied together with the MTP2 lower bound constructed in this paper, and I will compare the
lower bound of Lilleborge and Eidsvik (2015) to the MTP2 lower bound. In Section 5, all three
bounds are applied to a synthetic BN example. Finally, Section 6 provides closing remarks.

2 Total positivity

In this work, we assume a type of positive dependence between the variables of interest XK .
From Fallat et al. (2016) we find that the random vector XK is said to be positively associ-
ated if Cov(f(XK), g(XK)) ≥ 0 for any non-decreasing functions f and g. They also add that
all known definitions of positive dependence are implied by something called the MTP2 con-
straints, as follows:
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Definition 1. A random vector X ∈ χ is Multivariate Totally Positive of order 2 (MTP2) if its density
function p fulfils

p(x)p(y) ≤ p(x ∧ y)p(x ∨ y) ∀x, y ∈ χ. (1)

The main purpose of Fallat et al. (2016) is to prove that if a probability distribution is MTP2

and has coodinate-wise connected support, then it is faithful to its concentration graph. In the
following, however, the MTP2 property will be used to construct upper and lower bounds for
a set function. Some other useful statements from Fallat et al. (2016) about a MTP2 random
variable XK are

1. The MTP2 property is closed under conditioning and marginalization; i.e. for B ⊂ K both
XB|XK\B = xK\B (for a.e. xK\B) and XB are MTP2.

2. For any subset B ⊂ K and non-decreasing function φ, the conditional expectation E[XB ]φ(XB|XK\B =

xK\B) is non-decreasing in xK\B .

3. For a decomposable graph G such that the intersection of any two cliques are either empty
or a singleton, a distribution P (·) which is Markov with respect to G is MTP2 if and only
if the marginal distribution of each clique is MTP2.

The first property ensures that MTP2 for all variables implies MTP2 for a smaller collection, and
follows easily from the definition. The second property is an important part of the proof for
the bounds we will later define, and the third property allows us check if a larger distribution
is MTP2 part by part. (See Fallat et al. (2016) for proofs.)

2.1 A single parent network
As a simple example of a MTP2 distribution, we will study a Bayesian Network with a single
parent with N children. For N = 3 we are in the situation of Figure 1. From the previous

BN:
JTs:P

1
2

3 P,2 P,1 P,3P P

P,1 P,2 P,3P P

P,1 P,3 P,2P P

P,1 P,2 P,3

P

Figure 1. A BN with one parent and three children (left picture) has four possible Junction Trees (JT)
(right pictures). However, all three middle configurations have two equal separators, and by merging
equal separators as in Almond and Kong (1991) all three JTs result in the simpler JT on the right.

section, we know that it is sufficient to check each parent P - child C pair to ensure the MTP2
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property. Obviously from (1), it is sufficient to check

P (P = 0, C = 1) · P (P = 1, C = 0) ≤ P (P = 1, C = 1) · P (P = 0, C = 0) ,

which reduces to P (C = 1|P = 0) ≤ P (C = 1|P = 1) if P is not deterministic. Note that if P
is in fact deterministic, the above equation is always fulfilled as the children are independent
(and we will ignore this case). That is, a single parent binary network is MTP2 if and only if a
success for the parent increases the success probability for each child.

3 Upper and lower bounds from by clustering and clair-
voyance

As in Lilleborge and Eidsvik (2015), assume our set of observable nodes K is a disjoint union
of clusters C from a collection C,

K = ∪̇C∈CC.

That is, each C ∈ C holds a set of observable nodes. The upper and lower bounds will be based
on calculations within each cluster; i.e. takes into account the correlations within each cluster,
and ignores the correlation between clusters. Since calculations for BNs are performed in a
corresponding JT, the partitioning of K into disjoint clusters should be guided by the JT. For
example, BN-variables appearing in the same JT-nodes (or some neighboring JT-nodes) can be
chosen to be in the same cluster.

By comparing the upper and lower bounds, we are able to give some evaluation to the bounds
as approximative values, since each of these errors will be less than the difference between
the bounds. Their average will again have half the error bound. We know from Lilleborge and
Eidsvik (2015) that for an information measure μf (B) = E[XB ]fT (P (·|XB) (f concave), upper
and lower bounds can be constructed as

μU
f (B) = μf (B

−) and μL
f (B) = μf (B

+), B− ⊆ B ⊆ B+.

Whenever the information measure is of the form

μT (B) ≡
∑
i∈K

E[XB ]fT (P (Xi|XB)),

we can regroup the terms to
μT (B) =

∑
C∈C

∑
i∈C

μi
T (B).

This is the case for e.g. μV ar, μPrE and μNwE discussed in Lilleborge et al. (2015), namely the
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sum of conditional variances

μV ar(B) =
∑
i∈L

E[XB ]

[
Var[Xi|XB ] [Xi]

]
,

the expected number of prediction errors

μPrE(B) =
∑
i∈L

E[XB ]

[
1− max

x∈{0,1}
{P (Xi = x|XB)}

]
,

as well as the node-wise sum of entropies

μNwE(B) = −
∑
i∈L

E[XB ]

[
E[Xi|XB ] [logP (Xi | XB)]

]
.

For a given choice of information measure, define the upper bound

μ̂T (B) ≡
∑
C∈C

∑
i∈C

μi
T (B ∩ C) =

∑
C∈C

∑
i∈C

E[XB ]fT (P (Xi|XB∩C)),

as a version where each node only see probability updates resulting from observations within
its own cluster. This is the situation described for the Variance measure in Lilleborge and Ei-
dsvik (2015). From Lilleborge et al. (2015) we know that μi

T (B ∩ C) ≥ μi
T (B), since less prob-

ability updates means less learning. This again ensures that μ̂T (B) ≥ μT (B). The optimal
observation set within a collection B according to the true (B�) and upper bound (B̂) measure,
respectively, are

B� ≡ argmin
B∈B

μT (B) and B̂ ≡ argmin
B∈B

μ̂T (B).

Note that through the easier-to-calculate μ̂T and corresponding minimum B̂, we also have an
upper bound for the optimum of the true measure μT (B

�), since

μ̂T (B̂) ≥ μT (B̂) ≥ μT (B
�).

To construct a lower bound, we could introduce appropriate clairvoyant information R =

B+ \B for each cluster, namely

μ̃T (B) ≡
∑
C∈C

∑
i∈C

μi
T (B ∪R(C)).

R(C) is some set disjoint from C, for example R(C) = L \ C. A good choice of R(C) should
follow two intuitive requirements. The first requirement (R1), is to select R(C) so that Xi ⊥
B \ C||R(C) for each observable node i ∈ C in the cluster. This (R1) allows for local sub-JT
calculations for each cluster C ∈ C, as μi

T (B ∪ R(C)) = μi
T ((B ∩ C) ∪ R(C)) and the latter

can be calculated on a sub-JT containing the variables in C and R(C). The second requirement
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(R2), aiming for an efficient choice of sub-JT, is to select R(C) so that these variables appear
close to C in the full JT. That is, computations for the cluster C needs to happen on a sub-JT
containing all variables in both R(C) and C. R(C) “close” to C in the full JT is an intuitive
indication that a sub-JT containing all variables in both sets is “small”. Also note that smaller
argument set (B ∩ C) ∪ R(C) means less variables to integrate out when calculating μi

T , and
hence time efficiency. Choosing R(C) = V \ C, is clearly fulfilling the first point (R1). When
the observable nodes are all leaf nodes, this choice is effectively the same as R(C) = Pa(C) for
the collection of BN-parents of each observable node i ∈ C, since μi

T ((B ∩ C) ∪ (V \ C)) =

μi
T ((B ∩ C) ∪ Pa(C)). The choice (R(C) = Pa(C)) is also adhering to the second point (R2),

following from the running intersection property of the JT combined with the fact that the BN-
parents of cluster node i ∈ C must appear together with i in at least one JT-node. For the more
general case, the corresponding choice would be to take the union of the markov blankets of
each node in C and remove from this set the nodes appearing in C. Actually, a corresponding
analysis appears more straightforward in the JT: Select a subtree of the JT in which all nodes
in the cluster is represented, and choose as R(C) the separators separating the subtree from
the rest of the full JT. This is illustrated in Figure 2. The converging bounds of Lilleborge and
Eidsvik (2015) makes a similar initial choice, and iteratively increases the size of the sub-JT for
local computations by choices of R(C) further out in the JT.

3 4 5,71,2,3 5,6,75,4,7

4,8

9,3,4 5,6,7

Figure 2. A small JT including 9 BN nodes labelled 1 − 9. An example sub-JT for the cluster {4, 8, 9}
is marked in grey. From this choice of sub-tree, the R-set is automatically set to {3, 5, 7}, namely the
variables appearing in the separators marked as dotted square boxes.

4 MTP2 alternative to clairvoyant

Clairvoyant information (e.g. R(C) = Pa(C)) will often correspond to receiving perfect infor-
mation on nodes j �∈ K we only get indications on in practice. Recall that K is the set of ob-
servable nodes. Message passing-wise, this corresponds to sending stronger messages (clearer
information) in the JTA than for the true measure value of any subset of observable nodes.
Instead of creating a lower bound based on stronger messages, we aim to create a lower bound
based purely information from observable nodes. That means the strongest indications from
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observable variables outside the cluster that the cluster variable is 0 or 1, respectively. This
could lead to a tighter lower bound than a standard clairvoyant, since there is no information
on unobservable nodes more correlated with the cluster. That is, the bound would be tighter
if the standard clairvoyant implies perfect information on nodes much more correlated with
the variable of interest compared to the observable nodes in the application. It can also result
in faster calculations, as preprocessing can give two conditionals to consider compared to the
exponentially many assignments of XR(C). What we here refer to as preprocessing is simply
storing information otherwise calculated repeatedly by the JTA (i.e. clever implementation of
JTA for this case), as only the information within the cluster varies with the observation set
B considered. We aim for something comparable to the algorithm in Lilleborge and Eidsvik
(2015), where local computations are done on a sub-JT. That algorithm instructs integration
over additional information from JT-nodes separating the local cluster from the rest, as vari-
ables outside the cluster is conditionally independent of variables within the cluster given
the additional information. For the bound constructed in this section, preprocessing or sim-
ply clever JTA-runs will lay the groundwork for a lower bound where calculations again are
done in a local cluster or a sub-JT. Similarly to Lilleborge and Eidsvik (2015), the sub-JT can be
iteratively increased to get a lower bound converging to the true value.

Let ı̈ ∈ K be an observable node in a given cluster C̈. We will focus on the corresponding term
μı̈
T to the node ı̈ in the full measure μT (·) =

∑
i∈K μi

T (·), and assume that all observable nodes
are leaf nodes as in Lilleborge and Eidsvik (2015). Using the clairvoyant idea, we assume a
thought experiment, where we would observe all observable nodes K \ C̈ outside the cluster.
However, for computational reasons we only consider the cases XK\C̈ = x−, XK\C̈ = x+ that
yields smallest and largest conditional success probability of Xı̈, respectively. We will use the
reasoning from the thought experiment to consider some observation set B ⊂ K. Similarly
to the clairvoyant lower bound, we will add additional information to B from outside of the
cluster. That is, in the thought experiment, we consider observations on the corresponding
B ∪

(
K \ C̈

)
, where XK\C̈ is restricted to x±. This will result in a lower bound with terms of

the form

μ̆ı̈
T (B) ≡ E[XB∩C̈ ]

[
wı̈(XB∩C̈) · fT (P

(
Xı̈ = 1|x−, XB∩C̈

)
)
]

+E[XB∩C̈ ]

[(
1− wı̈(XB∩C̈)

)
· fT (P

(
Xı̈ = 1|x+, XB∩C̈

)
)
]
, (2)

where wı̈(xB∩C̈) are weights. The measure term μ̆ı̈
T corresponds to the term of node ı̈ in the full

measure μ̆T =
∑

i∈K μ̆i
T . Note the MTP2 assumption introduces homogeneity which ensures

x− = �0 and x+ = �1.

4.1 Calculations/Derivation
Let P ∈ Pa(C̈) be the parent of the observable node ı̈ in cluster C̈, both P and ı̈ are binary.
Recall that x−, x+ are also the assignments to XK\C̈ that yields smallest and largest conditional
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success probability of P , respectively. By the MTP2-property,

P
(
P = 1|x−, xB∩C̈

)
< P (P = 1|xB) < P

(
P = 1|x+, xB∩C̈

)
unless K \ C̈ ⊥ P | B ∩ C̈. To each XB = xB, xB ∈ χB the restricted assignment XB∩C̈ = xB∩C̈
lets us write

∃!txB ∈ [0, 1] : P (P = 1|xB) = txB · P
(
P = 1|x−, xB∩C̈

)
+ (1− txB ) · P

(
P = 1|x+, xB∩C̈

)
.

The above equation is equivalent to

P (P = 0|xB) = txB · (1− P
(
P = 1|x−, xB∩C̈

)
) + (1− txB ) · (1− P

(
P = 1|x+, xB∩C̈

)
),

which again let us combine and collect terms to see that also

P (Xı̈ = 1|xB) =
∑
P

P (Xı̈ = 1|P )P (P |xB) = txB [· · · ] + (1− txB )[· · · ]

= txB · P
(
Xı̈ = 1|x−, xB∩C̈

)
+ (1− txB ) · P

(
Xı̈ = 1|x+, xB∩C̈

)
,

since B ⊥ ı̈ | P . For a concave function fT (·),

fT (P (Xı̈ = 1|xB)) ≥ txB · fT (P
(
Xı̈ = 1|x−, xB∩C̈

)
) + (1− txB ) · fT (P

(
Xı̈ = 1|x+, xB∩C̈

)
),

and thus

μı̈
T (B) ≡ E[XB ]fT (P (Xı̈ = 1|XB))

≥ E[XB ]

[
tXB
· fT (P

(
Xı̈ = 1|x−, XB∩C̈

)
) + (1− tXB

) · fT (P
(
Xı̈ = 1|x+, XB∩C̈

)
)
]
.

Defining the weights wı̈(XB∩C̈) = E[XB\C̈ |XB∩C̈ ]tXB
, the above calculations prove the lower

bound μ̆ı̈
T (B) ≤ μı̈

T (B) for μ̆ı̈
T (B) defined in (2).

Interpreting 0/0 as 0, we see that wı̈(XB∩C̈) is easily calculated by re-use of quantities we use
for other computations:

wı̈(XB∩C̈) = E[XB\C̈ |XB∩C̈ ]tXB
= E[XB\C̈ |XB∩C̈ ]

P
(
P = 1|xB∩C̈ , x+

)
− P (P = 1|xB)

P
(
P = 1|xB∩C̈ , x+

)
− P

(
P = 1|xB∩C̈ , x−

)
=

P
(
P = 1|xB∩C̈ , x+

)
− P

(
P = 1|xB∩C̈

)
P
(
P = 1|xB∩C̈ , x+

)
− P

(
P = 1|xB∩C̈ , x−

)
=

P
(
Xı̈ = 1|xB∩C̈ , x+

)
− P

(
Xı̈ = 1|xB∩C̈

)
P
(
Xı̈ = 1|xB∩C̈ , x+

)
− P

(
Xı̈ = 1|xB∩C̈ , x−

) .
and

• P
(
Xı̈ = 1|xB∩C̈ , x−

)
is fed into fT (·) for this lower bound
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• P
(
Xı̈ = 1|xB∩C̈ , x+

)
is fed into fT (·) for this lower bound

• P
(
Xı̈ = 1|xB∩C̈

)
is fed into μ̂ı̈

T (B) ≡ E[XB∩C̈ ]fT (P
(
Xı̈ = 1|XB∩C̈

)
), which is the corre-

sponding upper bound

4.2 The single parent network
Recall the single parent network in Section 2.1 with N children. If the first m children are
observed, the conditional probability of any another sibling c > m is given by

P
(
Xc = 1|x{1,··· ,m}

)
= E[XP |x{1,··· ,m}]P (Xc = 1|XP ) ,

where

P
(
XP |x{1,··· ,m}

)
=

P (XP = 1)P
(
x{1,··· ,m}|XP = 1

)
E[XP ]P

(
x{1,··· ,m}|XP

) .

To calculate the exact value of a measure term E[XB ]fT (P (Xı̈ = 1|XB)) for an observation set
B, we have to consider the 2|B| possible assignments to XB . If we were to compare all possible
observation sets of size m, we would have to consider 2m assignments for each of the possible(
N
m

)
observation sets B. However, lets approximate the effect from the first k children whether

they are included in B or not, and do exact calculations for the last N − k variables C̈ =

{k + 1, · · · , c− 1, c+ 1, · · · , N} to get a lower bound of the form (2). Now, x− refers to Xi = 0

for all i ≤ k and x+ refers to Xi = 1 for all i ≤ k. In this case one can show that wı̈(xB∩C̈) =

t · P(xB∩C̈ |x+)
P(xB∩C̈)

and equivalently 1 − wı̈(xB∩C̈) = t · P(xB∩C̈ |x−)
P(xB∩C̈)

, where t = P(P=1|x+)−P(P=1)
P(P=1|x+)−P(P=1|x−)

does not depend on xB∩C̈ . The reader is referred to Appendix A.1 for details. However, this
means

μ̆ı̈
T (B) = t ·E[XB∩C̈ |x−]fT (P

(
Xı̈ = 1|x−, XB∩C̈

)
) + (1− t) ·E[XB∩C̈ |x+]fT (P

(
Xı̈ = 1|x+, XB∩C̈

)
).

In this special case our LB is easier to interpret, as it is defined as a sum of two parts where each
part is conditioned on an extreme message and weighted according to the effect the opposite
extreme message has on P .

5 Synthetic illustrating example: Simple two parent net

Assume 2N + 2 binary variables (with value 0 or 1), related as in Figure 3, with probability
distribution determined by

P (P1 = 1) = p > 0, P (P2 = 1|P1) = ρ · P1,

P (1m = 1|P1) = p · P1, P (2m = 1|P2) = p · P2.
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· · · · · · · · · · · ·

P1

11 12 1N

P2

21 22 2N

Figure 3. A BN with two sibling-parents with equal number of leaf-node children.

Assume the leaf nodes are the observable nodes and that the distribution is MTP2. We can
study the lower bound from Section 4 together with the upper bound from Section 3 for this
network, and compare with the upper and lower bound from Section 3. We assume the vari-
ance measure, which is the measure discussed in Lilleborge and Eidsvik (2015). First, just look
at values for the bounds and the exact measure value when B consists of one child of each of
P1 and P2, i.e. B = {11, 21}. We calculate the effect from sibling observable nodes exactly, and
approximate the effects of the others. First, the exact measure value

μV ar({11, 21})
N − 1

= p2(1 + 2ρ− ρp)fV ar(p) + (1− p2 − ρp2 + ρp3)fV ar

(
p− ρp2

1 + p− ρp2
· p

)

+p2(1− ρp)fV ar

(
ρ− ρp

1− ρp
· p

)
+ (1− p2 − ρp2 + ρp3)fV ar

(
ρp− ρp2

1 + p− ρp2
· p

)
,

then the upper bound

μ̂V ar({11, 21})
N − 1

= p2(1 + ρ)fV ar(p) + (1− p2)fV ar

(
p

1 + p
· p

)
+ (1− ρp2)fV ar

(
ρp− ρp2

1− ρp2
· p

)
,

which is used together with the clairvoyant lower bound

μ̃V ar({11, 21})
N − 1

= p(ρ+p)fV ar(p)+p(1−ρp)fV ar

(
ρ− ρp

1− ρp
· p

)
+(1−p2−ρp+ρp2)fV ar

(
p− ρp

1 + p− ρp
· p

)

or the MTP2 lower bound

μ̆V ar({11, 21})
N − 1

=
[
p(ρ+ p)− ρp(1− p)N+1

]
fV ar(p) + p

(
1− (1− p)N

)
(1− ρp)fV ar

(
ρ− ρp

1− ρp
· p

)

+
(
1− p2 − ρp+ ρp2 + ρp(1− p)N+1

)
fV ar

(
p− ρp

(
1− (1− p)N

)
1 + p− ρp (1− (1− p)N )

· p
)

+
(
1− p+ p(1− ρp)(1− p)N

)
fV ar

(
ρp(1− p)N

1 + p(1− ρp)(1− p)N−1
· p

)
.

For the MTP2 lower bound, each of the N children on a given side (left or right, respectively)
gives an imperfect and independent indication on their parent (P1 or P2, respectively). The
updated distribution of this parent is used for calculation of the bounds for the children on the
other side (right or left, respectively). Compared to the clairvoyant bound, where one receives
perfect information on the parent of the other side children, the MTP2 lower bound receives
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weaker indications. Thus, μ̃V ar(B) ≤ μ̆V ar(B) when B ⊆ {11, · · · , 1N , 21, · · · , 2N}. Further,
observe that μ̆V ar(B)

N−1 → μ̃V ar(B)
N−1 as N → ∞. In fact, as N → ∞, the indications on the other

side parents in the MTP2 lower bound are converging towards perfect information. That is,
for N independent identically distributed boolean random variables Y1, · · · , YN with success
probability p > 0, P (max{Y1, · · · , YN} = 1) → 1 as N → ∞. Similarly for the two-parent net,
P (max{11, · · · , 1N} = P1)→ 1 and P (max{21, · · · , 2N} = P2)→ 1 as N →∞.

The three bounds are plotted together with the true measure value in Figure 4 for different val-
ues of ρ. We see that for small ρ, e.g. when P1 and P2 are less correlated, the bounds are tight,
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Figure 4. Comparing bounds for observation set {11, 21} in the synthetic network in Figure 3 for N = 3.
For each value of ρ (values and colors in legend), there is one curve for each of μT (True Value, solid
line), μ̂T (Upper Bound, dashed-dotted line) μ̃T (Clairvoyant Lower Bound, dashed line) and μ̆T (MTP2

Lower Bound, dotted line) as a function of the success parameter p. The Clairvoyant bound is below the
MTP2 bound for all p (equal at end points).

while for ρ large, e.g. when P1 and P2 are highly correlated, the bounds are loose/conservative.
The reason that the bounds are very loose in this case, is that the assumption for the upper
bound (P1 and P2 independent) is totally off. Correspondingly for the Clairvoyant Lower
Bound, the extra information (knowing the true value of Pi for the children of P2−i) is too
strong compared to the information from the actual observations. The MTP2 Lower Bound
give extra information, but less than the Clairvoyant Lower Bound, and provides a uniformly
better lower bounds with similar behaviour. Also note that for a given ρ, the bounds are loosest
around p ∼ 0.6 to 0.8.

Recall that we are not necessarily looking for the uniformly tightest bound; we want our bound
to be tight enough to ensure an optimal (or close-to optimal) observation set Bm of size m. The

18



true measure values for the observation sets of two siblings are as follows,

μV ar({11, 12}) = (N − 2)p2(2− p) · fV ar(p) + (N − 2)
(
1− p2(2− p)

)
·fV ar

(
p(1− p)

1 + p(1− p)
· p

)

+Np2(2− p) · fV ar (ρp) +N
(
1− p2(2− p)

)
·fV ar

(
ρp(1− p)

1 + p(1− p)
· p

)

and

μV ar({21, 22}) = (2N − 2)ρp2(2− p) · fV ar(p) +N
(
1− ρp2(2− p)

)
·fV ar

(
p− ρp2(2− p)

1− ρp2(2− p)
· p

)

+(N − 2)
(
1− ρp2(2− p)

)
·fV ar

(
ρp(1− p)2

1− ρp2(2− p)
· p

)
,

and the bounds are calculated similarly as for {11, 21}. That is, the upper bounds are

μ̂V ar({11, 12}) = (N−2)p2(1−p)fV ar(p)+(N−2)(1−p2(2−p))fV ar

(
p(1− p)

1 + p− p2
· p

)
+NfV ar

(
ρp2

)
and

μ̂V ar({21, 22}) = (N−2)ρp2(1−p)fV ar(p)+(N−2)(1−ρp2(2−p))fV ar

(
ρp(1− p)2

1− ρp2(2− p)
· p

)
+NfV ar

(
p2
)
,

while the lower bounds are given by

μ̃V ar({11, 12}) =(N − 2)(p2(2− p) + ρp(1− p)2)fV ar(p) +NpfV ar(ρp)

+ (N − 2)(1− p2(2− p)− ρp(1− p)2)fV ar

(
(1− ρ)(1− p)p2

1 + p(1− p)(1− ρ)

)

and

μ̃V ar({21, 22}) =
(
Nρp+ (N − 2)ρp2(2− p)

)
fV ar(p) +N(1− ρp)fV ar

(
(1− ρ)p2

1− ρp

)

+ (N − 2)(p− ρp2(2− p))fV ar

(
ρ(1− p)2p

1− ρp(2− p)

)

for the Clairvoyant Lower Bound and

μ̆V ar({11,12}) = (N − 2)
(
p2(2− p) + ρp(1− p)2

(
1− (1− p)N

))
fV ar(p) +Np

(
1− (1− p)N

)
fV ar(ρp)

+ (N − 2)
(
1− p2(2− p)− ρp(1− p)2

(
1− (1− p)N

))
fV ar

(
(1− p)

(
1− ρ+ ρ(1− p)N

)
p2

1 + p(1− p) (1− ρ+ ρ(1− p)N )

)

+N
(
p(1− p)N + 1− p

)
fV ar

(
ρ(1− p)Np2

p(1− p)N + 1− p

)
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and

μ̆V ar({21, 22}) =
(
Nρp

(
1− (1− p)N

)
+ (N − 2)ρp2(2− p)

)
fV ar(p)

+N(ρp(1− p)N + 1− ρp)fV ar

(
ρp2(1− p)N + p2(1− ρ)

ρp(1− p)N + 1− ρp

)

+ (N − 2)(p− ρp2(2− p))
(
1− (1− p)N

)
fV ar

(
ρ(1− p)2p

1− ρp(2− p)

)

+ (N − 2)
(
1− p+ p(1− p)N (1− ρp(2− p))

)
fV ar

(
ρ(1− p)N+2p2

1− p+ p(1− p)N (1− ρp(2− p))

)

for the MTP2 Lower Bound.

Observe that the optimal B ∈ B2 of size 2 depends on N . Figure 5-Figure 8 show the bounds
together with the true value for the different candidates when N = 3 for ρ = 0.1, 0.3 or 0.9,
respectively. Recall that each candidate in B2 = {ik, j� : i, j ∈ {1, 2}, k, � ∈ {1, · · · , N}}
is equivalent to either {11, 21}, {11, 12} or {21, 22}. Observe that for small p, e.g. when the
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Figure 5. Comparing measure values and bounds for different observation sets in the synthetic network
in Figure 3 for ρ = 0.1. There is one curve for each of μT ({11, 21}) (black curve), μT ({11, 12}) (dark gray
curve) and μT ({21, 22}) (light gray curve) as a function of the success parameter p, together with the
upper and lower bounds.

observation nodes are not too good indications on their parents, its optimal to observe two
children of P1 in order to get a ’sufficiently good’ indicator of this one parent. For larger p it is
optimal to sample evidence on both parents, e.g. observe 11, 21, since this gives information on
both sides of the network. Note that the smallest p for which it is optimal to observe {11, 21}
is larger for small ρ. Since the MTP2 bound is uniformly tighter than the clairvoyant, there is
an interval of p-values where the MTP2 Lower Bound can separate out suboptimal candidates
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Figure 6. Comparing measure values and bounds for different observation sets in the synthetic network
in Figure 3for ρ = 0.3. There is one curve for each of μT ({11, 21}) (black curve), μT ({11, 12}) (dark gray
curve) and μT ({21, 22}) (light gray curve) as a function of the success parameter p, together with the
upper and lower bounds.
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Figure 7. Comparing measure values and bounds for different observation sets in the synthetic network
in Figure 3 for ρ = 0.6. There is one curve for each of μT ({11, 21}) (black curve), μT ({11, 12}) (dark gray
curve) and μT ({21, 22}) (light gray curve) as a function of the success parameter p, together with the
upper and lower bounds.
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Figure 8. Comparing measure values and bounds for different observation sets in the synthetic network
in Figure 3 for ρ = 0.9. There is one curve for each of μT ({11, 21}) (black curve), μT ({11, 12}) (dark gray
curve) and μT ({21, 22}) (light gray curve) as a function of the success parameter p, together with the
upper and lower bounds.

ρ = 0.1 ρ = 0.3 ρ = 0.9

Clairvoyant LB [0.871031, 0.876648] [0.680558, 0.746506] [0.030625, 0.971558]
MTP2 LB [0.871061, 0.876623] [0.683610, 0.744892] [0.109633, 0.971547]

Table 1. Intervals of p-values for which the combination of upper and lower bound (Clairvoyant and
MTP2 Lower Bound, respectively) is indecisive of the optimal observation set. For smaller p-values,
{11, 12} is optimal, and for larger p-values {11, 21} is optimal. The numbers are obtained numerically
in an experiment where the bounds was compared for each p-value between 0 and 1 in increments of
10−6.

(using the upper bound) while the Clairvoyant Lower Bound cannot, see Table 1. In general
we see that this indecisive interval for the Clairvoyant Lower Bound is not much larger than
for the MTP2 Lower Bound. For small ρ (e.g. ρ = 0.1 in Table 1), both combinations of upper
and lower bounds works well for most p-values. However, for large ρ (e.g. ρ = 0.9 in Table 1),
both combinations are indecisive for most p-values, but the MTP2 combination is successful
for more than twice as many p-values.

When ρ = 0.1, with measure values and bounds visualized in Figure 5, the right part of the
BN (Figure 3) is most likely ”dead” as in all variables 0/failure. Thus, we need p large to have
enough trust a single sample on the left to take the (small) chance of exploring a success on the
right compared to the extra security in having a double sample in the more likely area. Also
note that for large ρ (e.g. Figure 8, ρ = 0.9), all observations sets are close to optimal, since the
indications on P1 or P2, respectively, are very similar for all children; because P1 and P2 are
highly correlated. However, the bounds are too loose to give this indication: This is due to the
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same reason as discussed for Figure 4, unless p is very small or very large. For small ρ (see
Figure 5 for ρ = 0.1 or Figure 6 for ρ = 0.3) the bounds are very good indicators for the optimal
observation set. For ρ-values in between (see Figure 7, ρ = 0.6), the bounds are tight enough to
either ensure the optimal observation set (for large p) or indicate that all observation sets are
close to optimal (for small p).

6 Closing remarks

The lower bound constructed in Section 4 can be combined with the upper bound in Section 3
to optimize the subset selection problem as in Lilleborge and Eidsvik (2015). The set function
optimized must be convex, as is the case for information measures as well as in many cases
involving value of information. As this lower bound is targeted to MTP2 distributions, they can
utilize the MTP2 properties to make an efficient bound. As in Lilleborge and Eidsvik (2015), the
bounds can be applied to find the exact optimal solution by iteratively removing candidates
as they are proved suboptimal by the bounds, or they can be used to speed up approximative
search algorithms. The reader is referred to Lilleborge and Eidsvik (2015) for description and
a discussion of such search algorithms.
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A Calculations

A.1 A special case of the MTP2 bound: Updates for a JT clique with a single BN
node as its unique separator

Consider a JT separator {P} containing a single BN node P . We will study the probability
updates for one of P s BN-children C, which is included in a (unique) JT-neighbor of {P}.
Lets for simplicity assume this JT-node represents {P,C} and has no other neighbors. We will
consider all possible messages from a given C̈ ⊂ Ne({P}) with {P,C} ∈ C̈ and approximate
with the extremes for the remaining JT neighbors of {P}. Let C be the collection of JT nodes in
the direction of C̈ from {P}, i.e. all nodes from which there is a path to {P} going through a
node in C̈. Let L̈ = L ∩ (∪C∈CC) be the set of observable BN nodes represented in C. We will
accept the probability updates from observing nodes in L̈, and just consider the extremes x−
(i.e. Xi = 0, i ∈ L \ L̈) and x+ (i.e. Xi = 1, i ∈ L \ L̈) for all other observable nodes. Also note
that one can first calculate the effect of each extreme on the C-subtree and then do all remaining
calculations locally on the subtree.

We define p+ ≡ P (P = 1|x+), p− ≡ P (P = 1|x−) and p = P (P = 1), for convenient notation,
and assume p+ > p−. (This will happen unless L \ L̈ ⊥ P , i.e. the C-subtree is actually inde-
pendent of the remaining observable nodes in the original BN. In that case, the corresponding
terms in the upper bound are the true values and there is no need for weights w.) Let t = p+−p

p+−p−
such that t is the unique solution of p = t · p− + (1− t) · p+.

Given an assignment XB = xB, xB ∈ χB , it has a restricted assignment XB∩L̈ = xB∩L̈ with
corresponding q1 = P

(
xB∩L̈|P = 1

)
and q0 = P

(
xB∩L̈|P = 0

)
. Now,

P
(
P = 1|x±, xB∩L̈

)
=

P
(
P = 1, xB∩L̈|x±

)
P
(
xB∩L̈|x±

) =
q1 · p±

P
(
xB∩L̈|x±

) , P
(
xB∩L̈|x±

)
= q1 · p± + q0 · (1− p±)

P
(
P = 1|xB∩L̈

)
=

p · q1
P
(
xB∩L̈

) , P
(
xB∩L̈

)
= q1 · p+ q0 · (1− p)
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These equations let us specify wı̈(xB∩L̈) further, as

wı̈(xB∩L̈) = E[XB\L̈|XB∩L̈]tXB
=

P
(
P = 1|xB∩L̈, x+

)
− P

(
P = 1|xB∩L̈

)
P
(
P = 1|xB∩L̈, x+

)
− P

(
P = 1|xB∩L̈, x−

)
=

(
p+ · q1

P
(
xB∩L̈|x+

) − p · q1
P
(
xB∩L̈

)
)

/
(

p+ · q1
P
(
xB∩L̈|x+

) − p− · q1
P
(
xB∩L̈|x−

)
)

=
p+ · P

(
xB∩L̈

)
− p · P

(
xB∩L̈|x+

)
p+ · P

(
xB∩L̈|x−

)
− p− · P

(
xB∩L̈|x+

) · P
(
xB∩L̈|x−

)
· P

(
xB∩L̈|x+

)
P
(
xB∩L̈|x+

)
· P

(
xB∩L̈

)
=

p+ · (p · q1 + (1− p) · q0)− p · (p+ · q1 + (1− p+) · q0)
p+ · (p− · q1 + (1− p−) · q0)− p− · (p+ · q1 + (1− p+) · q0)

· P
(
xB∩L̈|x−

)
P
(
xB∩L̈

)
=

q0 (p+ − p)

q0 (p+ − p−)
· P

(
xB∩L̈|x−

)
P
(
xB∩L̈

)
= t · P

(
xB∩L̈|x−

)
P
(
xB∩L̈

) ,

and correspondingly,

1− wı̈(xB∩L̈) =
P
(
xB∩L̈

)
− t · P

(
xB∩L̈|x−

)
P
(
xB∩L̈

)
=

(p · q1 + (1− p) · q0)− t · (p− · q1 + (1− p−) · q0)
P
(
xB∩L̈

)
=

(p− · t+ p+ · (1− t)) · q1 + (1− p− · t− p+ · (1− t)) · q0 − t · (p− · q1 + (1− p−) · q0)
P
(
xB∩L̈

)
= (1− t)

· (p+ · q1 + (1− p+) · q0)
P
(
xB∩L̈

)
= (1− t)

·P
(
xB∩L̈|x+

)
P
(
xB∩L̈

) .

Finally,

μ̆ı̈
T (B) ≡ E[XB∩L̈]

[
w(XB∩L̈) · fT (P

(
Xı̈ = 1|x−, XB∩L̈

)
) +

(
1− w(XB∩L̈) · fT (P

(
Xı̈ = 1|x+, XB∩L̈

)
)
)]

= t · E[XB∩L̈|x−]fT (P
(
Xı̈ = 1|x−, XB∩L̈

)
) + (1− t) · E[XB∩L̈|x+]fT (P

(
Xı̈ = 1|x+, XB∩L̈

)
),

i.e. it is defined as a sum of two parts, each part conditioned on an ”extreme” message and
weighted by t. This makes the lower bound easier to interpret in this case.
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