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Abstract

Spherical collapse is a crude, but useful toy model for structure formation in an
expanding universe. Previous works have looked at this model in ΛCDM with
massive neutrinos, where the primary findings were that massive neutrinos in
general delay the formation of structure in the universe, but this is to some small
extent counteracted by neutrinos clustering in the dark matter halo. One has
also studied spherical collapse in DGP gravity, a form of modified gravity without
a cosmological constant, where weakened gravity on large scales instead explain
the accelerated expansion of the universe.

This thesis aims to take the next step and look at combining the two ap-
proaches into one: Modelling spherical collapse with massive neutrinos and DGP
gravity at the same time. Previous studies give us reason to expect certain de-
generacies here - data might well be explained by both effects, making it difficult
to pinpoint to what extent each influences observations. Investigating these de-
generacies is therefore our goal.

We design and implement an algorithm to investigate spherical collapse in
Python 2, with initial conditions from a modified version of the CAMB code.
We find that top-hat overdensities in DGP gravity with a similar background
to ΛCDM in general collapse much later. In particular, for massless neutrino
collapse in DGP to look like massive neutrino collapse in ΛCDM, the sum of
neutrino masses needs to be at least 0.8 eV, well in excess of current cosmological
upper bounds.

In the absence of neutrino clustering, we observe the same difference of 0.8 eV
with massive neutrinos in both cosmologies, but note a significant dependency on
this number of the choice of h and rc in DGP gravity. For an alternate parameter
set, we need an even higher difference in total neutrino mass. This suggests that
massive neutrinos with realistic masses may be unable to completely mask the
effects of a modified theory of gravity, but we cannot rule out that there exists a
combination of DGP parameters that cancels this effect.
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Preface

What a long and winding road it has been.
It seems strange to look at the finished result and knowing that half of the

text didn’t even make it into the thesis you hold in your hands. If this work has
taught me anything, it is that research is not linear. Going off on a tangent of
possibility, hitting the brick wall of reality and starting over is not only part of
the process, but central to it. Yet in the end, so much of that effort is hidden
away, leaving only the things that worked, or worked well enough. And even
then, the hours of debugging, checking calculations and results are only implicit.
I now find it a little strange that one puts in all this effort and then attempts
to present it as effortless. Perhaps that is how this misconception arose to begin
with.

I have also learned a lot about the flawed concept of perfection. I used to
be very goal-oriented and concerned with how to reach those goals. Now I find
myself focusing more on the activities that get you there, and taking care of the
human in that process. It has been a liberating experience. And I think the
key is that when you worry and suffer enough, you eventually get tired of it and
decide to try something different. Not that there’s anything wrong with trying
too hard per se. It may well be a necessary step to bring attention to what you
are doing. Struggle is a great teacher.

In this context, I am thankful to have been given a challenging project for
my master’s thesis, although I didn’t know that when I started. If I had, I might
have taken an easier way out, and those lessons might have gone unlearned, at
least for now.

I am proud of the process that led me here. That’s not to say I’m not satisfied
with the result as well. Just know it for what it is: Not the whole story.
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Chapter 1

Introduction

Even as the universe expands, structures form by gravitational attraction.
One proposed way to explain that the expansion seems to currently be ac-

celerating, is to employ modified theories of gravity. If Newton’s gravitational
constant grows gradually weaker as one approaches scales significantly larger than
the Solar System, the universe will expand faster the larger it becomes. How-
ever, this effect may well even affect scales much smaller than the horizon of the
observable universe, as overdense clouds of matter will collapse more slowly to
galaxies compared to a standard gravity theory with mysterious dark energy.

The rate at which these structures form also depends on the masses of neu-
trinos, potentially both as a background component and through the extent that
neutrinos cluster in gravity wells made up of dark and baryonic matter. Increas-
ing the mass of massive neutrinos will make the background universe decelerate
more slowly, delaying structure formation somewhat1, whereas neutrino cluster-
ing will have the opposite effect.

When using galaxy formation as a probe of both of these effects, one therefore
expects them to be degenerate[1]. If both are present, one effect may mask
the other to some extent or even completely, making it potentially extremely
challenging to use observations such as the planned Euclid mission[2] to fulfil its
goal of looking for both.

The best way to examine degeneracies such as these is to use N-body sim-
ulations for a range of parameters. However, these are complex and relatively
time-intensive. Hence, the much simpler model of spherical collapse is a way to
get a faster preliminary handle on these degeneracies. In this thesis, we perform
spherical collapse in a massive neutrino background, in standard gravity and a
flavour of modified gravity named DGP gravity2. These simulations are run with

1This sounds counterintuitive at first glance, but we will explain why this happens in sub-
section 2.8.1 Note for now that we are considering the collapse of a fixed mass Mcb of cold dark
matter and baryons. Neutrinos only contribute to the background and, optionally, clustering
in the potential set up by the collapsing sphere.

2Named after its originators Dvali, Gabadadze and Porrati.[3]
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2 Introduction Chapter 1

and without neutrino clustering.
In this thesis, the first chapters are devoted to the theoretical framework

of cosmology, massive neutrinos, DGP gravity and spherical collapse. We then
describe the algorithms used in the implementation of the simulations, before
presenting the results and discussing what they may mean and how useful they
will turn out to be.

1.1 Notation and conventions
Units are denoted in square brackets, for example: [t] = s.

1.2 Symbols with multiple uses
Symbol

η Conformal time (section 2.3) Neutrino clustering (section 7.4)
β DGP gravity (chapter 5) Neutrino clustering (section 7.4)
λ Wavelength (chapter 2) Proper time (chapter 3)
µ Chemical potential (chapter 3) Unitless neutrino mass (chapter 4)
S Entropy (chapter 4) Spin (chapter 4)
k Wave number (chapter 2 and section 7.2) Unitless momentum (section 7.4)
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Theory
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Chapter 2

Cosmological Background

“Friendships, even the best of them, are frail things. One drifts
apart.”

— Virginia Woolf, To the Lighthouse

This chapter is mostly based on Øystein Elgarøy’s lecture notes[4] and Scott Do-
delson’s book[5]. We assume familiarity with certain concepts of special relativity,
most notably the Minkowski line element:

ds2 = −c2dt2 + dx2 + dy2 + dz2 (2.1)

As in special relativity, it is common in cosmology to use unitless velocities,
normalized to c = 1, so that time and distance may both be measured in (light)
seconds. However, in this chapter I have chosen to make an exception and include
instances of c in the formulas so it should never be ambiguous which convention
is used. Besides, converting to unitless velocities is straightforward under most
circumstances.

This chapter only deals with cosmology in general relativity (GR). We
will examine modified (DGP) gravity in chapter 5.

2.1 The Cosmological Principle
It is generally assumed in cosmology that the universe we inhabit is isotropic and
homogeneous on large scales. Homogeneity means that the physical properties
are the same everywhere in the universe, so there is nothing special about our
location in the universe. Isotropy means that the universe has no preferred
direction. On smaller scales, structures such as galaxies and clusters, the spatial
averages within a box depends on the placement and orientation of the box. Not
so on large scales.

5



6 Cosmological Background Chapter 2

The consequence of these assumptions is that the universe should always look
the same in all directions and at all distances. We call this the cosmological
principle.

2.2 The Friedmann-Robertson-Walker Line El-
ement

In an expanding universe, it is convenient to work with co-moving coordinates.
This is a coordinate grid that is itself expanding at the same rate as the universe
itself, so that we can distinguish between movement due to expansion (in which
case the co-moving coordinates remain unchanged) and peculiar motion rela-
tive to the expansion (in which case the co-moving coordinates do change). In a
non-expanding universe, all motion is peculiar.

For the remainder of this chapter, we will employ co-moving spherical coor-
dinates r, θ, φ1 so that whenever the radial distance r is used, it is assumed to be
co-moving unless otherwise specified. This is not a given in later chapters.

By applying the cosmological principle to a universe where spacetime itself
may expand (or contract), one may derive the Friedmann-Robertson-Walker
(FRW) metric (sometimes called the line element), which in spherical coor-
dinates is

ds2 = −c2dt2 + a2(t)
(

dr2

1− kr2 + r2
[
dφ2 + sin2 φdθ2

])
(2.2)

Here
√
−ds2 (proper time2) is a measure of separation in spacetime between

two events, which should be independent of the observer’s frame of reference.
As in special relativity, ds2 < 0 corresponds to timelike events (which can be
causally connected) and ds2 > 0 to spaceelike events, (which cannot). The limit
between these cases are then the lightlike events, with ds2 = 0, which describes
the movement of photons. Note that t is cosmic time, measured by an observer
moving with the expansion of the universe (i.e. one whose co-moving coordinates
remain the same at all times).

What is different from special relativity’s Minkowski line element 2.1 is that
this line element also allows for spacetime itself expanding or contracting as time
passes: The time-dependent scale factor a(t) incorporates this property. If the
universe doubles in size between times t1 and t2, we write this as a(t2) = 2 ·a(t1).
It is common to denote the magnitude of the scale factor at the present time t0

1For the angular coordinates, I use the notation θ for the azimuth in the xy plane and φ for
the inclination. The opposite is often used in physics texts, but old habits die hard.

2With another sign convention, where the signs on the left side of Eq. (2.2) are reversed,
ds would become the proper time.



Section 2.2 The Friedmann-Robertson-Walker Line Element 7

as a0 = a(t0) and use this for normalization. Thus a(t)
a0

will give us the relative
size of the universe at some point in time t compared to the size of the universe
today. We will use overdots to denote time derivatives: The rate at which the
universe expands is then ȧ ≡ da

dt
and its acceleration as ä ≡ d2a

dt2
.

k in Eq. (2.2) is here the geometrical curvature of the universe, where we
must distinguish between the following cases allowed by general relativity:

• k = 1: A closed universe, with finite volume. This is the three-dimensional
equivalent to the surface of a sphere, which is also closed: It has no bound-
aries, yet its area is finite. On such a surface, lines that are parallel some-
where will inevitably intersect at some point: Two expeditions both moving
strictly north (in parallel) from the equator will end up meeting at the North
Pole, for instance. Also, if one travels in straight line, one ends up at the
origin because of the geometry of the closed surface. Both these terrestrial
examples can be extended to three dimensions.

• k = 0: A flat universe, with infinite volume (otherwise, it would have an
edge somewhere, in which case our assumption of isotropy breaks down).
Parallel lines remain parallel, and the geometry is Euclidean, which can not
be assumed for non-flat universes.

• k = −1: An open universe, also with infinite volume, where initially par-
allel lines diverge. In two dimensions, such a universe would be shaped like
a saddle.

So, which is it? Observations are inconclusive at present: The universe seems
flat, yet it may well be that the curvature is simply not detectable on the scales
we have managed to probe so far (including the results from the Planck satellite
[6] [7]).

2.2.1 A note about units
If the universe is curved, k = ±1, it may be more or less curved. For instance, a
closed universe may have a smaller or greater radius. What we have done above
to get only those three choices for k is to normalize it to make it unitless. We
require both terms in the denominator of (2.2), that is, 1−kr2, to have the same
units. The only way to achieve this with unitless k is to also have r be unitless,
but that has the side effect of making everything inside the parentheses that
enclose the spatial dimensions unitless as well. As such, our only way to make
the units of the time term [−c2dt2] = m2 match the units of the space terms is
that [a(t)] = m as well.3

3For unitless velocities, such that c = 1, we would get [a(t)] = s, light seconds.
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However, in the case that the universe is flat, k = 0, we are free to allow
[r] = m, in which case a(t) is allowed to be unitless, as well as the other way
around.

The importance of making this distinction comes into play when we consider
the custom of setting the present value of the scale factor to unity, a0 = 1. We are
free to do so only when a is a unitless quantity, which means that this is possible
only if the universe is flat! If it is not, we have to choose between normalizing
a or k; we cannot normalize both at once without sacrificing information about
the size of the universe. Of course, the ratio a

a0
will still be unitless with value 1

at the present time, and may serve the same purpose.

2.2.2 Proper distance
How does one then measure distances when the universe itself is expanding?
The proper distance DP is found by placing one point at the origin and then
employing spherical co-moving coordinates. The shortest distance between the
points is the geodesic (what we call a straight line in flat space), where only
the radial co-moving coordinate r varies (since we placed one of the points at
the origin); we can then ignore the θ and φ contributions to the line element. At
a fixed time t, the spatial distance for an infinitesimal displacement along the
geodesic is |ds| = a(t) dr′√

1−kr′2 , and integrating over these contributions yields

DP (r, t) =
∫
|ds| = a(t)

∫ r

0

dr′√
1− kr′2

(2.3)

where r′ is also given in co-moving coordinates. Note that this results in a
separation of variables, where a(t) carries the entire time dependency and the
integral only depends on r. Thus, it is convenient to introduce the shorthand

S−1(r) ≡
∫ r

0

dr′√
1− kr′2

(2.4)

For the three cases that concern us, integrating the expression above results
in

• k = 1: S−1(r) = sin−1(r).

• k = 0: S−1(r) = r, which results in the quite intuitive expression DP (r, t) =
a(t) · r. Note that on small enough scales that where curvature can be
neglected, this is a valid approximation in any model (in this case we say
that spacetime is locally flat).

• k = −1: S−1(r) = sinh−1(r).
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And we can simplify

DP (r, t) = a(t)S−1(r) (2.5)

With this notation, a point located at proper distance rPD from wherever we
choose to place the origin4, will have co-moving radial coordinate

r = S
(
rPD
a

)
In a flat universe, this simplifies to

r = rPD
a

(2.6)

If the particle follows along with the expansion (no peculiar motion), then
rPD ∝ a and thus r = constant.

2.3 Conformal time
In an expanding universe, we can even observe superluminal motion (vr > c)
for sufficiently distant objects. One may easily assume (as Erwin Hubble himself
supposedly did) that special relativity should be employed once the radial velocity
approaches the speed of light, but this does not agree with observations. The
explanation lies in the fact this motion does not occur in any observer’s inertial
frame. In fact, general relativity was the answer to the question of what one
should do when no such frame is available. Thus, special relativity only applies
in the context of peculiar motion: Peculiar velocity vpec may never exceed the
speed of light, but there seems to be no upper limit to the radial velocity vr
caused by cosmic expansion.[8] In this case, a light signal from one point may
never make it to the other: As space keeps expanding, the more it moves toward
its destination, the further it has to go.

In universes where the past expansion has been sufficiently fast, light that
reaches us can only have been emitted from locations within the particle hori-
zon5, which marks the boundary of the observable universe. Light emitted
from outside the particle horizon cannot yet have reached us (and may in fact

4And we are free to choose under the assumption that the cosmological principle applies,
since the universe has no preferred center in such a case.

5Hereafter referred to simply as the horizon. In general, this is a little dangerous, as one
risks ambiguity between this and the cosmological event horizon, but in this thesis the event
horizon is of little interest and will not be discussed.
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never reach us, depending on the future expansion of the intervening spacetime).
We find the co-moving distance to the particle horizon by setting the proper time
ds2 = 0 for a ray of light and assuming only radial motion towards an observer
at the origin, so that dθ2 = dφ2 = 0. When we insert this into Eq. (2.20) and
separate the resulting differential equation. Remembering to use Eq. (2.4), we
get

rPH(t) = S
(∫ t

0

c

a(t′)dt
′
)

(2.7)

and if we want the proper distance, we can use (2.5) and find

DP,PH(t) = a(t)
∫ t

0

c

a(t′)dt
′ (2.8)

The Hubble parameter is defined by

H ≡ ȧ

a
(2.9)

so that

dt = 1
aH

da

and we can rewrite Eq. (2.8) in terms of the scale factor as

DP,PH(a) = a
∫ a

0

c

(a′)2H
da′ (2.10)

A common way to rewrite the line element (2.2) is to factor out the scale
factor from the time term as well:

ds2 = a2

− c
2

a2dt
2︸ ︷︷ ︸

dη2

+ dr2

1− kr2 + r2
[
dθ2 + sin2 θdφ2

] (2.11)

where we call η conformal time since it make this factoring possible. It can
be written as a differential equation
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dη

dt
= c

a
(2.12)

But the right hand side is the same quantity that we integrated over to find
the co-moving distance to the particle horizon in Eq. (2.7), so if we impose the
initial condition η(t = 0) = 0, we can write that integral in terms of conformal
time as

rPH(η) = S
(∫ t

0

dη

dt′
dt′
)

= S
(∫ η

0
dη′
)

= S (η) (2.13)

hence if the universe is flat, conformal time is exactly the co-moving distance
to the particle horizon! Thus our choice of initial condition is justified: At t = 0,
light would not have had time to travel any distance, so η = 0 at that point in
time (this holds even if the particle horizon does not exist at later times, but not
if the model contains no Big Bang).

We can rewrite (2.12) as

c

a
= dη

dt
= dη

da

da

dt
= dη

da
aH

which means

dη

da
= c

a2H
(2.14)

which is actually identical to what is inside the integral in Eq. (2.10), so that

DP,PH(a) = a
∫ a

0

dη

da′
da′ = a · η(a) (2.15)

Interestingly, we have not supposed the universe to be flat in this case. If it
is, a is unitless, so η will have the same units as DP,PH . If the universe is not
flat, we found that [a] = m , but in this case we see from Eq. (2.11) that η must
be unitless. In either case the product of these quantities will have the same unit
as the proper distance to the particle horizon.

This means that conformal time is a scaled measure of the maximum physical
distance light could have travelled since the Big Bang provided it could do so
without being scattered or absorbed. In a flat universe where we can set a0 = 1,
the result is that conformal time is the same as the proper distance to the particle
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horizon today. In a curved universe, we could similarly define η0 = 1 to measure
conformal time in units of today’s horizon.

Finally, if we measure this distance in units of light seconds, we get the amount
of time it would take for light to travel to the current particle horizon provided
the universe did not expand further in the meantime.

2.4 Cosmological redshift
As mentioned in the previous section, we cannot use the Doppler formula from
special relativity when studying non-peculiar velocity. However, in the same way
that we distinguish between peculiar motion and expansion, we take cosmo-
logical redshift to mean redshift after correcting for peculiar motion, i.e. the
contribution to the total redshift from cosmic expansion. We postulate that the
wavelength of a photon in space necessarily expands at the same rate as space
itself - we can then say that the co-moving wavelength λ(t)

a(t) is constant in the
absence of peculiar motion.

Since we make observations in the present epoch, we denote aobs = a0 and
asource = a for convenience. The cosmological redshift is given by the Doppler
formula

z = λobs − λsource
λsource

(2.16)

and is thus related to the scale factor a by the relation

1 + z = λobs
λsource

= a0

a
(2.17)

Note that while we must use the special relativistic Doppler equation for high
peculiar velocities, the formula above is valid for cosmological redshift even if
vr ≥ c.

2.5 The Friedmann equations
The central equations in cosmology stem from the theory of general relativity,
more specifically the Einstein field equations6, which relate the geometry in
the universe to its energy content:

6Plural as they apply component-wise for each combination of 4-dimensional indices µ and
ν.
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Eµν = 8πG
c4 Tµν + Λgµν (2.18)

Here Eµν = Rµν − 1
2gµνR is the Einstein tensor, which describes the geom-

etry of the universe, Λ is a cosmological constant to be explained later in this
section and gµν = êµêν is the metric tensor, the scalar product of unit vectors.
It is related to the line element by

ds2 = gµνdx
µdxν (2.19)

where dxµ and dxν are infinitesimal vector components along some curve and
we have used the Einstein summation convention: implicit summing over
repeated indices7. Applying Eq. (2.2) we may then write the FRW metric tensor
in diagonal matrix form:

gµν =


−c2 0 0 0

0 a2

1−kr2 0 0
0 0 a2r2 0
0 0 0 a2r2 sin2 φ

 (2.20)

From the metric, one may also directly, if not trivially8, find the Ricci tensor
Rµν and the Ricci scalar R = gµνRµν . gµν is a contravariant tensor9, whose
components are

gµν =


1
c2 0 0 0
0 1−kr2

a2 0 0
0 0 1

a2r2 0
0 0 0 1

a2r2 sin2 φ


Returning to the Eq. (2.18), Tµν is the stress-energy tensor, describing the

energy content of the universe. For a perfect isotropic fluid (that is, a fluid
with no viscosity, shear stress or heat conductivity) it is

7For the remainder of the thesis, this convention will be used unless stated otherwise.
8A common route is to apply the Cartan formalism, as described in [9].
9See [10] for a very intuitive explanation of covariance, contravariance and tensors in general.
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Tµν = (gµν)−1


−ρ̄ 0 0 0
0 P̄ 0 0
0 0 P̄ 0
0 0 0 P̄

 (2.21)

where P̄ is isotropic pressure and ρ̄ is the total matter-energy density given
in units of mass density10. Note that this applies in any coordinate system, the
specifics of which are hidden in the metric factor (gµν)−1. To convert this to units
of energy density, we can use the conversion ρ̄E = ρ̄c2, which follows naturally
from the special relativistic mass-energy relation E = mc2.

In short, the Einstein field equations relate the geometry of the universe (left
hand side) directly to the energy content of the universe (right hand side), making
them mutually dependent. Using the time-time component of these equations
(and setting Λ = 0 for the time being)

G00 = 8πG
c4 T00 (2.22)

one can derive the first Friedmann equation, which is a first-order differ-
ential equation describing the evolution of the scale factor a with time:

ȧ2 + kc2 = 8πGρ̄
3 a2 (2.23)

This matter-energy density is a sum of contributions from matter and radi-
ation components. In addition, the universe may contain dark energy compo-
nents, which like matter and radiation can influence how the universe evolves. In
epochs where the matter-energy density from other sources is relatively low, this
term will then dominate how the scale factor a(t) evolves.

Vacuum energy has been proposed as a candidate for dark energy. However,
the energy densities derived in quantum field theory are many orders of magnitude
larger than what we expect from dark energy’s effect on the universal expansion.
This mismatch is so large that it has been termed the vacuum catastrophe
(see for instance [11]). One way to reconcile this problem is to make corrections
to GR itself. Modified gravity are such corrections that recover GR on small
scales, yet seeks to explain the observed current accelerated expansion on larger
scales. We will get back to these theories in section 5; for the remainder of this

10The reason for the bars above these quantities is that the universe is decidedly not homoge-
neous and isotropic on small scales. To take these perturbations into account, we will hereafter
denote the spatial averages or unperturbed quantities by bars.
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section, we will simply keep in mind that what we call dark energy may not
necessarily be a form of energy with an associated density, though we will keep
using this notation in the Friedmann equations for now.

The vacuum energy contribution is commonly expressed in terms of the cos-
mological constant from Eq. (2.18):

Λ = 8πG
c2 ρ̄Λ (2.24)

As we saw, it may appear as a constant on either side of the equation and not
as a contribution to the stress-energy tensor itself11. In this case one can split
the energy density into contributions from matter and radiation ρ̄mr = ρ̄m + ρ̄r
and vacuum energy ρ̄Λ and write

ρ̄ = ρ̄mr + ρ̄Λ = ρ̄mr + c2Λ
8πG (2.25)

Thus one may often encounter versions of equation (2.23) that look like

ȧ2 + kc2 =
(

8πG
3 ρ̄mr + Λc2

3

)
a2 (2.26)

2.5.1 The second Friedmann equation
Going back to the Einstein field equations, but now looking at the sum of the
space-space components, i.e. the trace

Gii = 8πGTii (2.27)

and combining this with Eq. (2.23), one may also derive a second Fried-
mann equation, sometimes called the Friedmann acceleration equation to
distinguish it from the first:

ä

a
= −4πG

3

(
ρ̄+ 3P̄

c2

)
(2.28)

To be able to express what the pressure is for the various components that
11Where vacuum energy is not included by definition. One could in principle construct a

stress-energy tensor for the vacuum as well, but as Eqs. (2.18) and (2.24) suggest, it would
simply be equal to Λgµν .
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make up our model universe, we will also need an equation of state for each
component.

2.5.2 Equation of state
We will assume that each component behaves as a perfect isotropic fluid fluid
at all times. Thus, the density ρ̄ and pressure P̄ give a complete description of
how the fluid behaves. Then, looking at only one component of interest, we can
use the relation between mean-square velocity and temperature from statistical
mechanics (which also defines Boltzmann’s constant kB):

m
〈
v2
〉

= 3kBT (2.29)

where m, T and v are the mass, temperature and velocity, respectively, of a
single particle. One can then apply the ideal gas law and solve for pressure to
obtain

P̄ = 〈v
2〉

3c2 ρ̄c
2 (2.30)

We then define

ω ≡ 1
3
〈v2〉
c2 = kBT

mc2 (2.31)

where the final equality comes from Eq. (2.29). This gives us the desired equation
of state:

P̄ = ωρ̄c2 (2.32)

Here ω depends only on the mean-square velocity of the particle species we
are interested in. It turns out that this simple equation of state is sufficient to
describe most cases of interest in cosmology.

2.5.3 Relativistic components
When we say that a component is relativistic, we will in general mean that its
average kinetic energy is equal to or greater than its rest energy:

〈Ek〉 =
√√√√ 1

1− 〈v2〉
c2

− 1
mc2 ≥ mc2 (2.33)
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where the first equality comes from special relativity. Combining this with
Eq. (2.29), we find that a massive particle species is defined to be relativistic
when

kBT

mc2 ≥
1
4 (2.34)

or, using Eq. (2.31):

ω ≥ 1
4 (2.35)

We will not use this binary limit in practice, but it helps making clear what
we mean by relativistic and non-relativistic matter components.

2.5.4 Evolution of density components
It is now possible, using both Friedmann equations (2.23) and (2.28) together
with our equation of state, (2.32), to derive a formula for the evolution of the
energy density with time, ˙̄ρ. We then get a separable differential equation that
can be solved analytically:

˙̄ρi = −3 ȧ
a

(1 + ωi)ρ̄i (2.36)

Note that we used ρ̄i instead of ρ̄ in the equation above: The density is a
sum of components ρ̄i so that ρ̄ = ∑

ρ̄i, and we are making the rather daring
assumption that each component ρ̄i evolves independently of the others12. This
means that apart from the scale factor a, which affects each component according
to the equation of state, the density evolution only depends on ρ̄i and ωi for that
particular component. Thus we get a set of independent equations, and we can
write ρ̄i instead ρ̄ in the equation above. The solution of these equations are

ρ̄i = ρ̄i,0

(
a0

a

)3(1+ωi)
(2.37)

12This assumption means that there are no processes converting energy from one compo-
nent to another, which is clearly not the case at all stages in the evolution of the universe
(nucleosynthesis, for example). For a more accurate treatment, we will need the Boltzmann
equations, which will be introduced in the next chapter. However, once a component drops out
of equilibrium and decouples from the others, the approximation that it evolves independently
is valid for that component. We will assume that this approximation holds for all components
since recombination, roughly 300 000 years after the Big Bang, when matter and radiation
parted ways. This will be examined closer in section 3.3.
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where ρ̄i,0 and a0 are the present epoch values of the density of a particular
component and the scale factor, respectively (we use these as boundary condi-
tions). At this point, we need to know what the constituent components and
their ωi values are.

2.6 Matter and radiation components
In this thesis, we will concern ourselves with the following cosmological compo-
nents:
• Matter components (also known as dust): ρ̄m = ρ̄c + ρ̄b

– ρ̄c stands for cold dark matter (CDM) density. “Cold” stems from
the assumption that this component is completely non-relativistic to-
day (as opposed to warm dark matter, which would be relativistic).
This as yet unidentified component makes up the bulk of the total
matter density in the universe, but since it only interacts with other
components via gravity (and perhaps the weak nuclear force), it is
very hard to observe directly, as opposed to components interacting
with the electromagnetic force (may emit radiation) and the strong
nuclear force (interacts strongly with other forms of matter). Note
that non-relativistic neutrinos today would be detected as cold dark
matter, given that they are limited to weak interactions.

– ρ̄b stands for baryon density. This is all “regular” matter. Note that
while in particle physics the term “baryons” is limited to fermions
consisting of three quarks (such as protons and neutrons), the cosmo-
logical definition is wider. Here we will take it to include every particle
in the standard model except neutrinos.[4]

• Ultrarelativistic components (also known as radiation): ρ̄r = ρ̄γ+ρ̄ν,massless

– ρ̄γ stands for photon density, the contribution from electromagnetic
radiation in the universe.

– ρ̄ν,massless stands for massless neutrinos. Although neutrinos cer-
tainly have mass (see section 4.1), we could in theory want to run a
simulation with one or more neutrinos massless. In this case, they
count as a radiation component.

• Massive neutrinos: ρ̄ν

– Massive neutrino species have a time-dependent ων as defined by Eq.
(2.32). They will be ultrarelativistic in the very early universe and
non-relativistic today (unless their masses are smaller than 4kBT

c2 , as
Eq. (2.34) suggests).
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• Dark energy: ρ̄Λ.

• Effective energy density from modified gravity: ρ̄rc,eff . See chapter 5 for
details; all we need to know at the moment is that it is not a physical energy
density.

The total energy-matter density is the sum of these components: ρ̄ = ρ̄m + ρ̄r +
ρ̄ν + ρ̄Λ + ρ̄rc,eff . In practice, one or the other of the last two components will
always be 0 - they will not appear together in the context of this thesis13. Note
that these subscripts will also be used in other contexts than energy density, one
example being the spatially averaged radiation pressure, P̄r.

2.6.1 Dust (ω = 0)
For non-relativistic massive particles (or dust), 〈v2

m〉 � c2, hence ω ≈ 0 for dust
components. Inserting this into equation (2.32) reveals that P̄m ≈ 0, hence in
the following, we will assume dust to be pressureless.

2.6.2 Radiation (ω = 1/3)
For ultrarelativistic particles (such as photons and massless neutrinos), 〈v2〉 ≈
c2, hence ω ≈ 1/3 for radiation components, yielding the familiar expression for
radiation pressure

P̄r = 1
3 ρ̄rad (2.38)

where ρ̄rad is the radiation density given in units of energy density, so that
ρ̄rad = ρ̄rc

2.

2.6.3 Massive neutrinos (ω = P̄ν(t)
ρ̄ ν(t))

Massive neutrinos will be covered in section 4.5.

2.6.4 Vacuum energy (ω = −1)
For the vacuum stress-energy tensor in Eq. (2.21) to be Lorentz invariant, it has
to be proportional to the Minkowski metric from special relativity. It follows
that P̄λ = −ρ̄Λ and ωΛ = −1.14

13There is nothing wrong per se with including a small vacuum energy even if modified
gravity is taken to be responsible for accelerated expansion today, but it goes beyond the scope
of this project.

14See for instance [9] for more on Lorentz invariance and special relativity.
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Many theories of dark energy allow for ωΛ 6= −1, however, and even time-
dependent values of ωΛ.15 Still, ωΛ = −1 is well within the current measurement
uncertainties.[12]

2.7 Critical density and density parameters
One can show using the first Friedmann equation (2.23) that the universe will be
flat (k = 0) only when the density16 is exactly the critical density defined in
terms of the Hubble parameter as

ρ̄crit = 3H2

8πG (2.39)

We can then define the unitless cosmological density parameters as density
in terms of this critical density, even if dark energy and curvature are present.
For components that have a density ρ̄i, we define:

Ωi ≡
ρ̄i
ρ̄crit

= 8πG
3H2 ρ̄i (2.40)

Why is this notation convenient? If we insert the present epoch values a = a0
and H = H0 into the previous equations, we will get the present epoch values of
all these parameters, which we denote ρ̄crit,0, Ωm0, ΩΛ0 and so on. Let us now
introduce the substitutions

8πG
3 = H2

0
ρ̄crit,0

and ρ̄i = ρ̄i,0

(
a0

a

)3(1+ωi)
(2.41)

where we have used (2.39) and (2.37), respectively. These substitutions, along
with the definition (2.40) allow us to write the first Friedmann equation in terms
of the density parameters at the present epoch as

(
H

H0

)2
=
∑
i

Ωi0

(
a0

a

)3(1+ωi)
+ Ωk0

(
a0

a

)2
(2.42)

where for convenience we have defined a similar “curvature density”17 param-
eter:

15See for instance [2], section 1.2.1.
16This density must include ρ̄Λ in the presence of a cosmological constant - matter and

radiation densities are not by themselves sufficient.
17This density has no physical significance in itself, beyond being the surplus or deficit density
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Ωk ≡ −
kc2

a2H2 (2.43)

so that Eq. (2.26) can be recovered. We can also use (2.17) to substitute
(
a0
a

)
=

(1 + z) if we find it more convenient to work with redshifts directly.
Inserting H = H0 and a = a0, it is easily seen that the sum of all density

parameters in the present epoch is Ω0 ≡
∑
i Ωi0 + Ωk0 = 1, which provides a

handy way to eliminate a density parameter from the equations if the sum of all
the other density parameters is known.

In fact, this is true even in other epochs other than the present. To see this,
we note that the critical density has a time dependence through H:

ρ̄crit(t) =
(
H(t)
H0

)2

ρ̄crit,0 (2.44)

and using this together with Eq. (2.37), we can now rewrite Eq. (2.40) as

Ωi = ρ̄i
ρ̄crit

=
ρ̄i,0

(
a0
a

)3(1+ωi)

ρ̄crit,0
(
H
H0

)2 = Ωi,0

(
H0

H

)2 (a0

a

)3(1+ωi)
(2.45)

and for the curvature parameter, Eq. (2.43) similarly gives us

Ωk =
(
H0

H

)2
Ωk0

(
a0

a

)2
(2.46)

which makes the sum of all the parameters

Ω ≡
∑
i

Ωi + Ωk =
(
H0

H

)2 [∑
i

Ωi0

(
a0

a

)3(1+ωi)
+ Ωk0

(
a0

a

)2
]

(2.47)

Now we may recognize the terms in the square brackets from equation (2.42).
Substituting this, we get

Ω =
(
H0

H

)2 ( H
H0

)2
= 1 (2.48)

of the curved universe compared to a flat one.
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Thus the sum Ω is time invariant, and the component density parameters are
normalized at all times.

2.8 Model cosmologies
There are several cosmological models that can be constructed using different
values for the density parameters. We will look at the ones that are most directly
relevant for the numerical simulations that will follow.

2.8.1 Flat universe with one dominant component

A very simple model (with neat closed form solutions) comes from assuming a flat
universe (Ωk0 = 0) where one class of component Ωj with j ∈ m, r,Λ dominates
all the others completely. In this case, the first Friedmann equation becomes
simply

(
H

H0

)2
= Ωj0

(
a0

a

)3(1+ωj)
(2.49)

This is a separable differential equation which can be solved for a(t), giving

a(t) = a0

(
t

t0

) 2
3(1+ωj)

(ωj 6= −1) (2.50)

where the present time is given by

t0 = 2
3(1 + ωj)H0

(2.51)

Using the Friedmann equations, it can be shown that our universe has been
matter dominated for most of its history (excepting a radiation dominated phase
in its youth and a relatively recent switch to dark energy dominance). In the case
of total matter dominance (often termed an Einstein-de Sitter universe), we
can insert wj = 0 (pressureless matter) and get

a(t) = a0

(
t

t0

)2/3
(2.52)

This universe is clearly decelerating:
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ä = −2a0

9t20

(
t

t0

)−4/3
(2.53)

Likewise, a radiation dominated universe with ωj = 1/3 expands even slower:

a(t) = a0

(
t

t0

)1/2
(2.54)

This helps explain why massive neutrinos delay structure formation: Massive
neutrinos behave as CDM at late times, whereas massless neutrinos behave like
radiation. In chapter 8, we will see later that in the ΛCDM model, this effect
is negligible when we only look at the evolution of the scale factor, since the
neutrino contributing to the total energy density of the universe is small.

As for structure formation, we shall see in section 4.518 that increasing the
neutrino mass means an increase in the background density ρ̄ν . This means that
a larger fraction of the CDM we observe today consists of massive neutrinos, who
once were relativistic. Relativistic particles will free-stream out of overdensities,
slowing down the rate at which they can cluster. We discover in chapter 8
that the effect turns out to be more dramatic for spherical collapse than for the
background - with greater neutrino mass the collapse is significantly delayed.

Note that in the special case ωj = ωΛ = −1, the solution of equation (2.49)
is instead

a(t) = a0e
H0(t−t0) (2.55)

which is commonly referred to as the de Sitter universe, containing only
vacuum energy.

2.8.2 The standard model of Big Bang cosmology (ΛCDM)
It is more realistic, however, to abandon the assumption that only one type
of component dominates all the others. In doing so, however, we sacrifice the
possibility of closed form solutions to the Friedmann equations and have to settle
for solving them numerically. Note that the ΛCDM model is still flat (Ωk = 0).
The matter-energy components present in this model are:

• Cold dark matter: Ωc

• Baryons: Ωb

18Eq. (4.22).
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• Radiation (including massless neutrinos): Ωr

• Dark energy: ΩΛ

2.8.3 Extended standard model with massive neutrinos
If neutrinos have mass (which they must have to oscillate between flavours, a
behaviour that is observed in solar neutrinos), then at some point they will
become non-relativistic. Extending the ΛCDM model to allow for this, we add
the following parameter:

• Massive neutrinos: Ων

2.8.4 Closed matter-dominated universe (Spherical col-
lapse)

Being a central point in this thesis, chapter 6 is dedicated to a discussion of a
universe with positive curvature (k = 1), once we have more background material
covered.

2.9 Cosmological scales
We have already considered the universe on many different scales, notably when
we discussed the validity of the cosmological principle. To quantify what we
mean with a scale, it is convenient to use the language of Fourier transforms and
associate a scale with a co-moving wavelength19 λ, or more specifically by a wave
number

k = 2π
λ

(2.56)

The relation between k and the proper20 wavelength λPD is then given by Eq.
(2.6) in a flat universe:

k = a(t) 2π
λPD

(2.57)

Such a scale is also commonly referred to as a mode.

19We discussed this in section 2.4. See also [13].
20As in “proper distance”.



Chapter 3

The Boltzmann equation

“If you are out to describe the truth, leave elegance to the tailor.”
— Ludwig Boltzmann

Up until now, we have stuck to the cosmological principle and considered a ho-
mogeneous universe, where the components only interact through gravitational
potentials. We are now about to depart from this simplified view of cosmology:
Not only will we consider other types of interactions (like Coulomb interactions
between baryons and photons, for instance), we will also introduce perturba-
tions to the homogeneous background and consider the resulting anisotropies.

In contrast to the previous chapter, we will use natural units1 and denote the
spatial parts of the co-moving coordinates by xi, where X i ≡

[
x1, x2, x3

]
=[

x, y, z
]
. Similarly, for momentum, P i ≡

[
p1, p2, p3

]
=
[
px, py, pz

]
is not only co-moving, but also relativistic2).

The most important source for this chapter is Dodelson[5], which has been
used implicitly throughout.

3.1 The distribution function
Each component of the universe may be described by a distribution function
f in phase space.

The phase space is a seven-dimensional space with three dimensions for po-
sition and for momentum, plus a time component: f(t,X i, P i). This can be
written more concisely in vector notation, and in order to apply GR, we will use
the 4-vectors

1c = kB = ~ = 1
2In contrast to pi ≡ mdxi

dλ , where λ is proper time for massive particles. Massless particles
such as photons have no proper time. In these cases, λ is interpreted simply as a parametrization
of the particle’s path.[9] Hence the change of symbol from the previous chapter.

25
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Xµ =
[
−t, X i

]
P µ = dXµ

dλ
=
[
E, P i

]
(3.1)

We define3

p2 ≡ gijP
iP j (3.2)

so that p is the absolute value of the momentum and take p̂ to be the unit
vector for the momentum’s direction, so that p̂i = P i

p
and p̂ip̂i = 1. Then we

have

P µ = p
[
E
p
, p̂x, p̂y, p̂z

]
(3.3)

Relativistic energy in natural units is given by

E =
√
p2 +m2 (3.4)

so for a massless particle, E = p. For massive particles we find it more
convenient to work with E directly, since p is the only variable (the particle
species’ rest mass and the speed of light are constant).

The distribution function simply counts the number density of particles with
momentum (px, py, pz) at position (x, y, z) at the time t. We express this as4

f = f(t,X i, E, p̂) (3.5)

Integrating over positions, directions and energies gives us a the total number
of particles at a given time, f(t). The Boltzmann equation simply states that
the total derivative of the distribution f is a function of f itself:

df

dt
= C [f ] (3.6)

When working numerically, it is more convenient to work with partial deriva-
tives:

3Not to be confused with P 2 ≡ gµνPµP ν .
4If f is properly normalized, this may be interpreted as a probability distribution. In this

chapter we omit normalization factors for readability.
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df

dt
= ∂f

∂t
+ ∂f

∂xi
dxi

dt
+ ∂f

∂E

dE

dt
+ ∂f

∂p̂i
dp̂i

dt
(3.7)

3.1.1 0th order: Equilibrium
In a universe that is isotropic and homogeneous, the distribution function may
only depend on time, not position. Furthermore, there can be no momentum
toward any specific direction for any component. This allows us to simplify the
above equation to

df

dt
= ∂f

∂t
+ ∂f

∂E

dE

dt
(3.8)

In equilibrium, the temperature of a component is Ti everywhere (homogene-
ity). However, at low temperatures, different kinds of particles respond to the
cooling differently. For bosons (such as photons), the quantum mechanical dis-
tribution is the Bose-Einstein distribution

fBE = 1
exp

(
Ei−µi
Ti

)
− 1

(3.9)

while fermions (such as protons and electrons) obey the Fermi-Dirac distri-
bution

fFD = 1
exp

(
Ei−µi
Ti

)
+ 1

(3.10)

where µi is the chemical potential. Ei � µi turns out to be a good approx-
imation for almost all particles at all times, hence we will neglect the chemical
potential for 0th order processes, such as annihilation and pair creation.

In a homogeneous, expanding universe (without perturbations), Ei and Ti do
not depend on position and direction of momentum, but both depend on time
and magnitude of momentum.

3.2 Temperatures
For photons, one can use Eq. (3.9) to show that the temperature is related to
the energy density by the relation
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ρ̄γ = aBT
4
γ (3.11)

where aB ≡ π2/15 is the radiation constant. This result, when combined with
Eq. (2.37) and ωγ = 1/3, becomes

Tγ =
(
ργ
ρ̄γ0

)1/4

Tγ0 = a0

a
Tγ0 (3.12)

Inserting this back into Eq. (3.11) results in

ρ̄γ = aB

(
a0

a
Tγ0

)4
= ρ̄γ,0

(
a0

a

)4
(3.13)

A review of current measurements of the cosmic microwave background
(CMB) radiation give a photon temperature today of Tγ0 = 2.72548±0.00057 K
[14].

For compleley relativistic neutrinos, using Eq. (3.10) leads to almost the same
relation:

ρν = 7
8aBT

4
ν (3.14)

The extra factor of 7/8 stems from the following relation between the fermion
and boson integrals:

∫ ∞
0

u3

eu + 1du =
∫ ∞

0

u3

eu − 1du− 2
∫ ∞

0

u3

e2u − 1du = 7
8

∫ ∞
0

u3

eu − 1du (3.15)

See [4] for a detailed derivation. For this thesis it is sufficient to note that
that the quantity u will make a reappearance in subsection 4.5, so consider it a
teaser of what is to come.

3.3 Multi-component universe
When multiple components are present at once, there may be additional interac-
tions between them besides the way they interact with the scale factor through
gravitational effects. To begin with, there are scattering phenomena, such as:

• Compton/Thomson scattering of photons off of free electrons: γ+e
 γ+e
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• Coulomb interactions between protons and electrons: p+ e
 p+ e

Scattering does not change the co-moving number densities of the particle species
involved, but annihilation processes will:

• Electron-positron annihilation (and creation): γ 
 e+ ē

• Ionization/recombination: e+ p
 H + γ

• Weak neutron-proton interactions: p+ e− 
 n+ ν

So far, when we have looked at how each component evolves independently of
the others5, we have ignored these effects.

3.3.1 Decoupling

For a homogeneous universe with interacting particle species, the Boltzmann
equation can be written in the following form

a−3d (n1a
3)

dt
= n

(0)
1 n

(0)
2 〈σv〉

(
n3n4

n
(0)
3 n

(0)
4
− n1n2

n
(0)
1 n

(0)
2

)
(3.16)

as long as we also assume that the system is in kinetic equilibrium6 and
at temperatures T < (E−µ), which mask the quantum mechanical effects of the
Bose-Einstein and Fermi-Dirac distributions. Here n(0)

i and ni are the number
densities of a species in the reaction 1 + 2 ←→ 3 + 4 in and out of equilibrium,
respectively, whereas 〈σv〉 denotes the thermally averaged cross section7.

When the reaction rates are large compared to the expansion rate, the terms
inside the curly brackets have to cancel each other out. However, as the tem-
perature (average kinetic energy) and number densities drop with the expansion,
ninj 〈σv〉 will drop so far that the assumption of kinetic equilibrium no longer
holds.

At the point where this has happened to all reactions connecting a pair of
cosmological components, we say that the components on each side of the reaction

5except through the evolution of the scale factor
6Scattering happens so frequently that the distributions are given by (3.9) and (3.10).
7Strictly speaking, 〈σ〉 would be the average cross section. This average has units of volume

per time, and is in fact the average volume a particle passes through (per time unit) in which
a collision/reaction can occur. Thus ni 〈σv〉 has units of reactions per time unit and is the
reaction rate, while ninj 〈σv〉 has units of inverse time times inverse volume and is the number
of reactions per unit volume per time unit.
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decouple from one another - they evolve independently8 from that point on,
interacting only through gravity’s effect on the geometry of spacetime.

3.3.2 Electron-positron annihilation
Matter and antimatter will annihilate and produce photons, and at high en-
ergies this process is reversible: e+e− ←→ γγ. However, at the point where
the expansion drops the average photon energy below the rest energy for an
electron/positron, this process becomes increasingly one-sided and annihilation
becomes dominant until all the available positrons have been converted to photon
energy (a surplus of electrons remain at this point, thanks to asymmetry in the
matter-antimatter number densities).

This annihilation converts the rest energy of the electrons and positrons to
kinetic energy (momentum) for the photons, thus contributing to a significant
increase in the temperature of the photon gas and all components thermally
coupled to it at this point (T ≈ 1 MeV). This is closely related to neutrino
decoupling, which we take a closer look at in section 4.4.

3.4 Perturbations
When we go beyond the unperturbed distributions of Eqs. (3.9) and (3.10) and
introduce perturbations to this distributions (such as overdense and underdense
regions in space), things quickly get complicated. Changing the density in a re-
gion of space perturbs the metric from the homogeneous-isotropic FRW metric
we encountered in Eq. (2.20) - we usually refer to this as gravity. Through the
spatial dependence in Eq. (3.5), this affects the distribution functions. The pic-
ture is complicated further by scattering and annihilation processes that link the
distribution functions together. To account for all this, one solves the coupled
Boltzmann-Einstein equations, where these connections are inherent.

This sounds like quite a task - and it is - but fortunately there are a couple
of factors that can make this task significantly easier:

• No collision term for neutrinos: The weak force collisional cross-section
for cosmological neutrinos is vanishingly small, unlike solar and atmospher-
ical neutrinos which are actually possible to detect.9 This simplifies the

8That is to say, they can still interact, but so rarely that the majority of particles on one
side of the reaction is not affected by the other side - most notably, they drop out of thermal
equilibrium with one another and their temperatures evolve independently because they have
very few opportunities to exchange energy.

9In fact, the neutrino cross section scales as σ ∝ E2
cm, where Ecm is the centre of momen-

tum energy of the incoming neutrino. This drastically reduces the possibility non-relativistic
neutrinos interacting both with each other and other particles, such as the ones in detectors.[15]
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calculations considerably, as we can ignore scattering and annihilation pro-
cesses.

• Linearized equations: As long as the perturbations are small, we can
solve the equations to first order and ignore higher order contributions.
This leads to many terms vanishing. However, once a perturbation be-
comes large, such as in the late stages of spherical collapse (chapter 6),
linearized equations may not necessarily be accurate enough. Fortunately,
for our purposes, they will suffice, as by this point the collapse dynamics
are completely dominated by the CDM and baryon components[16].

3.4.1 Massive neutrinos around a spherical overdensity
This subsection makes extensive use of an article by LoVerde and Zaldarriaga[17].

Using the Newtonian equation of motion10, one introduces a gravitational
potential with two terms:

• The potential due to the Hubble flow, taking into account the expansion of
the background: ΨH(r, t) = −1

2

(
Ḣ +H2

)
r2

• The peculiar gravitational potential around the collapsing sphere with ra-
dius R = R(t):

Ψpec(r, t) =


GδM

2
r2

R3

−GδM
r

+ 3
2
GδM
R

r ≤ R

r > R
(3.17)

Here δM is the matter perturbation, the excess matter when the unper-
turbed background density is subtracted, see Eq. (6.21) in chapter 6 for details.

While a full derivation goes beyond the scope of this thesis, the non-relativistic
Boltzmann equation for massive neutrinos at late times is

∂f

∂t
+ p
amν

· ∇xf −
(
p
(
H − Ψ̇pec

)
+ mν

a
∇xΨpec

)
· ∇pf = 0 (3.18)

where x is the neutrino’s position. With a variable change to q = ap and writ-
ing the function as a sum of the unperturbed distribution 11 and a perturbation
term,

f(q,x, t) = f0(q, a) + f1(q,x, t)
10Under the assumption that only a non-relativistic neutrino would be significantly perturbed

by a dark matter halo. It is shown in [17] that this assumption is justified.
11Satisfying the homogeneous equation where Ψpec = 0.
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the Boltzmann equation for massive neutrinos becomes

∂f1

∂t
+ q
a2mν

· ∇xf1 −mν∇xΨpec · ∇q (f0 + f1) = 0

A final approximation12 is then to drop the final ∇qf1 term:

∂f1

∂t
+ q
a2mν

· ∇xf1 −mν∇xΨpec · ∇qf0 = 0 (3.19)

It should be noted that this approach does not accurately treat neutrinos
whose trajectories are significantly affected by the collapsing sphere, most notably
those who become bound. Nevertheless, it is shown in [16] that for our purposes,
the linearized solution with this approximation is correct to about one percent for
neutrino masses up to mν = 1 eV, well beyond current cosmological upper limits.
And now, the time has come to take a closer look at the neutrinos themselves.

12Known as the BKT approximation after its originators Brandenberger, Kaiser and
Turok.[18]
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Massive neutrinos

“Neutrinos have mass? I didn’t even know they were Catholic.”
— based on a quote by Woody Allen

4.1 Why neutrinos have mass

In the Standard Model of particle physics, neutrinos are considered massless and
thus always relativistic [13]. However, there are many extensions to the Standard
Model in which neutrinos are massive. A consequence of massive neutrinos are
processes called flavour oscillations, in which any of the neutrino flavours can
turn into any of the others. Typically, we include three neutrino species: electron
(νe), muon (νµ) and tau (ντ ) neutrinos - the number of neutrino species that can
take part in weak interactions are found by LEP1 to be Nν = 2.994 ± 0.012.
Additional neutrino species that do not take part in weak interactions may exist,
however: we call these sterile neutrinos [19] . We will, however, restrict ourselves
to the three weakly interacting species in this thesis.

Measurements on the flux of solar neutrinos in the Homestake experiments
did show a deficit in the number of electron neutrinos, νe. This is the only flavour
of neutrino produced by the fusion processes in the Sun’s core. However, once
νµ and ντ could be reliably detected, the deficit was shown to be due to flavour
oscillations on the path from the solar core to the detectors [20].

We will make an important distinction between the neutrino mass eigen-
states νi = ν1,2,3 (which would never oscillate) and the flavour eigenstates
νf = νe,µ,τ , which correspond to the physical particles2. The latter are linear
combinations of the mass eigenstates

1The Large Electron-Positron collider at CERN.
2Or, more accurately, to their interactions with each of the charged leptons in the Standard

Model

33
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νf =
∑
i

Ufiνi (4.1)

and as such may experience oscillations between the mass eigenstates [13, 21].
This is often referred to as neutrino mixing (Ufi is often called the mixing
matrix). When we refer to neutrino masses, we will from this point on assume
the context of mass eigenstates unless otherwise specified.

Oscillation data provides constraints on the squared difference between neu-
trino masses, ∆m2

ij = m2
i − m2

j . Meanwhile, we have constraints on the sum∑
i U

2
fimi from neutrinoless beta decay experiments. However, no known experi-

ment provides constraints on the absolute masses of each of the species themselves
(mi) [21].

4.2 Degenerate neutrino mass eigenstates
If oscillation data for atmospheric neutrinos gives a much larger mass difference
than for solar neutrinos, (∆matm)2 � (∆msun)2, we have two possibilities for the
mass eigenstates:

• ∆m2
sun = ∆m2

21 and ∆m2
atm = ∆m2

32: This is called the normal mass
hierarchy, since m3 > m2 > m1.

• ∆m2
sun = ∆m2

21 and ∆m2
atm = ∆m2

13: This is called the inverted mass
hierarchy, since m2 > m1 > m3.

The measured values by oscillation experiments[22] are

∆m2
21 = (7.53± 0.18) · 10−5 eV2

∣∣∣∆m2
31

∣∣∣ = (2.42± 0.06) · 10−3 eV2 (4.2)

where the absolute value takes into account that ∆m2
31 in the normal hierarchy

is equivalent to ∆m2
13 = −∆m2

31 in the inverted hierarchy. In the normal hierar-
chy, ∆m2

32 = ∆m2
31 − ∆m2

21, so for the observed values, (∆matm)2 � (∆msun)2

still holds there.
Recent measurements of mixing angles in neutrino oscillations suggest a lower

bound for the lightest neutrino mass at mν,1 = 3 · 10−3 eV [23]. This is assuming
the masses are distributed in the normal hierarchy, which is slightly favoured as
the highest allowed sum of neutrino masses are ∑mν,i ≈ 0.05 eV and ∑

mν,i ≈
0.1 eV for the normal and inverted hierarchy, respectively. One can at the time of
writing not exclude the inverted hierarchy entirely, however, a recent constraint
on this upper bound is ∑mν,i ≈ 0.11 eV which is close to the limit of what is
allowed for the inverted hierarchy[24]. This constraint comes from cosmology,
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however, and such bounds usually come with a host of assumptions that are
problematic for this thesis (ΛCDM is normally assumed, for instance). Beta
decay experiments place an upper limit for the lightest neutrino as high as mν1 <
2.2 eV.[13, 25] This does not mean that a sum of masses of 0.1 eV is completely
unrealistic, but it at least justifies also looking at higher masses3. It should also
be noted that these limits do not take into account sterile neutrinos with no weak
interactions.

For a small sum of neutrino masses, ∑imi < 0.3 eV, it is shown in [13]4 that
the choice of hierarchy has a large effect on the distribution of the masses. For
larger ∑imi, the differences become so small that all the neutrino eigenstates
have approximately the same mass. In this case we say that the masses are
degenerate.

4.3 Massive neutrinos and cosmology
From a cosmological point of view, massive neutrinos differ from massless ones
in a very important way: While initially relativistic (and so eligible to be treated
as radiation in early times), there comes a point where the expansion of the
background leads to the massive neutrinos becoming non-relativistic. For the
range of neutrino masses we are interested in, this occurs during the matter
dominated epoch. We will assume this to happen instantly, so there will be a
discontinuity in the time derivatives Ω̇r and Ω̇c as we instantly transfer some of
Ων from one to the other: in short, we treat relativistic massive neutrinos as
radiation and non-relativistic ones as cold dark matter. It can be shown that
in the non-relativistic limit mν,i � Tν,i the energy density of the neutrinos are
ρν,i = nν.imν,i (not surprisingly, since temperature is a measure of kinetic energy
and the rest energy dominates in this limit). [13]

At late times, we thus expect all the eigenstates to have mν,i � Tν0 =
1.94535 K = 1.6763 · 10−4eV, so that they are all non-relativistic today.

4.4 Neutrino temperature and decoupling
This section is based on the sources [21], [26] and [27].

Even massive neutrinos would still be in thermal equilibrium with the photon-
baryon plasma at early times - the photon temperature and neutrino temperature
(and all other temperatures of plasma constituents) are identical. Neutrinos are
initially (at temperatures exceeding the point just above kBT = 1 MeV) kept
coupled to the baryon-photon plasma through the scattering process νe←→ νe.
However, as the universe expands and particles in the plasma move further apart,

3In this thesis, we follow [16] and look at sums of neutrino masses up to 1.2 eV.
4Fig. 2, to be exact.
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the weak interaction rate drops below the expansion rate of the universe. As the
weak interactions are the only ones affecting neutrinos, they drop out of thermal
equilibrium5 about 1 second after the Big Bang: The can no longer adjust their
energy faster than the plasma temperature is changing. Shortly thereafter (about
10 seconds after the Big Bang), the plasma temperature drops below the energies
required for electron-positron creation, and as a result electrons and positrons
annihilate en masse, spending their mass energies to heat the plasma. This does
not affect the neutrinos, however, as they have dropped out of equilibrium with
the plasma already. Hence, while the photons are heated by the annihilations,
the neutrinos are largely unaffected.

For particles in thermal equilibrium, the entropy S stays constant as the
universe expands6. This means that in a co-moving volume ∝ a3, the entropy
density s = S/V obeys

sa3 = constant (4.3)

When working with species in thermal equilibrium, a common assumption
is to only include the relativistic species, since the contributions from non-
relativistic components are exponentially smaller. In these cases, one can define
the number of relativistic degrees of freedom for entropy:

g?S =
∑

j=bosons
gj

(
Tj
Tγ

)3

+ 7
8

∑
j=fermions

gj

(
Tj
Tγ

)3

(4.4)

where gj is the degrees of freedom of a species7, Tj is its temperature (which
may differ from the photon temperature), and the factor 7/8 takes into account
the difference between Bose-Einstein and Fermi-Dirac statistics8. As relativis-
tic species dominate with their contributions to the entropy density, we may
approximate it by disregarding the non-relativistic ones, and get9

s = 2π2

45 g?ST
3
γ (4.5)

5Or “freeze out”, as some like to call it.
6This is shown in [26] under the assumption that we can assume all chemical potentials to

be zero, or more precisely, |µ| � T , which is certainly justified during the epoch in question
7The spin contribution to gj is 2S + 1 for a massive spin S particle (do not confuse S in

this footnote with entropy above). For massless particles that are constrained to move at the
speed of light, such as photons, it would be equal to 2S. Other contributions include various
charges, such as electric and colour charge.[4].

8See Eq. (3.15) in section 3.2 for a more detailed explanation of this number.
9Again, we refer to [26] for the full derivation.
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Combining this with Eq. (4.3), we get

g?S (aTγ)3 = constant (4.6)

Thus, a sudden drop in g?S means that (aTγ)3 must increase. Since the end
of e± annihilation in itself would not have caused a sudden expansion of the
universe10, the net result must be an increase in Tγ. To be more specific, just
before the temperature crosses the electron-positron annihilation threshold, the
species in equilibrium with the photons are the photons themselves (gγ = 2), and
the electron-positron pairs (ge± = ge+ + ge− = 4 and Te± = Tγ). In this case Eq.
(4.4) gives us g?S = 11/2 before the threshold, and g?S = 2 afterwards. Thus:

11
2 (aTν)3 = 11

2 (aTγ,before)3 = 2(aTγ,after)3

for neutrinos, photons before annihilation and after annihilation, respectively.
The result of this is that after annihilation the photon and neutrino temperatures
are related by

Tν =
( 4

11

)1/3
Tγ (4.7)

provided the scale factor a did not have time to change much during the
threshold crossing (we will in fact assume the crossing to be instantaneous).
Using Eqs. (3.11) and (3.14), we can also relate the energy densities in a similar
way, but only as long as the mass eigenstate νi can be considered completely
relativistic (i.e. ωνi ≈ 1/3):

ρ̄νi = 7
8

( 4
11

)4/3
ρ̄γ (4.8)

4.4.1 Effective number of neutrinos
Up until this point, we have assumed that the decoupling of the neutrinos (9
seconds earlier) was instantaneous as well. The time has come to drop this as-
sumption. Taking into account the fact that there is still a slight interaction be-
tween the neutrinos and the electromagnetic plasma, a more accurate calculation
shows that the neutrinos receive a small portion of the entropy from the electron-
positron annihilations. As we saw in the previous chapter, it turns out that weak

10The Friedmann equations relate the expansion history to energy density, not entropy.
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interactions get stronger with higher energy[15], hence higher-momentum neutri-
nos are heated more than their lower-momentum counterparts.

To account for this effect, one introduces an extra factor ci for in Eq. (4.8):

ρ̄νi = 7
8

( 4
11

)4/3
ciρ̄γ (4.9)

The equivalent version of Eq. (4.7) is then

Tνi =
( 4

11

)1/3
c

1/4
i Tγ = c

1/4
i Tν (4.10)

It is common to relate this the effective number of neutrino species Neff

as follows:

Neff =
∑
i

Nici (4.11)

where Ni is the number of degenerate neutrino mass eigenstates that share the
same value of ci.11 This formula is only valid while the neutrinos are relativistic.
If all the eigenstates are degenerate, we have simply

ci = Neff

Ni

(4.12)

For three massless neutrino species, we would have Neff = 3 in the limit of
instantaneous decoupling. However, due to the extra energy transferred to the
neutrinos from annihilating e± pairs, their energy density increases, and so we
obtain Neff = 3.034 from this effect.

Similarly, there is a finite temperature correction from quantum electrody-
namics (QED) to consider: Electromagnetic interactions lowers the energy den-
sity of the electromagnetic plasma, so the entropy released by the e± annihilation
turns out to be a little less than it would be in the non-interactive case, thus Tγ
and Tν (and correspondingly, the energy densities) end up even closer together
than if this effect were absent. In the instantaneous decoupling limit, this effect
alone would give Neff = 3.011.

11This differs notably from the notation of [28]. I made the changes ci → Ni and gi → ci to
avoid using the symbol gi for both the degrees of freedom for a particle species and the factor
that appears when we drop the assumption of instantaneous decoupling. However, ci is freed
up since I prefer Ni for the number of actual eigenstates to make it clear that we are counting
something. I feel these changes are justified as they remove needless ambiguity.
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If this effect had been completely independent of the non-instantaneous neu-
trino decoupling, one could simply add these contributions and get Neff = 3.045.
However, since a few neutrinos that still interact with the plasma at this point,
these are also heated a little less, and in [27] it is shown that both effects simul-
taneously give Neff = 3.0395.

4.5 Neutrino mass eigenstates
Being fermions, unperturbed neutrinos have the Fermi-Dirac distribution from
Eq. 3.10, which is

f0 ≡
1

eEνi/Tνi − 1 (4.13)

when we neglect the chemical potential. We can then determine the unper-
turbed quantities for a single neutrino mass eigenstate as in [5], chapter 2:

n̄νi = gν

∫
f0

d3p

(2π)3 (4.14)

ρ̄νi = gν

∫
Eνi(p) · f0

d3p

(2π)3 (4.15)

P̄νi = gν

∫ p2f0

3Eνi(p)
d3p

(2π)3 (4.16)

Here, gν = 2 · 1
2 + 1 = 2 is the number of internal degrees of freedom (spin

degeneracy) for neutrinos with spin 1/2 discussed in section 4.4. We can interpret
this as each mass eigenstate having either spin up or spin down, by the Pauli
exclusion principle. The factors (2π)3, or (2π~)3 in ordinary units, comes from
Heisenberg’s uncertainty principle, which puts a limit on the unit size of phase
space volumes. We will encounter these whenever we integrate over momentum.

According to [21], neutrinos within the mass ranges discussed here (< 1 eV)
are definitely relativistic at decoupling, hence we will bake the factor ci into the
neutrino temperature as Eq. (4.10) suggests - we repeat this equation here for
clarity:

Tνi =
( 4

11

)1/3
c

1/4
i Tγ = c

1/4
i Tν (4.17)
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Here Tν is the thermal result calculated from the CMB temperature Tγ,
whereas Tνi takes into account that decoupling is not instantaneous, plus QED
corrections. Using the substitution12

u = p

Tνi
= ap

Tνi0
(4.18)

dp = Tνi0
a
du

and assuming spherical symmetry, we rewrite the number density, energy
density and pressure of a single mass eigenstate for a neutrino species. For all
three integrals there is a common prefactor

P(a, n) = T nνi
π2 = T nνi0

π2an
(4.19)

For the number density, we have the analytic solution

n̄νi = 2
∫ 1
ep/Tνi + 1

d3p

(2π)3 = T 3
νi

π2

∫ ∞
0

u2

eu + 1du = P(a, 3) · 3
2ξ(3) (4.20)

where ξ(x) is the Riemann zeta function[13]. The value of ξ(3) is well known
as Apery’s constant. In place of the mass mνi we may similarly substitute

µi = mνi

Tνi
= mνia

Tνi0
(4.21)

and get

ρ̄νi (a, µi) = 2
∫ √

p2 +m2
νi

ep/Tνi + 1
d3p

(2π)3 = P(a, 4)
∫ ∞

0

u2
√
u2 + µ2

i

eu + 1 du (4.22)

whose unitless equivalent is

12This is the very same substitution used in Eq. (3.15) in section 3.2. At that point, we
had not introduced gi and Tνi yet, but we could still have used Tν under the assumption of
instantaneous decoupling and no electromagnetic interactions.
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Ωνi (a, µi) = 8T 4
νi0G

3πa4H2

∫ ∞
0

u2
√
u2 + µ2

i

eu + 1 du (4.23)

(where no sum is implied in the indices), and

P̄νi (a, µi) = 2
3

∫ p2

(ep/Tνi + 1)
√
p2 +m2

νi

d3p

(2π)3

= P(a, 4)
3

∫ ∞
0

u4

(eu + 1)
√
u2 + µ2

i

du (4.24)

Note that we recover the usual equation of state (2.38) for energy density
and radiation pressure in the limit µi → 0 where the neutrinos are massless or
ultra-relativistic (at small a). In this case the integrals themselves are identical,
and have the numerical solution

ρ̄νi = 3P̄νi = P(a, 4)
∫ ∞

0

u3

eu + 1du = P(a, 4)7
8
π4

15 (4.25)

We again refer to [4] for a derivation of the final equality, as we did for Eq.
(3.15). Note that the Fermi-Dirac integral in that equation is actually Eq. (4.22)
in the massless limit.





Chapter 5

DGP gravity

”I am somewhat preoccupied with telling the laws of physics to sit
down and shut up.”

— Vaarsuvius, Order of the Stick

One motivation for modified theories of gravity is to explain the late-time accel-
eration of the universe without resorting to dark energy in the form of a cosmo-
logical constant. If the zero point energy from quantum field theory does not
gravitate, vacuum energy with negative pressure cannot explain the accelerated
expansion, and the vacuum catastrophe is no longer an issue.

Regardless, in high-density areas of space such as the solar neighbourhood
out to a few AU, modified gravity needs to recover GR, which has been tested
thoroughly on these scales. On intermediate scales of a few to tens of Mpc,
however, structure formation might well be affected in ways that GR does not
explain.[29]

5.1 sDGP gravity
This section is based on the articles [30] and [29].

The basic idea of Braneworld gravity is that extra dimensions may modify
the Friedmann equation. In the simplest case, one imagines a 4-dimensional
FRW universe embedded as a brane1 in a 5-dimensional universe. This fifth
dimension is only evident on scales larger than a crossover scale rc, below which
the universe is indistinguishable from a true 4-dimensional one and GR is thus
recovered. Only on scales larger than rc will the expansion accelerate.

Braneworld gravity comes in two flavours: Self-accelerating models, where
no dark energy is needed to explain late-time acceleration, and normal models,
in which dark energy with negative pressure2 is required. DGP gravity, which we

1An (n − 1)-dimensional subspace in n-dimensional space. The reason we avoid the term
“surface” is that it is usually taken to imply only two dimensions.

2In the form of brane tension, for instance.
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mentioned back in chapter 1, comes in both flavours, termed sDGP and nDGP,
respectively. This chapter is concerned with outlining the basics of the former.

sDGP gravity modifies the Friedmann equation (2.23) in the following way:
For a matter field in four dimensions characterized by ρ̄m(t), the Hubble param-
eter relates to the crossover scale3 rc by

H2 ± H

rc
= 8πGρ̄m

3 (5.1)

so that the extradimensional effects carried by the second term on the left
hand side are only noticeable at late times, when H becomes small compared
to rc. Here the plus sign applies to normal models and the minus sign to self-
accelerating ones, so we will use it in the following form:

H2 − H

rc
= 8πGρ̄m

3 (5.2)

If we insist, we may rewrite the modified gravity contribution in terms of an
effective dark energy component

ρ̄rc,eff ≡
3H
8πG

1
rc

= 1
Hrc

ρcrit (5.3)

(where Eq. (2.39) was used for the final equality), so that we recover the
familiar form

H2 = 8πG
3 (ρ̄m + ρ̄rc,eff )

During and after matter domination, the modified Friedmann equation may
be written as

H = H0

(√
Ωrc0 +

√
Ωm0a−3 + Ωrc0

)
(5.4)

where

Ωrc ≡
1

4H2r2
c

(5.5)

3Note that rc is not a co-moving distance.
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There are a few things to note about this definition: First, comparing this
with Eq. (5.3), we see that

ρ̄rc,eff
ρcrit

= 1
Hrc

= 2
√

Ωrc (5.6)

which is not equal to Ωrc unless Ωrc = 1/4. The usual relationship between
a density and its Ω component does not apply here. Second, note that Ωrc0 = 0
in Eq. (5.4) recovers the Einstein-de Sitter universe, whereas H/H0 → 2

√
Ωrc0

in the limit a→∞. This is the reason for the factor of 4 in Eq. (5.5) - inserting
for Ωrc0 in Eq. (5.4) for this limit, we obtain

H = 1
rc

so Eq. (5.2) becomes

H2 − H

rc
= 1
r2
c

− 1
r2
c

= 0

as expected since ρ̄m → 0 in this limit. Finally, the relation between Ωrc and
Ωrc0 follows from Eq. (5.5):

Ωrc =
(
H0

H

)2
Ωrc0 (5.7)

A final note: While it may seem that we have simply replaced one constant
(Λ) by another (rc), but the main difference is that unlike Λ, rc is stable under
quantum corrections[30]. It is not of great consequence for this thesis, however,
and so we refer to texts on quantum field theory for a more thorough explanation.

5.2 Extension: Radiation and massive neutri-
nos

What follows in this section is entirely my own work.
We may expand Eq. (5.2) by simply adding the missing energy densities for a

flat universe with modified gravity, massive neutrinos, radiation and matter (but
without dark energy in the form of a cosmological constant):
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H2 − H

rc
= 8πG

3 (ρ̄r + ρ̄cb + ρ̄ν) (5.8)

where as before we recover H → 1
rc

in the limit a → ∞. This quadratic
equation in H may be made unitless by dividing by H2

0 and then applying Eq.
(5.6):

(
H

H0

)2
− 2

√
Ωrc0

(
H

H0

)
− 8πG

3H2
0

(ρ̄r + ρ̄cb + ρ̄ν) = 0

which can then be solved directly:

H

H0
=
√

Ωrc0 ±
√

Ωrc0 + 8πG
3H2

0
(ρ̄r + ρ̄cb + ρ̄ν) (5.9)

Since all the constants on the right hand side are positive, there is always
one and only one positive real solution as required by the expectation that our
universe should expand and not contract. Recognising 8πG/3H2

0 to be the inverse
critical density of Eq. (2.39), we may write the above result in a form more similar
to Eqs . (5.4) and (2.42):

H = H0

(√
Ωrc0 +

√
Ωr0a−4 + Ωcb0a−3 + Ων0a−3(1+ων,eff ) + Ωrc0

)
(5.10)

where ων,eff is a time-dependent parameter defined by Eq. (2.32):

ων,eff ≡
P̄ν
ρ̄ν

(5.11)

This is effectively a measure of how relativistic the massive neutrinos are at
a point in time, starting at ων,eff = 1

3 in the ultrarelativistic limit and dropping
to zero for nonrelativistic neutrinos. This quantity is calculable provided we
can calculate the spatially averaged energy density and pressure of the massive
neutrinos at any given time.4

A peculiarity of DGP gravity is that the Ω parameters don’t generally add
up to one: Eq. (2.48) does not hold. Rather, from Eq. (5.10) , we have that

√
Ωrc0 +

√
Ωr0 + Ωcb0 + Ων0 + Ωrc0 = 1

4We show in subsection 4.5 how this is done.
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or

Ωr0 + Ωcb0 + Ων0 = 1− 2
√

Ωrc0 = 1− 1
H0rc

= 1− ρ̄rc,eff,0
ρcrit,0

(5.12)

where the final equality comes from Eq. (5.6). We have discovered that this
peculiarity comes from the way that ρrc,eff and Ωrc are defined. If they had been
defined in the way we have come to expect from ΛCDM, the sum of Ω parameters
would in fact have been 1:

Ωr0 + Ωcb0 + Ων0 + ρ̄rc,eff,0
ρcrit,0

= 1 (5.13)

We could have extended this further to a curved background universe with
the inclusion of an Ωk0 parameter5. In any event, the take-home message is that
the sum of all other parameters equalling one only means the universe is flat if
Ωrc0 = 0, that is, in the limit rc →∞.

5.3 Criticisms

It should be well noted that sDGP gravity is not a problem-free solution to the
mystery of dark energy. The most serious of issues affecting it is that it does not
agree well with observations: A likelihood study of data from CMB, supernovae
and Hubble constant measurements, sDGP predicts anisotropies in the CMB that
have not been seen. Adjusting the initial conditions to remove these anisotropies
brings the results in conflict with observations from the WMAP satellite [31].

A more recent analysis uses Planck data to arrive at the same conclusion. A
phenomenological approach from [30] introduces a parameter α so that Eq. (5.1)
may be written

H2 − Hα

r2−α
c

= 8πG
3 ρm (5.14)

so that α = 1 is pure sDGP gravity. In [12], combining Planck’s observations
with supernovae, one obtains the constraint

α < 0.20

5The details may be found in [31].
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at 95% confidence, implying that the flat sDGP model is not compatible with
current cosmological data.

As if that was not enough, [32] show that ghost particles with negative energy
density appear at the linearized level of sDGP gravity, making the spacetime
unstable. Whether non-linear effects may stabilize it remains an open question,
but it is certainly enough to make one question the validity of the sDGP model.

Nonetheless, in this context, we consider sDGP a useful example of a modified
theory of gravity for its relative simplicity: Allowing a self-accelerating expansion
of universe with no need for dark energy and still allowing a top-hat to retain its
shape during collapse. Furthermore, spherical collapse has already been studied6

for this model in [29], so we do not have to start entirely from scratch.
In a full N-body simulation of massive neutrinos in modified gravity, models

that agree more closely with observations become more attractive, but given
the simplified nature of spherical collapse, we are not running a very realistic
simulation to begin with. And the time has finally come to dedicate the next
chapter to look at spherical collapse.

6Although not with massive neutrinos.
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Spherical collapse models

“Gravity is a habit that is hard to shake off.”
— Terry Pratchett, Small Gods

The spherical collapse models are approximations to the collapse of self-gravitating
matter. Most often used to make simple models of non-linear structure formation,
one looks at an isolated, uniform sphere of matter of a certain mass M (usually
a mix of CDM and baryons) that is overdense compared to the background
universe. The density as a function of radius then becomes a step function, giv-
ing it a characteristic top-hat shape. In addition to this, one sets the further
constraint that M is conserved throughout the collapse - this means that no mat-
ter of the forms that make up M is allowed to cross the boundary between the
collapsing sphere and the background1.

In GR, an initial top-hat density distribution will remain a top-hat for the
duration of the collapse. This is a result of Birkhoff’s theorem2, which states
that there are no time-dependent solutions with spherical symmetry. There is
only one, unique time-independent vacuum solution3, which is known as the
Schwarzschild metric. Thus, a spherically symmetric distribution such as a
top-hat must be time independent under GR. As we shall see, this is not generally
the case for modified theories of gravity[35, 36].

A more important, but subtler consequence of Birkhoff’s theorem is that a
top-hat will evolve completely independently from the background universe: A
freely falling test particle inside the collapsing sphere will have an equation of

1Components that do not make up M will be allowed to cross the boundary, however, as we
will see in section 6.2. [33] shows, for instance, how massive neutrinos are distributed within a
collapsing sphere of CDM and baryons during different stages of the collapse.

2Though it should be noted that a relatively unknown Norwegian physicist by the name of
Jørg Tofte Jebsen published this result two years before Birkhoff himself.[34]

3Contrary to what the name sugests, a vacuum solution does allow for a massive cen-
tral object that bends spacetime around it - it just prohibits massive objects anywhere else.
The Schwarzschild metric is only a vacuum solution outside the central object - the interior
Schwarzschild solution (see for instance [9]) is not a vacuum solution.

49
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motion that is independent of the background universe outside the sphere, and
the sphere can therefore be described by its own FRW metric with its own,
independent scale factor[37]4.

6.1 Einstein-de Sitter background
The simplest case is to take a flat, matter-dominated universe (Einstein-de Sitter)
as the background. This is obviously too simple to describe the universe we live
in, since such a universe will not experience late-time acceleration5. Still, it is of
interest for the following reasons:

• No structures will form in the radiation dominated epoch (z ≈ 3600), which
ends well before recombination (z ≈ 1100). Thus, ignoring radiation for
the duration of the collapse is not a far-fetched assumption.[4]

• As far as we can tell, the universe is flat today. If it is not, it was even
closer to the critical density in the past[4]. Hence ignoring curvature for
the background universe is safe, at least until today.

• In modified gravity theories such as DGP gravity, we may set the cosmo-
logical constant to zero, as in an Einstein-de Sitter universe, and still get
accelerated expansion at late times. Hence, this simple case is a decent
approximation before the acceleration kicks in.

Giving the scale factor of the overdense sub-universe the suggestive label R,
Amendola ([38], p. 348-349) points out that one can derive its evolution from
Newtonian mechanics alone. It is straightforward to do for the second Friedmann
equation (2.28), however. For a pressureless fluid of CDM and baryons, we get

R̈ = −4πG
3 (ρcb)R

or

R̈

R
= −4πG

3 (ρcb) (6.1)

and assuming the massM = 4
3πR

3ρcb to be invariant throughout the collapse6,

4p. 421
5See Eq. (2.53) in subsection 2.8.1.
6This is equivalent to assuming the sphere to be isolated, with no infalling or outgoing

matter crossing the boundary as it collapses.
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R̈

R
= −GM

R3

Following Amendola, we multiply both sides by 2RṘ to make the differential
equation first order:

2ṘR̈ = −2GM
R2 Ṙ (6.2)

d

dt

(
Ṙ2
)

= d

dt

(2GM
R

)

Ṙ2 = 2GM
R
− C (6.3)

where we keep Amendola’s choice of sign for the integration constant (this
equation is in general known as the cycloid equation. Inserting for the mass
again, we see that

Ṙ2 = 8πGR2

3 ρcb − C

And if the density ρcb is exactly critical, we have from (2.39) that

Ṙ2 = R2H2
sub − C

Since Hsub ≡ Ṙ/R by definition, this means that C = 0 and we would follow
the background instead of getting collapse. Likewise, for any supercritical sub-
universe that may undergo collapse, ρcb > ρcrit implies that

C = 2GM
R
−
(
Ṙ
)2
> 0 (6.4)

Otherwise, the sub-universe will either be critical/flat as we saw above or
subcritical/open (C < 0). Differentiating this expression, we see that

Ċ = −2GM
R2 Ṙ− 2ṘR̈ = 0
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where the latter equality comes from Eq. (6.2). Hence, the integration con-
stant is time independent even when the universe is not flat. We could also have
seen this by comparing Eqs. (2.23) and (6.3) directly, and then identifying

C = k

Hence, the integration constant is simply the curvature parameter k in natural
units7. In any case, Eq. (6.3) has the solution

R = GM (1− cos τ)
k

(6.5)

where the new parameter we have introduced is

τ ≡ arccos
(

1− Rk

GM

)
(6.6)

We may also write the constant k as

k = RS

R
−
(
Ṙ
)2

(6.7)

whereRS = 2GM is the Schwarzschild radius8 of the sphere, which remains
constant as long as M does. Then the cycloid equation becomes

(
Ṙ
)2

= RS

R
− k (6.8)

and the collapsing sphere becomes a black hole at R = RS or

cos (τS) = 1− 2k

τS = arccos (1− 2k) (6.9)

7Remember that in a closed universe, we may take either k = 1 or a0 = 1 to have absolute
value, but not both.

8If we collapse the sphere to this radius, it becomes a black hole. For most of the collapse,
RS � R is therefore a safe assumption.
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6.1.1 Turnaround and virialization
This subsection is based on Elgarøy’s lecture notes on spherical collapse[39].

The collapse reaches turnaround at τturnaround = π, at which point
(
Ṙ
)2

= 0:

Rturnaround = RS

k
= Ωm0

Ωm0 − 1 (6.10)

and collapses to infinite density at τcoll = 2π. A more realistic criterion for
collapse is that the virial theorem

2 〈Ek〉+ 〈Ep〉 = 0 (6.11)

is satisfied. The kinetic energy of a body is given by

Ek =
∫
d3x

1
2ρẋ

2 (6.12)

where for a top-hat distribution collapsing under its own gravity, the result
of the integration is

Ek = 3
10MṘ2 (6.13)

In the absence of components other than matter, the potential energy of a
top-hat is given by

Ep = −3GM2

5R = −3M
10

RS

R
(6.14)

At turnaround the total energy is purely potential energy:

Etot = Ep,turnaround = −3M
10

RS

Rturnaround

= −3M
10 k (6.15)

From energy conservation9 Ek = Etot − Ep, we have that

Ek = 3GM2

5

( 1
R
− 1
Rturnaround

)
= 3M

10

(
RS

R
− k

)
9Or equivalently, by combing Eqs. (6.8) and (6.13)
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so the virial theorem is satisfied when

2 · 3M
10

(
RS

R
− k

)
= 3M

10
RS

R

R = Rvir = RS

2k = 1
2Rturnaround (6.16)

Inserting this into Eq. (6.5), we see that

cos (τvir) = 0

And with τturnaround < τvir < τcoll,

τvir = 3π
2 (6.17)

As long as the distribution of baryons and CDM is uniform (i.e. remains
a top-hat distribution), we may use Eqs. (6.4) and (6.6) along with the above
result to determine virialization, provided we keep track of Ṙ during collapse.
Unfortunately, the argument rests on mass conservation, which breaks down once
we allow components other than CDM and baryons. Even if we assume no
clustering and simply keep track of the background densities, these are not only
time dependent through the evolution of the background, but will depend on R
as well, unless the amount of clustering is such that it conserves the masses off
all components simultaneously. This is certainly not the case for vacuum energy
inside the sphere, which should remain proportional to the volume, and would
seem to require excessive fine-tuning for the other components involved. Thus
the argument leading to Eq. (6.3) does not hold in more complex models, and
neither does the virialization result.

6.2 ΛCDM with massive neutrinos
This section is based on the spherical collapse articles by LoVerde[16] and Ichiki
and Takada[33].

In a full ΛCDM background, we will assume that the universe is still flat,
but now radiation and a cosmological constant are added. This has the following
consequences:

• The background evolves differently (expanding more slowly in the radiation
dominated era and accelerated expansion at late times).
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• There is no analytical solution to the background - we have to compute it
numerically.

• The results in 6.1 no longer hold.
Massive neutrinos are radiation-like at early times and dust-like at late times,
with the crossover time for each eigenstate depending on its mass. The neutrinos
introduce a scale dependence on the collapse that is not present in the bare ΛCDM
model, as neutrinos can also cluster nonlinearly inside the collapsing sphere of
CDM and baryons, and unlike the latter, the neutrino clustering is not limited
by mass conservation inside the top-hat when we collapse baryons and CDM in
a homogeneous and isotropic massive neutrino background. As the background
neutrino density and the degree to which the massive neutrinos are relativistic
change with time, this also introduces a time dependence: The collapse time of
a top-hat perturbation depends in part on at what point in the evolution of the
universe the collapse begins.

We will keep the simplifying assumption of an isolated sphere of CDM and
baryons, whose mass Mcb remains constant throughout the collapse. However,
the other components (photons, massive neutrinos, dark energy) will be present
inside the collapsing sphere as well, making its total mass larger. Inserting the
missing components into the second Friedmann equation (2.28), we now get

¨̄R
R̄

= −4πG
3

∑
i

(
ρ̄i + 3P̄i

)
= −4πG

3
∑
i

(1 + 3ωi) ρ̄i

where the latter equality comes from Eq. (2.32) in natural units. Inserting
ωi for the various components, we find that the unperturbed background evolves
as determined by

¨̄R
R̄

= −4πG
3

[
ρ̄cb + 2ρ̄γ + ρ̄ν + 3P̄ν − 2ρ̄Λ

]
(6.18)

where we take advantage of already having calculated the background neu-
trino pressure in Eq. (4.24). For the perturbed sub-universe, we define the
density contrast to be given by

δi(x, t) ≡
δρi
ρ̄i
≡ ρi (x, t)− ρ̄ (t)

ρ̄ (t) (6.19)

This unitless quantity measures how overdense (or underdense, if negative)
the sphere is10. We can use this to write

10Some textbooks prefer the notation ∆i = ρi − ρ̄i instead of δρi. I will restrict my use of
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ρi = ρ̄i (1 + δi) (6.20)

Using this relation and replacing ρ̄ν , P̄ν and R̄ with their unbarred equivalents,
Eq. (6.18) becomes

R̈

R
= −4πG

3 [(1 + δcb) ρ̄cb + 2ρ̄γ + ρν + 3Pν − 2ρ̄Λ]

for the collapsing sphere. We have here assumed that the densities for photons
and dark energy to be the same inside the sphere as outside, so that ρ̄i = ρi for
these components. For neutrinos, however, the reason for removing the bars is
that we will allow a nonlinear clustering term. We define for a massive component
inside a spherical volume V of radius R that the mass perturbation

δMi ≡ δρiV = δiρ̄iV (6.21)

But by Eq. (6.20), we have that

ρ̄i = ρi
δi + 1

and then

δMi = δi
δi + 1ρiV = δi

δi + 1Mi (6.22)

so that δMi ≈Mi at high overdensity when R is small11.[29] By allowing the
massive neutrinos to cluster in the same way, we get

R̈

R
= −4πG

3 [(1 + δcb) ρ̄cb + 2ρ̄γ + (1 + δν) ρ̄ν + 3Pν − 2ρ̄Λ] (6.23)

Analogously to Eq. (6.21), and inspired by Eq. (2.32), we may define a
pressure perturbation

δPi ≡ Pi − P̄i = ωi (ρi − ρ̄i) = ωiρ̄iδi (6.24)

this notation to CAMB outputs, to be consistent with [28], but avoid it elsewhere.
11Alternately, δMi ≡ δρiV = (ρi − ρ̄i)V = Mi−4πR3ρ̄i/3 if we wish to use the mass directly.
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and we could then then use this with Eq. (5.11) to calculate the neutrino
pressure, under the assumption that the clustering neutrinos are exactly as rela-
tivistic as those outside (thus sharing the same ωi):

Pν = P̄ν + δPν = P̄ν + ων,eff ρ̄νδν

Using the same simplification for the δMν terms as we did for Mcb in Eq.
(6.20), we get

R̈

R
= −4πG

3 ([1 + δcb] ρ̄cb + 2ρ̄γ + [1 + δν (1 + 3ων,eff )] ρ̄ν − 2ρ̄Λ)

However, one may argue that neutrinos that cluster nonlinearly will essentially
be nonrelativistic, so that ων,eff ≈ 0 for the clustering neutrinos (but not the
background ones). We therefore obtain

R̈

R
= −4πG

3
[
(1 + δcb) ρ̄cb + 2ρ̄γ + (1 + δν) ρ̄ν + 3P̄ν − 2ρ̄Λ

]
(6.25)

which is fully equivalent to Eq. (8) in [16]. If we neglect neutrino clustering
(setting δν = 0), this becomes

R̈

R
= −4πG

3
[
ρ̄cb + δcbρ̄cb + 2ρ̄γ + ρ̄ν + 3P̄ν − 2ρ̄Λ

]
(6.26)

6.2.1 Virialization
Note that we have not included virialization results in this thesis. It is included
for completeness, as this would be a logical next step.

The results from subsection 6.1.1 do not hold when more components are
present. To be sure, the kinetic energy of the top-hat is still given by Eq. (6.13),
and the total energy is conserved, but Eq. (6.14) does not hold under ΛCDM.

According to [40]12 the potential energy under ΛCDM is

Ep = −GM5

(3M
R

+ 4π
5 ρΛ0R

2
)

(6.27)

The virial theorem, Eq. (6.11), is then satisfied when
12In perfect agreement, I might add, with the result of [29] if one sets the modified gravity

parameter from Eq. (6.36), ∆GDGP , equal to 0 and neglects terms beyond first order in [40].
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Ṙ2 = GM

R
+ 4

3πGρΛ0R
2 (6.28)

as long as Ṙ < 0, ensuring that turnaround has already occurred. Note that
we neglect massive neutrinos and radiation in this treatment, so the results are
not accurate to high precision. However, according to [16], at this stage in the
collapse the dynamics are dominated by the CDM and baryon components, so it
should be good enough for our purposes.

6.3 DGP gravity
This chapter is based on [29] and [30].

Like in most theories of modified gravity, Birkhoff’s theorem does not apply in
DGP gravity. However, a cancellation effect similar to that of Birhkoff’s theorem
occurs inside a spherical mass distribution due to the extra dimension involved.
Most importantly, the difference between using Birkhoff’s theorem and Eq. (5.10)
is small when used to describe growth of structure in the linear regime.

In particular, a top-hat overdensity will remain a top-hat during collapse:
If the surrounding area (outside the top-hat radius R) contains the spatially
averaged density, there will be swept out an underdensity outside R that still
does not affect the shape of the top-hat. This is a unique property of the top-hat
profile, and cannot be generalized to more general spherical distributions under
DGP gravity.

What we need, then, is a version of Eq. (6.25) that has Eq. (5.10) as its
starting point instead. [29] provides this for a universe with only modified gravity
and matter:

R̈

R
= −4πG

3 [ρ̄m + (1 + 3ωrc,eff )ρ̄rc,eff ]−
4πGDGP (R/R?)

3 δρm (6.29)

where R? is the so-called Vainshtein radius:

R? =
(

16GδMr2
c

9β2

)1/3

(6.30)

below which nonlinear effects dominate and effectively recovers GR (see for
instance [41]). Note that ωrc,eff 6= ων,eff : The latter applies to massive neutrinos,
whereas the former is related to modified gravity. We saw ρrc,eff before in Eq.
(5.3), and its equation of state is defined to be
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− 3 (1 + ωrc,eff ) ≡
d ln ρ̄rc,eff
d ln a (6.31)

Note further that while the background components evolve proportional to
the usual gravitational constant G, the overdensity instead requires a modified
effective gravitational function defined by

GDGP (x)
G

= 1 + 2
3β(a)

√
1 + x−3 − 1

x−3 (6.32)

where (in sDGP)

β(a) = 1− 2H(a)rc
(

1 + Ḣ(a)
3H2(a)

)
(6.33)

and the argument to the function in Eq. (6.32) is x = R/R?. δM is as before
defined by Eq. (6.22) summed over all the components.

An important exception to the above is when the sphere has completely col-
lapsed, in which case x = R = 0 and

√
1 + x−3 − 1

x−3 =
√
x6 + x3 − x3 = 0

so that

GDGP (x)
G

= 1 (6.34)

which makes sense as Newtonian gravity is recovered as the scale grows
smaller, even though Eq. (6.32) is undefined as written in this case. The ex-
tension to include radiation and massive neutrinos in Eq. (6.29) is then

R̈

R
= −4πG

3
[
ρ̄cb + 2ρ̄γ + ρ̄ν + 3P̄ν + (1 + 3ωrc,eff )ρ̄rc,eff

]

− 4πGDGP (R/R?)
3 [δcbρ̄cb + δν ρ̄ν ] (6.35)
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6.3.1 Virialization in DGP gravity
Once again, we include virialization for completeness.

The results in subsection 6.2.1 only apply under GR. In modified gravity,
potential energy is calculated differently. Furthermore, energy is not strictly
conserved over a Hubble time in this scenario. We will follow [29] and outline
how we can determine the virial radius in this instance.

While the kinetic energy of the sphere is still calculated using Eq. (6.13),
potential energy now is given by

Ep = −M5

[ 3
R

(GM −∆GDGP δM) + 4πG (1 + ωrc,eff ) ρ̄rc,effR2
]

(6.36)

where

∆GDGP = 2
3β(a)

√
1 + (R/R?)−3 − 1

(R/R?)−3 (6.37)

as suggested by Eq. (6.32). The virial theorem, Eq. (6.11), is satisfied when

Ṙ2 = GM −∆GDGP δM

R
+ 4πG

3 (1 + ωrc,eff ) ρ̄rc,effR2 (6.38)

after turnaround. As in ΛCDM above, neutrinos and radiation are ignored in
these calculations.
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Chapter 7

Algorithms

“The test of the machine is the satisfaction it gives you. There
isn’t any other test. If the machine produces tranquility it is right. If
it disturbs you, it is wrong until either the machine or your mind is
changed.”

— Robert M. Pirsig, Zen and the Art of Motorcycle Maintenance

In this section, we describe the methodology for reproducing the results in LoVerde’s
article[16]. This article has been used extensively as a source throughout the
chapter.

As noted in chapter 4, if the sum of neutrino masses is greater than 0.3 eV,
they are said to be degenerate, in the sense that when more than one neutrino
species is present, they can all be said to have the same mass. In this chapter,
it is everywhere assumed that there is only one massive neutrino species with
a given mass mν (instead of several with separate masses mνi) and no massless
neutrinos.

If we want to consider the usual three species of neutrinos with this approach,
we have to consider the masses degenerate, even for masses where they cannot
normally be considered to satisfy this approximation. As fig. 7.3 and 7.4 show,
even though neutrino masses down to 0.1 eV will be non-relativistic at the initial
redshift of zinit = 200, three massive neutrinos whose sum is this mass will not
be. We have still used this approximation, however, since even these less massive
neutrinos become nonrelativistic early in the collapse process. In fig. 7.1 we see
that a single massive neutrino with mass mν = 0.04 eV becomes nonrelativistic
with ων,eff = 1/4 at z ≈ 135 in both ΛCDM and DGP gravity. In the massless
limit, neutrinos are relativistic throughout, so we avoid the issue when looking
at massless neutrinos.

63
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Figure 7.1: Relativistic background components and ων,eff for mν = 0.04 eV
in both cosmologies.

7.1 Unperturbed neutrino distributions
In order to find the unperturbed quantities ρ̄ν and P̄ν , we could perform the
integrations in Eqs. (4.22) and (4.24) on a grid of a and mν , but it is more
convenient to choose µ(a,mν) from Eq. (4.21) as a one-dimensional grid variable.
We put the upper limit at µmax(a0,mν,max) and the lower limit at the massless
limit µmin = 0. In the latter limit, Eq. (4.24) diverges, but we may instead use
the known result

P̄ν(µ = 0) = 1
3 ρ̄ν(µ = 0) (7.1)

to handle this particular case. To fix the upper integration limits for u in
each case, the following analysis was performed:

1. Simply extending the integration to the point where overflow started to
occur, which happened around u ≈ 700.

2. Then, the integrations were performed up to different u values until increas-
ing the upper limit stopped contributing to the integral1. This was found

1In other words, when integrating to umax and umax + 1 produces results that are identical
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to happen consistently at u ≤ 120 in the ΛCDM model for all relevant
values of µ. The code performs this test automatically, so it can be re-used
when there are changes to the code.

After this analysis, the LSODA2-based algorithm in the scipy package was used
to calculate the two integrals for ρ̄ν and P̄ν at 10.000 grid points, after which the
results were made continuous with cubic spline interpolation over µ.

7.1.1 Units
At this point, a quick dimensional analysis is beneficial. With mν given in units
of eV and a being unitless, what are the rest of the units? In natural units,
~ = c = kB = 1, we measure Tν in eV as well, so µ is a unitless quantity. Since
velocities are unitless, momenta have the same units as masses (eV), hence u is
also unitless. This means that the integrals in Eqs. (4.20), (4.22) and (4.24) are
all unitless, and the units of n̄ν , ρ̄ν and P̄ν are determined by the prefactors P(n)
alone, which by definition have units (eV)n: In this case (eV)3, (eV)4 and (eV)4,
respectively. To get the values of the remaining physical constants in natural
units, we use

G =
(

6.67408 · 10−11 m3

kg · s

)(
6.582119 · 10−16 eV

s−1

)2

×
[(

1.782662 · 10−36
) kg

eV

] [(
1.97327 · 10−7

)−1 m−1

eV

]3

(7.2)

and

H0 =
(

100h km
s ·Mpc

) [(
3.0856776 · 1016

)−1 pc
m

]

×
(

103 m
km

)(
10−6 Mpc

pc

)(
6.582119 · 10−16 eV

s−1

)
(7.3)

giving units of (eV)−2 and eV, respectively.
The parameter ranges chosen were a ∈ [ainit, 1] where ainit = 1

1+zinit = 1
201

and mνi ∈ [0.01 eV, 1 eV], which gives us the unitless interval

because of numerical lack of precision.
2LSODA is based on LSODE (Livermore Solver for Ordinary Differential Equations). The

final A likely stands for “Automatic”, as it automatically switches between stiff and non-stiff
methods.[42]
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µi ∈
[
T−1
νi0

20100 , T
−1
νi0

]′
(7.4)

The reason for the high upper bound is to be able to compare results with
[16]. As for the lower bound, we saw in chapter 4 that the lightest neutrino mass
is > 3 · 10−3 eV[23]. Such a light neutrino would contribute very little to Ων and
is unlikely to have a large effect on structure formation at a > ainit (see Fig. 7.3),
so we set the lower bound at 0.01 eV. For the scale factor, the grid will be splined
so we can get good values at arbitrary times. Such accuracy is not necessary
for the neutrino masses, where we are content with 100 grid points, one for each
integer multiple of 0.01 eV up to 1 eV.

7.2 Initial conditions

The unperturbed background evolution of the non-neutrino components are given
by Eq. (2.37):

ρ̄i = ρ̄i0
a3(1+ωi)

= 3H2
0 Ωi0

8πGa3(1+ωi)
(7.5)

where the latter equality follows from Eq. (2.40). This allows us to use the
cosmological parameters found by the Planck mission[6]. We will follow [16]
and treat baryons and CDM as a single fluid, since the perturbations in baryon
density have (nearly) caught up to the CDM perturbations. So, for a ≥ ainit, we
define ρ̄cb ≡ ρ̄c + ρ̄b, or directly:

ρ̄cb ≡
3H2

0 (Ωc0 + Ωb0)
8πGa3 (7.6)

The Planck data do not include a value for Ωγ0. We can, however, use the
CMB temperature measurements from Tγ0 from [14] and Eq. (3.13) to find a
value for ρ̄γ0.

Before we proceed, we also need to take into account that neutrinos massive
enough to be non-relativistic today look like CDM. Under the assumption that
the Planck data are not sensitive to massive neutrinos, these will show up in the
data as a contribution to the overall CDM density in the observations:

Ωc0,obs = Ωc0 + Ων0
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Hence, for a flat universe like the background:

Ωc0 = Ωc0,obs −
8πGρ̄ν0

3H2
0

(7.7)

The take-home message here is that the actual density of CDM (and in ex-
treme cases, radiation) parameters depend to some (rather small) extent on the
neutrino masses. Next, we choose mass scales Mcb for a halo, ranging from galaxy
scales (1011 M�) up to cluster scales (1015 M�), also converted to eV. For each,
the initial radius is given by

R̄init(Mcb) =
(

3Mcb

4πρ̄cb

)1/3

(7.8)

After transforming Eq. (6.19) to Fourier space, we obtain

δi(k, t) =
∫
d3x e−ik·xδi(x, t)

so clearly δi(k, t) has units of length cubed: (eV)−3 in natural units. CAMB
returns this quantity in units of Mpc3, however, and we will use the CAMB code
to obtain the initial conditions for the spherical collapse. Next, we define

δcb(x, a) ≡ δρc + δρb
ρ̄c + ρ̄b

≡ δρcb(x, a)
ρ̄cb(a) (7.9)

as the density contrast for CDM + baryons in real space. As long as x is a
position vector inside the collapsing sphere at the time ainit, we label the initial
top-hat overdensity

δcb,init ≡ δcb(x<R, ainit) (7.10)

We will initially pick the top-hat overdensity by hand. What CAMB will
help us with is to find the other initial condition we need, δ̇cb,init. To do this,
I modified the CAMB code to provide ∆cb(k, ainit) ≡ δcbρ̄cb and its derivative.
Running CAMB for the range of neutrino masses needed, we obtain splined
values of these quantities in Fourier space3. Note that ρ̄cb in Eq. (7.9) will still

3Since Ωc0 and Ων0 depend on our choice of mνi, my code generates files for each of these
parameters as a function of neutrino mass. I modified the CAMB driver to read this file and
run the CAMB code for each pair of these values (as well as having the other input parameters
match those in my own code). In my modified version of CAMB, I made a crude change to
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be calculated from the Planck data using Eq. (2.37), but I have verified that my
code and CAMB agree on the critical density at ainit as a sanity check.

A subtle but important point is that CAMB does not give us the time deriva-
tive directly - instead, it provides us with derivatives with respect to conformal
time4 η measured in Mpc, that is,

∆̇cb = d∆cb

dη

dη

dt
= d∆cb

dη
a−1 (7.11)

where the latter equality follows from Eq. (2.12) in natural units. Thus, to
work with the CAMB quantities, we transform them to

δcb(k, ainit) = ∆cb(k, ainit)
ρ̄cb(ainit)

(7.12)

and

δ̇cb(k, ainit) = d

dt

(
∆cb

ρ̄cb

)
= ∆̇cb

ρ̄cb
− ∆cb

ρ̄2
cb

dρ̄cb
dt

(7.13)

Fortunately, we have an analytic expression for ρ̄cb from Eq. (7.6), which
upon differentiation yields

dρ̄cb
dt

= 3H2
0 (Ωc0 + Ωb0)

8πG
(
−3a−4

)
ȧ = −3Hρ̄cb

Thus, combining this with Eqs. (7.11) and (7.13), we get

δ̇cb(k, ainit) =
d∆cb

dη
(k, ainit)a−1

init + 3H(ainit)∆cb(k, ainit)
ρ̄cb(ainit)

(7.14)

We will employ the top-hat window function in Fourier space (which weights
the contribution to the top-hat overdensity from different scales):

the function that calculates the derivatives of the perturbation parameters, so that it writes
the results of ∆c + ∆b to file, along with the k and a values that produces them, but only for
a ≈ ainit. The tolerance for this selection, as well as zinit, can be changed in CAMB’s parameter
file without a need to recompile the program. My code then reads the files produces, makes a
spline over a to hit ainit exactly, and finally makes a spline over k for the resulting values.

4We introduced this in section 2.3.
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W (kR) = Wtop−hat(kR) = 3j1 (kR)
kR

(7.15)

with R = R̄init given by Eq. (7.8) and j1 being the spherical Bessel function
of order 1. Using this, we could in principle do an inverse Fourier transform of
the perturbation velocity and obtain

δ̇cb,R(x, ainit) =
∫ d3k

(2π)3 e
ik·xW (kR)δ̇cb(k, ainit)

but we will instead exploit that δcb,R(x, a) is a random variable with a Gaus-
sian distribution with mean zero and variance

σ2(R, a) =
〈
δ2
cb,R

〉
=
∫ kmax

0

dk

k
|W (kR)|2 k

3Pcb(k, a)
2π2 (7.16)

where Pcb(k, a) is the power spectrum, also obtained from CAMB. Similarly,

σ̇2(R, a) =
〈
δ̇2
cb,R

〉
=
∫ kmax

0

dk

k
|W (kR)|2

(
δ̇cb(k, a)cb
δcb(k, a)cb

)2
k3Pcb(k, a)

2π2 (7.17)

and we finally find the real space rate of change of the overdensity in real
space by using the relation

δ̇cb,init = σ̇(R, ainit)
σ(R, ainit)

δcb,init (7.18)

In order to calculate the integrals in Eqs. (7.16) and (7.17), we choose kmax =
10 MPc−1. While neither integral converges on its own, as [16] suggests, the ratio
σ̇
σ
(R, ainit) will have reached an asymptote at this value for the relevant values of
mν and M (see Fig. 7.2).

Now we use these initial conditions to find the initial top-hat radius and its
derivative. By use of (6.19), one obtains

ρi = ρ̄i (1 + δi)

and combining this with Eq. (7.8) gives us
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Figure 7.2: σ̇
σ (R, ainit) plotted against kmax, the upper integration limit in

Eqs. (7.16) and (7.17). The convergence was observed for the entire neutrino
mass range - here we show the ΛCDM results for the cases mν = 0.01 eV and
mν = 1.2 eV, as well as the halo masses M = 1011M� and M = 1015M�.
δcb,init chosen to give collapse today.
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Rinit = R̄init (1 + δcb,init)−1/3 (7.19)

The evolution of R̄ follows the background exactly (simply scaled by a con-
stant with unit length), or more specifically

R̄ = R̄init

ainit
a

so that

˙̄Rinit = ȧinit
ainit

R̄init = HinitR̄init

and combining this with Eq. (7.19) and using the product rule, one gets

Ṙinit = R̄init (1 + δcb,init)−1/3
(
Hinit −

1
3

δ̇cb,init
1 + δcb,init

)
(7.20)

This result is not used in [16], which instead opts for the linear expansion5

Rinit = R̄init

(
1− 1

3δcb,init
)

(7.21)

so that

Ṙinit = HinitR̄init

(
1− 1

3δcb,init −
1
3H

−1
initδ̇cb,init

)
(7.22)

7.2.1 Ensuring flatness

As Eq. (7.7) shows, we adjusted the value of Ωcb0 to account for the fact that
non-relativistic neutrinos today would look like CDM. In ΛCDM, the sum of all
Ω parameters are required to be 1 in a flat universe, hence we adjust ΩΛ0 as
follows:

5[16] claims that is justified by the fact that δcb,init ∼ O
(
10−2). It turns out that an initial

density contrast of this magnitude is indeed required to achieve collapse at the redshifts we
are targeting here, but it is important to keep in mind that other choices of zcoll may well
invalidate Eq. (7.21) because δcb,init would grow too large to justify a linear expansion.
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Figure 7.3: Evolution of density parameters in ΛCDM for mν = 0.1 eV and
mν = 1.2 eV, respectively. The rightmost plot includes radiation and the
degree to which the massive neutrinos are relativistic (through ων,eff ). We
see that ων,eff < 1

4 which was defined as the relativistic limit in Eq. (2.35).

ΩΛ0 = 1− (Ωr0 + Ων0 + Ωcb0) (7.23)

where Ωr0 accounts for photons and massless neutrino species, if any. For
DGP gravity, we may not simply adjust Ωrc0 instead, since it depends directly on
our chosen values of rc and H0. We do not want rc to implicitly depend on mν .
Since Ωr0 is calculated directly from CMB temperature, and Ων0 for the massive
neutrinos is found by integrating the unperturbed Fermi-Dirac distribution, the
only parameter left is Ωcb0. In the DGP case, then, we do not employ Eq. (7.7),
but instead use Eq. (5.12) to achieve the same effect (that massive neutrinos
look like CDM today):

Ωc0 = 1−
(

Ωr0 + Ων0 + Ωb0 + 2
√

Ωrc0

)
(7.24)

The results of these adjustments can be seen in figures 7.3 and 7.4. The
reason for choosing Ωc0 to adjust in DGP gravity is that we expect it to vary
with neutrino mass, whereas Ωb0 shouldn’t.

7.3 Collapse without neutrino clustering
By neutrino clustering, we are not referring to linear theory. We mean the non-
linear clustering of massive neutrinos in the potential set up by the CDM+baryon
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Figure 7.4: As fig. 7.3, for the DGP model.

collapsing sphere.
The approaches in [29] and [16] are not immediately compatible. What follows

in this section is entirely my own work, where I combine them into a common
framework that works with both massive neutrinos and DGP gravity together.
An additional focus has been making the equations unitless to avoid complica-
tions with unit conversions.

Following [29] we introduce the time variable

x ≡ ln a (7.25)

and the dimensionless collapse parameter

y ≡ R (x)
Rinit

− a

ainit
(7.26)

where the x dependence of the last term is explicitly

a

ainit
= ex−xinit (7.27)

so that y(xinit) = 0 and collapse has occurred when y = −a/ai. The relation
between derivatives may be expressed as

′ ≡ d

dx
= dt

dx

d

dt
=
(
d ln a

dt

)−1
d

dt
=
(
ȧ

a

)−1 d

dt
= 1
H

d

dt
(7.28)
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so that (since a′ = a)

y′ = R′

Rinit

− a

ainit
(7.29)

which for the initial condition x = xinit, R = Rinit becomes

y′init = Ṙinit

RinitHinit

− 1 (7.30)

We may combine this with Eq. (7.20) to get

y′init = R̄init

RinitHinit

(1 + δcb,init)−1/3
(
Hinit −

1
3

δ̇cb,init
1 + δcb,init

)
− 1

which combined with Eq. (7.19) turns into

y′init = − δ̇cb,init
3Hinit (1 + δcb,init)

(7.31)

We could also have followed [16] and use the linear expansion, combining Eqs.
(7.21), (7.22) and (7.30) in the same way as above:

y′init = − δ̇cb,init

3Hinit

(
1− 1

3δcb,init
) (7.32)

which is indeed close to the result in Eq. (7.31) when δ̇cb,init � 1. Since δ̇cb,init
is the output CAMB provides us with, we will use Eqs. (7.31) and (7.32) as they
are.

Returning now to Eq. (7.29), note that we may also write it as

y′ = 1
Rinit

(R′ −R) + y

Differentiating both sides, we obtain

y′′ = 1
Rinit

(R′′ −R′) + y′ = 1
Rinit

(R′′ −R) + y (7.33)
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With a little help from Eq. (7.28), we see that

R′′ = 1
H

d

dt

( 1
H
Ṙ
)

= R̈

H2 −
H ′R′

H

but we already know from Eq. (7.29) that

R′ = Rinit

(
y′ + a

ainit

)

hence

R′′ = R

H2
R̈

R
− H ′Rinit

H

(
y′ + a

ainit

)

so Eq. (7.33) turns into

y′′ =
(
y + a

ainit

)( 1
H2

R̈

R
− 1

)
− H ′

H

(
y′ + a

ainit

)
+ y

where we have applied Eq. (7.26) to replace a factor of R/Rinit. Collecting
terms, this turns into the differential equation we solve numerically, which is
shown in fig. 7.5.

y′′ = 1
H2

R̈

R

(
y + a

ainit

)
− H ′

H

(
y′ + a

ainit

)
− a

ainit
(7.34)

H may be calculated directly from the Friedmann equation, which in ΛCDM
is (2.42). After calculating values of H on a grid, we spline the results to obtain
H ′ numerically. Then the only missing piece is R̈/R, which we obtain from Eq.
(6.25) after making it unitless by multiplying each side by H−2:

1
H2

R̈

R
= −4πG

3H2

[
(1 + δcb) ρ̄cb + 2ρ̄γ + (1 + δν) ρ̄ν + 3P̄ν − 2ρ̄Λ

]
(7.35)

7.3.1 Modified gravity solution
Eq. (7.34) also covers DGP gravity, where the only differences will be that

• The cosmological parameters common to both models (H0, Ωm0) may change.
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Figure 7.5: Solution to the differential equation (7.34) in ΛCDM and DGP
gravity with δcb,init = 0.1317 targeting collapse today (x = 0) for the DGP
model. Also plotted for both models is the curve y = −a/ainit, representing
complete collapse.
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• H (and H ′ through a spline as before) is calculated using Eq. (5.10) instead
(using Ωrc0 in place of ΩΛ0).

• The calculation of R̈/R is instead based on Eq. (6.35):

1
H2

R̈

R
= −4πG

3H2

[
ρ̄cb + 2ρ̄γ + ρ̄ν + 3P̄ν + (1 + 3ωrc,eff )ρ̄rc,eff

]

− 4πGDGP (R/R?)
3H2 [δcbρ̄cb + δν ρ̄ν ] (7.36)

where ρ̄rc,eff is calculated using Eq. (5.3) and ωrc,eff is calculated by using
Eqs. (5.3) and (6.31) together:

−3 (1 + ωrc,eff ) = H ′

H

Here we have used the fact that rc is not time dependent. As a result of this,

ωrc,eff = −
(

1 + 1
3
H ′

H

)
(7.37)

and the term that is put into Eq. (7.36) becomes

(1 + 3ωrc,eff ) ρrc,eff = −
(

2 + H ′

H

)
ρrc,eff (7.38)

Inserting this result into Eq. (7.36), we obtain the unitless equation in its
final form:

1
H2

R̈

R
=
(

1 + 1
2
H ′

H

)
1
Hrc

− 4πG
3H2

(
ρ̄cb + 2ρ̄γ + ρ̄ν + 3P̄ν + GDGP (R/R?)

G
[δcbρ̄cb + δνρν ]

)
(7.39)

where Eq. (5.3) was also used to simplify the first term and GDGP (R/R?) /G
is calculated as in Eq. (6.32), with
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x−3 =
(
R?

R

)3
= 16GδMr2

c

9β2R3 (7.40)

as given by Eq. (6.30), with

β(a) = 1− 2Hrc
(

1 + 1
3
H ′

H

)
(7.41)

by combining Eqs. (6.33) and (7.28).

7.3.2 Choice of y′init
LoVerde[16] uses Eq. (7.22) to find Ṙinit. Through Eq. (7.30), we can make find
the corresponding value of y′init. However, Schmidt, Hu and Lima[29] instead use
the much simpler linear initial condition

y′init = −1
3δinit (7.42)

The reason for using this is that [29] starts at the much earlier redshift of
a = 10−5, where this expression is easier to justify. Having followed LoVerde
and done it the hard way, however, we might as well look into how applicable
this initial condition would be compared to using the CAMB outputs, including
massive neutrinos and starting at the much later initial time zinit = 200. From
Figure 7.6, we see that while both the simple and the linear initial condition are
decent approximations even in this case (the latter being slightly better at least
for low neutrino masses). Still, there is no compelling reason not to use the full
non-linear result.

7.4 Neutrino clustering inside the top-hat

The starting point in this section is again LoVerde’s work[16]. However, I found
Eq. (11) in that article cumbersome to work with numerically, due to the sheer
number of dimensions and lack of unitless quantities. There were also some ambi-
guities in notation that required clearing up. Therefore, I have put considerable
effort into expressing the calculation in a way that is more immediately applicable
to solving the clustering problem numerically. What follows, therefore, beyond
the first two equations, is entirely my own work.
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Figure 7.6: Initial conditions y′init for different neutrino masses in ΛCDM
and DGP gravity (yinit = 0 by definition). The simple case uses Eq. (7.42),
whereas the linear and non-linear cases use Eqs. (7.32) and (7.31), respectively,
with δ̇cb,init given by CAMB. In all three cases, δcb,init was chosen to ensure
collapse today - the simulations used to target collapse used the full non-linear
result, presumed to be the most accurate (which explains why even the simple
case has a jagged curve).
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In this entire section, r and R will both be given in co-moving coordinates6.
As r is an integration variable with R as its upper limit7, the key point is that
whenever we input the proper radius RDP of the collapsing sphere, we must
employ Eq. (2.6):

R = RDP

a
= Rinit,DP

(
y

a
+ 1
ainit

)
(7.43)

To find δν inside a top-hat potential, we introduce a perturbation to the
neutrino distribution f = f0 + f1, where f0 is given by Eq. (4.13), and we get
the following from Eq. (11) in [16]:

f1 = 2mν

Tν0

∫ t

tinit

dt′

at′

eq/Tν0

(eq/Tν0 + 1)2
Gt′δMt′

r2

(
α
q

Tν
− q̂ · r̂

)

×
[
R−3/2Θ (L < R) + L−3/2Θ (L ≥ R)

]
(7.44)

where Θ is the Heaviside function. Variables that depend on t′ are marked by a
subscript for brevity (for instance G(t′) ≡ Gt′ since in DGP gravity the effective
gravitational constant will vary throughout the collapse). For convenience we
have defined the following quantities, all unitless:

R ≡ Rt′

r
= RDP,t′

rat′
(7.45)

L ≡ 1 + q2

T 2
ν0
α2 − 2q

Tν0
αq̂ · r̂ (7.46)

α ≡ Tν0 (η − η′)
mνr

(7.47)

It should be well noted that η in Eq. (7.47) is not the conformal time we
introduced in section 2.3. It is a new time variable defined by a2dη = dt, which
describes the co-moving distance a non-relativistic neutrino travels along an un-
perturbed (f1 = 0) path.[17] As this variable only appears in the difference
η−η′, we are free to choose an initial condition η = 0 wherever we like. However,

6Unlike [16] and [17], where only r is co-moving
7See Eq. (7.48)
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η(ainit) = 0 seems the most natural choice given this definition. Note that α ≥ 0,
as η ≥ η′ because a′ ≤ a and all the other factors are positive.

Eq. (7.44) is the result of solving the linearized, non-relativistic Boltzmann
equation for massive neutrinos, Eq. (3.19). Note that we have taken the liberty
of introducing a small difference between Eq. (7.44) and Eq. (11) in [16] as
written: We have replaced a3

t′r
3/R3 with a3

t′r
3/R3

t′ = R−3/2 in the first term of
the Heaviside function for three reasons:

• As one crosses the step in the Heaviside function, f1 should still be con-
tinuous, as the step originates from the peculiar potential Ψpec from Eq.
(3.17), which is indeed continuous at the threshold r = R.

• The a3
t′ in the nominator serves the purpose of making R3 in the denomi-

nator co-moving, same as r3
t′ . To that end, one should use the correct time

variable: The integration variable t′ and not t.

• Without this change, we get very unrealistic results.

The quantity we seek, δν , is then found by integrating over six more dimensions:

δMν(< R, a) = mν

∫
Vc
d3r

∫ d3q
(2π)3 f1(q, r, a)

or, more suited to our purposes:

δν(< R, a) = 3mν

4πR3
PDρ̄ν

∫
Vc
d3r

∫ d3q
(2π)3 f1(q, r, a) (7.48)

(where Vc = 4
3π

R3
PD(a)
a3 = 4

3πR
3(a) is the co-moving volume of the sphere), all

of which is the result of combining Eq. (8) in [16] with Eq. (6.21). We now
introduce new, unitless integration variables:

dli ≡ Tν0dr
i r = l

Tν0
(7.49)

dki ≡ dqi

Tν0

q

Tν0
= k (7.50)

x′ ≡ ln
(
a′

ainit

)
a′ = exinit+x

′ (7.51)
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The reasoning for writing x′ in this form is that x′init = 0 as a result. In
practice, the ODE solver needs to take very small steps near the lower integration
limit for several of the variables. This is no problem whenever the value of such
an integration variable is very close to 0. If not, though, the new value after the
first step will be x′ = x′init + ∆x′ ≈ x′init when ∆x′ � x′init. To avoid this, we
will define our integration variables so they all have 0 as the lower limit. Then,
we may use Eq. (7.28) to substitute

dt′

a′
= dx′

a′Ha′
(7.52)

and we also get conveniently from Eqs. (7.49) and (7.50) that

d3r d3q = d3k d3l (7.53)

q̂ · r̂ = q · r
qr

= k · l
kl

= k̂ · l̂ (7.54)

Eq. (7.47) now becomes

α ≡ Tν0 (η − η′)
mνr

= T 2
ν0 (η − η′)
mνl

(7.55)

We further define

L ≡ Tν0R = Tν0

a
RDP (7.56)

which together with Eqs. (7.43) and (7.49) gives

RDP,a′

ra′
= a′Ra′

ra′
= Ra′

r
= La′

l

R ≡
R2
DP,a′

r2(a′)2 = L2
a′

l2
(7.57)

For the left hand side of the Heaviside function, the same substitutions give
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L ≡ 1 + q2

T 2
ν0
α2 − 2q

Tν0
αr̂ · q̂ = 1 + k2α2 − 2kαk̂ · l̂ (7.58)

so that we now have a completely unitless integrand:

f1 = 2mν

Tν0

∫ x−xinit

0

dx′

l2
T 2
ν0Ga′δMa′

a′Ha′

ek

(ek + 1)2

(
αk − k̂ · l̂

)

×
[
R−3/2Θ (L < R) + L−3/2Θ (L ≥ R)

]
(7.59)

where Ga′ = G in ΛCDM and Ga′ ≡ (GDGP (a′)/G) ·G in DGP gravity8.
By using Eq. (6.22) and exploiting that the total mass M for CDM + baryons

is conserved, we can write

T 2
ν0Ga′δMa′

a′Ha′
= T 2

ν0GM

a′Ha′

δcb(a′)
δcb(a′) + 1

GDGP (a′)
G

and we then move the time-independent unitless factor Tν0GM outside the
integral over x′ (where the factor Tν0 conveniently cancels with its like in the de-
nominator). For what remains inside the integral, we can define another unitless
quantity:

ξa′ ≡
Tν0

a′Ha′

δcb(a′)
δcb(a′) + 1

GDGP (a′)
G

(7.60)

After the overdensity has collapsed, in the limit δcb(a′)→∞, this becomes

ξa′ →
Tν0

a′Ha′

GDGP (a′)
G

(7.61)

which we will use after collapse to avoid numerical problems.
An integral over seven dimensions is time-consuming to calculate, so we will

see if we can simplify this somewhat. In spherical coordinates:

d3l = l2 sinφldl dθldφl d3k = k2 sinφkdk dθkdφk (7.62)

8since δMa′ follows the integration variable a′ its scaling factor, Ga′ , must do the same -
this is the only halo mass term in the equation.
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k̂ · l̂ = (cos θk cos θl + sin θk sin θl) sinφk sinφl + cosφk cosφl

From the latter, it is easy to see that if we choose coordinates so that l̂ points
directly along the z axis, φk becomes the total angle between l̂ and k̂ and we get

k̂ · l̂ = cosφk ≡ β − 1 β = cosφk + 1 (7.63)

which is unchanged by rotating k̂ around the z axis, so the dot product is
independent of θk as well. Note that analogously to x′ we have defined our new
variable β so that β = 0 at the lower integration limit. Note that this has nothing
whatsoever to do with the variable by the same name introduced in Eq. (6.33)
in the context of DGP gravity. With this definition, we have

dβ = dβ

dφk
dφk = − sinφkdφk (7.64)

The integrand is now completely independent of θl, φl and θk, but even though
we just saved ourselves from a lot of redundant work, we must still integrate over
these variables. Fortunately, we can do so analytically. For a generic function
g(k̂ · l̂):

∫ 2π

0
dθk

∫ 2π

0
dθl

∫ π

0
dφl sinφl

∫ π

0
dφk sinφkg(k̂ · l̂)

= −
∫ 2π

0
dθk

∫ 2π

0
dθl

∫ π

0
dφl sinφl

∫ 0

2
dβg(β − 1)

= 8π2
∫ 2

0
dβg(β − 1) (7.65)

Finally, we collect all the factors outside the x′ integral that do not depend
on integration variables (including the Tν0GM that we moved outside earlier) to
get an unitless9 outer factor:

δν(< R, a) = 3m2
νGM

2π2R3ρ̄ν

∫ kmax

0
dk
∫ 2

0
dβ
∫ L(a)

0
dl
∫ x−xinit

0
dx′ I(k, l, β, x′, a) (7.66)

9Not surprising, as δν itself is unitless.
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Figure 7.7: Examples of integrating Eq. (7.66) up to various values of
kmax, demonstrating that the integral does reach an asymptote before k = 15
in each case. In each case, the figure to the left is the integral evaluated at
a = 5.54·10−3, and the figure to the right is evaluated at a = 1. All simulations
targeted collapse just slightly later than today.

where kmax = 15 is where we no longer have any significant contribution from
extending the integral over k (see fig. 7.7).

We may of course also combine Eqs. (6.21) and (7.66) to find δMν directly if
we wish:

δMν = 2m2
νGM

π

∫ kmax

0
dk
∫ 2

0
dβ
∫ L(a)

0
dl
∫ x−xinit

0
dx′ I(k, l, β, x′, a) (7.67)

Our unitless integrand, with contributions from the surface elements in Eq.
(7.62) and a factor Tν0GM moved outside, is then
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I(k, l, β, a′, a) = ξa′
k2ek

(ek + 1)2 (αk − β + 1)

×
[
R−3/2Θ (L < R) + L−3/2Θ (L ≥ R)

]
(7.68)

where, to summarize,

L = 1 + kα [kα + 2 (1− β)] R = L2
a′

l2
α = T 2

ν0 (η − η′)
mνl

(7.69)

There is a case where R has a singularity: l = 0 results in R−3/2 = 0, which
in itself is not an issue. However, it also causes the αk term to explode. In this
case, we need to check the limit:

lim
l→0

αkR−3/2 = lim
l→0

Tν0 (η − η′) kl2
µνL3

a′
= 0

whenever L3
a′ 6= 0. However, in the case that L3

a′ = 0, the entire integral over
l becomes zero anyway, since the integration limits then coincide. The net result
is easy to check for in the code:

l = 0 ⇒ I(k, l, β, a′, a) = 0 (7.70)

7.5 Overview of the code
This is a brief summary of how the code implements the algorithms presented in
this chapter. The code is written in Python 2, chosen for its large number of pub-
licly available libraries and plotting tools. To be sure, this incurs a performance
penalty compared to Fortran, for example, but the simulations turned out to be
quick enough in practice that there was no need to write performance-critical
code in another language.

• First, parameter sets (DGP, ΛCDM) and grids (halo masses, neutrino
masses, redshift) are set up (in natural units).

• Then, one calculates the density and pressure of unperturbed massive neu-
trinos as in section 7.1, performing cubic spline interpolation on the result-
ing grids and saving the results to file to improve performance.
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• With these results, giving access to Ων(a), one adjusts the other parameters
to ensure the universe is flat (section 7.2.1), and calculates the background
densities with Eq. (2.37), with the exception of radiation, which uses Eq.
(3.13). One then solves the appropriate Friedmann equation (2.42) or (5.10)
to find H(a).

• One then passes the adjusted cosmological parameters to CAMB, which is
run once per neutrino mass (these results are saved to file, so this need not
be repeated every run).

• Collecting the results from CAMB, one has the means to calculate δ̇cb,init
for any choice of δcb,init (section 7.2)

• The code then calculates η(a)10 and t(a), again splining the results. The
latter is used mostly for plotting and ensuring the universes in DGP and
ΛCDM have the same age.

• One then solves the differential equations in section 7.3 without neutrino
clustering. If one wants to target collapse today, this collapse is simulated
on a grid of δcb,init values where collapse redshift is recorded. Using spline
interpolation, one then picks the correct δcb,init for each set of parameters.
One may also set a predetermined δcb,init for all simulations to better be
able to compare them.

• Once all the results needed to calculate clustering are in place, we set up
a coarse clustering grid, as this calculation is time intensive. On this grid,
we calculate clustering as in section 7.4 and spline the results.

• Using the splined clustering results, the spherical collapse code is run again
to include neutrino clustering.

• Plot data from all the simulations are saved to file, so that the code only
runs the simulations that are not already on file. This way it is a quick
process to re-run a simulation and display more plots than one wished to
see the first time.

10The parameter from [16], not conformal time.
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Chapter 8

Results

Albert grunted. ”Do you know what happens to lads who ask too
many questions?”

Mort thought for a moment. ”No,” he said eventually, ”what?”
There was silence.
Albert straightened up. ”Damned if I know. Probably they get

answers, and serve ’em right.”
— Terry Pratchett, Mort

In this chapter I present the results of the numerical simulations described in the
preceding pages.

The first task the code was put to, was to compare the ΛCDM and s-DGP
models in such a way that the background evolved similarly for both models.
The process of ensuring similarly evolving backgrounds can be summarized as
follows:

• Keep the ΛCDM model constant.

• Adjust Ωc0 and Ωb0 for the DGP model so that these agree with the ΛCDM
model today.

• Adjust the Hubble parameter H0 and the GR scale rc for the DGP model
until the age of the universe is the same in both models: t(a0)ΛCDM =
t(a0)DGP.

• There are many combinations of H0 and rc that can do the above, and
there is a degeneracy at work in this regard: Increasing H0 and increasing
rc both make the universe younger. Several combinations of the two were
investigated until one was found that overlaps nicely with ΛCDM using
the Planck parameters, see fig. 8.1 and 8.2. Note that the shapes of the
curves are not completely identical - this difference mainly stems from the

91
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Parameter ΛCDM DGP DGP (alternate)
h 67.74 · 10−2 64.00 · 10−2 70.00 · 10−2

Ωb0h
2 2.230 · 10−2 2.498 · 10−2 2.088 · 10−2

Ωc0h
2 1.188 · 10−1 1.331 · 10−1 1.112 · 10−1

ΩΛ0 0.6911 0 0
rc ∞ 6717 Mpc 5500 Mpc
τ 0.066 0.066 0.066
ns 0.9667 0.9667 0.9667
As 2.142 · 10−9 2.142 · 10−9 2.142 · 10−9

Table 8.1: Cosmological parameters. ΛCDM values picked from the
“TT,TE,EE+lowP+lensing+ext” data set in [6]. DGP values adjusted by
hand (see fig. 8.1 and 8.16).

Friedmann equations, and tinkering with parameters can only get you so
far1.

• The input to CAMB2 (in order to get the initial conditions) were kept
identical except for the above.

This resulted in the set of parameters shown in table 8.1 (before adjusting
Ωc0 to account for massive neutrinos):

τ is the optical depth at reionization, ns is the scalar spectral index, and As
is the scalar amplitude. We refer to [5] for an explanation of these quantities.
These inputs were only used for CAMB to get the initial conditions.

Onto this background, spherical collapse simulations were run for the same
initial overdensity3. For each combination of halo mass and neutrino mass inves-
tigated, the following simulations took place:

• ΛCDM without neutrino clustering

• ΛCDM with neutrino clustering

• DGP gravity without neutrino clustering

• DGP gravity with neutrino clustering
1 This is a subtle, but important point: Even though the scale factor itself evolves similarly

in both cosmologies given our choice of parameters, the individual background densities of each
component are not necessarily equal, as can be seen in fig. 8.2. This is due to the differences
in the Friedmann equations

2Such as τ , ns and other CMB-related properties, see table 8.1.
3Set so that the slowest collapse scenario, DGP gravity with maximal total neutrino mass

mν = 1.2 eV and minimum halo mass Mcb = 1010 M�, collapses today at a = a0. The other
simulations then collapse earlier.
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Figure 8.1: Background evolution: Scale factor plotted against time using
Planck parameters, with the exception of DGP parameters set to h = 64.0,
rc = 6717 Mpc. Note that the neutrino mass has a very slight effect on the
evolution of the scale factor.

• DGP gravity without neutrino clustering, without the effect of the modified
gravitational constant (GDGP (a) = G at all times)

• DGP gravity with neutrino clustering, without the effect of the modified
gravitational constant

The latter two cases were studied to see the effect of GDGP on the mass perturba-
tions δMcb and δMν , compared to the effect of the background densities evolving
differently.

The resulting plots of radii revealed that the major source of differences in
spherical collapse stems from differences in the background densities and in the
collapse equations (7.35) and (7.36) themselves. Even for large neutrino and halo
masses, the effective gravitational constant GDGP (a) (plotted in fig. 8.4) turned
out to be the lesser contributor to differences in collapse time, as fig. 8.3 suggests.

For low halo masses, however, the effect of clustering is all but absent, even for
very heavy neutrinos (see fig. 8.5 and 8.6). As before, the background evolution
has the greatest influence on collapse, with some additional contribution from
the effective gravitational constant.

As mentioned in chapter 4, cosmological bounds on the sum of neutrino masses
are close to 0.1 eV. We will now compare a universe with this neutrino mass to
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Figure 8.2: Comparison of components in ΛCDM and DGP cosmologies for
mν = 1.2 eV. Note that 2

√
Ωrc = ρ̄rc/ρcrit is plotted instead of Ωrc since the

way the latter is defined would make the sum of components ΣΩ different from
1.
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Figure 8.3: Spherical collapse in ΛCDM and DGP gravity: The latter first
with invariant G = GN at all times, then with proper GDGP calculated by
Eq. (6.32). All simulations start at identical δcb,init = 1.7157 · 10−2 so that
only the slowest collapse occurs today. Each simulation is plotted with and
without neutrino clustering - in all cases, the curve with neutrino clustering is
the one that collapses first.

Figure 8.4: Ratio between the gravitational constants in DGP gravity and
ΛCDM, GDGP (t)/G, plotted throughout the collapse, with (blue) and without
(green) neutrino clustering.
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Figure 8.5: As fig. 8.3, with a lower halo mass.

Figure 8.6: As fig. 8.4, with a lower halo mass.
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Figure 8.7: Comparison of ΛCDM and DGP gravity with massless neutrinos
and a neutrino mass of mν = 0.1 eV, with and without clustering. Massive
neutrino DGP gravity targets collapse today, giving δcb,init = 0.01317, which
was then used as input for all the simulations. Clustering has no visible impact
here, only choice of cosmology.

a universe with massless neutrinos for both ΛCDM and DGP4 for the maximal
halo mass under consideration (M = 1015Msun). As we see in figures 8.7 to
8.10, the clustering effects are vanishingly small with such a small neutrino mass.
More importantly, there is no confusing the two cosmologies in these cases -
DGP gravity results in larger radii and later collapse times. Furthermore, in
both cosmologies, the effect of heavier neutrinos delaying collapse can be clearly
seen.

One may then ask, how massive need the neutrinos be in ΛCDM before the
collapse starts to look like massless DGP gravity? As figures 8.11 to 8.14 show,
increasing the neutrino mass to mν = 0.8 eV allows massless neutrino DGP grav-
ity to be confused with ΛCDM. The figure also reveals another interesting detail:
When ΛCDM (without clustering) and massless neutrino DGP halos collapse at
the same time, the DGP halo reaches a lower maximal radius. Not unexpectedly,
the effects of clustering are even more pronounced with later (slower) collapse.

If we increase the neutrino mass by 0.3 eV in both cosmologies5, we see in
figure 8.15 that an increase in total neutrino mass of 0.8 eV is still required

4Even though said bounds assume ΛCDM.
5Thus avoiding the problem with mass degeneracies below this limit, as discussed in chapter

4.
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Figure 8.8: Comparison of overdensity δcb(1 + z) for each cosmology with
massless neutrinos (δcb,init = 0.01317) as in fig. 8.7.

Figure 8.9: As fig. 8.8 with a neutrino mass of mν = 0.1 eV. Both cluster-
ing and non-clustering collapse is plotted. δν(1 + z) is plotted for clustering
simulations.
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Figure 8.10: Neutrino mass perturbations δMν(t) for the neutrino overden-
sities in fig. 8.8 (clustering only).

Figure 8.11: As figure 8.7, with more massive neutrinos and δcb,init = 0.1563.
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Figure 8.12: Overdensities with a neutrino mass of mν = 0.8 eV.

Figure 8.13: Mass perturbations (CDM+baryons and, if clustering, total)
for mν = 0.8 eV.
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Figure 8.14: Neutrino mass perturbations (clustering only) for mν = 0.8 eV.

for ΛCDM to look like DGP. However, now this only applies without neutrino
clustering. With neutrino clustering, we may still tell the cosmologies apart.

However, it turns out that another parameter combination of h and rc in DGP
gravity changes the result. We call this parameter set ”DGP (alternate)” in table
8.1. In figures 8.16 and 8.17, we see that although the backgrounds still evolve
similarly, the result is markedly different from fig. 8.11: We can now tell the two
cosmologies apart (DGP collapses later than ΛCDM). Hence, the neutrino mass
required to make the cosmologies indistinguishable is in this case even larger - we
need a sum of neutrino masses greater than 0.8 eV to make the two look similar
in this case.

With these results in hand, we conclude that DGP and ΛCDM cosmologies
whose scale factors overlap from zinit = 200 until today will result in very dif-
ferent spherical collapse scenarios (a much larger difference than the effect of
neutrino clustering). We observe the degeneracy between massive neutrinos and
modified gravity, but note that the neutrinos need to be very massive to mask
the choice of cosmological model completely, to the point that we go well above
the current cosmological upper limits for the sum of neutrino masses. That said,
as we discussed in chapter 4, we should take care not to put too much faith in
cosmological constraints on neutrino masses.

The difference in total neutrino mass required to make one cosmology look
like the other seems to be the same even when both cosmologies have massive
neutrinos. However, this difference is clearly dependent on our choice of pa-
rameters in DGP gravity (the combination h and rc), and so, even though the
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Figure 8.15: As figure 8.11, with massive neutrinos in both cosmologies, and
a corresponding δcb,init = 0.01692.

Figure 8.16: As fig. 8.1, with DGP parameters h = 70.0 and rc = 5500 Mpc.
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Figure 8.17: As fig. 8.11, with DGP parameters h = 70.0, rc = 5500 Mpc
and δcb,init = 0.01721. This corresponds to the slowest simulation collapsing
today, as in fig. 8.11.

difference appears large, it is possible that one might make it arbitrarily small
simply by picking the right parameter set.





Chapter 9

Discussion

“I make mistakes like the next man. In fact, being–forgive me–
rather cleverer than most men, my mistakes tend to be correspondingly
huger.”

— J.K. Rowling, Harry Potter and the Half-Blood Prince

In this chapter, I discuss my results and try to pinpoint how trustworthy they
are.

9.1 Approximations and assumptions
For convenience, we here list the assumptions and approximations used in this
work:

• Spherical collapse is a crude model of structure formation, and should only
be considered a first step on the way toward more accurate simulations.
The price we pay for simplicity is that we sacrifice realism and accuracy.
Furthermore, in DGP gravity there is no Birkhoff-like cancellation for non-
top-hat profiles.

• For clustering, we use the linearized Boltzmann equation (BKT approxima-
tion), instead of the full solution in [17]. This should be all right as CDM
and baryons dominate the spherical collapse at late times, even though it
will underestimate the number of neutrinos whose trajectories are signifi-
cantly altered by the overdensity, especially bound neutrinos.

• We use one massive neutrino, equivalent to three degenerate ones, even
below 0.3 eV (0.1 eV per neutrino species) where the masses cannot be
assumed to be degenerate.

• DGP gravity is shown (section 5.3) to be incompatible with observations.
Hence, our parameter choices to get a ΛCDM-like evolution of the scale
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factor for a ≤ a0 are most likely excluded by said observations as well. The
large difference between the two cosmologies is therefore not guaranteed to
be reproducible in more realistic modified theories of gravity. They could,
in fact, be the result of our parameter choices, and it should be looked
into whether we can achieve different results for spherical collapse with
another combination of parameters that still make the scale factors in the
two cosmologies evolve similarly.

• We assume the clustering neutrinos to be entirely nonrelativistic, with
ων,eff = 0 even though ων,eff < 1/4 would be sufficient.

• We assume the background universe to be perfectly flat.

• We use ΛCDM in CAMB to get the initial conditions for DGP gravity
as well, under the assumption that the cosmologies evolve similarly for
a < ainit. We do, however, use change the parameters to match our DGP
gravity parameters (else y′init for both cosmologies would look identical in
fig. 7.6).

• In ΛCDM we adjust ΩΛ0 to keep the universe flat. In DGP gravity, we
adjust Ωc0 to achieve the same thing so we are free to adjust Ωrc0 as a free
parameter. We therefore assume that how we achieve flatness is relatively
unimportant, given the small corrections that are involved (Ων0 is still sub-
tracted from the observed Ωc0 in both cosmologies). The impact of this
assumption increases for higher neutrino masses, however.

9.2 Comparison with the results in [16]
It proved difficult to reproduce the results in LoVerde’s article exactly. For
starters, an attempt to reproduce fig. 2 (a) in that work (with the same ini-
tial conditions, possibly excluding background cosmology parameters) resulted
in fig. 9.1, where one notes that although the turnaround radius and time of
collapse for the heaviest neutrinos (with a sum of 1.2 eV) is the same as in [16],
the other neutrino masses (and the massless case) collapse too early and have
slightly smaller turnaround radii. So we cannot claim to have reproduced this
result exactly, even though these results are of the same order of magnitude. An
important difference to note is that we have not simulated two massless neutrinos
alongside the one massive neutrino, as LoVerde has done.

More worrying is our attempt to reproduce the right amount of clustering
in fig. 2 (b) in the same article. Using 3 massive neutrinos, each with a mass
of 0.4 eV (equivalent to a total mass of mν = 1.2 eV in our simulations), we get
significantly more clustering and a somewhat earlier collapse in fig. 9.2 compared
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Figure 9.1: Equivalent to fig. 2 (a) in [16], with the same initial overdensity
δcb,init = 1.377 · 10−2 and halo mass M = 1014M�. Our simulation is run
without two massless neutrinos.

to the article. Once again, we are not orders of magnitude off, but the difference
is clearly noticeable.

Attempting to reproduce figure 1 in [16], showing plots for the overdensities
δcb and δν (fig. 9.3), as well as the mass perturbation δMν (fig. 9.4), reveals
that the clustering effects on the collapse are caused by an amount of massive
neutrinos that is far less than is the case in article. A by-eye reading of the
plots at the turnaround point puts our result at δν ≈ 5 · 10−4, whereas figure 1
(b) in LoVerde’s article gets δν ≈ 0.25, which is 500 times higher. Nonetheless,
we achieve a slightly greater impact of clustering neutrinos in the output. It
stands to reason that with neutrino overdensities such as in fig. 9.3, we would
see a dramatic decrease in collapse time in our simulations: We have a maximal
δMν,max ≈ 2.8 · 109M�, whereas the article gets δMν,max ≈ 1.5 · 1013M� - more
than 5000 times higher.

This suggests that there are in fact two problems, either in the code used for
this thesis or in that of [16]. First and foremost, the simulations clearly do not
agree on how sensitive the collapse is to clustering neutrinos. Nonetheless, the
collapse scenarios produced are much more similar than the overdensities and
mass perturbations suggest they should be. Hence, the natural conclusion is that
the work that gets the impact of clustering wrong also calculates an incorrect
amount of clustering. It seems unlikely that both works get these two things
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Figure 9.2: Equivalent to fig. 2 (b) in [16], with the same initial overdensity
δcb,init = 1.377 · 10−2 and halo mass M = 1014M�. Our simulation is run
without two massless neutrinos. The green plot is with neutrino clustering in
the halo, the blue is without.

Figure 9.3: Equivalent to fig. 1 (b) in [16], with zcollapse = 0.0 for the
non-clustering simulation.
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Figure 9.4: Equivalent to fig. 1 (a) in [16], with zcollapse = 0.0 without
clustering.

exactly right.
It is also possible that the code used to extract the information in the figures

9.3 and 9.4 is not correct, whereas the final impact on collapse time is. Seeing as
δν is used explicitly to calculate y(x) when clustering is switched on, however, this
seems unlikely. And even if this were the case, we are still left with a discrepancy
in fig. 9.2, in that we achieve the same amount of clustering with one neutrino
species of mass mν = 0.4 that [16] seems to achieve with three.

At first glance, mass perturbations as small as in fig. 9.4 seem unlikely to
have a significant effect on the collapse time. From Eq. (7.9) we have that

δcb = ρcb
ρ̄cb
− 1 = 1

ρ̄cb

Mcb
4
3πR

3 − 1 = 3Mcb

4πρ̄cbR3 − 1 (9.1)

However, in ΛCDM, according to Eq. (6.25), the clustering (cl) and non-
clustering (ncl) differential equations can differ only by a neutrino mass pertur-
bation term

R̈cl − R̈ncl = −4πG
3 δν ρ̄νR = −4πG

3 δρνR = −4πG
3

3δMν

4πR3R = −GδMν

R2 (9.2)

In fig. 9.5, we have plotted the CDM+baryon and massive neutrino terms
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Figure 9.5: Contribution of the different terms in Eq. (6.25) for the collapse
in figs. 9.3 and 9.4, including also the no-clustering version.

on the right hand side of Eq. (7.35) to see how much the clustering and non-
clustering terms contribute. For CDM+baryons, the non-clustering (background)
term dominates early on, but is then completely overtaken by the clustering
term as we approach collapse. This happens both with and without neutrino
clustering, but at a later stage in the latter case. We can also see how the
background CDM+baryon terms dominate initially, only to be overtaken by the
collapse of Mcb later on.

Are the clustering neutrinos really responsible for this behaviour? Zooming
in on their contributions (fig. 9.6), we see that they in fact contribute much
less than the difference between the sum of terms in the two simulations (in fig.
9.5). Thus they cannot directly explain the difference. Indirectly, however, it
is conceivable that even this minuscule effect will change the radius noticeably.
Since δcb ∝ R−3, a slightly smaller radius will lead to a higher δcb, which in the
next step affects the radius even more, causing the simulations to differ visibly
after enough steps. δcb is definitely the primary driver of the collapse throughout.
However, with the δν term being the only difference between the clustering and
non-clustering simulations, we must conclude that its effect on the radius is what
causes δcb to evolve differently.

The question then becomes: Is the differential equation sensitive enough that
a neutrino mass perturbation as small as the one in fig. 9.4 can have such a
noticeable effect on collapse time? We certainly do not see such an instability in
the plots of [16], and it would be premature to rule out a numerical problem in
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Figure 9.6: Contribution of the clustering neutrino terms (enlarged version
of the top part of fig. 9.5).

the code. Further testing is necessary to determine whether this result is in fact
incorrect, and if so, why.

A redeeming feature, however, is that the final impact of clustering on the
radius R is not very far from what we would expect, even if the effect is a little
more pronounced. For a realistic sum of neutrino masses in the neighbourhood
of mν = 0.1 eV, clustering is hardly present at all, which is indeed consistent
with [16]. Thus, even though it is disheartening to be unable to reproduce these
results, we are unlikely to jump to wrong conclusions regarding the impact of
clustering for small neutrino masses.

There remains, however, the question of being unable to reproduce the non-
clustering scenario (fig. 9.1) exactly. Whereas the cosmological parameters lead-
ing to this plot’s counterpart in [16] are unknown, they are unlikely to be very
different from the Planck parameters. Can we then trust our conclusions regard-
ing DGP gravity? It is somewhat comforting that the heaviest neutrino result in
this figure agrees, but a little worrisome that the lighter ones do not match, even
though they are the correct order of magnitude. We are thus forced to conclude
that more investigation is necessary to uncover why we were unable to reproduce
these results as well.





Chapter 10

Conclusions and future prospects

“It’s the questions we can’t answer that teach us the most. They
teach us how to think. If you give a man an answer, all he gains
is a little fact. But give him a question and he’ll look for his own
answers.”

— Patrick Rothfuss, The Wise Man’s Fear

In this final chapter, we look at what’s next, for this model, its successors and
observations. Here we assume that the model has been thoroughly tested and
corrected where necessary.

10.1 Conclusions
Based on the findings in chapter 8, it may seem tempting to claim that at least
in DGP gravity, we expect to see a large impact of the cosmological model on
halo abundance, given that DGP halos collapse significantly later unless we are
dealing with neutrinos almost 8 times heavier than the cosmological upper bound.
However, we caution that DGP gravity is not consistent with observations, and it
remains to be seen whether more realistic models of modified gravity will be able
to reproduce the results. What is clear is that our choice of DGP parameters
(the combination of h and rc, especially) had a noticeable impact on collapse
time in that cosmology, which is an interesting result in itself. Investigating
a broader range of possible parameter combinations and their implications for
spherical collapse seems worthwhile. Specifically, how small the difference in
neutrino masses can get while still making the two cosmologies produce similar
collapse scenarios. This could lead us closer to the expected degeneracy between
massive neutrinos and modified gravity mentioned in chapter 1.

In any event, the inconsistencies with the results presented here and those
of [16] needs to be cleared up before the results presented here can be trusted.
Discovering why the non-clustering simulations do not agree on the collapse times
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for lighter neutrinos should be the priority here. The clustering results should
also be looked into, but since both works conclude that the impact is very small
for realistic neutrino masses, the conclusion does not appear to stand or fall on
this point alone. It is at best a small correction to the results, and we should
keep in mind that spherical collapse is not precision cosmology on the best of
days.

Nevertheless, we have shown how the approaches in [16] and [29] may be
combined for collapse scenarios that obey Birkhoff’s theorem. This applies even
if we include neutrino clustering, where we have shown how to implement the
approach outlined in [16] numerically.

10.2 Building upon and refining this methodol-
ogy

The obvious next step is to include virialization in addition to collapse, to inves-
tigate at what radii the halos virialize. While the methods outlines in chapter 6
do not include massive neutrinos, one should investigate whether it is prudent to
include them in the mass terms of Eqs. (6.28) and (6.38), especially the clustering
ones.

Multiple (non-degenerate) neutrino species is another aspect of the simula-
tions that need fleshing out. Being able to accurately model three non-degenerate
neutrino masses whose sum is less than 0.3 eV would add realism to the model.
This could lead to some corrections early in the collapse process, where the light-
est neutrino species may be close to relativistic, and investigating how sensitive
the collapse time and radii are to this change would be interesting. While it seems
unlikely that one could distinguish between the normal and inverted hierarchy
from halo observations (who at best are expected to help constrain the sum of
neutrino masses[2]), it could be instructive to see how the model responds to a
change in hierarchy when the sum of neutrino masses is small.

When it comes to clustering, we have calculated the potential for the massive
neutrinos using only the non-clustering solution. We have neglected that the
clustering neutrinos also change the potential. For heavy neutrinos, these correc-
tions could become important. The slow way to do this is to include clustering
calculations for every step of the collapse. This is slow because we would then
no longer run clustering on a coarse grid and then spline it (as in section 7.5),
but do the most time-intensive calculations on the full collapse grid.

A quicker way would be to simply run the clustering calculations more than
once on the coarse grid, each time using the previous result as input. As long
as the difference between non-clustering and clustering simulations are small,
this should converge fairly quickly to the point where additional runs produce
negligible changes.
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There is also the potential to integrate Press-Schechter formalism[43]. This is
the most important way one can link the results to observations of the abundance
of collapsed/virialized dark matter halos (i.e. galaxies). Some pieces of the
groundwork has already been done due to the way we extracted initial conditions
from the CAMB output in section 7.2.

Finally, extending the model beyond DGP gravity to modified theories of
gravity that do not obey Birkhoff’s theorem1 would be an interesting challenge.
One should take care not to overcomplicate the model so that its appealing rela-
tive simplicity is sacrificed, though - with added complexity, N-body simulations
become more attractive.

10.3 N-body simulations and the Euclid mission
And indeed, the simplicity of spherical collapse is also its greatest limitation:
Observed dark matter halos in general most certainly do not have top-hat profiles,
and there may be important physical effects hiding beyond spherical collapse. For
one thing, even a top-hat could accrete CDM and baryon mass from outside the
sphere, and sweep out an underdensity around it in the process, both of which
we have neglected in this thesis. To get accurate results on modified gravity and
massive neutrinos together, one needs to run computationally intensive N-body
simulations. These may even simulate more than a single overdensity at at time,
so that the effects of halos merging with one another can be seen. Such N-body
simulations already exist for some theories of modified gravity[1] - one can then
test the predictions we make here and see whether they still hold.

In such a scenario, where Birkhoff’s theorem is no longer required, one may
test other theories of modified gravity that unlike DGP gravity are consistent with
observations (see section 5.3). If some modified gravity theories are detectable
with massive neutrinos and some are not, we are getting closer to using halo
abundance to probe the underlying cosmology. As neutrino mass constrains from
other experiments become more accurate, it may be easier to determine what to
look for in the search for deviations from ΛCDM cosmology.

Finally, the Euclid mission[2] aims to map halos and their redshift (as well
as use weak gravitational lensing) to constrain the neutrino masses and look for
signs of modified gravity at the same time. N-body simulations such as described
above will be an invaluable tool in determining how well the instrument is able
to detect the cosmological properties of the model. In that regard, the simple
model of this thesis is but a modest first step.

1f(R) gravity is one example.





Bibliography

[1] M. Baldi, F. Villaescusa-Navarro, M. Viel, E. Puchwein, V. Springel, and
L. Moscardini. Cosmic degeneracies - I. Joint N-body simulations of modified
gravity and massive neutrinos. Mon. Not. Roy. Astron. Soc., 440:75–88, May
2014.

[2] L. Amendola, S. Appleby, D. Bacon, T. Baker, et al. Cosmology and fun-
damental physics with the Euclid satellite. Living Reviews in Relativity,
16:13–17, 2013. arXiv:1206.1225 [astro-ph.CO].

[3] G. Dvali, G. Gabadadze, and M. Porrati. 4D gravity on a brane in 5D
Minkowski space. Physics Letters B, 485:208–214, July 2000.

[4] Ø. Elgarøy. AST4220: Cosmology I. https://www.uio.no/studier/emner/
matnat/astro/AST4220/h09/course-material/lectures.pdf, 2009. Lecture
notes in AST 4220: Cosmology I (University of Oslo).

[5] S. Dodelson. Modern Cosmology. Academic Press, 2003.

[6] Planck Collaboration, P. A. R. Ade, N. Aghanim, M. Arnaud, M. Ashdown,
J. Aumont, C. Baccigalupi, A. J. Banday, R. B. Barreiro, J. G. Bartlett,
et al. Planck 2015 results. XIII. Cosmological parameters. ArXiv e-prints,
February 2015. 1502.01589.

[7] Y. Chen, B. Ratra, M. Biesiada, S. Li, and Z.-H. Zhu. Constraints on non-
flat cosmologies with massive neutrinos after Planck 2015. ArXiv e-prints,
March 2016. 1603.07115.

[8] T. M. Davis and C. H. Lineweaver. Expanding Confusion: Common Mis-
conceptions of Cosmological Horizons and the Superluminal Expansion of
the Universe. Proc. Astron. Soc. Austral., 21:97–109, 2004.

[9] Ø. Grøn. Lecture Notes on the General Theory of Relativity: From Newton’s
Attractive Gravity to the Repulsive Gravity of Vacuum Energy. Lecture Notes
in Physics. Springer New York, 2010.

117

https://www.uio.no/studier/emner/matnat/astro/AST4220/h09/course-material/lectures.pdf
https://www.uio.no/studier/emner/matnat/astro/AST4220/h09/course-material/lectures.pdf


118 Bibliography Chapter 10

[10] Joseph C. Kolecki. An introduction to tensors for students of physics
and engineering. http://www.grc.nasa.gov/WWW/k-12/Numbers/Math/
documents/Tensors TM2002211716.pdf.

[11] S. Reynaud, A. Lambrecht, C. Genet, and M.-T. Jaekel. Quantum vacuum
fluctuations. Academie des Sciences Paris Comptes Rendus Serie Physique
Astrophysique, 2:1287–1298, 2001.

[12] H. Li and J.-Q. Xia. Testing Dvali-Gabadadze-Porrati gravity with Planck.
Physics Letters B, 726:549–553, November 2013.

[13] Julien Lesgourgues and Sergio Pastor. Massive neutrinos and cosmology.
Phys. Rept., 429:307–379, 2006.

[14] D. J. Fixsen. The Temperature of the Cosmic Microwave Background. The
Astrophysical Journal, 707:916–920, December 2009.

[15] L. Bergström and A. Goobar. Cosmology and Particle Astrophysics. Springer
Praxis Books. Springer Berlin Heidelberg, 2006.

[16] Marilena LoVerde. Spherical collapse in νΛCDM. Phys. Rev. D, 90:083518,
Oct 2014.

[17] Marilena LoVerde and Matias Zaldarriaga. Neutrino clustering around
spherical dark matter halos. Phys. Rev., D89(6):063502, 2014.

[18] Robert H. Brandenberger, Nick Kaiser, and N. Turok. Dissipationless Clus-
tering of Neutrinos Around a Cosmic String Loop. Phys. Rev., D36:2242,
1987.

[19] S. Eidelman, K.G. Hayes, K.A. Olive, et al. Review of Particle Physics.
Physics Letters B, 592:1+, 2004.

[20] M. Maltoni and A. Y. Smirnov. Solar neutrinos and neutrino physics. ArXiv
e-prints, July 2015. 1507.05287.

[21] R.N. Mohapatra and P.B. Pal. Massive Neutrinos in Physics and Astro-
physics. Lecture Notes in Physics Series. World Scientific, 2004.

[22] K. A. Olive et al. Review of Particle Physics. Chin. Phys., C38:090001,
(2014) and 2015 update.

[23] Rohit Verma. Lower bound on neutrino mass and possible CP violation in
neutrino oscillations. Phys. Rev., D88:111301, 2013.

[24] A. J. Cuesta, V. Niro, and L. Verde. Neutrino mass limits: Robust infor-
mation from the power spectrum of galaxy surveys. Physics of the Dark
Universe, 13:77–86, September 2016.

http://www.grc.nasa.gov/WWW/k-12/Numbers/Math/documents/Tensors_TM2002211716.pdf
http://www.grc.nasa.gov/WWW/k-12/Numbers/Math/documents/Tensors_TM2002211716.pdf


Section 10.3 Bibliography 119

[25] YONG-YEON KEUM. Neutrino mass bounds from neutrinoless double
beta-decays and cosmological probes. Pramana, 86(2):437–451, 2016.

[26] Edward W. Kolb and Michael S. Turner. The Early Universe. Front. Phys.,
69:1–547, 1990.

[27] Gianpiero Mangano, Gennaro Miele, Sergio Pastor, Teguayco Pinto, Ofelia
Pisanti, and Pasquale D. Serpico. Relic neutrino decoupling including flavor
oscillations. Nucl. Phys., B729:221–234, 2005.

[28] Antony Lewis. CAMB Notes. http://cosmologist.info/notes/CAMB.pdf.

[29] Fabian Schmidt, Wayne Hu, and Marcos Lima. Spherical collapse and the
halo model in braneworld gravity. Phys. Rev. D, 81:063005, Mar 2010.

[30] G. Dvali and M. S. Turner. Dark Energy as a Modification of the Friedmann
Equation. ArXiv Astrophysics e-prints, January 2003. astro-ph/0301510.

[31] W. Fang, S. Wang, W. Hu, Z. Haiman, L. Hui, and M. May. Challenges
to the DGP model from horizon-scale growth and geometry. Phys. Rev. D,
78(10):103509, November 2008.

[32] K. Koyama. TOPICAL REVIEW: Ghosts in the self-accelerating universe.
Classical and Quantum Gravity, 24:R231–R253, December 2007.

[33] Kiyotomo Ichiki and Masahiro Takada. Impact of massive neutrinos on the
abundance of massive clusters. Phys. Rev. D, 85:063521, Mar 2012.

[34] N. Voje Johansen and F. Ravndal. On the discovery of Birkhoff’s theorem.
ArXiv Physics e-prints, August 2005. physics/0508163.

[35] M. Kopp, S. A. Appleby, I. Achitouv, and J. Weller. Spherical collapse and
halo mass function in f(R) theories. Phys. Rev. D, 88(8):084015, October
2013.

[36] S. Carroll. Spacetime and Geometry: An Introduction to General Relativity.
Always learning. Pearson Education, Limited, 2013.

[37] S. Weinberg. Cosmology. Cosmology. OUP Oxford, 2008.

[38] L. Amendola and S. Tsujikawa. Dark Energy: Theory and Observations.
Cambridge University Press, 2010.

[39] Ø. Elgarøy. The spherical collapse model. https://www.uio.no/
studier/emner/matnat/astro/AST4320/h12/undervisningsmateriale/
spherecollapse.pdf, 2012. Lecture notes in AST 4320: Cosmology and
Extragalactic astronomy (University of Oslo).

http://cosmologist.info/notes/CAMB.pdf
https://www.uio.no/studier/emner/matnat/astro/AST4320/h12/undervisningsmateriale/spherecollapse.pdf
https://www.uio.no/studier/emner/matnat/astro/AST4320/h12/undervisningsmateriale/spherecollapse.pdf
https://www.uio.no/studier/emner/matnat/astro/AST4320/h12/undervisningsmateriale/spherecollapse.pdf


120 Bibliography Chapter 10

[40] S. Meyer, F. Pace, and M. Bartelmann. Relativistic virialization in the
spherical collapse model for Einstein-de Sitter and ΛCDM cosmologies. Phys.
Rev. D, 86(10):103002, November 2012.

[41] E. Babichev and C. Deffayet. An introduction to the Vainshtein mechanism.
Classical and Quantum Gravity, 30(18):184001, September 2013.

[42] John Burkardt. Odepack: Ordinary differential equation solvers. https://
people.sc.fsu.edu/∼jburkardt/f77 src/odepack/odepack.html, 2012. Online
resource.

[43] Ø. Elgarøy. The Press-Schechter mass function. https://www.uio.
no/studier/emner/matnat/astro/AST4320/h12/undervisningsmateriale/
psmassfunction.pdf, 2012. Lecture notes in AST 4320: Cosmology and
Extragalactic Astronomy (University of Oslo).

https://people.sc.fsu.edu/~jburkardt/f77_src/odepack/odepack.html
https://people.sc.fsu.edu/~jburkardt/f77_src/odepack/odepack.html
https://www.uio.no/studier/emner/matnat/astro/AST4320/h12/undervisningsmateriale/psmassfunction.pdf
https://www.uio.no/studier/emner/matnat/astro/AST4320/h12/undervisningsmateriale/psmassfunction.pdf
https://www.uio.no/studier/emner/matnat/astro/AST4320/h12/undervisningsmateriale/psmassfunction.pdf

	Abstract
	Preface
	Acknowledgements
	Table of Contents
	List of Figures
	Introduction
	Notation and conventions
	Symbols with multiple uses

	I Theory
	Cosmological Background
	The Cosmological Principle
	The Friedmann-Robertson-Walker Line Element
	A note about units
	Proper distance

	Conformal time
	Cosmological redshift
	The Friedmann equations
	The second Friedmann equation
	Equation of state
	Relativistic components
	Evolution of density components

	Matter and radiation components
	Dust (=0)
	Radiation (=1/3)
	Massive neutrinos (=(t)_(t))
	Vacuum energy (=-1)

	Critical density and density parameters
	Model cosmologies
	Flat universe with one dominant component
	The standard model of Big Bang cosmology (CDM)
	Extended standard model with massive neutrinos
	Closed matter-dominated universe (Spherical collapse)

	Cosmological scales

	The Boltzmann equation
	The distribution function
	0th order: Equilibrium

	Temperatures
	Multi-component universe
	Decoupling
	Electron-positron annihilation

	Perturbations
	Massive neutrinos around a spherical overdensity


	Massive neutrinos
	Why neutrinos have mass
	Degenerate neutrino mass eigenstates
	Massive neutrinos and cosmology
	Neutrino temperature and decoupling
	Effective number of neutrinos

	Neutrino mass eigenstates

	DGP gravity
	sDGP gravity
	Extension: Radiation and massive neutrinos
	Criticisms

	Spherical collapse models
	Einstein-de Sitter background
	Turnaround and virialization

	CDM with massive neutrinos
	Virialization

	DGP gravity
	Virialization in DGP gravity



	II Algorithms
	Algorithms
	Unperturbed neutrino distributions
	Units

	Initial conditions
	Ensuring flatness

	Collapse without neutrino clustering
	Modified gravity solution
	Choice of y'init

	Neutrino clustering inside the top-hat
	Overview of the code


	III Results
	Results
	Discussion
	Approximations and assumptions
	Comparison with the results in LoVerde

	Conclusions and future prospects
	Conclusions
	Building upon and refining this methodology
	N-body simulations and the Euclid mission

	Bibliography


