When a circle group S^1 is acting continuously on a paracompact topological space X, an important invariant of the group action is the equivariant cohomology ring $H^*_S(X; k)$ where k is a field of arbitrary characteristic. This cohomology ring is the cohomology of the space X_{S^1} which is the total space of the Borel fibering ([1,3])

$$X \to X_{S^1} \to B_{S^1}.$$

The spectral sequence E_r, $1 \leq r \leq \infty$, of this fibering is such that E_∞ is the sum of subquotients

$$F^q/F^{q-1} \simeq E^{pq}_\infty, q \geq 0,$$

where $F^{q-1} \subset F^q \subset H^*_S(X; k)$ is a filtration of the module $H^*_S(X; k)$ over $k[t] = H^*(B_{S^1}; k)$ where t is a generator of $H^2(B_{S^1}; k)$.

We now state the result of this paper. We assume that

$$\dim_k H^q(X; k) < \infty \text{ for } q \geq 0.$$

Theorem.

As graded modules over the polynomial ring $k[t]$ the cohomology module $H^*_S(X; k)$ is isomorphic to the module E_∞ of the spectral sequence.

When $Y \subseteq X$ is a closed invariant subspace, the corresponding statement on $H^*_S(X, Y; k)$ is equally valid.

The case of $H^1_S(X, Y; k)$ is similar to the case of $H^*_S(X; k)$ and we focus on the latter.

The localization theorem for equivariant cohomology will not be used in this paper. Hence the field k may be of any characteristic.

We will define a mapping of sets

$$E : H^*_S(X; k) \to E_\infty$$

which is not a module homomorphism. We define $E(0) = 0$ and if

$$x \in F^q, x \not\in F^{q-1}, q \geq 0,$$

then $E(x)$ is the image of x by the module homomorphism

$$F^q \to F^q/F^{q-1} \cong E^{pq}_\infty$$

associated to the spectral sequence. Each E^{pq}_∞ lies in the image of E and $E(x) \neq 0$ for $x \neq 0$, but E is not injective. The mapping E has the following four properties where x_j are homogeneous elements of $H^*_S(X; k)$.

1. If $E(x_1)E(x_2) \neq 0$, then $E(x_1x_2) = E(x_1)E(x_2)$
If \(\tau a E(x_1) \neq 0 \), then \(E(t^a x_1) = t^a E(x_1), a \geq 1 \).

(3) If \(E(x_1) \in E_{\infty}^{s_q} \) with \(q \geq 0 \), then \(E(t^a x_1) \in E_{\infty}^{s_q} \) with \(s \leq q \) for \(a \geq 1 \).

(4) If \(x_1 \neq 0 \) and \(t^a E(x_1) = 0 \) and \(E(x_1) \in E_{\infty}^{s_q}, q \geq 0 \), then \(E(t^a x_1) \in E_{\infty}^{s_q} \) with \(s < q \).

We shall use the following lemma of T. Chang and the author.

Lemma. ([2])

The \(k[t]\)-module \(E_r^{p,q}, 2 \leq r \leq \infty \), is generated as a module by the linear subspace \(E_r^{p+q} \).

We first prove a key lemma.

Lemma.

Let \(x \in E_{\infty}^{p+q} \) be such that \(t^a x = 0 \) for some \(a \geq 1 \). Then there is an \(u \in H_{S_1}^{p+q}(X; k) \) with \(E(u) = x \) and \(t^a u = 0 \).

Proof.

If \(q = 0 \) so that \(x \in E_{\infty}^{p+q} \subset F^p \subset \infty \), this is evident. Thus we may assume that \(q > 0 \). Choose \(v \in H_{S_1}^{p+q}(X; k) \) such that \(E(v) = x \). As \(t^a E(v) = t^a x = 0 \), whereas \(t^a v \neq 0 \) in general, we have \(t^a v \in E_{\infty}^{p+q} \) for some \(q_1 < q \), by property (4).

As \(E_{\infty}^{p+q} \) is generated over \(k[t] \) by \(E_{\infty}^{p+q} \), there is some \(v_1 \in H_{S_1}^{p+q}(X; k) \) with \(E(v_1) \in E_{\infty}^{p+q} \) and \(t^{a+k_1} E(v_1) = E(t^a v_1) \neq 0 \), (in general), where \(k_1 > 0 \).

It is convenient to draw a picture of \(E_{\infty} \).

As \(E(t^a v) - E(t^{a+k_1} v_1) = 0 \), it follows that \(E(t^a v - t^{a+k_1} v_1) \in E_{\infty}^{p+q} \) with \(q_2 < q_1 \). Thus there is some \(v_2 \in H_{S_1}^{p+q}(X; k) \) with \(E(v_2) \in E_{\infty}^{p+q} \) and, with \(k_2 > k_1, t^{a+k_2} E(v_2) = E(t^a v - t^{a+k_1} v_1) \). We then have

\[
E(t^a v - t^{a+k_1} v_1 - t^{a+k_2} v_2) \in E_{\infty}^{p+q}
\]

with \(q_3 < q_2 < q_1 < q \).

2
We go on in this manner until we get $g_j \leq 0$. We then get

$$E(t^av - (t^{a+k_1}v_1 + t^{a+k_2}v_2 + \cdots + t^{a+k_j}v_j)) = 0,$$

where $0 < k_1 < k_2 \cdots < k_j$, and hence,

$$t^av = t^{a+k_1}v_1 + t^{a+k_2}v_2 + \cdots + t^{a+k_j}v_j.$$

We now define $u \in H^{p+q}_{S_1}(X; k)$ by the equation

$$v = t^kv_1 + t^{k_2}v_2 + \cdots + t^{k_j}v_j + u.$$

We then have $t^au = 0$ and as $v_1, v_2, \cdots, v_j \in F^q \subseteq F^{q-1}$ and $v \notin F^{q-1}$, we obtain $x = E(v) = E(u)$ where $t^au = 0$.

We now prove the theorem together with the following lemma.

Lemma.

For each $q \geq 0$ the exact sequence

$$0 \rightarrow F^{q-1} \rightarrow F^q \rightarrow E_{\infty}^{pq} \rightarrow 0$$

is a split exact sequence of graded $k[t]$ modules.

Proof.

Choose elements

$$\alpha_1, \ldots, \alpha_\alpha, \beta_1, \ldots, \beta_\beta \in E_{\infty}^{pq}$$

such that the cyclic $k[t]$-modules generated by α_j are torsion modules of dimension $d_j \geq 1$ over k, and the submodules generated by the β_j are free modules, and such that E_{∞}^{pq} is the direct sum of those $a+b$ submodules.

Let $\alpha_j' \in H^{q}_{S_1}(X; k)$ be such that $t^a\alpha_j = 0$ and $E(\alpha_j') = \alpha_j$, and let $\beta_j' \in H^{q}_{S_1}(X; k)$ be such that $E(\beta_j') = \beta_j$. Then the $a+b$ cyclic submodules of $H^{q}_{S_1}(X; k)$ generated by the α_j' and the β_j' form a direct sum in $F^q \subseteq H^q_{S_1}(X; k)$, and this sum maps isomorphically onto E_{∞}^{pq} under the homomorphism $F^q \rightarrow E_{\infty}^{pq}$.

The proof of the theorem follows by using the split sequences of this lemma for all $q \geq 0$.

3
REFERENCES

