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I Preface

Recent advances in biotechnology have led to an explosion in the amount of bi-

ological data available to researchers. Since the introduction of high-throughput 

technologies, a massive number of genetic markers can now be investigated for 

large numbers of study participants. This has led to the discovery of thousands of 

genetic markers that are associated with various human traits and diseases. Tech-

nological advances have made it possible to investigate not only diseases that are 

caused by alteration of a single gene, but also to explore the whole genome simul-

taneously. Most diseases are not only caused by a single genetic mutation, but by 

many genetic variants contributing to the disease risk, either on their own or in 

interaction with other variants or other environmental factors. In complex diseases, 

both genetic variants and environmental factors contribute to disease susceptibili-

ty, and identifying the underlying genetic risk variants for these diseases has been 

a major challenge in genomics.

Statistics is a tool for data analysis that has played an important role in the break-

throughs in genetic studies. Statistics have shaped experimental design by address-

ing issues such as false positive control, sample sizes requirements, and population 

heterogeneity. It has also played a prominent role in the development of quali-

ty-control protocols and different normalizations methods. New types of genetic 

data require development of both new methodologies as well as adaptations of ex-

isting methods, and this has led to the integration of statistical methodology into 

almost all aspects of genetic analyses. 

The title of this thesis, DNA Methylation and Exome Chip Analysis in Complex 

Disease, is a broad title encompassing many aspects of both genetic and epigenetic 

epidemiology. Common themes in this thesis are methods for the identification of 

genetic biomarkers in complex diseases and the aggregation of genetic information 

across several genetic sites. Two papers involve DNA methylation data and one 

paper assesses the constraints in genetic studies involving low-frequency and rare 

variants using the Exome Chip. 

The structure of the thesis is as follows. An introduction and background to the 

study of genetics and epigenetics of complex diseases is presented in Chapter II. 

Chapter III lists the aims of this thesis, and Chapter IV presents the materials and 

methods that were applied and developed. Chapter V outlines the results from the 

three papers. In Chapter VI, the methods and results are discussed, and the thesis 

finishes with suggestions for future extensions and a concluding remark. 
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II Introduction

II.1. Genetic variation in human health and 
disease

Variations in deoxyribonucleic acid (DNA) can explain a substantial part of the 

differences between human populations (Gibbs et al., 2003; International HapM-

ap Consortium, 2005; WTCCC, 2007). The simplest form of DNA variation is 

a substitution, insertion, or deletion of a singe base pair. This is called a single 

nucleotide variant (SNV). When such a variant is found in more than 1% of 

the population, it is commonly referred to as a single nucleotide polymorphism 

(SNP) (Brookes, 1999). Variants that have an frequency below 1% are usually re-

ferred to as rare variants (Bansal et al., 2010), variants with a frequency range be-

tween 1% and 5% are often referred to as low frequent variant, and variants with 

frequency above 5% are referred to as common variants. Genetic variation can 

also result from structural variations that span sections of DNA, such as deletions, 

duplications, or insertions of segments or genes, or even duplications of whole 

chromosomes. All of these variations in DNA play an important role in human 

health and diseases (Stankiewicz & Lupski, 2010).

Mendel’s second law of inheritance states that all alleles are passed independent-

ly from parents to their offspring. However, when variable loci are close to each 

other on a chromosome, the alleles tend to be inherited together (Ott, 1999). This 

deviation from Mendel’s second law is called cosegregation. When two alleles 

cosegregate, they are said to be in linkage disequilibrium (LD) (Slatkin, 2008). 

Tracing marker alleles that segregate with a disease is called linkage analysis and 

has been a successful method for identifying high penetrant variants involved in 

monogenetic diseases. However, most common diseases are not caused by a sin-

gle genetic variant, but by a combination of multiple risk variants acting together 

with environmental components to modulate disease risk. When the number of 

causal variants in a disease increases or when the penetrance of the risk variants 

is low, linkage analysis is less feasible. In their landmark paper published in 1996, 

Risch and Merikangas show that in traits caused by multiple alleles with mod-

erate frequency and small genotype relative risk, screening many genetic markers 

in an association study would be much more efficient than performing linkage 
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analysis (Risch & Merikangas, 1996). However, it took another decade of devel-

opment of the high-throughput genotyping technology before these analyses be-

came feasible and the first genome-wide association studies (GWAS) were pub-

lished (Hirschhorn & Daly, 2005).

II.2. Genome-wide association studies

The Human Genome Project and the HapMap project consortia were the first to 

publish complete drafts of the human genome for different populations (Interna-

tional Human Genome Sequencing Consortium, 2004; International HapMap 

Consortium, 2005). These drafts were used to design the first GWAS, targeting 

highly polymorphic marker alleles throughout the genome (Kennedy et al., 2003; 

Matsuzaki et al., 2004; WTCCC, 2007). The genetic variants included in the 

GWAS were selected primarily to capture a substantial degree of variation within 

the human genome, not because they were believed to be disease causing (Viss-

cher et al., 2012).

For many common traits and diseases, GWAS have been successful in identify-

ing many variants influencing disease susceptibility (Hindorff et al.; Klein et al., 

2010). As mentioned above, the risk variants identified through GWAS may not 

represent the underlying causal variant, but instead associated variants in high 

LD with the true disease causing variant(s). Dense mapping or sequencing of 

these regions can identify the causal variant within the associated region (Faye et 

al., 2013). Many of the significantly associated variants from GWAS turned out 

not to be located within the coding part of the genome, but to be situated in reg-

ulatory regions (Dunham et al., 2012). 

In complex diseases, heritability estimates from epidemiological studies have al-

ways exceeded the heritability estimates based on the findings from GWAS. The 

discrepancy between these two heritability estimates is referred to as “the miss-

ing heritability” (Maher, 2008). Several explanations have been proposed for this 

missing heritability, including that the remaining part of the heritability can be 

explained by epistasis, rare variants, and epigenetic and environmental factors, all 

of which contribute to disease risk (Maher, 2008; Manolio et al., 2009; Zuk et al., 

2012). For this thesis, I have studied two of these suggestions more closely, name-

ly the epigenetic and rare variant contribution to disease risk in complex diseas-

es. Investigation and assessment of different factors in disease risk are common 

themes in all three papers included in this thesis. 
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GWAS targets mainly common variants, but it has long been known that most 

genetic variants are rare (Lander, 1996). In the final phase of the 1000 Genomes 

Project, it was noted that approximately 64 million of the 88 million discovered 

variants (~70%) had an allelic frequency below 0.5% (The 1000 Genomes Pro-

ject Consortium et al., 2015). However, it was first with the introduction of high 

throughput sequencing that rare variants could be genotyped in larger cohorts 

(Rabbani et al., 2014). In order to investigate the contribution of rare variants in 

complex diseases on a population level, the Exome Chip was established. This 

chip was designed based on suggestions from the Exome Chip Consortium (Ex-

ome Chip Consortium, 2011). The variants on these chips are mainly rare vari-

ants affecting the amino acid sequence, with almost 85% of the variants having a 

minor allele frequency less than 0.5%. This low frequency range poses challenges 

that differ from those of common variants analysis. In Paper II, we investigate 

some of these challenges in rare variant association tests. In the study on which 

the paper is based, we paid attention to the sample size requirements for varying 

effect sizes and different causal variant scenarios based on two widely-used statis-

tical approaches for identifying causal rare and low-frequency variants. 

The investigation of the genetic contribution to disease risk in complex diseas-

es has sparked a debate on the underlying genetic variation in complex diseases. 

The two main models suggested were the “common disease – common variants” 

(CDCV) and “common disease – rare variants” (CDRV) hypothesis (Gibson, 

2011). GWAS have traditionally focused on the investigation of common var-

iants (Andersson et al., 2009). Hence, the design of GWAS was based on the 

hypothesis of “common disease – common variant” (CDCV). The CDCV hy-

pothesis builds on the assumption that common diseases are caused by many 

common variants, each having a small effect on the phenotype (Fisher, 1930). 

One argument for this hypothesis is that highly penetrant deleterious rare var-

iants are likely to be selected from a population through natural selection. This 

model is sometimes referred to as the infinitesimal model, since it models a sce-

nario in which a large number of common variants each confer a small individual 

risk (Gibson, 2011). 

An argument against the infinitesimal model is the lack of functional validation 

for the majority of the detected risk variants from GWAS (McClellan & King, 

2010). This stands in contrast to many rare Mendelian traits where a rare causal 

functional SNV has been identified. Currently, the GWAS catalogue lists over 
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4,000 common risk variants for complex diseases, but few of those have been 

shown to exhibit functional properties that can be linked to disease risk (Huang, 

2015). However, the variants selected to be interrogated in GWAS were not se-

lected for their functional implications, but for their ability to tag variation in the 

genome (Weiss & Clark, 2002). 

While large GWAS involving common variants have been successful in iden-

tifying risk loci, they have only explained a small fraction of the predicted her-

itability. The other proposed model for the underlying genetic risk of complex 

diseases is the “Common Disease – Rare Variants” hypothesis (CDRV). The as-

sumption underlying this hypothesis is that under natural selection, deleterious 

or disease-causing variants will not segregate in the population, and these should 

therefore be rare (Pritchard & Cox, 2002; Gibson, 2011). This is in line with the 

known high impact disease-causing variants in Mendelian diseases, which tend 

to be rare (Altshuler et al., 2008). However, investigations into rare variant contri-

bution to disease risk in complex diseases have not helped to explain the missing 

heritability (Hunt et al., 2013). 

It has been suggested that some of the associations discovered in GWAS are a 

result of “synthetic association.” This occurs when a rare causal variant is in weak 

LD with a common tag SNP (Dickson et al., 2010). If this is the case, then what 

appears to be a common risk variant is in fact a high impact rare variant co-oc-

curring with the genetic marker. However, the absence of any observed linkage 

indicates that rare causal variants with high impact are not likely for most com-

plex diseases (Risch & Merikangas, 1996; Wray et al., 2011). In most complex 

diseases, very few high impact rare causal variants have been identified through 

linkage analysis (Altshuler et al., 2008). This indicates that a small number of 

highly penetrant variants are rarely the causative factor for the disease. For this 

reason, synthetic association alone cannot explain all the GWAS results (Gibson, 

2011; Wray et al., 2011). 

The two different hypotheses of CDCV and CDRV are not necessarily mutual-

ly exclusive. It is likely that both rare and common variants contribute to disease 

risk for most complex diseases (Schork et al., 2009; Gibson, 2011; Agarwala et al., 

2013; Lettre, 2014).
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II.3. Epigenetics and DNA methylation

The term epigenetics was first used by Waddington in 1942, as a link between 

genetics and the phenotype (Waddington, 1942; Haig, 2004). Today, epigenetics 

is understood as chemical modifications of DNA that do not alter the base pair 

sequence, and are heritable over mitotic cell divisions (Russo et al., 1996; Berger 

et al., 2009). 

Many studies have shown that the epigenome responds to environmental con-

ditions, both to internal and external stimuli. This includes many factors such as 

smoking, diet, psychological stress, and socioeconomic status (Heijmans et al., 

2008; Hackman et al., 2010; Feil & Fraga, 2012; Zeilinger et al., 2013; Klengel 

et al., 2014). Epigenetics could potentially serve as a link between environmental 

and genetic factors, and may also explain some of the missing heritability (Slat-

kin, 2009; Petronis, 2010; Feil & Fraga, 2012). This hypothesis together with re-

cent advances in biotechnology has created a surge of studies investigating the 

epigenetic contribution to the risk of complex diseases (Dunham et al., 2012; Paul 

& Beck, 2014).

The most frequently studied epigenetic modifier with respect to disease devel-

opment is DNA methylation (Rakyan et al., 2011). This is a modification of the 

DNA where a methyl group is added to the Cytosine base (C). This usually oc-

curs on sites where the Cytosine base is adjacent to a Guanine base (G). This 

CG di-nucleotide is called a CpG site ( Jones, 2012). The CpG sites are depleted 

throughout the genome, with more than a two-fold reduction in what would be 

expected if both C and G were distributed uniformly across the genome (Bell 

et al., 2012). The CpGs tend to cluster together, appearing in regions highly en-

riched for CpGs, termed CpG islands ( Jones, 2012). These islands co-localize 

with 60–70% of the known gene promoters, suggesting a highly important role 

in transcription regulation (Bell et al., 2012). DNA methylation is implicated in 

DNA regulation, including regulation of messenger ribonucleic acid (mRNA) 

transcription, alternative splicing, ribonucleic acid (RNA) elongation, X chro-

mosome inactivation, genomic imprinting, and cell linage proliferation ( Jones, 

2012). The DNA methylation can also be oxidized into hydroxymethylation (Kr-

iaucionis & Heintz, 2009). However, most technologies cannot distinguish be-

tween methylation and hydroxymethylation, and report both in a single methyl-

ation measure (Huang et al., 2010). 
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Since DNA methylation is a stationary epigenetic modification of the DNA, oc-

curring only at specific loci, it can be unambiguously measured on a genome-wide 

scale. Studies analyzing DNA methylation genome-wide are referred to as epig-

enome-wide association studies (EWAS) and can range from including 27,000 

loci (Illumina 27k array) to well over 5 million loci (whole genome bisulfite 

sequencing). 

With the introduction of genome-wide methylation chips and bisulfite sequenc-

ing methodology, many EWAS of complex diseases have been published. These 

cover a wide range of complex diseases, such as cancer, obesity, diabetes, and auto-

immune diseases (Brooks et al., 2010; Meda et al., 2011; Liu et al., 2013; Lu, 2013; 

Farh et al., 2015). The most robust findings have been in cancer research, where 

many studies have shown massive, genome-wide changes in DNA methylation 

( Jones, 2012). For most other complex diseases, epigenetic changes are expected 

to be much smaller, and thus more difficult to detect (Rakyan et al., 2011). Most 

findings in studies of complex diseases have been of single CpG sites that are 

differentially methylated between cases and controls, referred to as differentially 

methylated positions (DMPs). While it has been suggested that a single CpG 

site can have an impact on the cell phenotype (Bell et al., 2012), there might be a 

benefit of studying regions that are differentially methylated too. 

The methylation status of CpGs in close proximity is usually found to be highly 

correlated (Eckhardt et al., 2006). This correlation can lead to longer segments 

of DNA being differentially methylated between disease and normal tissue. If 

these differentially methylated regions (DMRs) overlap with regulatory regions 

or promoters, they can be of considerable biological interest. However, there is 

no consensus on what characterizes such a region in terms of methylation dif-

ference between cases and controls, length of the regions, distance between the 

CpGs, or other attributes. The two main approaches to identify DMRs involve 

the use of either static or dynamic aggregation. Static aggregation methods com-

bine the data into predefined CpG islands or genes and include methods such as 

ProbeLasso (Butcher & Beck, 2015). The dynamic aggregation methods combine 

neighboring observations agnostic with gene annotation, and search the genome 

for DMRs relying only on the chromosomal position. This includes methods 

such as Bumphunter, DMRcate, BSmooth, and Comb-p (Hansen et al., 2012; 

Jaffe et al., 2012; Pedersen et al., 2012; Peters et al., 2015).
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II.4. Genetics of complex diseases

Complex disease is a collective term used for diseases caused by a combination of 

multiple genetic, epigenetic, and environmental factors. Most of these diseases do 

not follow a clear Mendelian pattern of inheritance (Craig, 2008). In this thesis, 

I explore the genetics of complex diseases by using multiple sclerosis (MS) as an 

example. 

MS AND ITS EPIDEMIOLOGY
MS is an inflammatory, demyelinating disease of the central nervous system 

(CNS), and is one of the leading causes of chronic neurological disability in 

young adults (Oksenberg et al., 2008). Inflammation leads to a loss of the my-

elin covering the axons of the neurons within the CNS. The early stages of this 

inflammation are believed to be driven by autoreactive T cells (McFarland & 

Martin, 2007). The exact causes of MS are unknown, but there is strong evidence 

that both genetics and environmental factors contribute to disease susceptibility 

(Lassmann, 2013).

Multiple studies have shown that the prevalence of MS varies along a north–

south axis, increasing with increasing distance from the equator (Milo & Kahana, 

2010; Simpson et al., 2011). However, there has been less observational evidence 

for variations in prevalence along a within-country axis, even for countries span-

ning many latitudes (Simpson et al., 2011; Berg-Hansen et al., 2014). MS affects 

twice as many women as men, but there is no clear biological explanation for this 

difference (Orton et al., 2006; Bostrom et al., 2014).

Studies of family recurrence rates in MS have estimated the narrow-sense her-

itability to be around 0.64 (Westerlind et al., 2014). This means that the varia-

tion in the additive genetic risk factors account for 64% of the observed variation 

in disease risk (Tenesa & Haley, 2013). The human leukocyte antigen (HLA) 

risk variants account for approximately 8% of the sibling recurrence risk, and the 

identified non-HLA risk variants explain roughly 30% of sibling recurrence risk 

(Watson et al., 2012; IMSGC, 2013). The heritability explained by common vari-

ants accounts for a large proportion of the observed disease heritability. This is in 

contrast to most other complex diseases, for which the known genetic risk vari-

ants explains much less of the observed heritability (Visscher et al., 2012). 
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GENETICS AND EPIGENETICS OF MS
The strongest genetic risk variants of MS are located within the HLA complex 

(Sawcer et al., 2014). In international GWAS, over 100 independent non-HLA 

risk variants have been identified (IMSGC & WTCCC 2, 2011; IMSGC, 2013). 

The majority of non-HLA genes associated with MS are situated in close prox-

imity to immune regulating genes, which further adds to the evidence that MS 

is an immune-mediated disease (IMSGC & WTCCC 2, 2011; IMSGC, 2013). 

Many of the MS associated variants are also implicated in other autoimmune 

diseases (Sawcer et al., 2014). Linkage studies of multiplex MS families have not 

found evidence of linkage outside the HLA complex, suggesting that rare vari-

ants carrying substantial risk of MS are uncommon (Modin et al., 2003; Willer 

et al., 2007; Sawcer et al., 2014). Therefore, the main focus of the genetic research 

in MS has been on common variants assessed in large cohorts by international 

consortia. However, some associated genes have been reported to harbor rare var-

iants. The best established examples are the genes TYK2  and CYP27B1, with the 

associated TYK2 risk variant has an allele frequency of 0.4% and the associated 

CYP27B1 variant around 0.1% for the risk allele (Mero et al., 2010; Sundqvist et 

al., 2010). The TYK2 gene harbors a rare non-synonymous variant that has been 

shown to be associated with MS in multiple studies (Ban et al., 2009; Mero et al., 

2009; Mero et al., 2010; Dyment et al., 2012). The CYP27B1 findings are more 

disputed, since rare MS risk variants within this gene have not been consistently 

replicated in independent cohorts (Sundqvist et al., 2010; Ramagopalan et al., 

2011; Ban et al., 2013; Barizzone et al., 2013; Reinthaler et al., 2014; Zhuang et 

al., 2015). 

Epigenetics studies focusing on MS are relatively recent, and compared with the 

MS studies of the genome, the epigenome has not been as thoroughly investigat-

ed for MS. Epigenetics may help to address several aspects of the disease, such as 

the missing heritability and disease heterogeneity in susceptibility and progres-

sion of disease. In the first published epigenetic report on MS, three discordant 

monozygotic twin pairs were compared using whole genome sequencing, target-

ing SNVs, DNA methylation, and mRNA (Baranzini et al., 2010). An examina-

tion of 2 million CpG sites revealed that no loci were identified as associated with 

the disease or could help to explain disease discordance. Graves et al. investigated 

genome-wide methylation in CD4+ T cells of MS patients and healthy controls 

(Graves et al., 2013). However, many of the patients in Graves et al.’s study were 
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treated with immunotherapeutic drugs, which may have modified the epigenetic 

profile of the immune cells. The authors identified multiple CpG sites associat-

ed with MS in their genome-wide methylation analysis. However, as reported in 

Paper I, we were not able to replicate these findings because the majority of their 

reported loci were not included in our analysis for technical reasons. Two other 

studies of epigenetics in MS have been published, one by Liggett et al. and one 

by Calabrese et al (Liggett et al., 2010; Calabrese et al., 2014). Liggett et al. iden-

tified 15 potential biomarkers for MS in a study of DNA methylation in cell-free 

plasma of MS cases and controls, and Calabrese et al. found a global reduction of 

hydroxymethylated cytosine in MS patients when investigating DNA methyla-

tion in blood. 

As more genetic and epigenetic data become available for studies of complex dis-

eases and new methodologies are introduced, much progress in this field can be 

expected. The ‘–omics’ revolution that has integrated itself into medical research 

will in due time expand our knowledge of the genetic and epigenetic contribu-

tions to complex diseases, and may result in better understanding, prevention, and 

treatment of these diseases. 
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III Aims of the thesis

This thesis investigates different aspects of methodologies when analyzing ge-

netic and epigenetic data with respect to identifying susceptibility to complex 

diseases. 

Our first aim was to identify methylation patterns that can serve as biomark-

ers for MS in different purified immune cells and then replicate any findings in 

whole blood. This is explored in Paper I, where we compare the genome-wide 

methylation profile in different purified immune cells in MS patients with the 

methylation profile obtained from healthy controls. The comparison was done 

with regression analysis for each CpG, separately in purified immune cells and 

whole blood. 

Our second aim was to investigate aggregation methods for rare variants and 

methylation sites when applied within rare variant association studies and epige-

nome-wide association studies in complex diseases. These methods are addressed 

in Paper II and Paper III respectively.

Rare variant association studies of complex diseases have become feasible with 

the introduction of rare variant genotyping chips, such as the Exome Chip. In 

Paper II, we investigated the performance of the Exome Chip by using an exten-

sive computer simulation and static aggregation methods. The aim was to study 

the strengths and constraints of this chip, which contains mainly low-frequency 

and rare variants, by describing the relationship between sample size, effect size, 

and power.

In Paper III, we introduce a new method for identifying genome-wide signif-

icant DMRs in genome-wide DNA methylation studies. The method involves 

adapting scan statistics in the a similar way as was used before on another type of 

genetic data. The method is based on dynamic aggregation of neighboring meth-

ylation sites. Compared with the other two established methods, our method ad-

dressed the multiple testing issues in a better way. 
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IV Material and methods

IV.1. The datasets

In Paper I, we describe our investigation of the DNA methylation profile in re-

lapsing remitting MS patients and how it compared with the methylation pro-

file of healthy controls. For this purpose, we used blood samples from 16 treat-

ment-naïve MS patients and 14 healthy age-matched controls. The clinical 

characteristics of the cohort are listed in Table 1 in Paper I.

From blood samples, we isolated two subpopulations of immune cells: CD4+ T 

cells and CD8+ T cells. We extracted DNA from the isolated cells, as well as from 

whole blood. All samples were assayed on the Illumina 450K methylation array 

and genotyped on the Illumina 660 Quad array. Genotypes were further imput-

ed according to the central European reference panel (International HapMap 

Consortium, 2005). We removed probes that contained an observed or imputed 

SNP within the 50 base pairs (bp) long probe sequences on the 450k array. Based 

on the first two principal components (PCs), we did not observe any plate or 

batch effects in the methylation data. However, we could confirm cell-type specif-

ic methylation patterns on the basis of the first two PCs (see Figure 1A in Paper 

I). We then used the methylation data to study both single methylated positions 

and differentially methylated regions that could serve as a biomarker for MS.

THE SIMULATED DATA
The dataset used in Paper III is from the Finnish Health in Teens (Fin-HIT) 

study. This study recruited about 11,000 adolescents, in the age group 9–12 years, 

from schools throughout Finland. Different biometric information such as height, 

weight, and puberty scores, as well as epigenetic measurements from saliva was 

collected. In Paper III, we report how we used DNA methylation data from 100 

girls aged 11 years, who were randomly selected amongst the 10th percentile with 

a both low and high end of the body mass index (BMI) distribution. 

When benchmarking different methods for analyzing DNA methylation, we 

used the DNA methylation data from chromosome 22 as a backbone for a sim-

ulation study. This chromosome contained 58,910 observations, distributed over 

1,071 CpG islands with a mean of 55 CpG per islands, ranging from 16 to 456 

CpG sites. By adding an effect directly on the methylation data, we could inves-

tigate the performance of different methods for calling DMRs and then compare 

them with our new proposed method.
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IV.2. Methods for the analysis of DNA meth-
ylation data

PRE-PROCESSING
Normalization and quality control of DNA methylation measurements are to a 

large degree technology-dependent. In Paper I and Paper III we describe how 

we used two different technologies to measure DNA methylation. For Paper I, 

we used a chip-based technology (Illumina 450k array) to measure the methyla-

tion levels, and for Paper III we used bisulfite sequencing to assess methylation.

For the Illumina 450k array used in Paper I, we considered three different meth-

ods for normalizing the observed methylation values: subset within array normal-

ization, peak correction, and beta-mixture quantile normalization (Maksimovic 

et al., 2012; Wang et al., 2012; Teschendorff et al., 2013). After testing all three 

normalization algorithms on our data and comparing the discrepancy between 

six technical replicates, all three normalization methods led to similar results. 

This indicated that it would make little difference which normalization method 

is chosen, and that other properties should be considered. Since the beta-mix-

ture quantile (BMIQ) normalization allowed for the highest flexibility on which 

probes to keep and which to discard, this method became our preferred choice. 

BMIQ is a normalization method for aligning measurement from two different 

chemistries (type I and type II probes) on the Illumina 450k array (Dedeurwaerd-

er et al., 2011; Teschendorff et al., 2013). The two types of probes target different 

CpGs and have both different detection mechanisms and different properties, 

such as binding affinities. The type I probes have a wider dynamic range than the 

type II probes, and in BMIQ normalization the observations from the type II 

probes are mapped onto the distribution of the type I observations. This mapping 

is done using a mixture of three cumulative beta distributions, hence the name 

beta-mixture quantile normalization. The normalization was done independent-

ly for all samples, ensuring that no sample influenced the normalization of any 

other samples. We excluded probes that were missing in more than 10% of the 

individuals. 

In Paper III we describe how we used reduced representation bisulfite sequenc-

ing to measure methylation levels in our samples. First, low-quality sequences 

were removed using Nesoni clip (Version 0.115, https://github.com/Victori-

an-Bioinformatics-Consortium/nesoni). The bisulfite converted sequence reads 
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were then mapped to the human genome (hg19) using Bowtie2 Version 2.0.5 

(Langmead & Salzberg, 2012) and Bismark Version 0.10 (Krueger & Andrews, 

2011). Using Bismark methylation extractor, we could calculate the beta-methyl-

ation values for each CpG site. We retained only CpG sites with coverage above 

10× and a call rate above 75% among all the samples.

SINGLE SITE ANALYSIS
Paper I describes how whole blood was investigated separately from the CD4+ 

T and CD8+ T cells. The CD4+ T and the CD8+ T cells were analyzed together 

in one model, since the similarity in the methylation profiles between these cells 

types was assumed to be rather high. The two cell types originate from the same 

cell linage, and they appeared close in the PCA cluster plots (Figure 1A in Paper 

I). To analyze the two cell types in the same model, we used a linear mixed effects 

model in which each cell types had a random effect. By including an additional 

interaction between the two cell types, the heterogeneity between the cell types 

was accounted for in the same model.

For analysis of whole blood, a linear regression analysis was applied with case-con-

trol status as the independent variable and methylation as the dependent variable. 

We ran this model both with and without adjustment for possible confounders. 

We also estimated the white blood cell ratios in each individual from the methyl-

ation data, using a linear projection as described by Houseman et al. (Houseman 

et al., 2012). This method required a training dataset for each cell type, which was 

combined with the whole blood methylation data, and informative markers for 

the different cell types were identified in the whole blood data. The training data-

set we used is published in the article by Reinius et al., and the cell types account-

ed for in our study were CD4+ T cells, CD8+ T cells, NK cells, B cells, monocytes, 

and granulocytes (Reinius et al., 2012; Jaffe & Irizarry, 2014). 

STATIC AND DYNAMIC AGGREGATION OF METHYLATION SITES
In this thesis, the terms static and dynamic aggregation are used to describe how 

genetic variables at neighboring sites, such as genetic variants or CpG sites, are 

aggregated into regions. In static aggregation, the variables are aggregated into 

predefined units, such as annotated genes or regulatory regions. Static aggre-

gation was applied to identify genes which could be differentially methylated 

between MS cases and controls (see Paper I), and to investigate the power of 

gene-wise collapsing methods on the Exome Chip (see Paper II). For dynam-
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ic aggregation, the regions are not predefined, but rather defined based on the 

underlying dataset. This approach is applied in both Paper I and III to identify 

DMRs independent of genetic annotation beyond chromosomal position. 

To identify potential DMRs in Paper I using a dynamic aggregation approach, 

we aggregated the top 5% of the test statistics into candidate regions stratified by 

cell type. A candidate region was defined to be any set of the top 5% CpGs with a 

maximal distance of 500bp between them. The candidate regions were permuted 

10,000 times by shuffling the case-control status and recalculating the test statis-

tics for each probe. The sum of the test statistics for each permutation was com-

pared with the original sum in the candidate regions. We looked specifically for 

overlapping regions in the different cell types, such as whether CD4+ and CD8+ 

T cells shared any regions in the top 10 or top 100 regions. We applied the same 

permutation algorithm by clustering the CpGs to their annotated gene and per-

muting the gene regions. This can be considered a static aggregation of the CpG, 

where functional annotation dictates the aggregation, as opposed to letting the 

data drive the aggregation. 

Bumphunter aggregates all CpG sites into regions based only on genomic an-

notation. There is no gap between the CpGs within a region that is larger than 

a limit specified by the user. Within the regions, the test statistic of each CpG is 

trimmed over a certain user-defined cut-off, often defined as a quantile of all the 

CpG-wise test statistics. The remaining sites that are in close proximity to each 

other are aggregated into subregions, which are the reported candidate DMRs. 

DMRcate uses a Gaussian smoothing kernel on the CpG-wise test statistics. The 

kernel bandwidth is equal to the maximum allowed gap between two CpG sites 

within the same region. Based on the smooth test statistics and using the Satter-

thwaite method (Satterthwaite, 1946), a new CpG-wise p-value can be calculat-

ed. The aggregation is done in such a way that no CpGs within the same region 

are more than a given number of base-pairs apart. 

For the dynamic aggregation of variables reported in Paper III, we developed 

a novel application of a scan statistic for calling the DMRs. This method was 

benchmarked against established methods for DMR calling. In the benchmark-

ing, we paid specific attention to the power as function of effect size, and we com-

pared the convergence of power with increasing effect size for the different meth-

ods. There are different algorithms and methods for the dynamic aggregation of 

genetic observations into regions (Hansen et al., 2012; Jaffe et al., 2012; Pedersen 
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et al., 2012; Butcher & Beck, 2015; Peters et al., 2015). We chose to compare our 

method with the technology-independent methods, which are appropriate for 

use on sequencing data. For the comparison we chose two methods: Bumphunter 

( Jaffe et al., 2012) and DMRcate (Peters et al., 2015).

MULTIPLE TESTING PENALTY
A major issue with existing models for the identification of DMRs is that they do 

not properly adjust for multiple testing. Bumphunter uses permutations to con-

struct a distribution of regions under the null hypothesis. The set of new regions 

arising from the permutations represents the expected distribution under the hy-

pothesis of no association between the exposure and DNA methylation. The fam-

ily-wise error rate (FWER) (Tukey, 1953) is estimated by the fraction of observed 

DMRs from the permutations having a larger area under the curve and spanning 

a larger number of probes than the candidate regions.

DMRcate calculates the region-wise p-value by combining the individual CpG-

wise p-values within each candidate region, using Stouffer’s method (Stouffer et 

al., 1949). This is a method that has a close resemblance to Fisher’s method for 

combining p-values, but operates on the test statistics instead of the p-values. The 

p-values from each CpG within the identified regions are combined into a re-

gion-wise p-value.

When combining p-values for a region, one has to take into account of wheth-

er the region has been pre-selected based on containing large test-statistics, as 

this may give an artificially low p-value if the preselection is not accounted for. 

To address this problem, we proposed a method based on scan statistics to iden-

tify DMRs. By building on a well-developed mathematical framework for scan 

statistics, we could identify DMRs while properly adjusting for multiple testing. 

SCAN STATISTICS
Introduction

The scan statistic method presented in Paper III is a novel application of a meth-

od formulated by Zhang (Zhang, 2008). Zhang’s method, which we extended, is 

a scan statistic method with empirically derived thresholds for the window sizes 

in the model. The method relies on Aldous’s argument that for sufficiently large 

thresholds, the number of peaks over the thresholds follows a Poisson distribu-

tion (Aldous, 1989); this is sometimes referred to as Poisson heuristics. Zhang 
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deduces a relationship between the significance level and the intensity rate of the 

peaks (Zhang, 2008). This relationship can be used to determine the threshold, 

given a predefined significance level . Since Poisson heuristics assumes that all 

window observations are independent, overlapping windows may reduce the per-

formance of this method. To account for the dependencies, no overlapping sig-

nificant windows were allowed. The test with fixed window size and overlapping 

windows is referred to as the R-test in Zhang’s notation. The extension of this test 

to the case with several window sizes, which Zhang referred to as the S-test, is 

also of interest. To construct independent observations in the S-test, no overlap-

ping or nested significant windows were allowed in our study. If two overlapping 

windows were both above their respective thresholds, the smallest window was 

preferred as the significant one.

The mechanism that regulates genome-wide significance is the window thresh-

olds. The window thresholds are the values with which the sums in each window 

are compared. If the sum within a window is above the threshold, it is regarded 

as significant. By testing different window thresholds on a null-simulation, we 

could identify the lowest window threshold that kept the overall false discovery 

rate (FDR) at a given level. For a given significance level, the thresholds for the 

different window sizes depend on the number of windows and the correlation 

structure in the null model of the single site test statistics. The window size for 

the scan statistic can be set by the user, but the correlation structure between the 

single site test statistics has to be determined in advance. For most correlation 

structures, no closed expression exists for the window thresholds, and thus the 

thresholds must be estimated numerically with a Monte Carlo method. However, 

a special case has been published by Siegmund et al. (Siegmund, 1985; Siegmund 

et al., 2011), where the thresholds can be calculated analytically if the dependen-

cies between the test statistics follow an Ornstein-Uhlenbeck process. This is a 

much faster way of determining the thresholds, since it does not rely on numer-

ical approximation, but rather a closed-form expression. These thresholds can be 

tailored to account for multiple testing in the same way as the Monte Carlo test 

described above, by testing different thresholds and calculating the false discovery 

rate. The minimum thresholds that hold the alpha level for the false discovery rate 

after multiple testing are carried forward to the analysis. 
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Estimating window thresholds

There are different approaches to estimating the window thresholds for a giv-

en dependency structure and significance level for a scan statistic method. As 

described in Paper III, we chose to compare three different ways of construct-

ing the window thresholds: two were based on Monte Carlo simulation, and 

one was based on Siegmund’s analytical solution (Siegmund et al., 2011). Of the 

two Monte Carlo simulated thresholds, one was a full-scale simulation of all the 

CpG-wise test statistics on chromosome 22, and one was based on the impor-

tance sampling procedure proposed by Zhang (Zhang, 2008). These three meth-

ods resulted in different window thresholds, which in turn led to some differences 

in the results. This can be seen in Figure 1 in Paper III, where the convergence in 

power for all the methods is plotted as a function of increasing effect size. 

In the full Monte Carlo approach, we used an autoregressive (AR) process to 

simulate a null observation for all loci. Before doing the AR simulation, we inves-

tigated the autocorrelation function (ACF) and the partial autocorrelation func-

tion (PACF) for a large number of CpG islands on chromosome 22. Inspection of 

the ACF and PACF of the CpG islands indicated an AR(2) as the best common 

model. For each CpG island on this chromosome, we fitted the an AR(2) model 

and extracted the parameter estimates. The 75% quantile of these parameters was 

chosen as the overall AR parameter for the simulation. This was used to sample 

an AR(2) process of equal length to chromosome 22, and the sliding windows 

were applied to these simulated data. 

When using importance sampling, we sampled a subset of observations. This sub-

set was equivalent to two windows in length, simulated from a multinormal dis-

tribution. In the covariance matrix for this distribution, the off-diagonal elements 

represented dependencies in both spatial directions. In this simulation, we could 

sample the different window sums, weighted by the likelihood of observing the 

different sums. Based on this smaller segment and a given threshold, the number 

of peaks above the threshold was scaled to correspond to the full dataset.

A method for estimating the window threshold has been introduced by Siegmund 

et al. (Siegmund et al., 2011), whereby the intensity of the peak over threshold is 

analytically calculated as a function of the threshold. The derivation of this equa-



20

tion is based on the assumption that the test statistic follows an Ornstein-Uhlen-

beck process. A closed-form solution was first published by Siegmund (Sieg-

mund, 2013), based on earlier work by Siegmund and Yakir (Siegmund & Yakir, 

2007).

In all simulations, the exceedance rate for each window size was calculated on 

a grid of different threshold values. In these simulations, we could estimate the 

number of false positive findings for different thresholds and derive the relation-

ship between the false positive rate, window size, and window thresholds. For a 

given false positive rate, we could distribute the false positive observations on the 

different window sizes in equal proportions by adjusting the individual window 

thresholds accordingly. 

BENCHMARKING DMR CALLING METHODS
All efforts were taken to ensure that the parameters in Bumphunter and DMR-

cate were comparable with our method. However, we aimed to set as many pa-

rameters as possible to their default values without compromising the compara-

bility. This was done to benchmark the methods in a realistic way, since in most 

analysis settings the methods are often used with their default parameter values. 

In order to add an artificial causal effect to the data, we modified the M-values 

directly (Du et al., 2010) by adding an offset on the causal CpGs in all cases. A 

random set of 100 causal DMRs of different lengths were picked from all CpG 

islands. All causal DMRs were shorter than the CpG islands they were located 

in. Thus, all CpG islands with a causal region also contained non-causal CpG 

sites. The CpG islands could only contain one causal DMR each, and therefore 

no CpG island had two or more causal DMRs.

Two different ways of adding the effect size were investigated. In one scenario, 

all CpGs within a causal DMR were shifted uniformly by the same value. In the 

second scenario the added effects were multiplied by a normal density kernel, 

making the added effect bell-shaped. In this scenario, the kernel contained a nor-

malizing constant, such that the area of the added effect size (number of probes 

× effect) was the same as in the first scenario for each effect size. However, this 

made the maximum of the added effect in this scenario almost twice the value 

compared with the first scenario, and on the edges of the DMR a very small effect 

was added. The benchmarking was done on a set of effect sizes ranging from 0 to 

an added value of 5 on the logistic scale for all casual CpGs. 
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IV.3. Methods for the analysis of low-fre-
quency and rare variants

METHODS FOR AGGREGATING RARE VARIANTS
Several different methods for aggregated variants in rare variant association tests 

have been published (Madsen & Browning, 2009; Liu & Leal, 2010; Ionita-Laza 

et al., 2011; Neale et al., 2011; Wu et al., 2011; Lettre, 2014; Lin, 2014). All meth-

ods for rare variants rely on static aggregation, where the variants are collapsed 

into annotated regions, which for rare variants are usually genes. Most methods 

fall into one of two categories: burden tests or variance tests (Auer & Lettre, 

2015). Burden tests compare the burden of mutations in cases compared with 

controls. However, if a gene harbors both deleterious and protective variants, the 

variants might cancel out in a burden test, leaving the gene nonsignificant. In var-

iance tests, the 2nd  moment of the distribution of variants within a gene is com-

pared between cases and controls. By considering higher order moments instead 

of sums, it is possible to account for variants with opposite effects. 

In Paper II, we report a study of two methods: weighted sum statistic (WSS) 

and the sequence kernel association test (SKAT). These methods serve as surro-

gates for the two classes of models, where WSS is a commonly used burden test, 

and SKAT is a popular variance contrasting test. SKAT is a generalization of a 

well-known test for rare variants, the C( ) method (Neale et al., 2011; Wu et al., 

2011). None of these methods are tailored to one specific genotyping technology, 

and are thus applicable to data from both genotyping chips as well as sequencing.

We chose WSS, both due to its simplicity and the ease with which it can be im-

plement, and we chose SKAT because of is frequent use and its implementation 

in R (R Core Team, 2012; Seunggeun et al., 2015). SKAT uses a kernel projection 

of the variance between cases and controls, and we used the beta distribution as 

the kernel. This kernel puts high weights on variants with few observations, and 

low weights on variants that are observed often. 

BENCHMARKING RARE VARIANT METHODS ON THE EXOME CHIP
In Paper II, we describe how we simulated a large population pool according to 

the method used by Basu et al. (Basu & Pan, 2011), with the frequency thresh-

olds obtained from the Exome Chip consortia (Exome Chip Consortium, 2011). 

From this pool of simulated individuals, we drew smaller cohorts to investigate 

the influence of sample size on power when using the Exome Chip.



22

The genotypes were constructed using multinormal random variables, where each 

vector of observations corresponded to a DNA strand within an individual. To 

model LD patterns between the variants, we used the covariance matrix with-

in the multinormal distribution. The covariance matrix for the distribution was 

modeled with the Matern covariance function, where the dependency between 

variants was inversely proportional to their distance in base pairs (Matern, 1960). 

The model parameters were selected so that dependencies between variants in 

different genes would be negligible. 

By dichotomizing the resulting vectors from the multinormal distribution with 

the allele frequencies reported by the Exome chip consortia, we could obtain a 

dataset with allele frequencies equal to that of the Exome Chip and still retain the 

LD structure between the simulated variants within the genes. The algorithm for 

simulating the variants can be found in the supporting information to Paper II.

While different ways of simulating effects on genetic data exist, there is no con-

sensus on which method performs best under these circumstances. We chose the 

simulation approach presented by Madsen et al., since it only has one free param-

eter that can be controlled (Madsen & Browning, 2009). The free parameter is the 

population attributable risk, which we considered as the effect size in our bench-

marking. To restrict the possible scenarios to be explored, we only used one direc-

tion for the effect size and all variants had the same population attributable risk. 

Using the relationship between genotype relative risk and population attributable 

risk, one can construct the genotype relative risk of a variant, given the population 

attributable risk and the allele frequency. Based on the genotype relative risk of all 

the causal alleles and the carrier status of each individual (i.e., carrying 0, 1, or 2 

of the variant in question), we could calculate the probabilities for each individual 

being a case. To determine the phenotype of each individual, a “loaded coin” was 

tossed, with the probability of being a case determining the load. The complete 

algorithm is described in detail in the  supporting information to Paper II. When 

adding a simulated effect on the variants, we randomly selected 100 genes to be 

causal for the phenotype in question, and investigated two different scenarios. In 

the first scenario, all variants within the 100 causal genes were causally linked to 

the phenotype. However, having 100% of the variants casual for a disease is an 

unrealistic biological scenario. In the second simulation scenario, we therefore re-

laxed this assumption and randomly sampled 50% of the variants from the same 

100 genes to be the causal variants. 
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We compared the power of the two methods for effect sizes between 0% and 8% 

population attributable risk, as shown in Figure 2 in Paper II. The retrieval rate 

for each gene was considered a surrogate for power. The retrieval rate for each of 

the 100 genes was assessed 50 times by drawing new case-control cohorts from 

the simulated pool of individuals. This allowed us to construct an empirical con-

fidence interval for the power of the different methods. We compared the perfor-

mance with increasing sample sizes for both scenarios. The different sample sizes 

were chosen to reflect realistic cohort sizes in rare variant association studies, and 

the case-control ratios were always equal to one for each simulation.
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V Summary of results

V.1. Paper I

Genome-wide DNA methylation profiles indicate CD8+ 

T cell hypermethylation in multiple sclerosis

This study aimed to identify MS-specific DNA methylation biomarkers in pu-

rified immune cells, which might also be used as biomarkers whole blood. We 

isolated DNA from CD4+ T cells, CD8+ T cells, and whole blood from 16 treat-

ment-naïve female MS patients and 14 age-matched female controls. DNA 

methylation was assessed genome-wide using the Illumina 450k array. 

The MS patients and the controls did not show any significant difference in phe-

notypic aspects important for DNA methylation studies, such as smoking status 

and age. The MS group was quite homogenous, as all had been diagnosed with 

relapsing-remitting MS, and all patients had low EDSS and MSSS scores. 

To account for variation between the ratios of the different white blood cells in 

whole blood, we estimated the cell type proportions within each individual us-

ing the Houseman algorithm with a training dataset taken from Reinius et al. 

(Houseman et al., 2012; Reinius et al., 2012). No significant differences in the cell 

type proportions between MS cases and healthy controls were observed. When 

we inspected the effect size of the probes with nominally significant p-values in 

the differential DNA methylation analysis between MS patients and controls, 

we noted that they were largely shifted towards hypermethylation in the CD8+ T 

cells for the MS patients. For the CD4+ T cells and in whole blood, this hyper-

methylation was not observed; there was balanced hyper- and hypomethylation.

After analyzing the DNA methylation in the genes in close proximity to the 

MS-associated SNPs (IMSGC, 2013), no significant enrichment of differentially 

methylated genes was found. Following a single site analysis, no CpG was ge-

nome-wide significant in CD4+ T cells, CD8+ T cells, or whole blood, after cor-

recting for multiple testing. 

In our study, no individual CpG, gene, or candidate regions were genome-wide 

significantly different in MS patients and controls after correction for multiple 

testing. However, we did observe a striking number of hypermethylated probes in 

the CD8+ T cells of MS patients compared with controls. We did not observe any 

systematic hypermethylation in either CD4+ T cells or in whole blood. 
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V.2. Paper II

Assessing the power of Exome chips

Genotyping chips for rare and low frequency variants have become feasible with 

the introduction of Exome Chips. Our objective was to investigate the perfor-

mance of these genotyping chips in different scenarios. We simulated 200,000 

individuals with the same allele frequency spectrum as reported by the Exome 

Chip Consortium (Exome Chip Consortium, 2011). From this population pool, 

we drew cohorts of different sample size. 

The methods were tested on a set of genes with no effect on the phenotype, to test 

whether the false positive level was acceptable. Both methods controlled the Type 

I error sufficiently, with SKAT being marginally more conservative than WSS. 

For small effect size and small sample size, we observed that WSS converged 

marginally faster than SKAT, but when the population attributable risk reached 

0.5%, SKAT outperformed WSS in power. We also noted that SKAT had a much 

slower convergence in power when all variants within each gene were given the 

same weight, than if the variants were given a weight that was inversely propor-

tional to their allele frequencies. 

The rate of convergence in a sample size of 100,000 samples (50k controls and 

50k cases) was quite close for SKAT and WSS, but for small samples sizes there 

were substantial differences in the convergence rate for the power.

In line with earlier studies (Lin, 2014), we found that SKAT outperformed WSS 

in most cases. We also found that for small to moderate effect sizes, a sample size 

of 20,000 should be sufficient. This effect size should correspond to a population 

attributable risk around 0.5% on all variants within each gene. When only half of 

the observed variants within a gene are causal, a much larger sample size or effect 

size is needed to reach the same power. 
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V.3. Paper III

Assessing genome-wide significance for the detec-

tion of differentially methylated regions

We introduced a statistical approach to identify differentially methylated regions 

(DMR) with adjustment for multiple testing on the region-wise level. The lat-

ter has not been sufficiently addressed by methods to identify DMRs introduced 

earlier. 

The window thresholds are the values that determine significance, and represent 

the value with which the window sums are compared in the scan statistic. For the 

method presented in Paper III, we evaluated three different ways of determining 

the window thresholds: first, using a full-scale MCMC simulating the null dis-

tribution of all test statistics; second, using the importance sampling algorithm 

outlined by Zhang (Zhang, 2008); and third, using Siegmund et al.’s (Siegmund 

et al., 2011) analytical expression to determine the thresholds. All three methods 

gave different thresholds with the same basic input parameters, such as number of 

methylation sites and FDR limit. We compared three DMR methods with Bum-

phunter and DMRcate in two different scenarios of added effect size. Both of 

these scenarios included the same CpGs and 100 predetermined causal regions.

In the first scenario, we had a uniform effect size on all CpGs within the causal 

region. In the second scenario the effect size was weighted with a standard nor-

mal kernel. Due to the kernel smoothing, the effect size was lower on the border 

of the causal region and gradually increasing towards the midpoint of the causal 

region. In order to have a comparable scenario, we multiplied the kernel by a nor-

malizing factor, making the area of added effects the same in the two scenarios. 

Figure 1 in Paper III shows the convergence rates in power for the five different 

methods, where the first scenario is shown on the left-hand panel and the second 

scenario on the right-hand panel. Figure 1 in Paper III also shows the plotted 

false positive findings for each of the methods (in light colors). The top panels 

show the power to detect parts of the regions as a function of effect size, and the 

bottom panel shows the fraction of the recovered CpGs. Our method outper-

formed both DMRcate and Bumphunter in calling DMRs (top panel), and the 

difference in the convergence rate was substantial for small effect sizes. Investi-

gating the proportion of true positive CpGs, DMRcate outperformed all other 

methods but at a cost of higher number of false positive rate. While the false pos-
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itive probes in DMRcate were in close proximity to the causal regions, the pro-

portion of false positive probes was considerable compared with the other meth-

ods. Bumphunter, DMRcate, and our method using the Siegmund thresholds did 

not called any false positive DMRs. Using the more liberal thresholds calculated 

by the Monte Carlo sampling and importance sampling resulted in less than 10 

false positive independent regions out of 1,071 CpG islands assessed. Since the 

window thresholds in our method were independent of the effect size, the false 

discovery rate was constant for all the three methods. 

The regions in which we added an effect varied in size from 5 CpGs to 100 con-

secutive CpGs. It is conceivable that the power depends both on the effect size 

and the length of the DMR, since longer regions tend to be easier to call. To 

investigate this, we plotted the effect size multiplied by the length of the caus-

al region against the power, as show in Figure S1 in Paper III. Figure S1 shows 

the average of the power when accounting for both effect size and region length. 

We observed a similar pattern of convergence rates in power as shown in Figure 

1 (Paper III). In the first scenario of uniform effect sizes for an effect size times 

length equal to 80, our method had reached a power of 100%, while Bumphunter 

and DMRcate never reached 100% power. In the second scenario, Bumphunter 

and DMRcate performed equally well, but our method performed much better 

compared with the first scenario. This could be explained by the peaks in the test 

statistics in this scenario and our method being more sensitive to small peaks 

than both Bumphunter and DMRcate. 

In conclusion, our method outperformed both Bumphunter and DMRcate in de-

tecting causal DMRs, especially for small effect sizes, while also keeping the false 

discovery rate under control.
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VI Discussion

This thesis presents several broad aspects of genetic and epigenetic association 

testing in complex diseases, with a special focus on multiple sclerosis. It outlines 

some methods, challenges, and results for rare variant analysis as well as the anal-

ysis of methylation. 

There have been numerous studies of both the genetic and environmental risk 

factors of MS, but there have been few publications on epigenetic factors in MS. 

Paper I is among the first publications on MS and DNA methylation in CD4+ T 

cells, and the first to report simultaneous analysis of the genome-wide methyla-

tion profile of CD4+ and CD8+ T cells in treatment-naïve MS patients. 

While association studies involving common variants have been successful, 

searches for rare variants involved in complex diseases have not been equally suc-

cessful, with the exception of some psychiatric diseases (Walsh et al., 2008; Neale 

et al., 2012). Moreover, as more rare variants are discovered in the efforts to char-

acterize the complete human genome, many more variants have the potential to 

be identified as risk alleles. However, for any given phenotype, this search will 

require a substantial number of individuals to be included, as shown in Paper II. 

The technological developments for genome-wide detection of DNA methyla-

tion has resulted in many new epigenome-wide association studies in complex 

diseases. Many of these studies have identified regions that are differentially 

methylated between cases and controls. However, both the definitions of a DMR 

and the methodology for identification of DMRs have varied widely between 

studies, making comparisons of the results difficult. Few studies have compared 

the different methods for identifications of DMRs, and in this regard Paper III 

contributes to the growing field of statistical modeling in epigenetic studies. 

Several aspects of the methodology are important to consider when analyzing ge-

netic and epigenetic risk factors in complex diseases. These include study-specific 

problems such as power and confounders, as well as the influence of the meas-

urement technology (e.g., the genotyping chips) on the results presented in each 

study. 
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VI.1. Power

Power is defined as the probability of correctly rejecting the null hypothesis when 

the alternative hypothesis is true. In both Paper II and Paper III, we report how 

we investigated power by simulation, thus taking an empirical approach when as-

sessing the power. In both cases, power was estimated by the fraction of recovered 

causal loci. Using this approach, we had to make some assumptions about how 

the causal effects were distributed. All of the assumptions made in the simula-

tions will have affected the estimated power in some way. For the study report-

ed in Paper II, we investigated the performance of the Exome Chip in terms of 

power as a function of different sample sizes and effect sizes. We investigated 100 

genes that were randomly chosen to represent the whole chip. The length of these 

genes, as well as the allele frequencies of the variants residing within them, poten-

tially affects the estimated power. 

In the study reported in Paper I, in order to have best chance of discovering dif-

ferences between MS patients and healthy controls, we carefully selected our par-

ticipants to be as homogeneous as possible. Because this was a small pilot study, 

we had the possibility to select such a homogeneous patient group, but for larger 

studies this may not always be the case. Increasing the sample size is usually pref-

erable if all individuals can be selected from the same homogeneous group. How-

ever, population heterogeneity may reduce the power and should be addressed 

when increasing the sample size. 

With population heterogeneity under control, significant contributors to power 

include effect size, sample size, and adequate statistical methods. The first com-

ponent is usually outside the control of the experimenter, and the second com-

ponent may be limited due to experimental constraints. This leaves the statistical 

methodology as often the most adjustable component. In both Paper II and III, 

we describe how we compared different methods applied to the same dataset and 

observed quite large differences in power for the different methods. This indicates 

that choice of methods can have a large effect on power, and that the optimal 

method for a design can have substantially higher power than all other methods.

When studying the contribution of rare variants to disease risk, population heter-

ogeneity has to be given a special attention since rare variants tend to be restricted 

to a particular population or to a specific geographical location. Thus, a small shift 

in the geographical distribution between cases and controls can give sufficiently 



30

large differences in the allele frequencies to cause variants to be falsely associated 

with the disease. In Paper II, we explain how we circumvented this issue by sim-

ulating individuals from a homogeneous population. The target population was 

a mixture of the all genotypes from all individuals included in the design of the 

Exome Chip. However, this population is a mixture of different ethnicities. The 

majority of the cohorts contributing to the Exome Chips design consist of Eu-

ropean-Americans, which made up roughly three-quarters of the individuals (Ig-

artua et al., 2015). The simulated population pool reflected an ideal scenario with 

no population stratification, since the genotypes were sampled independent of 

ancestry. This simplification may have led to an overestimation of the power, since 

population heterogeneity will generally reduce the power in an association study.

Population heterogeneity in both rare variant studies and GWAS can be seen as 

a structurally similar problem to tissue heterogeneity in EWAS. The solution to 

this problem is to estimate the main contribution to this unwanted variation and 

then adjust for it. In GWAS, this is usually done using the principal components 

as covariates, while in EWAS this is done using a training dataset to estimate the 

relative cell type proportions. However, removing too much of this variation car-

ries the risks smoothing out truly informative variation between the cases and the 

controls, and therefore this should be borne in mind. 

It is reasonable to assume that a single locus test for rare variants will perform 

worse than collapsing methods. This can be attributed to the fact that power de-

creases with decreasing allele frequency (Sham & Purcell, 2014). However, since 

informative markers are also combined into one unit, they will enhance the each 

other’s signal. In the case where only one variant within a unit is causal, aggregat-

ing it with non-causal variants will not increase the power. Thus, the assumption 

of increased power from a collapsing test is only reasonable if one assumes that 

there is more than one casual variant within the gene and/or unit of interest.

The power of the methods assessed in Paper II was presented as a function of 

increasing population attributable risk, which was the only free parameter when 

simulating disease risk. However, each gene contributed a different number of 

variants, each with different genotype relative risks. Our plots presented a sum-

mary of power over all the genes, which may give a simplified representation of 

the correlation between population attributable risk and power. Depending on 

the allele frequency of the variants within each gene, the population attribut-

able risk will affect the total risk from the genes differently. For a given popu-
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lation attributable risk, genes with many rare variants may have a much higher 

total load of genotype relative risks than genes with few variants. We could have 

attempted to summarize the genotype relative risks within each gene and pre-

sented the power as a function of both the genotype relative risk and the pop-

ulation attributable risk. However, this would have been needlessly complicated 

and could have obstructed the interpretation of the overall power for the Exome 

Chip. Since population attributable risk is easier to interpret than genotype rel-

ative risk on the population level, it is a more convenient effect measure to use 

when assessing the power of a method in larger cohorts.

In Paper III, we show that the choice of statistical methods has a large impact on 

power, as shown in Figure 1 in Paper III. However, power can be perceived from 

different angles, as illustrated in the upper and lower panels in Figure 1. In the 

upper panel, the number of causal region containing at least one observed DMP 

is presented as an estimation of the power. The lower panel displays the true posi-

tive CpGs as a fraction of the total number of causal loci. One explanation for the 

large discrepancies in our method (shown between the upper and lower panels) 

is that a sliding window is likely to have at least one significant window with-

in the causal region, but does not identify the correct boundaries of the causal 

DMRs. When identifying the causal CpGs, the dominance of DMRcate shown 

in the lower panel is due to a quite aggressive smoothing of the test statistic. This 

smoothing also gave rise to the large number of false positive observations, which 

lay on the border of the causal regions.

VI.2. Confounders

A confounder is a factor that is a common cause of both the exposure and the 

outcome. The presence of an unmeasured confounder can profoundly impact the 

estimated association between the exposure and the outcome. This can lead to 

false associations between exposures and a disease, and should therefore be avoid-

ed by all possible means. 

In Paper I we identify possible confounders, including smoking, disease modify-

ing treatment, and tissue heterogeneity. Smoking is a factor that is known to af-

fect disease risk and modulate DNA methylation, and is therefore a possible con-

founder (Zeilinger et al., 2013; Kucukali et al., 2015). However, when adjusting 

for smoking status in our regression analysis reported in Paper I, there were no 

observable changes in the main effects. Another important possible confounder 



32

mentioned in Paper I is the tissue heterogeneity of whole blood. Blood consists 

of a mixture of different cell types, each with a distinct methylation profile. If a 

disease is driven by one particular cell type in whole blood, this can result in ob-

served differences in methylation between cases and controls when measured in 

blood. These differences in methylation may not be due to true methylation dif-

ferences as such, but are rather a result of different ratios of cell types between the 

cases and the controls. The method we used to estimate cell type ratios relied on 

a training dataset to identify methylation loci that were informative for the dif-

ferent cell lineages. As a training dataset, we used the freely available dataset pub-

lished by Reinius et al. (Reinius et al., 2012). This dataset originates from seven 

Swedish males, and contains eight different cell types. The compatibility of this 

training dataset with our sample population is questionable, due to the sex and 

population difference between the two cohorts (Zhang et al., 2011; Singmann et 

al., 2015). However, adjusting for the estimated cell type ratios did not change 

the order of any of the main effects when ordered by p-value, nor did it change 

the p-value distribution. Due to lack of significant changes, and since this ad-

justment may add considerable noise to the model, this potential confounder was 

not included in the final model. The MS patients included in the study in Paper 

I came from a homogeneous group, and all had been recently diagnosed and were 

of Nordic genetic ancestry. A key strength of our study was that none of the MS 

patients were taking immunotherapeutic drugs, which also would have had the 

potential to influence the methylation patterns in immune cells in MS patients. 

Given the large data size in genomics, it is not only important to identify possible 

confounders, but also to adjust for them without additional computational cost. 

In Paper I we describe how we tested each locus independently using a linear 

model and expanded the model to account for any possible number of confound-

ers. In the collapsing methods used in the studies on which Paper II and Paper 

III are based, it may not always be the case that the models can be expanded to 

account for covariates without a large increase in the computational cost. All col-

lapsing methods assessed for DMR calling as well as SKAT have the ability to 

be extended with additional covariates. However, for Bumphunter, this expansion 

comes at the cost of a substantial increase in computational time. The WSS meth-

od is the only collapsing test that cannot easily include covariates. 
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VI.3. Methods

TECHNOLOGICAL CONSIDERATIONS 
The Illumina 450k DNA methylation microarray (Paper I) used a 50bp probe 

sequence that hybridizes to the DNA in our samples. The probes sequences were 

designed based on a reference genome, which represented an “average” human 

genome. In an individual with a SNP in one of these probe sequences, the hy-

bridization may not have been optimal and could have affected the methylation 

readout. A SNP residing in the probe sequence with a weak association to MS 

can cause quite large changes in the methylation measurement (see Figure S1B 

in The supporting information to Paper I). To account for this, we removed all 

probes where we observed a SNP residing in the probe sequence in our samples. 

This step removed almost one-fifth of the total data points. It is possible that this 

reduction may have caused us miss information that could have been relevant for 

the disease. However, the interpretation of such findings would have been diffi-

cult, due to the possible confounding of those SNPs. We could not rule out the 

possibility that we had not removed all probes harboring a SNP in our sample 

population. However, the lack of any strong signal in our remaining data suggests 

that the majority of SNPs affecting the readout had been removed. 

In Paper II, we highlight an important consideration when using the Exome 

Chip, which is that the cohorts used when this chip was designed were enriched 

for a narrow set of disease groups. Many important disease groups were missed, 

such as autoimmune diseases, neuromuscular diseases, and others. The main 

groups of diseases included were lifestyle disorders such as type 2 diabetes, car-

diovascular diseases, and BMI extremes. Thus, variants conferring risk for other 

diseases may have been missed. This may lead to reduced performance of the chip 

when applied to other diseases.

SIMULATION OF GENOTYPES
When simulating the genetic variants in the study reported in Paper II, a num-

ber of considerations had to be balanced. These included computational efficacy, 

correlation between variants due to LD, and variant frequency. Frequency tun-

ing when simulating genetic variants is easy to do, but it comes at the expense of 

realistic LD modeling between the variants. When realistic modeling of the LD 

between the variants is considered more important than the allele frequencies, 

a coalescent simulation might be preferred. However, in each iteration of a co-
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alescent simulation, there will be some fluctuations in the allele frequencies. For 

very rare variants, small fluctuations in the frequency will be large relative to its 

absolute value, and thus frequency tuning on a very fine scale may be difficult to 

obtain. For these reasons, we used the method outlined by Basu et al. to simulate 

the sample population in described in Paper II (Basu & Pan, 2011). This meth-

od generates a “snapshot” of the genetic variability in an outbreed population. 

Each individual is simulated once, and all individuals are simulated independent-

ly. Since each individual is simulated independently, the computational burden 

scales well with the number of individuals simulated for this method. When sim-

ulating the variants, the LD pattern was down-prioritized over exact frequency 

tuning, but was still present to some degree in the final simulated population pool. 

However, since the LD between rare variants tends to be low, this should not have 

distorted the simulated genotype too far away from a realistic setting. 

Given a set of simulated genotypes, there is no general way of classifying the in-

dividuals into a binary trait based on their genotype. To stratify the individuals 

to a case-control status and to control the degree of added effects, we chose the 

algorithm presented by Madsen and Browning (Madsen & Browning, 2009), and 

later used by Lin (Lin, 2014). Given the genotype relative risk for the causal al-

leles in an individual, this algorithm constructs the probability for an individual 

of being a case. The genotype relative risk scales linearly with the population at-

tributable risk, and are inversely proportional to the allele frequency. This means 

that the rarest variants will have highest impact on the disease probability, and 

that the contribution to disease risk will fall with increasing allele frequency. The 

interpretation of population attributable risk is the fraction of cases that can be 

explained by the exposure, where the exposure is the risk allele. In this setting, 

it is the fraction of cases that can be directly attributed to the risk variant. The 

population attributable risk indicates what fraction of the cases would not have 

developed if the risk variant had not existed in the population.

For computational reasons, we randomly selected a set of 100 genes to use for 

the power analysis. The number was picked to balance the computational burden 

and biological plausibility. The current results from most GWAS suggest that for 

most complex diseases, around 100–300 genetic variations may be involved with 

a measurable contribution. It is still not known whether the number of contribut-
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ing rare variants to complex diseases is higher or lower than for common diseases. 

However, given our current knowledge, the number of causal genes used to sim-

ulate the phenotype in Paper II was not an unreasonable guess.

For large effect sizes, we did get enough spread of cases in our population pool 

to draw 100,000 samples with a 1:1 case-control ratio. However, for small effect 

sizes (below 0.2% population attributable risk), there were not enough cases in 

the population pool, and we needed to add additional causal alleles outside the 

investigated genes. These additional alleles contributed to the phenotype but were 

not assessed in the power analysis. Since this addition did not occlude the con-

tribution from causal genes on the phenotype, the addition of (external) effects 

should not be problematic. 

SINGLE SITE ANALYSIS
In both GWAS and EWAS, the first assessment of the data is usually an inde-

pendent investigation of each loci, adjusted for any identified confounders. In 

Paper I, when modeling each CpG site independently, we used a mixed model 

to account for heterogeneity between CD4+ and CD8+ T cells. This model allows 

for covariates to be included, and a better approach might have been to include 

the genotypes of any SNP that resided in the probe sequence in the model. Our 

approach may have left probes with a stronger signal in the analysis, but the in-

terpretation could be influenced by the presence of such a SNP. 

The significance cut-off for p-values after Bonferroni correction in genome-wide 

studies is usually fixed at 5 × 10-8, arising from the observations that after cor-

recting for LD there are approximately 1 million independent loci (Pe’er et al., 

2008). However, rare variants are usually not assumed to be in equally strong 

LD as the older common variants, and thus this threshold may not be appropri-

ate if many rare variants are tested (Auer & Lettre, 2015; Fadista et al., 2016). 

However, if more stringent p-value threshold are used for rare variants, an un-

reasonably large sample size would be required to have the power to obtain any 

genome-wide significant findings.
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REGIONAL METHODS
DMR calling in methylation data

To identify possible DMRs in the study reported in Paper I, we trimmed the 

top 5% of data of the test statistic and aggregated them into candidate regions. 

This trimming of the data may have caused some inflation when calculating the 

permutation p-values for the regions, since only the probes that were most sig-

nificant were used. When the candidate regions were then permuted, they were 

compared against an already inflated statistic. This may have underestimated the 

permutation p-values for the candidate regions presented in our paper. In Bum-

phunter, this issue is partly resolved by generating new independent regions from 

the permutations, and by adjusting for the length of the regions when comparing 

the permutation results to the candidate regions. 

In Paper III, we describe how, when assessing our method for DMR calling, it 

became clear that the method would perform best when the signals in the data 

were distributed in distinct peaks of sufficient height. However, for most com-

plex diseases, the DMR signals are not likely to take the shape of distinct peaks. 

For this reason, the window thresholds need to be close to the test static in order 

to pick up any signal. When the threshold approaches the test statistics, small 

changes in the threshold values can have large consequences for the Type I er-

ror rate. For this reason, a higher threshold might be preferred if more than one 

threshold value is available for the same significance level.

When constructing thresholds for the window sizes, different assumptions were 

made about the distribution and dependency for the test statistics (Paper III). 

For the closed form expression of the threshold by Siegmund, the test statistics 

were assumed to follow an Ornstein–Uhlenbeck process (Siegmund, 1985; Sieg-

mund et al., 2011). The Ornstein-Uhlenbeck process is equivalent to a continu-

ous stationary AR(1) process, and may not have sufficiently long conditional de-

pendencies between observations to model the methylation data adequately. For 

any other dependency structure, a Monte Carlo simulation is required to deter-

mine the thresholds. While an AR(p) model for the threshold might have given 

the most realistic dependency structure of the data, it was also by far the most 

computationally expensive to determine. For a large numbers of loci or a long se-

quence of different window sizes, the threshold estimation with this method may 
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be unreasonably expensive in central processing unit (CPU) time. However, the 

AR(p) estimation could easily be done in parallel for each window size and for 

the different threshold grids, thereby reducing the perceived computational time. 

The middle ground between a full-scale Monte Carlo simulation and a closed 

form is the importance sampling algorithm. This is a subsampling of a small sec-

tion of the data and estimates the window thresholds based on this subsection. 

Importance sampling had a very similar behavior to the Monte Carlo sampling of 

an AR(p) model, but with a substantial reduction in computational time. 

When sampling an AR process, one assumes that all observations are equally 

spaced on the chromosome. This is clearly not the case, and may affect the estima-

tion of the window thresholds. Additionally, the AR sampling considers only the 

total number of methylation sites, and is not tailored to the dependency structure 

within each CpG island. Investigation into the different CpG islands showed a 

large variation in the dependency structure. However, it is not feasible to account 

for this heterogeneity in dependency structures. To estimate the window thresh-

olds, an overall dependency structure has to be applied to all CpG islands. 

To prevent the window sums being canceled out by test statistics in opposite di-

rections within the same window frame, we applied the absolute value operator. 

This operation can be accounted for in both the AR(p) and the importance sam-

pling estimation of the thresholds. However, Siegmund et al. (Siegmund et al., 

2011) state that the test statistic is assumed to be symmetric, and taking the ab-

solute value of the test statistics breaks this symmetry. However, Siegmund et al.’s 

method always gave more conservative window thresholds than the Monte Carlo 

simulations, and this transformation therefore seems to have no adverse effects. 

Difference of aggregation methods in rare variant and epigenetic associa-

tion studies

The studies described in Paper II and Paper III used aggregation of variables to 

increase the power of a genome-wide study. In rare variant association studies, 

the focus was on aggregating variants into genes (or other predetermined units), 

which were then tested sequentially. In EWAS, the most common methods have 

been more data-driven and annotation-free, allowing for investigation of subre-

gions within genes or CpG islands. 
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The different approaches reflect differences in both biology and the data. Rare 

causal variants are not assumed to be in high LD, but are expected to distribute 

uniformly over the genes. Hence, no sub-unit in the genes is favored in the anal-

ysis and the location of the variants within the genes relative to each other is not 

considered important. What is important is the total variant load within each 

gene. However, in DNA methylation there is usually a high degree of correlation 

between the methylation levels at loci in close proximity. If methylation in the 

parts of the CpG islands does not contribute to disease risk, then including all 

observations within the CpG islands may introduce additional unwanted varia-

tion. This is why most of the methods for methylation data aim to identify subre-

gions within the units of analysis. 

Another essential difference is whether the observed variants themselves are col-

lapsed or whether the corresponding summary statistics are collapsed. For rare 

variants, usually the genotypes are aggregated, whereas for most DMR methods 

the test statistics are aggregated. It is often more computationally feasible to ag-

gregate the individual test statistics. However, for rare variant analysis, the power 

benefit may be marginal when already underpowered test statistics are aggregat-

ed, instead of aggregating the individual genotypes. Since power concerns are the 

main reason to aggregate variants, it is more sensible to aggregate the individual 

genotypes when considering rare variants. 

When each unit or gene has been analyzed without considering any sub-units, 

the number of tests will be limited to the number of units. However, when sub-

units are considered as well, the number of possible test will increase with an in-

creasing number of units. This issue can be approached in different ways. For our 

method described in Paper III, we determined the threshold for the sliding win-

dows depending on the number of possible windows in the analysis. This should 

have the same effect as correcting for multiple testing. 

VI.4. Results

Two published studies of DNA methylation in CD4+ T cells in MS have yield-

ed conflicting results (Baranzini et al., 2010; Graves et al., 2013). The findings 

by Graves et al. could not be replicated in our study. This was mainly because 

four-fifths of their top hits were removed in our study due to technical reliabil-

ity issues. The remaining observations were not genome-wide significant. Ad-

ditionally, some of the patients included in Graves et al.’s study were on immu-
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notherapeutic treatments, which may have confounded the analysis. Since the 

technology used in the study by Liggett et al. and the one used in Paper I differ, 

and there were no overlapping loci, the two studies could not be compared (Lig-

gett et al., 2010). Since the measurement of DNA methylation used in the Pa-

per I study cannot distinguish between methylation and hydroxymethylation, we 

were not able to investigate any of the findings reported by Calabrese et al. (Cal-

abrese et al., 2014). If hydroxymethylation in MS cases differs from the controls 

but the total methylation levels (methylation plus hydroxymethylation) are the 

same, our study would not have observed any differences in methylation between 

the MS cases and controls. 

Our findings reported in Paper I are in agreement with those from the study by 

Baranzini et al., who found no large difference in DNA methylation in CD4+ T 

cells between monozygotic twin pairs discordant for MS.

A substantial part (~84%) of the variants on the Exome Chip is below 0.5% in 

allele frequency, which is much lower than used in earlier power studies of rare 

variants. It is evident from Paper II that the dominance of the low frequencies 

caused a great reduction in power compared to earlier publications on rare vari-

ants with higher allele frequencies, such as that by Basu et al. or Lin (Basu & Pan, 

2011; Lin, 2014). As we show in Paper II, the high number of very low frequen-

cy variants poses challenges that have not been covered in earlier publications. To 

our knowledge, this is the first published study that specifically investigated the 

performance of the Exome Chip.

In Paper III, our method built upon the method presented by Zhang (Zhang, 

2008), with some extensions and a new application area. Earlier publications on 

DMR calling can roughly be divided into two groups—static and dynamic ag-

gregation methods—with Bumphunter and DMRcate falling in the latter group. 

Both DMRcate and Bumphunter provide some way of adjusting for multiple 

testing. In DMRcate, the region-wise p-values are calculated using Stouffer’s 

method. This method is closely related to Fisher’s method for combining p-val-

ues, and may also suffer from the same problems when combining dependent 

p-values by giving an inflated combined p-value. Calculating p-values using a 

permutation test, as is done in Bumphunter, may also inflate the estimated p-val-

ue if the pre-selection step when identifying the regions is not accounted for.
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None of the methods for DMR calling starts with the aim of identifying DMRs 

adjusted for multiple testing, but rather by identifying DMRs and treating the 

issue of multiple testing in a somewhat ad hoc manner. Our method starts with 

the premise that post hoc adjustment for multiple testing may not be sufficient, 

and that correction for multiple testing should be considered in all steps of the 

DMR calling. 

To our knowledge, there have not been any publications dedicated only to bench-

mark the different methods for DMR calling. In our paper, discrepancy in perfor-

mance between Bumphunter and DMRcate was much smaller than in the article 

by Peters et al., which also introduces the DMRcate method (Peters et al., 2015).

In Paper I, we explain how, after stringent quality control, we did not identify 

any CpG sites with genome-wide significant association with MS. The main rea-

sons for this negative finding are probably either the lack of power due to small 

sample size or the absence of a true biological signal at the observed loci. There 

are approximately 28 million CpG sites in the human genome, and only a small 

fraction of the CpG sites were targeted on the 450k array (Smith & Meissner, 

2013), leaving the possibility that many important disease loci could have been 

overlooked in this study.

While smaller pilot studies can give a good indication of potential genetic or epi-

genetic variation that is important for a disease, they are also much more prone to 

variability and chance findings. The observed hypermethylation in CD8+ T cells 

may be such a chance finding, and should be replicated in an independent cohort 

before it is considered as a significant result. This hypermethylation could not be 

observed in whole blood or in the CD4+ T cells. In the case of whole blood, the 

likely reason for this is that whole blood is a heterogeneous tissue consisting of 

many different cell types, of which only a few may be relevant in MS pathology.

In Paper II, we describe how, using a large, homogenous simulated cohort, we es-

timated that for small effect sizes such as 0.5% population attributable risk on the 

causal variants, a cohort of approximately 20,000 individuals would be needed to 

obtain sufficient power. We estimated that in the presence of non-causal variants 

within the causal gene, a cohort larger than 30,000 individuals is needed to obtain 

similar power compared to the scenario that all variants within a gene were causal. 
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Figure 1D in Paper II shows the QQ-plot for a simulation with 0.3% popula-

tion attributable risk on the causal genes. For the estimated p-values of the causal 

genes, SKAT are completely detached from the non-causal genes. This suggests 

that a population attributable risk of 0.3% on all variants within a causal gene is 

an unrealistically large effect size for most association studies with rare variants. 

There is no common standard for how to add effect sizes to variants in genetic 

simulations, and two common ways are either risk ratio modeling or odds ratio 

modeling. For the study reported in Paper II, we used risk ratio modeling since it 

can be formulated with only one free parameter, which can be seen as the overall 

effect size. Modulating the risk of each variant based on the genotype relative risk 

was quite similar to the weighting we used in SKAT. This may explain some of the 

discrepancy between SKAT and WSS shown in Figure 2 in Paper II. 

In studies of many complex diseases, the Exome Chips are still used and have 

resulted in some new associations (Huyghe et al., 2013; Peloso et al., 2014; Igar-

tua et al., 2015; Jackson et al., 2016). However, sample size and power should be 

carefully considered when designing studies around this genotyping chip. It is 

also important to consider that several common disease groups were not included 

when the chip was designed, and applying the Exome Chip to these diseases may 

result in suboptimal performance. 

When analyzing methylation in complex diseases, distinct peaks in the test statis-

tics cannot be expected. Thus, when applying a sliding window to identify peaks, 

the significance threshold for the windows needs to be quite close to observed 

null statistics. For thresholds that lie close to the observed test statistics, a small 

change in the threshold level can have dramatic effects on Type I error rate. 

The p-values reported by the three methods described in Paper III were calculat-

ed using very different approaches. DMRcate reports the minimum and a com-

bined p-value for each significant region. These two quantities can sometimes be 

difficult to interpret since they may tend to be bias towards the alternative hy-

pothesis (Brown, 1975). Bumphunter uses permutation to determine significance 

for each candidate region. This is done by shuffling the case/control status and 

finding new regions, which are compared to the candidate regions. Bumphunter 

was implemented for the Illumina 450k array, which has a relative small number 

of probes, and the permutation method does not scale well with larger datasets. 



42

In Paper III, we show that with a sliding window approach and sensible thresh-

olds, the detections of DMRs can be drastically improved without a large increase 

in the Type I error rate. The thresholds for the different window sizes can also be 

estimated such that all significant windows are adjusted for multiple testing. We 

show that proper adjustment for multiple testing is not an obstacle to the iden-

tification of DMRs. When benchmarking our method against DMRcate and 

Bumphunter, we found that our method had the fastest convergence in power.
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VII Concluding remarks 

and future perspectives

Our studies of epigenetic changes CD4+ T cells in MS patients (Paper I) indi-

cated that there are no large-scale differences in the methylation patterns be-

tween MS patients and healthy controls in this cell type. Additionally, we did 

not identify any methylation biomarker for MS in whole blood. The findings of 

hypermethylation observed in CD8+ T cells open up for new research concerning 

DNA methylation in MS within CD8+ T cells.

It can be generally assumed that aggregation methods will increase the power 

compared to single site tests in rare variant studies. However, the simulation of 

the Exome Chip variants reported in Paper II revealed that a substantially large 

number of samples are still needed to show an association for the variants on this 

chip. Aggregation of methylation sites in genome-wide methylome studies may 

also increase the power compared to single site testing. However, when this is 

done dynamically, there are unresolved issues with p-value construction and mul-

tiple testing penalty that need further research. In Paper III we show that the 

choice of method will have a substantial impact on power, especially for smaller 

effect sizes. We also show that proper correction for multiple testing did in fact 

increase the power compared to other similar methods. 

For many autoimmune diseases, the epigenome has not been as thoroughly inves-

tigated as DNA variants. Future investigation into the epigenetics of MS in larger 

sample sizes may shed light on unresolved questions, such as disease prognosis 

and response to treatment. Some genetic risk variants between different auto-

immune diseases overlap (Cotsapas et al., 2011), but no such investigations have 

been carried out for the epigenome. Shared epigenome analysis between different 

autoimmune diseases could give insight into the general biology of autoimmunity. 

In the studies reported in the papers included in this thesis, the genetic and epi-

genetic factors were analyzed separately. The need for methodology integrating 

both data types and other data in one analysis is imminent. An extension of the 

scan statistics methodology, which incorporates both EWAS and GWAS results, 

can be envisioned. 
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Abstract

Objective

Determine whether MS-specific DNA methylation profiles can be identified in whole blood

or purified immune cells from untreated MS patients.

Methods

Whole blood, CD4+ and CD8+ T cell DNA from 16 female, treatment naïve MS patients and

14 matched controls was profiled using the HumanMethylation450K BeadChip. Genotype

data were used to assess genetic homogeneity of our sample and to exclude potential

SNP-induced DNA methylation measurement errors.

Results

As expected, significant differences between CD4+ T cells, CD8+ T cells and whole blood

DNA methylation profiles were observed, regardless of disease status. Strong evidence for

hypermethylation of CD8+ T cell, but not CD4+ T cell or whole blood DNA in MS patients

compared to controls was observed. Genome-wide significant individual CpG-site DNA

methylation differences were not identified. Furthermore, significant differences in gene

DNA methylation of 148 established MS-associated risk genes were not observed.

Conclusion

While genome-wide significant DNA methylation differences were not detected for individu-

al CpG-sites, strong evidence for DNA hypermethylation of CD8+ T cells for MS patients

was observed, indicating a role for DNA methylation in MS. Further, our results suggest that

large DNA methylation differences for CpG-sites tested here do not contribute to MS
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susceptibility. In particular, large DNA methylation differences for CpG-sites within 148 es-

tablished MS candidate genes tested in our study cannot explain missing heritability. Larger

studies of homogenous MS patients and matched controls are warranted to further eluci-

date the impact of CD8+ T cell and more subtle DNA methylation changes in MS develop-

ment and pathogenesis.

Introduction
Multiple sclerosis (MS) is a chronic, inflammatory disease of the central nervous system (CNS)
and the leading cause of disability in the young Western population[1]. The knowledge of the
underlying mechanisms is sparse, but points to a complex interplay between common genetic
and environmental factors. Genome-wide association studies (GWAS) and earlier genetic stud-
ies have identified 110 MS-associated loci and alleles of theHLA-DRB1 (most frequently
�15:01) andHLA-A (�02) loci[2, 3]. Immunologically relevant genes, particularly those in-
volved in T-helper cell differentiation, are significantly overrepresented among MS-associated
variants[4]. Clinical and para-clinical evidence indicate MS results at least in part from inflam-
matory reactions in the CNS[5]. CD4+ T cells predominate in acute CNS lesions[6], whereas
CD8+ T cells predominate in chronic lesions[7, 8], indicating an active role for these lympho-
cyte subclasses in MS.

Recently, epigenetic modifications have been shown to influence predisposition to complex
diseases[9]. DNA methylation, the addition a methyl group to the cytosine in C-G dinucleo-
tides (CpG-sites) modulates expression of nearby genes. DNAmethylation associations have
been reported for several autoimmune diseases, including Sjogren’s syndrome, systemic lupus
erythematous and rheumatoid arthritis[10–12]. Investigation of genome-wide DNA methyla-
tion can be performed by the Infinium HumanMethylation450 BeadChip (450K)[13]. DNA
methylation of different tissues is highly diverse and influenced by environmental factors, ther-
apy or on-going disease processes[14]. Therefore, sample homogeneity is a requirement for
successful investigations of the relationship between DNA methylation and phenotypes. How-
ever, in a clinical setting heterogeneous whole blood (WB) is easily accessible for MS patients,
and whether disease relevant changes can be reliably detected in WB has not been determined.

DNA methylation studies of WB, or purified blood cells fromMS patients have been per-
formed for a small number of discordant twin pairs and siblings at genome-wide scale[15], or
for candidate genes and a limited numbers of CpG-sites[16, 17]. Huynh et al. have shown that
pathogen-free brain regions of MS patients have a different global and specific DNA methyla-
tion profile as compared to healthy donor brain samples[18]. More detailed DNAmethylation
profile studies in carefully characterized, homogenous MS samples are highly warranted. Here
we present genome-wide DNA methylation results from purified CD4+ and CD8+ T cells and
WB of female MS patients and healthy controls.

Materials and Methods

Samples and genotyping
A homogenous collection of 16 untreated, female Norwegian MS patients with relapsing remit-
ting MS (RRMS) and 14 age-matched female controls were included (Table 1). All patients and
controls were of self-declared Nordic ancestry. Patients were between ages 18 and 63 and re-
cruited from the MS clinic at the Oslo University Hospital, Oslo, Norway. Controls were
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recruited either through the patients or among hospital employees. None of the patients had
ever received immune-modulatory drugs. Patients had not experienced a relapse or received
steroids in the three months prior to enrollment and fulfilled the updated McDonald MS crite-
ria[19]. MRI of the CNS was performed within four weeks of blood sampling and the number
of lesions and contrast-enhancing lesions was counted. The Extended Disability Status Scale
(EDSS) was performed on the day of blood sampling.

Genome-wide single nucleotide polymorphism (SNP) genotypes for patients and controls
were assessed using the Human Omni Express BeadChip (Illumina, San Diego, CA, USA). A
large Norwegian GWAS dataset published earlier[20] was used to confirm Nordic ancestry of
our MS patients and controls by principal component analysis (PCA) as implemented in the R
(version3.0.3) software package[21] (S1A Fig.). Genotypes were imputed against the European
1000-genomes data using IMPUTE2[22]. Details on procedures are provided in S1 Materials
and Methods.

Ethics statement
The Regional Committee for Medical and Health Research Ethics South East, Norway, ap-
proved this study. Written informed consent was obtained from all study participants.

Table 1. Characteristics of individual MS patients and summaries of patients and controls.

Patient Age category1 Years MS2 EDSS2 MSSS2 OCB3 MRI lesions Contrast lesions MRI4

1 3 11 3.50 4.13 Yes >20 No

2 3 11 2.00 2.11 Yes >20 No

3 6 33 2.50 1.14 No >20 No

4 1 2 0.00 0.53 Yes 10–20 No

5 5 1 0.00 0.64 Yes >20 No

6 2 8 1.50 1.90 Yes >20 No

7 2 11 1.50 1.38 No >20 No

8 4 6 5.00 7.61 Yes 10–20 Yes

9 5 11 0.00 0.17 Yes >20 Yes

10 3 9 1.00 0.86 Yes >20 No

11 2 6 2.00 3.51 Yes >20 Yes

12 4 16 1.00 0.38 Yes 10–20 No

13 2 6 1.50 2.30 Yes >20 Yes

14 5 3 2.50 5.98 Yes 10–20 No

15 2 6 2.00 3.51 Yes 10–20 No

16 4 1 1.00 2.34 Yes 10–20 No

Summarized

Patients Mean (S.D.; range) 38.9(25–63) 8.8(7.7; 1–33) 1.7(1.3; 0–5) 2.4(2.1; 0.2–7.6) 14/16(87.5%) N/A 4/16(25%)

Controls Mean (S.D.; range) 39.2(28–58) N/A N/A N/A N/A N/A N/A

1Age category: 1 = 25–29, 2 = 30–34, 3 = 35–39, 4 = 40–44, 5 = 45–49, 6 = 60–64.
2At inclusion in this study.
3Oligoclonal bands present in cerebrospinal fluid taken at time of diagnosis.
4Contrast enhancing lesions on MRI.

Abbreviations: EDSS = Expanded Disability Status Scale, MSSS = Multiple Sclerosis Severity Score, OCB = oligoclonal bands, MRI = Magnetic

Resonance Imaging, S.D. standard deviation

doi:10.1371/journal.pone.0117403.t001
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DNAmethylation profiling and data normalization
CD4+ and CD8+ T cells fromWB were isolated for MS patients and controls in a semi-auto-
mated manner using the autoMACS Pro Separator (Miltenyi Biotec, Germany). DNA from
WB and purified CD4+ and CD8+ T cell samples was extracted and treated with bisulphite.
DNA methylation levels were assessed using the 450K (Illumina, USA). Raw data were ex-
ported from Illumina’s BeadStudio and normalized using the ‘BMIQ’ algorithm described pre-
viously[23]. Analyses were performed using beta values of methylation[24]. The CD4+ sample
from donor 8 and both the CD8+ andWB sample from donor 3 had technical issues and were
excluded before further analysis.

In order to prevent false positive signals due to genetic variation other than DNAmethyla-
tion at probes, all probes that had an observed SNP in their target sequence (N = 60,106; see S1
Materials and Methods) in our data were removed before analysis[25] (S1B Fig.). To assess
consistency of cell type specific methylation profiles, PCA of overall DNA methylation was ap-
plied (Fig. 1).

Fig 1. Principal component analyses. For samples in analyses a PCA was performed on overall methylation levels of CpG-sites that passed both quality
controls and SNP filtering in (A) whole blood (Red), CD4+ T cells (Blue) and CD8+ T cells (Magenta) for all cases (squares) and controls (triangles). (B) PCA
of DNAmethylation data from whole blood only. (C) PCA of DNAmethylation data from CD4+ T cells only. (D) PCA of DNAmethylation data from CD8+ T
cells only.

doi:10.1371/journal.pone.0117403.g001
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To account for cellular heterogeneity of WB, we adjusted for cell type distribution in our re-
gression models. Sample-specific estimates of the cell type proportions were obtained by adapt-
ing the algorithm from Houseman et al.[26] using reference information on cell-specific
methylation signatures[27]. Details on the procedures above are provided in S1 Materials and
Methods.

CpG-site differential methylation analysis
Two regression models were used in the analysis CpG-sites. In the first model we analyzed
CD4+ T cell, CD8+ T cell or WB data separately, with ‘case-control’ status as a factor. Second-
ly, a two-way interaction model that utilized data from both CD4+ and CD8+ T cells was ap-
plied. In this model three factors were included; the ‘cell type’, the ‘group’ effect (case-control
status), and an ‘interaction’ factor, which tested for statistical interaction between the cell type
and case-control status. In case of statistical interaction between these two main factors, the
DNAmethylation directions are different between cell types across groups. To account for
multiple testing we employed the Benjamini and Hochberg false discovery rate (FDR)[28].
CpG-sites with the lowest nominal p-values and at least 5% absolute difference in methylation
[29] between MS patients and controls were examined. We examined the differences priori-
tized by lowest p-values to ensure the most consistently changing CpG-sites between MS cases
and controls were considered. Fisher’s exact test was used to test for differences in distribution
of all CpG-sites that reached nominal significance.

For the 5% of probes with the lowest p-values in the CD4+ and CD8+ T cell specific analy-
ses, we determined whether support for any observed signal was present at neighboring CpG-
sites. Our approach was based on the method described recently by Jaffe et al.[30]. Briefly, we
defined a neighbor probe to be of interest if its p-value was also in the 5% of probes with lowest
p-values for the respective cell type analyses, and the maximum distance between CpG-sites
was not greater than 500 base pairs. If a neighbor hit was identified the algorithm then extend-
ed over the next 500 base pairs until no additional hits were present. We then grouped these in-
dividual CpG-sites into differentially methylated regions (DMRs). By permutation testing
based on the area under the curve with respect to the test statistic we calculated p-values for
these DMRs.

Per-gene differential methylation analysis
The recently published list of MS-associated SNPs was used to define candidate genes (N =
148) for methylation differences given their putative role in the genetic predisposition to MS
[4]. To account for multiple testing we also applied the FDR procedure[28]. CpG-sites were as-
signed to specific genes (N = 21,115) based on the provided Illumina manifest for the 450K.
CpG-sites that mapped to multiple genes were included in analyses of all these genes. We used
a permutation test based on the sum of the test statistics for each CpG-site within a gene.

Results

MS patient and control characteristics
Study characteristics are provided in Table 1. There were no significant differences between
mean age or smoking status of MS patients compared to controls. All patients were diagnosed
having RRMS, and the mean duration of disease was 8.8 years. The majority of patients had oli-
goclonal bands in their cerebrospinal fluid. All patients had modest EDSS and MSSS scores,
and more than 10 typical MS lesions on cerebral MRI.

CD8+ T Cell DNA Hypermethylation in Multiple Sclerosis
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Cell type specific DNAmethylation profiles
PCA analysis of the DNAmethylation profiles of CD4+ and CD8+ T cells as well as WB sam-
ples identified differences in the overall DNA methylation patterns between these cell types
(Fig. 1A). Within each cell type, we did not observe clustering of the MS patients and controls,
indicating that on a global level there are no large, consistent DNAmethylation differences
that distinguish individuals according to disease status. (Fig. 1B-D)

Single CpG-site methylation analyses
In total 424,990 CpG-sites were considered after removal of CpG-sites with a low detection sig-
nal or SNPs in the probe sequence. Complete results from the per-CpG-site analysis using line-
ar regression models are provided in S1 Table. We examined whether methylation differences
observed in the T cell subsets were correlated with WB. Correlation of absolute mean differ-
ences from the WB data and either CD4+ and CD8+ T cell data was only moderate (respective-
ly R2 = 0.51 and R2 = 0.56), whereas a higher correlation coefficient (R2 = 0.70) was observed
for CD4+ and CD8+ T cells (S1C Fig.).

The 40 CpG-sites with the lowest nominal p-values and>5% absolute difference in methyl-
ation between MS patients and controls are listed in Table 2–4. For CD4+ and CD8+ T cells we
also listed whether associated CpG-sites were in a DMR as defined above. All DMRs are pro-
vided in S2 Table. Two CpG-sites occurred in the top-40 for all three analyses, both were
hypermethylated in MS patients compared to controls. The first of these two probes;
cg05821046, is annotated at TMEM48, 622 base pairs upstream from the gene transcription
start site. This CpG-site is located in a DMR of three CpG-sites, which was identified in both
CD4+ and CD8+ T cell analyses (S2 Table, Chr1:54304846–54305115). TMEM48 encodes a
protein involved in the nuclear pore complex formation. The second probe; cg22560193, is lo-
cated in the first exon of APC2, a gene predicted to be involved in microtubule and beta-catenin
binding. Furthermore, several CpG-sites within DNHD1 were also among the top 40 most dif-
ferentially methylated in all three datasets. This gene encodes the dynein heavy chain domain
like 1, which is a protein complex that is involved in microtubule movement. We note that
after adjustment for multiple testing, none of these findings reached a genome-wide signifi-
cance level (lowest adjusted p-value = 0.88, S1 Table).

Interestingly, for CD8+ T cells, 38 of the 40 most differentially methylated CpG-sites (95%)
showed evidence for hypermethylation in MS patients when compared to controls. TheDNHD1
gene contained one of the only two hypomethylated CpG-sites in CD8+ T cells (Table 3). In con-
trast, a more balanced pattern was observed for both CD4+ T cells andWB; a much lower num-
ber of CpG-sites, 55% and 52.5%, respectively showed evidence for hypermethylation in MS
patients, compared to controls (Table 2 and Table 4 respectively). When considering all CpG-
sites with nominal p-values below 0.05 from the patient-control comparison, the proportion of
hypermethylated CD8+ T cell CpG-sites in MS patients is significantly greater than hypomethy-
lated CpG-sites (Fisher’s exact test p-value<0.01, Fig. 2A). DNAmethylation of CpG-sites at dif-
ferent genomic features with respect to genes may provide additional insights in specific roles of
the observed DNA hypermethylation in CD8+ T cells. When we considered genomic features for
CpG-sites with p-values below 0.05, an overrepresentation of hypermethylated CpG-sites was
slightly more frequent in 1,500 base pair regions upstream of the transcription start site (TSS-
1500) and 1st exon of genes (>76% hypermethylated sites) whereas the gene body and 3’-UTR
show less evidence for hypermethylation; the lowest proportion (63%) of hypermethylated CpG-
sites was observed in the 3’-UTR (data not shown). Furthermore, when we compared the more
recently diagnosed patients (<7 years from diagnosis) with patients diagnosed earlier (>8 years
from diagnosis) the more recently diagnosed patients showed a slightly higher proportion of
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DNA hypermethylation of their CD8+ T cells (proportion of hypermethylated sites 73% in re-
cently diagnosed patients vs. 68% in the earlier diagnosed patients). We also examined CpG-sites
for which patient-control comparisons did not yield p-values below 0.05, and the observation
that CD8+ T cells are more likely to be hypermethylated remained, although less significant

Table 2. Top 40 results sorted by p-values from linear regression analysis models of DNA methylation in CD4+ T cells.

CD4+ T cells

probeID1 Gene2 p-value3 Effectsize4 stdev5 p-value DMR (# probes in DMR)6

cg20585410 DCX 3.86E-05 -0.074 0.015 -

cg13988338 No gene 7.30E-05 -0.093 0.020 -

cg15552461 RDH13 9.58E-05 -0.069 0.015 -

cg01833234 DNHD1 1.49E-04 0.145 0.033 -

cg07937631 No gene 1.51E-04 0.144 0.033 -

cg24637308 DNHD1 1.63E-04 0.108 0.025 -

cg27419327 No gene 2.29E-04 -0.073 0.017 -

cg26477117 TEKT5 2.57E-04 -0.242 0.058 -

cg02336026 No gene 2.78E-04 -0.065 0.016 -

cg24431033 TXNL1 2.78E-04 0.072 0.017 5.5E-02 (3)

cg12543766 MAGI2 2.84E-04 -0.194 0.046 -

cg03700679 TTC30B 2.94E-04 0.053 0.013 -

cg06346838 APC2 3.88E-04 -0.062 0.015 -

cg05821046 TMEM48 4.03E-04 -0.065 0.016 7.0E-04 (3)

cg11213150 ANGPTL2/RALGPS1 4.06E-04 -0.054 0.013 -

cg08633479 USP29 4.11E-04 0.066 0.016 -

cg12243267 USP29 5.40E-04 0.064 0.016 -

cg06154311 C20orf151 5.68E-04 -0.075 0.019 -

cg27246129 DLL1 6.50E-04 -0.095 0.025 -

cg15627136 No gene 6.65E-04 -0.060 0.016 -

cg16288318 No gene 6.81E-04 -0.096 0.025 -

cg16259355 DACH2 7.49E-04 0.064 0.017 -

cg17332091 No gene 8.03E-04 -0.051 0.013 1.0E-03 (3)

cg23023970 INPP5A 8.82E-04 -0.061 0.016 -

cg08682625 LOC727677 9.72E-04 0.116 0.031 -

cg04587084 No gene 1.03E-03 -0.070 0.019 -

cg10208301 DNHD1 1.08E-03 0.129 0.035 -

cg07733481 SEMA5B 1.15E-03 0.148 0.041 -

cg14667685 No gene 1.34E-03 -0.078 0.022 2.0E-03 (5)

cg22560193 APC2 1.39E-03 -0.089 0.025 -

cg14759977 SUGT1L1 1.44E-03 0.051 0.014 -

cg01413790 No gene 1.45E-03 -0.057 0.016 1.0E-03 (3)

cg06942183 HOXB2 1.51E-03 0.068 0.019 -

cg20954971 No gene 1.53E-03 -0.067 0.019 -

cg15015426 OR10J5 1.64E-03 -0.074 0.021 -

cg19285525 RBMS1 1.65E-03 -0.395 0.113 -

cg07019386 No gene 1.66E-03 -0.080 0.023 5.0E-02 (3)

cg17976205 C20orf151 1.74E-03 -0.052 0.015 -

cg22687569 No gene 1.79E-03 -0.120 0.035 -

(Continued)
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(Fig. 2B). For blood and CD4+ T cells, the distributions of hyper vs. hypomethylated CpG-sites
were nearly identical (~50%) and not significantly different (Fig. 2A).

Methylation differences between cell types
As expected, we observed large differences in DNAmethylation profiles between CD4+ and
CD8+ T cells. This was illustrated by the high total number of CpG-sites showing significant
differences and the large differences of beta levels for these sites. Table 5 shows the 20 most sig-
nificantly different CpG-sites among cell types, adjusted for disease status and possible
interaction between disease status and cell type. Among these 20 CpG-sites none showed a
case-control or interaction effect in the combined model. The CpG-sites showing the greatest
differences among cell types had beta differences of up to 0.85, translating to an almost full
switch of methylation status. Furthermore, the genes near or containing these CpG-sites have
known roles in CD4+ T cell and CD8+ T cell regulation.

MS candidate genes and exploratory per-gene analyses
Analysis of MS patients versus controls was performed at gene-level using a per-gene DNA
methylation summary statistic for either CD4+ or CD8+ T cells. When considering CpG-sites
annotated to genes of all established MS-associated SNPs[2], we observed no significant differ-
ences between MS patients and controls following correction for multiple testing (S3 Table).
Similarly, no significant genes were observed when all genes covered by the 450K were taken
into consideration (S3 Table).

Discussion
Using a robust genome-wide DNA methylation profiling approach, we show no consistent
large-effect DNA methylation differences for CD4+ T cells, CD8+ T cells or WB in a homoge-
nous collection of MS patients and controls. However, while nominally significant methylation
differences were small, CD8+ T cell DNA fromMS patients showed strong evidence for hyper-
methylation at a large number of these CpG-sites. Furthermore, we confirmed large-effect,

Table 2. (Continued)

CD4+ T cells

probeID1 Gene2 p-value3 Effectsize4 stdev5 p-value DMR (# probes in DMR)6

cg00506935 AEN 1.87E-03 0.062 0.018 -

1Probe ID on 450K chip.
2Gene annotated to probe.
3p-value for specified probe in CD4+ T cells.
4Effect size of beta difference for specified probe. Positive values indicate hypomethylation of MS samples (i.e. controls DNA methylation higher than MS

patients)
5Standard deviation for specified probe.
6Permutation-derived p-values for DMR in case the indicated probes is located in a DMR, in brackets we provided the number supportive CpG-sites in the

respective DMRs.

Formatting legend

“Bold probeID” Specific probe occurs in all three data top-40 (see Tables 3, 4)

“Bold Italic Gene” Gene occurs in all three data top-40 (see Tables 3, 4)

”Bold Effectsize” Hypermethylation of probe in MS patients

Results shown are restricted to methylation differences of at least 5% (absolute beta difference). Full lists are provided in S1 Table.

doi:10.1371/journal.pone.0117403.t002
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genome-wide significant DNAmethylation differences between CD4+ T cells and CD8+ T
cells, underscoring the importance of separating different immune cell subpopulations in DNA
methylation studies. Although none of the MS patient-control DNAmethylation analyses
reached genome-wide significance, we observed two CpG-sites with low p-values for all the
three different sample types. We cannot exclude the possibility that genetic variation other

Table 3. Top 40 results sorted by p-values from linear regression analysis models of DNA methylation in CD8+ T cells.

CD8+ T cells

probeID1 Gene2 p-value3 Effectsize4 stdev5 p-value DMR (# probes in DMR)6

cg06346838 APC2 2.91E-06 -0.087 0.015 -

cg22560193 APC2 2.16E-05 -0.101 0.020 -

cg17332091 No gene 2.22E-05 -0.066 0.013 2.0E-05 (3)

cg13988338 No gene 4.61E-05 -0.093 0.019 -

cg10673318 No gene 5.39E-05 -0.062 0.013 -

cg19432993 HOXA2 6.94E-05 -0.066 0.014 1.3E-02 (5)

cg21995652 HRNBP3 1.43E-04 -0.055 0.012 -

cg24998110 HEXDC 1.47E-04 0.060 0.014 -

cg18772882 NTRK3 1.74E-04 -0.051 0.012 -

cg20971998 No gene 1.79E-04 -0.078 0.018 -

cg12580893 No gene 2.00E-04 -0.066 0.015 -

cg20585410 DCX 2.18E-04 -0.088 0.021 -

cg13560901 TRIL 2.86E-04 -0.072 0.017 -

cg20864214 ARHGEF17 2.95E-04 -0.090 0.022 -

cg07311615 ESPNP 2.95E-04 -0.068 0.016 2.0E-03 (2)

cg02225599 HOXA2 2.99E-04 -0.064 0.016 1.3E-02 (5)

cg09309261 LHX5 3.68E-04 -0.063 0.016 -

cg11902995 No gene 3.80E-04 -0.063 0.016 -

cg26477117 TEKT5 4.59E-04 -0.241 0.061 -

cg19225422 No gene 4.80E-04 -0.052 0.013 -

cg09213964 LRRC43 4.82E-04 -0.051 0.013 -

cg10173124 CYP27C1 5.21E-04 -0.052 0.013 -

cg05821046 TMEM48 5.36E-04 -0.097 0.025 2.2E-01 (3)

cg18782774 No gene 5.59E-04 -0.052 0.013 -

cg24938727 HHATL 6.39E-04 -0.061 0.016 -

cg00402910 AMMECR1 6.54E-04 -0.062 0.016 -

cg08065835 No gene 6.67E-04 -0.051 0.013 -

cg04764898 C19orf45 6.77E-04 -0.056 0.015 -

cg21686577 SRRM3 6.81E-04 -0.058 0.015 -

cg08387780 No gene 6.90E-04 -0.058 0.015 2.0E-05 (3)

cg01573321 PSD3 7.23E-04 -0.064 0.017 -

cg14531668 No gene 7.23E-04 -0.050 0.013 -

cg22970003 PTPRN2 7.63E-04 -0.073 0.019 -

cg14828182 LOC654342 7.63E-04 -0.062 0.016 -

cg20692922 No gene 7.65E-04 -0.078 0.021 -

cg16017089 ARHGEF17 7.79E-04 -0.059 0.016 -

cg24637308 DNHD1 7.84E-04 0.086 0.023 -

cg09307264 KIF1C/INCA1 8.08E-04 -0.052 0.014 -

cg05280762 VSIG1 8.08E-04 -0.054 0.014 -

(Continued)
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than DNAmethylation could underlie such consistent results; however, given the dense geno-
type information we obtained, and lack of a known SNP in the probe sequences[31], our evi-
dence strongly suggests a consistent DNA methylation difference between MS patients and
controls is present. The first CpG-site, measured by probe cg05821046 resides in a DMR in-
cluding two additional probes for both CD4+ and CD8+ T cells (Tables 2 and 3). The lead
CpG-site is localized upstream of TMEM48, a gene encoding the nuclear pore complex protein
NDC1. Little is known about this protein and its potential role in MS. The second consistent
CpG-site difference was measured by probe cg22560193 and is annotated to the last exon of
gene APC2. This CpG-site is not located in a DMR when considering the CpG-sites covered by
the 450K. APC2 encodes the protein adenomatosis polyposis coli 2, which is mainly expressed
in neuronal tissue. The relevance of increased DNAmethylation of CpG-sites within this gene
in immune cells fromMS patients is unclear.

Remarkably, the CD8+ T cells of MS patients showed a predominantly higher level of DNA
methylation compared to controls for those CpG-sites with the lowest p-values. Since the ca-
nonical role of DNAmethylation at gene promoters is gene silencing and we observed a slightly
higher percentage of hypermethylated sites in these promoter regions, it is possible that gene si-
lencing in circulating CD8+ T cells of MS patients may be present. Whether this observation
persists in a larger study warrants further investigation.

After correcting for multiple testing, we did not find significant evidence for association be-
tween per-gene DNA methylation within specifically candidate genes[2], or when all genes on
the 450K were considered. It is important to note that the 450K covers only a portion of the
CpG-sites present in the human genome. Although the array is gene centric and largely encom-
passes potential regulatory regions, it is possible that MS-associated DNA methylation differ-
ences exist outside the CpG-sites covered by this array. Given the complex disease aetiology in
MS, at individual patient level, changes in DNA methylation may still contribute to disease-
risk.

While the sample size in this study is modest, we had at least 80% power to detect beta-
value differences of 0.05 and larger, assuming per-CpG-site median standard deviations (S1D
Fig.). Thus, for half of the CpG-sites, the power to detect a beta difference over 0.05 was over

Table 3. (Continued)

CD8+ T cells

probeID1 Gene2 p-value3 Effectsize4 stdev5 p-value DMR (# probes in DMR)6

cg25512439 CNTN4 9.38E-04 -0.060 0.016 -

1Probe ID on 450K chip.
2Gene annotated to probe.
3p-value for specified probe in CD8+ T cells.
4Effect size of beta difference for specified probe. Positive values indicate hypomethylation of MS samples (i.e. controls DNA methylation higher than MS

patients)
5Standard deviation for specified probe.
6Permutation-derived p-values for DMR in case the indicated probes is located in a DMR, in brackets we provided the number supportive CpG-sites in the

respective DMRs.

Formatting legend

“Bold probeID” Specific probe occurs in all three data top-40 (see Tables 2, 4)

“Bold Italic Gene” Gene occurs in all three data top-40 (see Tables 2, 4)

”Bold Effectsize” Hypermethylation of probe in MS patients

Results shown are restricted to methylation differences of at least 5% (absolute beta difference). Full lists are provided in S1 Table.

doi:10.1371/journal.pone.0117403.t003
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80%. Therefore, our study had power to detect large-effect, consistent methylation differences
between MS patients and controls. The observed hypermethylation in CD8+ T cells has small
effect sizes and none of the CpG-sites reached genome-wide significance individually. A PCA
of genome-wide SNP data[20] allowed us to verify Nordic ancestry and excluded systematic ge-
netic differences between patients and controls in the study. Methylation levels for specific loci

Table 4. Top 40 results sorted by p-values from linear regression analysis models of DNA methylation in whole blood samples.

Whole Blood

probeID1 Gene2 p-value3 Effectsize4 stdev5

cg16259355 DACH2 6.95E-05 0.109 0.023

cg24493834 LAMA2 8.65E-05 0.059 0.012

cg23023844 TTLL8 1.16E-04 0.138 0.030

cg04903509 GALNT9 1.27E-04 0.058 0.013

cg20373036 POU3F4 2.25E-04 -0.059 0.014

cg00827196 No gene 3.63E-04 -0.051 0.012

cg16288318 No gene 3.98E-04 -0.147 0.035

cg00420742 NLRP12 5.07E-04 0.051 0.013

cg02336026 No gene 5.78E-04 -0.076 0.019

cg05052271 PLS3 5.87E-04 -0.070 0.018

cg01262952 ANKRD1 5.88E-04 0.078 0.020

cg02313554 No gene 7.35E-04 -0.138 0.036

cg13834112 No gene 7.86E-04 -0.051 0.013

cg25031670 No gene 8.17E-04 -0.084 0.022

cg25671428 CLSTN2 8.26E-04 -0.051 0.013

cg05141400 MAGEB4 8.60E-04 -0.086 0.023

cg01281231 No gene 8.85E-04 -0.054 0.014

cg25488749 No gene 8.92E-04 -0.052 0.014

cg22560193 APC2 9.08E-04 -0.091 0.024

cg27571374 No gene 9.31E-04 0.137 0.036

cg06076512 No gene 9.76E-04 0.054 0.014

cg11837293 No gene 1.02E-03 0.058 0.015

cg02851397 PCDHA7 1.06E-03 -0.081 0.022

cg17140469 No gene 1.08E-03 -0.066 0.018

cg20410114 No gene 1.08E-03 0.053 0.014

cg11336696 TMEM27 1.15E-03 -0.064 0.017

cg11185456 DNHD1 1.19E-03 0.152 0.041

cg06833709 LGI1 1.19E-03 -0.061 0.017

cg08243619 PTCHD2 1.19E-03 0.081 0.022

cg18618432 No gene 1.22E-03 -0.382 0.104

cg25523580 MMD2 1.24E-03 -0.089 0.024

cg24938727 HHATL 1.33E-03 -0.063 0.017

cg05821046 TMEM48 1.37E-03 -0.087 0.024

cg00399951 NXPH1 1.39E-03 -0.085 0.023

cg14336566 TDRD9 1.44E-03 0.072 0.020

cg23266594 CDX1 1.48E-03 -0.078 0.022

cg07465864 YTHDC2 1.51E-03 0.066 0.018

cg22351833 No gene 1.52E-03 -0.069 0.019

cg02778467 RGPD1/PLGLB2 1.58E-03 -0.091 0.025

(Continued)

CD8+ T Cell DNA Hypermethylation in Multiple Sclerosis

PLOS ONE | DOI:10.1371/journal.pone.0117403 March 3, 2015 11 / 16



might change with age and differ between gender[32]; therefore, only female MS patients and
female, age matched controls were included in this study. The clinical data show these MS pa-
tients are representative of an average MS population with a relative benign disease course. Im-
portantly, since medication may influence DNAmethylation[33], the MS patients selected for
this study had never used immune-modulatory drugs at time of sampling or received steroids
for at least three months prior to inclusion. Furthermore, since tobacco smoke is a known driv-
er of methylation differences in peripheral blood cells[34], we also performed an analysis in-
cluding smoking status as a covariate; however, this did not substantially change the results
(data not shown).

A recent study by Graves et al. reported significant DNA methylation changes within CD4+
T cells of the MHC region in MS patients using the 450K[35]. In our study, we noted 18 of 19
(95%) of these CpG- sites within the MHC were compromised by the presence of at least one

Fig 2. Pie charts of overall methylation levels for the three sample types. A. Pie-charts of DNA hyper-
and hypomethylation for all CpG sites with p-values less then or equal to 0.05.B. Pie-charts of DNA hyper-
and hypomethylation for all CpG-sites with p-values above 0.05. Abbreviations: Hypo – hypomethylation,
Hyper – hypermethylation, CD4 –CD4+ T cell data, CD8 – CD8+ T cell data, WB – whole blood data.

doi:10.1371/journal.pone.0117403.g002

Table 4. (Continued)

Whole Blood

probeID1 Gene2 p-value3 Effectsize4 stdev5

cg25584862 No gene 1.62E-03 -0.052 0.015

1Probe ID on 450K chip.
2Gene annotated to probe.
3p-value for specified probe in whole blood.
4Effect size of beta difference for specified probe. Positive values indicate hypomethylation of MS samples (i.e. controls DNA methylation higher than MS

patients)
5Standard deviation for specified probe.

Formatting legend

“Bold probeID” Specific probe occurs in all three data top-40 (see Tables 2, 3)

“Bold Italic Gene” Gene occurs in all three data top-40 (see Tables 2, 3)

”Bold Effectsize” Hypermethylation of probe in MS patients

Results shown are restricted to methylation differences of at least 5% (absolute beta difference). Full lists are provided in S1 Table.

doi:10.1371/journal.pone.0117403.t004
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SNP in the probe sequence[25]. For the remaining CpG-site in the MHC, we did not observe a
nominally significant difference. Furthermore, a SNP was present in the probes for 8 of 55 asso-
ciated CpG-sites outside the MHC region. None of the remaining 47 non-MHC CpG-sites
reached significance in our study. Therefore, we could not confirm the findings reported by
Graves et al.[35]. Notably, our sample was smaller, though more clinically homogeneous with
respect gender and disease course. The high number of excluded CpG-sites due to the presence
of a SNP in the probe sequence underscores the need for genotype-based filtering of chip-
based DNAmethylation data. Alternatively, probes that might contain SNPs[25] can be identi-
fied by utilizing publicly available data[36].

Our results are in agreement with Baranzini et al., who applied reduced bisulphite sequenc-
ing covering over 2 million CpG-sites, and showed no consistent large-scale methylation differ-
ences in MS discordant twins and siblings[15]. The reported switch of methylation from 20%
to 80% for CpG-sites close to the TMEM1 or PEX14 genes between discordant twins could not
be examined, since these CpG-sites are not included on the 450K.

Table 5. Distinct differences between CD4+ and CD8+ T-cells observed in the ‘cell type’ term when applying a linear regression two-way
interaction model including both the CD4+ and CD8+ T cell methylation data, including the terms ‘cell type’, ‘group’ (case-control status), and
‘interaction’ (case-control status x cell type).

p-values5

probeID1 Gene2 Effect size3 SD4 Cell Type Cell Type BH corrected6 Group Interaction

cg22505006 ZBTB7B 0.849 0.008 1.61E-40 6.85E-35 0.992 0.502

cg24955196 ZBTB7B 0.724 0.007 3.27E-40 6.94E-35 0.408 0.799

cg16871561 SLC25A3 0.709 0.010 4.03E-35 5.71E-30 0.918 0.290

cg25939861 CD8A -0.754 0.012 1.29E-34 1.37E-29 0.314 0.824

cg06935361 BRCA2 -0.669 0.011 1.97E-34 1.67E-29 0.779 0.602

cg00219921 CD8A -0.764 0.013 3.41E-33 2.41E-28 0.870 0.904

cg01782486 ZBTB7B 0.656 0.012 6.61E-33 4.01E-28 0.718 0.632

cg06449334 No gene -0.533 0.010 2.74E-32 1.46E-27 0.299 0.557

cg25350872 LOC154822 -0.530 0.010 4.35E-32 1.87E-27 0.314 0.062

cg17343167 N4BP3 -0.448 0.009 4.82E-32 1.87E-27 0.503 0.467

cg24345747 CD8A -0.638 0.012 4.85E-32 1.87E-27 0.370 0.396

cg19453665 SERPINH1 -0.309 0.006 9.20E-32 3.16E-27 0.392 0.891

cg03318654 CD8A -0.559 0.011 9.66E-32 3.16E-27 0.408 0.947

cg03505866 KIAA0247 0.437 0.009 1.14E-31 3.46E-27 0.092 0.769

cg08934126 CTNNBIP1 -0.309 0.006 1.42E-31 4.04E-27 0.829 0.264

cg10837404 DCP2 0.574 0.012 2.33E-31 6.19E-27 0.460 0.357

cg26986871 No gene -0.565 0.011 3.33E-31 7.96E-27 0.400 0.664

cg14477767 No gene 0.716 0.015 3.37E-31 7.96E-27 0.144 0.386

cg24462702 CD40LG 0.378 0.008 4.38E-31 9.80E-27 0.749 0.191

cg13798679 No gene -0.446 0.010 1.22E-30 2.59E-26 0.326 0.835

1Probe ID on 450K chip.
2Gene annotated to probe.
3Effect size of beta difference for specified probe.
4standard deviation for specified probe.
5p-value for specified probe in respective models.
6Benjamini-Hochberg corrected p-values for factor "cell type”.

The top 20 highest-ranking probes sorted by p-values for differences of the ‘cell type’ term are listed, full lists are provided in S1 Table.

doi:10.1371/journal.pone.0117403.t005
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Temporality must be considered in DNA methylation studies. It remains possible that MS
patient DNAmethylation profiles deviated from healthy controls at disease onset and are no
longer detectable. When we consider the more recently diagnosed patients these showed a high
proportion of DNA hypermethylation of their CD8+ T cells. The patients that were diagnosed
earlier also show a profound DNA hypermethylation, though the proportion is slightly lower
as compared to the recently diagnosed patients. We cannot exclude the possibility that the dis-
ease process in itself affects DNAmethylation. This possibility must be investigated in a longi-
tudinal cohort of MS patients.

For use as possible biomarkers of MS in the clinic, characteristic DNAmethylation profiles
should preferably be identified in easily obtainable WB. After correction of the WB methyla-
tion profiles in our dataset according to Houseman et al.[26], the correlation coefficients of
WB compared to T cells remained moderate (S1C Fig.). Therefore, we cannot conclude that
WB will reliably reflect disease relevant changes in T cells, however additional studies on the
biomarker value of DNAmethylation profiles derived fromWB are warranted.

In conclusion, this is the first study of genome-wide DNAmethylation profiles derived
fromWB, CD4+ and CD8+ T cells, in homogenous, untreated female MS patients and
matched controls. We identified strong evidence for DNA hypermethylation in CD8+ T cells
of MS patients. The significant methylation differences observed between CD4+ T cells, CD8+
T cells and WB underscore the importance of considering cell-based profiles. Further, more
sophisticated algorithms for correction of individual variability in cell proportions are needed,
if DNA methylation profiles fromWB are to be used reliably. Based on available power, we
excluded large-scale individual and per-gene DNAmethylation differences between patients
and controls, for CpG-sites tested here. In particular, large DNA methylation differences for
CpG-sites within 148 established MS candidate genes tested in the current study do not explain
missing heritability. Larger studies of homogenous MS patients and controls are warranted to
further elucidate the impact of smaller DNA methylation changes that may be important in
MS pathogenesis.

Supporting Information
S1 Fig. Supplementary figures S1A-D. A. Principal component analysis (PCA) of MS patients
and controls used in the methylation analyses (respectively triangles and squares in color). The
principal components for samples in current study were plotted against those derived from an
earlier large GWAS study of Norwegian MS patients and controls. Results showthe samples in
the DNA methylation study cluster within the Nordic population. B. SNPs in methylation
probes influence reported beta values; example of a SNP located in the sensing probe sequence
of CpG-site cg21139150 resulting correlation between reported beta-values and sample geno-
type. C. Scatterplot of –log(p-values) of the per-probe patient-control analysis for CD8+ T cell
test statistics against CD4+ T cell test statistics, resulting in a correlation coefficient R2 = 0.70.
D. Post-hoc power calculations for increasing quintiles of observed probe variance.
(TIF)

S1 Materials and Methods. Detailed materials and methods for procedures briefly de-
scribed in manuscript.
(DOCX)

S1 Table. Per-probe analyses details.
(ZIP)

S2 Table. All DMR analyses details.
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Abstract
Genotyping chips for rare and low-frequent variants have recently gained popularity with the

introduction of exome chips, but the utility of these chips remains unclear. These chips were

designed using exome sequencing data frommainly American-European individuals,

enriched for a narrow set of common diseases. In addition, it is well-known that the statistical

power of detecting associations with rare and low-frequent variants is much lower compared

to studies exclusively involving common variants. We developed a simulation program

adaptable to any exome chip design to empirically evaluate the power of the exome chips.

We implemented the main properties of the Illumina HumanExome BeadChip array. The

simulated data sets were used to assess the power of exome chip based studies for varying

effect sizes and causal variant scenarios. We applied two widely-used statistical approaches

for rare and low-frequency variants, which collapse the variants into genetic regions or

genes. Under optimal conditions, we found that a sample size between 20,000 to 30,000

individuals were needed in order to detect modest effect sizes (0.5% < PAR > 1%) with 80%

power. For small effect sizes (PAR <0.5%), 60,000–100,000 individuals were needed in the

presence of non-causal variants. In conclusion, we found that at least tens of thousands of

individuals are necessary to detect modest effects under optimal conditions. In addition,

when using rare variant chips on cohorts or diseases they were not originally designed for,

the identification of associated variants or genes will be even more challenging.

Introduction
Since the introduction of GenomeWide Association Studies (GWAS), a large number of com-
mon single nucleotide variants (SNVs) have successfully been associated to many complex dis-
eases [1]. However, both the proportion of the phenotypic variability explained by these
variants and the effect sizes are rather small for most studied traits. This issue has been widely
discussed and is referred to as “missing heritability” [2–5]. This term suggests that genetic
causes that are difficult to detect with a classic SNV array design are involved in the phenotype
of interest. Such causes may be gene-gene and gene-environment interactions, chromosomal
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aberrations, epigenetic differences, or less frequent causal variants with minor allelic frequen-
cies of 0.5% to 5% (low-frequency variants) or less than 0.5% (rare variants). Several of such
rare and low frequent SNVs have been shown to associate with complex diseases with odds
ratios (ORs) around 3 (e.g. [6–8]). Some structural variants associated to psychiatric disorders
have been reported with even higher ORs (e.g. [9–12]). For example, a structural variant has
been shown to give as much as a 20 fold increased risk for autism spectrum disorder [10].

The importance of considering allelic variants in coding regions, as well as budgetary and
practical restrictions for whole exome sequencing in large studies, motivated the construction
of the “exome chips” [13, 14]. A number of studies that used exome chips have already been
published [15–29], with several of the studies reporting negative findings. However, pheno-
type-associations of some variants and genes have been discovered using this chip. Igartua et.
al. [20] found one low-frequent variant associated to asthma when using a single variant test in
a multi-ethnic cohort of 11,225 individuals. By using a collapsing approach (Sequence Kernel
Association Test [30]), two additional genes were identified. Within a cohort of 8,229 Finnish
individuals, Huyghe et.al. [16] identified new associations of low-frequent loci to fasting glu-
cose levels. In a follow up case-control study by Wessel et.al., including more than 158,000
individuals, and by using statistical approaches designed for low-frequency or rare variants,
one novel genetic association was discovered, driven by four rare non-synonymous SNVs
within this gene [21]. With a multi-ethnic cohort of 56,000 individuals typed on the exome
chip, four low-frequent variants were identified to be associated with coronary heart disease,
using a single variant test. Furthermore, Tachmazidou et.al. identified a significant cardio-pro-
tective variant which was common in an isolated population, however this variant is assumed
to be rare in outbred European populations [28].

The design of the exome chip was based on pooled exome sequencing data of 16 contrib-
uting studies [31], which comprised 12,031 individuals. These studies were highly enriched
for European Americans, which accounted for approximately three-quarters of the
sequenced individuals [20]. This has caused a concern concerning the generalizability of
using low-frequency and rare variants in studies across populations. These variants are more
likely to be evolutionary young [32], and thus, population specific. Approximately 65% of
the contributing individuals were enriched for lifestyle disorders (Cardiovascular diseases,
Type 2 Diabetes, Overweight, Lipid extremes, Body Mass Index extremes). Additionally,
20% of the samples were collected from psychiatric disorder cohorts (autism spectrum,
schizophrenia and depression). The remaining 15% were samples from the thousand
genomes project, a Sardinian cohort (SardiNIA sequencing project), and two cancer studies
(S1 Table). In the design of this chip many common disease groups were absent, including
autoimmune and neurodegenerative diseases. The exome chip consortia focused on captur-
ing low-frequency and rare, non-synonymous variants, which were observed more than
three times in at least two different cohorts. Most of the variants assayed on the exome chips
were rare (84%), 9.2% were low-frequent, and 5.8% were common. Both the companies Illu-
mina and Affymetrix produced a genotyping chip for low-frequent and rare, exonic variants
based on the proposed list of SNVs from the Exome Chip Consortia, leading to the Illumina
HumanExome BeadChip Array and the Axiom Exome Genotyping Array, respectively.

Since the power to detect an association between a single SNV and a phenotypic trait
decreases with decreasing minor allelic frequency, there has been a need for new statistical tools
for analysing low-frequent and rare variants. These variants often occur at different locations
throughout the considered genes. Therefore, methods for this type of variants have been devel-
oped, which aim to collapse variants along a meaningful biological unit (i.e. gene, promoter,
enhancer, etc.) into one test statistic. This includes methods which contrast the mean number of
observed variants between cases and controls, such as Weighted Sum Statistic (WSS) [33] and
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Replication Based Test (RBT) [34], or adaptive burden tests, like the Kernel Based Adaptive
Clustering Method [35]. Another general class of methods comprises variance contrasting
methods, which compare the variation of alleles between cases and controls, such as the C(α)–
method [36] and Sequence Kernel Association Test (SKAT) [30]. While several different meth-
ods have been compared extensively (e.g.[37–42]), no single gold standard has been established.
On the contrary, it is also recommended to use different kinds of methods [37, 41].

With respect to the increasing use of exome genotyping chips, we aimed to investigate the
sample size requirements for association studies using these chips. The power for different sta-
tistical approaches for analysing low-frequent and rare variants has been investigated and com-
pared to each other by others [30, 33, 37, 40, 41]. The corresponding simulations were
performed for varying properties of a single unit (i.e. gene), thereby focusing on the compari-
son of statistical methods with respect to the detection of rare and low-frequency variants.
These simulations did not take the whole variety of possible allelic frequencies into account,
neither the dependencies between the variants corresponding to a real chip design. Thus, these
power simulations are only representative for certain allelic frequencies, ignoring the underly-
ing realistic allele frequency distribution and dependency patterns.

We developed a simulation pipeline, which relies on simulations based on all variants of the
underlying chip design, thereby capturing the entire allele frequency spectrum and underlying
dependencies between the variants. In this paper, we mimicked the structure of the Illumina
HumanExome BeadChip array, but the available pipeline can also be applied to any other
(future) chip designs.

Material and Methods

Simulation of genotypes
As a starting point for the simulations in this paper, we simulated a data pool of genotypes for
200,000 unrelated individuals using the approach described in Basu et.al.[41], with some modi-
fications. To mimic the chip as accurately as possible, we used the publicly available allele fre-
quencies reported by the Exome Chip Consortia. From their documentation [31], we
reproduced the allele frequency of 212,353 non-synonymous SNVs, thus including 96% of the
coding variants on the chip. In order to mimic the dependency structure between the variants,
we applied a correlation function based on the position of the variants on the exome chip [43].

Simulation of phenotypes
To construct case-control phenotypes, we used the same approach as Madsen et.al. [33, 37] fix-
ating the population attributable risk (PAR) for all variants, and calculating a genotype relative
risk (GRR) based on the given PAR and the minor allele frequency (MAF) (see S1 Algorithm
Eq 1). We assumed that all causal rare variants were deleterious, and that no variants had any
protective effect. The probability of an individual being diseased based on their genotype, was
calculated as the product of their GRRs, multiplied by a fixed incidence (see S1 Algorithm Eq
2). This was done for each individual separately. The relation between GRR and PAR is such
that for a given MAF, and PAR, a linear increase in PAR corresponds to a linear increase in
GRR. If the PAR was fixed, then an increase in the MAF corresponded to an inverse propor-
tional decrease in GRR.

We considered two different scenarios for the structure of the simulated causal genes. In the
first scenario, 100% of the SNVs in each analysed gene were causally linked to the phenotype.
In the second scenario, the same genes were analysed, but only 50% of the SNVs within each
gene where causally linked to the phenotype, thus decreasing the signal to noise ratio.
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Statistical Methods
To assess the sample size required to obtain sufficient power, we applied two widely used statis-
tical methods for rare variants: SKAT [30] andWSS [33]. In SKAT which is a generalization of
the variance contrast test (C(α) method [36]), we used an adaptive weighting for each variant
(the Beta(MAF, 0.5, 0.5) kernel). The WSS test is an adaptive sum test, for each unit, it calcu-
lates a weighted sum for all individuals, and then permutes the ranking of those sums, if the
cases are consistently ranked on top, this will correspond to a low p-value. The weight for each
variant is determined by the MAF and the case-control ratio. The two statistical methods used
here were chosen as representatives for two common classes of methods for rare variant analy-
sis; variance contrasting tests and sum tests. In both methods, all the genes are tested indepen-
dent of each other. The weights applied to all variants have similar structure for both SKAT
andWSS. In both methods, the weighing is such that common alleles will receive a low weight,
while empirically rare variants will have a high weight.

Power Simulations. We investigated the power performance by drawing sample sizes of
10,000 (10k), 20k, 30k, 60k, and 100k individuals from the genotype pool described above. The
simulated case-control ratio was 1:1. To assess the power under the different scenarios, we ran-
domly selected a set of 100 genes. The distribution of allelic frequencies of this subset was simi-
lar to the corresponding allelic frequency distribution of all SNVs on the chip (S1A Fig). The
mean number of SNVs per drawn gene was 18. 50 simulated datasets including 100 genes were
generated for each combination of effect size, scenario and number of individuals. For each
simulated dataset, the genes were tested on the Bonferroni adjusted genome-wide threshold
based on the number of reproduced genes on the chip (19,975), thus neglecting findings in the
genes without any simulated effect. The power was defined as the percentage of true discovered
genes within one replicate. The overall power was presented as the mean power over all replica-
tions along with the empirical 95%—confidence interval.

Null simulations. We provide two types of simulations without adding an effect on the
simulated genotypes (0% PAR on all causal variants). First, we aim to characterize the imple-
mented statistical methods with respect to their ability to detect false positive findings. To
achieve that, we used the 50 simulated datasets for 60k samples including 100 genes described
above and assigned case-control status randomly. For each simulated dataset, we evaluate the
percentage of false positives and present the mean percentage across all simulated datasets. In
this simulation, we choose a 5% threshold for the p-values of each gene. A genome-wide
threshold could have been simulated here as well, but would require a much larger number of
null genes and thus dramatically increase the computational burden. Second, we wanted to
show the genome-wide performance of the tests with no underlying effect present for the
underlying chip structure considered in this paper. Thus, we simulated 10 datasets including
all genes (19,975) for two different numbers of individuals (10k, 60k), assigning the case-con-
trol status arbitrarily.

The simulations and power assessment where done using the computer program R 3.2.1
[44], with the additional packages: Matrix [45], MultiPhen [46] and snpStats [47].

The simulation program can be received from the authors by request.

Results
Both of the statistical methods keep the Type-I error level, with SKAT being slightly more con-
servative than WSS. The corresponding estimated mean percentages of false positives were
0.0465 (SKAT) and 0.0503 (WSS) when applying the 5% Type-I error threshold (see Material
and Methods). In order to understand the performance of the exome chip when no effects are
present, the distribution of the p-values across all 19,975 genes was visualized in a QQ-plot
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(Fig 1A and 1B). It can be seen that SKAT is more conservative, with no false positive observa-
tions, while WSS had an average of 4.7 false positive for a 10k sample, and an average of 5.4
false positive in a 60k sample, in a genome wide scan.

To assess the power of the underlying chip under the non-null distribution, we simulated
an increasing effect size (PAR) for different sample sizes based on two statistical approaches

Fig 1. QQ-plot for power analysis and null simulation, the diagonal line represent the expected value and the horizontal line the Bonferroni cut-off.
(A) QQ-plot for one realization of the null simulation for 10k, SKAT is plotted in red/orange andWSS in dark green/light green. (B) QQ-plot for one realization
of the null simulation for 60k, SKAT is plotted in red/orange, andWSS in dark green/light green. (C) QQ-plot of—log p-values for SKAT andWSS, given 100%
causal SNVs within the causal genes, and a sample size of 10k. False negative is in lighter colors (SKAT; light green, WSS; orange) and true negative is
colored in gray. (D) QQ-plot of—log p-values for SKAT andWSS, given 100% causal SNVs within the causal genes, and a sample size of 60k. False
negative is in lighter colors (WSS; orange) and true negative is colored in gray.

doi:10.1371/journal.pone.0139642.g001
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(SKAT and WSS). We first investigated a scenario where all variants within a gene were
causal. In this scenario, both SKAT and WSS reached a power of 80% with a PAR less than
1.4% (SKAT) and 2.4% (WSS) per SNV, and SKAT converged to maximum power for 1.5%
for sample sizes above 10k (Fig 2A and 2B). SKAT and WSS had approximately the same
speed of convergence when all variants were assigned the same weight in SKAT (data not
shown). For sample sizes larger than 20k individuals, the rate of convergence of power
evolved more than twice as fast in SKAT as compared to WSS. The increase in power for
sample sizes above 60k individuals was marginal in SKAT. However, in WSS, the rate of con-
vergence between the different sample sizes was more pronounced, with notable differences
in convergence for sample sizes of 60k and 100k individuals. For small effect sizes
(PAR< 0.5%) and a sample size of 10k, WSS converged marginally faster than SKAT. To
evaluate the global performance of the chip for a given PAR in this scenario, we applied both
WSS and SKAT to all genes, with a sample size of 10k and 60k. The result for PAR = 0.3% on
all causal variants is presented in Fig 1C and 1D. Fig 1 shows that SKAT is more conservative
in its p-value estimation than WSS, both for the null simulation and with an effect size of
0.3% PAR for a sample size of 10k.

When only 50% of the SNVs within each unit were causal, a much slower convergence
was observed for both methods (Fig 2C and 2D). For 10k individuals, a PAR of 6.5% was
needed to obtain 80% power with SKAT, whereas WSS reached 70% power within 8.0% PAR
on each causal variant. To reach 80% power with WSS within 6% PAR, a sample size of at
least 30k was needed. For SKAT, a sample size of at least 30k did converge to 100% power
for PAR up to 7%. This is a substantial loss of power, compared to the assumption that all
SNVs within each gene were causal. In that case, half of the effect sizes were sufficient to
reach the same power. When considering sample sizes larger than 10k individuals, 80%
power is reached within a PAR of 1.4% for SKAT. WSS reached 80% power within 5.6% PAR
for sample size of 30k. For sample sizes above 10k, SKAT converged to maximum power at
2% PAR. In WSS, the convergence was substantially slower, with none of the sample sizes
converging to 100% within their tested range of PAR.

In order to assess how many individuals would be needed for a given power, we plotted
power as a function of sample size (Fig 3). Under the assumption of 100% causal variants per
unit, the best performance was reached with a sample size of 60k individuals or more, where
both SKAT and WSS were above the 80% threshold in for the two biggest effect sizes pre-
sented (PAR = 0.5% and 1%). For WSS, a larger sample size was consistently needed to obtain
the same power as SKAT in the same scenarios (Fig 3A and 3B). When 100% of the SNVs
were causal, the power of WSS was comparable to the power of SKAT when only 50% of the
variants were causal (Fig 3B and 3C). For effect sizes of 0.2% PAR in the 50% scenario, a sam-
ple size of 60k was sufficient to reach 80% with SKAT, but for WSS, 100k was needed (Fig 3C
and 3D).

In order to investigate the relationship and distribution of the effect sizes GRR and PAR of
the causal variants, we plotted a histogram of the GRR for different PAR (S1B Fig). For a fixed
PAR of 0.5% on all causal variants, the GRR range in our simulated data was between 1 and 70,
with a median of approximately 12. Since the GRR scales linearly for small PAR, a doubling of
PAR to 1%, resulted in a doubling of the GRR. The corresponding GRR then had a maximum
of 140 and a median of 24, as seen in S1B Fig.

Discussion
In this work we addressed the utility of genotyping chips for rare variants under optimal condi-
tions, illustrated by simulating the content of the Illumina HumanExome BeadChip array
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under different scenarios. Given a homogenous population (as was used for the design of the
chip), we found that to detect a true association with 80% power, for a PAR around 1.5% on
each causal variant in the presence of noise, a sample size of at least 20k individuals were
needed under optimal conditions. Thus, the chip performance was acceptable for large
(PAR> 1%) effects even in relatively small cohorts (10-20k). For small effect sizes

Fig 2. Power plots for increasing PAR for SKAT andWSS for multiple testing adjusted analyses, for different sample sizes. The dashed line
represent the median power, with the covered area is the inter quantile range of 25% to 75% power. (A) 100% causal SNVs within all genes, estimated with
SKAT. (B) 100% causal SNVs within each gene, estimated with WSS. (C) 50% causal SNVs within each gene, estimated with SKAT. (D) 50% causal SNVs
within each gene, estimated with WSS.

doi:10.1371/journal.pone.0139642.g002

Assessing the Power of Exome Chips

PLOS ONE | DOI:10.1371/journal.pone.0139642 October 5, 2015 7 / 13



(PAR< 0.5%) in the presence of noise, a balanced case-control study with a total sample size
of 30k to 50k individuals would be required.

Our assumption of sample homogeneity of conferred risk for the SNVs in this analysis is
not likely to be met in most association studies. This is mainly due to population specific rare
variants. We also assumed that all rare coding causal variants were deleterious. Although some
variants may be protective, the majority of rare coding alterations are believed to be either
harmful or have low phenotypic effect [14], thus making our assumption a reasonable choice.
We have focused our simulations on two different scenarios, one where 100% of the assayed

Fig 3. Power for increasing sample sizes and different PAR values after multiple testing adjusted analyses. (A) 100% causal SNVs within all genes,
estimated with SKAT. (B) 100% causal SNVs within each gene, estimated with WSS. (C) 50% causal SNVs within each gene, estimated with SKAT. (D) 50%
causal SNVs within each gene, estimated with WSS.

doi:10.1371/journal.pone.0139642.g003
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alleles within the gene were deleterious, and the other where 50% of the alleles were deleterious.
A scenario where all detected variants within a gene are causal to disease is very unlikely, but
represents an upper bound on the power estimate for collapsing methods. In earlier studies
which identified associated genes, the fraction of causal rare and low-frequent SNVs within the
gene was estimated to be as low as 5% [29]. For the gene discovered to be associated with
psychophysiological endophenotypes by Vrieze et.al. the association seemed to be driven by
two alleles, which represent 10% of the variants in this specific gene on the exome chip [27].
One of these variants was low-frequent (MAF = 1.25%) and the other one rare (MAF = 0.3%)
[27]. 40% of the rare coding exome chip variants within a gene associated to higher fasting glu-
cose levels showed a strong individual association to this phenotype [21].

An important issue is the enrichment of SNVs associated with certain diseases in the design
of the exome chip. Many common complex disease groups were not represented in the cohorts
used to design the chip, leaving the possibility that rare variants which may be strong risk fac-
tors for these diseases were not included on the chip. The rest of the SNVs included may be
neutral or have very small phenotypic effects. This will most likely result in sub-optimal perfor-
mance in studies of diseases that were not considered when designing the exome chips.

Although the difference in mean power between SKAT andWSS analyses was not substantial,
SKAT consistently outperformedWSS, which is in line with previous studies [37]. Furthermore,
SKAT also outperformedWSS on elapsed computational time, where the R implementation of
SKAT could benefit from parallelization on a cluster computer infrastructure.

The simulation pipeline developed here could be adapted to different chip designs. This pro-
gram is only dependent on allele frequencies and positions, since the linkage disequilibrium
(LD) between variants was modelled with a distance function. Furthermore, the algorithm is
flexible in its implementation, so it can be applied to assess the performance of any other chip
design, under different scenarios. In some simulation studies for assessment of rare variant
methods, a genome wide p-value cut-off was not used [37, 41] and the allele frequency range
was much wider. Simulations were performed on a single unit (i.e. genes) which included sev-
eral variants, leaving out valuable information about realistic underlying allele frequencies and
dependency patterns. In our study, we mimicked the properties of the exome chip, increasing
both usability and reliability of our results.

There is no standard algorithm for simulating effects on genetic variants, this has led to a sit-
uation where the reported results can vary depending on the implemented methods and
assumptions. Two popular approaches for emulating effect sizes are Odds Ratio (OR) modelling
and Risk Ratio (RR) modelling. Although these approaches are quite different, when the num-
ber of observed genotypes is small, both the OR and the RR will be approximately the same.

When the GRR was empirically estimated from the simulated data set, they were consis-
tently lower than expected from the equation used to generate them (S1 Algorithm Eq 1). This
indicates that the GRR presented in S1B Fig was overestimated, since it is theoretically calcu-
lated, and not empirically assessed.

The collapsing methods tests each gene (unit) and the power presented in Figs 2 and 3 on
the y-axis are gene-wise. However, the effect applied on the genotypes (x-axis in Fig 2), was per
SNV and not per gene. When considering genes, it is important to note that the disruption of
any coding element may be contributing to disease risk, and different variants within a gene
can all disrupt the gene product, with observed mild effect sizes for each variant. For this rea-
son, many different variants within the same gene may be underlying the same trait or disease.
By using the collapsing statistic on a gene instead of testing individual variants, the sample
sizes requirement may therefore be smaller. By selecting genes at random in the data simula-
tion process, we study the variety of genes on the chip, without using the entire data set, thereby
decreasing the computational load. Since the underlying allelic frequencies were properly
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presented, this gives a good indication of the overall performance of the chip, however, the
actual performance for each particular gene may vary from gene to gene.

While recent studies using exome chips have identified associations between low-frequent
or rare variants and disease, the identified variants have not yet contributed substantially to
explaining “The missing heritability”. Few of the studies have reported variants with minor
allele frequency below 0.5% to be associated with disease [21, 24, 26–28]. Our study indicates
that some negative reports may suffer from insufficient sample sizes and the special design of
the exome chips as explained above.

In our study we have only considered “perfectly called” variants, i.e. we have not introduced
any errors in the genotype calling algorithms. This may be an important issue for rare and low-
frequency genotyping chips, where calling the variants has proved to be challenging [48].

In conclusion, we found that a very large sample size, in the order of tens of thousands is
needed to detect modest effects under optimal conditions. For effect sizes less than 0.2% PAR,
around 100,000 individuals should be studied to have enough power to reach genome wide sig-
nificant results.
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Relative Risk (GRR) for all causal variants in the 100% scenario, for two different Population
Attributable Risks (PAR). This is the GRR used to construct the phenotypes for those two
PARs.
(TIF)

S1 Algorithm. Algorithm for variant simulation and phenotype construction.
(DOCX)

S1 Source Code. R code for reproducing the variant simulation and phenotype construc-
tion.
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Supplement to Paper I

Blood collection

EDTA coated vacuum tubes (Greiner Bio-One, Frickenhausen, Germany) were used to 

collect 64 ml of whole blood, which was transferred to a 100 ml culture flask containing 1 

ml of 100 mM EDTA solution (Life Technologies, Paisley, UK). The total volume of the 

blood was adjusted to 140 ml using RPMI culture medium (Life Technologies, Paisley, 

UK). Four equal volumes of diluted blood were carefully pipetted onto 15 ml of lymph-

oprep (Sigma-Aldrich, Oslo, Norway) in 50 ml tubes (Greiner Bio-One, Frickenhausen, 

Germany) and the peripheral blood mononuclear cells (PBMCs) were separated from 

the other blood constituents by centrifugation at 800g for 30 minutes. The PBMCs were 

washed three times in ice-cold PBS before suspension in 2 ml ice cold PBS.

Cell separation

PBMCs were counted using nucleocount NC-100 (ChemoMetec A/S, Denmark) and 

pelleted, followed by suspension in a volume of 80 μl MACS buffer per 10 million cells. 

Per 10 million cells, 20 μl of magnetic anti-CD8+ beads (Miltenyi Biotec, Lund, Sweden) 

was mixed with the cells and incubated for 15 minutes at 4°C, washed with MACS buffer 

and resuspended in 500 μl of MACS buffer. The autoMACS cell separator was used to 

separate positive and negative cell fractions (positive selection) and the positive fraction 

was counted and kept on ice. The CD8+ negative fraction was centrifuged for 10 minutes 

at 300g and the supernatant removed. The pellet was suspended in 30 μl per 10 million 

cells MACS buffer and 10 μl per 10 million cells of biotin labeled CD4+ negative anti-

body cocktail was added and incubated for 10 minutes at 4°C. To this suspension 10 μl per 

million cells and 10 μl per million cells anti-biotin magnetic beads were added and incu-

bated at 4°C for 15 minutes. The cells were washed in MACS buffer before resuspension 

in 500 μl of MACS buffer. The autoMACS cell separator (Miltenyi Biotec, Lund, Swe-

den) was used to separate positive and negative cell fractions (negative selection) and the 

negative fraction was counted and kept on ice, whereas the positive fraction was discarded. 

For each separated cell type, aliquots of 1-3 million cells were stored at -20°C.

Flow Cytometry assessment of cell fraction purities

During collecting for the majority of samples flow cytometry was performed as detailed 

below. All CD4+ and CD8+ T cell fractions demonstrated 95% or greater purity. Cells 

were labelled with FITC-conjugated mouse anti-human CD4 (Clone RTF-4g), mouse 

anti-human CD8 (clone RTF-8) or mouse IgG1 isotype control (clone 15H6) (all from 

Southern Biotech), and cell purity was assessed by flow cytometry on FACS Calibur (BD 

Biosciences) and data analysed by Cell Quest Pro (BD Biosciences). During collecting 

for the majority of samples flow cytometry was performed and all CD4+ and CD8+ T cell 

fractions demonstrated 95% or greater purity.
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DNA isolation and QC

DNA was isolated from the cell pellets using Qiamp DNA mini kit (Qiagen, Sweden) by 

adding 200 μl of lysis buffer to the thawed cell pellets before following the instructions 

as provided by the manufacturer. DNA was quantified using the nanodrop spectropho-

tometer (Thermo Scientific, Wilmington, DE 19810 USA) and samples with 260/280 

values below 1.7 were subjected to additional purification by precipitation and dissolving 

in extraction buffer.

Imputation of genotypes against the 1,000 genomes reference panel

Genotypes of the Illumina 660 Quad array were pre-phased using phase-it. Phased data 

was then imputed using impute2[22], applying the 1,000 genomes central European ref-

erence panel. We applied a 90% information threshold for calling genotypes of imputed 

SNPs.

Illumina 450K Methylation Array measurements

750 ng of the DNA was used as input for the bisulfite conversion using the Zymo EZ-

96DNA Methylation Kit (Catalog #D5004) Deep-Well Format. Then 4 μl of the bisulfite 

converted DNA was used as input for the Illumina Infinium HD Methylation Assay 

according to the manufacturer’s protocol. Samples are transferred to Illumina’s Infini-

um HumanMethylation450K DNA Analysis BeadChip before scanning on the Illumina 

HiScan.

Once scanning was completed, the data was uploaded into GenomeStudio for prelimi-

nary analysis and QC. Target success rate was determined. The detection p-value is the 

1-p computed from the background model characterizing the chance that the target se-

quence was distinguishable from the negative controls. CpG-sites with more than 20% 

missing values were excluded from the analysis (CD4+ T cells N=72; CD8+ T cells N=72; 

whole blood (WB) N=67; overlap for all categories N=49). Sample replicates and Jurkat 

cell DNA control replicates are checked to ensure an r2 value of greater than 0.99. No ir-

regularities were observed in the on-array internal controls provided by Illumina.

SNP assessment for probes

By overlaying the probe genomic locations as provided by Illumina with the imputed 

and genotyped per-sample SNP map, we identified all probes that contain at least one 

observed or imputed polymorph site in their sequences. These probes (N=60,106) were 

removed from analyses in all samples to prevent false methylation readouts (Figure S1B).

Correlation of WB, CD4+ T and CD8+ T cell DNA profiles

For each CpG-site in the WB, CD4+ and CD8+ T cells data, absolute differences in beta 

values were calculated. Correlations of these absolute differences were assessed for the 

WB to either CD4+ or CD8+ T cell data, and for CD4+ T cell data to CD8+ T cell data. 

The latter comparison is illustrated by Figure S1C.
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Supplemetary Figure S1

A. Principal component analysis (PCA) of MS patients and controls used in the 

methylation analyses (respectively triangles and squares in color). The principal com-

ponents for samples in current study were plotted against those derived from an earli-

er large GWAS study of Norwegian MS patients and controls. Results showthe sam-

ples in the DNA methylation study cluster within the Nordic population. B. SNPs in 

methylation probes influence reported beta values; example of a SNP located in the 

sensing probe sequence of CpG-site cg21139150 resulting correlation between re-

ported beta-values and sample genotype. C. Scatterplot of –log(p-values) of the per-

probe patient-control analysis for CD8+ T cell test statistics against CD4+ T cell test 

statistics, resulting in a correlation coefficient R2 = 0.70. D. Post-hoc power calcula-

tions for increasing quintiles of observed probe variance.
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Supplement to Paper II

Supplementary figure 1

(A) Histogram of the distribution of the allele frequencies on the exome chip, plotted on log 

10 scale. The histogram is split into three bins, depending on their allele frequency. The lines 

indicated the allele frequencies of the causal alleles in each scenario. The blue line represents 

the allele distribution of the SNVs selected in the scenario where 100 of the SNVs within 

each causal gene were causal. The orange line represents the allele distribution of the causal 

SNVs, where 50% of the SNVs within the casual genes are causal. (B) Histogram of Geno-

type Relative Risk (GRR) for all causal variants in the 100% scenario, for two different Popu-

lation Attributable Risks (PAR). This is the GRR used to construct the phenotypes for those 

two PARs.

Algorithm for simulation and phenotype construction:

1. We constructed a set of 2*N = 400,000 independent multivariate normally distribut-

ed vectors, of length p = 212,353 (representing each SNV). The correlation within the 

vectors, where modeled using the Matern covariance function, with parameters (

) equal to (1.9, 10, 15) respectively.

2. All the 2*N vectors were dichotomised with a threshold, using the allele frequency 

for each SNV, reported by the exome chip consortia. The vector now represents the 

independent maternal and paternal haplotypes.

3. The vectors were added together in groups of two, resulting in data set of N vectors, 

representing each individual, with the number of alleles (Basu and Pan 2011).

4. The alleles were now clustered together into their respective genes.
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5. We selected a set of 100 genes at random to be causally linked to the phenotype.

6. Two scenarios were constructed. In the first scenario, all SNVs within the select caus-

al genes, where themselves causal. In the second scenario, we picked 50% of the SNVs 

within the causal genes at random to be causally linked to the phenotype.

7. For a given Population Attributed Risks (PAR), we calculated the Genotype Rela-

tive Risk (GRR) for each causal variant, using the equation below. Observe that this 

equation is only dependent on the PAR and the allele frequency, which is considered 

the exposure of the allele. (Equation 1) 

8. Given the set of k GRRs for one PAR, we calculated the probability for each individ-

uals of being a case, using the equation below. This resulted in a vector of N entries 

with either zero or one, corresponding to the phenotype for each individual. (Equa-

tion 2) 

9. Here b
0
 is the base line population risk (incidence), k is the number of causal alleles, 

and a
j
 is the allelic count of the allele number j, {0,1,2}.

10. For a set of increasing PAR (p
1
, p

2
, … ,p

m
 ), we calculated the corresponding pheno-

type vector, giving a matrix of dimension N*m.

11. The genotypes for the causal genes along with the set of different phenotypes, where 

given to SKAT and WSS

12. For each phenotype vector (corresponding to all the PAR analysed), drew a random 

subset of a given sample size and asses the detection percent over all genes, and re-

peated this for 50 replicates. We then calculated the mean and 95% empirical confi-

dence interval of the power over all the replications.

Relationship between PAR and GRR

The relationship between Population Relative Risk (PAR) and Genotype Relative Risk 

(GRR) used in the simulation is clarified in the equations below. If we define PAR as a 

ratio between an Exposure (E) and the Relative Risk (RR), as in the formula below: 

We can now substitute the Relative Risk with the Genotype Relative Risk (GRR), and 

the Exposure is substituted with the minor allele frequency (MAF), after some rearrange-

ment we get:



102

This leads to the final relation which is used in the simulation alforithm;

The GRR can also be inverted to emulate a protective effect, by substituting the effect 

sizes with 1/effect size

Phenotype construction

To construct phenotypes, we calculated the probability of an individual being affected as 

the product of all the GRRs, given in the equation below(Equation 2)

Where b
0
 is the baseline risk (incidence), and a is the set of all causal alleles, such that g

j
 

is the allelic count (0, 1, 2), for allele number j.

To justify Equation 2 that the probability of being affected is the multiplication of GRR, 

we start with the (Genotype) Relative Risk for one variant, given an exposure (E), which 

can also be an allele: 

Now the last part of the equation (P(Y|Ec)) is the probability of being affected given no 

exposure, which is the incidence or background risk (b
0
). For many different variants, we 

can assume that the probability of being affected is the intersection of the probabilities. 

If all the variants act independently, and the incidence is assumed to be constant for the 

trait, this reduces to multiplication of all relative risks:
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Supplemantary tabel 1

Reproducing the table from the exome chip consortia, showing the different contributions to the 
design of the exome Chips. 

Study name Phenotype Decent Sample 
Size

NHLBI ESP (5 
tranches)

CD, Lung traits, 
Obesity

(American) Europeans, 
AA

4260

ARRA Autism (American) Europeans 1778

GO T2D (2 tranches) T2D (American) Europeans 1618

KG (2 tranches) Healthy individuals Diverse 1128

Sweden Schizophrenia 
Study

Schizophrenia European (Swedes) 525

SardiNIA LDL-c, HDL-c, TG Sardinia population 508

CoLaus Overweigh, Diabetes, 
Fasting Glucose

European (UK) 456

Cancer Genome Atlas Cancer European 422

T2D GENES T2D Hispanic (Mexico) 362

Cancer Cohort Study 
(SMWHS*)

Cancer Chinese 327

Pfizer/MGH/Broad T2D Extreme risk European 182

Lipid Extremes Lipid Extremes European 131

Int’l HIV Controllers HIV Controllers (American) Europeans 121

SAEC DILI Augmentin DILI European 117

I2B2 Major Depression European 50

BMI Extremes BMI Extremes European 46
*SMWHS= Shanghai Men and Women Health Study
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Appendix

Threshold selection

The threshold window size k is chosen such that the expected number of significant
tests for each window size k is equal and the significance level of the total test is α.
Using extreme value theory Zhang deduces the following simple relationship between
the significance level and the total intensity λ, α = 1 − e−λ. Hence λ = − log(1 − α).
The number of non-overlapping windows of size k (#windowk) is equal to number of
observation (nobs) in the CpG-island divided by window size k. Therefor the threshold
tk of window size k is chosen such that the intensity of window size k is λk = k · λ1 .
The total intensity λ =

∑
k∈K

λk =
∑
k∈K

k · λ1, here K is the set of window sizes to be

examined. The expected number of significant windows of size k is given by

E[sign.window] = λk ·#windowk = k · λ1 · nobs
k

=
λ∑

k∈K
k
· nobs = − log(1− α)∑

k∈K
k

· nobs

(1)

hence only depending on the sum of all window sizes tested and not on a particular
window size. So we can derive number of significant windows allowed keeping the sig-
nificance level α. Using simulation we can find the optimal threshold such that

E[sign.window] =
− log(1− α)∑

k∈K
k

· nobs (2)

for the various window sizes.

p-value DMR Scan(MCMC)

T k
DMR is the average of TCPG in a window sized k, where TCPG is following an AR(2)

process, i.e.

T k
DMRi

=
1

k

i+k∑

i

TCPGi . (3)

Using simulation one is able to find an emperical estimate for the variance σ̂k
DMR of T k

DMR

with non-overlapping TCPG. Using the assumption of DMR Scan that no two overlapping
windows can be significant we know that selected DMRs are i.i.d. Gaussian with mean
zero and variance σ̂k

DMR. p-values can be calculated using the Gaussian distribution
function.

Supplement to Paper III
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Supplementary Material & Methods
Materials
The data used in this study consists of targeted bisulfite-sequenced (84 MB target - 
SureSelect Methyl-Seq, Agilent Technologies, Santa Clara, CA, USA) saliva DNA 
from samples of 100 11 years-old Finnish females. Per individual, we measured 
methylation in 2,947,202 loci, mainly residing in CpG islands. The size of these 
islands ranged from 2 to 791 CpGs. 

A custom script produced β-methylation values from raw sequencing data by 
combining open-source softwares. First, low quality sequences and adaptors were 
removed using the Nesoni clip (version 0.115) (http://www.vicbioinformatics.
com/software.nesoni.shtml). The bisulfite-converted sequence reads were then 
mapped to the human genome (hg19) using Bowtie2 (version 2.0.5) (Langmead & 
Salzberg, 2012) and Bismark (version 0.10) (Krueger & Andrews, 2011). The Bis-
mark methylation extractor and custom formatting scripts were used to calculate 
β-methylation values for CpG sites. The first seven bases of each sequence were 
ignored, as a strong bias toward non-methylation was caused by the insertion of 
unmethylated cytosines during end-repair in the sequencing library preparation. 
CpG sites at which more than 25% of the samples had less than 10x coverage were 
discarded.

To make the benchmarking computationally feasible, we extracted all annotat-
ed regions from chromosome 22. This chromosome had 58,910 measured CpGs, 
distributed over 1,071 regions, with a mean of 55 observations per region, and a 
range of 16 to 456 CpGs per region. Chromosome 22 represented a reduced data-
set without any a priori significant regions for the phenotypes sampled in earlier 
study.

Supplementary Figure 1 Estimated power when total effect size is consid-
ered. Long DMRs have more added effect than shorter regions. Here long 
regions with small effects are collapsed with short regions with high effect.
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Methods
Simulation parameters for Bumphunter and DMRcate

Bumphunter
The main parameters in Bumphunter are, the maximum allowed gap between 
probes within a cluster, the trimming coefficient, and the number of permuta-
tions. The trimming coefficient gives the quantile of the test statistics that are ag-
gregated into new clusters in each permutation. This was set to the default value of 
0.99, thus setting the threshold to include 1% of the top hits. We only considered 
regions with a “fwer” value below 0.05, after 2000 permutations. 

DMRcate
The genome wide significance level for the probe-wise p-values is set by the user 
as well as the multiple testing adjustment method for the probe-wise p-value. The 
scaling factor (C) is inverse proportional to the standard deviation of the ker-
nel smoothing. Empirical testing by the authors of DMRcate showed that when 
smoothing parameter is 1kb, the optimal scaling factor was close to 2 (Peters et 
al., 2015).
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