
A Possible Composite Design
Pattern for Immature REST APIs
A Study of Maintainability, Reusability, and Testability

Martin Røed Jacobsen

Master’s Thesis Autumn 2016

Abstract

Software design patterns are formalized best practices, which provide
reusable solutions to commonly occurring design problems in a given
context in software engineering.

The aim of this study was to investigate how software design patterns
can be combined to provide a wait-free abstraction layer over REST APIs
on the low end of service maturity.

We present an implementation of a possible “composite pattern” in
C] and perform static analysis of the example source code to measure
its maintainability, reusability, and testability. Thus, we collect five
software quality metrics: Coupling Between Objects (CBO), Cyclomatic
Complexity (CC), Depth of Inheritance (DIT), Lines of Code (NLOC) and
Maintainability Index (MI).

All of the classes involved in the implementation receive a very good
score on all metrics.

Our research suggests that this particular combination of design
patterns is very useful, and that it may be a design pattern by itself.
However, it has to be identified in other independent and unrelated
systems for that to be true. Note that it may be challenging to integrate
this solution into existing code bases due to its considerable structural
requirements.

i

ii

Acknowledgements

I would like to extend my sincerest gratitude to Wan Thai Foods Industry
for manufacturing the dirt cheap, yet superb instant noodles, YumYum
(chicken flavor), thus contributing to my continued existence for the
duration of this thesis.

Thanks to Orona Norway for providing Ole Johan Dahl’s house (OJD)
with the slowest elevators in the combined history of mankind. They
have been an inexhaustible and invaluable source of conversation, and
has been an inspiration for future research into elevator firmware.

Thanks to the entire 10th floor of OJD at the University of Oslo, the
Programming & Software Engineering (PSE) research group, for their
encouragement and for being a great bunch of people. A special thanks
to Stein Krogdahl for keeping the coffee machine in mint condition, and
for teaching me about its mysterious ways and secrets.

Finally, and most importantly, I would like to thank my life coach
supervisor, Eric Jul, for being a guiding beacon through these uncertain
times.

Blindern, August 3, 2016
Martin Røed Jacobsen

iii

iv

Contents

Abstract i

Acknowledgements iii

1 Introduction 1

1.1 Motivation . 2

1.2 Goals . 3

1.3 Approach . 3

1.4 Criteria for Solution . 3

1.5 Work Done . 3

1.6 Evaluation . 4

1.7 Results . 4

1.8 Contributions . 4

1.9 Conclusion . 4

1.10 Outline . 5

I Background 7

2 Introduction 9

2.1 Outline . 9

3 Representational State Transfer 11

3.1 Introduction . 11

3.2 The Richardson Maturity Model 12

3.3 Hypermedia . 13

3.4 Constraints . 14

3.4.1 Client-Server . 14

3.4.2 Stateless . 14

3.4.3 Cache . 14

3.4.4 Uniform Interface . 15

3.4.5 Layered System . 15

3.4.6 Code-On-Demand . 15

3.5 Create Read Update Delete 16

3.6 Summary . 16

4 Software Design Patterns 17

v

4.1 Introduction . 17
4.2 History . 17
4.3 Definition . 18
4.4 Creational . 19
4.5 Structural . 19
4.6 Behavioural . 19
4.7 Used Patterns . 20

4.7.1 Command . 20
4.7.2 Factory Method . 20
4.7.3 Observer . 21

4.8 Summary . 21

5 ReisAPI from Ruter 25
5.1 Introduction . 25
5.2 ReisAPI . 26
5.3 Summary . 27

6 Windows Communication Foundation 29
6.1 Introduction . 29
6.2 Sample Code . 30
6.3 Summary . 30

7 Summary 33

II A Potential Composite Design Pattern 35

8 Introduction 37
8.1 Outline . 37

9 Performer 39
9.1 Intent . 39
9.2 Basis . 39
9.3 Motivation . 39
9.4 Applicability . 40
9.5 Structure . 40
9.6 Participants . 42

9.6.1 Command and Factory Method 42
9.6.2 Observer . 43

9.7 Collaborations . 44
9.8 Consequences . 44
9.9 Implementation . 45
9.10 Sample Code . 46

9.10.1 Consumer . 47
9.10.2 Performer . 47
9.10.3 Request . 47
9.10.4 Response . 48

vi

9.10.5 SimplePerformer . 50

10 Summary 55

III Evaluation 57

11 Introduction 59
11.1 Windows Communication Foundation 60

11.2 Outline . 60

12 Software Quality Metrics 61
12.1 Introduction . 61

12.2 Functional Quality . 62

12.3 Structural Quality . 62

12.4 Complexity Metrics . 62

12.4.1 Lines of Code . 63

12.4.2 Halstead Complexity Measures 64

12.4.3 McCabe’s Cyclomatic Complexity 65

12.4.4 Coupling Between Objects 66

12.4.5 Depth of Inheritance 66

12.5 Measuring Maintainability 67

12.5.1 Oman’s Maintainability Index 67

12.6 Criticism . 68

12.7 Summary . 69

13 Measurements 71
13.1 Introduction . 71

13.2 Base Classes and Interfaces 77

13.2.1 Interfaces . 77

13.2.2 Base Classes . 77

13.2.3 Concrete Classes . 78

13.3 Subclasses of BaseRequest 79

13.4 Subclasses of BaseResponse 80

13.5 Summary . 80

14 Summary 81
14.1 Maintainability . 81

14.2 Reusability . 82

14.3 Testability . 82

14.4 Size . 82

15 Conclusion 83
15.1 Summary . 83

15.2 Main Contributions . 84

15.3 Further Work . 85

15.3.1 Generic Base Classes 85

vii

15.3.2 Identify Performer in Other Systems 85
15.3.3 Pluggable Representation Formats 85
15.3.4 Reduced Dependence on Type Checking 86
15.3.5 Transparent Authentication Mechanism 86
15.3.6 Use in Server Applications 86

viii

List of Figures

3.1 The REST technology stack 13

4.1 UML diagram of Command 20
4.2 UML diagram of Factory Method 21
4.3 UML diagram of Observer 22
4.4 Diagram of Observer . 22

5.1 Facsimile from the GetTravels documentation 27

6.1 Using WCF with REST . 30

9.1 UML diagram of Performer 41
9.2 IConsumer and AbstractConsumer 47
9.3 IPerformer and AbstractPerformer 48

15.1 Performer in the context of a server 87

ix

x

List of Listings

6.1 A data contract in C] using WCF 31
6.2 Parsing an object in C] using WCF 31
9.1 IConsumer in C] . 47
9.2 AbstractConsumer in Python 47
9.3 IPerformer in C] . 48
9.4 AbstractPerformer in Python 48
9.5 Request in C] . 49
9.6 Request in Python . 49
9.7 Response in C] . 50
9.8 Response in Python . 50
9.9 SimplePerformer in C] . 51
9.10SimplePerformer (Start) in C] 52
9.11SimplePerformer (ThreadMain) in C] 53
9.12SimplePerformer in Python 54
13.1The GetTravels constructor 79
15.1The GetStop class using generics 85

xi

xii

List of Tables

3.1 Richardson Maturity Model (RMM) 12
3.2 Create Read Update Delete (CRUD) 16

4.1 Classification table for software design patterns 19

5.1 Modules in ReisAPI . 26

12.1 Overview of Software Quality Metrics 63
12.2 Maintainability Index in Visual Studio® 68

13.1 Basic class level measurements 72
13.2 Basic method level measurements 72
13.3 Request classes measured on the class level 73
13.4 Request classes measured on the method level 74
13.5 Response classes measured on the class level 75
13.6 Response classes measured on the method level 76

xiii

xiv

1
Introduction

Computer programs, or “software”, are in many ways similar to
buildings and vehicles in that they are a composition of different parts
from different manufacturers and places. Houses vary widely in both
size and design, but they all have a lot in common. They need doors,
lights and windows, among other things. An architect may decide that
a particular window should have a round shape, or that of an arch, but
the architect cannot spend valuable time inventing new windows with
every new house. Instead, the architect has a book with thousands of
patterns, to pick and choose from. In a sense, one could say that the
house is a patchwork of ideas borrowed from others. What makes the
house unique is the way in which it combines these ideas, or “design
patterns”, that it is comprised of.

An architectural design pattern for a particular style of windows may
describe how square shaped bricks are laid out with only their corners
touching, in the style of a diamond, to form an arch. Variations of this
design pattern can be reused in the context of different buildings, again
and again, wherever a window in the shape of an arch is desired. It is a
timeless solution to a timeless problem.

Software engineering is a discipline concerned with the design and
construction of not buildings, but computer programs. Whereas an
architect carefully selects doors and windows to achieve a harmonious
look and feel, software engineers make abstract decisions regarding the
representation of “things” in a program, and how these things interact
with each other, like the gears of a clock. A car is typically comprised
of four wheels, a steering wheel and an engine. Those are isolated
components that, in principle, can be replaced entirely without changing

1

anything else in the vehicle. One could switch from a diesel engine to
an electric one, but the car would still be a car, retaining its intended
functions. This is the kind of modularity that software engineers try to
reproduce in computer programs, using collections of design patterns.

A design pattern is not something that is “invented”, rather, it is
discovered by observing the past work of others. It is a way of recording
experience so that ideas can be named, discussed and reused in other
places, without having to be rediscovered. In this thesis, we take a
closer look at one combination of three “traditional” software design
patterns. We discovered this particular combination while developing a
program that needed to issue HTTP requests without blocking or using
callback methods. We believe that we may have come across a design
pattern, and here we describe how it works with a concrete example.

1.1 Motivation

Consider a computer program that can tell you how to travel between
two geographical locations: a travel planner. The program displays a
window that consists of four parts; a place to type in the destination, a
list of possible routes, a map to visualise the selected route, and a list of
interesting things to do at the selected destination.

The program does not possess knowledge of every destination in the
world, or any destination at all, for that matter. What it does have,
is the ability to obtain this information from another source, over the
Internet, when it is needed. Due to many factors beyond your control,
searching can be slow and you may have to wait for the answers to
arrive. The program “locks up”, and ignores your attempts at using it.
This behaviour is caused by the fact that the program is only capable of
doing one thing at a time, and right now, it is waiting for information
from some other computer on the Internet. One way to solve this
problem is to change the program so that it can perform more than one
task at the same time. This is called multithreading.

Multithreading is complicated, and hard to do right. A program with
two “threads” is comparable to a human mind, that can maintain two
unrelated lines of thought simultaneously. A program can run flawlessly
for years, even if the programmer makes a mistake. Even so, no
matter how unlikely an error is to manifest, some day it may happen
for seemingly inexplicable reasons. Tracking down the source of such
an error may be close to impossible if the program is very old. A failure
in a travel planner is unlikely to cause economical damage, but data loss
may occur, which if not a disaster, is an annoyance. Restricting the use
of multiple threads to a single, generic, component in the program code
can prevent some of these problems.

2

We wish to enjoy the benefits of multithreading in our travel planner,
without cluttering our program code with code that supports multiple
threads. To achieve this, we will make sure that the code in question is
contained in one central place in the application, in a component that
can be reused by other, similar, programs at any point in the future.

1.2 Goals

Our goal is to demonstrate that this software design pattern combination
may be a pattern by itself. In other words, we describe a potential
pattern for wait-free issuance of HTTP requests (“fire and forget”). We
use nothing other than commonly available features in object-oriented
languages, and well known design patterns.

1.3 Approach

We investigate how well a particular combination of software design
patterns work together, and show how they can be used to design a wait-
free abstraction layer for HTTP requests in the context of a basic REST
API. We create a small travel planner program (using the example code
in this thesis) that communicate with ReisAPI, a RESTful travel planner
provided by Ruter, a common management company for public transport
in Oslo and Akershus in Norway. Visual Studio® 2015 Enterprise is
used for both development and for the collection of software quality
measurements, of which we perform a systematic evaluation.

1.4 Criteria for Solution

The potential design pattern is tested in the field through our travel
planner program. Our primary concerns are that the maintainability,
reusability, and testability of the program code are within acceptable
limits, but we also provide a subjective opinion on whether or not the
pattern “feels” good to work with.

1.5 Work Done

We have documented and evaluated a possible design pattern that
provides wait-free, HTTP-based communication by taking advantage
of nothing other than commonly available features in object-oriented
languages, and some existing and well known design patterns. Using

3

the sample code included in this thesis, we developed a small travel
planner program based on the possible design pattern. The program
communicates with ReisAPI, a Norwegian travel planning system. We
have measured the maintainability, reusability, and testability of our
solution using development tools from Microsoft®, and we have given
our a subjective opinion on how the potential pattern is to work with.

1.6 Evaluation

We have developed a computer program based on a possible design
pattern, and we have performed an evaluation of the maintainability,
reusability, and testability of the code by collecting five software quality
metrics.

1.7 Results

The potential composite pattern introduces minimal complexity in
program code, and as such it provides a simple interface to parallel
programming (multithreading for “free”). The test program scores very
well on all five software quality metrics, and looks to be fairly easy to
extend (and reduce). There is, however, room for improvements that
can make it even better. We have also identified another potential area
of applicability for it on the server-side.

1.8 Contributions

Our contribution is a potential new design pattern called “Performer”
that can be implemented in any programming language with support for
object-orientation and multithreading. A client program was developed
for ReisAPI, for the purpose of evaluating a concrete implementation of
the potential pattern, but the program itself is not an important part of
the thesis, or our contribution.

1.9 Conclusion

This thesis has shown that the potential design pattern works well, is
relatively simple to implement, and is a “good” way to communicate
with services on the Internet. However, the test program was designed
from the ground up with the pattern in mind, and as such, we make no
claim that it is easy to integrate it into an existing program.

4

1.10 Outline

This thesis is divided into three separate parts: Background, A Potential
Composite Design Pattern, and Evaluation. Each part is divided into a
number of chapters and sections, that may be read individually or in the
order they are presented, of which we recommend the latter.

• Part I: Background
In this part we offer a short introduction to the concept of design
patterns in software engineering, and we look at how the World
Wide Web (WWW) can be leveraged as an application platform
using REST. Furthermore, we take a brief look at ReisAPI, a travel
planner for public transportation in Norway, and WCF, which is an
abstraction layer for communicating services.

• Part II: A Potential Composite Design Pattern
This part introduces the potential Performer composite software
design pattern, formatted in the style of GoF, with sample code in
the C] and Python programming languages.

• Part III: Evaluation
Provides a brief presentation of various software quality metrics
collected from the example program, and a discussion regarding
the maintainability, reusability, and testability of the code. We end
this thesis by reviewing everything we have learned, and provide
some suggestions on future improvements, and an alternative use
for the Performer pattern on servers.

5

6

Part I

Background

7

2
Part I: Background

Introduction

In this part, we introduce four topics that together form the basis of
this thesis. We begin by taking a look at the architectural style REST,
which is heavily influenced by the WWW. Then we define what a
“design pattern” really is in the context of software engineering (and
how it differs from an “algorithm”), followed by a narrow selection of
three design patterns used later in this thesis. We conclude this part
by providing a short summary of the capabilities of the ReisAPI travel
planning API (used in our example application), and a technical chapter
explaining WCF, the technology we use to process response data.

2.1 Outline

• Chapter 3: Representational State Transfer
REST is an architectural style in software engineering, that uses
the “Web” as highly scalable and flexible application platform.

• Chapter 4: Software Design Patterns
Software design patterns in software engineering contribute to re-
usable object-oriented software design by providing solutions to
some of the problems that frequently occur during the develop-
ment of software applications.

• Chapter 5: ReisAPI from Ruter
ReisAPI is a Norwegian travel planning service inspired by the
REST architectural style, that provides information about public
transportation in the capital of Norway.

9

• Chapter 6: Windows Communication Foundation
WCF is an abstraction layer for services that need to communicate
(typically) over a network.

10

3
Part I: Background

Representational State Transfer

3.1 Introduction

In this chapter, we introduce a way of organising the internal and
external components in a very large (Internet scale) system, and a way of
classifying such systems according to their usage of the features offered
by the web.

REST, or Representational State Transfer, is described by many as
the architectural style of the WWW. It was formally derived by Roy
Fielding in 2000 as part of his doctoral dissertation ‘Architectural Styles
and the Design of Network-based Software Architectures’. His research
suggests that the architectural constraints provided by REST, when
applied as a whole,

“emphasizes scalability of component interactions, generality
of interfaces, independent deployment of components, and
intermediary components to reduce interaction latency, en-
force security, and encapsulate legacy systems.” [Fie00]

What this means is that REST provides a set of tools that can be
used to build highly scalable systems with generic interfaces that, in
principle, can be taken advantage of with only a generic understanding
of “hypermedia”. In this chapter, we provide a brief summary of
the software engineering principles that guide the implementation of
RESTful services, and the interaction constraints that must be applied
to retain those principles.

11

3.2 The Richardson Maturity Model

Level Description

3 Supports the notion of “hypermedia as the engine of
application state” [Fie08]. Resource representations contain
links to other resources, leading consumers through a
sequence of resources which causes application state
transitions.

2 Hosts numerous resources and supports several HTTP
methods. This service level introduces CRUD services, which
we cover in section 3.5 on page 16.

1 Employs many logical resources, yet supports only one HTTP
method (typically GET). Operation names and parameters are
inserted into a URI and then transmitted to a remote service.

0 Offers a single large and complex resource (URI) through
which all interactions are tunnelled, and supports only one
HTTP method.

Table 3.1
The three (four) levels of service maturity according to the Richardson
Maturity Model (RMM). Level 0 is not RESTful.

During his talk ‘Justice Will Take Us Millions Of Intricate Moves’ at
QCon San Francisco in 2008, freelance consultant and writer Leonard
Richardson proposed a classification of services on the Web that
promotes three levels of service maturity based on how much a service
employs URIs, HTTP and hypermedia, recognised by many as the three
core technologies of the Web.

The diagram in fig. 3.1 on the next page shows the maturity levels
as a layered structure, in which each layer builds on the layers below.
At the top of the diagram are the most mature services, which employ
all of the technologies in the layers below, whereas the least mature
services rest at the bottom [WPR10]. Table 3.1 presents the three levels
of service maturity. The fourth level, level 0, includes services that use
too few web features to be considered RESTful.

The Richardson Maturity Model (RMM) assumes that most of the
constraints we covered in section 3.4 on page 14 are fulfilled because
they are implied by the Web architecture. Level 0 services are not
considered RESTful [WPR10].

12

URI

HTTP

Hypermedia

Figure 3.1
Each level in Richardson’s model builds upon the levels below.

3.3 Hypermedia

Hypermedia as the Engine of Application State (HATEOAS) is a
distinguishing constraint of the Representational State Transfer (REST)
architectural style, and is what differentiates it from other architectures.
HATEOAS corresponds to level three in the RMM (section 3.2 on
page 12). In our limited experience, most services seem to be at level
one or two in the RMM.

Whereas many architectural networking patterns communicate
using static interfaces, a REST client receives hypermedia dynamically
from the server, and uses its embedded hyperlinks to discover other
parts of the service. Only the protocol and the entry point of the
service are fixed (just like web pages visited by humans). As the client
explores the service, it selects links from the hypermedia it receives and
transitions through states directed entirely by the application on the
server, in the same way a state machine does. Thus, the “engine” (E) in
HATEOAS is hypermedia.

Similarly, to use the “Example” service with a browser, all we (a
human user) need to know is that it is available using HTTP at example.
com. Visiting the service presents us with buttons and menus that we
can use to discover its functionality, without having to look up specific
URIs in the documentation, just as HATEOAS requires. Hypermedia
was originally designed to be used by humans, though it turns out that
machines are just as good at following state machine protocols.

A truly RESTful service should be usable both by generic REST
clients, but also by human readers entering the service through the
same URI. A human user may receive executable code (see section 3.4.6

13

example.com
example.com

on the next page) from the service to aid in the presentation of the page
in a web browser (e.g. JavaScript), but that is not likely to be a useful
feature for a computer program.

3.4 Constraints

When people refer to an API as being “RESTful”, it appears to us that
in many cases, what they really mean is an API where JSON or XML
messages are delivered to some predefined URL, with the HTTP protocol
as its transport. However, this is far from what REST was intended
to be [WPR10]. This section is a summary of Fielding’s six RESTful
constraints, as he defined them.1

3.4.1 Client-Server

Business logic and data is kept separate from the user interface.
This separation of concerns improves the portability of the user
interface across multiple platforms and the scalability of the server by
simplifying its components. The user interface is the “client”, whereas
business logic and data resides on the “server”.

3.4.2 Stateless

Session state is kept entirely on the client and the server is stateless.
Each request includes all state information necessary to understand
and fulfil it. This constraint improves visibility by allowing monitoring
systems to understand the entire nature of a request without having to
keep track of earlier or future requests. Furthermore, the reliability
is improved because recovery from partial failure becomes easier.
Resources are quickly freed because the server does not have to store
state information, thus improving scalability.

3.4.3 Cache

Response data must be labelled as to whether or not it can be cached.
A cacheable response can be reused by a client for later, equivalent
requests. Unlabelled retrieval responses are cacheable by default, while
other responses are non-cacheable unless explicitly marked as such.
The cache constraint can contribute to improved efficiency, scalability
and perceived performance by reducing the average latency. However,
reliability may suffer, if a cache contains stale data.

1Refer to Chapter 5 in his dissertation [Fie00] for additional information.

14

3.4.4 Uniform Interface

Interfaces between components must be uniform and general in nature.
Implementations are decoupled from the services they provide. Data is
transferred using standardised formats. This constraint simplifies the
overall system architecture and the visibility of interactions between
components is improved. Furthermore, in order to obtain a uniform
interface, Fielding suggests that four interface constraints are needed:

1. Uniform identification of resources (URIs).

2. Manipulation of resources by altering their representations.

3. Messages are comprehensive and independent (stateless).

4. Application state is driven by hypermedia.

3.4.5 Layered System

An architecture can be composed of any number of hierarchical layers.
Any number of intermediary layers can be added between the client and
the server without the knowledge of either. No component has any
knowledge about any layer beyond the one with which they exchange
data. This layering can be used to improve system scalability by
introducing load balancers and caches. However, layering introduces
overhead and latency, which may reduce the perceived performance
of the system. Then again, this disadvantage can be reduced by
appropriate use of caches. Additionally, layering allows data to be
filtered through firewalls and other monitoring systems, thus allowing
organisations to enforce security policies.

3.4.6 Code-On-Demand

The functionality of the client can be extended by downloading code.
This is an optional constraint within REST, because it reduces visibility.
Code in the form of applets or scripts can be downloaded and executed,
thus improving the functionality of the client and overall system
extensibility. For example, an application can deliver JavaScript to aid
browsers in the presentation of data. This constraint –– if implemented
–– should be designed with the understanding that it may be disabled
because of external factors beyond the control of the system.

15

Operation HTTP Description

Create POST Create a new resource and receive its new URI in
the HTTP response.

Read GET Request the state of a resource identified by URI.

Update PUT Replace a resource identified by URI with the
representation included in the request.

Delete DELETE Logically remove a resource identified by URI.

Table 3.2
The Create Read Update Delete (CRUD) pattern treats resources as
relational databases.

3.5 Create Read Update Delete

CRUD is a pattern for treating resources with the same operations
available in relational database applications: POST, GET, PUT, and DELETE.
See table 3.2 for a short description of the four available operations.
Because of their lack of support for hypermedia, CRUD services reach
level two on the RMM [WPR10] covered in section 3.2 on page 12.

3.6 Summary

REST is an architectural style that can be used to build highly scalable
and generic systems. Originally developed to support the WWW, though
in recent years its popularity has increased as a way to deliver services,
not only to human consumers, but to computer programs.

The RMM is a way of classifying the maturity of services based
on REST. There are four levels of service maturity, of which level 0

indicates that a service is using the web merely as a transport, and level
3 indicates that a service uses most of the features offered by the web.
We believe that “immature” is a suitable term for describing any REST
Application Programming Interface (API) below level 2.

16

4
Part I: Background

Software Design Patterns

4.1 Introduction

An important feature of software design patterns is that they have names
that allows for discussion on a higher level. Instead of describing the
interactions of a set of objects, developers can simply refer to that
specific design pattern, and other developers will know the interactions
from experience.

This chapter offers a brief look at the historical origin of design
patterns as a concept, and outlines the basic structure of design patterns
in the context of software engineering. We conclude this chapter by
presenting the three main categories of software design patterns, and
three concrete patterns: Command, Factory Method, and Observer.

4.2 History

The concept of design patterns first appeared in architecture following
the publication of The Timeless Way of Building [Ale79] in 1979. The
book was written by the architect Christopher Alexander, which at the
time held the position Professor of Architecture at the University of
California, Berkeley. Alexander proposed a new philosophical theory
that architecture and design relies on quality through the deliberate
configuration of design patterns, which has had an enormous influence
in the software engineering industry [Sal].

17

The usage of patterns gained popularity in the software industry
when the Gang of Four (GoF) published their book Design Patterns:
Elements of Reusable Object-Oriented Software [Gam+94] in 1994,
as a collection of recorded experience in object-oriented software
engineering. It is intended to be used as a catalogue with its 23
fundamental software design patterns that are named, explained and
evaluated systematically.

4.3 Definition

Whereas an “algorithm” is a finite collection of unambiguous instruc-
tions that uses an input to perform a specific task (resulting in an out-
put), a “design pattern”, like a blueprint, is a general way of structuring
program code to express the relationship between components and their
roles. In A Pattern Language (1977), Christopher Alexander wrote that
a pattern

“describes a problem that occurs over and over again”, and
that it “describes the core of the solution to that problem, in
such a way that you can use this solution a million times over,
without ever doing it the same way twice.” [Ale77]

According to the GoF, a design pattern is a design that has been
successfully applied more than once in unrelated systems. What this
means is that it is impossible to wilfully create a design and call it a
pattern. The design has to be discovered and used independently in
more than one place. In other words, you can not “create” a design and
claim that it is a pattern.

Whereas design patterns in architecture concerns quality regarding
buildings and cities, a software design pattern addresses commonly
occurring problems in software engineering, describing the interaction
among customized objects and classes in a particular context [Gam+94].
Applying a software design pattern typically carries several advantages,
such as decreased coupling between objects, improved extensibility and
encapsulation of implementation details.

In this thesis, we concern ourselves with only a small subset of the
fundamental software design patterns recorded by GoF in [Gam+94].
However, other families of more specialised patterns concerning, among
others, game design, computational and enterprise applications do
exist. The design patterns we concern ourselves with are classified by
purpose and scope. Patterns can have either a creational, structural or
behavioural purpose. The scope indicates whether the pattern applies
primarily to classes, or to instances of classes (objects). See table 4.1 on
the facing page for a classification table.

18

Purpose

Creational Structural Behavioural

Scope Class Factory Method Adapter Interpreter

Template Method

Object Abstract Factory Adapter Chain of Responsibility

Builder Bridge Command

Prototype Composite Iterator

Singleton Decorator Mediator

Facade Memento

Flyweight Observer

Proxy State

Strategy

Visitor

Table 4.1
Classification table for software design patterns [Gam+94].

4.4 Creational

Design patterns concerning the way objects are instantiated and
configured at runtime (i.e. Factory Method) are referred to as creational
patterns. Creational class patterns delegate the responsibility of object
instantiation to subclasses, whereas creational object patterns involve
another otherwise unrelated object (i.e. Abstract Factory) [Gam+94].

4.5 Structural

Design patterns concerning the way that classes are composed and
assembled are referred to as structural patterns. The structural class
patterns compose classes by using inheritance to promote reusability,
while structural object patterns assemble objects by having them refer
to instances of each other, instead of relying on inherited functionality
[Gam+94].

4.6 Behavioural

Design patterns that affect the control flow and interaction between
objects in complex algorithms are referred to as behavioural patterns.
Behavioural class patterns describe how inheritance can be used to
implement algorithms and desired flow of control. Behavioural object
patterns perform tasks that require more than one object, by describing
the way the objects cooperate [Gam+94].

19

Figure 4.1
UML diagram of Command, which allows the creator of a request to
delegate the responsibility of executing it to another class [Gam+94].

4.7 Used Patterns

In this thesis, we describe a potential composite software design pattern
that is based on the Command, Factory Method and Observer patterns.
Command is used to encapsulate requests to API URIs, while Observer
invokes the Factory Method provided by the Command to parse the
response appropriately. It then proceeds to propagate the response
around the application.

In the following sections, we provide a very brief explanation
of the aforementioned design patterns (see [Gam+94] for extensive
information on them).

4.7.1 Command

Command allows us to encapsulate a method as an object. Arguments
are passed to the constructor of the Command object, which stores
them and forwards them to the appropriate methods when executed by
an invoker. Refer to the Unified Modeling Language (UML) diagram
in fig. 4.1 for an illustration of the structure required to implement
Command.

4.7.2 Factory Method

Factory Method is a pattern in which subclasses of a “creator” class
define the type of object they instantiate and return to the caller. In
a strongly typed language, such as C], this return type must conform

20

Figure 4.2
UML diagram of Factory Method, a pattern that forwards the respons-
ibility of choosing which class to instantiate, to subclasses [Gam+94].

to an interface or a common base class, which can be subclassed and
specialised. A UML diagram that illustrates the structure of Factory
Method can be found in fig. 4.2. In this thesis we use the pattern to
construct response objects from the data that is generated by issuing
requests to an API, by having each request class implementing a factory
method to handle replies.

4.7.3 Observer

Observer defines a one-to-many dependency between objects so that
when one object (subject) performs a state change, all dependents
(observers) are updated automatically. Observer is often applied when
different presentations can depict the same information, such as a
spreadsheet or different kinds of charts. They have no knowledge of
each other, yet their behaviour suggest that they do. When information
is altered in the spreadsheet, a bar chart may reflect those changes
immediately, and vice versa [Gam+94]. This is exemplified in fig. 4.4 on
the next page. See fig. 4.3 on the following page for a UML diagram.

4.8 Summary

A design pattern is a named record of experience that presents a
problem and describes a way to solve it by proposing class design,
structure, and interaction, like a blueprint. The concept originated in
architecture long before it became common in software engineering.

Patterns are discovered, and cannot be created wilfully. Once a
design has been applied successfully in a number of systems, it may
be that it is a pattern.

21

Figure 4.3
UML diagram of Observer, a pattern that is used to define a one-to-many
dependency between objects [Gam+94].

Subject

Observer 1 Observer 2 Observer 3

Data

Bar chart Pie chart Spreadsheet

Figure 4.4
Diagram of Observer, a pattern that is used to update any number of
objects that depend on the state of one, common, subject [Gam+94].

22

In this chapter we have described three software design patterns
that are used in subsequent chapters: Command, Factory Method, and
Observer.

23

24

5
Part I: Background

ReisAPI from Ruter

5.1 Introduction

The purpose of this chapter is to document a concrete example of an
immature REST API, and as such ReisAPI could be replaced with any
other similarly immature API. ReisAPI is a Norwegian travel planning
service that uses some elements of the REST architectural style, and
that provides information about public transportation in the capital of
Norway.

Ruter is a common management company for public transport in Oslo
and Akershus in Norway [Ruta]. Through the Labs initiative, they have
made two REST APIs freely available [Rutc] for both commercial and
private use (“ReisAPI” and “DeviAPI”) under the permissive Norwegian
Licence for Open Government Data (NLOD).

ReisAPI provides an interface for access to a travel planner
and various information retrieval resources. DeviAPI offers public
transportation deviation information through the Service Interface for
Real Time Information (SIRI) protocol based on the Web Services
Description Language (WSDL) format, which we will not cover in this
thesis. The remainder of this chapter will provide a brief overview of
ReisAPI and its capabilities.

25

Module Description Resources

Favourites Simpler interface to the StopVisit module. 1

Heartbeat API availability checks. 1

Line Detailed line information. 6

Meta Information about other modules. 1

Place Detailed stop information. 7

StopVisit Departures in real- and fixed-time. 1

Street Geographical data about houses and streets. 1

Travel Travel planner. 3

Trip Detailed information about trips. 1

Table 5.1
Summary of the modules in ReisAPI Modules and their resources.

5.2 ReisAPI

ReisAPI offers nine modules containing a total of 22 resources (methods)
regarding travel planning and live traffic data. These modules are listed
in table 5.1. The official documentation [Rutb] does not specify expected
HTTP status codes, however, according to our observations anything
other than 200 OK should be treated as an error (keep in mind that
the API is read-only, and that it supports only the GET method). This
is included to provide context for the Evaluation chapter, and to serve
as an example of how a level 1 API is commonly structured. It will not
be referenced later.

reisapi.ruter.no/Favourites/ Contains only a single resource, which
appears to be an alternative interface to the GetDepartures resource
provided by the StopVisit module: GetFavourites.

reisapi.ruter.no/Heartbeat/ Provides the “Index” resource which
returns the string “Pong” to indicate that the service is available. We
recommend treating all other responses as an error.

reisapi.ruter.no/Line/ Line is one of the larger modules in ReisAPI,
providing information about routes in public transport where a vehicle
departures at a fixed interval (“lines”). The module includes six
resources: GetLines, GetLinesByStopID, GetDataByLineID, GetStops-
ByLineId (duplicate of the resource with the same name in the Place
module), GetLinesRuterExtended and GetLinesRuter.

reisapi.ruter.no/Meta/ The Meta module provides the Get-
Validities resource which always returns the earliest and latest point
in time that ReisAPI has information about.

reisapi.ruter.no/Place/ The biggest module in ReisAPI is Place,

26

GET Travel/GetTravels?fromPlace={fromPlace}&toPlace={toPlace}&isafter={isafter}&time={time}&changemargin={changemargin}&changepunish={changepunish}&walkingfactor={walkingfactor}&proposals={proposals}&transporttypes={transporttypes}&maxwalkingminutes={maxwalkingminutes}&linenames={linenames}&walkreluctance={walkreluctance}&waitAtBeginningFactor={waitAtBeginningFactor}

Figure 5.1
The title of the GetTravels documentation page [Rutb] as rendered in
the Google Chrome browser. The resource accepts 13 query parameters.
Other ReisAPI resource are documented similarly.

with 13 resources. Six of the resources are, documented as “unofficial”
and subject to change. In practice, the module contains 7 “stable”
resources: GetStop, GetPlaces, GetStopsByLineID (duplicate of the
resource with the same name in the Line module), GetClosestStops,
GetStopsByArea, GetSalePointsByArea, and GetStopsRuter.

reisapi.ruter.no/StopVisit/ StopVisit is the name of a “departure”
object in ReisAPI. It is also the name of the module that contains the
GetDepartures resource, which provide information about departing
transportation from a place.

reisapi.ruter.no/Street/ Provides the GetStreet resource, which
returns all houses that are considered to be a part of a “street”.

reisapi.ruter.no/Travel/ Contains three resources, though only one
which is documented: GetTravels. This resource may be considered
the heart of ReisAPI, as this is the only resource that provides complete
travel information given a departure location and a destination.

reisapi.ruter.no/Trip/ According to the ReisAPI documentation, the
GetTrip resource provided by the Trip module returns information
about a trip.

5.3 Summary

In this chapter we discussed a concrete example of an immature REST
API. ReisAPI provides access to nine modules over HTTP at static
URIs, of which only one provides the actual travel planning functionality
(Travel). The API fulfils the requirements for level 1 on the RMM.

27

28

6
Part I: Background

Windows Communication Foundation

6.1 Introduction

In this chapter, we briefly present framework for building applications
that exchange Simple Object Access Protocol (SOAP) messages over
a network: Windows Communication Foundation (WCF). WCF is a
very large and complex part of the .NET framework, and in this thesis
we use only a tiny fraction of its features to process the JavaScript
Object Notation (JSON) responses we receive from ReisAPI in our
example program. The remainder of this chapter will focus on the WCF
functionality we use explicitly.

All resources in ReisAPI can be represented in both JSON and
Extensible Markup Language (XML), depending on the Accept HTTP
request header provided by the client. The header can be set to
either application/json or application/xml, and the server will
respond accordingly.1 What this means for us is that we need to parse
JSON or XML to use the service, however, the code required to do
this would impact the measurements that we perform in part III on
page 59. Additionally, because parsing of representation formats is
highly dependent on the libraries available in the environment one is
working, we would like to avoid including this when measuring software
quality metrics. For this reason, we use WCF.

1From our observations it seems that the default behaviour of the service is to
respond with XML, if the specified value of the Accept contains an invalid representation
format.

29

Figure 6.1
UML diagram of a basic REST client based on WCF, which provides
interoperability with applications built on several other technologies,
such as ASMX, Remoting and REST.

WCF was introduced by Microsoft® in 2007 and was known as
“ADO.NET Data Services” until 2009, when it was renamed. WCF is
a programming model for building service-oriented applications using
the .NET Framework, and it has the ability to bypass any member
variable protection level in .NET classes. As such, one can define a
class entirely with private member variables or properties, but still use
it with WCF. WCF, however, does not execute the object constructor
upon instantiation of an object.

The advantage of using WCF with our ReisAPI client implementation
is that we get most of the required parsing functionality for free and with
minimal impact on the size of the code base. Consider section 6.2 for an
example of how a data structure can be constructed to allow this form
of parsing, and for a demonstration of the actual code that is required
to create a C] object from a JSON source.

6.2 Sample Code

Listing 6.1 shows a data contract for the Ruter.House type in C] using
WCF, and listing 6.2 shows how the response is parsed using a small
amount of code.

6.3 Summary

WCF is an abstraction layer for communicating services. In this thesis,
we use it for the purpose of decoding incoming JSON messages.

30

1 using System.Runtime.Serialization;
2
3 namespace Ruter
4 {
5 [DataContract]
6 public class House
7 {
8 [DataMember]
9 public string Name { get; set; }

10
11 [DataMember]
12 public int X { get; set; }
13
14 [DataMember]
15 public int Y { get; set; }
16 }
17 }
18

Listing 6.1
This C] example shows how a data contract for the Ruter.House type
is defined by applying the DataContractAttribute and DataMember-
Attribute attributes to the class and its members.

1 // Required: using System.IO;
2 // using System.Net;
3 // using System.Runtime.Serialization.Json;
4
5 DataContractJsonSerializer js = new DataContractJsonSerializer(typeof(House));
6
7 using (MemoryStream stream = new MemoryStream(bytes))
8 {
9 return (House)js.ReadObject(stream);

10 }
11

Listing 6.2
This C] example shows how an instance of the Ruter.House type can
be created from a JSON source to an object, using the data contract
facilities available in WCF.

31

32

7
Part I: Background

Summary

In this part we have introduced four subjects that together form the
basis of this thesis.

REST is an architectural style in software engineering that takes
advantage of the “Web” as a highly scalable and flexible application
platform. The degree of “RESTfulness” can be classified with the
RMM, which indicates to what extent an application takes advantage of
features offered by the web. A REST API is more than simple messages
transported on top of HTTP, which is evident in the six constraints
we discussed in section 3.4 on page 14: client-server, stateless, cache,
uniform interface, layered system, and code-on-demand.

Software design patterns are blueprints that provide reusable
solutions to commonly occurring problems in object-oriented software
engineering. In this thesis, we take advantage of three such patterns:
Command, Factory Method, and Observer.

ReisAPI is a Norwegian travel planning service that uses some
elements of the REST architectural style, and that provides information
about public transportation in the capital of Norway.

WCF is an abstraction layer for services that communicate (typically)
over a network.

33

34

Part II

A Potential Composite
Design Pattern

35

8
Part II: A Potential Composite Design Pattern

Introduction

In the following chapter, we explore a composite (potential) design
pattern that we have named “Performer”. The pattern describes how
most of the complexity related to multithreading and HTTP can be
hidden inside a single object, thus keeping the code concise and simple
in other parts of an application.

We cannot stress enough, however, that it is impossible to invent
a new design pattern. It must be observed in multiple independent
systems. Hence, this chapter is a discussion of something that may have
the potential to become a design pattern, even though we do refer to it
as a “pattern” from time to time.

8.1 Outline

The format of the chapter is based on the style used by GoF in [Gam+94].
Plenty of sample code written in C] and Python 3 is provided, for which
a basic understanding of object oriented programming in general should
be sufficient.

• Chapter 9: Performer
Performer combines the Command, Factory Method and Observer
patterns to provide a multithreaded execution “engine” that
accepts and executes encapsulated requests to REST services on
behalf of other objects in an application.

37

38

9
Part II: A Potential Composite Design Pattern

Performer

9.1 Intent

Exploit the stateless nature of REST by encapsulating requests as
independent, parameterised objects containing the smallest amount of
data possible, and by performing requests in an object that knows how
to exchange data with the relevant API. Allow any object to update its
internal state based on the received data.

9.2 Basis

• Command

• Factory Method

• Observer

9.3 Motivation

Multithreading is often used to offload the thread that powers a user
interface (usually the main thread). In simple programs, one thread
is usually enough; however, if an action performed by the user can
cause a long running operation to execute, then threading is a useful
mechanism. If the main thread starts reading a large file from a spinning
hard drive, or downloads data from the Internet using a slow connection,

39

the user interface becomes unresponsive and the user may perceive the
application as being slow. We can keep the user interface responsive by
offloading the heavy lifting to a separate thread of execution. However,
threading (and synchronisation) is hard to get right and can, if applied
incorrectly, introduce numerous issues in systems that may be very hard
to debug and understand.

In some contexts, more than one part of a system may be interested
in the response from a certain kind of request, without knowing anything
about the issuer of the request, or other interested objects. For example,
a travel planner application may download data about all departures
from a given geographical location. This data may be used in several
parts of the application: displayed in a graphical timetable, logged to
a file, and perhaps aggregated in a database and used for statistical
analysis later. Perhaps a calendar event is created and distributed to a
mailing list, or uploaded to a CalDAV service.

Much like a thread pool, a performer accepts work from others and
executes it on their behalf. What differentiates the performer is that
it implements domain knowledge of a specific REST API, and instead
of invoking a callback function, it broadcasts the result to anyone
subscribed to it.1 Implementing threading and synchronisation in one
place, instead of in any context where a long running operation may
be performed, reduces unnecessary complexity and future maintenance
efforts, and improves the potential for reuse. Hence the solution is to
devise one object that takes responsibility for the execution of requests.

9.4 Applicability

Use Performer when multiple (potentially unrelated) objects depend on
the outcome of a REST operation initiated by an arbitrary object.

9.5 Structure

See the UML diagram in fig. 9.1 on the next page.

1A callback function is a function that is passed as an argument to some other code
with the assumption that it will be called some time in the future. Callback functions can
be implemented in many different ways, among which are blocks (JavaScript), function
pointers (C) and lambda expressions (C], Java).

40

Figure 9.1
A UML diagram depicting the structure of Performer.

41

9.6 Participants

Performer is a composition of the Command, Factory Method, and
Observer patterns, which we briefly present in section 4.7 on page 20.
Command encapsulates requests, while Observer delivers the results
after they have been parsed appropriately by the Factory Method
implemented by each request (Command).

9.6.1 Command and Factory Method

Command Used to encapsulate HTTP requests as objects, thereby
letting you parameterize clients with different requests. Requests can
be queued, logged, discarded, or retried by a performer. New request
types can be added without changing existing classes. Each request
object implements a Factory Method that knows how to parse the
expected response into a suitable response object.

Factory Method When an arbitrary object issues a request to an API
service, the only one that really knows what the response looks like and
how to interpret it (typically in JSON or XML) is the request object itself.
In Performer, each type of request is responsible for instantiating the
appropriate response object when a reply is received from the service.
The method that holds this responsibility, CreateResponse, is defined in
the Request base class and is overridden by subclasses, and as such it is
a “Factory Method” by definition that manufactures responses according
to specification.

• Request

– A concrete object that can be subclassed or used directly.

– Encapsulates the information required to perform a request
(Command).

– Provides a method to parse the response received from the
server (Factory Method).

• Response

– Defines an interface for querying the data contained in a
response.

– Is the common base class upon which all response types are
built.

• ConcreteRequest (GetStopRequest, GetTravelsRequest)

42

– Instantiates the ConcreteResponse it needs to represent the
response representation received from the server (Factory
Method).

– Knows its arguments (query parameters), body (e.g., JSON,
XML), headers, HTTP method and URI (path).

– Represents a specific request to an API.

• ConcreteResponse (PlaceResponse, TravelListResponse)

– Defines a response type which corresponds to a resource
representation from the REST service.

– Knows how to parse itself from JSON or XML.

– Knows its body (e.g., JSON, XML), headers, and HTTP status
code.

9.6.2 Observer

Used to define a one-to-many dependency between objects so that when
one object issues a request, all dependents receive the response.

• Performer

– Maintains a reference to each of its consumers.

– Provides an interface for attaching and detaching Consumer
objects, submitting Request objects and for starting and
stopping execution of requests.

– Knows how to connect to and communicate with a REST API.

• Consumer

– Defines an interface for notifying an object about a received
response, allowing it to query the state of the response object
(i.e. its return value).

• ConcretePerformer (SimplePerformer)

– Queues and invokes requests submitted to it.

– May retry failing requests (either instantly or deferred) and
may or may not pause execution (e.g. due to loss of network
connectivity).

– Broadcasts the responses it receives from the server to all
consumers (Observer).

• ConcreteConsumer (LogConsumer)

43

– Keeps its own state and can act upon being notified about
received responses from the server.

– Logs events to standard out.

9.7 Collaborations

• An object creates an instance of a ConcreteRequest and submits it
to an instance of ConcretePerformer.

• The ConcretePerformer queues the ConcreteRequest.

• The ConcretePerformer executes the request as soon as a thread
is available. If the request fails, the performer can either

1. ignore the request and continue execution, or

2. retry the request immediately, n number of times, or

3. add the request back to the queue and try again later.

• Upon successfully receiving a response from the server, the
performer uses the CreateResponse factory method on the request
object and adds the response object to its response queue.

• The main thread, which is blocking on the response queue, pops
the response and sequentially notifies all consumers subscribed to
the performer.

9.8 Consequences

Most of the benefits and drawbacks of implementing Performer are
inherited from the basis patterns.

1. Requests decouple the objects that initiate them from the ones that
knows how to perform them, and from the ones that care about
them.

• All a performer knows is that it has a list of consumers
conforming to a common interface.

2. Requests can be manipulated and extended like any other objects.

3. Requests can be added and removed easily without changing any
existing classes.

• However, because some objects may need to know the exact
type of the response object, some type checking may occur,

44

which in turn implies that some code will have to be updated
if it needs to know about the new type.

4. Any number of objects may be updated when a response is received
from the server.

5. Unexpected and costly requests: Because consumer objects have
no knowledge of each other, they can be blind to the actual cost of
issuing a request. A seemingly insignificant request may cause a
cascade of other requests to be issued by other consumers.

• Can be partially mitigated with caching of (common) GET
requests. Note that this functionality may be enabled by
default in various HTTP libraries.

9.9 Implementation

The following is a list of issues that should be considered during the
implementation of a performer:

1. Automatic retries
Because a request at its core is nothing more that a container for
related information to be used in a request, it can be executed
repeatedly until it completes successfully. If the CreateResponse
method encounters an unexpected payload in the response, it is
appropriate to return a response object indicating the error (such
as “401 Unauthorized”).

• Invalid credentials
If a request fails to due to an expired API authentication token,
it should throw an exception which the performer must catch.
This event should result in an appropriate response object
which the object responsible for authentication can react to
(renewing the token).

• Loss of network connectivity
If a request fails due to loss of network connectivity, it may
either be requeued and retried, or the performer could pause
execution and restart when the network is back online.

2. Broadcast audience
An implementation may benefit from allowing consumers to
indicate the kind of responses that interest them, if the number
of consumers is large.

3. Graceful shutdown
Each task processing thread must recognise the special Stop-
Request object, which when received, causes the thread to end its

45

processing loop and resubmit the task (so that other threads may
process it) before shutting itself down. Other mechanisms may be
available, such as CancellationToken in C].

4. Infinite loops of failure
A request may fail repeatedly because of internal or external
factors, such as expired access tokens or disconnected networks.
An implementation may choose to keep track of the number of
times a request has failed, and terminate it to avoid burning CPU
time. One approach to this is to include a counter in each request
which the performer can check and increment.

5. Parallel execution
A performer uses threading to execute several requests in parallel,
thus increasing the perceived performance of the system.

9.10 Sample Code

The example code in this section sketches the implementation of the
base classes and interfaces involved in Performer. These are all based
on the familiar patterns we have discussed, and are fairly simple. We
define the IConsumer and IPerformer interfaces, as well as the Request,
Response, and SimplePerformer classes. We conclude this section by
providing some examples pertaining to an actual implementation of
some ReisAPI operations.

A performer could be implemented using a ThreadPool2 or an
ExecutorService3, but it would make the examples in this section
harder to translate to other languages without such classes readily
available. Thus, we continue this section using simpler mechanisms.

Whereas in statically typed languages, one is required to strictly obey
the rules specified by interfaces, there is no need to even define them in
dynamically typed languages. One simply trusts that everything works
as long as no error is encountered. However, for the purpose of clarity
and consistency among the examples, we simulate interfaces in Python
by utilising the “abc” package [Pyt16] (part of the standard library).

The sample code in this section performs little to no error checking,
and does not necessarily demonstrate the “best” style of programming.
They are nothing more than a simple demonstration of concepts. We
have had to make compromises particularly with regards to the C]

coding style, as we have limited space available both horizontally and
vertically.

2https://msdn.microsoft.com/en-us/library/system.threading.threadpool.aspx
3https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ExecutorService.html

46

https://msdn.microsoft.com/en-us/library/system.threading.threadpool.aspx
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ExecutorService.html

1 public interface IConsumer
2 {
3 void HandleResponse(
4 IPerformer sender,
5 Response response);
6 }

Listing 9.1
IConsumer in C].

1 import abc
2
3 class AbstractConsumer(abc.ABC):
4 @abc.abstractmethod
5 def handle_response(
6 self,
7 sender,
8 response):
9 pass

Listing 9.2
AbstractConsumer in Python.

Figure 9.2
The IConsumer interface in C] and the AbstractConsumer class in
Python both define a single method, with no return value, whose sole
purpose is to allow an object to handle any Response delivered to it.

9.10.1 Consumer

IConsumer defines the interface through which the performer notifies its
subscribers when a response is received from the server. We refer to a
subscriber in this context as a “consumer”.

Listing 9.1 defines the IConsumer interface in C], while listing 9.2
defines the abstract class AbstractConsumer in Python.

9.10.2 Performer

IPerformer defines the interface through which requests are submitted
and customers attach to, or detach (subscribe or unsubscribe to
updates) from the performer. The performer is responsible for handling
communication with REST APIs on behalf of the system as a whole.

The Start method may be executed by any thread, but in general
it may be a good practice to use the main thread for this purpose.
Start may be implemented in such a way that it indicates the reason
for its termination to the host operating system by returning an exit
code (optional).

Listing 9.3 defines the IPerformer interface in C], while listing 9.4
defines the abstract class AbstractPerformer in Python.

9.10.3 Request

Request encapsulates all the non-shareable information needed to
perform API requests, including the request payload, headers, method,
parameters and path. Each instance of Request is equipped with a
Globally Unique Identifier (GUID) that uniquely identifies each pair of

47

1 public interface IPerformer
2 {
3 int Start();
4 void Stop();
5 void Attach(IConsumer consumer);
6 void Detach(IConsumer consumer);
7 void Submit(Request request);
8 }

Listing 9.3
IPerformer in C].

1 import abc
2
3 class AbstractPerformer(abc.ABC):
4 @abc.abstractmethod
5 def attach(self, customer):
6 pass
7 @abc.abstractmethod
8 def detach(self, customer):
9 pass

10 @abc.abstractmethod
11 def start(self, threads=3):
12 pass
13 @abc.abstractmethod
14 def stop(self, exit_code=None):
15 pass
16 @abc.abstractmethod
17 def submit(self, task):
18 pass

Listing 9.4
AbstractPerformer in Python.

Figure 9.3
The IPerformer interface in C] and the AbstractPerformer class
in Python define methods for submitting requests, management of
subscriptions and methods for starting and stopping the engine.

Request and Response (useful for troubleshooting). Request provides a
Factory Method that the performer calls to translate a response from the
server into an appropriate Response object, which is what the performer
broadcasts to its consumers. Subclasses of Request should override this
method and provide a corresponding subclass of Response.

Listing 9.5 defines the base class Request in C], while listing 9.6
provides the corresponding definition in Python.

9.10.4 Response

The Response class contains the smallest amount of information
required for the client to make sense of it (a subset of the complete
response). We believe that the content body, the response headers and
the HTTP status code is sufficient for most purposes. As such, the
Response C] class defined in listing 9.7 and the Python class defined
in listing 9.8 contain only this information.

Ideally, a Response object would provide access to the parsed version
of the server response (such as an object delivered in JSON or XML),
but because of the strongly typed nature of C], we have not been
able to identify a good way of achieving this. For example, a Get-
Stop request would return a single Place object, but a GetDepartures
request would return a list of Departure objects. Thus, a subclass of
Response would have to provide its own public “Departures”, or “Place”

48

1 public class Request
2 {
3 public Request()
4 {
5 Content = new Body(string.Empty);
6 Headers = new WebHeaderCollection();
7 ID = Guid.NewGuid();
8 Method = "GET";
9 Parameters = HttpUtility.ParseQueryString(string.Empty);

10 Path = "/";
11 }
12
13 public Body Content { get; set; }
14 public Guid ID { get; private set; }
15 public NameValueCollection Parameters { get; private set; }
16 public string Method { get; private set; }
17 public string Path { get; private set; }
18 public WebHeaderCollection Headers { get; private set; }
19
20 public virtual Response CreateResponse(
21 string body,
22 HttpStatusCode status,
23 WebHeaderCollection headers)
24 {
25 return new Response(ID, body, status, headers);
26 }
27 }

Listing 9.5
The C] implementation of the Request class is nothing more than a
container of various information needed by a concrete implementation
of IPerformer to perform a request.

1 import uuid
2
3 class Request(object):
4 def __init__(self):
5 self.content = None
6 self.headers = dict()
7 self.id = uuid.uuid4()
8 self.method = "GET"
9 self.parameters = dict()

10 self.path = "/"
11 def create_response(self, body, status, headers):
12 return Response(self.id, self.body, self.status, self.headers)

Listing 9.6
The Python implementation of the Request class is nothing more than a
container of various information needed by a concrete implementation
of AbstractPerformer to perform a request.

49

1 public class Response
2 {
3 public Response(
4 Guid id,
5 string body,
6 HttpStatusCode status,
7 WebHeaderCollection headers)
8 {
9 Content = new Body(body);

10 Headers = headers;
11 ID = id,
12 Status = status;
13 }
14
15 public Guid ID { get; private set; }
16 public Body Content { get; private set; }
17 public HttpStatusCode Status { get; private set; }
18 public WebHeaderCollection Headers { get; private set; }
19 }

Listing 9.7
The C] implementation of the Response class uses properties to provide
read-only data fields.

1 class Response(object):
2 def __init__(self, id, body, status, headers):
3 self.body = body
4 self.headers = headers
5 self.id = id
6 self.status = status

Listing 9.8
The Python implementation of the Response class uses class variables
to provide response data. These fields can be read from and written to
unrestricted, as Python does not have access modifiers like C].

field to give access to these parsed objects. This is not optimal, because
it requires that Consumer objects perform a type check before they use
the response, which implies that they have to know about the existence
of the kind of objects they wish to support. This is, however, how we
have decided to do it in our implementation of ReisAPI.

9.10.5 SimplePerformer

SimplePerformer is a multithreaded “engine” that accepts and executes
requests on behalf of other threads. It borrows elements from the
Observer pattern and acts as a Subject. Because its definition in C]

is relatively long, we have decided to use the “partial classes” feature
that allows a class to be defined in more than one file. This feature
is often used by Graphical User Interface (GUI) designers and other
software that generate code automatically, to avoid mixing automatically
generated and manually written code, but we use it in an attempt to
improve the readability of the code (it has no impact on the collection

50

1 partial class SimplePerformer : IPerformer
2 {
3 readonly string m_base_uri;
4 BlockingCollection<Request> m_requests = new BlockingCollection<Request>();
5 BlockingCollection<Response> m_responses = new BlockingCollection<Response>();
6 CancellationTokenSource m_cancel = new CancellationTokenSource();
7 HashSet<IConsumer> m_consumers = new HashSet<IConsumer>();
8
9 public SimplePerformer(string base_uri) { m_base_uri = base_uri; }

10
11 public void Submit(Request request) { m_requests.Add(request); }
12
13 public void Attach(IConsumer consumer)
14 {
15 lock (m_consumers) { m_consumers.Add(consumer); }
16 }
17
18 public void Detach(IConsumer consumer)
19 {
20 lock (m_consumers) { m_consumers.Remove(consumer); }
21 }
22
23 public void Stop()
24 {
25 m_cancel.Cancel();
26 m_cancel.Dispose();
27 m_cancel = new CancellationTokenSource();
28 }
29 }

Listing 9.9
The SimplePerformer class (C]) works much in the same way as the
Subject in the Observer pattern in that it allows other objects to
subscribe and unsubscribe for notifications regarding updates to its
internal state, except that in this case, state changes refer to requests
that have received a response. This listing defines all internal member
variables.

of metrics). The C] definition of SimplePerformer is provided in listings
9.9, 9.10 and 9.11, whereas the Python implementation can be found in
listing 9.12.

51

1 partial class SimplePerformer
2 {
3 public int Start() { return Start(4); }
4
5 public int Start(uint threads)
6 {
7 for (uint i = 0; i < threads; i++)
8 {
9 new Thread(ThreadMain).Start();

10 }
11
12 Response response = null;
13
14 while (true)
15 {
16 try { response = m_responses.Take(m_cancel.Token); }
17 catch (OperationCanceledException) { break; }
18
19 lock (m_consumers)
20 {
21 foreach (IConsumer consumer in m_consumers)
22 {
23 consumer.HandleResponse(this, response);
24 }
25 }
26 }
27
28 return null != response ? (int)response.Status : 0;
29 }
30 }

Listing 9.10
The Start method (C]) waits for the worker threads to receive and parse
responses from the server. It delivers the responses it receive to all
the consumer which is currently subscribed to the performer. Simple-
Performer launches four threads by default. Notice how we break out
of the loop at line 17.

52

1 partial class SimplePerformer
2 {
3 private void ThreadMain()
4 {
5 Request request = null;
6 HttpWebRequest http = null;
7 UriBuilder builder = new UriBuilder(m_base_uri);
8
9 while (true)

10 {
11 try { request = m_requests.Take(m_cancel.Token); }
12 catch (OperationCanceledException) { break; }
13
14 builder.Path = request.Path;
15 builder.Query = request.Parameters.ToString();
16 http = WebRequest.CreateHttp(builder.Uri);
17 http.Accept = "application/json";
18 http.Headers = request.Headers;
19 http.Method = request.Method;
20
21 try
22 {
23 using (var stream = http.GetRequestStream())
24 {
25 byte[] body = request.Content.Bytes;
26 stream.Write(body, 0, body.Length);
27 }
28 }
29 catch (ProtocolViolationException)
30 {
31 // The HTTP method does not allow a content body.
32 }
33
34 using (HttpWebResponse response = (HttpWebResponse)http.GetResponse())
35 using (Stream stream = response.GetResponseStream())
36 {
37 Encoding encoding = Encoding.GetEncoding(response.CharacterSet);
38 StreamReader reader = new StreamReader(stream, encoding);
39
40 m_responses.Add(
41 request.CreateResponse(
42 reader.ReadToEnd(), // Response content body.
43 response.StatusCode, // Response status code.
44 response.Headers)); // Response headers.
45 }
46 }
47 }
48 }

Listing 9.11
ThreadMain (C]) is the method in which all of the worker threads
created by the SimplePerformer begins execution. Each thread waits
for incoming requests, executes them and then queues the responses
for delivery to subscribers.

53

1 import queue
2 import threading
3
4 class SimplePerformer(AbstractPerformer):
5 def __init__(self):
6 self.__completed = queue.Queue()
7 self.__customers = set()
8 self.__pending = queue.Queue()
9 self.__pool = set()

10
11 def attach(self, customer):
12 self.__customers.add(customer)
13
14 def detach(self, customer):
15 self.__customers.discard(customer)
16
17 def start(self, threads=3):
18 for i in range(0, threads):
19 threading.Thread(
20 args=(self.__pool, self.__pending, self.__completed),
21 daemon=False,
22 target=thread_main).start()
23 while True:
24 task = self.__completed.get(True)
25 for customer in self.__customers:
26 customer.update(task)
27 if isinstance(task, StopRequest)
28 break
29
30 def stop(self, exit_code=None):
31 self.submit(StopRequest(exit_code))
32
33 def submit(self, task):
34 self.__pending.put(task)

Listing 9.12
The Python implementation of the SimplePerformer class is farily short
and concise, but it relies on a StopRequest sentinel class to end
execution, as Python lacks the CancellationToken class we use in C]

to abort blocking operations.

54

10
Part II: A Potential Composite Design Pattern

Summary

Performer is a composite software design pattern comprised of the three
(widely used) Command, Factory Method and Observer patterns. As
such, nothing about Performer is new or revolutionary. Its purpose is to
provide applications with a multithreaded “engine” that takes care of the
communication between application and service. Performer introduces
a subscription model in which any object in the application can be
notified every time a response is received from the server. This model
means that functionality can be “plugged” in and out as desired during
execution.

We have provided a comprehensive set of sample code that illustrate
the concepts of Performer using the statically typed C] programming
language from Microsoft®, and the dynamically typed open source
programming language, Python, which is maintained by the Python
Software Foundation (PSF). The implementations are fairly similar in
structure, though different in size with C] having the shortest interface
definitions and Python having the shortest implementations.

55

56

Part III

Evaluation

57

11
Part III: Evaluation

Introduction

In this chapter, we present a collection of software quality metrics
that aim to capture various characteristics of program code as a single
number. Then, we measure these characteristics in the ReisAPI example
program to get an indication as to how the potential composite software
design pattern affects various aspects of quality. Then, we provide a
summary of the chapter and at the very end, we provide our conclusion.

The measurements have been collected with the “Calculate Code
Metrics” functionality available in Visual Studio® Enterprise 2015 using
its default settings with no modification [Micb]. This has allowed us to
obtain various metrics with very little effort, but it has also limited us
to the five metrics available in Visual Studio®: CBO, CC, DIT, NLOC,
and MI (see chapter 12 on page 61). Given that measurements are
best used as an indication of software quality aspects (not as scientific
evidence), we interpret the data and discuss it with regards to the goal
we established at the beginning of this thesis.

To ensure that the measurements measure only the maintainability,
reusability, and testability directly related to the classes involved (due to
the pattern being implemented), the measurements ignore the classes
responsible for the parsing of resource representations received from
the server. We could have achieved this goal by simply not parsing the
responses we received from the service, dumping any data we received
to standard out, but that would have made it much harder to verify
that the client actually worked as advertised. Instead, we decided to
use WCF, which is a part of the .NET Framework. For the purpose of
evaluation, this makes little difference with regards to the results.

59

11.1 Windows Communication Foundation

As we take advantage of WCF to parse data from ReisAPI, we have been
able to limit the amount of code not directly related to the composite
pattern. Any data received from the service is passed directly to Data-
ContractJsonSerializer.ReadObject, which uses the DataContract
and DataMember attributes to instantiate the right object automatically.
This is done in the constructors of BaseResponse subclasses, which are
invoked from the CreateResponse method defined by the BaseRequest
base class. Refer to chapter 6 or [Micc] for more information on WCF.

11.2 Outline

In the next chapters, we present the software quality metrics that we
have made use of, and we take a look at the measurements collected
from the ReisAPI client implementation.

• Chapter 12: Software Quality Metrics
A summary of the measurements available in Visual Studio®, and
some related measurements that we do not use directly.

• Chapter 13: Measurements
We present and discuss the data we collected by measuring the
source code of the ReisAPI C] client. The result is favourable.

• Chapter 14: Summary
This chapter provides a brief summary of what measurements we
collect, and the conclusions we draw from it.

• Chapter 15: Conclusion
This is the overall conclusion of this entire thesis. Our evaluation
shows that Performer fulfills all of our requirements.

60

I often say that when you can measure what you
are speaking about, and express it in numbers,
you know something about it; but when you
cannot measure it, when you cannot express
it in numbers, your knowledge is of a meagre
and unsatisfactory kind; it may be the beginning
of knowledge, but you have scarcely, in your
thoughts, advanced to the stage of science,
whatever the matter may be.

Lord Kelvin [Kel89]

12
Part III: Evaluation

Software Quality Metrics

12.1 Introduction

In this chapter, we present a summary of the measurements available
in Visual Studio®, and some related measurements that we do not
use directly (they provide the fundament for other metrics that we do
use). The outcome from applying one of these measurements is a single
number that gives an indication as to how “good” the program code is,
with regards to what the metric aims to measure. By combining a set of
different metrics, we get a fairly reliable indicator of quality.

There are two related notions of quality in the context of software
engineering; functional quality (whether the system fulfills its purpose
or not), and structural quality (non-functional qualities observable at
runtime or related to the internal structure of components). We will
focus on structural quality in this thesis, and specificially metrics that
measure the maintainability, reusability and testability characteristics of
software, as this aligns well with our goals (see section 1.2 on page 3).
For the sake of completeness, however, we give a short description of
functional quality in section 12.2 on the next page.

According to [Pre], the noun “metric” can refer to any standard of
measurement and is not necessarily related to the metric system of
measurement. We observe that “measure” and “metric” is often used
interchangeably in the litterature. Hence, we will use them both in this
thesis to refer to any standard of measurement.

61

12.2 Functional Quality
“The system shall do . . . ”

Often derived from use cases, functional requirements define the
functions that the system and its components are comprised of. Use
cases illustrate how the system is supposed to behave in given scenarios.
The sum of all the functional requirements define the purpose of the
system; what it is supposed to do. How a functional requirement
should be implemented is usually detailed in the system design. Thus,
functional quality evaluates conformance and compliance with regards
to functional requirements (in addition to regulatory requirements and
international standards). Also referred to as “fitness for purpose”,
functional quality is typically enforced through software testing, which
is not covered in this thesis.

12.3 Structural Quality
“The system shall be . . . ”

While functional requirements define what the system is supposed to
do, non-functional requirements, or “quality attributes”, define how
the system is supposed to be. The non-functional requirements can
be divided into qualities observable at runtime (“execution” qualities:
i.e. security and usability), and qualities caused by the structure of
the system (“evolution” qualities: i.e. maintainability, reusability, and
testability). “Structural quality” refers to how well the system meets the
non-functional requirements, which gives an indication as to the quality
of the implementation of the system.

An important part of the software engineering discipline is the ability
to measure aspects of software, and express results with numbers.
Measuring product quality, and assessing the efficiency of the people
and tools involved in the process of manufacturing is fundamental
to any engineering discipline. Statistical data allows us to measure
improvement over time.

12.4 Complexity Metrics

This section briefly presents some of the software metrics that claim to
measure the complexity of source code. The metrics have been selected
because they are available in Visual Studio® (and there are far too many
to cover all of them).

62

Metric Range

Coupling Between Objects Good <= 14 < Bad

Cyclomatic Complexity Good <= 10 < Bad

Depth of Inheritance Good <= 6 < Bad

Lines of Code Good <= 24 < Bad

Maintainability Index Good >= 20 > Bad

Table 12.1
This table summarises the metrics we use in this thesis, and the upper
and lower bounds we use to interpret their output.

12.4.1 Lines of Code

The Lines of Code (NLOC) metric is a basic measure of size based on the
length of code in lines. Although it is often used by management as a
measure of productivity, its value lies at the method level where it can be
applied to identify methods that may be trying to accomplish too much.
A well designed method should have one distinct purpose. Additionally,
the entire body of a method should fit comfortably on the screen without
having to scroll up and down.

Some tools also measure the Number of Statements (NOS) which
has the advantages of allowing programmers to better format their code
without getting punished with a bad score (because the statement count
remains the same regardless of the number of lines they span). A high
NLOC may possibly be considered better if the NOS is low, because
it may indicate that the code is well formatted. The NOS measure is
unfortunately, however, not supported by Visual Studio®, and will not
be covered further as such.

Interpretation

Developers working on the Linux kernel adheres to a simple style guide
written by Linus Torvalds. He suggests that a function should be short
and have a single purpose. Furthermore, he argues that an entire
function definitions should fit one or two “screenfuls of text”, where
one screenful is 80 characters wide and 24 lines high [Tor]. We have
determined it to be unfeasible to strictly adhere to the width restriction
in C], as the language is relatively verbose compared to plain C, and
often produces very long lines. We believe that 24 lines of code should
be sufficient on the method level (methods × 24 on the class level), and
thus we have adopted it as out maximum limit on NLOC.

63

Behaviour Visual Studio®

The NLOC measure in Visual Studio® is an approximation based on the
executable Common Intermediate Language (CIL) code generated by
the compiler after processing the source code, and thus it may differ
slightly from the number of line breaks in the file [Mica].1 Consequently,
files containing C] code that does not compile to executable code (such
as interfaces) may appear to have zero lines of code. This carries the
same advantages as NOS in that it allows programmers to better format
their code without getting punished with a bad score.

12.4.2 Halstead Complexity Measures

The Halstead Complexity Measures (HCM) is a family of measurements
introduced by Halstead in 1977. It is comprised of three primitive
metrics and three derived metrics [Hal77]. Although not measured
directly in this thesis, we include this section because of another, related
metric (MI), which we present in section 12.5.1 on page 67.

Primitive Measurements

• Halstead Difficulty (HDIF) gives a suggestion on how difficult
some code is to write and maintain by considering the number of
unique operators (UOP), the total number of operands (OP) and
the number of distinct operands (UOD).

HDIF =

(
UOP

2

)
×
(

OD

UOD

)

• Halstead Length (HLTH) is the total amount of operators (OP) and
operands (OD).

HLTH = OP + OD

• Halstead Vocabulary (HVOC) measures the complexity by looking
at the number of variables used (the vocabulary). A small number
of different variables used repeatedly indicates a lower complexity,
while higher complexity indicates that more variables are in
use. The vocabulary is simply put sum of the number of unique
operators (UOP) and the number of unique operands (UOD).

HVOC = UOP + UOD

1CIL is a standardised [ECM06] low level, human readable, stack-based and object-
oriented assembly language used by the .NET Framework and Mono. CIL bytecode is
typically executed by a virtual machine, but can also be translated to native code.

64

Derived Measurements

• Halstead Bugs (HBUG) attempts to estimate the number of bugs
likely to be present in code. Some argue that the new formula is a
more precise metric in the context of object oriented source code.

HBUG = (new)
HVOL

3000
or

HEFF(2/3)

3000
(original)

• Halstead Effort (HEFF) is generally seen as a metric on the amount
of mental effort required to rewrite some code from scratch.

HEFF = HDIF×HVOL

• Halstead Volume (HVOL) measures the amount of code that has
been developed by multiplying the HLTH with the binary logarithm
of the HVOL.

HVOL = HLTH× log2(HVOC)

The purpose of HVOL is to indicate how much information the
reader of some code has to absorb to grasp its meaning.

12.4.3 McCabe’s Cyclomatic Complexity
How many test cases are needed?

The Cyclomatic Complexity (CC) measure, introduced by McCabe in
1976, is a metric for the number of independent paths through a module.
It is calculated by subtracting number of nodes from the number of
edges plus 2. Nodes represent one or more actions and edges represent
the flow of control [McC76].

CC = Edges−Nodes + 2

CC is often used as an indication as to the complexity of an algorithm
and the number of test cases required to comprehensively test it. In
practice the metric seems to be roughly equivalent to the number of
loops and other conditional statements plus one [Hum14].

Interpretation

CC seems to be the most useful at the method level, as it may be
easier to visualize and conceptualize the paths through a method,
than paths through a large class or an entire application. A method
with a single clearly defined purpose, composed of simple sequential
statements, will generally be considered better because it requires
fewer test cases to achieve comprehensive test coverage. As the number

65

of conditional statements and looping constructs increases, the number
of independent paths (and thus the effort required for comprehensive
testing) increase as well. A CC value no larger than 10 is generally
considered acceptable.

12.4.4 Coupling Between Objects
Is the class general enough?

The Coupling Between Objects (CBO) measure, introduced in 1994 by
Chidamber and Kemerer, is a bidirectional count of the number of
classes that are coupled to a class [CK94]. Classes can be coupled
through parameters, local variables, return types, method calls, generic
or template instantiations, base classes, interface implementations,
fields defined on external types, and attribute decoration [Mica]. The
CBO of a class A is the union of all the classes that reference A, as well
as all the classes A references. A biderectional reference is counted only
once. CBO is known as “Class Coupling” in Visual Studio® [Nab11a].

Interpretation

A class with a CBO of zero has no relationship to any other class in
the system, indicating that it should be considered for removal. Based
on their research, Sahraoui, Godin and Miceli suggest that a maximum
CBO value of 14 is desireable [SGM00]. A CBO higher than 14 may be
an indication that the class is too tightly coupled to other classes, which
may have a negative impact on future modifications and testing, thus
limiting its potential for reuse because of its many interdependencies on
other types.

12.4.5 Depth of Inheritance
How complex is the class?

The Depth of Inheritance (DIT) measure, introduced in 1994 by
Chidamber and Kemerer, is defined as “the maximum length from the
node to the root of the tree” and is predicated on three fundamental
assumptions [CK94]:

• Predicting the behaviour of the class becomes harder the deeper it
is in the class hierarchy.

• Design complexity increases with the depth of the inheritance tree
because more classes and methods are involved.

• Potential for reuse of inherited methods increases with the depth
of the inheritance tree.

66

Interpretation

Low DIT values may suggest low complexity and less potential errors,
but it also implies that the potential for reuse through inheritance is
low. Higher DIT values may indicate that the potential reuse is higher,
but also that the complexity is higher, with which a higher probability of
errors follows.

In [Nab11b], Microsoft® engineer Naboulsi observes that there is
currently no accepted standard for DIT values. He suggests that a DIT
value of around 5 or 6 should be an acceptable upper limit, but stresses
that there was no empirical evidence to support it at the time of writing.

12.5 Measuring Maintainability

Maintainability refers to how easily and inexpensively upkeep of
products can be carried out in response to deterioration of their
components. There are three categories of maintenance activities in
the context of software engineering: corrective (removal of defects),
adaptive (adjustments in response to environmental changes), and
perfective (improvement of software qualities) maintenance [NT11].

In this section, we present one measure for maintainability in
object oriented software applications. We use the Maintainability Index
because it is supported by many tools (including Visual Studio®), and
because it is well defined and easy to understand.

12.5.1 Oman’s Maintainability Index
How maintainable is the system overall?

The Maintainability Index (MI) was introduced in 1992 by Oman and
Hagemeister at the International Conference on Software Maintenance
[OH92], and was refined in 1994 with the paper ‘Using Metrics to
Evaluate Software System Maintainability’ [Col+94].

MI = 171− 5.2× ln 〈HVOL〉
− 0.23× ln 〈CC〉
− 16.2× ln 〈NLOC〉

+ 50× sin
(√

2.46× PCL
)

MI is a blend of several metrics, including HVOL, CC and NLOC
(which we have discussed), in addition to the Percentage of Comment

67

MI Colour Maintainability

20 to 100 Green High

10 to 19 Yellow Moderate

0 to 9 Red Low

Table 12.2
Maintainability Index in Visual Studio®.

Lines (PCL). For all of the aforementioned metrics, the average per
module is combined into the formula above

Behaviour Visual Studio®

Microsoft® engineers observed that the original formula from 1992
produced a value ranging from 171 to an unbounded negative number.
They decided that the difference between code at 0 and some negative
value was not useful, because code tending toward 0 is clearly hard to
maintain. As such, they decided to treat all 0 or less indexes as 0 and
then rebase the 171 or less range to be from 0 to 100 [Mor07]. This is
the version of MI used by Visual Studio®.

MI = max(0, (171− 5.2× ln 〈HVOL〉
− 0.23× ln 〈CC〉
− 16.2× ln 〈NLOC〉)× 100

171)

Additionally, Microsoft® provides an interpretation of the MI values
produced by Visual Studio® which we have reproduced in table 12.2.

12.6 Criticism

A team of researchers hired six developers and conducted an experiment
in which a set of structural software quality measurements were
collected from four functionally equivalent enterprise systems. After
comparing the measurements with each other, and with the subjective
opinion of the developers, the researches concluded that most software
maintenance metrics are mutually inconsistent, and that the best
predictor of maintainability was the size of the system (NLOC) [SAM12].

68

12.7 Summary

Structural quality is concerned with the design of components, their
roles and how they interact in source code. Structural metrics aim to
express various software quality characteristics as a single number, and
are typically measured with tools for static analysis, which is what we
do in this thesis, using Visual Studio®.

We have covered five structural quality metrics: Coupling Between
Objects (CBO), Cyclomatic Complexity (CC), Depth of Inheritance (DIT),
Lines of Code (NLOC) and Maintainability Index (MI).

• CBO indicates whether a class is loosely or tightly coupled by
counting the number of classes that references or are referenced
from it. Maintainability, reusability and testability suffers with an
increase in CBO due to the increase in complexity and lack of
encapsulation. We consider a value equal to or less than 14 to
be ideal.

• CC indicates the complexity of a class, method or module, by
counting the number of independent paths through it. It is often
interpreted as the number of test cases required, and as such, it
affects maintainability and testability. A CC equal to or less than
10 is generally considered acceptable on the method level.

• DIT indicates the number of classes in the chain of inheritance.
Complexity increases with depth, but so does reusability. A
maximum DIT of 6 seems to be an acceptable limit.

• NLOC is a pure measurement of size. It indicates the number
of non-blank, non-comment lines of code. It can be computed
by counting newline characters, or it can be approximated by
looking at the code generated by the compiler, thus allowing
the programmer to format the code better, without negatively
impacting the measure. A function should, ideally, consist of no
more than 24 lines of code, though 48 is also acceptable.

• MI, a composite of other metrics, indicates how maintainable code
is. In Visual Studio®, the value ranges from 0 (least maintainable)
to 100 (highly maintainable), where 20 is the lower bound for
“good” maintainability.

69

70

13
Part III: Evaluation

Measurements

13.1 Introduction

In this chapter, we present the measurements that we have collected
from the source code of the example program.

We have organised the results into two main categories: “class
average” and “method average”. Method average measurements have
been collected by measuring each method in a class and by manually
computing the average for that class. Thus, the “method average” at the
bottom of the table is the average of all the averages. Class average, on
the other hand, has been collected on the class level directly by Visual
Studio®, and at the bottom of the table is the average of these class
level measurements. Note that the DIT measure has been omitted from
the method average, as it is meaningless on the method level (a method
cannot inherit from another method).

The measurements include all getter and setter methods, which
are generated automatically by the compiler to implement C] class
properties. Hence, one property may result in two “methods”. The
!symbol at the bottom of the tables indicate that, on average, the
results in that column are within the acceptable bounds specified in
chapter 12 on page 61.

71

Category Name C
B

O

C
C

D
IT

N
L

O
C

M
I

Interface IConsumer 2 1 0 0 100

IPerformer 2 5 0 0 100

Base Class BaseRequest 7 17 1 23 90

BaseResponse 5 5 1 9 89

Concrete Class SimplePerformer 21 20 1 58 65

Class Average 7.4 9.6 0.6 18 88.8

! ! ! ! !

Table 13.1
Class level measurements of the basic classes and interfaces.

Category Name C
B

O

C
C

N
L

O
C

M
I

Interface IConsumer 2 1 0 100

IPerformer 0.6 1 0 100

Base Class BaseRequest 1 1.1 1.5 92.3

BaseResponse 1.8 1 1.8 90.2

Concrete Class SimplePerformer 4.8 4 7.3 75

Method Average 2 1.6 2 91.5

! ! ! !

Table 13.2
Method level measurements of the basic classes and interfaces.

72

API Module BaseRequest C
B

O

C
C

D
IT

N
L

O
C

M
I

Favourites GetFavourites 7 2 2 5 82

Hearbeat Index 5 2 2 4 85

Line GetLines 5 2 2 4 85

GetLinesByStopID 5 2 2 4 84

GetDataByLineID 5 2 2 4 84

GetLinesRuter 6 2 2 5 83

Meta GetValidities 5 2 2 4 85

Place GetStop 5 2 2 4 84

GetPlaces 8 5 2 8 73

GetStopsByLineID 5 2 2 4 84

GetClosestStops 7 2 2 7 77

GetStopsByArea 7 2 2 9 72

GetSalePointsByArea 6 2 2 8 73

GetStopsRuter 5 2 2 4 85

StopVisit GetDepartures 5 2 2 4 84

Street GetStreet 5 2 2 4 84

Travel GetTravels 11 6 2 20 59

Trip GetTrip 8 3 2 6 77

Class Average 6.1 2.4 2 6 80

! ! ! ! !

Table 13.3
Class level measurements of the basic request classes.

73

API Module BaseRequest C
B

O

C
C

N
L

O
C

M
I

Favourites GetFavourites 3.5 1 2.5 81.5

Hearbeat Index 2.5 1 2 87

Line GetLines 2.5 1 2 87

GetLinesByStopID 2.5 1 2 85

GetDataByLineID 2.5 1 2 85

GetLinesRuter 3 1 2.5 82

Meta GetValidities 2.5 1 2 87

Place GetStop 2.5 1 2 85

GetPlaces 4 2.5 4 76

GetStopsByLineID 2.5 1 2 85

GetClosestStops 3.5 1 3.5 78

GetStopsByArea 3.5 1 4.5 75

GetSalePointsByArea 3 1 4 76.5

GetStopsRuter 2.5 1 2 87

StopVisit GetDepartures 2.5 1 2 85

Street GetStreet 2.5 1 2 85

Travel GetTravels 5.5 3 10 68

Trip GetTrip 4 1.5 3 79

Method Average 3.1 1.2 3 81.9

! ! ! !

Table 13.4
Method level measurements of the basic request classes.

74

BaseResponse BaseRequest C
B

O

C
C

D
IT

N
L

O
C

M
I

DepartureListResponse GetDepartures 9 4 2 8 82

FavouriteListResponse GetFavourites 14 8 2 13 73

IndexResponse Index 3 3 2 4 91

LineListResponse GetLines 9 4 2 8 82

GetLinesByStopID

GetLinesRuter

LineResponse GetDataByLineID 9 4 2 8 82

PlaceListResponse GetClosestStops 9 4 2 8 82

GetPlaces

GetStopsByArea

GetStopsByLineID

GetStopsRuter

PlaceResponse GetStop 9 4 2 8 82

GetStreet

SalePointListResponse GetSalePointsByArea 9 4 2 8 82

TravelListResponse GetTravels 11 4 2 8 81

TripResponse GetTrip 9 4 2 8 82

ValiditiesResponse GetValidities 9 4 2 8 82

Class Average 9.1 4.3 2 8.1 82

! ! ! ! !

Table 13.5
Class level measurements of the basic response classes.

75

BaseResponse BaseRequest C
B

O

C
C

N
L

O
C

M
I

DepartureListResponse GetDepartures 3.7 1.3 2.7 87

FavouriteListResponse GetFavourites 5 2.7 4.3 84.3

IndexResponse Index 1 1 1.3 92

LineListResponse GetLines 3.7 1.3 2.7 87

GetLinesByStopID

GetLinesRuter

LineResponse GetDataByLineID 3.7 1.3 2.7 87

PlaceListResponse GetClosestStops 3.7 1.3 2.7 87

GetPlaces

GetStopsByArea

GetStopsByLineID

GetStopsRuter

PlaceResponse GetStop 3.7 1.3 2.7 87

GetStreet

SalePointListResponse GetSalePointsByArea 3.7 1.3 2.7 87

TravelListResponse GetTravels 3.7 1.3 2.7 87

TripResponse GetTrip 3.7 1.3 2.7 87

ValiditiesResponse GetValidities 3.7 1.3 2.7 87

Method Average 3.6 1.4 2.7 87.2

! ! ! !

Table 13.6
Method level measurements of the basic response classes.

76

13.2 Base Classes and Interfaces

13.2.1 Interfaces

As we noted in section 12.4.1 on page 63, an interface will always be
reported as having zero source lines of code, because Visual Studio®
approximates the value by looking at the executable CIL code generated
by the compiler. An interface does not compile to executable code, and
as such, the NLOC is zero for all of them.

The CC of the interfaces is in this case equivalent with the number of
methods they define, which is to be expected. Both interfaces reference
each other, in addition to either the BaseRequest or the BaseResponse
class, and as such their CBO is low. It is possible for interfaces in C] to
inherit from other interfaces, though as the DIT of zero demonstrates,
we have not exploited that fact (because IConsumer and IPerformer
share no functionality).

IConsumer

The IConsumer interface defines a single method that allows a class
to be notified when the system has received a response from the
server related to a previously issued request. The method accepts two
parameters; a reference to the invoking performer and a reference to
the request object.

IPerformer

IPerformer defines the interface of an “engine” that accepts request
objects, combines them with its knowledge of an API and performs them
on a separate thread. The interface supports five operations: attaching
and detaching (subscribing and unsubscribing to notifications), starting
and stopping, and request submissions.

13.2.2 Base Classes

BaseRequest

BaseRequest is a class that encapsulates all of the information that
is required to invoke an HTTP method on a resource. Specifically,
BaseRequest stores the information that is not shared among different
requests to the same API: the HTTP method, path, query parameters,
headers and content body. The base URI belonging to the API is a

77

common property of all requests, and as such it is stored only in classes
implementing the IPerformer interface.

BaseResponse

BaseResponse contains three kinds of data; the HTTP status code
returned from the server, the headers that were included in the
response, and the content body of the response. Although some systems
may benefit from storing more information in BaseResponse subclasses,
this is the minimum amount of information that might be enough for the
majority of APIs at this maturity level.

13.2.3 Concrete Classes

SimplePerformer

SimplePerformer is the reference implementation of the IPerformer
interface which we use in our ReisAPI example. The implementation
offers a simple First In, First Out (FIFO) model where requests are
fetched and executed by n threads in chronological order.

From looking at tables 13.1 and 13.2, it appears that the Simple-
Performer implementation violates the upper limit on the CBO measure
of generality, on the class average. The class is, in other words, strongly
coupled because it is related to a total 21 unique classes, 7 more than
the suggested upper bound of 14. However, many of these classes are
related to the classes that support the HTTP functionality in the .NET
Framework or the synchronised data structures we use to implement
support for threading, and as such it is hard to reduce. An alternative
approach would be to outsource this functionality to a separate class.
However, the aforementioned classes will always be available, and other
languages may provide the same functionality using less classes. Hence,
we conclude that the CBO of the SimplePerformer class is acceptable.

Even though the MI of SimplePerformer is relatively low (65/75)
compared to all the other classes we have developed (with the notable
exception of GetTravels with an MI of 59/68), it is still quite good
when we consider that the lowest value Microsoft® considers good, or
“green”, is 20 [Mica].

A more advanced implementation of IPerformer may offer priorities,
which is useful when one request must be performed for subsequent
requests to succeed; for example in the event that an authentication
token expires and causes all other requests to fail until it has been
renewed by a high priority request.

78

13.3 Subclasses of BaseRequest

Roughly half of the concrete BaseRequest subclasses we listed in
tables 13.3 to 13.4 on pages 73–74 has the exact same CBO value, which
is because they are virtually identical, with the only differences being
the request path they specify, and the type of the object they receive
from ReisAPI. The other half of the requests accept parameters and use
them to perform some processing in their constructors, which impact
their CBO.

The worst “offender” with regards to high CBO is the GetTravels
class which accepts 13 parameters, of which we use 12.1 To improve the
readability of the code we moved some of what we believe to be the least
used options to a TravelSettings class. We have provided the code for
the aforementioned constructor in listing 13.1. We make no attempt to
improve the structure of the API.

1 public GetTravels(uint from, uint to, DateTime? time = null,
2 bool isAfter = true, TravelSettings settings = null)
3 {
4 base.Path = "/Travel/GetTravels";
5 settings = (null != settings) ? settings : new TravelSettings();
6 time = time.HasValue ? time : DateTime.UtcNow;
7
8 if (settings.LineNames.Count() > 0)
9 {

10 Parameters.Add(
11 "linenames",
12 string.Join(",", settings.LineNames));
13 }
14
15 if (settings.Transportation.Count() > 0)
16 {
17 Parameters.Add(
18 "transporttypes",
19 string.Join<TransportationType>(",", settings.Transportation));
20 }
21
22 Parameters.Add("changemargin", settings.ChangeMargin.ToString());
23 Parameters.Add("changepunish", settings.ChangePunish.ToString());
24 Parameters.Add("fromPlace", from.ToString());
25 Parameters.Add("isafter", isAfter.ToString());
26 Parameters.Add("maxwalkingminutes", settings.MaxWalkingMinutes.ToString());
27 Parameters.Add("proposals", settings.MaxProposals.ToString());
28 Parameters.Add("time", time.Value.ToString("ddMMyyyyHHmmss"));
29 Parameters.Add("toPlace", to.ToString());
30 Parameters.Add("walkingfactor", settings.WalkingFactor.ToString());
31 Parameters.Add("walkreluctance", settings.WalkReluctance.ToString());
32 }

Listing 13.1
The GetTravels resource accepts a wide range of query parameters
which cause the client implementation to be assigned a high CBO and a
relatively low MI as a result.

1At the time of writing, the 13th option, “waitAtBeginningFactor”, is undocumented
in [Rutb]. It is not clear to us what its purpose is or what values it accepts.

79

To reduce the amount of repeated boilerplate code among the
request classes, it may be possible to implement BaseRequest as a
generic class; BaseRequest<T>. Doing so would make it possible to,
for instance, create a new request using new Request<PlaceResponse-
>("/Place/GetStop/3010930"), or one could define GetStop as a
subclass of BaseRequest<PlaceResponse>. This is something that may
be worth considering in the context of C] and the .NET Framework or
similar environments, but we do not investigate it further in this thesis.

13.4 Subclasses of BaseResponse

Overall, the BaseResponse subclasses are all fairly similar, with the
exception of a few that employ private helper classes to satisfy WCF.
Only a single class meets the suggested upper bound on CBO, namely
the IndexResponse class.

In section 13.3 on page 79, we suggested that the request classes
could be simplified by implementing BaseRequest as a generic class.
Much in the same way, we may be able to reduce the amount of repeated
boilerplate code among the response classes by implementing Base-
Response as a generic class; BaseResponse<T>. Doing so would make it
possible to define the simplest responses with a single line of code. Like
before, this is something that may be worth considering in the context
of C] and the .NET Framework or similar environments, but we do not
investigate it further in this thesis.

13.5 Summary

An evaluation of the base classes and interfaces defined by Performer
suggests that they are highly maintainable and reusable. As the classes
perform no function other than storing data (with the exception of
SimplePerformer), there is not much to test. Thus, the testability is
excellent. SimplePerformer, on the other hand, is the most complex
class in the entire system, not only because of what it does, but how it
does it. The class uses threading (which is complex and prone to errors)
to parallelise execution of requests. CC suggests that 20 test cases are
required to achieve complete test coverage of SimplePerformer.

With the notable exception of GetTravels (with an MI of 59/68
due to offering many parameters), all BaseRequest and BaseResponse
subclasses gets perfect scores in all measures. The DIT measure is
always 2, because we only have one level of inheritance.

80

14
Part III: Evaluation

Summary

In the previous chapter, we performed an evaluation of the structural
(non-functional) qualities of a ReisAPI client developed in C] using
Performer. We collected five software quality metrics and used the
measurements to determine the maintainability, reusability, testability
and size of the code. The metrics we applied were: Coupling Between
Objects (CBO), Cyclomatic Complexity (CC), Depth of Inheritance (DIT),
Lines of Code (NLOC) and Maintainability Index (MI).

14.1 Maintainability

The “worst” class in the entire code base, with regards to MI, was
GetTravels with 59, which was relatively low compared to the other
classes, though very good, considering that 20 is the lowest “good”
value, according to Microsoft®. The reason for this is that GetTravels
accepted 12 parameters, which is a lot more than most of the other
classes did. The MI of the SimplePerformer class was much better,
even though it was considerably larger in size, with an NLOC of 58

(a difference of 38). However, SimplePerformer exhibited excessive
coupling, with a CBO of 21. This was largely caused by the number
of classes needed to use HTTP in C], and as such, would be difficult to
reduce.

81

14.2 Reusability

All classes involved in the implementation had a DIT of 2, with the
obvious exception of the basic classes: BaseRequest, BaseResponse and
SimplePerformer. The latter is the only class that exceeds the CBO
limit, which in general is an indication that the class may be hard to
reuse. The high CBO was caused by a large number of classes involved
in the use of HTTP, but because they are a part of the .NET Framework
(always available), they have no impact on the reusability of Simple-
Performer.

14.3 Testability

The number of possible test paths is low, because of the low coupling
(CBO), and the low complexity (CC). The low DIT means that classes
exhibit predictable behaviour. The low NLOC and high MI are also
indicators of good testability.

14.4 Size

A function should, ideally, be no longer than 24 lines, although up to
48 lines is acceptable. This is to make sure that the entire function
can be visible on the screen at the same time. The biggest class in
terms of NLOC was SimplePerformer, with its 58 lines (7.3 on the
method average), which is well within the limit. The entire project was
comprised of 2 interfaces and 32 classes.

82

15
Part III: Evaluation

Conclusion

In this chapter, we provide a brief summary of the work we have
presented in this thesis, our main contributions to the field of software
engineering, and possibilities for further study regarding Performer.

15.1 Summary

In this thesis we have described and implemented the composite
software design pattern, Performer. We have provided sample code in
the statically typed C], and the dynamically typed Python programming
languages. We used the C] implementation to build a REST client for
the Norwegian travel planner API, ReisAPI, and used that code base to
extract various indicators of software quality.

We begin by introducing the architectural style known as Represent-
ational State Transfer (REST) in chapter 3 on page 11. REST APIs can
be classified according to three levels of service maturity defined in the
Richardson Maturity Model (RMM). The level of least maturity, level 1,
is the maturity level we have been working with in this thesis.

In chapter 4 on page 17, we present the fundamental purpose of
naming and documenting design patterns in writing, and how the history
of design patterns began with the release of a philosophical book about
architecture, not long ago. The patterns we concern ourselves in this
thesis are classified by purpose (creational, structural or behavioural)
and scope (classes or objects). We looked at the Command, Factory

83

Method and Observer patterns which provide the basis for the composite
pattern that is described in this thesis.

Chapter 5 on page 25 provides a short, high-level, presentation of
the Norwegian travel planner API, ReisAPI, its nine modules and their
purpose. The travel planner itself represents a fairly small portion of the
API with only one documented resource. The rest of ReisAPI provides
information about geographical locations, departures in fixed- and real-
time, and metadata.

We conclude part I on page 9 with chapter 6 on page 29, a
short presentation of Windows Communication Foundation (WCF),
a programming model for building service-oriented applications on
top of the .NET Framework using C] and other Common Language
Infrastructure (CLI) languages.

In part II on page 37 we describe the potential composite software
design pattern, Performer. Performer is a class that accepts objects
representing API requests and executes them using multiple threads.
Any object can submit requests, and all objects that implement the
right interface can receive notifications when responses arrive from the
server.

Finally, in part III on page 59, we collected five measurements of
software quality from the ReisAPI client source code; Coupling Between
Objects (CBO), Cyclomatic Complexity (CC), Depth of Inheritance (DIT),
Lines of Code (NLOC) and the Maintainability Index (MI). We used
these measurements to evaluate the complexity and maintainability of
the solution, which was found to be well within acceptable limits for the
bulk of the solution.

15.2 Main Contributions

We have documented what we believe to be a good way of designing
systems that consume resources on the internet, including, but not
limited to REST APIs on service maturity level 1. We were familiar with
the three basis patterns from previous study, and wanted to see whether
a combination of them in this context would prove to be beneficial.

The composite pattern we describe in this thesis works as a high-
level abstraction layer on top of a multithreaded execution “engine”,
thus allowing programmers to get the performance benefits of multicore
processing in their applications without having to manage threads and
synchronisation directly. It can be implemented in any programming
language that supports object orientation and multithreading.

84

15.3 Further Work

During the evaluation phase of this thesis, we identified some areas of
Performer that could be improved. In this chapter, we explain some non-
optimal aspects of the Performer design, and give suggestions on how
they may be addressed by future research.

15.3.1 Generic Base Classes

Many of the BaseRequest and BaseResponse subclasses are almost
identical. This results in a lot of duplicated boilerplate code, because
most of their implementation is code that is required to properly create
a subclass and override methods in C]. One possible way to alleviate
this issue may be to implement BaseRequest and BaseResponse as
the generic classes BaseRequest<T> and BaseResponse<T>. This may
reduce the amount of repeated boilerplate code significantly and could
contribute to both improved complexity and maintainability. For the
simplest of GET requests, only the request path would have to be
changed in the subclass, as is exemplified in 15.1.

1 public class GetStop : BaseRequest<PlaceResponse>
2 {
3 public GetStop(uint id)
4 {
5 base.Path = string.Format("/Place/GetStop/{0}", id);
6 }
7 }

Listing 15.1
The GetStop class implemented using a generic BaseRequest base class.
Only the constructor must be implemented explicitly.

15.3.2 Identify Performer in Other Systems

Search for independent and unrelated systems that use Performer, in
order to determine whether it is a real design pattern or not.

15.3.3 Pluggable Representation Formats

An API may provide different representation formats (e.g.JSON and
XML), and it would be an advantage if there was a mechanism that sup-
ported this possibility. Support for more than one representation format
could be implemented by applying the Strategy pattern [Gam+94]. This
would allow different parsers, with a generic interface, to be “plugged
in” as necessary. The desired response format could be indicated by the
performer or by each request using the Accept HTTP header.

85

15.3.4 Reduced Dependence on Type Checking

The biggest issue with Performer is, perhaps, the need to always
know what kind of response one has received (which usually involves
downcasting the object to a subtype). Because each subclass of Base-
Request is supposed to provide a corresponding subclass of Base-
Response, accessing the decoded data in the response depends on a
type check; “if the type of the response is StopResponse, access its Stop
property, else if the response is LineResponse, access its Line property,
. . . ” To identify the type one must make use of whatever facilities the
programming language offers for this purpose. The only entity that ever
knew the actual type was, after all, the factory method that created
it. Finding a better way to achieve the same thing would be great for
improved decoupling.

15.3.5 Transparent Authentication Mechanism

Whereas a fully RESTful API performs complete authentication in every
request (stateless), typically using HTTP Basic Authentication (BA) or
Hash-based Message Authentication Code (HMAC), one of the hallmarks
of a level 1 API is that it uses authentication tokens that must be
renewed periodically (stateful). It may be of interest to research
how this authentication should be handled to be as transparent and
non-intrusive as possible. Authentication could be performed by the
performer itself, but it could also be carried out by a reqular request,
or perhaps using the Strategy pattern [Gam+94]. One would need
a mechanism for detecting that a request failed due to an expired
token, pause execution of all requests, and then resume execution upon
successful renewal of the token.

15.3.6 Use in Server Applications

Investigate the feasibility of developing REST server software using the
architecture we have described in Performer. One thread listens for
incoming requests, takes care of creating request objects and submits
them to a performer, which carries it out. The response could then be
sent by another thread, after it has carried out the request, (assuming a
reference to the connection is included with the request object). Another
approach would be to have a separate thread dequeue response objects,
sending them sequentially to clients.

86

Figure 15.1
Performer may be useful on the server as well as the client. One thread
accepts incoming requests, forwards them to a multithreaded performer
which submits the response objects to an outgoing response queue
which is serviced by a separate thread. Other services, like logging
and notifications, may also be attached.

87

88

Acronyms

API Application Programming Interface

CalDAV Calendaring Extensions to WebDAV

CardDAV vCard Extensions to WebDAV

CBO Coupling Between Objects

CC Cyclomatic Complexity

CIL Common Intermediate Language

CLI Common Language Infrastructure

CPU Central Processing Unit

CRUD Create Read Update Delete

DIT Depth of Inheritance

FIFO First In, First Out

FILO First In, Last Out

GoF Gang of Four

GUID Globally Unique Identifier

GUI Graphical User Interface

HATEOAS Hypermedia as the Engine of Application State

HBUG Halstead Bugs

HCM Halstead Complexity Measures

HDIF Halstead Difficulty

HEFF Halstead Effort

HLTH Halstead Length

HMAC Hash-based Message Authentication Code

HTTP Hypertext Transfer Protocol

HVOC Halstead Vocabulary

HVOL Halstead Volume

89

IRI International Resource Identifier

JSON JavaScript Object Notation

LCOM Lack of Cohesion in Methods

LIFO Last In, First Out

LILO Last In, Last Out

MM Maintainability Model

NLOC Lines of Code

NLOD Norwegian Licence for Open Government Data

NOS Number of Statements

OJD Ole Johan Dahl’s house

MI Maintainability Index

PCL Percentage of Comment Lines

PSE Programming & Software Engineering

PSF Python Software Foundation

REST Representational State Transfer

RFC Response For Class

RMM Richardson Maturity Model

SIRI Service Interface for Real Time Information

SOAP Simple Object Access Protocol

UML Unified Modeling Language

URI Uniform Resource Identifier

URL Uniform Resource Locator

URN Uniform Resource Name

WCF Windows Communication Foundation

WebDAV Web Distributed Authoring and Versioning

WSDL Web Services Description Language

WWW World Wide Web

XML Extensible Markup Language

BA HTTP Basic Authentication

90

Bibliography

[Ale77] C. Alexander. A Pattern Language. 1st ed. Oxford University
Press, 1977. ISBN: 0-19-501919-9.

[Ale79] C. Alexander. The Timeless Way of Building. 1st ed. Oxford
University Press, 1979. ISBN: 0-19-502402-8.

[CK94] S. R. Chidamber and C. F. Kemerer. ‘A Metrics Suite for
Object Oriented Design’. In: IEEE Transactions on Software
Engineering 20.6 (June 1994), pp. 476–493. ISSN: 0098-
5589. DOI: 10.1109/32.295895. URL: http: / /dx.doi .org/
10.1109/32.295895.

[Col+94] Don Coleman et al. ‘Using Metrics to Evaluate Software
System Maintainability’. In: Computer 27.8 (Aug. 1994),
pp. 44–49. ISSN: 0018-9162. DOI: 10.1109/2.303623. URL:
http://dx.doi.org/10.1109/2.303623.

[ECM06] ECMA. ECMA-335: Common Language Infrastructure
(CLI). Fourth. Geneva, Switzerland: ECMA (European Asso-
ciation for Standardizing Information and Communication
Systems), June 2006, vii + 104 (Part I), viii + 191 (Part
II), iv + 138 (Part III), ii + 20 (Part IV), i + 4 (Part V),
ii + 57 (Part VI). URL: http : / / www. ecma - international .
org / publications / standards / Ecma - 335 . htm ; %20http : / /
www. ecma - international . org / publications / files / ECMA -
ST / Ecma - 335 . pdf ; %20http : / / www. ecma - international .
org/publications/files/ECMA-ST/ECMA-335.zip.

[Fie00] Roy Thomas Fielding. ‘Architectural Styles and the Design
of Network-based Software Architectures’. AAI9980887.
PhD thesis. 2000. ISBN: 0-599-87118-0.

[Fie08] Roy Thomas Fielding. REST APIs must be hypertext-driven.
English. Oct. 2008. URL: http : / / roy.gbiv.com/untangled/
2008 / rest - apis - must - be - hypertext - driven (visited on
14/05/2016).

[Gam+94] E. Gamma et al. Design Patterns: Elements of Reusable
Object-Oriented Software. 1st ed. Addison-Wesley, 1994.
ISBN: 0-201-63361-2.

[Hal77] Maurice H. Halstead. Elements of Software Science (Op-
erating and Programming Systems Series). New York, NY,
USA: Elsevier Science Inc., 1977. ISBN: 0444002057.

91

http://dx.doi.org/10.1109/32.295895
http://dx.doi.org/10.1109/32.295895
http://dx.doi.org/10.1109/32.295895
http://dx.doi.org/10.1109/2.303623
http://dx.doi.org/10.1109/2.303623
http://www.ecma-international.org/publications/standards/Ecma-335.htm;%20http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-335.pdf;%20http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-335.zip
http://www.ecma-international.org/publications/standards/Ecma-335.htm;%20http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-335.pdf;%20http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-335.zip
http://www.ecma-international.org/publications/standards/Ecma-335.htm;%20http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-335.pdf;%20http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-335.zip
http://www.ecma-international.org/publications/standards/Ecma-335.htm;%20http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-335.pdf;%20http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-335.zip
http://www.ecma-international.org/publications/standards/Ecma-335.htm;%20http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-335.pdf;%20http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-335.zip
http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven
http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven

[Hum14] Benjamin Hummel. McCabe’s Cyclomatic Complexity and
Why We Don’t Use It. English. May 2014. URL: https://www.
cqse.eu/en/blog/mccabe-cyclomatic-complexity/ (visited on
12/01/2016).

[Kel89] W.T.B. Kelvin. Popular Lectures and Addresses. Nature
series v. 1. Macmillan & Company, 1889. URL: https : / /
books.google.no/books?id=7685AAAAMAAJ.

[McC76] T.J. McCabe. ‘A Complexity Measure’. In: IEEE Transactions
on Software Engineering SE-2.4 (Dec. 1976), pp. 308–320.
ISSN: 0098-5589. DOI: 10.1109/TSE.1976.233837.

[Mica] Microsoft. Code Metrics Values. URL: https : / / msdn .
microsoft . com / en - us / library / bb385914 . aspx (visited on
03/06/2016).

[Micb] Microsoft. How to: Generate Code Metrics Data. URL:
https://msdn.microsoft.com/en-us/library/bb385908.aspx
(visited on 26/07/2016).

[Micc] Microsoft. Windows Communication Foundation. URL:
https://msdn.microsoft.com/en-us/library/dd456779.aspx
(visited on 05/06/2016).

[Mor07] Conor Morrison. Maintainability Index Range and Meaning.
Nov. 2007. URL: https : / / blogs . msdn . microsoft . com /
codeanalysis/2007/11/20/maintainability-index-range-and-
meaning/ (visited on 28/05/2016).

[Nab11a] Zain Naboulsi. Code Metrics – Class Coupling. May 2011.
URL: https://blogs.msdn.microsoft.com/zainnab/2011/05/
25/code-metrics-class-coupling/ (visited on 28/05/2016).

[Nab11b] Zain Naboulsi. Code Metrics – Depth of Inheritance. May
2011. URL: https : / / blogs . msdn . microsoft . com / zainnab /
2011/05/19/code-metrics-depth-of-inheritance-dit/ (visited
on 28/05/2016).

[NT11] K. Naik and P. Tripathy. Software Testing and Qual-
ity Assurance: Theory and Practice. Wiley, 2011. ISBN:
9781118211632. URL: https://books.google.no/books?id=
neWaoJKSkvgC.

[OH92] P. Oman and J. Hagemeister. ‘Metrics for assessing a soft-
ware system’s maintainability’. In: Software Maintenance,
1992. Proceerdings., Conference on. Nov. 1992, pp. 337–
344. DOI: 10.1109/ICSM.1992.242525.

[Pre] Oxford University Press. Definition of “metric” in Eng-
lish. English. Oxford Dictionaries. URL: http : / / www .
oxforddictionaries.com/definition/english/metric (visited on
19/05/2016).

[Pyt16] Python Software Foundation. Abstract Base Classes. Eng-
lish. Jan. 2016. URL: https://docs.python.org/3/library/abc.
html (visited on 17/03/2016).

92

https://www.cqse.eu/en/blog/mccabe-cyclomatic-complexity/
https://www.cqse.eu/en/blog/mccabe-cyclomatic-complexity/
https://books.google.no/books?id=7685AAAAMAAJ
https://books.google.no/books?id=7685AAAAMAAJ
http://dx.doi.org/10.1109/TSE.1976.233837
https://msdn.microsoft.com/en-us/library/bb385914.aspx
https://msdn.microsoft.com/en-us/library/bb385914.aspx
https://msdn.microsoft.com/en-us/library/bb385908.aspx
https://msdn.microsoft.com/en-us/library/dd456779.aspx
https://blogs.msdn.microsoft.com/codeanalysis/2007/11/20/maintainability-index-range-and-meaning/
https://blogs.msdn.microsoft.com/codeanalysis/2007/11/20/maintainability-index-range-and-meaning/
https://blogs.msdn.microsoft.com/codeanalysis/2007/11/20/maintainability-index-range-and-meaning/
https://blogs.msdn.microsoft.com/zainnab/2011/05/25/code-metrics-class-coupling/
https://blogs.msdn.microsoft.com/zainnab/2011/05/25/code-metrics-class-coupling/
https://blogs.msdn.microsoft.com/zainnab/2011/05/19/code-metrics-depth-of-inheritance-dit/
https://blogs.msdn.microsoft.com/zainnab/2011/05/19/code-metrics-depth-of-inheritance-dit/
https://books.google.no/books?id=neWaoJKSkvgC
https://books.google.no/books?id=neWaoJKSkvgC
http://dx.doi.org/10.1109/ICSM.1992.242525
http://www.oxforddictionaries.com/definition/english/metric
http://www.oxforddictionaries.com/definition/english/metric
https://docs.python.org/3/library/abc.html
https://docs.python.org/3/library/abc.html

[Ric08] Leonard Richardson. ‘Justice Will Take Us Millions Of
Intricate Moves’. QCon San Francisco. 2008. URL: https :
//www.crummy.com/writing/speaking/2008-QCon/.

[Ruta] Ruter AS. About us. English. URL: https://ruter.no/en/about-
ruter/about-us/ (visited on 19/06/2016).

[Rutb] Ruter AS. API Ruter Reise. English. URL: http : / / reisapi .
ruter.no/help (visited on 16/05/2016).

[Rutc] Ruter AS. Ruter Labs. Norwegian. URL: https: / /ruter.no/
labs/ (visited on 16/05/2016).

[Sal] N. Salingaros. Some Notes on Christopher Alexander.
English. URL: http://zeta.math.utsa.edu/~yxk833/Chris.
text.html (visited on 12/05/2016).

[SAM12] Dag I.K. Sjøberg, Bente Anda and Audris Mockus. ‘Ques-
tioning Software Maintenance Metrics: A Comparative Case
Study’. In: Proceedings of the ACM-IEEE International Sym-
posium on Empirical Software Engineering and Measure-
ment. ESEM ’12. Lund, Sweden: ACM, 2012, pp. 107–110.
ISBN: 978-1-4503-1056-7. DOI: 10.1145/2372251.2372269.
URL: http://doi.acm.org/10.1145/2372251.2372269.

[SGM00] H. A. Sahraoui, R. Godin and T. Miceli. ‘Can metrics help
to bridge the gap between the improvement of OO design
quality and its automation?’ In: Software Maintenance,
2000. Proceedings. International Conference on. 2000,
pp. 154–162. DOI: 10.1109/ICSM.2000.883034.

[Tor] Linus Torvalds. Linux kernel coding style. URL: https : / /
www.kernel .org/doc/Documentation/CodingStyle (visited
on 03/07/2016).

[WPR10] Jim Webber, Savas Parastatidis and Ian Robinson. REST in
Practice: Hypermedia and Systems Architecture. Beijing:
O’Reilly, 2010. ISBN: 978-0-596-80582-1.

93

https://www.crummy.com/writing/speaking/2008-QCon/
https://www.crummy.com/writing/speaking/2008-QCon/
https://ruter.no/en/about-ruter/about-us/
https://ruter.no/en/about-ruter/about-us/
http://reisapi.ruter.no/help
http://reisapi.ruter.no/help
https://ruter.no/labs/
https://ruter.no/labs/
http://zeta.math.utsa.edu/~yxk833/Chris.text.html
http://zeta.math.utsa.edu/~yxk833/Chris.text.html
http://dx.doi.org/10.1145/2372251.2372269
http://doi.acm.org/10.1145/2372251.2372269
http://dx.doi.org/10.1109/ICSM.2000.883034
https://www.kernel.org/doc/Documentation/CodingStyle
https://www.kernel.org/doc/Documentation/CodingStyle

	Abstract
	Acknowledgements
	Introduction
	Motivation
	Goals
	Approach
	Criteria for Solution
	Work Done
	Evaluation
	Results
	Contributions
	Conclusion
	Outline

	I Background
	Introduction
	Outline

	Representational State Transfer
	Introduction
	The Richardson Maturity Model
	Hypermedia
	Constraints
	Client-Server
	Stateless
	Cache
	Uniform Interface
	Layered System
	Code-On-Demand

	Create Read Update Delete
	Summary

	Software Design Patterns
	Introduction
	History
	Definition
	Creational
	Structural
	Behavioural
	Used Patterns
	Command
	Factory Method
	Observer

	Summary

	ReisAPI from Ruter
	Introduction
	ReisAPI
	Summary

	Windows Communication Foundation
	Introduction
	Sample Code
	Summary

	Summary

	II A Potential Composite Design Pattern
	Introduction
	Outline

	Performer
	Intent
	Basis
	Motivation
	Applicability
	Structure
	Participants
	Command and Factory Method
	Observer

	Collaborations
	Consequences
	Implementation
	Sample Code
	Consumer
	Performer
	Request
	Response
	SimplePerformer

	Summary

	III Evaluation
	Introduction
	Windows Communication Foundation
	Outline

	Software Quality Metrics
	Introduction
	Functional Quality
	Structural Quality
	Complexity Metrics
	Lines of Code
	Halstead Complexity Measures
	McCabe's Cyclomatic Complexity
	Coupling Between Objects
	Depth of Inheritance

	Measuring Maintainability
	Oman's Maintainability Index

	Criticism
	Summary

	Measurements
	Introduction
	Base Classes and Interfaces
	Interfaces
	Base Classes
	Concrete Classes

	Subclasses of BaseRequest
	Subclasses of BaseResponse
	Summary

	Summary
	Maintainability
	Reusability
	Testability
	Size

	Conclusion
	Summary
	Main Contributions
	Further Work
	Generic Base Classes
	Identify Performer in Other Systems
	Pluggable Representation Formats
	Reduced Dependence on Type Checking
	Transparent Authentication Mechanism
	Use in Server Applications

