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Many of the most interesting complex media are non-Newtonian and exhibit time-dependent behavior of
thixotropy and rheopecty. They may also have temporal responses described by power laws. The material
behavior is represented by the relaxation modulus and the creep compliance. On the one hand, it is shown that in
the special case of a Maxwell model characterized by a linearly time-varying viscosity, the medium’s relaxation
modulus is a power law which is similar to that of a fractional derivative element often called a springpot. On the
other hand, the creep compliance of the time-varying Maxwell model is identified as Lomnitz’s logarithmic creep
law, making this possibly its first direct derivation. In this way both fractional derivatives and Lomnitz’s creep
law are linked to time-varying viscosity. A mechanism which yields fractional viscoelasticity and logarithmic
creep behavior has therefore been found. Further, as a result of this linking, the curve-fitting parameters involved
in the fractional viscoelastic modeling, and the Lomnitz law gain physical interpretation.
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I. INTRODUCTION

Many complex media exhibit non-Newtonian behavior,
meaning that stress no longer is proportional to strain rate.
The behavior is mainly classified into two sub-categories:
time independent and time dependent. The latter is still not
so well understood despite its importance in applications. The
underlying reason is the complexity of the phenomenon, and
therefore models are often empirical and lack a proper physical
interpretation [1].

When it comes to time-dependent non-Newtonian rheology,
there exist two quite different approaches to modeling. On the
one hand there are models based on time-varying viscosity
giving rise to properties such as thixotropy and rheopecty. On
the other hand, there have been advances in modeling time
dependency with fractional calculus in which power laws are
inherent [2—4]. These two approaches to modeling are quite
distinct from each other and there are not many references
from one field to the other. One of the intentions of this paper
is to build a bridge between the two fields. The other is the
derivation of Lomnitz’s creep law.

The rest of the article is organized as follows. In the next
two subsections we first give a short historical review of
the power law responses and their modeling with fractional
derivatives, which is then followed by a short summary of
the difficulties associated with the modeling of time-varying
viscous fluids. Subsequently a subsection is dedicated to the
Lomnitz logarithmic creep law. Then in Sec. II we show
how the fractional derivative naturally emerges from the
relaxation modulus of a time-varying Maxwell model. The
creep compliance of the model is identified as the Lomnitz
law in Sec. III. Finally, in Sec. IV, we discuss the implications
of this work.
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A. Power law response

The history of fractional derivatives in physics goes back
to Abel [5], who in 1826 was the first to pose a mechanical
problem, in the form of the isochrone curve, which required a
fractional derivative of order 1/2.

In the field of rheology, the paper [6] gives a good historical
overview mentioning in particular two early contributions. The
first, from 1921 [7], gave what is referred to as Nutting’s
equation. It is the power law stress response of a fluid to a
constant strain load:

o) xt™, O<a<l. (1)

It was found to describe many media better than the
usual decaying exponential response. The next significant
contribution is Scott Blair’s fractional model based on the
rheology of, e.g., cheese and clay [8]. He found that the
rheological law underlying the Nutting equation was actually
a fractional order differential equation, where the fractional
derivative of order « is a convolution between a first order
derivative and a power law kernel:

a“ . =
3 /0= 0% s,
where I'(-) is the gamma function.

Since the time of Nutting and Scott Blair, the fractional
model in rheology has been much developed as a property de-
scribing a time-dependent non-Newtonian fluid with properties
interpolating between a Hookean and a Newtonian one. This
has resulted in the generalization of the classical Kelvin-Voigt,
Maxwell, and Zener spring-dashpot models into corresponding
fractional ones. Likewise, the mathematical theory of frac-
tional differential equations has been developed [9].

A recent textbook covering fractional viscoelasticity is [3].
However, despite the vast development of fractional derivatives
as an attractive tool of engineering analysis over the last
decades, the use of fractional derivatives in viscoelasticity
is essentially motivated by the same power law creep as at
the time of Nutting and Scott Blair. Even at present there
is no physical interpretation of the important parameter of

O<a<l, 2)

Published by the American Physical Society


http://dx.doi.org/10.1103/PhysRevE.94.032606
http://creativecommons.org/licenses/by/3.0/

VIKASH PANDEY AND SVERRE HOLM

the fractional order [10]. This has apparently reduced the
credibility of fractional viscoelastic models and so restrained
them to the realm of empirical “curve fits,” though their fit to
real data in, e.g., biology [11] and porous media [12] has been
established [13].

The main reason is that little work was done that demon-
strated a deductive approach to the fractional derivatives. One
of the main contributions came from Bagley and Torvik as they
established a direct connection between fractional derivatives
and physical processes underlying polymer dynamics. They
studied the Rouse model, which does not include hydrody-
namic and volume interactions; however, it has been the basis
of molecular theories for the dynamics of polymer solids with
no crosslinking [14,15]. It was shown that fractional force-
displacement relationships emerging from the microscopic
dynamics of the polymer constituents translate into a fractional
stress-strain relationship of order 1/2, which also dictates the
macroscopic mechanical properties. Besides being justified
by the physical principles governing the polymer behavior,
the thermodynamic consistency of the fractional models is
also ensured [16]. Recently the possibility to extend the order
of the fractional derivative to 0 and 1 was also illustrated
by generalizing the Rouse relaxation time [17]. An alterna-
tive approach which ensures the realizability of fractional
viscoelastic models is through hierarchical arrangements of
springs and dashpots in the form of trees, ladders, and fractal
networks [18]. This implies that fractional derivatives naturally
arise when constitutive properties of a large number of classical
viscoelastic elements are combined.

Possibly the first suggestion to use fractional derivatives
came from Gemant [19] in order to model wave properties
which varied as frequency raised to fractional powers [20].
This can be linked to the property that the Fourier transform
of the fractional derivative is a power law,

f(%f(ﬂ) = (i0)*F(w). 3)

The fact that Eq. (3) also can be seen as a direct extension from
the regular integer-order derivative motivates its use [21,22].

Even in that field, the status is that it lacks a proper physical
interpretation. It should also be noted that the fractional
viscoelasticity model is an alternative to power law attenuation
caused by the different physical model of multiple scattering
in fractal media [23].

B. Time-varying viscosity

Another way to describe a time-dependent non-Newtonian
fluid is with a time-varying viscosity. When it increases with
time it results in a shear-thickening property called rheopecty.
It is less common than the opposite shear-thinning property,
thixotropy. Some examples of thixotropic fluids are paint,
honey, coal-water slurries, and waxy crude oil. The bovine
synovial fluid found in moving joints and the cytoplasm of
cells are rheopectic and thixotropic respectively. Examples of
rheopecty are a particular suspension involving clay, calcium
carbonate, starch, and water [24], as well as cream; the longer
one whips, the thicker it gets.

We follow [25] in distinguishing between time-dependent
and time-independent non-Newtonian fluids. Rheopecty and
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thixotropy should therefore not be confused with time-
independent behavior where viscosity varies only with the
strain rate [26]. One way to describe that is with a power
law in the strain derivative, as in the Herschel-Bulkley model
o(t) = o, + m(é)", where o and ¢ are the shearing stress and
strain respectively.

The model has a threshold, o;, below which the fluid does
not flow. Dilatant behavior occurs if n > 1 and pseudoplastic
properties are described with n < 1. If n =1 this is the
Bingham model and if the threshold is also removed, i.e.,
o; = 0, it describes Newtonian viscous behavior [27]. The
constant m is the consistency index.

The Herschel-Bulkley model and more complex variants
of it may describe time-dependent viscosity if the consistency
index is a function of time, m(t), combined with n = 1 in order
to avoid a mix between time and strain rate dependency [25].
One recent development is to introduce time dependency by
replacing the second term of the Herschel-Bulkley model with
a fractional derivative [27]. The motivation is, however, only
phenomenological. Further, it must be noted that an arbitrary
substitution has its drawbacks, as sometimes it could lead to
unphysical results.

Nevertheless, the status is that the behavior of thixotropic
fluids is far from being understood [28] and that present
models cannot predict all the properties of concentrated
suspensions [1]. Interestingly, [29] states that the model for,
e.g., laterite slurries lacks a way of predicting the relaxation
time as it depends on the shear history.

Here we will show that time-dependent non-Newtonian
properties are more closely linked to fractional viscoelasticity
than previously thought. That is done by first assuming a
time-varying viscosity, (),

o(1) =n@)é@), n) >0, “)

and then combining that with a spring in series, yielding a
time-varying Maxwell model. It is then shown that in the
special case of a linearly time-varying viscosity, the fluid’s
response is a power law as in the Nutting equation. In this way
a link is found between the two disparate fields of fractional
viscoelasticity and time-dependent non-Newtonian rheology.
An interpretation of the fractional order and the relaxation time
then follows from this bridging.

C. Lomnitz’s creep law

In 1956 Lomnitz proposed a logarithmic creep law [30] to
describe the creep behavior of igneous rocks:

e() = 2 [1+qgIn(l +an)], >0, (5)
Ey

where E is the shear modulus. The parameter a is a positive
material constant, and to ensure the dimensional consistency
of the equation it must relate to the relaxation time during
which the transition from the elastic- to creep-type deformation
occurs. The beauty of the Lomnitz law lies in the fact that
as t — 0 there is no singularity observed in it. To the best
of our knowledge, a derivation of the creep law has never
been obtained. Having introduced it as an empirical law,
the dimensionless creep constant g is estimated from curve
fitting, from which very low values of ¢ < 1 are noticed [30].
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Further, the coefficient @ must be chosen large enough such
that az > 1. The creep law has been successfully employed in
mantle rheology, so stress wave attenuation in the earth could
be modeled [31].

The logarithmic term in Eq. (5), when generalized by
Jeffreys in 1958 [32], was shown to interpolate creep data
between a logarithmic and a linear law which ensures its
suitability for wide applications in seismology. An interesting
application of the law was demonstrated in explaining the
Chandler wobble, the nutation of Earth’s rotational axis. The
suitability of the Lomnitz law and the Jeffreys-Lomnitz law
to curve-fit the time-dependent earthquake creep data can be
found in [33]. The generalized law was further extended by
Strick who also established the link between the extended
Jeffreys—Lomnitz creep law and the tapered (nonuniform)
ladder network of springs and dashpots [34] which is similar
to the realizability of fractional derivatives, as mentioned
earlier. This observation hints about a common underlying
physical mechanism behind the fractional power-law behavior
and logarithmic creep law behavior, which we will identify
as the time-varying non-Newtonian viscosity in the next two
sections.

II. TIME-VARYING VISCOSITY AS A SPRINGPOT

Independent of both the fields of fractional viscoelasticity
and non-Newtonian rheology, in [35] it was found that the
friction between grains in a fluid-saturated sediment may be
described by a time-varying Maxwell model, which consists
of a spring in series with the viscosity given in Eq. (4). The link
to non-Newtonian media was not so apparent, since rather than
being called a rheopectic model it was described as a strain-
hardening one. That terminology is used in, e.g., seismics, but
more often strain hardening describes a non-Hookean medium
where the elastic modulus varies with applied stress.

In order to deal with the time-varying viscosity of Eq. (4),
the viscosity of the damper was approximated to vary linearly
with time in [35]:

o4(1) = [no + 011é(),

The simplest way to ensure a positive viscosity is to deal
only with rheopectic materials with 6 > 0.

In the modified Maxwell model, as illustrated in Fig. 1(a),
the stresses in the elements in the series combination are the
same, i.e., o(t) = o,(t) = o,4(t), where the subscripts denote
the contribution from the spring and the dashpot respectively.
The strains will add and so do their derivatives:

t>0. (6)

& =&+ é&4. @)

Substituting the response of the spring, oy = Epég;, and the
dashpot, Eq. (6), gives

o n o

Ey no+6t

(3
In deriving this result, we have set the strain input to a unit

step. The resulting stress response, also called the relaxation
modulus, is derived in Appendix 1 as

—Ey/0
G(t,0) = (1 + —t) , 86>0, r>0. ©)]
no
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FIG. 1. (a) Maxwell spring damper with time-varying viscosity.
(b) The fractional dashpot with similar relaxation modulus

It has two temporal arguments since it is the response of a
time-varying system. The second argument is the time of the
input relative to the start of the onset of the time variation of
the viscosity of Eq. (6). This is the key difference between
linear viscoelasticity, and the time-dependent non-Newtonian
fluid properties of thixotropy and rheopecty. The former is a
time-invariant property where the structural elements of the
medium remain unchanged in time; the latter, in contrast, is
a time-variant property where the structural units could either
build up or break down with respect to time. If the constant
dashpot is small compared to the time-varying part, the exact
step response can be approximated as

G(1,0) = Grp(t + 1) ~ Grp(t) = (%) ,
(10)
o = Ey/0,

T =1n0/0, no K 6t,

where Gprp(t) is the relaxation modulus of the fractional
dashpot but without the scaling parameter of 1/I'(1 — «).
This result was derived in [35], but the significance of the
result was not noted because there was no mention of either
the connection to past work on power law responses or to
fractional derivatives. Here we observe that the similarity with
Eq. (1) establishes the similarity between the Nutting equation
and the linearly time-varying viscosity.

Itis also worthwhile to note that the exponent « is a measure
of the interplay between elasticity and viscosity. That agrees
with the intuitive observation of [36] regarding “firmness” of
the material where they referred to « as the coefficient of
dissipation. That link can be further elaborated by noting the
following Fourier relationship (Ref. [9], p. 110):

—o

f(t)zrt ,1>0 & F=(_(w*" A

(I-w
Thus the step response has a power law Fourier transform
G()=T( —a)t®(iw)*"!, meaning that the transform of
the impulse response, h(t), is H(w) = iowG(w) =T(1 —
a)Tt*(iw)*. As already noted, this is also the Fourier transform
of a fractional derivative, Eq. (3). Therefore the stress is given
as a convolution with a fractional derivative operator:

dl)t
— . (12

O'(t)zh(t)*é‘([), mdl‘a

h(t) =
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The fractional derivative is the response of a fractional
dashpot of order «, also called a springpot or a Scott Blair
element [3], as shown in Fig. 1(b). This description is similar
to the linearly time-varying viscosity of Eq. (6) in series with
a spring as shown in Fig. 1(a), and this is our first finding. In
this way a link has been found between the disparate fields of
time-varying viscosity and fractional viscoelastic materials.

By analogy, the same procedure can be used to find the
equivalent of a fractional capacitor [37] by replacing the spring
with a resistor, and the dampers by capacitors. A time-varying
capacitor could be due to a time-varying dielectric.

III. TIME-VARYING VISCOSITY AS LOMNITZ’S
CREEP LAW

The creep compliance of the time-varying Maxwell model
is its strain response to a unit step in stress, and can be found
in a similar way as the relaxation modulus; see Appendix 2:

J(t,0)=1+aln (1+%>. (13)

Surprisingly Eq. (13) is actually the time varying part of
Lomnitz’s creep law expressed by Eq. (5). Comparing the
two equations and then relating them to Eq. (10), we identify
the creep constant, ¢ = o = E(/0, and the coefficient, a =
1/t = 60/n9. Thus we obtain a derivation of the logarithmic
creep law, and also extract physical interpretation of the terms
involved. This is our second finding.

The creep compliance of the time-varying Maxwell model
is therefore rather different from that of the fractional dash-
pot, Jpp(t) = 1/T'(1 + a)(t/7)*. For the fractional dashpot,
Jrp(t) must remain finite and therefore the order, o, cannot
exceed 1 [3]. However, a similar criterion could not be found
directly for the time-varying Maxwell model. It should also
be noted that the reciprocity principle of [3], which links the
Laplace transforms of the creep compliance and the relaxation
modulus, is not satisfied here. This is because the time-varying
Maxwell model is not a time-invariant linear system, as
assumed by the application of the Laplace transforms.

IV. CONCLUSION

In this work we have achieved two goals. First, it has been
shown that a linearly time-varying non-Newtonian viscosity
has the same power-law relaxation modulus as the linear
viscoelasticity described by the fractional derivative element
called a springpot. This means that the rather disparate fields of
fractional viscoelasticity and time-dependent non-Newtonian
rheology are more closely linked than previously thought. It
has also been shown that the order of a fractional element
is the ratio of the elastic part and the coefficient of the
time-varying viscosity. This opens up for a more physical
interpretation of the fractional order. Fractional derivative
stress-strain constitutive relationships not only adequately
describe the mechanical properties of complex materials, their
Fourier transform utilities also lead to closed-form solutions
while dealing with wave dispersive properties of materials. The
correct knowledge of the fractional order could then limit the
ambiguities in the curve fitting of dispersion plots. This also
gives an interpretation of fractional viscoelasticity in terms of
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rheopecty. Most examples in rheopecty are for fluids with very
slowly varying viscosities, in the order of seconds. The result
derived here could indicate that these properties exist at much
shorter time scales as well and thus may influence elastic wave
propagation in the kHz and MHz ranges also.

Second, we showed that the creep compliance of the linearly
time-varying non-Newtonian viscosity is actually Lomnitz’s
creep law. This may possibly be the first such deductive
derivation of the Lomnitz law. Moreover, similar to the case
of fractional derivatives, the parameters of the creep law
used for curve fitting have a physical interpretation now.
The coefficient a = 6 /5 from Eq. (13), when seen in light
of the constraint at > 1 imposed by Lomnitz [30], leads to
no K O0t. As is evident, the assumption ny < 0t is common
to both Nutting’s law and Lomnitz’s law, and thus indicates a
common underlying physical mechanism. The mechanism is
essentially a non-Newtonian time-varying viscosity of which
the varying part increases linearly with time and dominates
over the constant part. Further, Lomnitz’s law has been found
to be satisfied both at short and large time scales for igneous
rocks. This implies that, in order for ny to be much smaller
than 0¢, the time-varying part of the viscosity 6 must have a
very large value. Furthermore, the observation regarding the
small values of the creep constant ¢ < 1 obtained for igneous
rocks [30], when analyzed using our finding g = E;/6, implies
that the time-varying part of the viscosity dominates over the
elasticity of the rocks, i.e., 8 > Ej.

This contribution also outlines a way in which linear
acoustics may develop from its roots in the Hookean and
Newtonian assumptions. Non-Hookean behavior is the main
source of nonlinearity in addition to convection in the mature
field of nonlinear acoustics [38]. A much less developed area
of study is that of time-dependent non-Newtonian behavior. It
may be one of the main sources of power law characteristics
of complex media. It follows that it may also be a major cause
of power law behavior in both the dispersion and attenuation
of propagating waves.

Finally, we summarize that fractional derivatives and
Lomnitz law arise naturally from time-varying viscoelasticity.
Though the derivation is from a viscoelastic model only,
we ultimately aim to discover the multifacets of fractional
calculus. The overall goal is to change the “empirical only”
attitude which has been towards fractional viscoelastic models
and Lomnitz’s law. Further, the fractional viscoelastic models
are not contrary to the traditional viscoelastic models, but
rather they should be viewed as an extension of the latter. We
expect that the findings of this article will increase the degree of
confidence in employing fractional derivatives and Lomnitz’s
creep law in the modeling of complex material behavior which
is encountered in rheological studies of colloids, food and
pharmaceutical products, and biological and earth materials.
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APPENDIX: THE RESPONSE OF A TIME-VARYING
DASHPOT IN SERIES WITH A SPRING

1. The relaxation modulus
Integrating on both sides of Eq. (8) for 8 > 0 yields
1

1
—Ino =—{-In(ny+0t)+InCy, (A1)
Ey 0
where In C is a constant of integration. Thus
Ey
lnaz—{gln(no+6t)+EolnC}. (A2)

Imposing the initial condition that at # = 0 the dashpot has not
had time to react, and so all the strain is taken by the spring,
gives o(t = 0) = oy = Epgp. Using this result in Eq. (A2)
gives

Ey 1\ ~E

Inop = —{ nn, +1n ch} —Tn (cng) L (A3)

and the constant is
c = 2 (A4)

77()9
Rewriting Eq. (A2) gives
1 —E()
Ino =ln{C(n0+9t)9} (AS5)
or
o= {C(no + Ht)O} = ao<l + —t) . (A6)
o
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The desired unit step response of Eq. (9) is found by setting
oy = 1.

2. The creep response

The input for the creep response is a step in stress, the
opposite of the case for finding the relaxation modulus. The
stress and strain then follow:

o

no+6t
Since the total stress in the two dashpots in parallel combina-

tion is the same as the stress in the spring in series, Eq. (A7)
becomes

&, t>0. (A7)

E()gx .
=é. (A8)
n + 0t
Now, following the same steps as in the calculation of
relaxation modulus, integration of Eq. (A8) gives
E

%% InGgo + 61) + InC,

where, In C is a constant of integration. On imposing the initial
condition at t = 0, total strain is limited to the strain in the
spring, € = &, we get

Ey
InC = <1 — ?mno)ex.

Substituting Eq. (A10) in Eq. (A9), and setting &, = 1, we
obtain the creep compliance of Eq. (13) as

e = (A9)

(A10)

Eo
e=1+ 7{ln(n0 + 6t) — Inng}

Eo 0
=1+ 2% (14+ %), (AL1)
0 1o
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