
Detection of Bugs and Code
Smells through Static Analysis
of Go Source Code

Christian Bergum Bergersen
Master’s Thesis Autumn 2016

Detection of Bugs and Code Smells through
Static Analysis of Go Source Code

Christian Bergum Bergersen

August 9, 2016

ii

Abstract

Go is a new language especially known for its speed, simplicity, and con-
currency approach. The language has gained some promising momentum
as a newcomer, several big projects like Docker is implemented in the lan-
guage. As Go increases popularity among developers, the software in-
dustry is still hesitating to fully include the usage of the language in their
projects.

One of the reasons is the lack of tool support around the language,
i.e. the lack of tools for automated static analysis of Go source code. The
industry strives for implementation and delivery of defect free software to
their customers. In the struggle for delivering beautiful and defect free code
are they completely dependent on static analysis of source code to reveal
defects and suspicious code at an early stage in the development phase.

This thesis works out a set of basic definitions of bugs and code smells
in Go, and implements the first version of the static analysis tool detecting
violations of these definitions by scanning the source code. The tool is also
shipped as a SonarQube plugin for continuously analyzing and measuring
code quality.

iii

iv

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Goals and Contributions . 2

1.2.1 Extensibility . 2
1.2.2 Correctness . 2
1.2.3 Precision . 2
1.2.4 Portability . 3

1.3 Thesis Overview . 3
1.4 Project Website . 3

2 Background 5
2.1 The Go Programming Language 5

2.1.1 General . 5
2.1.2 Syntax and Semantic 5
2.1.3 Object-orientation . 8
2.1.4 Concurrency . 9

2.2 Static Code Analysis . 10
2.2.1 Linting: Detecting Bugs and Code Smells 11
2.2.2 Cyclomatic Complexity 14

2.3 SonarQube . 17

3 Implementing the Static Go Analyzer 19
3.1 Architecture . 19
3.2 Measure Cyclomatic Complexity 20

3.2.1 Identifying Basic-Blocks 20
3.2.2 Control Flow Representation 21
3.2.3 Measurements . 22

3.3 Suppressing rules . 24
3.4 Bug and Code Smell Checking 25

3.4.1 High Cyclomatic Complexity 25
3.4.2 Races when referencing loop iterator variables in

Goroutines . 25
3.4.3 Ignoring Errors . 25
3.4.4 String() method recursively calling itself 27
3.4.5 Printing from the fmt package 27
3.4.6 Maps allocated with new() 29
3.4.7 Statically evaluated conditions 30

v

3.4.8 Return statement kills code 31
3.4.9 Usage of GOTO statements 31
3.4.10 Empty for and if-else bodies 32

3.5 SonarQube Plugin . 33

4 Case Studies 35
4.1 Obtaining performance measurements of the tool 35
4.2 GoAnalyzer . 36

4.2.1 A High Measure Of Cyclomatic Complexity 37
4.3 Go compiler . 37

4.3.1 Preparing The Source Code For Analysis 37
4.3.2 Results . 38

5 Conclusion and Further Work 41
5.1 Future Work . 41

5.1.1 Resolve discovered precision issues 42
5.1.2 Detailed specification of rule suppression and activa-

tion . 42
5.1.3 Specification of measure thresholds 42

Appendices 43

A Analysis result of GoAnalyzer 45

B Package bblock source code 53

vi

List of Figures

2.1 Static and dynamic are the main groups of testing techniques. 13
2.2 The flow graph for the Greatest Common Divisor program in 2.9. 17
2.3 SonarQube architecture. 17

3.1 Control flow graph for function monthNumberToString()
listed in 3.3. 22

4.1 SonarQube overview of analysis. 36
4.2 SonarQube overview of the Go compiler analysis. 38

vii

viii

List of Tables

1.1 The tool inspects the code after bugs, code smells and high
cyclomatic complexity in functions and method. 2

2.1 Cyclomatic complexity risk threshold values. 15

4.1 Software and hardware specification of the computer execut-
ing the analysis. 36

4.2 Rules violated in the Go compiler v1.6.3. 39

ix

x

List of Listings

2.1 Traditional Hello World in Go. 6
2.2 The two forms of looping in Go. 6
2.3 Pass-by-reference by using a pointer. 7
2.4 Slicing a subset of array s into variable t and u. 7
2.5 Implementation of a custom type with a corresponding

method. 8
2.6 Classic example of Duck Typing, where the Bird type

implements methods in the Duck interface, allowing the
Bird to behave like the Duck. 9

2.7 Goroutines communicating and synchronizing through
channels. 11

2.8 Select statement listening on two channels, giving the ability
to timeout connections. 12

2.9 Go code solving Greatest Common Divisor, divided into basic-
blocks. Function main() consist of block 0-1, while gcd()
consist of block 2-5. 16

3.1 Verbose output from the basic-block identification algorithm. 21
3.2 Iterating through basic-blocks and their successors, drawing

and edge between them in the process of generating the
control flow graph. 22

3.3 Converting month number to corresponding name through
a switch statement . 23

3.4 GOTO_USED rule suppressed. 24
3.5 Race occurs on variable num as all 50 goroutines will

reference the same variable. 26
3.6 defer calls function returning error value 27
3.7 Format specifier for with address at line 10 causes recur-

sive calls against itself. 28
3.8 Code smells when using fmt printing, use log instead! . . . 29
3.9 Write operations against a map allocated with new() will

cause runtime panic. 30
3.10 If condition can be evaluated at compile time. 31
3.11 There is no execution path to the last logging statement

because of the return statement. 32
GoPrograms/GOTOLoop.go . 32
3.12 Empty if-else and for bodies. 33
4.1 Bash script to execute the GoAnalyzer multiple times and

dump the result to files, memory usage is also attached. . . . 36

xi

Appendix/AnalysisResultGoAnalyzer.txt 45
GoPrograms/basicblock.go . 53
List of Listings

xii

Acknowledgements

I would like to thank both my supervisors Martin Steffen and Volker Stolz
for bearing out with me, as the thesis started out as an idea rather different
than what it ended. Thanks for letting me make a more practical approach
to the field of formal methods! I would also thank Computas AS, my
further employer, for giving me insight into the software industry through
my three-year long internship, during my studies.

Last, but not least, thanks to my parents Liv Ragnhild Schrøder and
Bjørn Kjell Bergersen for your endless support and love throughout my
studies.

xiii

xiv

Chapter 1

Introduction

1.1 Motivation

Today the society is more and more software driven, i.e. in both forms
of safety and business critical systems, as the demand for rapid extensions,
improvements, and new features increases, so does the size and complexity
of the projects delivering these systems. One of many challenges in these
projects is to ensure some degree of code quality.

The overall goals of these projects are to deliver software according
to specification within the cost and time limit given. To achieve this
one is blessed with good software engineering principles to avoid pitfalls
throughout the project, in software projects, a significant source of pitfalls
are considered the code presence of defects and architectural symptoms
that may indicate deeper problems.

The field of software testing has emerged to solve or damming up the
challenge to reveal defects and other suspicious constructs in software.
Static analysis of source code is one software testing technique often
continuously applied in the implementation phase as code is written.

In many industrial projects, the usage of static analysis is in all
stakeholder’s interests as defects and erroneous code are detected at
an early stage, reducing the risk for delayed project progress and code
breaches.

Regardless of how technical promising a language is for solving
challenges in industrial projects, its strength cannot weight up with the
lack of tool support for static code analysis in the language. This claim was
confirmed during a presentation of the Go programming language[6, 9,
17] for a group considering new technologies in the Norwegian software
company Computas AS. They sought after general tool support for
automated static analysis for Go, i.e. tools like PMD[8] or FindBugs[14]
which exist for Java, they made it clear that tool support for static analysis
in a language is essential for quality assurance in their projects.

1

Bugs Valid syntactic code that will compile, but
will cause runtime panic or other behavior
that is technically incorrect.

Code Smells Valid syntactic code that will compile, but
may be symptoms of deeper problems indi-
cating design weakness, but not classifies as
technical errors.

Cyclomatic Complexity Measures function and method code com-
plexity through the code.

Table 1.1: The tool inspects the code after bugs, code smells and high
cyclomatic complexity in functions and method.

1.2 Goals and Contributions

The goal of this thesis is to meet the demand for tool support raised in the
meeting with Computas AS. Such a static analyzer tool would be helpful
for the entire Go community and may help the industry a step closer to
include Go in their projects.

To achieve the goal of covering a static analysis tool in Go, the main
contribution in this thesis is to design and implement the first version of
such a tool, greatly inspired by PMD and FindBugs as they have gained
quite a momentum in the Java community. A SonarQube plugin for the tool
is also provided to cover the industry demand and support for continuous
inspection through a quality management platform. Table 1.1 shows an
overview of what the tool detects in its analysis.

1.2.1 Extensibility

The opportunity to add new static checking algorithms to detect new types
of code smells and bugs is crucial as new harmful code constructs, and code
habits among developers are discovered.

1.2.2 Correctness

Extensive use of unit tests is implemented in the tool to reach the goal of
correct identification of code smells and bugs in the tool, achieving reduced
flagging of legal code constructs and avoiding ignorance of illegal code
constructs defined in the algorithms in the tool.

1.2.3 Precision

Besides ensuring correct identification of common bugs and code smells
using unit tests, extensive precision measurements are done by applying
the tool to uses cases like analyzing the source code of prominent Go
projects and the source code of the tool itself. The result from these analyses
is used to calibrate the different algorithms in the analyzer.

2

1.2.4 Portability

The tools must be platform independent, it means that it should be possible
to compile and execute the tool on all operating systems and platforms
which is supported by Go itself, naturally since the tool is used to inspect
source code in the development phase of Go code.

It is also naturally that the tool supports all major operating systems
and architectures as the tool is integrated into other continues inspection
tools for project management, either by directly invoking the tool or by
consuming analysis results output in JSON [18] format.

Specifically, this means that the tool at least supports the following
operating system and architectures:

• linux/amd64.

• darwin/amd64 (Mac OS X).

• windows/amd64.

1.3 Thesis Overview

The next chapter will give a brief introduction to Go as a programming
language, focusing on distinctive characteristics in the language differing
from other mainstream languages which is critical to understand to
evaluate code constructs as either bugs or code smells.

Further, the chapter will give a historical and theoretical description
of the process of measuring cyclomatic complexity and the process of
detecting code smells and bugs.

After introducing the theoretical background, Chapter 3 dives into the
implementation of the linting tool, showing why and how code constructs
are considered as bugs or code smells, and therefore detected by the tool.

After introducing the theoretical background, a review of the detection
algorithms in the tool is provided in chapter3, together with code examples
describing why and how the tool discovers bugs and code smells.

Chapter 4 addresses the practical use and the results of running the tool
on Go source code for the tool itself and the Go compiler.

Chapter 4 ends the thesis with an evaluation and conclusion of the work
and result carried out.

1.4 Project Website

All code written as part of the thesis, and the thesis itself are col-
lected and available on http://www.mn.uio.no/ifi/english/research/groups/
pma/completedmasters/2016/bergersen

In addition, the tool’s repository is located on https://github.com/
chrisbbe/GoAnalysis for public access and further contributions.

3

http://www.mn.uio.no/ifi/english/research/groups/pma/completedmasters/2016/bergersen
http://www.mn.uio.no/ifi/english/research/groups/pma/completedmasters/2016/bergersen
https://github.com/chrisbbe/GoAnalysis
https://github.com/chrisbbe/GoAnalysis

4

Chapter 2

Background

2.1 The Go Programming Language

Dennis Ritchie created the C programming language[13] as a high-level
language. C provides an abstract machine model that closely reflected the
contemporary computer architecture at the time. Since the release of C
in 1978, the abstraction has become less like the real hardware of today.
C’s abstraction model represents a single processor and a single block
of memory. The development of computer architecture has advanced a
lot, extending the old abstraction model with the addition of multicore
processors, several levels of caches and more advanced technology. These
days, even mobile phones have multicore processors!

Multiple processors are the most noticeable change in the computer
architecture for programmers, as one has to implement consciously
programs to utilize all the cores on a processor. To implement programs
in parallel in languages like C requires significant effort, as the language is
originally developed with the old single core abstraction model in mind.

In 2007, a team at Google consisting of Robert Griesemer, Rob Pike, and
Ken Thompson started working on ideas for a new modern programming
language. One of the issues they wanted to address in the language is the
challenges with concurrency.

2.1.1 General

Go is an object-oriented, concurrent, imperative and strongly typed
language where syntax and declaration derive from the C language.
In opposite to other languages like Java, Go’s syntax is small and
straightforward, although its small syntax Go is still very expressive.
In opposite to traditional object-oriented design, Go does not support
inheritance. Instead, interface types, duck typing, and first class functions
are provided. Listing 2.1 shows the standard Hello World example in Go.

2.1.2 Syntax and Semantic

People with knowledge of C will recognize the syntax of Go as similar, both
Go and C shares the concept of pointers and structs. The semantic differ

5

1 package main
2

3 import "fmt"
4

5 func main() {
6 fmt.Println("Hello World Go!")
7 }

Listing 2.1: Traditional Hello World in Go.

as structs in Go is a part of the object-oriented design in Go by allowing
to associate methods with a struct type, pointer arithmetics is in opposite
with C not allowed in Go.

Go provides all common built-in types like strings, numeric and
Boolean types. Go also provides some built-in datatypes as a hash-map,
arrays, slices and channels for communication.

Control Structure

The control structures of Go is different from other mainstream languages
like Java and C in the way that there is only one type of loops, the flexible
for loop.

Standard conditional control structures as if-else and switch
statements exist and behaves as in other mainstream languages. Listing
2.2 shows the two forms of loops in go.

1 sum := 0
2 for i := 0; i < 10; i++ {
3 sum += i
4 }
5

6 alphabeth := []string{"A", "B", "C"}
7 for index, line := range alphabeth {
8 fmt.Printf("%d) %s\n", index, line)
9 }

Listing 2.2: The two forms of looping in Go.

Functions and Methods

Functions are first class citizen in Go, meaning that it is possible to pass
functions as arguments to other functions, use functions as return values of
other functions and execute functions as asynchronous threads, also called
goroutines. Functions can also return multiple values using named return
variables, which are handy in many situations, e.g., in a situation where a
function returns coordinates (x, y) in the Cartesian coordinate system.

In addition to pass-by-value as parameter passing technique, Go
supports pass-by-reference using pointers. Pointers are a well-known
feature to C programmers, often confusing and error prone at first sight.
The pointer is a variable that holds another variable’s memory address. In

6

other words, the pointer variable holds a memory address to a location in
memory containing the actual value. As pointers are passed as arguments,
they are also returned by functions and methods.

Like C, Go represents pointers with the * operator followed by the type
of the stored value which the pointer references in memory. Operator & is
used to dereference the memory address held in a pointer. Dereferencing
the pointer gives us the memory address to the location where the actual
value. In the first line of the program in listing 2.3, the argument passed to
the function is a pointer variable of type int, which holds the memory
address to a location in memory holding the int value. At line 5 the
memory address is passed to the function.

A great source of unexpected behavior in languages supporting
pointers is unexpected behavior as developers are not aware of a variable
types i.e. if the variable holds a pointer or the value itself.

1 func inc(v *int) {
2 *v++;
3 }
4 x := 1
5 inc(&x) //Passing the memory adress to x.
6 fmt.Println(x) //Prints 2.

Listing 2.3: Pass-by-reference by using a pointer.

Data Structures

As mentioned Go’s three built-in data structures are arrays, maps, and.
Structs play a major role in Go’s way to do object-orientation and is
described closer in the section about object-orientation.

A more interesting form of an array is a slice; a slice is a subset of an
array represented by two pointers referencing the start and end -index
of the underlying array. Listing 2.4 shows an example of "slicing" where
variable u and t are slicing the underlying array s. Slicing works by
pointing the slice start and end index pointer on the subset of the array
being “sliced”. Notice that altering an element in u, t or s will be reflected
down to the underlying array.

Allocation in Go has been a great source of confusion and discussion
in the Go community. There exist two allocations primitives, new() and
make(), the usage is simple: make() is only used to allocate channels,
maps, and slices. The difference between these two allocation primitives is
that make() allocates the memory chunk and initializes the data structure
for which type its given as argument. In opposite with new() which only
allocates the memory chunk for the type given as argument.

The usage of structs are closely related to the object-oriented design of
Go and is referenced further in the Object-orientation section.

1 s := []string{"A", "B", "C", "D", "E", "F", "G"}
2 t := s[:3] //t = ["A", "B", "C"]
3 u := s[4:6] //u = ["E", "F", "G"]

Listing 2.4: Slicing a subset of array s into variable t and u.

7

1 package main
2

3 import "fmt"
4

5 type Coordinate struct {
6 N, E float32
7 }
8

9 func (cord *Coordinate) String() string {
10 return fmt.Sprintf("%fN, %fE", cord.N, cord.E)
11 }
12

13 func main() {
14 nordkapp := &Coordinate{N:71.16, E: 25.78}
15 fmt.Printf("Nordkapp: %s\n", nordkapp)
16 }

Listing 2.5: Implementation of a custom type with a corresponding
method.

2.1.3 Object-orientation

To determine if Go is an object-oriented language, one has to look on the
origination of the concept introduced in the first object-oriented language
Simula, where objects, classes, inheritance, subclasses and virtual methods
where introduced, revolutionizing the paradigm of programming.

Go does not have classes the way Simula or Java has, where the class
both encapsulate the data in the form of variable and behavior in the form
of methods that can act upon the data. Go’s approach object-orientation is
enabled through the use of structs to hold data, and a particular form of
functions representing behavior, these functions is bound to the struct type
and is called methods instead of functions. The idea is similar to classes
but does not encapsulate the data and methods into a single entity.

¨Listing 2.5 shows the principle of object-orientation in Go, a custom
struct type is defined, and a corresponding method for that type is
implementing by specifying the type as the receiver in the function
signature.

The reason why Go has chosen not to go for the traditional way of object
orientation with inheritance and instead choose composition is clearly to
avoid explicit relationship between types and interfaces, leaving out the
task of managing the type hierarchy. Go takes the approach of Duck Typing
instead.

Duck Typing

Instead of explicit declare and specify how two or more types relates, Go
uses duck typing which allows a type to act as any interface type if the
type implements the methods defined by the interface it wants to act as.
This way a type can automatically satisfy many interfaces at once without
the complexity of multiple inheritances, giving the opportunity to add new
interfaces along the way without changing the original type. In other

8

1 package main
2

3 import "fmt"
4

5 type Duck interface {
6 Quack()
7 Walk()
8 }
9

10 type Bird struct {
11 name string
12 }
13

14 func main() {
15 bird := Bird{"Donald"}
16 DoIt(bird)
17 }
18

19 func DoIt(d Duck) {
20 d.Walk()
21 d.Quack()
22 }
23

24 func (b Bird) Walk() {
25 fmt.Printf(b.name + " walks\n")
26 }
27

28 func (b Bird) Quack() {
29 fmt.Printf(b.name + " quacks\n")
30 }

Listing 2.6: Classic example of Duck Typing, where the Bird type
implements methods in the Duck interface, allowing the Bird to behave
like the Duck.

words, one is determining the suitability of an object by looking at the
presence of methods, rather than looking at the type of the object.

Program 2.5 contains a custom-type Bird and the interface Duck defin-
ing two methods. The Bird type satisfies the interface by implementing
both methods Walk() and Quack() allowing the Bird type variable name
of to be passed as argument to function DoIt(), i.e. the Bird behaves like
the Duck.

Often duck typing is shortly phrased: "When I see a bird that walks like a
duck and swims like a duck and quacks like a duck, I call that bird a duck".

2.1.4 Concurrency

Concurrency is the real strength of Go. The language provides comfortable
support for concurrency using goroutines and channels. Goroutines is a
lightweight form of thread shipped with built-in channels for secure com-
munication between goroutines. Go’s high-level concurrency features gor-
outines and channels make it possible to focus on the business logic instead
of writing error-free concurrent programs. Still, there are possibilities to do

9

concurrency the old fashion way of using synchronization primitives like
mutexes to ensure mutual exclusion on shared data. However, it should be
avoided as long as possible according to Go’s concurrency mantra: Don’t
communicate by sharing memory, share memory by communicating.

Goroutines

Syntactically a goroutine is a function call that executes asynchronously,
by adding the keyword go before a function call causes the function to
execute as an independent new goroutine. Listing 2.7 shows an example
of the traditional consumer-produces problem where two goroutines are
communicating through channels; this example is rather trivial as only
strings are sent between the goroutines, a channel could be declared
to communicate any type. Notify the done channel used by the main
goroutine as a barrier to ensure that both goroutines finish before the main
goroutine.

Channels

The advantage of Go is that it follows C.A.R Hoare’s [10] formalism to
facilitates communication between goroutines. In his paper, Hoar defines
communication channels between processes. Go adopts channels as the
preferred way to share data between goroutines. Go channels can be both
unbuffered synchronous and buffered asynchronous channels, both types
of channels are bidirectional by default, but one can constraint a channel
only to send or only to receive.

Unbuffered synchronization channels introduce the possibilities of
deadlock situations, e.g. in a situation where two goroutines are trying
to send on the same channel, waiting for each other to receive the message.
Infinitely blocked until someone reads the message it tries to send. Notice
that a single infinitely blocked goroutine because of a send action on a
channel is not denoted as deadlocked!

Since unbuffered channels block until its action completes, unbuffered
channels can be exploit to do conditionally synchronization; the danger is
that two goroutines block each other causing a deadlock.

Listing 2.8 shows a more sophisticated usage of goroutines and
channels where the select built-in select statements is used to listen on
multiple goroutines at once, in this example main() will timeout other
connections if data is not received within the time limit defined.

2.2 Static Code Analysis

Static program analysis [7] is one of the two main groups of testing
techniques found in software testing as shown in figure 2.1. In contrast
to dynamic software testing, static program analysis is performed without
actually executing the program. The analysis is either in most cases
conducted on the source code or the compiled machine code. The

10

1 package main
2

3 import "fmt"
4

5 func producer(msg chan string, done chan int) {
6 fmt.Println("Producing message...")
7 msg <- "ack" //Sending message to channel.
8 done <- 1 //Signaling termination.
9 }

10

11 func consumer(msg chan string, done chan int) {
12 msgvar := <- msg //From channel into msg.
13 fmt.Printf("Consuming message: %s\n", msgvar)
14 done <- 1 //Signaling termination.
15 }
16

17 func main() {
18 done := make(chan int) //Unbuffered channel
19 chan1 := make(chan string) //Unbuffered channel.
20 go consumer(chan1, done) //Start async goroutine.
21 go producer(chan1, done) //Start async goroutine.
22 <-done //Waiting for receive.
23 <-done //Waiting for receive.
24 fmt.Println("All Goroutines are done!")
25 }

Listing 2.7: Goroutines communicating and synchronizing through
channels.

challenge is to compute reliable approximate information about the
dynamic behavior of the program.

The term static analysis is typically understood by the means of an
automatic tool supported analysis, but the term also includes the scope
of static manual techniques for analysis. The process of inspection and
review code by humans is a manual static analysis process rapidly applied
in addition to automated static analysis in industrial software projects.

2.2.1 Linting: Detecting Bugs and Code Smells

Lint [11] is originally a Unix utility which examines C source program, the
tool looks for potential bugs and obscurities, it also detects some wasteful,
or error prone, constructions which nevertheless are, strictly speaking,
legal.

A brief list of some of the suspicious constructs Lint will detect:

• Unused variables and functions. (Not bugs, but a source of
inefficiency).

• Usage of variables before they are set.

• Assignment of longs to ints. (Accuracy is lost).

Today lint and linting has evolved into to a collective term, generally
describing the tool and process of performing code analysis in different

11

1 package main
2

3 import (
4 "time"
5 "fmt"
6)
7

8 func timeout(t chan bool) {
9 time.Sleep(5000000)

10 t <- true
11 }
12

13 func readString(s chan string) {
14 time.Sleep(5000000 * 2)
15 s <- "Hello"
16 }
17

18 func main() {
19 t := make(chan bool)
20 s := make(chan string)
21 go readString(s)
22 go timeout(t)
23 select {
24 case msg := <-s:
25 fmt.Printf("Received: %s\n", msg)
26 case <-t:
27 fmt.Printf("Timed out!\n")
28 }
29 }

Listing 2.8: Select statement listening on two channels, giving the ability to
timeout connections.

12

Figure 2.1: Static and dynamic are the main groups of testing techniques.

languages. In opposite to the original Lint tool, the tools of today contain
loads of rules which the tool is checking that source code do not violate,
these rules are mainly divided into the two groups of bugs and code smells.

It is also worth mentioning that Linting is a heuristic method which
is not guaranteed to be perfect or optimal nor used as a firm indicator of
program correctness. Linting often needs to be used in interaction with
humans determine the results, as the linter might detect false-positives or
false-negatives, or in situations where the developer is smarter than the
tool, e.g. in situations where the tools complain about code constructs the
developer have made intentionally. In the latter example, there is normal in
Linter tools to have a mechanism to shut up the linter to report a violation
of specified rules, described closer in section 3.3.

Code Smells

Bade smells are code constructs or structural characteristics in code that
might be hard to understand, extend and maintain. The occurrence of
smelly code can be handled through the process of refactoring the code.
Martin Fowler defines refactoring as the process of improving the internal
structure of a program without altering its external behavior [12].

Chapter 3 in Martin Fowler’s book defines bad smells in code through
some code constructs examples, all these examples are more generic
towards object oriented languages generally than to a specific language,
e.g. the subject of detection duplicated code and long parameters lists.

13

In the first version of the tool implemented in this thesis, the focus will
not be the more general definitions of code smells as described by Fowler,
but more against code smells and obvious bugs found in the Go language.
These definitions of smelly code are found through the process of gaining
both theoretical and practical experience with the semantic and syntax of
the language.

2.2.2 Cyclomatic Complexity

Cyclomatic complexity is a software measurement developed by Thomas J.
McCabe in his article [15] where he proposes a mathematical technique that
allows us to identify software modules in programs that will be difficult to
test or maintain.

McCabe describes in his article that an original practice to ensure
reasonable modularization in programs was to limit program modules in
physical size, but as shown by McCabe, the technique is not adequate.
A pretty small program around 50 lines with IF-THEN conditions will
have around 33.5 million distinct control paths, with other words "Practical
impossible to test!".

The approach to computing cyclomatic complexity in object-oriented
languages is to measure and control the number of paths through functions
and methods. Achieved by using the control flow graph of the function
or method as an intermediate representation of the flow of control, the
nodes of the graph correspond to basic-blocks in the function or method
which we are measuring. The connecting edges between nodes in the
graph corresponds to which basic-block i.e. node that might be executed
immediately after the node which has the outgoing edge.

The cyclomatic number v(G) of a graph G is computed using equation
2.1, where e is the number of edges, n is the number of vertices, p is the
number of strongly connected components in the control flow graph.

v(G) = e− n + p (2.1)

In section 3.2 we are implementing McCabe’s approach to measuring the
cyclomatic complexity of Go source code in the tool, first by identifying
basic-blocks in the code and then convert these basic-blocks and their
relationship into a control flow graph used to calculate the cyclomatic
complexity.

Application

McCabe describes the intention of applying cyclomatic complexity (CC)
as moving the focus away from limiting programs in physical size and
instead encourage programmers to calculate the CC for their function and
methods. With the goal of limiting functions and methods in complexity
size by splitting up functions and methods into smaller pieces, increasing
the program’s understandability and maintainability.

Defined by McCabe the upper bound value of 10 is reasonable but not a
magical value, i.e. situations with a big trivial switch statement exceeding

14

CC Value Risk Evaluation
1 - 10 Simple program, without much risk.
11 - 20 More complex, moderate risk.
21 - 50 Complex, high risk programs.
> 50 Practical untestable, very high risk.

Table 2.1: Cyclomatic complexity risk threshold values.

the value of 10. The Software Engineering Institute has defined [16] the risk
matrix based on threshold levels of CC as seen in table 2.1.

Basic-Blocks

A basic-block is a block of code containing a straight line of statements with
no branch statements expect at the start and end of the block. A branch
statement target begins a basic-block, while a branch statement ends a
basic-block.

The nodes of a control flow graph are the basic-blocks, and the edges
are formed from the conditional and unconditional jumps in the code. The
control flow graph, together with each of its basic-blocks can be constructed
by a single iteration of the source code. The following algorithm identifies
and generates basic-blocks:

1. Determine the set of leaders: Use the following rules.

(a) The first statement in the program is a leader.

(b) Any statement that is the target of a conditional or unconditional
statement is a leader.

(c) Any statement that immediately follows a conditional or uncon-
ditional statement is a leader.

2. Construct the basic-blocks using the leaders. For each leader, its basic-
block consists of the leader and all statements up to but not including
the next leader or the end of the program.

3. The blocks control may transfer after reaching the end of a block
are that blocks successors blocks, opposite the blocks from which
control may have come when entering a block are called that block’s
predecessors.

Listing 2.9 shows the algorithm applied, the code is divided into basic-
blocks, where the successors are as follow:

• Basic-Block #0→ Basic-Block #1.

• Basic-Block #2→ Basic-Block #3.

• Basic-Block #3→ Basic-Block #{4,5}.

• Basic-Block #4→ Basic-Block #3.

15

1 /* ----------------------------- */
2 package main
3

4 func main() { // BASIC-BLOCK #0
5 /* ----------------------------- */
6 fmt.Println(gcd(33, 77))
7 } // BASIC-BLOCK #1
8 /* ----------------------------- */
9 func gcd(x, y int) int { // BASIC-BLOCK #2

10 /* ----------------------------- */
11 for y != 0 { // BASIC-BLOCK #3
12 /* ----------------------------- */
13 x, y = y, x % y
14 } // BASIC-BLOCK #4
15 /* ----------------------------- */
16 return x
17 } // BASIC-BLOCK #5
18 /* ----------------------------- */

Listing 2.9: Go code solving Greatest Common Divisor, divided into basic-
blocks. Function main() consist of block 0-1, while gcd() consist of block
2-5.

Note that basic-block #1 don’t have basic-block #2 as successor, that is
because we are only concerned with the cyclomatic complexity for each
function/method. And therefore only need the control flow graph on
function/method level, according to the algorithm it would be right to add
block #2 as successor to block #1.

Also, note that successor blocks are decided by the condition statement
semantics, the for loop in basic-block #3 might evaluate to FALSE and
jump to block #5, similarly will the for body (block #4) when finish jump
up to block #3 for condition evaluation.

Control Flow Graph

Frances E. Allen in here article [1] describes basic control flow relationships
expressed in a directed graph, later known as control-flow graphs. Today
a control-flow graph is often used in static analysis to show the flow
of control across hole systems, packages, files or single methods and
functions. Since we are doing a measurement of the cyclomatic complexity
on function and method level, we can limit the control-flow graph
computation to function and method level.

Basic-block generation as described in section 2.2.2 in many ways forms
the control-flow graph itself, each basic-block holds a list of successor
blocks which the control might flow to. The control-flow construction
involves converting the basic-block data-structure over to a directed graph,
a directed graph package has been developed for the purpose, this graph
package also implements Tarjan’s [3] linear depth first algorithm to extract
the set of strongly connected components through, which are necessary to
compute the cyclomatic complexity.

16

Start A

Exit

B C

D

Figure 2.2: The flow graph for the Greatest Common Divisor program in 2.9.

Figure 2.3: SonarQube architecture.

Figure 2.2 shows the control-flow graph drawn from the Go source
code listed in 2.9, the graph is easily generated by iterating over the basic-
blocks and then iterate over each blocks successor block, drawing an edge
between the block itself and all successor blocks. As seen in the figure,
basic-block B and C visualizes the semantic in a for loop, where the control
flows in a loop until the condition in B becomes FALSE.

2.3 SonarQube

SonarQube[4] is a Java-based quality management platform used in
projects to continuously analyze and measure source code quality progres-
sion over time. Plugins are powering SonarQube’s ability to perform anal-
ysis of source code in different languages.

Figure 2.3 shows the architecture of SonarQube where the SonarQube
scanner is the client downloading available plugins from the SonarQube
server, applying the analysis plugin for the source code language being
scanned. When the SonarQube scanner is finished scanning the result is
uploaded to the SonarQube server. Analysis results in visualized through
the web interface on the SonarQube, giving the ability to compare the
progression of the source code quality over time in the project.

17

18

Chapter 3

Implementing the Static Go
Analyzer

This chapter describes the general high-level implementation of the static
analyzer tool named GoAnalyzer.

The tool is built on the knowledge of Go’s syntax and semantics
introduced in Section 2.1. This knowledge is used to identify code
constructs that are possible to create with Go syntax, but semantically
is considered as suspicious or error prone. To automatically detect
semantically odd programs, rules are defined on how syntax compositions
should behave to reveal violations when scanning source code.

Section 3.4 contains a list of defined rules implemented in the tool, each
rule contains a brief description of the reason why the code construct is
either considered as a bug or code smell, and how enforcement of the rule
is carried throughout the analysis. Examples of the tool in action are also
provided.

The last section discusses the challenge of implementing the GoAna-
lyzer tool into SonarQube, discussing different proposals and the final so-
lution implemented.

Source code for the GoAnalyzer tool and the SonarQube plugin resides
in the repository described in section 1.4.

3.1 Architecture

The main contribution in this thesis is the implementation of an automatic
static analyzer tool for Go source code; the tool takes as input a set of files
to be checked and outputs warnings about suspicious code constructs as
code smells and bugs identified in the code.

The tool is rule driven. This means that there are clearly defined rules
about how given code constructs in the code should be handled. The tool
checks whether these rules are broken. Breaches are flagged as violations.

Development of the set of rules strains from experience with both
general programming languages and specifically Go as language, i.e. the
rules comply code constructs which are commonly agreed upon as code
smells and bugs throughout discussion groups and literature.

19

The tool is meant for guidance, and do not prove the correctness
of code. Still, the tool will be helpful to identify code constructs that
programmers may be unaware of, on the other side the tool might
warn about code constructs that the programmer does intentionally.
For intentionally rule breaches, the tool supports annotations, which
suppresses flagging of rule violation.

The tool is implemented entirely in Go, only depending on the standard
library, the tool can therefore be compiled down to an executable file for
every platform supported by Go, without any third party dependencies.

The tool provides a command-line interface with the ability to specify
folder paths containing source code through the -dir argument, the tool
will then recursively search the folder hierarchy after .go files and perform
analysis on these files, the result is outputted to console. There is also
implemented a -json option switch that enables structured JSON output
of the analysis result, this option is utilized by the SonarQube plugin
written in Java by calling the tool through the shell and consume its JSON
output.

3.2 Measure Cyclomatic Complexity

The process of measuring the cyclomatic complexity of plain source code
consist of three steps. The firs step involve iterating over and divide the
source code into basic-blocks. The second step consists of converting the
set of basic-blocks into an intermediate representation of the control flow
behavior in the program, for that a directed graph is applied. In the third
step, information is extracted from the control flow graph to feed it into
the cyclomatic complexity equation 2.1 to get the cyclomatic complexity
measure.

In the tool, only cyclomatic complexity at function and method level
are measured. That is because only statements that increase cyclomatic
complexity can be declared inside functions and methods.

3.2.1 Identifying Basic-Blocks

Dividing source code into basic-blocks is implemented in the tool by
recursively walk the abstract syntax tree (AST) gained from the parsing
function located in the parser package in Go’s standard library. The
advantage of walking the AST in opposite to iterate through the plain
source code line by line is that the AST gives the possibility to decide
if a node ends or starts a basic-blocks based on whether the node type
represents a source or target of a branching statement. Determination of
blocks successors is done by utilizing the natural hierarchical properties
provided by the tree structure in which a source or target node is located,
i.e. a parent’s successor block is all the blocks generated by its child nodes.

Package bblock implemented in the tool contains a data type to
represent basic-blocks, various methods to perform operations on the
basic-block and functions to identify and retrieve basic-blocks from source

20

1 0) FUNCTION_ENTRY (EndLine: 8)
2 -> (1) FOR_STATEMENT (EndLine: 9)
3 1) FOR_STATEMENT (EndLine: 9)
4 -> (2) FOR_BODY (EndLine: 11)
5 -> (3) RETURN_STMT (EndLine: 12)
6 2) FOR_BODY (EndLine: 11)
7 -> (1) FOR_STATEMENT (EndLine: 9)
8 3) RETURN_STMT (EndLine: 12)
9 4) FUNCTION_ENTRY (EndLine: 15)

10 -> (5) RETURN_STMT (EndLine: 18)
11 5) RETURN_STMT (EndLine: 18)

Listing 3.1: Verbose output from the basic-block identification algorithm.

code. Listing 3.1 shows the output from printing the set of basic-blocks
identified from the source code in Listing 2.9.

3.2.2 Control Flow Representation

A package graph is implemented in the tool as a neat generic directed
graph package providing construction methods to build graph represen-
tations with directed edges. The graph also contains a depth-first search
algorithm and a strongly connected components algorithm that is needed
to measure cyclomatic complexity in control flow graphs.

The graph package is generic by allowing any type that satisfies the
interface to be held in a node, in this way other algorithms can use the
package. The flow of control in methods and functions is represented using
the package.

Strongly Connected Components

The measure of cyclomatic complexity requires the number of strongly
connected components in the directed graph. The choose of the algorithm
to provide the ability to compute the set of strongly connected components
is Tarjan’s algorithm [3]. The algorithm is effective in the fact that the
running time complexity is linear as nodes(V) is only visited a single time,
and its edges(E) are at most followed once:

O(|V|+ |E|)

Converting basic-blocks to control flow graph

The basic-block type implements the directed graph interface allowing us
to represent the control flow graph using the graph package.

The job of identifying the relationship between basic-blocks is per-
formed within the basic-block algorithm that identifies blocks successors.
A basic-blocks successor can directly be interpreted as a directed edge be-
tween the two nodes corresponding to the basic-block and the successor.
Listing 3.2 contains the code that iterates over all basic-blocks and again

21

1 controlFlowGraph := New()
2

3 for _, basicBlock := range basicBlocks {
4 for _, successorBlock := range basicBlock.GetSuccessorBlocks() {
5 controlFlowGraph.InsertEdge(
6 &graph.Node{Value: basicBlock},
7 &graph.Node{Value: successorBlock}
8)
9 }

10 }

Listing 3.2: Iterating through basic-blocks and their successors, drawing
and edge between them in the process of generating the control flow graph.

Start

A

Exit

B

C D E F G H I J K L M N Q R

Figure 3.1: Control flow graph for function monthNumberToString()
listed in 3.3.

iterates over all the successors to that basic-block, adding an edge between
the block itself and the successor.

3.2.3 Measurements

After dividing the code into basic-blocks to build the intermediate repre-
sentation of the program through the control flow graph, the third and fi-
nal step consist of extracting information from the graph and feed it into
the cyclomatic complexity equation mention in 2.1.

Representation of the graph is made through the custom graph package
developed in this thesis, the package is provided with custom tailored
methods to extract the number of vertices and edges, and to compute the
set of strongly connected components in the graph.

The code snippet listed in 3.3 has a corresponding control flow graph as
showed in figure 3.1, the number of nodes or vertices (V) equals 18, number
edges (E) between the vertices equals 31 and the single set of strongly
connected components equals:

{R, Q, N, M, L, K, J, I, H, G, F, E, D, C}

By inserting the values in the equation v(G) = e - n + p, function

22

1 func monthNumberToString(month int) string {
2 switch month {
3 case 1:
4 return "January"
5 case 2:
6 return "February"
7 case 3:
8 return "March"
9 case 4:

10 return "April"
11 case 5:
12 return "May"
13 case 6:
14 return "June"
15 case 7:
16 return "Juni"
17 case 8:
18 return "August"
19 case 9:
20 return "September"
21 case 10:
22 return "October"
23 case 11:
24 return "November"
25 case 12:
26 return "Desember"
27 default:
28 return "Invalid month"
29 }
30 }

Listing 3.3: Converting month number to corresponding name through a
switch statement

23

1 package main
2

3 import "log"
4

5 // @SuppressRule("GOTO_USED")
6 func main() {
7 counter := 0
8

9 LOOP:
10 if 100 > counter {
11 counter++
12 goto LOOP
13 }
14 log.Printf("Counter: %d\n", counter)
15 }

Listing 3.4: GOTO_USED rule suppressed.

monthNumberToString() yields the complexity of:

v(G) = 31− 18 + 1 = 14

Exceeding the upper approved limit of 10. A CC measure between 11 and
20 is rated as medium in the effort and cost of testing the code. However,
as specified in the background chapter on cyclomatic complexity, the upper
limit is not a magical number, and it seems reasonable to allow larger
switch statements in the same trivial niche of the example in Listing 3.3.

3.3 Suppressing rules

As specified in 2.2.1, linting is a heuristic method which is not perfect.
There are occasions when the programmer is smarter than the analyzer.
There might be valid reasons to bypass code rules defined in the tool,
e.g. allowing unsynchronised printing from the fmt package or to allow
higher cyclomatic complexity than the defined limit. Thus, some way of
communicating with the tool, typically to ignore rules, is desirable.

The way this was solved was to embed the following annotation

@SuppressRule("RULE_NAME")

in function comments, if the annotations are well formed, the code in
the function will not be checked against the rule specified, see program
3.4 for example usage of annotations to suppress rules. This way of
communicating with the analyzer is both friendly toward readability as one
easily can see which rules that are suppressed in each function by reading
the code, in opposite to specify ignored rules in a dedicated XML or JSON
configuration file.

24

3.4 Bug and Code Smell Checking

This section will go through the rules defined in the analyzer tool,
describing how and why code constructs are recognized as rule violations.
Each rule provides code examples of rule breaches and how the tool reacts
on applying the tools on these breaches.

3.4.1 High Cyclomatic Complexity

Section 3.2 dealt with the detailed description of function and method
computations of cyclomatic complexity (CC), while the background section
2.2.2 covers the motivation of measuring CC in programs.

The CC measure check in the tool flags function and method measures
exceeding the value of 10. Violations higher than 10 indicates more
complex code which may still be in some cases reasonable. However,
testing is harder because of an exponentially increasing number of
execution paths in the function or method.

The check enforces code smell rule CYCLOMATIC_COMPLEXITY, inten-
tionally implementation of functions and methods with higher cyclomatic
complexity than 10 can be silenced by suppressing the rule.

3.4.2 Races when referencing loop iterator variables in Gorou-
tines

Goroutines in Go is like threads in other languages, ref section 2.1.4, used
to process data in parallel. Because goroutines can be executed as closures,
there are possibilities to reference variables in the outer scope of the closure
function.

The program in Listing 3.5 shows a for-loop firing of closures in parallel
by referencing the single variable var that takes on the value of each slice.
The result will be non-deterministic as there is no guarantee for when a
goroutine will start. The correct way of implementing the closure loop
listed in Listing 3.5, is to pass the var variable as a copy argument to the
closure.

The tool checks and identifies potential misuse of loop iterator variables
only if the closure body references loop iterator variables, references to
other variables in the outer scope is not flagged, even dough they might
be a sign of unwanted races. Listing 3.5 shows the reference to the loop
iterator from the goroutine closure.

3.4.3 Ignoring Errors

To be able to discover unexpected behavior or an abnormal state that a
program may encounter, error handling and correction are crucial.

Errors in Go is represented by the built-in error interface, any type
in Go can play the role of being a error by implementing the Error()
string method.

25

1 package main
2

3 import "log"
4

5 func main() {
6 //Not-thread safe.
7 for num := 0; num < 50; num++ {
8 go func() {
9 log.Printf("Goroutine #%d\n", num)

10 }()
11 }
12 }
13 // $./GoAnalyzer -dir RaceIterator
14 // --
15 // Violations in RaceIterator :
16 // 0) RACE_CONDITION (Line 18) - Loop iterator
17 // variables must be passed as argument to
18 // Goroutine, not referenced.
19 // --
20 // Found total 1 violations!
21 // Took 3.0017ms

Listing 3.5: Race occurs on variable num as all 50 goroutines will reference
the same variable.

Functions and methods that expect to encounter abnormal behavior
return the error value as the last return result value. When a function
returns a non-nil error value, it is an indication of that an abnormal
behavior occurred in the function, the value itself contains a detailed
description of the error. Ignoring error values returned by functions and
methods is dangerous as one always take for granted that the program will
behave as expected, It also greatly increases the difficulty of debugging as
it is no clear sign of where the error occurred.

There is mainly two ways to detect ignorance of errors in Go code:

• By assigning the returning error value into a blank identifier _

• By not assigning the resulting error value from function and
method calls into a variable.

It is natural to determine errors as handled if these cases are avoided, as the
goal of this rule is to force assignment of returning errors into a variable,
further usage of the variable will be ensured at compile time as the compiler
requires all variables to be used.

Ignoring errors categorize as code smell as it is not a defect in the code,
but a violation of fundamental design principles.

Listing 3.6 shows a code snippet where the operation of opening a file
is checked for errors, if not any errors were encountered the programs
tries to close the file, at this point the program overlook the possibilities
of errors that might encounter when closing a file. At the bottom of the
Listing, the tool detects and flags the ignorance of the error returned from
os.Close().

26

1 func main() {
2 if file, err := os.Open("me.go"); err != nil {
3 defer file.Close() // Close() returns error.
4 }
5 }
6 // $./GoAnalyzer -dir DeferReturnValue.go
7 // --
8 // Violations in DeferReturnValue.go :
9 // 0) ERROR_IGNORED (Line 3) - Never ignore errors,

10 // ignoring them can lead to program crashes!
11 // --
12 // Found total 1 violations!
13 // Took 22.4845ms

Listing 3.6: defer calls function returning error value

3.4.4 String() method recursively calling itself

All formatted printing and string builder functions in Go’s standard library
uses the Stringer interface to allow custom data types in Go to define their
native format for their value.

1 type Stringer interface {
2 String() string
3 }

The effect of implementing the interface for a type is that the String
method will be called when a value of the type is passed as an operand
to any functions accepting any format specifier representing a string, or by
passing the operand to an unformatted print or string builder function.

The infinite recursion bug is introduced when one implements the
String() interface for a type by using a print or string builder that will
again call its String() method. Execution of that types String() method
will lead to infinite recursive calls on itself causing stack overflow.

This algorithm is not shipped in the version of the tool implemented
in this thesis, due to precision problems with the large proportion of
false positives detection when applying the algorithm. Still, the presence
of the bug in software is critical. An inclusion of this algorithm in the
tool is addressed in the section about further work 5.1.

3.4.5 Printing from the fmt package

Rule FMT_PRINTING warns about references to print functions in the
standard fmt package, print functions in this package are usually intended
for debugging purposes and can remain in production code, and is
therefore classified as a code smell. The print functions in the package are
not synchronized and might clog the standard output (stdout.

By using the logger in the log package shipped in the standard library,
one gains synchronized log printing among threads/goroutines and the
flexibility of turn log printing on/of with a single switch, and redirect the

27

1 package main
2

3 import "log"
4

5 type Address struct {
6 Street, City string
7 }
8

9 func (address Address) String() string {
10 return fmt.Sprintf("%s", address)
11 }
12

13 func main() {
14 myAddress := Address{
15 Street: "Trimveien 6",
16 City: "Oslo"
17 }
18 log.Printf("My address: %s\n", myAddress)
19 }
20 // $./GoAnalyzer -dir RecursiveString
21 // --
22 // Violations in RecursiveString :
23 // 0) STRING_CALLS_ITSELF (Line 10) - Format
24 // specifier for argument calls its own
25 // String() method recursively, causing
26 // runtime panic!
27 // --
28 // Found total 1 violations!
29 // Took 23.106ms

Listing 3.7: Format specifier for with address at line 10 causes recursive
calls against itself.

28

1 package main
2

3 import (
4 "fmt"
5 "log"
6)
7

8 // @SuppressRule("ERROR_IGNORED")
9 func main() {

10 fmt.Printf("Printing with fmt.Printf()")
11 log.Printf("Printing with logger\n")
12 }
13 // $./GoAnalyzer -dir FmtPrinting
14 // --
15 // Violations in FmtPrinting :
16 // 0) FMT_PRINTING (Line 10) - Printing from
17 // the fmt package are not synchronized
18 // and usually intended for debugging
19 // purposes. Consider to use the log
20 // package!
21 // --
22 // Found total 1 violations!
23 // Took 25.4083ms

Listing 3.8: Code smells when using fmt printing, use log instead!

logging stream to any desired destination as buffers or files. The following
functions in the package should be avoided:

• fmt.Print()

• fmt.Println()

• fmt.Printf()

The program in Listing 3.8 shows the usage of fmt.Printf() which can
be replaced with the log function on line 11, attached at the bottom is the
output of applying the tool on the code.

3.4.6 Maps allocated with new()

Maps in Go is a built-in implementation of a traditional hash-table
providing the common operations on a map like lookup, add and delete
records.

Map types are references types, like a pointer pointing on the chunk
of memory that constitute the map. A map variable is by default a nil
map that needs to be assigned a chunk of initialized memory, the built-
in allocation function make() allocates and initialized the hash table data
structure and returns a map value pointing to the initialized chunk of
memory holding the map.

A common error in Go is to use the other allocation primitive new() to
allocate maps, new() serves a purpose different from make() in the form
that it allocates zeroed memory areas, and does not prepare the memory

29

1 package main
2

3 import "log"
4

5 func main() {
6 myMap := new(map[string]float64)
7 log.Println(*myMap)
8 }
9 // $./GoAnalyzer -dir NewMap

10 // --
11 // Violations in NewMap :
12 // 0) MAP_ALLOCATED_WITH_NEW (Line 8) - Maps
13 // must be initialized with make(), new()
14 // allocated a nil map causing runtime panic
15 // on write operations!
16 // --
17 // Found total 1 violations!
18 // Took 22.3688ms

Listing 3.9: Write operations against a map allocated with new()will cause
runtime panic.

area for use like make(). Allocation of maps with new() will only allow
read operations, write operations will cause runtime panic.

As presence of write operations against maps allocated with new()
in the code will cause runtime panic, all maps allocated with new() is
considered as a violation of the rule MAP_ALLOCATED_WITH_NEW, clearly
categorized as bug, see Listing 3.9.

3.4.7 Statically evaluated conditions

Conditional statements like if, else-if and for-loops are applied to change
the flow of control in programs dynamically, depending on the programs
state. For conditional statements to serve the purpose of representing
dynamic determination of programs flow under runtime, it is natural to
have the impression that the Boolean condition in these statements cannot
be evaluated statically.

Static conditional statements containing Boolean expressions is consid-
ered as meaningless as they do not serve their purpose, the conditional
statement can be removed as one can determine the flow of the program
before runtime. In addition to increase the readability by removing deci-
sion points that increases the cyclomatic complexity, a tiny fraction of per-
formance increases is gained through saving of some few CPU instructions.

The tool will enforce the rule CONDITION_EVALUATED_STATICALLY
by checking after Boolean conditions that always are true or false in
the simplest sense of measuring nil comparison (always false) and by
detecting the TRUE or FALSE operand as the Boolean expression. Statically
evaluated Boolean conditions are considered as code smell. Listing 3.10
shows an example of the tool detecting static conditions.

30

1 package main
2

3 import (
4 "fmt"
5 "log"
6)
7

8 // @SuppressRule("ERROR_IGNORED")
9 func main() {

10 fmt.Printf("Printing with fmt.Printf()")
11 log.Printf("Printing with logger\n")
12 }
13 // $./GoAnalyzer -dir FmtPrinting
14 // --
15 // Violations in FmtPrinting :
16 // 0) FMT_PRINTING (Line 10) - Printing from
17 // the fmt package are not synchronized
18 // and usually intended for debugging
19 // purposes. Consider to use the log
20 // package!
21 // --
22 // Found total 1 violations!
23 // Took 25.4083ms

Listing 3.10: If condition can be evaluated at compile time.

3.4.8 Return statement kills code

Dead code is code that can be executed because there do not exist any
execution path to the code, the code is unreachable. Dead code is
commonly determined as meaningless and disruptive elements in the
source code.

The tool enforces the rule DEAD_CODE by detecting code smells in
functions and methods where a return statement is declared above other
statements in the same scope, as the code in the scope is executed sequential
and a statement always will return and terminate the function or method,
the code below the return statement will never be executed, and is therefore
considered as dead. Listing 3.11 shows how the return statement kills the
logging statement at line 9.

3.4.9 Usage of GOTO statements

Dijkstra jumps into the endless debate about the effect of GOTO statements
in his article [5] from 1968. He clearly takes distance from the use of GOTO
statements by stating “. . . I am familiar with the observation that the quality
of programmers is a decreasing function of the density of go to statements in the
programs they produce”. Dijkstra justifies his statement by describing the go
to statement as to primitive that invites to make a mess of one’s programs.

Dijkstra’s view of GOTO statements is commonly shared among com-
puter scientist today to some degree, the tool therefore checks after branch-
ing statements of type (break, continue, goto, fallthrough)) with a
subsequent label. Occurrences are flagged as violations of the code smell

31

1 package main
2

3 import "log"
4

5 func main() {
6 log.Println("Hello World")
7 pi := 3.14
8 return
9 log.Printf("Finally, Pi = %d\n", pi)

10 }
11 // $./GoAnalyzer -dir ReturnKillsCode
12 // --
13 // Violations in ReturnKillsCode :
14 // 0) RETURN_KILLS_CODE (Line 8) - Code is dead
15 // because of return! There is
16 // no possible execution path to the code
17 // below in this scope!
18 // --
19 // Found total 1 violations!
20 // Took 36.2019ms

Listing 3.11: There is no execution path to the last logging statement
because of the return statement.

1 package main
2

3 import "log"
4

5 func main() {
6 counter := 0
7 LOOP:
8 if 100 > counter {
9 counter++

10 goto LOOP
11 }
12 log.Printf("Counter: %d\n", counter)
13 }

rule GOTO_USED. All four statements is a form of GOTO statement although
they differ a bit in behavior, still the main behavior is transform of control
to another line of code.

The program listed in 3.4.9 shows a trivial Go program constructing a
loop by a GOTO statement and the output of running the tool on the code.

3.4.10 Empty for and if-else bodies

The rule of enforcing no presence of empty if, else-if and for-loop bodies
is a code smell in the same category of unreachable code. The purpose of
implementing decision points is to change the flow of control in programs,
giving the possibility to change the behavior of the program on behave of
Boolean conditions. Therefore empty presence of conditional statements of
bodies are totally wasted as they do not have any function in the code, see

32

1 package main
2

3 import "math/rand"
4

5 func main() {
6 if 50 == rand.Intn(100) {} else {}
7

8 for i := 0; i < 10; i++ {}
9 }

10 // $./GoAnalyzer -dir EmptyIfElseFor
11 // --
12 // Violations in EmptyIfElseFor :
13 // 0) EMPTY_IF_BODY (Line 8) - If body is empty,
14 // wasteful to not do anything with the if
15 // condition.
16 // 1) EMPTY_ELSE_BODY (Line 10) - ELse body is
17 // empty, wasteful to not do anything with
18 // the else condition.
19 // 2) EMPTY_FOR_BODY (Line 14) - For body is
20 // empty, wasteful to not do anything with the
21 // for condition.
22 // --
23 // Found total 3 violations!
24 // Took 28.3488ms

Listing 3.12: Empty if-else and for bodies.

Listing 3.12.

3.5 SonarQube Plugin

SonarQube envisages that all analysis work should be done inside the
plugin, which is written in Java. This requires a Java implementation to
cover the entire language by writing the grammar, lexer, parser, abstract
syntax tree (AST) and AST visitor methods to measure metrics and
enforcing coding rules.

To bypass the work of covering the Go language in Java a shortcut has
been selected by adapting the SonarQube plugin to call the GoAnalyzer
executable file with the -json switch on, the tool will then return
the analysis result as JSON which is unmarshalled into Java objects
representing the analysis results. Still, with this adequate solution, the
SonarQube plugin is packaged into a single JAR file with no external
dependencies, and therefore shipped and run as if the plugin entirely was
developed in Java.

The limitations of not natively implement the analyzer in Java, and
instead call the "external" executable GoAnalyzer tool, is the limitation of
platform support. As Java program almost runs on all platforms through
their Java Virtual Machine, Go is compiled down to platform dependent
byte-code. Which means that the SonarQube plugin is restricted to run on
platforms that correspond with the GoAnalyzer executable files bundled
with the JAR file. The version of the SonarQube plugin developed in this

33

thesis can be executed on the operating systems and architectures listed in
the portability section (1.2.4).

34

Chapter 4

Case Studies

Two case studies have been run. The purpose of applying the tool on the
source code in real software projects is to see how the tool deals with source
code repositories of different size, and the inspection accuracy.

The source code of Go compiler and the GoAnalyzer are the programs we
will apply the tool on in the search of bugs and code smells. All the analysis
is performed using the SonarQube plugin which executes the GoAnalyzer
tool and sends the result to the SonarQube server for result aggregation and
presentation.

Also, a performance technical analysis of the tool is done for each of the
two use cases, to see how well the GoAnalyzer tool performs on memory
and time consumption.

4.1 Obtaining performance measurements of the tool

Multiple runs of analysis are required in order to get statically repre-
sentable data. During these runs, data about time and memory usage are
gathered. The timing of the analysis is performed by the GoAnalyzer tool
itself internally, and printed in the final result, this way we avoid of doing
an external timing of the analyzer who will be inaccurate as we also would
measure the time taken to print the analysis result. Memory is measured
in the max amount of memory used through the hole analysis; there is no
point in measuring memory usage over time as the GoAnalyzer is fast.

To eliminate operating system interference with the analysis perfor-
mance, i.e. reducing CPU clock speed and voltage to reduce power con-
sumption. The task of executing the analysis multiple times and collect the
result and performance data from each run is automated through the bash
script in Listing 4.1.

All the analysis that lay the foundation for the results presented in this
chapter is performed on a workstation provided by the University of Oslo.
Table 4.1 lists the detailed hardware and software specifications for the
computer:

35

HP Compaq Elite 8100
Operating System Red Hat Enterprise Linux Workstation 7.2 (Maipo)
CPU Intel Core i7 CPU 870 2.93GHz
RAM 2 x 4 GB DDR3 1333MHz
Go go1.6.3 linux/amd64

Table 4.1: Software and hardware specification of the computer executing
the analysis.

1 #!/usr/bin/env bash
2 if ["$#" -ne 1]; then
3 echo "Error: Missing directory as argument"
4 exit 1
5 fi
6

7 for i in {1..11};
8 do
9 /usr/bin/time -f ’Memory used: %M kbytes’ --append -o

GoAnalyzerRun$i.txt ./GoAnalyzer -dir $1 > GoAnalyzerRun$i.
txt

10 echo Run nr $i. Result dumped in GoAnalyzerRun$i.txt
11 done

Listing 4.1: Bash script to execute the GoAnalyzer multiple times and
dump the result to files, memory usage is also attached.

4.2 GoAnalyzer

Using the tool to inspect its own source code is like take its own medicine.
By rapidly applying the tool on the code through the development phase,
the number of code bugs is absent, and the number of code smells is
minimal. Figure 4.1 shows the overview result of the analysis. As seen
in the analysis result printed in Appendix A, there are only files under
testcode directories that are containing bugs. These files are part of unit tests
implemented in the tool and the bugs in the files are intentionally added.
Also, the majority of detected code smells resides in the files used in unit
testing of the tool. Only the non-intentionally rule violations discovered in
the source code of the GoAnalyzer are the code smells complaining about
errors ignored in package graph and cfgraph when not checking the
potential error that can happen when writing to the buffer. The last non-
intentionally complaint is the high measure of cyclomatic complexity in
package bblock, investigated deeper in next section.

Figure 4.1: SonarQube overview of analysis.

36

4.2.1 A High Measure Of Cyclomatic Complexity

When the tool inspects the code in Appendix B, method Visit()measures
to cyclomatic complexity value 47, which is way beyond the limit 10 and
an upper reasonable value 15 described by McCabe. The rule encourages
to split up the method into smaller function and methods to reduce the
complexity to under the value of 10. In a personal view, the method should
be annotated

@SuppressRule("CYCLOMATIC_COMPLEXITY")

to acknowledge that the method resides intentionally. The intention in
the method is to implement the Visitor interface of package ast in the
standard library which allows one to visit each node in the abstract syntax
tree of a file. The method will through its traversal of the tree identify
branching nodes and split the statements in the file into basic-blocks. With
the help of the state machine represented in the method, relationships
between basic-blocks are identified. The usage of a big type switch as in
the method is typically in Go for type assertion.

4.3 Go compiler

The Go compiler [2] is, of course, an important piece of software in
the world of Go, as it is the official compiler for the Go programming
language. Historically the compiler was first written in C, since version
1.5 the compiler and its toolchain was reimplemented in Go. The benefits
of getting rid of C by bootstrapping the compiler is that the toolchain will
be unified and provide a heterogeneous codebase for all platforms, making
it easier to introduce support for new platforms.

This use case analysis and compares source code of the Go compiler
version 1.6.0, 1.6.1, 1.6.2 and 1.6.3, constituting all releases of version 1.6.
The compiler consists of around 93% Go code, 6% Assembler code, and
0,5% C code.

4.3.1 Preparing The Source Code For Analysis

As the analyzer performs inspection using the abstract syntax tree, it is
a requirement that all files constituting a package throughout the source
code can be parsed to perform an inspection on the package. Since the Go
compiler is developed with the usage of unit tests, there are occurrences of
.go files in the repository being a part of unit tests that is not syntactically
valid, i.e. not possible to parse. Causing the GoAnalyzer to panic with a
parsing error message.

By inspecting the source files flagged by the tool to as syntactically
invalid, it was identified that these records were either part of unit tests
intentionally representing faulty syntax. To perform the analysis of the Go
compiler, these files who did not parse was deleted from the repository.

• go\src\cmd\go\testdata\src\badpkg\x.go

37

go\src\cmd\go\testdata\src\badpkg\x.go

Figure 4.2: SonarQube overview of the Go compiler analysis.

• go\src\cmd\go\testdata\src\badtest\badsyntax\x_test.go

• go\src\cmd\go\testdata\src\notest\hello.go

• go\src\cmd\go\testdata\src\syntaxerror\x_test.go

4.3.2 Results

Table 4.2 show the summary of the analysis of Go compiler version 1.6.3.
The number of rule violations is too large to inspect the correctness of each
violation manually. Still, the high amount of races on loop iterator variables
is interesting, random investigation of some of these races violations shows
both that the tool catches real potential races against loop variables and
that the tool reports false positives i.e. flags goroutines which receive the
loop variable value through an argument instead of directly references.
This situation is confirmed after implementing unit tests replication the
behaviour of these false positive detections found in the Go compiler,
the issue of false positives is not resolved in the version of the tool
implemented in this thesis.

Besides the discovery of the tool being unprecise for race detection, the
results of analysis the Go compilers is not surprising. The high amount
of cyclomatic complexity measure violations of 10 is not surprising as the
usage of switch statements are high.

The amount of violations of printing from the fmt package and errors
ignored interacts. As all printing functions in the fmt package may fail
returning a error, a tendency through the source code of the compiler
being analysed and all the public Go source code I have read shows a
trend of ignoring the potential error that may happen when calling a print
function in the fmt package. Roughly one could say that the number of
printing from fmt package violations cause the corresponding amount of
error ignored violations.

Still, the amount of error ignored is significant, the reason can be
explained with the tendency or habit among developers not to check the
returning error value from functions that they experience do not fail, for
instance, the habit of not checking errors that may occur when writing to a
buffer.

38

go\src\cmd\go\testdata\src\badtest\badsyntax\x_test.go
go\src\cmd\go\testdata\src\notest\hello.go
go\src\cmd\go\testdata\src\syntaxerror\x_test.go

Rule Number of violations

Map allocated with new() 4
High cyclomatic complexity 2033
Race on loop variable 105
Error ignored 5189
Printing from fmt package 1334
Static condition 35
return kills code 60
GOTO statements used 1246
Empty if body 71
Empty for loop body 72

Table 4.2: Rules violated in the Go compiler v1.6.3.

39

40

Chapter 5

Conclusion and Further Work

In this thesis, the first version of a tool for a rule driven static analysis of Go
source code has been described and implemented. The tool detects various
types of bugs and code smells when inspecting the code, helping to identify
potential problems in the code at an early stage in the development phase,
and to measure the source code quality in projects e.g. with the aid of the
SonarQube plugin provided.

Through the case studies, the tool is proved to be effective in the
demand of running time and memory consumption, even on large code
bases with thousands of files. On the other hand, in the case study of the
Go compiler, the precision and correctness goal is not satisfied as numerous
false positives rule violations were flagged. Concerning the algorithm
detecting potential race conditions on loop variables. These false positive
situations where not covered in the unit test trying to ensuring the goal of
correctness in the tool. Further work on the tool should address this defect.

If one disregards the temporary issue with unprecise detection rule in
the version of tool implemented in this thesis, the value in the tool lays in
the active usage of the tool on one’s code from a project’s lifetime. In this
way, one can follow up results from analysis and address rule violations
either by solving the problem describes by the rule, or by intentionally
suppressing rules.

Extensibility is the third goal in the thesis; the tool has been developed
with extensibility in mind, facilitate opportunities for extending the rule
base with new algorithms either by using the abstract syntax tree or by
adding new packages, or utilizing other packages already implemented in
the tool, without major modification to existing code.

5.1 Future Work

Some of the unexplored areas in this thesis are other fields of static
analysis e.g. escape analysis to determine concurrency issues as deadlocks
and races. The fields may be relevant to discover to implement more
sophisticated algorithms for static analysis.

41

5.1.1 Resolve discovered precision issues

Unfortunately precision issues with two of the algorithms described in the
implementation phase of the tool exist in the version of the tool delivered
in this thesis. The algorithm detecting String() method recursively
calls itself closer described in Section 3.4.4 is completely excluded from
the tool. The racer algorithm detecting races against the loop variable
when executing goroutines inside a for-loop detects successfully correct
occurrences of potential races, but also a high rate of false positives. Both
algorithms are considered important and should be correctly implemented.

5.1.2 Detailed specification of rule suppression and activation

In the version of the tool implemented in this thesis, specification of rules
to be suppressed during an analysis is rather primitive. It is only possible
to suppress a rule at function and method level, in some situations, it is not
desirable to disable a whole function or method against code inspection
against a rule. As a future change of the function or method may introduce
undesirable violations not discovered due to the global rule suppression
for the function or method.

To solve this situation, one could consider introducing fine-grained
rule suppression at statement or expression level. When the code base
grows, it is also more convenient to specify which rules that are activated
under analysis, instead of disabling unwanted violations as they appear.
Achieved by specifying the rules to be active during analysis in a structured
file at package level for which the rules applies.

5.1.3 Specification of measure thresholds

As new rules enforcing measure thresholds is added to the ruleset, it
may be useful to have a mechanism for fine-grained specification of
measure thresholds. Realized in the same fashion as rule specification and
activation.

42

Appendices

43

Appendix A

Analysis result of GoAnalyzer

1 PACKAGE: main (analyzer/linter/testcode/threadlooping)
2 Violations in main.go :
3 0) RACE_CONDITION (Line 18) - Loop iterator variables must be

passed as argument to Goroutine, not referenced..
4 ---

5 PACKAGE: main (analyzer/linter/ccomplexity/bblock/testcode)
6 Violations in _nestedswitches.go :
7 0) CYCLOMATIC_COMPLEXITY (Line 8) - Cyclomatic complexity in

main() is 17, upper limit is 10..
8 Violations in _returnswitcher.go :
9 0) CYCLOMATIC_COMPLEXITY (Line 14) - Cyclomatic complexity in

monthNumberToString() is 13, upper limit is 10..
10 Violations in _select.go :
11 0) FMT_PRINTING (Line 22) - Printing from the fmt package are

not synchronized and usually intended for debugging purposes
. Consider to use the log package!.

12 1) FMT_PRINTING (Line 28) - Printing from the fmt package are
not synchronized and usually intended for debugging purposes
. Consider to use the log package!.

13 2) FMT_PRINTING (Line 30) - Printing from the fmt package are
not synchronized and usually intended for debugging purposes
. Consider to use the log package!.

14 Violations in _simpleswitch.go :
15 0) FMT_PRINTING (Line 15) - Printing from the fmt package are

not synchronized and usually intended for debugging purposes
. Consider to use the log package!.

16 1) FMT_PRINTING (Line 17) - Printing from the fmt package are
not synchronized and usually intended for debugging purposes
. Consider to use the log package!.

17 2) FMT_PRINTING (Line 19) - Printing from the fmt package are
not synchronized and usually intended for debugging purposes
. Consider to use the log package!.

18 3) FMT_PRINTING (Line 21) - Printing from the fmt package are
not synchronized and usually intended for debugging purposes
. Consider to use the log package!.

19 Violations in _switch.go :
20 0) FMT_PRINTING (Line 15) - Printing from the fmt package are

not synchronized and usually intended for debugging purposes
. Consider to use the log package!.

21 1) FMT_PRINTING (Line 17) - Printing from the fmt package are
not synchronized and usually intended for debugging purposes

45

. Consider to use the log package!.
22 2) FMT_PRINTING (Line 18) - Printing from the fmt package are

not synchronized and usually intended for debugging purposes
. Consider to use the log package!.

23 3) FMT_PRINTING (Line 20) - Printing from the fmt package are
not synchronized and usually intended for debugging purposes
. Consider to use the log package!.

24 4) FMT_PRINTING (Line 22) - Printing from the fmt package are
not synchronized and usually intended for debugging purposes
. Consider to use the log package!.

25 5) FMT_PRINTING (Line 24) - Printing from the fmt package are
not synchronized and usually intended for debugging purposes
. Consider to use the log package!.

26 6) FMT_PRINTING (Line 27) - Printing from the fmt package are
not synchronized and usually intended for debugging purposes
. Consider to use the log package!.

27 Violations in _gcd.go :
28 0) FMT_PRINTING (Line 10) - Printing from the fmt package are

not synchronized and usually intended for debugging purposes
. Consider to use the log package!.

29 1) FMT_PRINTING (Line 11) - Printing from the fmt package are
not synchronized and usually intended for debugging purposes
. Consider to use the log package!.

30 Violations in _nestedswitches.go :
31 0) FMT_PRINTING (Line 16) - Printing from the fmt package are

not synchronized and usually intended for debugging purposes
. Consider to use the log package!.

32 1) FMT_PRINTING (Line 18) - Printing from the fmt package are
not synchronized and usually intended for debugging purposes
. Consider to use the log package!.

33 2) FMT_PRINTING (Line 22) - Printing from the fmt package are
not synchronized and usually intended for debugging purposes
. Consider to use the log package!.

34 3) FMT_PRINTING (Line 24) - Printing from the fmt package are
not synchronized and usually intended for debugging purposes
. Consider to use the log package!.

35 4) FMT_PRINTING (Line 26) - Printing from the fmt package are
not synchronized and usually intended for debugging purposes
. Consider to use the log package!.

36 5) FMT_PRINTING (Line 29) - Printing from the fmt package are
not synchronized and usually intended for debugging purposes
. Consider to use the log package!.

37 6) FMT_PRINTING (Line 37) - Printing from the fmt package are
not synchronized and usually intended for debugging purposes
. Consider to use the log package!.

38 7) FMT_PRINTING (Line 39) - Printing from the fmt package are
not synchronized and usually intended for debugging purposes
. Consider to use the log package!.

39 8) FMT_PRINTING (Line 41) - Printing from the fmt package are
not synchronized and usually intended for debugging purposes
. Consider to use the log package!.

40 9) FMT_PRINTING (Line 43) - Printing from the fmt package are
not synchronized and usually intended for debugging purposes
. Consider to use the log package!.

41 10) FMT_PRINTING (Line 47) - Printing from the fmt package are
not synchronized and usually intended for debugging purposes
. Consider to use the log package!.

42 11) FMT_PRINTING (Line 49) - Printing from the fmt package are
not synchronized and usually intended for debugging purposes

46

. Consider to use the log package!.
43 Violations in _looper.go :
44 0) FMT_PRINTING (Line 15) - Printing from the fmt package are

not synchronized and usually intended for debugging purposes
. Consider to use the log package!.

45 Violations in _returnswitcher.go :
46 0) FMT_PRINTING (Line 11) - Printing from the fmt package are

not synchronized and usually intended for debugging purposes
. Consider to use the log package!.

47 Violations in _simple.go :
48 0) FMT_PRINTING (Line 10) - Printing from the fmt package are

not synchronized and usually intended for debugging purposes
. Consider to use the log package!.

49 Violations in _simplelooperswitch.go :
50 0) FMT_PRINTING (Line 15) - Printing from the fmt package are

not synchronized and usually intended for debugging purposes
. Consider to use the log package!.

51 1) FMT_PRINTING (Line 17) - Printing from the fmt package are
not synchronized and usually intended for debugging purposes
. Consider to use the log package!.

52 Violations in _typeswitch.go :
53 0) FMT_PRINTING (Line 27) - Printing from the fmt package are

not synchronized and usually intended for debugging purposes
. Consider to use the log package!.

54 Violations in _fallthrough.go :
55 0) FMT_PRINTING (Line 13) - Printing from the fmt package are

not synchronized and usually intended for debugging purposes
. Consider to use the log package!.

56 1) FMT_PRINTING (Line 15) - Printing from the fmt package are
not synchronized and usually intended for debugging purposes
. Consider to use the log package!.

57 2) FMT_PRINTING (Line 18) - Printing from the fmt package are
not synchronized and usually intended for debugging purposes
. Consider to use the log package!.

58 3) FMT_PRINTING (Line 21) - Printing from the fmt package are
not synchronized and usually intended for debugging purposes
. Consider to use the log package!.

59 4) FMT_PRINTING (Line 23) - Printing from the fmt package are
not synchronized and usually intended for debugging purposes
. Consider to use the log package!.

60 5) FMT_PRINTING (Line 25) - Printing from the fmt package are
not synchronized and usually intended for debugging purposes
. Consider to use the log package!.

61 6) FMT_PRINTING (Line 28) - Printing from the fmt package are
not synchronized and usually intended for debugging purposes
. Consider to use the log package!.

62 7) FMT_PRINTING (Line 31) - Printing from the fmt package are
not synchronized and usually intended for debugging purposes
. Consider to use the log package!.

63 Violations in _nestedifelse.go :
64 0) FMT_PRINTING (Line 17) - Printing from the fmt package are

not synchronized and usually intended for debugging purposes
. Consider to use the log package!.

65 1) FMT_PRINTING (Line 20) - Printing from the fmt package are
not synchronized and usually intended for debugging purposes
. Consider to use the log package!.

66 2) CONDITION_EVALUATED_STATICALLY (Line 14) - Condition will
always be true.

47

67 3) CONDITION_EVALUATED_STATICALLY (Line 18) - Condition will
always be false.

68 ---

69 PACKAGE: main (analyzer/linter/ccomplexity/cfgraph/testcode)
70 Violations in _simple.go :
71 0) FMT_PRINTING (Line 10) - Printing from the fmt package are

not synchronized and usually intended for debugging purposes
. Consider to use the log package!.

72 Violations in _switcher.go :
73 0) FMT_PRINTING (Line 10) - Printing from the fmt package are

not synchronized and usually intended for debugging purposes
. Consider to use the log package!.

74 Violations in _gcd.go :
75 0) FMT_PRINTING (Line 19) - Printing from the fmt package are

not synchronized and usually intended for debugging purposes
. Consider to use the log package!.

76 1) FMT_PRINTING (Line 20) - Printing from the fmt package are
not synchronized and usually intended for debugging purposes
. Consider to use the log package!.

77 Violations in _looper.go :
78 0) FMT_PRINTING (Line 15) - Printing from the fmt package are

not synchronized and usually intended for debugging purposes
. Consider to use the log package!.

79 ---

80 PACKAGE: main (analyzer/linter/testcode/fmtprinting)
81 Violations in main.go :
82 0) FMT_PRINTING (Line 11) - Printing from the fmt package are

not synchronized and usually intended for debugging purposes
. Consider to use the log package!.

83 1) FMT_PRINTING (Line 12) - Printing from the fmt package are
not synchronized and usually intended for debugging purposes
. Consider to use the log package!.

84 2) FMT_PRINTING (Line 13) - Printing from the fmt package are
not synchronized and usually intended for debugging purposes
. Consider to use the log package!.

85 ---

86 PACKAGE: main (analyzer/)
87 Violations in GoAnalyzer.go :
88 0) ERROR_IGNORED (Line 111) - Never ignore erros, ignoring them

can lead to program crashes.
89 ---

90 PACKAGE: linter (analyzer/linter)
91 Violations in linter.go :
92 0) ERROR_IGNORED (Line 174) - Never ignore erros, ignoring them

can lead to program crashes.
93 1) ERROR_IGNORED (Line 175) - Never ignore erros, ignoring them

can lead to program crashes.
94 ---

95 PACKAGE: linter_test (analyzer/linter)
96 Violations in linter_test.go :
97 0) ERROR_IGNORED (Line 62) - Never ignore erros, ignoring them

can lead to program crashes.
98 ---

48

99 PACKAGE: stack_test (analyzer/linter/ccomplexity/graph/stack)
100 Violations in stacker_test.go :
101 0) ERROR_IGNORED (Line 18) - Never ignore erros, ignoring them

can lead to program crashes.
102 ---

103 PACKAGE: main (analyzer/linter/testcode/emptyifbody)
104 Violations in main.go :
105 0) EMPTY_IF_BODY (Line 11) - If body is empty, wasteful to not

do anything with the if condition..
106 ---

107 PACKAGE: graph (analyzer/linter/ccomplexity/graph)
108 Violations in graph.go :
109 0) ERROR_IGNORED (Line 248) - Never ignore erros, ignoring them

can lead to program crashes.
110 1) ERROR_IGNORED (Line 249) - Never ignore erros, ignoring them

can lead to program crashes.
111 2) ERROR_IGNORED (Line 250) - Never ignore erros, ignoring them

can lead to program crashes.
112 3) ERROR_IGNORED (Line 251) - Never ignore erros, ignoring them

can lead to program crashes.
113 4) ERROR_IGNORED (Line 252) - Never ignore erros, ignoring them

can lead to program crashes.
114 5) ERROR_IGNORED (Line 253) - Never ignore erros, ignoring them

can lead to program crashes.
115 ---

116 PACKAGE: main (analyzer/linter/testcode/emptyforbody)
117 Violations in main.go :
118 0) EMPTY_FOR_BODY (Line 8) - For body is empty, wasteful to not

do anything with the for condition..
119 ---

120 PACKAGE: main (analyzer/linter/testcode/goto)
121 Violations in main.go :
122 0) GOTO_USED (Line 12) - Please dont use GOTO statements, they

lead to spagehetti code!.
123 ---

124 PACKAGE: main (analyzer/linter/testcode/staticconditions)
125 Violations in main.go :
126 0) CONDITION_EVALUATED_STATICALLY (Line 14) - Condition will

always be true.
127 1) CONDITION_EVALUATED_STATICALLY (Line 18) - Condition will

always be false.
128 2) CONDITION_EVALUATED_STATICALLY (Line 22) - Both left and

right operand is basic literal that can be eveualted at
compile time.

129 3) CONDITION_EVALUATED_STATICALLY (Line 26) - Both left and
right operand is basic literal that can be eveualted at
compile time.

130 4) CONDITION_EVALUATED_STATICALLY (Line 38) - Comparison of
function Bytes is always false.

131 5) CONDITION_EVALUATED_STATICALLY (Line 41) - Condition will
always be true.

132 ---

133 PACKAGE: cfgraph (analyzer/linter/ccomplexity/cfgraph)

49

134 Violations in controlflowgraph.go :
135 0) ERROR_IGNORED (Line 31) - Never ignore erros, ignoring them

can lead to program crashes.
136 1) ERROR_IGNORED (Line 36) - Never ignore erros, ignoring them

can lead to program crashes.
137 2) ERROR_IGNORED (Line 37) - Never ignore erros, ignoring them

can lead to program crashes.
138 3) ERROR_IGNORED (Line 38) - Never ignore erros, ignoring them

can lead to program crashes.
139 4) ERROR_IGNORED (Line 39) - Never ignore erros, ignoring them

can lead to program crashes.
140 5) ERROR_IGNORED (Line 40) - Never ignore erros, ignoring them

can lead to program crashes.
141 6) ERROR_IGNORED (Line 41) - Never ignore erros, ignoring them

can lead to program crashes.
142 7) ERROR_IGNORED (Line 44) - Never ignore erros, ignoring them

can lead to program crashes.
143 8) ERROR_IGNORED (Line 45) - Never ignore erros, ignoring them

can lead to program crashes.
144 9) ERROR_IGNORED (Line 46) - Never ignore erros, ignoring them

can lead to program crashes.
145 10) ERROR_IGNORED (Line 47) - Never ignore erros, ignoring them

can lead to program crashes.
146 11) ERROR_IGNORED (Line 50) - Never ignore erros, ignoring them

can lead to program crashes.
147 12) ERROR_IGNORED (Line 53) - Never ignore erros, ignoring them

can lead to program crashes.
148 ---

149 PACKAGE: main (analyzer/linter/testcode/bufferwriting)
150 Violations in main.go :
151 0) ERROR_IGNORED (Line 14) - Never ignore erros, ignoring them

can lead to program crashes.
152 1) ERROR_IGNORED (Line 19) - Never ignore erros, ignoring them

can lead to program crashes.
153 ---

154 PACKAGE: main (analyzer/linter/testcode/cyclomaticomplexity)
155 Violations in main.go :
156 0) CYCLOMATIC_COMPLEXITY (Line 13) - Cyclomatic complexity in

monthNumberToString() is 14, upper limit is 10..
157 Violations in main.go :
158 0) FMT_PRINTING (Line 10) - Printing from the fmt package are

not synchronized and usually intended for debugging purposes
. Consider to use the log package!.

159 1) ERROR_IGNORED (Line 10) - Never ignore erros, ignoring them
can lead to program crashes.

160 ---

161 PACKAGE: main (analyzer/linter/testcode/errorignored)
162 Violations in main.go :
163 0) ERROR_IGNORED (Line 16) - Never ignore erros, ignoring them

can lead to program crashes.
164 1) ERROR_IGNORED (Line 17) - Never ignore erros, ignoring them

can lead to program crashes.
165 2) ERROR_IGNORED (Line 22) - Never ignore erros, ignoring them

can lead to program crashes.
166 3) ERROR_IGNORED (Line 27) - Never ignore erros, ignoring them

can lead to program crashes.

50

167 4) ERROR_IGNORED (Line 35) - Never ignore erros, ignoring them
can lead to program crashes.

168 5) ERROR_IGNORED (Line 51) - Never ignore erros, ignoring them
can lead to program crashes.

169 ---

170 PACKAGE: main (analyzer/linter/testcode/labeledbranch)
171 Violations in main.go :
172 0) GOTO_USED (Line 15) - Please dont use GOTO statements, they

lead to spagehetti code!.
173 ---

174 PACKAGE: bblock (analyzer/linter/ccomplexity/bblock)
175 Violations in basicblock.go :
176 0) CYCLOMATIC_COMPLEXITY (Line 232) - Cyclomatic complexity in

Visit() is 47, upper limit is 10..
177 ---

178 PACKAGE: main (analyzer/linter/testcode/emptyelsebody)
179 Violations in main.go :
180 0) EMPTY_ELSE_BODY (Line 16) - ELse body is empty, wasteful to

not do anything with the else condition..
181 ---

182 PACKAGE: main (analyzer/linter/testcode/newmap)
183 Violations in main.go :
184 0) MAP_ALLOCATED_WITH_NEW (Line 11) - Maps must be initialized

with make(), new() allocates a nil map causing runtime panic
on write operations!.

185 ---

186 PACKAGE: main (analyzer/linter/ccomplexity/testcode)
187 Violations in _switcher.go :
188 0) CYCLOMATIC_COMPLEXITY (Line 13) - Cyclomatic complexity in

monthNumberToString() is 14, upper limit is 10..
189 Violations in _gcd.go :
190 0) FMT_PRINTING (Line 19) - Printing from the fmt package are

not synchronized and usually intended for debugging purposes
. Consider to use the log package!.

191 1) FMT_PRINTING (Line 20) - Printing from the fmt package are
not synchronized and usually intended for debugging purposes
. Consider to use the log package!.

192 Violations in _helloworld.go :
193 0) FMT_PRINTING (Line 10) - Printing from the fmt package are

not synchronized and usually intended for debugging purposes
. Consider to use the log package!.

194 Violations in _swap.go :
195 0) FMT_PRINTING (Line 12) - Printing from the fmt package are

not synchronized and usually intended for debugging purposes
. Consider to use the log package!.

196 1) FMT_PRINTING (Line 14) - Printing from the fmt package are
not synchronized and usually intended for debugging purposes
. Consider to use the log package!.

197 Violations in _switcher.go :
198 0) FMT_PRINTING (Line 10) - Printing from the fmt package are

not synchronized and usually intended for debugging purposes
. Consider to use the log package!.

199 ---

51

200 PACKAGE: main (analyzer/linter/testcode/earlyreturn)
201 Violations in main.go :
202 0) RETURN_KILLS_CODE (Line 13) - Code is dead because of return!

There is no possible execution path to the code below in
this scope!.

203 ---

204 ## ANALYSIS SUMMARY ##
205 Total 113 violations found!
206 Total number of Go files: 56
207 Total lines of code (LOC): 2356
208 Total lines of comments: 334
209 Total time used: 334.462461ms
210 For rule details: https://github.com/chrisbbe/GoAnalysis/wiki

52

Appendix B

Package bblock source code

1 // Copyright (c) 2015-2016 The GoAnalysis Authors. All rights
reserved.

2 // Use of this source code is governed by a BSD-style license that
can

3 // be found in the LICENSE file.
4 package bblock
5

6 import (
7 "fmt"
8 "go/ast"
9 "go/parser"

10 "go/token"
11 "log"
12 "sort"
13)
14

15 type BasicBlockType int
16

17 //Basic Block types.
18 const (
19 FUNCTION_ENTRY BasicBlockType = iota
20 IF_CONDITION
21 ELSE_CONDITION
22 SWITCH_STATEMENT
23 CASE_CLAUSE
24 SELECT_STATEMENT
25 COMM_CLAUSE
26 RETURN_STMT
27 FOR_STATEMENT
28 RANGE_STATEMENT
29 GO_STATEMENT
30 CALL_EXPRESSION
31 ELSE_BODY
32 FOR_BODY
33 EMPTY
34 START
35 EXIT
36 UNKNOWN
37)
38

39 var basicBlockTypeStrings = [...]string{
40 FUNCTION_ENTRY: "FUNCTION_ENTRY",

53

41 IF_CONDITION: "IF_CONDITION",
42 ELSE_CONDITION: "ELSE_CONDITION",
43 SWITCH_STATEMENT: "SWITCH_STATEMENT",
44 CASE_CLAUSE: "CASE_CLAUSE",
45 SELECT_STATEMENT: "SELECT_STATEMENT",
46 COMM_CLAUSE: "COMM_CLAUSE",
47 RETURN_STMT: "RETURN_STMT",
48 FOR_STATEMENT: "FOR_STATEMENT",
49 RANGE_STATEMENT: "RANGE_STATEMENT",
50 GO_STATEMENT: "GO_STATEMENT",
51 CALL_EXPRESSION: "CALL_EXPRESSION",
52 ELSE_BODY: "ELSE_BODY",
53 FOR_BODY: "FOR_BODY",
54 EMPTY: "EMPTY",
55 START: "Start",
56 EXIT: "Exit",
57 UNKNOWN: "UNKNOWN",
58 }
59

60 func (bbType BasicBlockType) String() string {
61 return basicBlockTypeStrings[bbType]
62 }
63

64 func (basicBlock *BasicBlock) UID() string {
65 //Both START and EXIT blocks are meta-blocks, giving them

negative UID which will not be confused with ’real’ blocks.
66 if basicBlock.Type == START || basicBlock.Type == EXIT {
67 return fmt.Sprintf("%d", 0-basicBlock.Type)
68 }
69 return fmt.Sprintf("%d", basicBlock.EndLine)
70 }
71

72 func (basicBlock *BasicBlock) String() string {
73 if basicBlock.Type == START {
74 return basicBlock.Type.String()
75 } else if basicBlock.Type == EXIT {
76 return basicBlock.Type.String()
77 }
78 return fmt.Sprintf("BLOCK NR.%d (%s) (EndLine: %d)", basicBlock.

Number, basicBlock.Type.String(), basicBlock.EndLine)
79 }
80

81 func (basicBlock *BasicBlock) AddSuccessorBlock(successorBlocks
...*BasicBlock) {

82 for _, successorBlock := range successorBlocks {
83 basicBlock.successor[successorBlock.EndLine] = successorBlock //

Update or add.
84 }
85 }
86

87 func NewBasicBlock(blockNumber int, blockType BasicBlockType,
endLine int) *BasicBlock {

88 return &BasicBlock{Number: blockNumber, Type: blockType, EndLine:
endLine, successor: map[int]*BasicBlock{}}

89 }
90

91 func (basicBlock *BasicBlock) GetSuccessorBlocks() []*BasicBlock {
92 keys := make([]int, len(basicBlock.successor))
93 basicBlocks := []*BasicBlock{}

54

94

95 i := 0
96 for k := range basicBlock.successor {
97 keys[i] = k
98 i++
99 }

100 sort.Ints(keys) //Sort keys from map.
101

102 //Add the basic-block into the array.
103 for _, key := range keys {
104 basicBlocks = append(basicBlocks, basicBlock.successor[key])
105 }
106 return basicBlocks
107 }
108

109 type BasicBlock struct {
110 Number int
111 Type BasicBlockType
112 EndLine int
113 successor map[int]*BasicBlock
114 FunctionName string
115 FunctionDeclLine int
116 }
117

118 type visitor struct {
119 basicBlocks map[int]*BasicBlock
120 sourceFileSet *token.FileSet
121

122 lastBlock *BasicBlock
123 prevLastBlock *BasicBlock
124

125 returnBlock *BasicBlock
126 forBlock *BasicBlock
127 forBodyBlock *BasicBlock
128 switchBlock *BasicBlock
129 }
130

131 // UpdateBasicBlock updates all the variables from the
newBasicBlock into the basicBlock object.

132 func (basicBlock *BasicBlock) UpdateBasicBlock(newBasicBlock *
BasicBlock) {

133 if newBasicBlock != nil {
134 basicBlock.Number = newBasicBlock.Number
135 basicBlock.Type = newBasicBlock.Type
136 basicBlock.EndLine = newBasicBlock.EndLine
137 basicBlock.successor = newBasicBlock.successor
138 basicBlock.FunctionName = newBasicBlock.FunctionName
139 basicBlock.FunctionDeclLine = newBasicBlock.FunctionDeclLine
140 }
141 }
142

143 func (v *visitor) AddBasicBlock(blockType BasicBlockType, position
token.Pos) *BasicBlock {

144 line := v.sourceFileSet.File(position).Line(position)
145 basicBlock := NewBasicBlock(-1, blockType, line) //-1 indicates

number will be set later.
146

147 // Bookkeeping.
148 v.prevLastBlock = v.lastBlock

55

149 v.lastBlock = basicBlock
150

151 //Update the existing block., or add new block.
152 if bb, ok := v.basicBlocks[line]; ok {
153 bb.UpdateBasicBlock(basicBlock)
154 v.lastBlock = bb
155 return bb
156 } else {
157 v.basicBlocks[line] = basicBlock
158 }
159 return basicBlock
160 }
161

162 // GetBasicBlocks converts map holding the basic-blocks to the
ordered set

163 // of basic-blocks, in right order!
164 func (v *visitor) GetBasicBlocks() []*BasicBlock {
165 keys := make([]int, len(v.basicBlocks))
166 basicBlocks := make([]*BasicBlock, len(v.basicBlocks))
167

168 i := 0
169 for k := range v.basicBlocks {
170 keys[i] = k
171 i++
172 }
173 sort.Ints(keys) //Sort keys from map.
174

175 //Add the basic-block into the array.
176 for index, key := range keys {
177 basicBlocks[index] = v.basicBlocks[key]
178 basicBlocks[index].Number = index //Set basic-block number.
179 }
180 return basicBlocks
181 }
182

183 func GetBasicBlocksFromSourceCode(filePath string, srcFile []byte)
([]*BasicBlock, error) {

184 fileSet := token.NewFileSet()
185 file, err := parser.ParseFile(fileSet, filePath, srcFile, parser.

ParseComments|parser.AllErrors)
186 if err != nil {
187 return nil, fmt.Errorf("Parse error: %s", err)
188 }
189

190 visitor := &visitor{sourceFileSet: fileSet, basicBlocks: make(map
[int]*BasicBlock)}

191 ast.Walk(visitor, file)
192

193 basicBlocks := visitor.GetBasicBlocks()
194

195 numberOfBasicBlocks := len(basicBlocks)
196 for index, bBlock := range basicBlocks {
197 if bBlock.Type != FOR_BODY && bBlock.Type != ELSE_CONDITION &&

bBlock.Type != ELSE_BODY && bBlock.Type != COMM_CLAUSE &&
bBlock.Type != CASE_CLAUSE && bBlock.Type != RETURN_STMT {

198 if numberOfBasicBlocks > index+1 {
199 bBlock.AddSuccessorBlock(basicBlocks[index+1])
200 }
201 }

56

202 }
203

204 return basicBlocks, nil
205 }
206

207 func PrintBasicBlocks(basicBlocks []*BasicBlock) {
208 for _, bb := range basicBlocks {
209 log.Printf("%d) %s (EndLine: %d)\n", bb.Number, bb.Type.String()

, bb.EndLine)
210

211 for _, sBB := range bb.GetSuccessorBlocks() {
212 log.Printf("\t-> (%d) %s (EndLine: %d)\n", sBB.Number, sBB.Type

.String(), sBB.EndLine)
213 }
214 }
215 }
216

217 func GetBasicBlockTypeFromStmt(stmtList []ast.Stmt) (
BasicBlockType, ast.Stmt) {

218 for _, stmt := range stmtList {
219 switch stmt.(type) {
220 case *ast.ReturnStmt:
221 return RETURN_STMT, stmt
222 case *ast.CaseClause:
223 return CASE_CLAUSE, stmt
224 case *ast.SwitchStmt:
225 return SWITCH_STATEMENT, stmt
226 }
227 }
228 return UNKNOWN, nil
229 }
230

231 func (v *visitor) Visit(node ast.Node) ast.Visitor {
232 if node != nil {
233 switch t := node.(type) {
234

235 case *ast.FuncDecl:
236 funcDeclBlock := v.AddBasicBlock(FUNCTION_ENTRY, t.Pos())
237 // Set information about Function in the block.
238 funcDeclBlock.FunctionName = t.Name.Name
239 funcDeclBlock.FunctionDeclLine = v.sourceFileSet.File(t.Pos()).

Line(t.Pos())
240

241 if t.Body != nil {
242 for _, s := range t.Body.List {
243 if _, ok := s.(*ast.ReturnStmt); ok {
244 v.returnBlock = v.AddBasicBlock(RETURN_STMT, s.End())
245 }
246 }
247

248 if v.returnBlock == nil {
249 v.returnBlock = v.AddBasicBlock(RETURN_STMT, t.End())
250 }
251

252 //Visit all statements in body.
253 for _, s := range t.Body.List {
254 v.Visit(s)
255 }
256 }

57

257

258 v.returnBlock = nil
259 return nil
260

261 case *ast.ReturnStmt:
262 prevBlock := v.lastBlock
263 v.returnBlock = v.AddBasicBlock(RETURN_STMT, t.Pos())
264

265 if prevBlock != nil && prevBlock.Type != RETURN_STMT && len(
prevBlock.successor) == 0 {

266 prevBlock.AddSuccessorBlock(v.returnBlock)
267 }
268

269 if v.switchBlock != nil {
270 v.switchBlock.AddSuccessorBlock(v.returnBlock)
271 }
272

273 case *ast.GoStmt:
274 v.AddBasicBlock(GO_STATEMENT, t.Pos())
275

276 case *ast.IfStmt:
277 ifBlock := v.AddBasicBlock(IF_CONDITION, t.Pos())
278

279 for _, stmt := range t.Body.List {
280 v.Visit(stmt)
281 }
282

283 var elseConditionBlock, elseBodyBlock *BasicBlock
284 if t.Else != nil {
285

286 if v.lastBlock != nil && v.lastBlock.Type != RETURN_STMT {
287 elseConditionBlock = v.AddBasicBlock(ELSE_CONDITION, t.Else.

Pos())
288 } else {
289 // We don’t want to set return block as successor to

elseCondition.
290 v.returnBlock = nil
291 }
292

293 elseBodyBlock = v.AddBasicBlock(ELSE_BODY, t.Else.End())
294 ifBlock.AddSuccessorBlock(elseBodyBlock)
295

296 if v.returnBlock != nil {
297 if elseConditionBlock != nil {
298 elseConditionBlock.AddSuccessorBlock(v.returnBlock)
299 }
300 elseBodyBlock.AddSuccessorBlock(v.returnBlock)
301 }
302 }
303

304 case *ast.ForStmt:
305 v.forBlock = v.AddBasicBlock(FOR_STATEMENT, t.Pos())
306

307 if v.returnBlock != nil {
308 v.forBlock.AddSuccessorBlock(v.returnBlock)
309 }
310

311 tmpReturnBlock := v.returnBlock
312 tmpForBlock := v.forBlock

58

313 v.returnBlock = v.forBlock
314

315 for _, s := range t.Body.List {
316 v.Visit(s)
317 }
318

319 v.returnBlock = tmpReturnBlock
320 v.forBlock = tmpForBlock
321

322 if v.lastBlock.Type == FOR_STATEMENT {
323 v.AddBasicBlock(FOR_BODY, t.End())
324 }
325

326 if v.lastBlock.Type != RETURN_STMT {
327 v.lastBlock.AddSuccessorBlock(v.forBlock)
328 }
329

330 v.forBlock = nil
331 return nil
332

333 case *ast.SwitchStmt:
334 v.switchBlock = v.AddBasicBlock(SWITCH_STATEMENT, t.Pos())
335 if v.forBlock != nil {
336 v.forBlock.AddSuccessorBlock(v.switchBlock)
337 v.switchBlock.AddSuccessorBlock(v.forBlock)
338 }
339

340 if v.returnBlock != nil {
341 v.switchBlock.AddSuccessorBlock(v.returnBlock)
342 }
343

344 for _, s := range t.Body.List {
345 v.Visit(s)
346 }
347 return nil
348

349 case *ast.TypeSwitchStmt:
350 v.switchBlock = v.AddBasicBlock(SWITCH_STATEMENT, t.Pos())
351 if v.forBlock != nil {
352 v.forBlock.AddSuccessorBlock(v.switchBlock)
353 v.switchBlock.AddSuccessorBlock(v.forBlock)
354 }
355

356 for _, s := range t.Body.List {
357 v.Visit(s)
358 }
359 return nil
360

361 case *ast.SelectStmt:
362 v.switchBlock = v.AddBasicBlock(SELECT_STATEMENT, t.Pos())
363 if v.forBlock != nil {
364 v.forBlock.AddSuccessorBlock(v.switchBlock)
365 v.switchBlock.AddSuccessorBlock(v.forBlock)
366 }
367

368 for _, s := range t.Body.List {
369 v.Visit(s)
370 }
371 return nil

59

372

373 case *ast.CaseClause:
374 var caseClause *BasicBlock
375 if basicBlockType, s := GetBasicBlockTypeFromStmt(t.Body);

basicBlockType != UNKNOWN {
376 caseClause = v.AddBasicBlock(basicBlockType, s.Pos())
377 } else {
378 caseClause = v.AddBasicBlock(CASE_CLAUSE, t.End())
379 }
380

381 if v.forBlock != nil {
382 caseClause.AddSuccessorBlock(v.forBlock)
383 }
384

385 if v.switchBlock != nil {
386 v.switchBlock.AddSuccessorBlock(caseClause)
387 }
388

389 if v.returnBlock != nil {
390 caseClause.AddSuccessorBlock(v.returnBlock)
391 }
392

393 tmpSwitchBlock := v.switchBlock
394 tmpReturnBLock := v.returnBlock
395 for _, s := range t.Body {
396 v.Visit(s)
397 }
398 v.switchBlock = tmpSwitchBlock
399 v.returnBlock = tmpReturnBLock
400

401 if v.returnBlock != nil && caseClause.Type != RETURN_STMT &&
caseClause.Type != SWITCH_STATEMENT {

402 : This must be refactored more beautiful
403 containsForStatement := false
404 for _, b := range caseClause.GetSuccessorBlocks() {
405 if b.Type == FOR_STATEMENT {
406 containsForStatement = true
407 }
408 }
409 if !containsForStatement {
410 caseClause.AddSuccessorBlock(v.returnBlock)
411 }
412 }
413

414 case *ast.CommClause:
415 var caseClause *BasicBlock
416 if basicBlockType, s := GetBasicBlockTypeFromStmt(t.Body);

basicBlockType != UNKNOWN {
417 caseClause = v.AddBasicBlock(basicBlockType, s.Pos())
418 } else {
419 caseClause = v.AddBasicBlock(COMM_CLAUSE, t.End())
420 }
421

422 if v.forBlock != nil {
423 caseClause.AddSuccessorBlock(v.forBlock)
424 }
425

426 if v.switchBlock != nil {
427 v.switchBlock.AddSuccessorBlock(caseClause)

60

428 }
429

430 if v.returnBlock != nil {
431 caseClause.AddSuccessorBlock(v.returnBlock)
432 }
433

434 tmpSwitchBlock := v.switchBlock
435 tmpReturnBLock := v.returnBlock
436 for _, s := range t.Body {
437 v.Visit(s)
438 }
439 v.switchBlock = tmpSwitchBlock
440 v.returnBlock = tmpReturnBLock
441

442 if v.returnBlock != nil && caseClause.Type != RETURN_STMT &&
caseClause.Type != SWITCH_STATEMENT {

443 containsForStatement := false
444 for _, b := range caseClause.GetSuccessorBlocks() {
445 if b.Type == FOR_STATEMENT {
446 containsForStatement = true
447 }
448 }
449 if !containsForStatement {
450 caseClause.AddSuccessorBlock(v.returnBlock)
451 }
452 }
453 }
454 }
455 return v
456 }

61

62

Bibliography

[1] Frances E. Allen. “Control Flow Analysis.” In: ACM SIGPLAN Notices
5.7 (1970).

[2] The Go Authors. golang/go: The Go Programming Language. URL: https:
//github.com/golang/go (visited on 07/27/2016).

[3] Michael F. Plass Bengt Aspvall and Robert Endre Tarjan. “A linear-
time algorithm for testing the truth of certain quantified boolean
formulas.” In: Information Processing Letters Volume 8, number 3 (1979).

[4] G. Ann Campbell and Patroklos P. Papapetrou. FOREWORD BY
Olivier Gaudin. SonarQube in Action. Manning Publications, 2013.
ISBN: 978-1617290954.

[5] Edsger W. Dijkstra. “EWD 215: A Case against the GO TO State-
ment.” In: Communication of the ACM, Volume 11, No. 3 (1968).

[6] Alan A. A. Donovan and Brian W. Kernighan. The Go Programming
Language. Addison-Wesley, 2015. ISBN: 978-0134190440.

[7] Hanne R. Nielson Flemming Nielson and Chris Hankin. Principles of
Program Analysis. Springer-Verlag, 1999. ISBN: 3540654100.

[8] Google. PMD. URL: https://pmd.github.io/ (visited on 08/07/2016).

[9] Google. The Go Programming Language. URL: https : / / golang . org/
(visited on 07/27/2016).

[10] C.A.R. Hoare. “Communicating Sequential Processes.” In: Communi-
cation of the ACM (1978).

[11] S. C. Johnson. UNIX Programmer’s Manual. Lint, A C Program Checker.
Seventh Edition, Volume 2A. 1979. URL: http ://cm.bell - labs . com/
7thEdMan/v7vol2a.pdf (visited on 07/13/2015).

[12] Martin Fowler with Kent Beck et al. Refactoring : improving the design
of existing code. Addison-Wesley, 1999.

[13] Brian W. Kernighan and Dennis M. Ritchie. The C programming
language, Second Edition. Prentice-Hall, 1988.

[14] University of Maryland. FindBugs - Find Bugs in Java Programs. URL:
http://findbugs.sourceforge.net/ (visited on 08/08/2016).

[15] Thomas J. McCabe. “A Complexity Measure.” In: IEEE Transaction on
Software Engineering, Vol. SE-2, No. 4 (1976).

63

https://github.com/golang/go
https://github.com/golang/go
https://pmd.github.io/
https://golang.org/
http://cm.bell-labs.com/7thEdMan/v7vol2a.pdf
http://cm.bell-labs.com/7thEdMan/v7vol2a.pdf
http://findbugs.sourceforge.net/

[16] Carnegie Mellon University Software Engineering Institute. C4 Soft-
ware Technology Reference Guide - A Prototype. Tech. rep. CMU/SEI-97-
HB-001. 1997, Jan. 1997.

[17] Mark Summerfield. Programming in Go: Creating Application for the
21st Century. Addison-Wesley, 2012. ISBN: 978-0321774637.

[18] www.json.org. Introducing JSON. URL: http://www.json.org/ (visited
on 07/13/2016).

64

http://www.json.org/

	Introduction
	Motivation
	Goals and Contributions
	Extensibility
	Correctness
	Precision
	Portability

	Thesis Overview
	Project Website

	Background
	The Go Programming Language
	General
	Syntax and Semantic
	Object-orientation
	Concurrency

	Static Code Analysis
	Linting: Detecting Bugs and Code Smells
	Cyclomatic Complexity

	SonarQube

	Implementing the Static Go Analyzer
	Architecture
	Measure Cyclomatic Complexity
	Identifying Basic-Blocks
	Control Flow Representation
	Measurements

	Suppressing rules
	Bug and Code Smell Checking
	High Cyclomatic Complexity
	Races when referencing loop iterator variables in Goroutines
	Ignoring Errors
	String() method recursively calling itself
	Printing from the fmt package
	Maps allocated with new()
	Statically evaluated conditions
	Return statement kills code
	Usage of GOTO statements
	Empty for and if-else bodies

	SonarQube Plugin

	Case Studies
	Obtaining performance measurements of the tool
	GoAnalyzer
	A High Measure Of Cyclomatic Complexity

	Go compiler
	Preparing The Source Code For Analysis
	Results

	Conclusion and Further Work
	Future Work
	Resolve discovered precision issues
	Detailed specification of rule suppression and activation
	Specification of measure thresholds

	Appendices
	Analysis result of GoAnalyzer
	Package bblock source code

