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Abstract

We study stochastic differential games of jump diffusions, where the players have
access to inside information. Our approach is based on anticipative stochastic cal-
culus, white noise, Hida-Malliavin calculus, forward integrals and the Donsker delta
functional. We obtain a characterization of Nash equilibria of such games in terms of
the corresponding Hamiltonians. This is used to study applications to insider games in
finance, specifically optimal insider consumption and optimal insider portfolio under
model uncertainty.

1 Introduction

In this paper we present a general method for studying optimal insider games, i.e. stochastic
differential games where the two players have access to some future information about the
system. This inside information in the control processes puts the problem outside the context
of semimartingale theory, and we therefore apply general anticipating white noise calculus,
including forward integrals and Hida-Malliavin calculus. Combining this with the Donsker
delta functional for the random variable Y = (Y7, Y3) which represents the inside information
for player number 1 and 2, respectively, we are able to prove both a sufficient and a necessary
maximum principle for a Nash equilibrium of such games.
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We now explain this in more detail:

The system we consider, is described by a stochastic differential equation driven by a
Brownian motion B(t) and an independent compensated Poisson random measure N (dt, d¢),
jointly defined on a filtered probability space (Q,F = {F; }i>0, P) satisfying the usual condi-
tions. We assume that the inside information is of initial enlargement type. Specifically, we
assume that the two inside filtrations H', H? representing the information flows available to
player 1 and player 2, respectively, have the form

H' = {Hi};50, where Hi = F,VY;, i=1,2 (1.1)

for all ¢, where Y; is a given JFp,-measurable random variable, for some fixed 7y > T > t.
Here and in the following we choose the right-continuous version of Hf, i.e. we put H! =

'y =[Ny Hi. The insider control process is denoted by w(t) = (u1(t), ua(t)), where w;(¢) is
the control of player i; i=1,2. Thus we assume that the value at time ¢ of our insider control
process u;(t) is allowed to depend on both Y; and F;;7 = 1,2. In other words, u; is assumed
to be Hi-adapted for i = 1,2. Therefore they have the form

wi(t,w) = w(t,Y;, w) (1.2)

for some function @; : [0,7] x R x © — R such that w;(t,y;) is F-adapted for each y; € R.
For simplicity (albeit with some abuse of notation) we will in the following write u; in stead
of w;;1=1,2.

Consider a controlled stochastic process X (t) = X*(¢) of the form

dX(t) =dX"(t) = b(t, X(t),us(t), ua(t), Y1, Y2)dt + o(t, X (t),u1(t), uz(t), Y1, Yo)dB(t)
+fR’Y(tvX(t)vul(t)7u2(t)7}/17}/27€)N(dt7d<,); t>0
X(0)=z(Y) eR,

(1.3)
where u;(t) = u;(t, yi)y—v; is the control process of insider ;7 = 1,2, and the (anticipating)
stochastic integrals are interpreted as forward integrals, as introduced in [RV] (Brownian
motion case) and in [DM@P1] (Poisson random measure case). A motivation for using
forward integrals in the modelling of insider control is given in [BO]. Note that if YV is a
deterministic constant, then the stochastic integrals in (1.3) reduce to classical It6 integrals.
Let A; denote a given set of admissible Hf—adapted controls u; of player ¢, with values in
A; C REd > 1;i = 1,2, Put U= A; x Ay, Then X(t) is F VY] V Ys-adapted. The
performance functional J;(u);u = (u1,us) of player i is defined by

Ji(u):E[/o Filt, X (1), wn(t), uz (1), Y)dt + i(X(T),Y)); i=1,2. (1.4)

A Nash equilibrium for the game (1.3)-(3.5) is a pair @ = (u, U2) € A; X Ay such that

SU.E Jl(ul,’&g) S Jl(ﬁl,ﬁg) (15)
u1 €A1

{eql.1}

{eql.2}

{eq2.1}

{eql.4}

{eq1.5}



and

SU.B Jg(ﬁl,UQ) < Jg(al,ﬁg). (16) {eq1.6}
u2€.A2
We use the Donsker delta functional of Y = (Y7, Y3) to find a Nash equilibrium for the game

(1.4)-(1.6).
Here is an outline of the content of the paper:

e In Section 2 we define the Donsker delta functional.

e In Section 3 we use the Donsker delta functional to rewrite the original insider game
(1.5)-(1.6) as a (parametrised) classical stochastic differential game, but with different
performance functionals.

e In Sections 4 and 5 we present a sufficient and a necessary maximum principle, respec-
tively, for the insider game problem in Section 3.

e In Section 6 we present the zero-sum game case where we distinguish two approaches:
Situation 1: Both players are still maximising their own performance functional;
Situation 2: One of the players is maximising and the other is minimising the perfor-
mance functional.

We formulate the sufficient and necessary maximum principles corresponding for each
approach.

e Then in Section 7 we illustrate our results by applying them to optimal insider con-
sumption and optimal insider portfolio under model uncertainty.

2 The Donsker delta functional

Definition 2.1 LetY; : Q — R;i = 1,2 be two random variables which also belongs to (S)*.
Then a continuous functional

i v,() i Rx R — (S) (2.1) {donsker}

is called a Donsker delta functional of (Y1,Y53) if it has the property that

/g(ylay2>6Y1,Y2(y17y2)dy1dy2:g(YI7Y2> a.s. (2.2) {donsker p:
RQ

for all (measurable) g : R* — R such that the integral converges.

For example, consider the special case when Y is a first order chaos random variable of
the form

Y =Y (Tp); where Y(t) = /Otﬁ(s)dB(s) + /Ot/Rw(s,C)N(ds,d(), fort € [0,70] (2.3) {eq2.5}
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for some deterministic functions § # 0, satisfying

{BQ /w (t,)v(dQ)}dt < oo a.s. (2.4)

We also assume that for every e > 0 there exists p > 0 such that

/ e’ v(d¢) < oo.
R\(—e€,€)

This condition implies that the polynomials are dense in L?(1), where du(¢) = ¢*dv ().
It also guarantees that the measure v integrates all polynomials of degree > 2.
In this case it is well known (see e.g. [MOP], [DQ], Theorem 3.5, and [DOP],[DA]) that the
Donsker delta functional exists in (S)* and is given by

W) = 5= [ e / [0 —ns.ao) + / " iwB(s)dB(s)
/o {/R(eiW(S’O — 1 —dz(s,Q))v(d¢) — %xQBQ(s)}ds — ixy} dr.  (2.5)

Moreover, we have

[ v (y) ]

eXp / /zxw N(ds,d¢) + /ti:cﬁ(s)dB(s) (2.6)

iwp(s,C) _ 1 _ _ 2532 —
—i—/t /R(e 1 —idxp(s, ))v(dQ)ds /t 5% B*(s)ds — izy|da, (2.7)

and
[Dt5Y( )N Fi) =
[ exp / / (s, N (ds, dC) + / i2B(s)dB(s)
. /T° / (90 _ 1 _ igap(s, O))(dC)ds — / U Lagds - iwylinB(de (28)
o e :
and
E[Dy .0y (y)|F] =

/ exp / / iz (s, O)N(ds, d¢) + / ti:cﬁ(s)dB(s)

To 1

VO 1 — (s v s — —x% 52 s — ixy| (@) — Ddx. (2.
+/t X 1= iz(s, ldyds — [ 5*8%(s)ds iy 1)de. (29)

t

For more information about the Donsker delta function and some explicit formulas for
it, see [Dr@].

{eq2.7}



3 The general insider optimal control problem for the
stochastic differential games

In this section, we formulate and prove a sufficient and a necessary maximum principle
for general stochastic differential games (not necessarily zero-sum games) for insiders. The
system we consider, is described in (1.1)-(1.6) above. Then X (¢) is F VY] V Ys-adapted, and
hence using the definition of the Donsker delta functional dy, v, (y1,y2) of (Y1, Y2) we get

X(t) =2(t,Y1,Y2) = 2(t, Y1, Y2) i =vi po=v> = / x(t, Y1, Y2)Ovy.vs (Y1, Y2 )dyr dys (3.1)
2

R

for some y;, yo-parametrized process x(t,y1,y2) which is F-adapted for each yi,ys. Then,
again by the definition of the Donsker delta functional and the properties of forward inte-

{eq6}



gration ([DrQ]), we can write

a:+/0 b(s )ug(s),Yl,Yz)ds—l—/o o(s, X(s),ui(s),us(s), Yy, Ys)dB(s)
b [ X669, Y2 Yo, O N

ZU"—/ b S, I S 3/17}/2) ul(sa}/l)JUQ(S?YQ)a}/la}/Q)dS

o

+

0(5’1’(37Yl,Yz)7ul<3>Yl)7U2(S,Y2)>Y1,Y2)dB(S)

+

S—

/’Y S, J; S i/laYVQ) ul(s,}/1),UQ(S,}/Q),}/&,}/Q,C)N(CZS,CZC)
R

CL’—I—/ b S, I S ylayQ) ul(s yl) u2(5 y2) y17y2)y1 =Y1,y2= des
0

+

U(S, fL’(S> Y1, yz), Ul(S, yl), Uz(Sa y2)> Y1, y?)ylzyl,yQZYQdB(s)

t

+

S—
—

7(87 JZ(S, Y1, 92)7 Uy (Sa y1)7 Ug(S, yQ)a Y1, Y2, C)y1:Y1,y2:Y2N(d37 dg)

t
/b(Sax(Saylay2)7U1(57?/1);U2(37y2)>y1792)5Y1,Y2(y1,y2)dy1dy2d5
R2

I

8

+
N

~+

g 5

+

oc— —

0—(87 '1'(87 Y1, y2)> Uy (Sa y1)7 u2<87 y2)7 Y1, y2)5Y1,Y2 (yla y2>dyldy2dB(8)

2

/ (5,205, g1, 92), 1 (5, 1) (5, 92), 915 s C) vy (1 92y iy N (ds, )
2 JR

+

t

[ b(S7x(87y17y2)7u1(57y1)7u2(57y2)7y17y2>d8
2.Jo

_|_/0 ( (3 yl,yz) U1<S,y1),U2(57y2)>y17y2)dB(8)

=x+

T

t
+ / / (5, 25, Y, 12, 11 (5, 1), (5, 9), 91, v, )N (ds, dO)]ve v, (1, o)Ay
0 R

(3:2) {ea7}

Comparing (3.1) and (3.2) we see that (3.1) holds if we choose x(t,y) for each y = (y1,y2)
as the solution of the classical SDE

dl’(t, Y1, ?/2) = b(t7 I'(t, Y1, 92)7 ul(t7 y1)7 u2(t7 y2)7 Y1, yQ)dt
+ U(ta .I'(t, Y1, y2)7 Uy (t7 y1)> u?(t7 y?)a Y1, y2)dB(t)

+ /7(t7x<t7y17y2)7u1(t7y1>au2(t7y2)7y17y27Q)N(dt’ dC)) t Z 0 (33) {eq8}
R
z(0,y) =z, z€R. (3.4)



Using this notation and setting u = (uy,us),Y = (Y1,Ys) and y = (y1,y2), the performance
functional J;(u);u = (uy,us) of player ¢ defined in (1.4) gets the form

Jiu) = E[/O Jit, X (), ua(t), uz(t))dt + g:(X(T))] (3.5)

T

= ]E[/ {/ filt,x(t yr, y2), wa(t, 1), ua(t, y2), y1, y2 ) Elovy v, (Y1, y2) | Fi)di
r2 Jo

+ gi(@(T, y1,92), y1, y2)E[0y: vs (Y1, Y2)| Fr] }dy]

= /ji(u,y)dy; i=12. (3.6)
R2

where

ji(u,y)zE[/O filt, o (t,y), u(t, y), y)Eloy (y) | F]dt + g:(x(T,y), y)Eloy ()| Fr]]  (3.7)

As before, a Nash equilibrium for the game (1.5)-(1.6) is a pair @ = (4y, U2) € A; x Ay such
that

sup Jl(ul,ﬁg) S Jl(fbl,ﬁg) (38)
u; €Ay
and
sup Jg(ﬂl,UQ> S Jz(ﬂl,ﬂz). (39)
ug €Az

Or, equivalently,
sup /</jl(ul(y1)7ﬁ2<92))dy2>dyl < / (/jl(ﬁl(yl),@(yg))dm)dyl (3.10)
ur€A1 JR R R R

and

swp [ ([ datinton) ustoedn Yoo < [ ([ atinto). v ). 310)

We now solve the maximization problem (3.10) by maximizing the inner integral pointwise
for each y; and we solve the maximization problem (3.11) by maximizing the integral integral
pointwise for each y», i.e. we get the following problem:

Problem 3.1 Find (uj(.,y1),u5(.,y2)) € A1 X Ay such that
sup /jl(ul(wyﬁ,@(-,m))dyz < /jl(ui(-ayl)aU§(~7yz))dyz; for each y,  (3.12)
ui(,y1)€AL JR R

and

sup /jg(u’{(.,yl),u2(.,y2))dy1 < /jz(UT(.,yl),U*z (.. y2))dy1; for each ya.  (3.13)
R

uz(.,y2)EA2 R

To study this problem we present two maximum principles for the corresponding games.
The first is the following:

{eq3.5}

{eq3.6}

{eq3.7}

{eq3.6a}

{eq3.7a}

{eq3.6b}

{eq3.7p}



4 A sufficient maximum principle

The problem (3.12)-(3.13) may be regarded as a stochastic differential game with a standard
(albeit parametrized) stochastic differential equation (3.3) for the state process z(t,y1, y2),
but with a non-standard performance functional given by (3.5). We can solve this problem
by a modified maximum principle approach, as follows:

Define the Hamiltonians H; : [0, T] X RXRXxRxUXxR xR xR x Q2 — R by

Hi(tvx7y17y27u17u27p7QJT) = H(tax7y17y27u17u27p7q7ra w)
= E[0vi,v2 (Y1, y2)| Fel fi(t, 2w, w2, g1, y2) + (L, @, ur, uz, Y1, y2)p
+o(t, x, ur, uz, Y1, y2)q + / Yt ur, uz, Y1, y2)r (L, Qr(dC); i = 1, 2. (41) {eqt1}
R
Here R denotes the set of all functions r(.) : R — R such that the last integral above

converges. For ¢ = 1,2 we define the adjoint processes p;(t,y1,y2), qi(t, y1,y2), 7:(t, y1, Y2, C)
as the solution of the yy, yo-parametrised BSDEs
{ dpz(ta U, y2) = _%057 Y1, yQ)dt + ql<t7 U, yQ)dB(t) + fR T’i(ta Y1, Y2, C)N(dt, dg)v 0<t< T
pi(T,y1,92) = gi(x(T, y1,92), y1, y2)Eldys v, (v1, y2) | Fr
(4.2) {eq12}
To study the problem (3.12)-(3.13) we present two maximum principles for the corre-
sponding games. The first is the following:

Theorem 4.1 [Sufficient mazimum principle] {sufficient
Let (uAla 152) S “41 XAQ with associated solution 'ii.(ta Y1, y2)7ﬁi(t7 Y1, y2)7 Cj@<t7 Y1, y?)a 7sl(ta Y1, Y2, C)
of (3.3) and (4.2); i=1,2. Assume that the following hold:

1. x — gi(z) is concave; i = 1,2

2. The functions

ﬂl(x): sup /Hl(t7x7y17y27u17d?(tuy2>7ﬁ1(t7y17y2)7a\l(t7y17y2)7721<t7y17y27'))dyQ
R

u1 €A
(4.3)
and
,}:[2(‘7;): SuE /HQ(ta'Tay17y27al(t7y1)7u27ﬁ2(t7yhy?)?@(t7y17y2)7f2(t7y17y27'))dyl
uz€A2 JR
(4.4)

are concave for all t,yy, yo

Su}z /H1<t73:\(t7y1ay2)7u17’uj2(t7y2)7]/7\1(t7y17y2)’a\l(tay17y2)7fl(t7y1ay27'))dyQ
u1€A1 JR

:/Hl(taE(tvy17y2)7al(t7y1)7dQ(tay2)71/9\1(t7yl:y2>)Z]\I(tuyhiyZ)afl(tayhy%'))dyQ
R

for all t,y;. (4.5)



sSup / H2 (t> /.73\(?5, Y1, y2>7 ﬁl(t y1)7 Ug,ﬁg(t, Y1, y?)a Z]\Z(ta Y1, y2)7 f?(ta Y1, Y2, ))dyl
R

us €A

== / H2 (tv /I'\(t, Y1, 92)7 a1(757 ?/1)7 d?(ta yQ)al/)\Q(ta Y1, 92)7 a\Q(ta Y1, y2)7 f?(ta Y1, Y2, ))d?/l
R

for all t,ys. (4.6)

Then (ui(., 1), us(.,y2)) = (Wi(.,y1),ua(., y2)) is a Nash equilibrium for Problem 3.1.

Proof. By considering an increasing sequence of stopping times 7, converging to 1T', we
may assume that all local integrals appearing in the computations below are martingales
and hence have expectation 0. We omit the details in this argument. See [)S2].

We first prove that

sup /R/le(m(.,yﬂ,ﬂg(.,yz))dy1dy2S/R/le(ﬁl(.,yl),ﬂg(.,yg))dyldyg (4.7) {eq2.17}

w1 (,y1)€AL

Choose arbitrary uy(.,y1) € A; and let us in the following, for simplicity of notation, put

w(t, yr,y2) = 20 (Y1, y2), 2L, Y1, y2) = 2002 (L g1, ya),

b(ta Y1, y2) = b(t’ ZE(t, Y1, y2>’ Uy (tu yl)? u2<t’ y2)7 w)7 b(ta Y1, y2) = b(t7 iﬂ(t7 Y1, y2>’ Uy (tu yl)? ﬂ2<t’ y2)7 w)
and similarly with o (¢, y1,y2), 0(¢, y1, y2), v(t, y1, y2, C), Y(t, y1, y2,¢) and T(¢, y1,y2) = (¢, y1,y2)—
Z(t,y1,y2). Let us also put

Hl(ta yl»y?) = Hl(ta x<t7y17y2)7 y17y27u1(t7y1)7 QzQ(tv y2)aﬁ1(t7 Y1, y2)7 a\l(t7ylay2)7 fl(ta Y1, Y2, ))
(4.8)

and

A~

H1<tay17y2) = H1<t7i.<t7ylay2)ay17y27/&1(t7 y1)7'LZZ(tay2)7]/9\1(t7ylay2)7Z]\l<t7ylay2)afl(tayl?y% ))
(4.9)

Consider
/ / T3 01 (o g2), i (o)) = 2 (o 0), s 2)) s = I + L,
R JR

where

s / / E| / (bl y) (b, it ) — fi (6, (6, ), (), Gt )}

E[5Y1,Y2 (ylv y2) |~'T_;f]dt] dyl dyZ
(4.10) {1_1}

and
[2:/R/RE[{91<$(T,3/17ZJ2))_gl(f(T,ylay2))}E[6Yl,Y2(y1,yz)‘fTdeldyz. (4.11) {1_2}

9



By the definition of H; we have

T ~
/ /E[/ {H(t, y1,92) — Hi(t,y1,y2) — it v, y2)bi (B v, y2) — @t ya, y2)o (8w, vz, yi, o)
0
- /TAl(taylay27C>ry(t7y17y27<-)y(d§)}dt]dyldy2‘ (412) {I
R
Since g, is concave we have
I, < / / E[g1(Z(T, y1, y2)) Elovi,vo (1, y2) | Fr)Z(T, y1, y2) | dyr dys
R JR
_ / / E[Fy (T, y1, y2)E(T, 91, v2) dn g
T T
// / Pt y1, y2)da(t, y17y2)+/ 5(t7y1,y2)dﬁ1(t,y17yz)+/ d[pr, Z¢|dyr dya
0 0

/ / / Byt yr, 1) (5t w1, y)dt + 5t . y2)AB(E) + / 5t 1,y O (dt, dC))

T oH T _
- l(t Y1, y2)T(t, yl,yz)dt+/ Qu(t, Y1, y2)Z(t, y1, y2)dB(t) (4.13) {11_2}
0

0
T

/ / (t, y1,y2)71(t, y1, Y2, Q)N (dt, dC) + / a(t, y1,y2)q (L, yr, y2)dt

/ / (t, y1, 92, Q)71 (t, y1, Yo, Q)r(dQ) dt+/ / (t,y1, 92, Q1 (L 1, y2, ON (dt,df)]dyldyQ

b dt — d L Y2)q1(t)d
// / Pi(t, y, y2)b(t, v, o) dt /0 e Ty, )T Y, ) t+/0 a(t,yr, y2)qu(t)dt
+/0 /R’?(tay17y27C)fﬁl(tvy17y27<)y<d<)dt]dyldy2-

Adding (4.12) - (4.13) we get, by concavity of Hy,
/ / (o), a(2)) — i@ (), o ) iy
8H
// / {Hy(t,y1,92) — Hi(t, 51, 90) — o =ty o) T(t y1, o) Yt dyrdys  (4.14)  {eq2.28)

Since ﬁl(x) is concave, it follows by a standard separating hyperplane argument that there
exists a supergradient a € R for H,(z) at x = &(t, y1, y2) such that if we define

~

o(x) = Ha(w) = Ha@(t,y1,0)) — ale = 2(t, 91, 92)) (4.15)

then
¢(x) <0 for all = (4.16)

10



On the other hand, we clearly have

Gb(f(ta 91792)) =0 (4-17)
it follows that
OHy . OH, . )
axl <$(t7y17y2)) = / T;(t’x(tvybyQ)?ul(t?yl) U2<t yQ) (t y17y2> (t ybyQ) T(t7y17y27C)dy2 =a
R
(4.18)

Combining this with (4.14), we get

/ / s (o), e )) — (@), ia )

- oM, A
< [ [P0t = o) - T 000 ol 1,) 001,00
< 0 since H, is concave. (4.19)
Hence

sup //Jl(ul(.,yl),ag(.,yg))dyldygS/R/RJl(ﬂl(.,yl),ﬂg(.,yg))dyldyQ. (420) {eq2.17}

w1 (.,y1)€AL JR JR

O

4.1 The case when only one of the players is an insider.

It is useful also to have a formulation in the partly degenerate case when only one of the
players, say player number 1, has inside information. Then the control of player 1 is Hj-
adapted as before, while player 2 is F-adapted. In this case we define the Hamiltonians
H :[0,T|xRxRxUxRXxRxXxRxQ—Rby

Hi(t7x7y17u17u27p7Q7r> = H(tax7y17u17u27p7Q7T7w>
= ]E[éYl (yl)’ﬂ]fz(tv T, Uy, Uz, yl) + b(t7 T, Uy, Uz, yl)p

+U(t,x,u1,u2,y1)q—|—/v(t,x,ul,uz,yl)T(t,C)V(dC);i - ]-72 (421) {eq2'35}
R

Here, as before, R denotes the set of all functions r(.) : R — R such that the last integral
above converges. For i = 1,2 we define the adjoint processes p;(t,y1), ¢;(t,y1),7:(t,y1,C) as
the solution of the y;-parametrised BSDEs

{ dpi(t,y1) = =21 (t,y0)dt + q;(t,y1)dB(t) + [pri(t,y, ON(dt,dC); 0<t<T
pi(T,y1) =g ( (T Y1), y1)E[dy; (y1)[ Fr]

(4.22) {eq2.36}

11



Let j;(u(.,y1)) be defined by

jiuﬁ(,yl))::]E[jg filt,2(t, 1), ua(t, y1), ua(t), y1)E[0y; (y1)|F]dt
+ gi(x(T, y1), y1)E[oy; ()| Fr]];  i=1,2.

Then, with J; as in (3.5) we see that

%wmﬂz/ﬂwwmwnizLZ
R

Then, in analogy with Problem 3.1 we now get the following game problem:

Problem 4.2 Find (uj(.,y1),u3(.)) € A1 X Ay such that

sup  Ji(ui(-, 1), u5() < gi(ui(yn),us(.)); for each y
uy(.,y1)€AL

and

m>4h@@mﬂdﬂm§/hM@%Mﬂﬁ@L

uz()€A2 R

Theorem 4.3 [Sufficient mazimum principle with only one insider/

(4.23)

(4.24)

(4.25)

(4.26)

Suppose Yy = 0, i.e. player number 2 has no inside information. Let (uy,uy) € Ay X Ay with
associated solution T(t,y1),pi(t,v1), ¢i(t,y1), 7i(t,y1,C) of (3.3) and (4.2); i=1,2. Assume

that the following hold:
1. x — gi(z) is concave; i = 1,2

2. The functions

A~

Hi(z) = SUE Hy(t, 2, g1, u1,ua(t), Da(t, y1), o (t, yn), 71 (t, v, +))
u1 €A1

and

u2 €A

are concave for all t.

sup Hy (¢, Z(t,y1), w1,z (t), pr(t, v1), @t v1), Pr(ts v, )

ul €A
= Hl (t7 /x\(tv yl)a al(t7 y1>7 1'22(t)7]/?\1(t7 yl)a al(t y1)7 7:1 (ta Y1, ))
for all t.

12

(4.27)

Ha(x) = sup /Hz(t;%y17ﬂ1(t7yl)auz,ﬁz(tay1)7a\2(tay1),f2(tayh'))dyl (4.28)
R

(4.29)

{eq2.37}

{eq2.38}

{eq3.6¢c}

{eq3.7c}

{sufficient



sup / H2 (t7 /x\(t7 yl): al(tu y1>’ u27ﬁ2<t7 91)7 /q\2<t’ y1)7 7:2(757 Y1, ))dyl
R

u2€A2
= [ Hat 300, 008 90), a(0) Bt ). Bl ).t . ) s
R
for all t. (4.30)
Then (wi(.,v1),us(.)) := (1(.,y1),u2(.)) is a Nash equilibrium for Problem 4.2.

Proof.  The proof is similar to the proof of Theorem 4.2 and is omitted. 0

5 A necessary maximum principle

We proceed to establish a corresponding necessary maximum principle. For this, we do not
need concavity conditions, but in stead we need the following assumptions about the set of
admissible control values:

e Ay. For all tg € [0,T],y; € R and all bounded F; -measurable random variables
a;(ys,w), the control 6;(t, y;,w) := Ly, 11(t)u(yi, w) belongs to A; for i =1,2.

o A,. For all u;; 8 € A; with Bi(t,y;) < K < oo for all ¢,y; define

1
and put '
Bit, yi) = 0i(t, yi) By (¢, i) (5.2) {betalt,y)]

Then there exists > 0 such that the control
ui(t, yi) = ui(t, yi) +aBi(t,y:); t€[0,T]

belongs to A; for all a € (=04, 9) for i =1, 2.

e A3. For all §; as in (5.2) the derivative processes

d
xi(t,y1,y2) = @“"(maﬁ““”(t,yl,yz)la:o

and

d
X2(t, y1,42) = %x(ul’eraﬁQ)(t,ylny)‘a:O

13



exists, and belong to L?(\ x P) and

Xm (ta U, y2) = [%(ta Y1, y2)Xl <t7 Y1, ?/2) + 38_1fl(t7 y)ﬁl (ta yl)]dt

HG2 (v xa(ty) + 52 (8 yr, v0) Ba(t, 31)]d B (1) )
+ fR[%(t Y1,Y2, C)Xl (tv Y1, y2) + 88_771(157 Y1,Y2, C)ﬁl (tv yl)]N(dtv dC)
X1(07 Y1, y2) = %x(lquaBLUZ)(O: Y1, y2)|a:0 = 0.

(5.3)

and

dxs(t,y) = [%(tvyla y2)x2(t, y1,y2) + aa_qf;@vylu Yo)Ba(t, yo)]dt
HZ2(t yn, y2) X2t y1, y2) + 52t y1, y2) Ba(t, y2)|dB(t) )

+ fR[%;‘(t? Y1: Y2, Oxa(t, Y1, y2) + (%;(t, Y1: Y2, Q)Ba(t, y2)IN (dt, dC)
X(0,y1,y2) = foat 020,31, ys)]a—o = 0.

(5.4)

Theorem 5.1 [Necessary mazimum principle/
Let (uq,u2) € Ay X Ag. Then the following are equivalent:

1.4 [ [ gi(un + aBi,uo)|ecodyidys = L [0 [ da(ur, us + aBs)|azodyrdys = 0 for all
bounded B; € A; of the form (5.2).

OH,
[ 8_1)1(t’ ZL‘(t, Y1, y2)7 U1, uQ(ta y2)7p1 (ta Y1, y2)7 q1 <t7 Y1, yQ)a ™ (ta Y1, Y2, '))dyQ]m:ul(t,yl)
R
0H,
- [ ® a_vz(ta l’(t, Y1, 92)7 ul(t7 yl)? U27p2(t7 Y1, y2>a qQ(ta Y1, y2)7 T?(ta Y1, Y2, ‘))dyl]UQZUQ(t,yQ)

=0 Vtelo,T]. (5.5)

Proof. By considering an increasing sequence of stopping times 7, converging to T, we
may assume that all local integrals appearing in the computations below are martingales
and hence have expectation 0. See [()S2].

We can write

d .
da / /]1(U1 + a1, ug)|amodyrdys = I + I
a Jr JRr

where

d T
I = d_//E[/ fl(t>$u1+a61(t7?/1,y2)7Ul(t7yl) +aﬁl(t,yl),uz(t,yz)yylaw)
a Jr JR 0
E[0vi v2 (Y1, y2) | Fe)dt]|a=odyr dyo (5.6)

and

d u a, U
I = %//E[!h(x( 1tafy, 2)(T7 Y1, Y2), Y1, Y2) B[y, v, (Y1, Y2) | Frl]la=ody1dya.
R JR

14
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By our assumptions on f; and ¢g; and by (4.2) we have

T
hz/R/RE[/O {%@,ylayZ)Xl(t,ylay2>+§_{;(t7y17y2)ﬁl<t,y1)}E[5yl’y2(y17yz)lﬂ]dt]d?;d?y; .
. iiil

12://E[gi(w<T’yl’y2)’yl’yQ)Xl(T’yhy2)E[5Yl,Y2(y1,y2)‘fT]]dy1dy2
R JR

:/R/R]E[pl(Tay1,y2)X1(T,y1,yz)]dy1dy2 (5.8) {iii2}

15



By the Ito formula

I, = //E[Pl(T, yl:yQ)Xl(T> ylay2>]dyldy2
T T
= // / p1(t, 1, y2)dxa(t, ylay2)+/0 Xl(t,yluyz)dpl(t>?/1,y2)+/0 dlxa, 1]t y1, y2)]dyidys
0b ob
= // / pi(t ?/1,yz){%(t,yl,yz)m(t,yl,?ﬁ) + a—m(t,yl,yz)ﬁl(@yl)}dt (5.9)
Oo 0
+ / pi(t, v, yz){a (t, 1, y2)xa(t, y1, v2) + a—;(t,yl,yz)ﬁl(t,yl)}dB(t)
P N
+ / /p1 (t, y1,92){ (t Y1, Y2, Oxa(t, yr, y2) + a—ll(t,yl,yz,C)@(t,yl)}N(dt,dC)
aH T
- / X1t 1, Y2) —=— g (t y1,y2)dt+/0 X1(t v, y2)qa (t, v, y2)dB(t)
+ / /Xl (t, y1, y2)r1 (t, Y1, yo, O N(dt, dC) (5.10)
do Oo
+ / a(t, yl,y2){a t,y)xi(t,y1,v2) + 57— 9, (t,y1,y2)Bi(t, y1) bt
vy
+ / /{ t Y1, Y2, G Xl(t y17y2)+ e (t yl,yg,C)Bl(t,yl)}h(t,yl,yg,C)V(C)dt]dyldyg

0b oo OH,
= // / x1(t, y1, y2){p1(t, y17?/2)8 (t,y1,92) + qu(t, yl’y2)8 (t, 91, 92) — B (t Y1, Y2)

+ /R%(t’yby2,§)r1(t,y173/2,C)V(do}dt

T ob oo
+ / Bi(t, y){p(t, v, y2) 57— v, y2) + @ (Y1, v2) 5— (v, 2)
(9u1 aul

T / OV 41y O (6 1, s OV(dC) Y] dyadye

= // / X1t Y1, Y2 —E[(5Y1 va (Y1, Y2 )| Fr]dt

0 ofi
/ {ﬂ(tv Y1, Y2) — a—f(t, Y15 Y2)E0y, v, (Y1, y2) [ Fel } 51 (t, 1 ) dt)dyr dys

= —I +// / OH, (t, y1,92) Bi(t, y1)dt]dyrdys. (5.11)
0

Summing (5.7) and (5.9) we get
3H1
//Jl uy + afy, ug)la=odindy, = I + 1o = // / (t,y1,y2)B1(t, yr)dt]dyr dys.
0
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We conclude that p
Ta / /.71(“1 + af, uz)|a=ody1dys = 0
a Jr JRr

OH
[ S matandn =0
0
for all bounded 5, € A; of the form (5.2).

Changing the order of integration we can write this as follows:

if and only if

T
E[/ /Fl(t,yl)ﬁl(t,?h)dtdyl] == 07 Vﬁl € Al (512)
o JR
where -
Fi(t, ) = / 8—1(t,y1,y2)dyz- (5.13)
R U1

In particular, applying this to 51 (¢, y1) = 01 (¢, 1) as in A1, we get that this is again equivalent
to
E[Fi(t,y1)|F] =0, Vi, v

Since Fi(t,y,) is already JF;-adapted, we have
E[F(t,y0)|F) = Fu(t,vn), Yty

So we deduce that oH
F1<t7 yl) = / 8_1<t7y1>y2)dy2 = 07 Vtayl'
R OU1

A similar argument gives that

d
aa / / Ja(uy, us + a32)|a=ody1dy = 0 for all bounded [y € A, (5.14)
R JR
is equivalent to
0H
"y —2(t,y1,y2)dyr =0, Vt,ps, (5.15)
Ug
where
0H,
t
ou 2( s Y15 Y2)
~ 0H,

a vy (t l'(t ylayQ) ul(tayl)aUZapQ(tvylay2)7q2(t7y17y2)7r2(tay17y27'))Uzzuz(t,yQ)' (516)
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6 The zero-sum game case

In the zero-sum case we have

/R / 91 (o 0), 2 92)) + Gotia (), w2, 2)) g = . (6.1)

Then the Nash equilibrium (4, (., 1), U2(., y2)) € A1 X Ay satisfying (3.12)-(3.13) becomes a
saddle point for

/R/Rj(ul(-,yl)au2(-,y2))dy1dy2 ::/R/le(ul(.,yl),uz(-,ya))dyldyz. (6.2)

To see this, note that (3.12)-(3.13) imply that

j2(711(-> ?/1)7 ﬁz(w yg))dyldyQ

2

[ o). iaomdyndyn < [ GiGinCn). aC)duadye = -
R R
< - Jo(t1 (- y1), ua(., y2))dyrdys

2 (6.3)

T—

and hence

/2J'(ul(.7y1),02(.,y2))dy1dyz < /Qj(ﬁl(.,yl),02(.7y2))dyldy2 < /29'(?11(-,?/1),uQ(-,yz))dyldzn
R R R

(6.4)
for all uy, us. From this we deduce that

inf sup / Gun (o), s (s o)y < sup / (o), s, o)) dyrdys
R2 R2

u2€A2 y e, u1 €A1

S/ j(ﬁl(wy1)7a2('7y2>>dy1dy2S inf / j<a1('7y1)7u2('>y2))dy1dy2
R2 u2€A2 2

< sup inf / (o), s, a))dysdys. (6.5)
]RQ

ureA; w2€A2

Since we always have inf sup > supinf, we conclude that

inf sup / (o), s o))y = sup / 3 un(e ) ia(s o) s s
R2 R2

u2€A2 yy e Ay u1 €Ay

:/ j(ﬂl(w?h%@2('7?/2))dyldy2: inf / j(al(wyl)au2('7y2))dy1dy2
R2 R2

ug €A

= sup inf / Jur (., y1), ua(., y2))dyrdys (6.6)
R2

uy €Ay U2€A2
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ie (4., 41),02(.,y2)) € Ay X Ay is a saddle point for [, [o J(ui(., 1), ua(., y2))dy:dys. Hence
we want to find ( 1(21), U2(., y2)) € Ay x Ag such that

sup inf / J(ui(., y1), ua(., y2))dy1dy, = inf sup / J(ur(-,y1), ua(., y2) ) dy 1 dys

up€A; W2€A2 u2€A2 €Ay
// (-, 1), G2(-, yo) )dyrdys (6.7)

where

// Y1, Y2))dydys = // / @zt yn, y2), ua(t, 1), wa(t, y2), y1, y2)Eldys v, (y1, yo)| Fe]dt
+ 9(2(T, y1,92), y1, Y2)Eldv: v, (v1, o) | Fr] ) dyn dys. (6.8) {Iw}

We can regard this problem as having one performance functional common to both play-
ers, but where one of the players is maximising and the other is minimising it. Then we
get just one Hamiltonian and just one BSDE, as follows: In this case the Hamiltonian H is
given by:

H(t7x7y1)y27u17u2)p7Q7r) = H(t7x7y17y27u17u27p7Q7r7w)
= ]E[(sYl,Yz(yl:yQ)“Ft}f(Lx?ulauZa y17y2) + b(ta Z, Uy, U2, ylayQ)p

+U(ta$,ul7u2ay1792)Q+/7(75:55,“17U2ay17y2)r(t7C)V(dg) (69) {eqll}
R

Moreover, there is only one triple (p, q,r) of adjoint processes, given by the BSDE

{ dp(t, y1,y2) = =2 (¢, y1, yo)dt + q(t, y1, y2)dB(t) + [ r(t,y1, 42, ON(dt, d¢); 0<t<T
p(T,y) = g'(@(T,y1,y2): 1, Y2)E[dv;,v; (y1, v2) | Fr]-

(6.10) {eq4.12}
By proceeding as above we obtain the corresponding sufficient maximum principle for the
ZEero-sum game:

Theorem 6.1 (Sufficient mazimum principle for the zero-sum game)
Let (11, 1s) € A1 x Ay with associated solution (¢, y1,y2), D(t, Y1, Y2), 4(t, y1, y2), 7(t, y1, Y2, ¢)
of (3.3) and (6.10). Assume that the following holds:

1. the function x — g(x) is affine

2.
Su}i /H(ta/x\<t7ylay2)aU’huAQ(t?yZ))ﬁ(t)y17y?)’(/]\(tﬂy17y2)7f(t7y17y2a'))dyQ
U1 €A1
/H t L T(t, Y1, y2), wa (t,yr), ua(t, ye), D(E, 1, y2), Ut Y1, Y2 ), (tuyl7y27'))dy2
for all t,y;. (6.11)
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inf / H(ta @\(t? U, 92)7 al (tu yl)» Ug,]/?\(t, Y1, y2)a a\(tv Y, 92)7 72(2(:7 Y1, Y2, ))dyl
R

us €A
= / H(ta ZE(@ Y1, y?)a al (ta yl)a '&Z(ta y2>7ﬁ<t7 Y1, y?)a a(ta Y1, y2)7 f.<t7 Y1, Y2, ))dyl
R
for all t,ys. (6.12)

3. The function

~

H(CE’): SUE /H(tvx7y17y2aulde(t)y2)7ﬁ(t7ylay2>7Z]\(tay17y2)7f(t7y17y27'))dyQ
ui1€A1 JR
(6.13)

15 concave for all t,y,
and the function

ﬂ(l‘): inf /H(taxaylay%’&l(tay1>7u27ﬁ(t7y1ay2)7a<t7yl>y2)7f(taylay27))dyl
R

u2 €Az
(6.14)
1s convex for all t,ys.

Then u(t, yr,y2) = (U1(t,y1), ua(t, y2)) is a saddle point for J(uy,us).

Similarly we obtain the following necessary maximum principle for the zero sum game
problem:

Theorem 6.2 [Necessary maximum principle for zero-sum games]
Assume the conditions of Theorem 5.1 hold. Then the following are equivalent:

1. d%fR fR J(uy + apf, us)|a—odyrdys = %fR fR J(ur,ug + afs)|a=odyrdys = 0 for all
bounded B; € A; of the form (5.2).

2

OH
[/ a_vl<t7 ‘T(t7 Y1, 92)7 Uy, U’Q(ta y2)7p1 (ta Y1, ?J2)7 QI(tv Y1, y2>7 ™ (t7 Y1, Y2, '>>dy2]v1:u1(t,y1)
R

0H
= [/R a_w(ta I'(t, Y1, 92)7 ul(tv yl)a V2, 7p2(t7 Y1, y2)7 q2(t7 Y1, y2)7 T2(t7 Y1, Y2, ‘))dyl]v2:u2(t,y2)

7 Applications

7.1 Optimal insider consumption under model uncertainty

Suppose we have a cash flow with consumption, modelled by the process X (¢,Y) = X*(¢,Y)
defined by:

{dX(t, V) = (at,Y) + pu(t,Ya) — c(t, V1)) X (t,Y)dt + B, Y)X (£, Y)dB(t) + [ v(t, Y, ()X (¢, Y)N(dt, d¢)
X0)=z>0
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Here a(t,Y),B(t,Y),v(t,Y) are given coefficients, while ¢(¢, Y7) > 0 is the relative consump-
tion rate chosen by the consumer (player number 1) and u(t,Ys) is a perturbation of the
drift term, representing the model uncertainty chosen by the environment (player number
2). Define the performance functional by

= E[/O {log(c(t) X (t)) + %/ﬂ(t)}dt + 0 log X (7] (7.1)

where § = 6(w) > 0 is a given Hp-measurable random variable, and 142(t) represents a
penalty rate, penalizing i for being away from 0. We assume that ¢ is H'-adapted, while u
is H2-adapted.

We want to find ¢* € A; and p* € Ay such that

sup inf J(e,pu) = J(c*, p*). (7.2)

ceAy HEA2

As before we rewrite this problem as a classical stochastic differential game with two
parameters y, yo. Thus we define, for y = (y1,42) € R x R,

de(t,y) = (alt,y) + p(t,ys) — c(t,y0)z(t y)dt + B¢, y)a(t, y)dB()
+ e 7t y, Qx(t,y)N(dt, dC) (7.3)
z(0,y) =x>0

and
j(C(., yl)v :u('a yQ))

= E[/O {log(e(t, y1)x(t, y)) + %Mg(t, y2) YE[oy (y)|Fi]dt + 0log (T, y)Eloy (y)| Fr]]  (7.4)

The Hamiltonian for this problem is
H(t,z,y,¢, 11,p,q,7)
1
— {log(eo) + 34 VBB (1) i) + (at,9) + 1o = -+ Bt v)ag +2 [ 2(t,0. Or(Q)av(C)

R

(7.5)
and the BSDE for the adjoint processes p, g, r is
dp(t,y) =~z Eloy WIF] + (alt,y) + u(t,y2) — c(t,y1))p(t, y)
(t y) ty + Jp 7y, Qr(Q)dv(¢)]dt (76)

+q(t,y)dB(t) + [pr(t,y)N(dt,d¢);0 <t < T
p(Ty) = sy Elov (v)| Fr]
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Define

h(t,y) = p(t, y)z(t,y). (7.7) {eq0.7}
Then by the Ito formula we get

dh(t7 y) = .T(t, y)[_

x(; y)E[éy(y)IE] (@t Y) + ult, Ya) — et Y ))p(t,y) — Bt y)q(t,y)
= [ A Or Qv

+p(t,y)(a(t,Y) + ut,Ys) — c(t, Y1)x(t,y)dt + p(t, ) B(t,y)z(t, y)dB(t) + z(t,y)q(t, y)dB(t)
+q(t,y)B(t, y)x(t, y)dt

+ /RKQE(L y) + 7(t7 Y, C).T(t, y))(p<t7 y) + T(t, Y, C)) - p(t7 y)‘x(t7 y) - p(t7 y)fy(t Y <>$<t, y) - x(ta y)T’(t, Y, C](

(7.8) {eqo0.8}
+ /R[(l‘(t, y) + vty Qx(t,y) (p(t,y) + r(t,y, Q) — pt, y)x(t, y)|N(dt, dC)

— dF(t,y) + h(t,y)B(t y)dB() + h(t,y) / At y, Q)N (dt, dC)), (7.9)
where
dF(t,y) =

— Eoy (y)|Fidt + x(t,y)q(t,y)dB(t) + z(t, y) / r(t,y, Q) (1 +7(t,y, Q))N(dt,d¢). (7.10)

R

To simplify this, we define the process k(t,y) by the equation

dk(t.y) = k(t.) [t )aB(O) + [

R

At,y, ON(dt, dg)] (7.11) {eqo.11}

for suitable processes b, A (to be determined).
Then again by the It6 formula we get

(e k(t, ) = Bt k() [t )dB + [

R

Aty QN (dt, d)|

+ b{t) [4F(1.9) + h(t 9B DBO +hlt.) [ 2(t9. QN do)
+ (Rt y)B(ty) + x(t y)alt, y)k(t, y)b(t, y)dt

[ (0.0 + 26901 O 426,00 KE N 9,0 N (O
[ (.0)+ )t )1 +1(8,. O ) Kt A 3. v (O

(7.12) {eq0.12}
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Define

u(t,y) = h(t, y)k(t,y).
(7.13) {eq0.13}

Then the equation above can be written

du(t,9) = utt.) | [ (650Nt il
+{B(t,y) +b(t, y)}dB(t) + B(t,y)b(t, y)dt + /R{A(t, v, Q) + vt y, ) + At y, Oyt y, QYN (dt, d.

+ k(t,y) [dF(t,y) +x(t, y)q(t, y)b(t, y)dt + /Rw(t,y)r(t,y,é)k(ty, Q1 +~(t,y, C))dv(¢)dt

+ /R:E(t,y)r(t,y,g))\(t,y, C)(l +ﬁ7(tay7C))N(dt7dC):| (714) {eq0.14}
Choose

b(t,y) == —B(t,y)
MEC) = — v(t,y.6)

m (715) {eq0.15}

Then from (7.11) we get

ty—exp/ —B(s,y)dB(s ——/BQSyds—//lnl—kvsyQ (ds, d()

/ / 1 +§ - C n(l+7(s, v, C))}V(dC)dS) (7.16) {eq7.16a}

and (7.14) reduces to
du(t,y) = f(t,y)dt + k(t,y)x(t, y)q(t, y)dB(?)
+/R{x(t,y)?“(t,y,€“)(1+’Y(t,y, Okt y) + k(. y)AE y, OIIN(dt d¢),  (7.17)  {eqT.16}

where
f(ty) = —k(t,y)Eldy (y)|F] + ult, y)[/R Y(t,y, QAL Q)dv(C) + B(t y)b(t, y)]
+ k(t,y)x(t,y)a(t, y)b(t, y) + k(t,y) /Rx(t, y)r(ty, QA y, O (1 +(ty, ¢))dr(C)
(7.18) {eq0.17}
Now define

w(t,y) == k(t,y)x(t,y)r(t,y, (). (7.19) {eq0.18}



Then from (7.12) and (7.15) we get the following BSDE in the unknowns u, v, w:

() =( ~ ke B ()]~ () [ 70 u¢) 4 00, )

R 1 + 7(757 Y, C)
= Blt)olt) = [ (6 Oult, . av() )
ot )dB(O) + [ wlty. QN 0<t<T

u(T,y) =0k(T, y)E[dy (y)|Fr]

This is a linear BSDE which has a unique solution u(t, y) = p(t, y)x(t, y)k(t, y),

where u(t,y) is given explicitly by (see e.g. Theorem 1.7 in [)S2])

ulty) = I'(t,y)

where

(7.20) {eq0.19}

vt y), wit,y, Q)

ET(T, y)0k(T, ) ElSy (4)| Fi] + / D(s,y)k(s, ) Eldy (4)| Flds| Fi,

(7.21) {eq7.21}

[(t,y) = exp /ﬁsydB /BQSyder//lnlJrvsyC N(ds, d¢)

7(5,9,¢)
/ /{m 1+ 7(5,9,0)) 1+7(8 ; O}y(dg)ds)
Combining (7.16) and (7.22) we see that
Lt y)k(t,y) = 1.
Substituted into (7.21) this gives
ult,y) = k(t,y) (EWEDy ()| FrllF] + (T — ) Eloy ()| F] ).

In particular, we get

p(t,y)a(t, y) = E[0E[dy (y)|Fr]|Fi] + (T — 1) Eldy (y)|F4].

Maximizing fR Hdyy with respect to ¢ gives the first order equation

/R (L B[Sy ()| A — (b 9)p(t, y)}dys = O,

C(ta yl)

i.e., by (7.25),

~ fR y dy?
c(t,y1) = c(t, ) = fR p dyz

_ fR y)|Fi)dys _
Jx (0B (y >|fTuﬂ] (T — 1) By (4)F) ) dys
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(7.22) {eq7.22}

(7.23)

(7.24)

(7.25) {eq0.20}

(7.26)

(7.27) {eq0.22}



Minimizing fR Hdy, with respect to p gives the first order equation

/R{u(t, y2)Eloy ()| F] + (t, y)p(t, y) pdyr = 0, (7.28)

ie., by (7.25),
(BB WIENFL S (- 0B WIF)dn
u(t ye) = fi(t, y2) = — TEDy () Fld . (7.29)

We can now verify that ¢, i satisfies all the conditions of the sufficient maximum principle,
and hence we conclude the following:

Theorem 7.1 (Optimal consumption for an insider under model uncertainty) The

solution (c*, u*) of the stochastic differential game (7.2) is given by

C*(t, le) _ f]R |'Ft dyQ‘yl =1 (730)
i (E[@EwY(ynfTHft] + (T = ) By (4)| 7] ) dysl =y,
and
Ji (EOED GFIIE] + (7 = OEly () 7)) ditlers
M*(tvy2) == f (7'31)

[ ( )|ft]dy1|y2 =Ys

An interesting, and perhaps surprising, consequence of Theorem 7.1 is the following,
which is a partial extension to model uncertainty of Theorem 3.1 in [D]:

Corollary 7.2 Suppose 0 is a deterministic constant. Then c*(t) and p*(t) are deterministic

also. In fact, we have
1

V)= =g

(7.32)

and
it Yy)=—(0+T—1). (7.33)

Remark 7.3 Note that this last result states that if 6 is deterministic, then the two players do
not need any information about the system, not even inside information, to find the optimal
respective controls.

7.2 Optimal insider portfolio under model uncertainty

Consider a financial market with two investment possibilities:

e (i) A risk free investment possibility with unit price Sy(t) =1 for all ¢ € [0, 7]

25
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e (ii) A risky investment, where the unit price S(t) = S(¢,Y) is modelled by the (forward)
SDE

dS(t,Y) = S(t,Y)[(a(t,Y) + p(t))dt + B(t, Y)dB(1)]; S(0) > 0. (7.34)

Here «(t,Y),5(t,Y) are given H-adapted coefficients, while p(t) is a perturbation of the
drift term, representing the model uncertainty chosen by the environment (player number
2).

Suppose the wealth process X (t,Y) = X™#(t,Y") associated to an insider portfolio 7 (¢, Y")
(representing the fraction of the wealth invested in the risky asset) is given by:

dX(t,Y) =m(t,Y)X(t,Y)[(a(t,Y) + pu(t))dt + B(t,Y)]dB(t) (7.35)
X0)=2>0 '
Define the performance functional by
J(m, 1) = E| /O %/ﬂ(t)dt + 0log X (7)), (7.36)

where 6 > 0 is a given (deterministic) constant, and %;ﬂ(t) represents a penalty rate, penal-
izing p for being away from 0. We assume that 7 is H-adapted, while p is F-adapted, i.e.
has no inside information.

We want to find 7* € A; and p* € A, such that

inf J = inf J — J(m*, 1), 7.37
sup inf, (7, 1) nf, sup (m, p) = J(@*, ") (7.37)

We rewrite this problem as a classical stochastic differential game with one parameter
y1 =y € R. Thus we define

dr(t,y) =n(t,y)z(t,y){at y) + p@)}dt + 8(t y)dB(t)] (7.38)
z(0,y)  =a(y) >0 '
and
J(m(y),u() = E[/O %”Q(t)E[éY(y”E]dt + 0log x(T', y)E[oy (y)|Fr]]- (7.39)
The Hamiltonian for this problem is
H(t,z,y,7, 1, p,q) = 1NJZE[éy(y)IJ%] +mr(a(t,y) + p)p + 7Bt y)q (7.40)

2
and the BSDE for the adjoint processes p, ¢ is

26

{eq00.

{eq00.

{eq00.

{eq00.

{eq00.

{eq00.

{eq00.

1}

2}

3}

4}

5}

6}

7}



dp(t,y) = —[w(t,y){(alt,y) + p(t))pt,y) + B, y)q(t,y) Hdt + q(t,y)dB(t)0 <t < T
p(T,y) = OE[Sy (y)|F1]

. (7.41)
Maximizing H with respect to 7 gives the first order equation
z(t, y)[(a(t, y) + pn(@)p(t,y) + B, y)a(t,y)] = 0. (7.42)
Since z(t,y) > 0 and B(t,y) # 0, we deduce that
(alt,y) + u(t)p(t,y) + B(L,y)a(t,y) =0 (7.43)
and t t
oltoy) = -0 1. (7.4

Hence (7.41) reduces to

_ OE[oy (u)iF1] (7.45)

dp(t,y) = =L (1, y)dB(1)

Define
h(t,y) = p(t,y)z(t,y). (7.46)

Then by the Ito formula we get

— _ alty)+u)
WT.y) = p(T,y)x(T,y) = OE[oy (y)| Fr].
This BSDE has the solution
h(t,y) = 0E[oy (y)|F]. (7.48)
Moreover, by the generalized Clark-Ocone formula we have
alt,y) + plt
(rlt.)8(t.0) - DOy ) — D) = EDS WIFL (709

B(t,y)

from which we get the following expression for our candidate 7 (¢, y) for the optimal portfolio

A(ty) = a(t,y) +at) | E[Didy(y)|F
’ B2(t,y) B(t, y)Edy (y)| Fi’

where fi(t) is the corresponding candidate for the optimal perturbation.

(7.50)
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Minimizing fR Hdy with respect to p gives the following first order equation for the

optimal fi(t):

/{u Elby ()| 7] + (L, y)(t, y)p(t, y)}dy = O,

) =~ TDECIICIY [ ) Bl )1y

We can now verify that (7, ,u) satisfies all the conditions of the sufficient maximum

principle, and hence we conclude the following:

Theorem 7.4 (Optimal portfolio for an insider under model uncertainty) The sad-
dle point (7*(t,Y), p*(t)), where 7*(t,Y) = ©*(t,y)|,=y, of the stochastic differential game

(7.35) is given by the solution of the following coupled system of equations

O‘<t7 y) + M*(t) E[Dt(SY(y”]:t]
B2(t,y) B(t,y)Eldy (y)|F]

™ (t,y) =
and

i) = / 7 (t, ) Eldy ()| Fildy

Remark 7.5 This result is an extension to insider trading of a result in [(DS4].

Consider the special case when Y is a Gaussian random variable of the form

Y = Y(Ty): where Y (¢ / W(s)dB(s), for t € [0, Ty)

for some deterministic function ¢ € L?[0, Tp] such that

T
1011z = / ¥(s)2ds > 0 for all £ € [0,7].
t

In this case it is well known that the Donsker delta functional is given by

) Y — ©2
by () = (2m0) e -
where we have put v := HzﬂH[O 1, See e.g. [AaQU], Proposition 3.2. We have
1 Y(t)—y)?
Bl (] = )~ expl -0
20|91, 7
" V() 5, Y (1)
E[D,dy (y)|F] = —(2r 0| 5) " Y ).
[ Y(y)l ] ( 7T||1/}||[,T0]) )exp[ 2||¢|| tTO]) ] ||w||[tTO lb( )

For more details see [DrQ].
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Corollary 7.6 Suppose that Y is Gaussian of the form (7.55). Then the saddle point
(7 (t,Y), u*(t)), where 7 (t,Y) = w*(t,y)|y=y, of the stochastic differential game (7.35)
s given by the solution of the following coupled system of equations

. _alty) Hptt) | Y(To) —Y(1) .
R e R T | Ty el (T00) fea0o.20}
and
! Y(t) —y)?
N*(t) _ —9(27T||¢||[2t,T0]>_2/RGXP[_%]W*(WJ)@‘ (7.61) {eq00.21}

Corollary 7.7 Suppose thatY = B(1y) for some Ty > T. Then the saddle point (7*(t,Y"), u*(t)),
where (t,Y) = 7*(t,y)|,=v, of the stochastic differential game (7.35) is given by the solu-
tion of the following coupled system of equations

ey - O D) | BT~ B

By Btw@-t =t (7.62)  {eq00.20}
and
pr(t) = —0(2m (1o — t))_% Aexp[—%]ﬂ*(t, y)dy; 0<t<T. (7.63) {eq00.21}
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