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Abstract

Active galactic nuclei (AGN) are the extremely luminous hearts of a subset of galaxies
we call active galaxies. It is commonly accepted that they contain supermassive black holes
(SMBHs) at their centres, surrounded by a luminous accretion disk and extended gas regions
at various radii from the black hole. One such region is the broad-line region (BLR), which
contains high velocity clouds that produce the Doppler shifted emission lines. In this Thesis
we present new developments in the field of studying AGN with a method called reverberation
mapping. Reverberation mapping compares the variations in the accretion disk flux with
the variations in the line flux of certain lines of the BLR, allowing to find an AGN’s BLR
size; the distance between a SMBH and its BLR.

We simulate light curves for the central regions of AGN based on measurements we expect
to obtain from the photometric Dark Energy Survey (DES), and the Australian spectroscopic
counterpart, OzDES, to predict how well we can perform the reverberation mapping analysis
using this dataset. We use a Markov Chain Monte Carlo (MCMC) based software (Javelin;
Zu, Kochanek & Peterson, 2011) to obtain estimates for these distances, and test reliability
when the emission line responds to changes in the accretion disk flux in a different way
than that expected by the program. We find that Javelin reliably recovers the BLR size
regardless of the inferred emission line response. This is important, as the true emission line
response is unknown.

It has been observed that AGN with similar luminosities tend to recover similar BLR
sizes, which is consistent with theoretical predictions. We take advantage of this behaviour,
and use the output from Javelin in a Bayesian stacking analysis in order to obtain BLR
size estimates for groups of AGN whose individual BLR size recoveries are not reliable. We
find that the Bayesian stacking method is a more precise and accurate way of estimating the
BLR size when compared to BLR size estimates from individual objects. In order to apply
this method to the real survey and optimise the binning of the AGN into groups of similar
luminosity, we simulated AGN with redshift and absolute magnitude distributions consistent
with the DES/OzDES sample. We then apply the stacking analysis on simulated Mg ii light
curves to find the optimal grouping of the sample. We find that approximately 95% of the
AGN where Mg ii can be used for reverberation mapping can contribute to obtaining time
lag estimates for AGN when using stacking.
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Glossary

AGN Active Galactic Nucleus, or Active Galactic Nuclei.
An actively accreting supermassive black hole at the heart of a galaxy, resulting in
characteristic qualities for the galaxy.

BH Black hole.
A celestial object whose escape velocity exceeds the speed of lights.

BLR Broad-line region.
Area around supermassive black hole in active galactic nuclei where gas clouds are
distant enough not to be fully ionised, but close enough to be strongly influenced
by the gravitational pull of the black hole, resulting in broad emission lines in the
spectrum.

C iv Carbon iv λ1549 Å.

damped random walk A random walk whose step size is “damped” according to its dis-
tance from a given value, such that the variations do not deviate far from this value.

DES Dark Energy Survey.
Five year (plus a zeroth science verification year) long photometric survey monitoring
for instance supernovae and active galactic nuclei.

emcee “The MCMC Hammer”.
A variation of Markov chain Monte Carlo algorithms implemented in Python. It is
used in the reverberation mapping software Javelin.

Hβ Hydrogen beta λ4861 Å.

Javelin Just Another Vehicle for Estimating Lags In Nuclei.
emcee Markov chain Monte Carlo based software developed for determining lags be-
tween the continuum source and the broad-line emission region in active galactic nuclei.

MCMC Markov chain Monte Carlo.
Algorithm originating from the field of Bayesian statistics, used for sampling from an
unknown probability distribution.

Mg ii Magnesium ii λ2798 Å.
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xii Glossary

NLR Narrow line region.
Area around supermassive black hole in active galactic nuclei where gas clouds are
partially ionised, and distant enough for Doppler broadening not to affect the emission
lines significantly.

OzDES Australian Dark Energy Survey, or Optical redshifts for the Dark Energy Survey.
Six year long spectroscopic survey, complementing the Dark Energy Survey. Monitors
for instance supernovae and active galactic nuclei.

Pan-STARRS1 Panoramic Survey Telescope & Rapid Response System 1.
A wide-field imaging facility primarily used for searching for moving objects over a
large area of the sky, but is also used for a variety of deep-sky investigations..

QSO Quasi-stellar object.
Active galactic nuclei where the remaining galaxy is not visible due to the large distance
to the object. The radio source may or may not be strong for these objects. Another
commonly used term, “quasar”, technically refers only to radio loud QSOs, but the
term is often used interchangeably with QSO, and AGN in general.

R− L relationship Radius-luminosity relationship.
Relationship between the broad-line region radius and luminosity for active galactic
nuclei. Expected to follow R ∝

√
L from theory.

RM Reverberation mapping.
Technique where the variation in accretion disk and and broad-line region emission
line flux for an active black hole are compared to determine the distance between the
accretion disk and the broad-line region.

SDSS-RM Sloan Digital Sky Survey Reverberation Mapping.
Reverberation mapping project conducted by the Sloan Digital Sky Survey, targeting
849 active galactic nuclei with redshifts 0.1 < z < 4.5.

SMBH Supermassive black hole.
A black hole with mass of a million or more times the mass of a stellar black hole.

transfer function Function used to describe the emission line response to, or the smoothing
impact of the broad-line region on, the continuum emission. The emission line light
curve is given by a convolution of the continuum light curve with the transfer function.

UV Ultra violet 1000 Å < λ < 4000 Å.
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1
Introduction

Active galactic nuclei (AGN) are the central, extremely luminous parts of active galaxies.
According to the unified model, AGN have a supermassive black hole at their centre. The
black hole is surrounded by a luminous accretion disk, which is the cause of the extreme
luminosity of the AGN. At a certain distance outside the accretion disk is the broad-line
region (BLR), which contains partially ionised gas. The neutral BLR gas is photoionised by
the light emitted by the AGN accretion disk, after which the electrons are recaptured by
the atoms, and emit the charachteristic emission line light when cascading down the energy
levels of the atoms. When the continuum light originating at the accretion disk changes over
time, similar changes can be observed coming from the BLR, only delayed by the travel time
needed for light to reach these areas. By measuring the delay between the continuum and
BLR emission we use a method akin to that used by bats for navigation; namely translating
time into distance by a known speed. This method, named reverberation mapping, has been
used for decades to learn more about the innermost regions around supermassive black holes
(SMBHs), which cannot be resolved visually. Kaspi et al. (2000), and, more recently, Bentz
et al. (2013), showed that the size of the BLR and the luminosity of AGN seem to follow a
trend, suggesting that the luminosity of AGN may be inferred from properties other than
the observed flux, which again opens up for the possibility of using AGN as standard candles
(Watson et al., 2011). This would be excellent, because AGN are persistently luminous, in
contrast to different standard candles, namely type Ia supernovae. The luminosity of AGN
is also much larger than any other standard candle currently in use, something which would
allow to probe the Universe at distances much greater than ever before. This opens up for
the possibility of investigating how cosmological parameters have changed over time, which
would teach us more about the evolution of the Universe as a whole, and consequently about
its contents, and our theory of gravity.

Reverberation mapping calls for a comparison of the light curves originating very close to
the SMBH and in the BLR. Assuming that the BLR light curve is a kind of echo of the light
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2 Introduction

curve originating closer to the SMBH, measuring the time lag between the signals allows
us to find the distance between a SMBH and its BLR. Learning about such a property of
AGN is interesting, not only because it allows us to study central parts of AGN close to the
black holes, but also because it teaches us about black hole evolution, the role of black holes
in galaxy evolution, and even about the history of our Universe. While the reverberation
mapping field has existed for several decades, the progress has been somewhat slow, partly
due to the long observation time needed to collect data for reverberation mapping purposes.
Individual estimates of AGN lags can also be noisy and unreliable. We have made use of
already existing software and theory to further develop a more effective method of estimating
the lags of AGN. As we expect AGN of similar luminosities to have similar lags, we expect
that it is possible to stack the individual lag estimates for similar AGN to obtain one clearer
time lag estimate for the group as a whole. We find that by stacking individual estimates
of AGN time lags a larger fraction of observational data may be used for successful time
lag estimation. This will allow us to extract lag information from AGN whose individual
reverberation mapping results would be inconclusive, and to obtain physical information
about AGN at earlier stages in observational surveys.

In the rest of this Chapter we provide the necessary knowledge about AGN, reverberation
mapping, standard candles, and the DES/OzDES surveys, which provide necessary data for
our research, before outlining the remainder of the Thesis. For more information about AGN
and the lowest steps of the cosmic distance ladder, please refer to Ryden & Peterson (2010)
and Peterson (1997).

1.1 The Cosmic Distance Ladder & Standard Candles
Being able to measure distances in space is crucial for learning about our Universe. The
measuring tools we use on Earth become useless when considering the great distances in the
universe, making it necessary to find alternative methods. In order to determine distances
to objects outside the solar system, we are required to be creative, sometimes even making
use of basic geometry. Several methods have been developed, but each method is generally
only practical for a small range of distances, and has to be calibrated to another method.
This forces us to create the so-called cosmic distance ladder, in which each measurement
method is a “step” on the ladder, and is required to get to the next “step”. The term distance
ladder may be somewhat misleading, as there often are more than one type of measurement
available for determining distances of a given scale, however, a calibration between given
methods is always necessary, especially when moving into new distance scales.

The way we measure distances is not the only thing in need of a change when moving
to celestial scales. At some point, metres and kilometres also become meaningless, and we
start stating differences in terms of far larger units. One example of this is the light year, a
very intuitive distance measure, given the constant speed of light. Its constancy implies that
light will always travel an equal amount of space during a given amount of time. A light
year is the distance covered by a photon over a period of a year. Some simple maths leads
to finding that a light year equals to 9.46 · 1012 km, a distance corresponding to travelling
around the Earth just above 236 million times. Such a long distance is somewhat difficult to
grasp on Earth, yet it is not particularly significant in the grand scheme of things. Indeed,
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when moving to celestial distances we quickly realise that time measurement ambiguity also
arises. To combat this we tend to not describe distances to objects directly, but relate these
properties to an object’s relative line-of-sight velocity with respect to us.

Doppler (1843) showed that waves are affected when the observer or source emitting the
observer are in motion relative to each other (see Eden, 1992, for English translation), an
effect we now refer to as the Doppler effect. In his derivation, Doppler showed that the
frequency of a wave emitted by a moving object will change when observed by a stationary
observer, depending on the relative velocity between them. If the observer and emitter are
moving towards each other, the waves will be “compressed”, resulting in a higher frequency,
and for motion away from each other, the waves are “stretched”, resulting in lower frequency.
For light, this implies that light is shifted towards the blue side of the electromagnetic
spectrum if the observer and source are getting closer, and towards the red side if the
motion is away from each other. This led to the terms blueshift and redshift, respectively.
The blueshift or redshift of celestial objects are possible to measure, provided a spectroscopic
observation can be made. The redshift z of any object is given (Ryden & Peterson, 2010,
Eq. 23.61) by

z =
λ0 − λe
λe

, (1.1)

where λ0 is the wavelength observed, and λe is the emitted wavelength. This has proven to
be very helpful, because the expansion of the universe implies the stretching of waves as light
travels through it. The longer a photon travels through the universe, the more stretched the
waves become, allowing us to use redshift as a distance indicator – and, through the speed
of light, a time indicator.

One of the first steps of the cosmic distance ladder is parallax, and this technique has been
used since the time of the ancient Greeks. It utilises geometrical arguments for determining
the distance to an object, provided an object can be perceived as moving relative to a fixed
background when being observed from different places. We can see this effect in day to
day life, when a close object, such as our thumb at the end of our extended arm, appears
to shift in position relative to the background when observing using one eye at at time.
By extending this principle to the sky, we can measure the distance to a nearby star by
observing it from two different locations, which we may translate into two different points
in time, such as morning and evening (diurnal parallax), or summer and winter (annual
parallax). By measuring the apparent angular shift in position relative to more distant, and
thus apparently fixed background stars or galaxies, and combining it with the known distance
of movement (radius of the Earth, or distance to the Sun), we can use simple trigonometry
to calculate the distance to the star. Figure 1.1 illustrates the geometry of a parallax system.
Parallax can, however, only be used to distances up to kiloparsec scales (see e.g. Docobo
& Andrade, 2015; Kim et al., 2016) due to the limitations in angular resolution. Therefore,
other measurement methods are required to obtain distances outside our Galaxy.

One popular measurement method is to use a standard candle. A standard candle is an
object whose luminosity may be inferred, and compared to the observed flux of the same
object. Since light follows the inverse square law, the so-called luminosity distance DL may
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Figure 1.1: We have here illustrated an annual parallax system. Given the known radius
of the Earth’s orbit and the measured angle by which the nearby star moves relative to the
background stars, it is possible to use trigonometry to infer the distance to the nearby star.

then be calculated by inverting the luminosity-flux relationship,

F =
L

4πD2
L

, (1.2)

where F is the flux and L is the luminosity of the object. One type of standard candles
is found in Cepheid variable stars. Leavitt (1908); Leavitt & Pickering (1912) discovered a
relationship between the period of Cepheid variables and their luminosity, now referred to as
the Cepheid period-luminosity relationship. Cepheid variables have been important in the
history of astrophysics, in particular by contributing to the proof of an expanding universe,
derived by Lemaître (1927) (English: Lemaître, 1931), and proven by Hubble (1929). They
still play an important role in the calibration of the cosmic distance ladder (see e.g. Soszynski
et al., 2008; Ngeow et al., 2015), required in the calculation of the Hubble constant, H0 (see
e.g. Tammann, Sandage & Reindl, 2008; Freedman & Madore, 2010), however, their low
luminosity only allows to use them for distance measurements in the local universe, of order
of a few tens of megaparsecs (see e.g. Riess et al., 2009).

Type Ia supernovae form another important group of standard candles. Not only are
supernovae the established standard candles we currently observe at the highest redshifts,
but they have also been important in significantly adding to our knowledge about the uni-
verse. Only about two decades ago, the universe’s expansion was believed to be decelerating.
However, with the effort of two independent supernova surveys, the universe was found by
Riess et al. (1998) and Perlmutter et al. (1999) to be undergoing accelerated, not decelerated,
expansion. While this discovery certainly has been extremely important, and led to a Nobel
Prize in Physics in 2011, supernovae are also limited as distance measurement tools, and
can only be observed to redshifts of z . 2 (Jones et al., 2013). Therefore, there is a large
amount of the universe in which the distances can only be approximated using redshifts.

Due to the presence of AGN both in the local universe and spread throughout to redshifts
of z > 7 (Mortlock et al., 2011), there has been an ongoing hope that these objects may be
used as standard candles. While most attempts have been unsuccessful (see e.g. Baldwin,
1977; Marziani et al., 2003), advances in technology and understanding have allowed progress
in the work of finding a way of using AGN as standard candles. We will now familiarise
ourselves with AGN, and later with the process of reverberation mapping, a method we hope
will lead to the establishment of AGN as the new high redshift standard candles.
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1.2 Active Galactic Nuclei
It is commonly accepted that every large galaxy has a SMBH at its centre. While each
black hole is different, one subset of them, namely those accreting large amounts of matter,
are responsible for the classification of so-called active galaxies (Ryden & Peterson, 2010,
Chap. 21). Active galaxies can also be sub-categorised depending on their features, however,
the most characteristic feature separating them from quiescent (normal, “inactive”) galaxies
is that they exhibit a large amount of non-stellar emission, some of which originates in
non-thermal, violent processes. It is exactly this energetic activity that gives active galaxies
their name. Active galaxies are sub-categorised according to their observed luminosity, the
amount of radio signal they are producing, and the shape of the emission lines. This results
in classifications such as Seyfert 1 galaxies, Seyfert 2 galaxies, quasi-stellar objects (QSOs)
and radio galaxies, or blazars. For our work we make study Type 1 quasi-stellar objects
and Seyfert 1 galaxies, which are galaxies where the central regions of the AGN can be
seen by the observer. Please refer to Peterson (1997, Chap. 1) or Ryden & Peterson (2010,
Chap. 21) for more details about the various active galaxies, as the classification details
are otherwise not crucial to the background information for this Thesis. The light from
active galaxies is often concentrated in the central parts of the galaxy, the active galactic
nucleus AGN, the luminosity of which can be over 100 times larger than that of the rest of
the galaxy combined. A unified model suggest that AGN are somewhat flattened, and the
observed differences between the “different” types of active galaxies is simply and orientation
effect. Figure 1.2 shows how the association between the different active galaxy types and
the viewing angle.

AGN are complicated regions of a galaxy with a number of components, as indicated in
Figure 1.2. It is believed that the bulk of an AGN’s luminosity originates from the accretion
disk of its central SMBH. If we assume that a mass m falls from a radius r much larger
than the Schwarzchild radius of the black hole (BH), rSch = 2GMBH/c

2, (Peterson, 1997,
Eq. 3.9) the reduction in its potential energy is

∆E = −GMBHm

r
−
(
−GMBHm

rSch

)
≈ GMBHm

rSch

=
1

2
mc2. (1.3)

If the mass were to fall directly into the BH, this energy would add to the total energy of the
BH. A more realistic scenario, however, is that the mass will interact with other particles
orbiting the BH in the accretion disk, thus converting the energy to thermal energy, some
of which we may observe as the strong source of emission from the AGN. We can assign an
efficiency η of the energy transfer, such that the photons carrying away the energy of a mass
m have a total energy of

∆Eγ = ηmc2. (1.4)

Since luminosity is the amount of emitted energy per unit time, the AGN luminosity becomes

L = ηṀc2, (1.5)

where Ṁ is the accretion rate of the BH. According to theory for a thin accretion disk,
there is a maximum accretion rate ṀE at which a non-rotating black hole can grow (see
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Figure 1.2: A schematic view of an AGN based on a unified model. The figure shows
the elements of the AGN, as well as the angles which correspond to different active galaxy
classifications. The figure is adapted from Urry & Padovani (1995).

e.g. Paczyńsky & Wiita, 1980; Abramowicz, Calvani & Nobili, 1980). The ratio between the
accretion rate of the BH and of the maximum accretion rate, ṁ = Ṁ/ṀE, is referred to
as the Eddington ratio. Despite the theoretical impossibility of accretion above this ratio,
there are observations pointing to the existence of BH with super-Eddington accretion (see
e.g. Fan et al., 2001; Okuda, 2002; Kollmeier et al., 2006; Reid et al., 2014). BH growth is
a research area still to be explored, and RM is one potential way of investigating BHs at
different stages of their lives, thus allowing to study their growth.

The accretion disk is also likely to be the starting point of an AGN’s jets. If magnetic
fields are present, they are likely to rip away parts of the ionised gas from the accretion disk,
and forcing it to move according to the field. The matter particles are flung out in space
to large distances, such that the jets can extend past the rest of the galaxy. The jets also
become the area for the strongest radio emission.

Somewhat outside the accretion disk, though long before the end of the jets, are clouds of
gas that are dynamically strongly affected by the BH. While the radio jets easily can extend
beyond the rest of the galaxy, the gas clouds in question are within light days to light years
from the BH (see e.g. Peterson, 1988; King et al., 2015). The energetic photons streaming
from the accretion disk ionise the clouds, and the strong gravitational pull forces the clouds
to move at high speeds to maintain their orbits. At a certain distance from the BH, the flux
is small enough for neutral regions to exist. Photons reaching these regions may partially
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photonionise the clouds, resulting in a cascade of recombination lines. The velocities of the
clouds are still large at these radii, resulting in Doppler broadening of the emission lines
from these region, thus giving the name to the area; the broad-line region (BLR).

Dust particles such as graphite cannot survive in regions with strong ultraviolet (UV)
radiation; they evaporate if in a place where the equilibrium blackbody temperature above
∼1500 K. The radius at which graphite can exist is called the dust sublimation radius, and
it is considered to be the starting point of the so-called obscuring, or dusty, torus. The
presence of dust is significant in AGN, as it is in other areas of astronomy. In the unified
AGN model it provides the opacity needed to hide the central parts of the AGN if observed
at the right angle, leading us to observe seemingly different active galaxies.

The narrow line region (NLR) is made up of interstellar gas, which is less dense than
that of the BLR. The region is also larger, and extends much further from the BH. As the
name suggests, the emission lines from this area are more narrow than those from the BLR,
which is a consequence of the larger distance from the BH. Both permitted and forbidden
emission lines are observed to arise from this region. Permitted emission lines are emission
lines occurring readily on Earth and other high density environments. Forbidden emission
lines correspond to low probability transitions from metastable energy levels in atoms. The
low probability leads to a long lifetime for the transitions, and in sufficiently high density
regions the energy is carried away by atom collisions before the low probability transition
may occur. The term “forbidden” is thus somewhat misleading, as the transitions can occur,
if given the right conditions. In space, the atom density may become low enough for such
transitions to occur, thus allowing them to be observed (Allen, 1987). With a larger distance
to the BH, the broadening of the emission lines is not equally strong in the narrow line region,
resulting in narrow emission lines for both the permitted and forbidden types.

1.3 Reverberation Mapping
Over the lifetime of an AGN, the accretion disk of a black hole in an AGN is a rough
approximation to a continuous, ionising light source. However, it has been found to vary in
flux over time, on time scales of days to many weeks, and sometimes even longer (Peterson,
1993). Moreover, the emission lines originating from the BLR have also been observed to
have flux variations roughly corresponding to the flux variations of the continuum source,
shifted in time by days, weeks or months (see e.g. Peterson, 1988 for an overview over early
observations). From this behaviour we can conclude the following:

1. The BLR is optically thick at the ionising wavelengths, and the emission lines origi-
nating there respond to changes in the accretion disk flux, and

2. The distance between the accretion disk and BLR is small, of the order of a light year
or less.

It is worth noting that the emission lines from the BLR are created when atoms are pho-
toionised, and an electron is captured and cascades down to its lowest energy state. For this
reason, the most important wavelengths are those with sufficient energy for photoionisation
to occur; λ < 912 Å. These wavelengths cannot be used for reverberation mapping due to
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absorption by neutral hydrogen in our Galaxy, so we make use of longer wavelengths as a
proxy for the ionising continuum.

Reverberation mapping (RM) is the technique of inferring physical properties of a black
hole and its BLR from measurements of the time lag between variations in the black hole’s
continuum and emission line fluxes. Reverberation mapping can be performed despite the
fact that the true shape of the BLR is not known; in fact, the method of reverberation
mapping was partly developed in an attempt to learn more about this region of AGN. By
measuring the time lag between the flux variations originating at the accretion disk and in
the BLR of a black hole we obtain an estimate of the BLR size. For reverberation mapping
to be applicable, a set of assumptions must be made about the system (see e.g. Peterson,
1993; Peterson & Horne, 2004). We assume the following:

1. The continuum emission originates in a single, central source, much smaller than the
BLR;

2. The continuum source and emission clouds only make up a small fraction of the total
BLR volume;

3. There is a simple – although not necessarily linear or instantaneous – relationship
between the observed and ionising continuum, the latter of which is responsible for the
emission lines;

4. The light travel time across the BLR, τ0 = rBLR/c, which we will now refer to as the
lag of the AGN, is the most important time scale. Other time scales, for which we also
make assumptions, are also present:

(a) The recombination time scale, which is the amount of time required for the emis-
sion line gas to re-establish photoionisation equilibrium for a change in continuum
luminosity, is practically instantaneous relative to the AGN lag;

(b) The dynamical time scale, τdyn ≈ rBLR/∆V ; the time it takes for the gas clouds
to have moved a significant amount to impact the observations, must be longer
than the RM campaign.

The time scale of light travel across the BLR ranges between days at the shortest to a
few years at the longest. In comparison, the recombination time scale is of the order of
minutes for typical BLR densities, thus being practically instantaneous compared to the
AGN lags. The dynamical time scale is of order c/∆V times the AGN lag, where ∆V is the
velocity dispersion of the BLR clouds (Peterson & Horne, 2004). The velocity dispersions
are usually of order 5000-10 000 km/s (Véron-Cetty & Véron, 2000). Assuming a velocity
dispersion of 10 000 km/s, we obtain a dynamical time scale of ∼2.5 years for an AGN
with one month lag in the observer frame. In order to avoid smearing effects from the
cloud dynamics, reverberation mapping campaigns should be kept short compared to the
dynamical time scale. The length of the DES/OzDES surveys, for which the analysis in
this Thesis is performed, is five years. The length of the surveys can therefore be a point
of concern. However, the majority of the AGN in the DES/OzDES sample are expected to
have observed time lags longer than a month, so only a small fraction of the AGN would be
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impacted by the survey length. The most fragile of the reverberation mapping assumptions
is likely to be about the relationship between the optical and ionising continuum, as they
should be varying in sync for best reverberation mapping results. Kilerci Eser et al. (2015)
have investigated the relationship between the optical and UV continuum luminosities, and
found a strong, though non-linear, relationship between the two.

There are several ways of determining the lag of an AGN. Gaskell & Sparke (1986)
proposed using cross-correlation for determining AGN time lags, based on Cherepashchuk &
Lyutyi (1973). Due to its simplicity and good results, the method of cross-correlation is still
in use, and is even being applied in more advanced scenarios (see e.g. Fine et al., 2012, 2013).
Kelly, Bechtold & Siemiginowska (2009) showed that a damped random walk describes the
optical flux variability of AGN well, opening up for a new, non-analytic way of determining
AGN lags. This has made it possible to utilise the method of Markov chain Monte Carlo
(MCMC) to simulate continuum light curves simply by adding in a self-correcting term to
the random walk, which ensures the damping; that the fluctuation happens around a given
mean value. By assuming that the emission line light curves can be obtained by smoothing
the continuum light curve in a particular way, this also opens up for the possibility of time lag
estimation by MCMC processes. The damped random walk method has been applied in the
development of Javelin (Just Another Vehicle for Estimating Lags In Nuclei), previously
known as Spear (Stochastic Process Estimation for AGN Reverberations), by Zu, Kochanek
& Peterson (2011). Javelin is specially designed to compute the lags for AGN, as suggested
by the name, and has been used for that purpose throughout this project. More specifics
will follow in Section 2.2.

Woltjer (1959) was the first to estimate the masses of AGN utilising the distances between
the accretion disks of supermassive black holes and their BLRs, and RM has proved useful
in estimating the masses of supermassive black holes by assuming virialisation of the BLR
gas clouds (see e.g. Peterson et al., 2004; Denney et al., 2010). The black hole mass is then
given by

MBH = f
rBLR(∆V )2

G
, (1.6)

where rBLR is the radius of the BLR, estimated by RM, ∆V is the BLR velocity dispersion,
estimated by the Doppler width of the emission line, G is the gravitational constant, and
f is a factor of the order of unity, depending on the kinematics, structure, and inclination
of the BLR. An estimation of the numerical value of f was made by Onken et al. (2004),
yielding f = 5.5± 1.9.

Kaspi et al. (2000) found a strong correlation between an AGN’s luminosity and its BLR
size, a relationship which since has been confirmed (see e.g. Bentz et al., 2009; Denney et al.,
2010). Based on the photoionisation model of an AGN the photoionisation may be described
by the photoionisation parameter U , given by

U =
Q(H)

4πr2
BLRcne

, (1.7)

where Q(H) is the rate of production of the hydrogen-ionising photons by the central source,
and ne is the free electron density (e.g. Peterson, 1988, 1993). The photoionisation parameter
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characterises the equilibrium state of the gas, and for pure hydrogen gas photoionisation
equilibrium, meaning that the rates of photoionisation and recombination are equal, occurs
when U = 1. From Equation (1.7) we see that if U and ne are constant in all AGN,
rBLR ∝

√
Q(H). Based on the similarity of spectra obtained from various AGN we can

expect the conditions in the BLR of different AGN to be similar, meaning the assumption of
constant U and ne is realistic to first order. Baldwin et al. (1995) also argue that there are
strong selection effects in BLR emission, such that the emission of specific lines is dominated
by regions of the BLR with similar U and ne values, even if vastly different gas conditions
exist elsewhere in the BLR. With this in mind, and knowing that the production rate of
hydrogen ionising photons should be proportional to the luminosity, it follows that the
relationship between the luminosity and BLR size, called the R−L relationship, is given by
rBLR ∝

√
L. Kilerci Eser et al. (2015) show that observations seem to point to a relationship

somewhat different to, or maybe more complicated than, this simple proportionality. An
important reason for this is that optical wavelengths often are used as a proxy for the
ionising flux for RM purposes, and the optical flux does not map to the ionising flux linearly.
If continuum flux from UV wavelengths is used instead, the relationship is closer to that
predicted by theory. However, with a known R − L relationship, regardless of its exact
form, the luminosity of an AGN may be inferred if the BLR radius has been measured using
reverberation mapping, which means that it should be possible to use AGN as standard
candles.

As a consequence of the observed R−L relationship an AGN with a higher luminosity will
have longer time lags, since a more luminous source can ionise a larger volume. To observe
AGN at greater distances from the observer with the same amount of flux the luminosities of
the AGN must increase, thus implying longer time lags for more distant AGN. In addition,
due to the expansion of the universe, the AGN lag is perceived to be longer by the observer
than it’s intrinsic length, scaling with a factor of 1+z according to the rules of time dilation.
Our ability to recover an AGN time lag reliably is highly dependent on the survey compared
to the lag time Horne et al. (2004). This implies that the more distant the AGN one wishes
to determine a lag for, the longer the survey needs to be.

Redshift not only contributes to making the observed time lag of an AGN longer than they
intrinsically are in the frame of reference of the AGN; it also causes a shift in the observed
spectrum. This leads to different emission lines being present at different redshifts. The
three most popular lines for RM are the Hβ, Mg ii and C iv lines, and they can be observed
in different redshift windows. Based on the wavelength range of AAOmega spectrograph
(3750-8900 Å, Saunders et al., 2004; Smith et al., 2004), used for the data collection this
Thesis is based upon, the windows of choice are as follows: Objects with redshift z < 0.69
are measured by the Hβ line. This line, together with the Mg ii line, can be used for redshifts
0.69 < z < 0.74, after which Mg ii is the only available emission line in the redshift range
0.74 < z < 1.58. Between 1.58 < z < 1.94, Mg ii can be used together with C iv, and C iv
is the emission line to use for redshifts z > 1.94 (King et al., 2015, priv. comm.).

We have already stated that RM allows to determine the BLR size. Generalising this
idea, RM could be used to probe the shape of the BLR by studying the properties of the
“echo” (Peterson, 1993; Horne et al., 2004). This is easy to realise by the following, simple
thought experiment: Assume the BLR is an infinitesimally thin ring around the continuum
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Figure 1.3: Illustration of an overly simplistic reverberation mapping scenario. One burst
of light originating at the accretion disk of an AGN is observed at a given time. A certain
amount of time later, a similar burst is observed from the BLR. The time difference between
the two observations corresponds directly to the light travel time between the accretion disk
and the BLR if the accretion disk-observer and BLR-observer distances can be approximated
to be equal.

source which is face-on to the observer. Next, let there be one burst of light at the central
black hole. Some of the light from the continuum source will then travel directly towards the
observer. Some, however, will travel towards the BLR ring and reach all points on the ring
simultaneously. This scenario is represented in Figure 1.3. Using that the recombination
time is practically instantaneous, all points at the ring will emit the light at the same time,
and all the light from the BLR will reach the observer simultaneously. The observer will
then see two bursts of light, one from the continuum source, and one from the BLR, where
the latter is delayed by the time it takes the light to travel the extra distance. Of course,
if the ring is edge on to the observer, some of the light from the BLR will follow the same
path as the continuum light to the observer, and hence not be delayed, while some light
will have to travel to the back end of the BLR before travelling to the observer, resulting
in a distinctly longer time lag. By considering various geometric scenarios and comparing
them to observations one may attempt to find the true shape of the BLR. A more extended
discussion on this topic will be presented in Chapter 3.

1.4 DES & OzDES
The Dark Energy Survey (DES) was proposed by the Dark Energy Survey Collaboration
(Flaugher, 2005) with the aim of using four distinct probes to investigate dark energy;
type 1a supernovae, weak lensing, baryon acoustic oscillations, and galaxy cluster counts.
The collaboration were to provide a new instrument for the CTIO Blanco 4 m telescope in
northern Chile in exchange for up to 30% observing time over the course of five years. The
chosen instrument came to be the 570 megapixel Dark Energy Camera (DECam), allowing
for excellent photometric measurements (Flaugher et al., 2012). DES required spectroscopic
follow-up for many of their science goals, so OzDES (Australian Dark Energy Survey1) was

1Or, Optical redshifts for the Dark Energy Survey.
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Figure 1.4: The DES and OzDES fields of view. The large orange circle represents the field
of view of the AAO, with the 400 fibres of the 2dF represented by the smaller orange circles
for one configuration of the AAT. The DECam has a very similar field of view, symbolised by
the mosaic image background.

created. OzDES makes use of the 3.9 m Anglo-Australian Telescope (AAT), together with
its new AAOmega spectrograph and the Two Degree Field (2dF) 400-fibre multi-object fibre-
positioning system (Yuan et al., 2015). The two telescopes both have a 2 deg diameter field
of view, as shown in figure 1.4, which allows for very effective spectroscopic follow-up of DES
by OzDES.

Today, the main scientific goals of DES and OzDES still include targeting type Ia su-
pernovae, but RM of AGN has become another important goal. Fortuitously, the observing
program designed for type Ia supernovae is also ideal for RM. We observe AGN at redshifts
0 < z < 4, with r-band apparent magnitudes 18.0 < mr < 20.5 (King et al., 2015). This is
done by targeting ten fields, covering a total area of 30 deg2, with a cadence of approximately
6 days for the photometric measurements over the course of each observation season, lasting
from August to January the following year (Diehl et al., 2014; Yuan et al., 2015). The high
cadence is to ensure the discovery of transient objects, and monitoring of variable objects
like AGN. The spectroscopic measurements are fewer, with 100 nights spread over five years,
as opposed to 525 nights for the photometry, spread out over the same time, thus resulting
in rarer observations2. Because DES will have accumulated a larger number of interesting

2An application for a change for the OzDES survey has recently been submitted and accepted. While
the total number of observation nights is to remain the same, four nights will now be moved from the fourth
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targets for spectroscopic follow-up over time, the number of observations per season increases
in time for OzDES. The surveys started their official collection of data in 2013, ending their
third year (Y3) of observations in January 2016. At this point in time we expect there to
be sufficient data for RM to be successful for a subset of the monitored AGN (≥ 10%, King,
priv. comm.).

While RM has been a field progressing over the last decades, the AGN monitored have
been few, and at low redshifts. Currently, only 64 AGN have succesful RM measurements, of
which the vast majority are located in the local universe (z < 0.1), with very few exceptions
(Bentz & Katz, 2015). The highest redshift AGN with a tentative RM measurement is S5
0836+71, with a redshift of z = 2.172 (Kaspi et al., 2007). The Sloan Digital Sky Survey
Reverberation Mapping (SDSS-RM) project will contribute to expanding the RM catalogue,
targeting 849 AGN in a redshift range of 0.1 < z < 4.5 (Shen et al., 2015). With a six
month program in the first half of 2014, however, SDSS-RM is only expected a success rate
of ∼10%. Due to the short observing period of this survey is is also expected that the
fraction of AGN with recovered time lags will be biased towards lower redshift values, due to
the effects discussed in Section 1.3. The program has been extended for an additional year,
and will continue attempting to extend the observations, but with no guarantees of telescope
time. (Shen et al., 2016). DES and OzDES will contribute to increasing the number of AGN
with successful RM further. The surveys target ∼700 AGN, which King et al. (2015) predict
a ∼35-45% RM success rate at the end of the five years, implying a significant increase in
number of AGN with successful RM. Moreover, because the targeted AGN are distributed
in redshifts 0 < z < 4, and the survey length is over several years, the AGN observed by
DES and OzDES will be an important contribution to the catalogue, providing RM data for
substantially higher redshifts than before.

1.5 Thesis Outline

This Thesis investigates reverberation mapping with simulations based on the expected type
of data from DES/OzDES. In Chapter 2 we present the various parameters needed for this
research, and summarise the result of an analysis of optimal parameters for running Javelin
on DES/OzDES data. A more thorough discussion on this topic is to be found in Appendix A.
We move on to discussing the transfer function in Chapter 3, deriving its shape based on a
few idealistic BLR distributions, and testing how Javelin is affected by receiving data which
have been obtained using a transfer function different from its expectations. We introduce the
idea of stacking analysis for reverberation mapping in Chapter 4, going through the maths of
the Bayesian method we have chosen to use in our analysis. The Bayesian method is applied
to several idealistic scenarios in Chapter 5 to test its reliability. Obtaining promising results,
we apply the stacking analysis to more realistic DES/OzDES data in Chapter 6, optimising
time lag estimation for DES/OzDES AGN samples for the Mg ii emission line based on three

year, and eight from the fifth year, to a sixth year of observations. The reason for this is that it allows for
further follow-up of supernova hosts discovered towards the end of DES, without it impacting the expected
outcome for the reverberation mapping project. DES is not expected to extend the observational time, but
we are able to use data from science verification period the year before the survey officially started. This
extends the total photometric measurement period to six years.
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years worth of observational data. In Chapter 7 we summarise our work, and restate the
major results of this project.

I use the first person plural throughout this Thesis to stress the DES/OzDES reverber-
ation mapping group involvement in the decisions made for the direction of the analysis.
The analysis has, however, unless otherwise specified, been performed by myself under the
guidance of my supervisors; Tamara M. Davis, Anthea L. King, Paul Martini, and Signe
Riemer-Sørensen.



2
Parameters

Reverberation mapping has traditionally used cross-correlation techniques to estimate time
lags (see e.g. Peterson, 1993; Fine et al., 2012, 2013). However, as the field of RM progresses,
newer, more scientifically based methods for estimation of AGN lags have been developed.
One example of this is the software package Javelin1. Javelin has been found to give
results consistent with the cross-correlation method (see e.g. Zu, Kochanek & Peterson,
2011; Grier et al., 2012a,b); however, we are aware that inconsistencies between the methods
may be, and already have been, found (Peterson et al., 2014). For that reason, and because
we are aware of the pitfalls of using black box software, we decided to properly investigate
Javelin, and decide on the optimal settings for the program for our purposes.

2.1 Describing AGN in Terms of Parameters

Any object may be described in a number of ways, by a number of parameters; its mass,
size, position, or the forces acting upon it, to mention a few. The important question will
always be: Which parameters are useful for describing the object we are interested in, for
the purposes we are interested in? For reverberation mapping, the obvious answer is “the
time lag of an AGN”. However, in order to establish this value, and put it in perspective,
other parameter values are also important. In this Section, we give a very quick overview
over the most important parameters by which the AGN in our project and simulations are
described. It should be noted that this is a non-exhaustive list of AGN parameters used in
the full simulations.

1See Zu, Kochanek & Peterson (2011) and https://bitbucket.org/nye17/javelin for more information.
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2.1.1 DES/OzDES Parameters

The direct observables in the DES/OzDES surveys are the redshift z and apparent magnitude
m of an object. The apparent magnitude is a measure of the brightness of a celestial object,
originally introduced by Hipparchus, and further developed by Norman Pogson (Ryden &
Peterson, 2010, Chap. 13.2). While there are several ways of defining apparent magnitude,
they all are on the same form;

m = −2.5 log10

F

FC
, (2.1)

where FC is a reference flux of a known object, and F is the flux of the object of interest
(Ryden & Peterson, 2010, Eq. (13.16)). The apparent magnitude, m, is closely related to
a similar measure of brightness, the absolute magnitude, M . The absolute magnitude of
an object is the value we would measure for the apparent magnitude if we observed the
object at a distance of 10 parsec (∼32.6 light years). Using the relationship between flux
and luminosity,

F =
L

4πr2
, (2.2)

where F is the flux of an object with luminosity L at a distance r, the absolute magnitude
may be related to the apparent magnitude by

M = m− 5 log
d

10 pc
, (2.3)

where d is the distance to the object measured in parsecs. Thus, the absolute magnitude is
to luminosity what apparent magnitude is to flux.

The magnitudes of the AGN by DES/OzDES are measured through four filters; g, r, i,
and z. Specific magnitudes, the magnitudes measured through filters will, of course, only
account for a part of the total, or bolometric, magnitude of the object. Additionally, as
distant objects are redshifted, the part of the spectrum each filter probes changes for each
object. A K-correction is needed to correct for this, and to find the true, rest-frame specific
magnitude of the object (Hubble, 1936; Hogg et al., 2002). For this, we make use of the DES
filter response curves, which tell us how much light we are capable to observe for each wave
length, and an object template, which describes the amount of light we expect to measure for
each wavelength if the object was at redshift z = 0. To perform the K-correction, we redshift
the template to the redshift of the object, and scale the template so that its observer-frame
specific magnitude equals the magnitude of the object. Once we have scaled the template,
we return to its rest frame state, and measure its magnitude using the specific filter of
interest. In the same way, the total bolometric magnitude of the object may be estimated by
integrating over the scaled spectra. K-corrections are important for our simulations, and will
also be necessary to apply to DES/OzDES data to obtain successful reverberation mapping
results.
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2.1.2 Parameters for AGN Light Curve Simulation

We simulate our AGN based on the values of redshifts and apparent magnitudes expected
from DES/OzDES. We assume a ΛCDM cosmological model with ΩM = 0.30, ΩΛ = 0.70,
and H0 = 70 km/s/Mpc (the same as used by MacLeod et al. (2010), for reasons to be
explained later), to determine the absolute magnitude, and thus the luminosity, of the AGN
using Equations (2.1) and (2.3). The R − L relationship for each of the emission lines
Hβ, Mg ii and C iv are then needed to determine the lag of the AGN. King et al. (2015)
summarise the research performed on the R−L relation for each of the mentioned emission
lines. Bentz et al. (2013) found the R− L relationship

log10

[
RHβ

light days

]
= (1.554± 0.024) + (0.546+0.027

−0.028) log10

[
λLλ(5100 Å)

1044 erg s−1

]
, (2.4)

to provide the most precise estimate for Hβ. Hβ is the line that has been observed the most
out of the three emission lines we consider, and therefore this relationship is the strongest
constrained. The R−L realtionship for Mg ii has not been studied very well, and in contrast
to the Hβ and C iv lines, it is not based on direct Mg ii lag measurements. Instead, it has
been estimated by Trakhtenbrot & Netzer (2012) by utilising the similarities between Hβ
and Mg ii, yielding

log10

[
RMg ii

light days

]
= (1.340± 0.019) + (0.615± 0.014) log10

[
λLλ(3000 Å)

1044 erg s−1

]
. (2.5)

Finally, the R− L relationship for C iv,

log10

[
RC iv

light days

]
= (0.93± 0.14) + (0.55± 0.04) log10

[
λLλ(1350 Å)

1044 erg s−1

]
, (2.6)

is based on the work of Kaspi et al. (2007). This relationship is not constrained as well as the
relationship for Hβ, but, unlike the Mg ii relationship, it is based on direct measurements.
We make use of these formulae to create lags for our simulated AGN.

In order to recover an AGN time lag from observations, its continuum and emission line
light curves are required. To simulate the reverberation mapping results of the DES/OzDES
surveys, we hence need to simulate realistic AGN light curves. According to the findings of
Kelly, Bechtold & Siemiginowska (2009), the continuum light curves of AGN can be modelled
by a damped random walk, which can be characterised by the parameters2 τD and SF∞.
The parameter τD represents a characteristic time scale of luminosity changes for an AGN.
The amplitude of the change is described by the structure function SF , which is defined
as the root mean squared magnitude difference between two subsequent measurements as
a function of the time difference ∆t between the measurements. SF∞ is the asymptotic
amplitude as the time difference grows large, and thus represents the degree to which an
AGN’s luminosity tends to change. MacLeod et al. (2010) found that the values of τD and

2MacLeod et al. (2010) use τ for one of the damped random walk parameters. We follow Zu, Kochanek
& Peterson (2011); King et al. (2015) in using τD for this parameter, and reserve τ as a general symbol for
the time lag, not to be confused with τ0, which denotes a true time lag value.
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SF∞ depend on the central black hole mass, and the luminosity of the AGN. Therefore, to
create realistic continuum light curves for our AGN, we implemented all the dependencies
found by MacLeod et al. (2010). To be able to do this accurately, we need to adopt the same
cosmology as MacLeod et al. (2010)3.

The degree of damped in the damped random walk depends strongly on the definition of
the structure function. The structure function for any time difference between measurements
∆t is given by MacLeod et al. (2010);

SF (∆t) = SF∞

{
1− e−

|∆t|
τD

}1/2

, (2.7)

where e−|∆t|/τD is the autocorrelation function for the DRW (Kelly, Bechtold & Siemigi-
nowska, 2009). It is interesting to notice the limiting cases where ∆t approaches zero and
infinity for these functions (see e.g. Hughes, Aller & Aller, 1992, for discussion);

SF (∆t� τD) =
√

2σ ≡ SF∞, (2.8)

SF (∆t� τD) = σ

√
2 |∆t|
τD

= SF∞

√
|∆t|
τD

. (2.9)

This shows SF∞’s strong relationship to the change in luminosity. Specifically, SF∞ describes
how much the luminosity on average is likely to change, given a long enough period of time.
Keeping in mind Equation (2.7) and it’s limiting cases, we move to the continuum light curve
itself. We follow Kozłowski et al. (2010) and King et al. (2015), and express the light curve
by

C(t) = E{C}+ ∆C(t), (2.10)

where C(t) is the continuum light curve magnitude at time t, E{C} is the mean value of the
continuum magnitude, around which the magnitude fluctuates, and ∆C(t) is the deviation
from the mean value E{C}. The deviation is given by

∆C(t+ ∆t) = ∆C(t)e
− ∆t
τD + σ

{
1− e−

2∆t
τD

}1/2

G(1), (2.11)

where σ contains the SF∞ variability as given by Equation (2.8), and G(1) is a Gaussian
random deviate of unit dispersion.

3MacLeod et al. (2010) make use of a ΛCDM cosmology with ΩM = 0.30, ΩΛ = 0.70, and
H0 = 70 km/s/Mpc to determine the i-band absolute magnitudes needed for their calculations. How-
ever, an ΩM = 0.26, ΩΛ = 0.74, and H0 = 71 km/s/Mpc cosmology is used to find black holes mass
estimates. They estimate the difference in cosmologies to correspond to a 1% effect for the best-fit coeffi-
cients for τD and SF∞. We make use of the second cosmology only indirectly, by using the black hole mass
distribution in terms of solar masses

p(log10MBH|Mi) =
1√

2πσ2
exp

{
− (log10MBH − µ)2

2σ2

}
,

where MBH is the black hole mass, Mi is the i-band absolute magnitude of the AGN, and µ = 2.0− 0.27Mi

and σ = 0.58+0.011Mi are the mean and standard deviation of the black hole masses, respectively, to create
our simulated AGN.
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Following Blandford & McKee (1982), we assume that the emission line light curve simply
is the BLR response to the continuum light curve. This was also outlined in the assumptions
stated in Section 1.3. If the emission from the BLR is indeed driven by the continuum source,
it should be possible to express the former in terms of the latter. We define a transfer function
Ψ(τ) that relates the emission line flux variations to the continuum variations by

∆Lf (t) =

∫
Ψ(τ) ∆Cf (t− τ) dτ, (2.12)

where ∆Lf (t) is the change in flux of the emission line light curve relative to its mean value,
and similarly, ∆Cf (t) is the change in flux for the continuum light curve relative to the mean
flux of the continuum light curve. It should be noted that the transfer function is defined
with the continuum and emission line brightness measured in terms of flux, not magnitude, as
in Equation (2.10). Based on Equation (2.12) we see that the transfer function is responsible
for the smoothing and shifting of the continuum light curve we observe when looking at the
emission line light curve. Specifically, the transfer function describes the response of the
BLR to a δ-function flare from the continuum source.

For simplicity, we create light curves based on daily measurements for the total length of
the survey. We then pick out a subset of the data, corresponding to the observation dates
we expect for the survey. We also add random Gaussian error to the data, to mimic the
uncertainty in measurements we expect for DES/OzDES. This way, we can make use of the
same intrinsic light curve to compare various effects, such as adding a higher measurement
uncertainty to the data, or using a higher sampling rate.

2.2 Parameters in Javelin
Javelin is based on the assumption that AGN can be modelled by a damped random
walk, as described in Section 2.1.2. Javelin attempts to fit the continuum light curve with
a damped random walk in between the measurements to obtain a continuous light curve.
The emission line light curve is then computed by convolving the fitted continuum light
curve with a transfer function, which in Javelin is assumed to be a top-hat function (more
information and discussion of this topic in Section 3.1). The program then utilises the emcee
MCMC method, developed by Foreman-Mackey et al. (2013), based on Goodman & Weare
(2010), for simultaneous fitting of desired parameters by calculating a combined likelihood
for all parameters at each MCMC step. The emcee algorithm has certain advantages to the
standard Metropolis-Hastings MCMC algorithm (Metropolis et al., 1953; Hastings, 1970),
including fewer parameters to tweak, and faster convergence of the chains, as described
by Foreman-Mackey et al. (2013). When running Javelin, the program estimates five
parameters; the continuum variability parameters τD and SF∞, the width and height of the
top-hat transfer function, and the AGN lag τ0.

In addition to the parameters Javelin is estimating, the program obviously also contains
a number of other, internal parameters. While the knowledge of many such parameters is
unimportant for the user of the software, certain parameters can be tweaked in order for
Javelin to process the data and find parameter estimates in an optimal way for the data set.
We invested some time in testing out these parameters to obtain our estimates in the most
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effective way possible. We will state the results of our findings below, but for the interested
reader please refer to Appendix A for a more thorough discussion of the parameter choices.
Javelin was originally developed to fit less noisy and higher cadence data than is expected
from DES/OzDES. As a consequence it was necessary for us to tweak the source code of
Javelin. Otherwise, the MCMC chains became divergent and an unrealistic parameter
space was explored. See Appendix A for more details. Javelin estimates for the time lag
may initially appear unreliable due to poor parameter estimation in the damped random
walk and transfer function parameters (see Section A.2). However, these concerns may be
disregarded due to the physical meaning of the parameters, which allow their estimates to
deviate from their underlying values if the light curves are short or poorly sampled, both of
which can be the case for our dataset.

As an MCMC based program, Javelin has a number of walkers, each of them forming
a chain with a certain number of steps. Each walker is placed randomly in the permitted
parameter space to wander. After some time the chain starts converging towards the equi-
librium, or region of highest probability. Usually, the initial steps, which do not represent
the system, are disregarded afterwards. It is common to set a fixed number of initial steps,
called the burn-in period, to be disregarded for all walkers. The number of walkers, the
burn-in period, and the number of steps to be taken by each walker after the burn-in period
are all quantities which can be adjusted to the needs of the user. The default values of these
parameters are 100, 50, and 50, respectively, but users are encouraged to use larger values
(Zu, priv. comm). Based on the analysis in Appendix A we chose to use 100 walkers, 500
burn-in steps, and 1000 steps in the chain after the burn-in period.

Javelin also gives the user the option of controlling certain aspects about the charac-
teristics of the lag parameter space. For instance, it is possible to specify the range of lags
for Javelin to consider in the MCMC process. We have chosen to only look for positive
values of the lag, since a negative lag would imply that the continuum behaviour follows the
emission line behaviour, which contradicts our initial assumptions. We have also chosen to
create a conditional maximum lag up to which Javelin is allowed to search. The maximum
lag value to be considered is either 1000 days, or three times the true lag, whichever one is
the largest. Note that when we simulate AGN, we do know their true lags, which will not
be the case for real data. However, a lag can be estimated for real data using the existing
R − L relationships, and we can use that value to constrain the searchable lag parameter
space. Javelin also has an option to logarithmically penalise lag values larger than a certain
fraction of the total baseline, or survey time. We have chosen not to make use of this feature,
and let Javelin explore all lags within the allowed region equally.



3
The Impact of the Transfer Function

We introduced the transfer function in Section 2.1. However, Equation (2.12) is really a
special case of the more general transfer equation,

∆Lf (t, Vz) =

∫
Ψ(τ, Vz) ∆Cf (t− τ) dτ, (3.1)

where Vz denotes the line-of-sight velocity of the BLR clouds (Peterson, 2001). In other
words, the emission line light curve is not only dependent on the BLR size and distribution,
but also on the motion of the clouds in the BLR. In the general case, the transfer function
Ψ(τ, Vz) is also referred to as the velocity-delay map. There have been some attempts
on solving Equation (3.1), and thus recovering the velocity-delay maps of AGN (see e.g.
Peterson & Horne, 2004; Peterson, 2014). However, most analyses have instead focused on
solving Equation (2.12). The idea behind the transfer function is to determine how the light
from the ionising continuum is affected when interfering with the BLR. If sufficiently good
measurements of the continuum and emission line light curves can be made, the transfer
function can potentially be inferred, which could be used to infer the distribution of the
BLR clouds. Learning about the BLR shape would provide new insight in the central areas
of AGN, as their geometry and kinematics are still unknown (Vestergaard, Wilkes & Barthel,
2000; Kollatschny & Bischoff, 2002; Peterson, 2006; Liu, Feng & Bai, 2015). Constraints on
the BLR distribution has been attempted by for instance Pozo Nuñez et al. (2013) and
Pancoast, Brewer & Treu (2014), however, work still remains to be done in this field.

The transfer function describes the smoothing and shift of the continuum light curve
by the BLR. Thus, in the unrealistic, but instructive case where the continuum light curve
is described by a delta function, the transfer function will effectively show the emission
line light curve. Because we assume that the smoothing is due to physical properties of
the system, the transfer function is expected to be dependent on, and possible to derive
from, the geometry of the BLR. If this is the case, the simplest transfer functions will be
those based on simple systems, such as distributions of no width. We have considered such

21
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idealistic systems, and derived their transfer functions. In addition, we have also considered
two other possible transfer functions, namely the Gauss and Gamma distributions, which
previously have been considered by for instance Skielboe et al. (2015). For the purposes of
this analysis we make the assumption that the AGN are at large distances, such that the
small angle approximation may be used. We also assume that the central source, as well as
all points on the BLR, emit light isotropically.

3.1 Transfer Functions
The simplest possible transfer function is based on a BLR distribution creating an infinitesi-
mally thin, face-on ring around the black hole (BH). If the width of the ring is infinitesimal,
all points on the BLR are at the same distance from the BH, as well as to the observer.
Using small angle approximation, the emission line light is then only delayed by

τ0 =
rBLR

c
, (3.2)

where rBLR is the radius from the BH to the BLR. The transfer function for a face-on ring
of infinitesimal width will thus be a delta function centred at time lag τ = τ0;

Ψ(τ) = δ(τ − τ0). (3.3)

Such a δ-function has been illustrated by a blue curve in Figure 3.1.
A slight increase in the complexity may be achieved by giving the face-on ring a small

width 2dr. In that case, the time lags will vary between τ = (rBLR − dr)/c and
τ = (rBLR + dr)/c. The assumption of an isotropic system will, however, make
sure that the amount of light seen by the observer remains the same for all times within
τ ∈ (rBLR ± dr)/c, resulting in a top-hat function centred at τ0, with width 2dτ , where
we remind that τ0 ≡ rBLR/c, and dτ = dr/c. A top-hat transfer function is shown in
Figure 3.2. Figure 3.3 shows an example of light curves originating at the continuum source
and a BLR of this sort. To generate the emission line light curve, Equation (2.12) was used
with a top-hat transfer function with a width of 20% of the time lag τ0. Figure 3.3 illustrates
the impact of the transfer function; as expected, the emission line light curve looks like a
smooth and shifted version of the continuum light curve. However, because the transfer
function was chosen to be narrow for this example, the light curves remain similar in shape,
which allows for easy estimation of the time lag τ0.

Assuming now that the BLR is distributed as an infinitesimally thin, edge-on ring, the
δ-function luminosity flare at the continuum will result in a light distribution from the BLR
which is a function of the BLR’s distance distribution relative to the observer. This may be
described as a function of the angle,

τ = τ0(1− cos θ), (3.4)

where the system is shown in Figure 3.4, and the distance has already been transformed into
delay by dividing by the speed of light c. Following the BLR ring in Figure 3.4, we realise
that small changes in θ close to θ = 0 and θ = π will result in a lot of light reaching the
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Figure 3.1: Transfer functions for five different BLRs, distributed as infinitesimally thin rings
around the BH at a distance corresponding to a lag of τ0 = 129 days. The different colours
represent different inclinations of the ring, where φ = 0 represents a ring viewed edge-on by
the observer, and φ = π/2 a ring which is face-on. Due to the similarity in the shape of the
transfer function for a ring with inclination φ = π/100 with that of an edge-on ring, the transfer
function for the φ = π/100 ring is not visible in this figure.

Figure 3.2: A top-hat transfer function, which the the transfer function we obtain for a
face-on ring with a final width around the central BH. In this case, the BLR is located at a
distance corresponding to a lag of τ = 129 days from the BH, extending to a distance of 10%
of the 129 day distance on each side of the 129 day mark.
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Figure 3.3: One possible light curve for an AGN where the transfer function is assumed to
be the same as in Figure 3.2, namely located at a distance of τ0 = 129 days, with a width of
0.2τ0.

Figure 3.4: Geometry of a ring viewed edge-on by the observer. Any point on the ring may
be given as a function of the viewing angle θ.
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observer within a small amount of time, due to the small changes in line-of-sight distance
between adjacent points on the ring. Conversely, around θ = π/2 the change in line-of-
sight distance for two adjacent points is larger, resulting in less light to be observed. A more
rigorous way of stating this is that the transfer function in this case simply is the derivative
of θ with respect to τ . Thus, by inverting and taking the derivative of Equation (3.4) we
obtain

Ψ(τ) =
dθ

dτ
=

d

dτ
arccos

(
1− τ

τ0

)
= − 1√

1−
(

1− τ
τ0

)2
·
(

0− 1

τ0

)

=
1

τ0

√
1−

(
1− 2τ

τ0
+ τ2

τ2
0

)
=

1√
τ(2τ0 − τ)

(3.5)

for an edge-on ring. This function is shown in Figure 3.1 by the magenta curve.
One may easily extend the scenario of the edge-on ring to an infinitesimally thin ring

with any inclination. The geometry of such a scenario is presented in Figure 3.5. In this
case, the inclination of the ring is given by the angle φ, ranging between 0 and π, where
φ = 0 is equivalent to the edge-on ring, and φ = π/2 to the face-on ring. The time delay
in this scenario given by

τ = τ0(1− cosφ cos θ), (3.6)

where τ ∈ τ0(1±cosφ). In order to obtain the transfer function, we again take the derivative
of θ with respect to τ ;

Ψ(τ) =
dθ

dτ
=

d

dτ
arccos

{
1− τ/τ0

cosφ

}
= − 1√

1−
(

1−τ/τ0
cosφ

)2
·
(

0− 1

τ0 cosφ

)

=
1

τ0 cosφ
√

1− 1
cos2 φ

+ 2τ
τ0 cos2 φ

− τ2

τ2
0 cos2 φ

=
1√

τ 2
0 (cos2 φ− 1) + 2ττ0 − τ 2

=
1√

−τ 2
0 sin2 φ+ τ(2τ0 − τ)

. (3.7)

Of course, this is simply a more general version of Equation (3.5), with Equation (3.7)
reducing to Equation (3.5) when φ = 0. In Figure 3.1, the transfer functions for five different
inclinations are plotted, including the face-on and edge-on rings discussed previously.



26 The Impact of the Transfer Function

Figure 3.5: Geometry of a ring viewed on an inclination φ by the observer. Any point on the
ring may be given as a function of two angles θ and φ.

The observant reader will notice that Equation (3.7) diverges to infinity at the boundaries
τ = τ0(1± cosφ). This does not imply a physical problem, as the implied infinite emission
only occurs for an infinitesimal amount of time. For numerical purposes this only leads to
minor complications. We keep in mind that the transfer function will be convolved with the
continuum light curve, as described by Equation (2.12). The integration bounds should be
defined for all times – or at least from zero to a very large number corresponding to a point
in time at which the response from the BLR has stopped. We do, however, know that the
transfer functions for our infinitesimally thin rings equal to zero outside of τ ∈ τ0(1± cos θ),
allowing to reduce the integral to be within these τ values. We split the integral such that
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the majority of the emission line light curve and the boundaries are calculated separately;

∆Lf (t) =

∫ τ0(1+cos θ)−ε

τ0(1−cos θ)+ε

Ψ(τ) ∆Cf (t− τ) dτ

+

∫ τ0(1−cos θ)+ε

τ0(1−cos θ)

Ψ(τ) ∆Cf (t− τ) dτ +

∫ τ0(1+cos θ)

τ0(1+cos θ)−ε
Ψ(τ) ∆Cf (t− τ) dτ, (3.8)

where we require ε to be very small. There are two things to note about ε and Equation (3.8);
first, ε � τ0(1 ± cos θ) must hold, and second, if ε indeed is small, then ∆Cf (t) will be
approximately constant over the interval, allowing to pull it out in front of the integral. It
then remains to know how the behaviour of Ψ(τ) as τ → τ0(1 ± cos θ) ∓ ε. Inserting
this limit in Equation (3.7) yields

Ψ(τ = τ0[1± cos θ]∓ ε) =
1√

2τ0ε cosφ− ε2
(3.9)

after cancelling out identical terms. We note that the second term in the square root is
negligible due to the smallness of ε. Integrating Equation (3.9) is analytically possible,
yielding a finite result. However, for the sake of simplicity we have chosen simply to set all
infinite values of the transfer function to zero in our simulations. Doing so does not change
our analysis significantly, since we only change finite valued end points. We are also aware
that the transfer functions we are considering represent idealistic, physically improbable
systems. Finally, the main interest is in investigating Javelin’s ability to recover time lags
for light curves whose transfer functions differ from a top-hat function, a criterion which is
satisfied regardless of the exact values of the end points of the transfer function.

Moving on to a system where the BLR is an infinitesimally thin sphere, we can make use
of the result of the edge-on ring. However, what used to be points along a circle now need to
be expanded into full rings to obtain a sphere. We do this by multiplying Equation (3.5) by
a circular area of emission at each pair of points along the ring. With reference to Figure 3.6
we see that the area of an infinitesimal portion of a sphere is given by

dA = r2 sin θ dθ dφ. (3.10)

The system is symmetric around the angle φ, and we may integrate over this parameter.
This yields

dA = r2 sin θ dθ

∫ 2π

φ=0

dφ = 2πr2 sin θ dθ. (3.11)

The area of an annulus will be given by the area between two angles θ and θ + dθ, giving

dA = 2πr2

∫ θ+dθ

θ

sin θ dθ

= 2πr2 [− cos θ]θ+dθ
θ

= 2πr2[cos θ − cos(θ + dθ)]. (3.12)
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Figure 3.6: Geometry of a sphere, where the observer is looking down along the z-axis. Any
infinitesimal area on the sphere may be expressed in terms of the angles θ and φ. There is a
rotational symmetry around angle φ for the observer, such that any point along a given angle
θ is at the same distance from the observer.

Using small angle approximation, the latter cosine term may be written

cos(θ + dθ) = cos θ cos dθ − sin θ sin dθ = cos θ · 1− sin θ dθ, (3.13)

yielding

dA = 2πr2[cos θ + sin θ dθ − cos θ]

= 2πr2 sin θ dθ

= 2πr2
√

1− cos2 θ dθ

= 2πr2

√
1−

(
1− τ

τ0

)2

dθ

= 2πr2

√
1− 1 +

2τ

τ0

− τ 2

τ 2
0

dθ

= 2πr2

√
τ

τ0

(
2− τ

τ0

)
dθ, (3.14)

where Equation (3.4) has been inserted to remove the cosine term. Multiplying together
Equation (3.5) and Equation (3.14) gives

Ψ(τ) = 2πτ 2
0

√
τ

τ0

(
2− τ

τ0

)
1√

τ(2τ0 − τ)
= 2πτ0

√
τ(2τ0 − τ)√
τ(2τ0 − τ)

= 2πτ0. (3.15)
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Figure 3.7: Transfer function for an infinitesimally thin spherical BLR distribution, centred
at τ0 = 129 days. We recognise this transfer function as a top-hat transfer function of width
2τ0.

In other words, the transfer function has a constant value of 2πτ0 for all lags corresponding
to the extent of the sphere, and equals to zero all other places. We recognise this as a top-
hat transfer function with width twice the radius of the sphere, as shown in Figure 3.7. In
performing the multiplication in Equation (3.15), we also recognise that the true expression
for the transfer function is

Ψ(τ) =
dA

dτ
, (3.16)

where we used the chain rule

Ψ(τ) =
dA

dθ

dθ

dτ
. (3.17)

This also agrees with Ψ = dθ/dτ for the case of the rings, as dA/dθ = 1 for the infinitesimally
thin rings.

In addition to the geometrically motivated transfer functions, we also consider transfer
functions based on the normal, or Gaussian, and Gamma distributions. These are shown in
Figure 3.8. The Gaussian distribution is given by

Ψ(τ) =
1√

2πσ2
exp

{
−(τ − τ0)2

2σ2

}
, (3.18)

and the Gamma distribution by

Ψ(τ) =
βα

Γ(α)
τα−1e−βτ , (3.19)
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Figure 3.8: Transfer functions based on the Gauss and Gamma distributions. The defin-
ing parameters of the distributions are chosen to have values of σ = τ0/10 for the normal
distribution, and α = 20 and β = α/τ0 for the Gamma distribution.

where Γ(α) is the gamma function

Γ(n) = (n− 1)! (3.20)

for a positive integer n, or

Γ(t) =

∫ ∞
0

xt−1e−x dx (3.21)

more generally.

3.2 Javelin’s Response to Various Transfer Functions
One of the concerns about using Javelin to estimate AGN time lags is the fact that it
assumes that the emission line light curve is obtained by convolving the continuum light
curve with a top-hat transfer function, when the true shape of the transfer function is
unknown. To test the robustness of Javelin, we create emission line light curves using
a number of different transfer functions, and inspect the time lag estimates obtained by
Javelin. Only if the estimates are reliable despite the transfer function taking other shapes
can we be sure that Javelin is a good tool for time lag estimation of true data, for which
transfer function is unknown.

We make use of all transfer functions described in Section 3.1, except for that based on
a face-on ring with infinitesimal width, and create emission line light curves by convolving
continuum line light curves with the various transfer functions. This process is performed
1000 times for each transfer function, using the same parameters to describe the AGN each
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(a) Face-on disk. (b) Sphere.

Figure 3.9: Normalised histograms showing the distributions of the best time lag estimates
Javelin finds for 1000 different realisations of the same AGN, whose time lag is τ0 = 129 days.
The figures are different in that they represent systems where two different transfer functions
have been used; the left being based on a face-on disk extending 12.9 light days to each side
of the 129 light day mark, the right based on an infinitesimally thin, spherical distribution of
clouds 129 light days from the BH. The histograms clearly show that Javelin prefers time lags
close to the true, underlying value most of the time for both systems.

time. We choose an AGN with an observed time lag of τ0 = 129 days, and the remain-
ing parameter values chosen such that the AGN is one we realistically could observe with
DES/OzDES. We record the time lag estimates provided by Javelin for each realisation,
and estimate a time lag for the AGN described by a given transfer function based on all the
individual realisations. The estimates were found in two separate ways. For the first, we
binned all the estimates in terms of time lag, fitted a skewed Gaussian to the histograms,
and used this distribution as a likelihood function to find the maximum likelihood time lag
estimate with uncertainties. For the second procedure, we simply calculated the median
with its uncertainty estimates based on the Javelin time lag estimates.

In Section 3.1 we showed how a face-on disk and an infinitesimally thin, spherical dis-
tribution of BLR clouds both result in top-hat transfer functions. We start by analysing
Javelin’s abilities using these transfer functions, as they represent the expectations of the
program. The width of the face-on disk top-hat transfer function is chosen to be 20% of
the time lag, so the BLR extends 12.9 light days on each of the side of the 129 light day
mark. As for the sphere, the top-hat transfer function has a width of two times the time lag,
according to the calculations in Section 3.1. Figure 3.9 shows the normalised distributions of
time lags as estimated by Javelin for the face-on disk and infinitesimally thin sphere. The
solid, green curves show the skewed Gaussian fit to the distributions, and the true time lag
of the simulated AGN is indicated by the red, vertical line. For the face-on disk, the time
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Figure 3.10: We present here the normalised histograms showing the distribution of time lags
for all the transfer functions we have considered in our analysis. The normalisation is performed
such that the area under each curve equals to one. The transfer functions we used for this
analysis included simple, geometrically motivated distributions of clouds, as well as transfer
functions simply based on known probability distributions. Despite the shape of the transfer
functions varying significantly, we see in this Figure that the estimates provided by Javelin
are all very similar, suggesting that Javelin is not very sensitive to the transfer function. This
is a very good quality of the program, as it will be used for data whose underlying transfer
function is unknown.

lag is estimated to be

τML = 142+79
−65 days and τmed = 165+147

−53 days

using the maximum likelihood and median estimation methods, respectively. The corre-
sponding estimates are

τML = 128+83
−53 days and τmed = 158+102

−55 days

for the sphere. Clearly, the true time lag value lies well within the uncertainties for these
estimates. In other words, Javelin performs well for these transfer functions, even with the
strong smoothing occurring when the transfer function is twice the width of the lag.

In our analysis we find that Javelin performs well not only for the top-hat transfer func-
tion based light curves, but for all of them. To illustrate this we plot all histograms, including
those shown in Figure 3.9, together. The complete set of time lag estimate histograms is
shown in Figure 3.10.

In addition to the top-hat transfer functions, the other geometrically motivated transfer
functions are those based on infinitesimally thin rings of various inclinations. We consider
four special cases; φ = π/4, φ = π/10, φ = π/100, and the edge-on ring (φ = 0).
The transfer function based on the edge-on ring leads to numerical issues for Javelin, and
we choose to instead focus on the results for the other inclinations. This is because the
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results for the edge-on ring do not represent the physical conditions of the system, and we
are able to see the limiting behaviour of such as system by allowing the inclination of the
ring to approach φ = 0, without actually reaching this value. Moreover, the probability of
observing an AGN with a disk which is exactly edge-on is obviously low. In fact, it is actually
impossible to observe such a system in real life, because the AGN will be obscured by the
torus if viewed edge-on (recall AGN anatomy illustrated in Figure 1.2). The distributions of
time lag estimates by Javelin for the physically relevant cases are to be seen in Figure 3.10.
They are all similar to each other, centring around the the true value of the time lag. The
estimates for the φ = π/4, φ = π/10, and φ = π/100 cases are

τML = 129+72
−56 days and τmed = 151+83

−56 days,
τML = 129+70

−57 days and τmed = 151+84
−55 days,

and

τML = 127+69
−54 days and τmed = 151+82

−52 days,

respectively. Obviously, the maximum likelihood estimates are completely on point, and
while the median overestimates the time lag, the true value is still contained within the
median uncertainties.

Finally, we also make use of the Gauss and Gamma distributions for our transfer func-
tions. We choose to define the normal distribution by a mean of τ0 = 129 days and a
standard deviation of 10% of the lag; σ = 12.9 days. For the Gamma distribution we
choose α = 20, and β = α/τ0, knowing that the mean of the distribution is given by
E{τ} = α/β. The distributions of Javelin’s time lag estimates for these non-geometrically
inspired transfer functions are also to be seen in Figure 3.10. For the transfer function based
on the normal distribution, the estimates for the 1000 realisations are

τML = 138+84
−59 days and τmed = 166+147

−54 days,

and for the Gamma distribution

τML = 133+75
−56 days and τmed = 158+135

−50 days.

Again the estimates are good, and the true value is well within the uncertainties of the
estimates.

Figure 3.11 summarises the estimates for the different transfer functions we have dis-
cussed. Both the maximum likelihood and the median allow us to estimate the time lag with
a precision covering the underlying AGN time lag. The maximum likelihood turns out to be
the most accurate method of estimating the time lags in this case. This is understandable
when considering Figure 3.10 and the algorithm inside Javelin. Javelin is allowed to ex-
plore time lags ranging between τ = 0 days to τ = 1000 days. While the majority of the
program’s estimates will be close to the true time lag value when the program is working
well, sometimes choosing incorrect values is unavoidable, especially with a large number of
experiments. In this case, the number of experiments was 1000, allowing the program to
sometimes end up deciding on time lags deviating from the true value. Since the true time
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Figure 3.11: Collection of time lag estimates based on 1000 realisations of a single AGN with
time lag τ0 = 129 days. Seven different transfer functions are been applied to the continuum
light curve to obtain an emission line light curve to compare with; five of them based on
geometric arguments. The geometric system (face-on disk with width 20% of the BLR size,
infinitesimally thin sphere, and infinitesimally thin rings of three different inclinations) or
distribution on which the transfer function is based is indicated along the x-axis.

lag is τ = 129 days, there is a much larger area to explore and mistakenly choose on the
higher lag range, thus dragging the value of the median in that direction.

The time lag estimate with the lowest precision is based on the face-on disk; a top-
hat transfer function with a width equalling to 20% of the AGN time lag. This may look
like a surprising result, since Javelin assumes a top-hat transfer function. However, when
considering Figure 3.9a, we see that the distribution centres very well around the true value;
indeed, the true value is within the uncertainty of the estimate. This suggests that there is
no need for reading into the poorness of the estimate for this particular transfer function.
The lower accuracy is more likely to be due to a statistical anomaly than to real, physical
or numerical effects. Considering the estimates in Figure 3.11 we can draw the conclusion
that Javelin is a robust program, capable of estimating time lag values well, even when the
emission line light curve, to which the continuum light curve is compared, must be described
by a transfer function different from the top-hat function assumed by the program.



4
Stacking

We have established reverberation mapping as a method of probing the innermost regions
of AGN, and that Javelin is a useful tool for this purpose. However, in order perform
reverberation mapping, observational data first need to be gathered. It is the observational
process which is especially expensive and time consuming, both due to the intrinsic length
of the lags we are attempting to measure, as well as the time dilation of the lags due to the
expansion of the universe. Not surprisingly, there has been interest in finding alternative,
more efficient ways of performing reverberation mapping observations. In this Chapter we
present some of the previous work in this field, as well as the procedure we have developed
for DES/OzDES.

4.1 Stacked Reverberation Mapping

Making use of the progress in technology allows for time-resolved photometric surveys and
multi-object spectrographs. This allows for reverberation mapping data to be collected
for a number of AGN simultaneously instead of individual objects only. Still, the number
of observations often needs to be very large in order to reliably recover AGN time lags by
reverberation mapping. We expect to obtain similar time lag estimates for AGN with similar
properties. More specifically, AGN with similar luminosities are expected to have similar
time lags, based on the R−L relationships. If should hence be possible to put together noisy,
individual time lag estimates for similar AGN in order to increase the signal to noise ratio,
and thus obtain a single statistically significant time lag estimate for said AGN sample.

Fine et al. (2012) made an important step forward for reverberation mapping when
introducing the idea of utilising stacking to perform reverberation mapping in a statistical
way. By making use of the cross-correlation between continuum and emission line light curves
they showed that even an extremely low number of observations can be used for inferring
AGN time lags if stacking is used. In particular, Fine et al. (2012) considered a case where
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an AGN was observed for a year with 61 continuum measurements, and the number of
emission line measurements were either 61 or two. When stacking the cross-covariance of 30
AGN with only two spectroscopic measurements in order to obtain a sample cross-covariance
function, they found that the peak in the stacked cross-covariance function was located at
the same time lag as the peak in the cross-covariance function for the well-sampled AGN
scenario.

A year later, Fine et al. (2013) showed the first results of stacking analysis utilised on
observed reverberation mapping data, obtained by the Panoramic Survey Telescope & Rapid
Response System 1 (Pan-STARRS1) medium-deep survey. The Fine et al. (2012) method
proved to be very useful, despite the concerns addressed in the article. Indeed, Fine et al.
(2013) recognise peaks in the stacked cross-correlation function which are consistent with
established reverberation mapping results performed on individual AGN. While the method
and the results are still at an early stage, they clearly show good potential, waiting only to
be implemented and further improved.

In an attempt to refine the method of Fine et al. (2012, 2013), Brewer & Elliott (2014)
make use of Bayesian analysis whilst stacking simulated reverberation mapping data. They
point out some of the weaknesses of the simple method presented by Fine et al. (2012), such
as the lack of meaning of the width of the peak in the cross-correlation function. Brewer
& Elliott (2014) choose to take a step away from the cross-correlation function, writing
their own code based on similar assumptions as Javelin. In their stacking analysis they
implement hyperparameters describing the distribution of the parameters deciding the value
of the AGN lags. In mathematical terms, this is the special case of Bayesian analysis named
hierarchical modelling. The hierarchical modelling allowed to estimate time lags in a way
that the lag uncertainty could be separated from the intrinsic uncertainty due to lag diversity
within the AGN sample.

4.2 Stacking with Javelin

It is important to note that stacking the light curves of individual AGN will not allow for
sample analysis, even if the light curves are modified to be in the rest frame of each AGN.
This is because the light curves are described by a (damped) random process, so even though
every AGN was described by completely identical parameters, the light curves would still
differ from each other. Indeed, if one was to monitor a single AGN over an extended period
of time, the same variation patterns would not be found. For this reason it is necessary to
stack the individual estimates obtained from the light curves, rather than the light curves
themselves. In our work we have chosen to use Javelin as our tool for estimating AGN
time lags, so we have needed to change the stacking procedure to suit our method. Javelin
does not provide us with a cross-correlation function, and we have to instead think through
what kind of input we give Javelin, and how the output should be used and interpreted.

While the cross-correlation method does not make any assumptions about the nature of
the continuum or emission lines, it does not provide much statistical information. Javelin,
on the other hand, assumes a damped random walk, and uses MCMC to estimate time lags.
We are able to access the information used for the MCMC, giving us information about the
time lags evaluated in the process, as well as the likelihoods for each step of each walker’s
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Figure 4.1: Example histogram showing the distribution of lags considered by Javelin for
one run of the program. The histogram has several peaks, but the most significant one is
somewhat close to the true value of the lag for the AGN in question. The strong peak shows
that the MCMC section of Javelin in this case successfully has converged towards fluctuating
around one time lag value, although somewhat offest from the true value of the lag.

chain. If one bins the time lags considered by Javelin during the MCMC according to
their length, one can obtain a distribution showing how many times the different values are
considered. If the MCMC process is successful, the chains should fluctuate around the correct
value, so the time lag of the AGN should be close to the peak of this kind of histogram. In
Figure 4.1 we present a normalised histogram of the time lags considered by Javelin for one
run of the program. The peak of the histogram is somewhat close to the true lag value of the
AGN. It is tempting to attempt stacking by averaging over the individual histograms of each
AGN. However, such a procedure does not result in particularly good time lag estimates,
nor is it statistically valid.

4.2.1 A Good Stacking Procedure
A good outline of a statistically valid stacking procedure is presented by Brewer & Elliott
(2014). We make use of their method for our stacking purposes, but stick to the simpler
Bayesian method without implementing hierarchical modelling. In general, Bayesian statis-
tics dictates we have a sample of N objects, each of which may be described by a parameter
θi. In our case, the sample is of AGN, and the describing parameter is the lag τi of the AGN.
Given a set of data {xi}, the posterior distribution describing each of the parameters θi is
given by

p(θi|xi) ∝ p(θi)p(xi|θi), (4.1)

where p(θi) is the prior distribution, and p(xi|θi) is the likelihood function. Brewer & Elliott
(2014) move on by introducing hyperparameters α which describe the distribution of the
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parameters {θi}. The joint probability distribution of α and {θi} is

p(α, {θi}) = p(α)
N∏
i=1

p(θi|α). (4.2)

For the sake of simplicity, we have chosen to assume that the lags of all the AGN we stack are
identical, despite knowing that this will not be the case for real AGN. Assuming identical
time lags is equivalent to setting the probability distribution of the hyperparameters to
a δ-function, leading to the joint probability distribution to simply be a product of the
prior probability distributions of the lags. By choosing the probability distribution of the
hyperparameters to be a δ-function, we also reduce the hierarchical modelling to the simpler
case of the “regular” Bayesian method. The posterior distribution for all the lags (and
hyperparameters, if you wish) is

p(α, {θi}|{xi}) ∝ p(α, {θi})p({xi}|α, {θi}) (4.3)

p({θi}|{xi}) ∝
N∏
i=1

p(θi)p(xi|θi), (4.4)

where we have simplified the notation by removing the hyperparameters in Equation (4.4),
as they do not apply in our model. We have chosen to work with a simpler model merely
due to its easier implementation, and because this research is at a very early stage. This
limits our results in the sense that our estimates can only predict one time lag value with an
uncertainty which does not reflect the variation within sample in question. Such an estimate
is less informative than one which would be able to provide information about the intrinsic
sample variance, which would be possible with a full hierarchical modelling analysis. In
forthcoming research we will make use of the extensive analysis method.

It is worth spending some time understanding how the mathematics presented in this
Section relates to what we actually do. We have already mentioned that we have set the
distribution of the hyperparameters to be a δ-function, and that the parameters {θi} are
the lags of each AGN. The data {xi} are the light curves of the continuum source and the
emission lines. The likelihood function describes the distribution of data given there is a lag.
Recall that the likelihood function L is strongly related to the χ2 test,

L ∝ e−χ
2/2, (4.5)

where χ2 is calculated by

χ2 =
∑(

observation− theory
error

)2

. (4.6)

In our case, Javelin gets information about the continuum light curve and emission line
light curve. The combination of the two are the observations used by Javelin, and the
theory they are being compared to is the fitted, continuous continuum light curve and an
emission line light curve calculated by convolving the continuum light with a top-hat transfer
function. Javelin computes the likelihood at each MCMC step, taking into account not
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only the lag, but also the remaining parameters it is fitting for. The result is a distribution of
likelihood values we may bin according to the time lag they correspond to. We have chosen
to use the average value of the likelihood in every bin to represent the likelihood of that
time lag. In addition, we require that the likelihood function should be smooth, and thus
interpolate between lags where the bins ended up being empty. It is important to notice that
when the likelihoods are computed, the prior distribution p(θi) has already been applied; we
specify for Javelin boundaries within which the software is allowed to search for a time lag.
This implies that the likelihoods will go to zero at the end points of the range we specified.
Thus, what seemed to look like the likelihood function is actually the posterior probability
distribution for each AGN, easily allowing to estimate the AGN’s time lag.

For stacking purposes, the goal is of course to move past Equation (4.1), and compute
the posterior distribution for all lags by Equation (4.4). We make use of the individual
posterior distributions for each AGN, and multiply them by each other. To reduce the
influence of outliers, we utilise bootstrapping (see e.g. Efron & Tibshirani, 1993) of the
posterior distributions. In order to achieve a smooth posterior distribution of the lag for
the AGN sample, we fit a polynomial to each of the individual posterior distributions in the
region they are defined. We have found that a polynomial with a degree of 20 gives a good
representation of the data, and results in final posterior distributions we can easily work
with. The advantage of fitting a polynomial to the data is that it is defined at all points,
making it easy to use the resulting function to compute the maximum likelihood, or median,
with corresponding uncertainties for the time lag.

4.2.2 Choosing AGN With Similar Properties

It is important for us to stack the results of AGN with similar time lags. DES/OzDES
consider a very large sample of AGN, varying over more than five magnitudes and over
redshifts from z ∼ 0 to z = 4 (King et al., 2015; Yuan et al., 2015), something which implies
that a wide variety of AGN will be observed. As we will see, the time lags of the AGN in our
sample can range from just a couple of weeks to more than a year in the rest frames of the
AGN. It is therefore crucial to decide exactly which AGN should be binned together, so as
to extract new knowledge from our observations. To treat several AGN as one, we obviously
want the AGN in question to be as similar as possible to each other. In particular, we want
the intrinsic lags of the AGN to be similar.

From the R − L relationship we know that AGN of similar lags will have similar lumi-
nosities. One possible way to find such AGN is to group them according to similar redshift
and apparent magnitude; if they appear to have the same brightness, and they are at similar
distances, they must have a similar intrinsic brightness. This would be a very good way of
grouping AGN, especially because it does not rely on any particular cosmology. However,
it is uncertain whether DES/OzDES would have enough AGN measurements to allow for
grouping like this. Moreover, the process of optimising the bin sizes would become difficult,
as there would be a large number of parameters to change; the size of the redshift bin, the
size of the apparent magnitude bin, and the number of AGN in each bin. Instead, we have
chosen to instead look for AGN which have the same absolute magnitude. This removes the
dependence on redshift, and simplifies the optimisation in two ways;
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1. It is no longer necessary to vary the redshift as one of the parameters; a reduction in
the number of free parameters to be constrained reduces the difficulty of any problem,
and

2. We can make use of AGN with different redshifts within the same bin, allowing for a
larger number of AGN to be stacked, and thus for better constraints on our recovered
time lags.

The downside about using absolute magnitudes for grouping AGN is that it is not an ob-
servable value; it needs to be computed from the apparent magnitude and the redshift, with
a certain cosmology assumed. A procedure where a cosmology is already assumed may
seem counter-intuitive if the goal is to obtain results which are to teach us more about the
cosmology of the Universe. However, this step is necessary to ease the grouping of AGN.
In addition, if the assumed cosmology is incorrect, it should impact the results such that
stacking will be less successful, since an incorrect cosmology will result in a wider variation
of AGN time lags to be grouped together, thus resulting in poorer lag estimates.

It is necessary to remember that we want the AGN time lags to be similar in the rest
frame of each AGN. To do so, we must reverse the time dilation due to the expansion of the
universe. We do this by dividing the time intervals between all light curve measurements
by said time dilation before using the light curves for anything. This way, Javelin can
estimate the intrinsic time lags instead of the observed ones.
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Perfect Scenario Stacking

To begin the stacking investigation we chose to look at some unrealistically good scenarios.
We use Javelin to obtain time lag estimates for ten AGN at a time, and then utilise stacking
of likelihoods to obtain time lag estimates for the AGN samples. We do this for two types
of datasets, each with different subcategories. For the first dataset type we only make use of
one light curve, but add in errors randomly to represent ten different measurements of the
same light curve. To clarify, each light curve is created as a continuous function based on a
damped random walk. We then pick out a number of points along the light curve according
to the observation dates of DES/OzDES. We define a measurement uncertainty, and add in
Gaussian errors to each measurement point. Adding in different errors for each realisation
is physically equivalent to observing one AGN with ten different instruments. In the second
case, we still make use of only one AGN, but allow the intrinsic light curves to vary. The
second case thus represents several measurements of one AGN at different points in time.
The errors added to the light curves to simulate measurement errors come in two flavours. In
one case, we use errors of the size estimated for DES/OzDES measurements, and we refer to
these as single errors. We also produce data with errors which on average are twice the size
of the expected DES/OzDES errors, and refer to these as double errors. Mostly, we make
use of sampling which is going to resemble that of DES/OzDES. At the end of this Chapter
we do, however, also consider a good sampling scenario, in which we increase the number of
measurements by a factor of ten, and allow the observations to be evenly spread throughout
the duration of the survey, without introducing seasonal gaps. Finally, we make use of three
types of AGN. Recall that any AGN is described by a small number of parameters; it’s
redshift z and magnitude (we use the apparent magnitude in the r-band, mr), its lag, and
the damped random walk parameters τD and SF∞ described in Section 2.1.2. The first AGN
was defined by

z = 0.1, mr = 18.53 mag, τD = 618.0 days, SF (∞) = 0.28 mag

41
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with a time lag of

τ0 = 129.0 days,

the second with all parameters as above, except for

τ0 = 375.0 days,

and the last by

z = 3.1, mr = 19.1 mag, τD = 850.0 days, SF (∞) = 0.145 mag

with a time lag of

τ0 = 375.0 days.

We choose an AGN with a time lag close to 365 days because King et al. (2015) show that
we expect the most successful time lag recoveries for DES/OzDES to be for AGN with lags
of approximately a year. For comparison purposes we also choose a shorter time lag, as well
as the physically unrealistic AGN with a long time lag, but with the other parameters more
representative of an AGN with a short time lag.

For each AGN, measurement type (intrinsically identical or different light curves), and
measurement uncertainty flavour (single or double errors), we create ten measured light
curve realisations, each of which is analysed by Javelin to find a time lag estimate. We
make use of the likelihoods, or posterior distributions, obtained from Javelin as described
in Section 4.2.1, and estimate time lags with corresponding uncertainties for each AGN using
the posterior distribution to compute the maximum likelihood and the median. We stack the
ten realisations from each subcategory to find the time lag estimate for each AGN sample. We
create a single realisation with a good sampling for each measurement uncertainty flavour,
to which the stacked estimates are compared. We hypothesise that:

1. The stacked time lag recoveries will be superior to the individual estimates,

2. The stacked time lag estimate for measurements with double errors will be comparable
to, or better than, individual time lag recoveries with single errors, and

3. The stacked time lag estimates will be comparable to an individual time lag recovery
with a similar number of spectroscopic epochs; for instance, stacking ten time lag
recoveries based on 25 spectroscopic epochs will be equivalent to an individual time
lag recovery based on 250 spectroscopic epochs.

5.1 Stacking of Intrinsically Identical Light Curves
We created data based on intrinsically identical light curves to which different random errors
were added at each point in time. By adding different errors to each realisation, we obtained
data which could represent different light curve measurements, even when the light curves
we used were intrinsically identical. An example of the measured light curves for both
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(a) Single errors. (b) Double errors.

Figure 5.1: “Observed” light curves over the duration of DES/OzDES used for estimating
time lags in the perfect stacking scenario where all light curves are identical. The underlying
light curve is the same for both sub-figures, and the lag between the continuum and emission
line light curve is 375 days. The left hand sub-figure has measurement errors the size we expect
for DES/OzDES (“single errors”), the other errors which have twice as large a magnitude as
what we expect (“double errors”). In the single error case, we recognise the same kind of
trends in the continuum and emission line light curves by eye. For the double error case, the
uncertainties are large enough that such a trend is difficult to spot.

measurement error sizes is to be seen in figure 5.1. The photometric light curve shows good
variability, which is helpful for recovering time lags well. In the single error case, where the
errors are based on DES/OzDES measurements, the same kind of variability is also seen in
the spectroscopic measurements, although the uncertainties obviously are larger. When the
errors are doubled, however, the photometric measurements still show a good light curve,
whereas the spectroscopic data look more random, and it is harder to see the relationship
to the photometric light curve.

Figure 5.2 shows examples of what the likelihood function, or posterior distribution (see
Section 4.2.1), may look like; Figure 5.2a showing one example of the likelihood function
for an individual AGN when investigated by Javelin, and Figure 5.2b when the likelihoods
of ten AGN have been stacked to form the likelihood function for a group of similar AGN.
Figure 5.2a shows that a 20 degree polynomial does fit the likelihood data obtained from
Javelin well, but the time lag recovery is not particularly precise. When we stack the
likelihoods of ten AGN, Figure 5.2b shows that the uncertainty decreases significantly.

The time recoveries for the intrinsically identical light curve scenario are shown in Fig-
ures 5.3 and 5.4. The plots on the left hand side of the Figures are based on single errors,
and the ones on the right hand side on double errors. In addition to the results of ten
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(a) Individual estimate. (b) Stacked estimate.

Figure 5.2: Examples of likelihood function for time lag recoveries by Javelin, where the left
hand sub-figure is based on a single AGN, and the right hand sub-figure is based on a stacking
of ten noisy time lag recoveries. We stack the polynomial fits, rather than the data, as they
are smoother, and the result becomes more stable. Clearly, stacking improves the estimate,
leaving us with a more precise and hopefully also an overall more accurate estimate.

(a) Single errors. (b) Double errors.

Figure 5.3: Time lag estimates for a perfect stacking scenario with ten intrinsically identical
light curves. The time lag in this case was τ0 = 129 days. The eleventh point in each sub-figure
represents the stacked time lag estimate. While the stacking clearly helps reducing the estimate
uncertainty, both sub-figures show a tendency to underestimate the time lag. However, as we
will see, this effect goes away when intrinsically different light curves are used.
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(a) Single errors. (b) Double errors.

(c) Unrealistic AGN, single errors. (d) Unrealistic AGN, double errors.

Figure 5.4: Time lag estimates for a perfect stacking scenario with ten intrinsically identical
light curves. The time lag in this case was τ0 = 375 days. The eleventh point in each sub-figure
represents the stacked time lag estimate. While the stacking clearly helps reducing the estimate
uncertainty, both sub-figures show a tendency to underestimate the time lag, an effect which,
as we will see, goes away when intrinsically different light curves are used.
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individual realisations, an eleventh point is included. This point represents the stacked time
lag recovery of the individual estimates. Both estimation types, the maximum likelihood
and the median, are shown in the plots. The uncertainties in the plots represent the 1σ
uncertainties of the estimates.

Figures 5.3 and 5.4 both show a trend for the time lags to be underestimated, rather
than overestimated. This is particularly the case for Figure 5.3, where the underlying AGN
time lag is τ0 = 129 days. We expect the reason for this bias to be the underlying light
curve, which is the same for all of these estimates. This is because the underestimation is
systematic, and the estimates all seem to fluctuate around one time lag, which simply is very
roughly 1 or 2σ shorter than the one used in the simulation. Particular light curves will be
prone to over- or underestimation of the lags, an effect which, as we will see, can be lowered.
In Section 5.2 we show that the underestimation bias goes away when different light curves
are used, and in Section 5.3 the time lag recovery is also more accurate when the light curves
have a better sampling.

Figure 5.4 shows the recovery of time lag for AGN with longer lags; τ0 = 375 days.
According to our expectations, the time lags are recovered best in the physically unrealistic
scenario, something which can be seen when comparing Figures 5.4c and 5.4d to Figures 5.4a
and 5.4b, as well as to Figure 5.3. The physically unrealistic scenario is that where the time
lag is set to τ0 = 375 days, but the rest of the parameters describe an AGN which is physically
more inclined to have a short – for instance τ0 = 129 days – time lag. This is certainly
unfortunate, since it obviously would have been good to recover time lags with a precision
like this, but the probability of finding such an AGN is very slim indeed. The reason why
this unrealistic scenario recovers the time lags best can be summarised as follows: Recalling
that the variability of an AGN is described by Equation (2.11), it follows that smaller values
of τD and higher values of SF∞ lead to more variable AGN. A more variable source allows
for easier time lag estimation, giving the unrealistic AGN an advantage over the realistic
375 day time lag AGN. On the other hand, time lags closer to a year are the easiest to
estimate, this time giving the unrealistic AGN advantage over that with a 129 day time lag.
Combined, this allows for the physically unrealistic AGN to recover its time lag far better
than the physically realistic AGN.

It is natural to expect that higher noise levels will complicate an estimation process,
resulting in poorer time lag recoveries for the double error scenarios compared to the sin-
gle error scenarios. It also seems intuitive that more measurements will allow to increase
the signal-to-noise ratio. To see whether this hypothesis upholds, we stack the individual
posterior distributions obtained from Javelin to obtain a time lag recovery for a group of
AGN. We expect the stacked time lag recovery for a double error scenario to be better than
the individual double error time lag recoveries, and that it will be comparable to, or better
than, the individual time lag recoveries for a single error scenario. Based on Figures 5.3 and
5.4, it seems that the expected improvement due to stacking is achieved. The stacked time
lag recoveries are generally a clear improvement to the individual estimates. For the double
error data sets, the stacked time lag recoveries are mostly comparable to, or even better
than, some of the individual results for the single error dataset. A positive stacking effect
like this is very promising for the future of DES and OzDES.
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5.2 Stacking of Intrinsically Different Light Curves

To further investigate the effects of applying stacking analysis to groups of similar AGN, we
move on from stacking intrinsically identical light curves to light curves which are intrinsically
different, but can potentially be observed for the same AGN at different points in time. We
make use of the two physically realistic AGN mentioned previously, and make ten different
light curves for each AGN and each noise level. The individual and stacked time lag recoveries
are to be seen in Figure 5.5. We observe that when we make use of different light curves,
many of the individual time lag estimates have larger uncertainties compared to the recovered
time lags for various measurements of a single light curve. The decrease in precision can
be explained by the fact that a good intrinsic light curve was intentionally chosen for the
scenario with intrinsically identical light curves. When considering a number of different
light curves, however, we accept light curves with various qualities, some of which result in
poorer time lag recoveries.

Although the individual recovered time lags are poorer than in the intrinsically identical
light curve scenario, the stacked results look promising when different light curves have been
used. Compared to Figures 5.3 and 5.4 we see that Figure 5.5 shows a lower degree of bias
towards underestimating (or overestimating) the lags. The lack of bias for the individual
time lag recoveries also allows for the stacked time lag recovery to be more reliable. The
reason for the bias reduction is most likely due to the variety of the underlying light curves,
each of which can be prone to over- or underestimation of the time lag if the sampling is as
sparse as for the DES/OzDES surveys. By stacking individual time lag recoveries which are
scattered on both sides of the true time lag, a more reliable time lag can be recovered.

In our investigation of individual and stacked time lag recoveries based on light curves
which have been both intrinsically different and identical we obtain very important results.
First, we see that stacking of individual estimates yields time lag recoveries which are more
precise than the individual estimates. This satisfies the first or the hypotheses we had at the
beginning of this Chapter. Next, we see that by stacking time lag estimates based on light
curves with large measurement errors and uncertainties we obtain a more reliable result,
which is comparable to, or better than, an individual time lag recovery based on less noisy
data. With this, the second of our hypotheses is satisfied. Finally, we also find that stacking
of estimates based on different light curves is preferable to stacking of estimates based on
light curves which are very similar. This is a very important result we are very happy to see,
since we have developed this stacking analysis to apply it to data measured by DES/OzDES.
When we do that, we will have to group together AGN which are somewhat different from
each other, meaning that the light curves, too, will be different. Due to the scatter we obtain
in individual estimates when using light curves which differ from each other, we can expect
to recover time lags for our groups of AGN which are less prone to under- or overestimation
bias.

5.3 Comparison to a Good Sampling Scenario

Fine et al. (2012) investigated the possibility of using stacking of correlation functions in
order to make up for a poor sampling of light curves, finding stacking to be a successful
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(a) Time lag τ0 = 129 days, single errors. (b) Time lag τ0 = 129 days, double errors.

(c) Time lag τ0 = 375 days, single errors. (d) Time lag τ0 = 375 days, double errors.

Figure 5.5: Time lag estimates for a perfect stacking scenario where ten different intrinsic light
curves have been used. The eleventh point in each sub-figure represents the time lag estimate
after stacking has been performed. Compared to Figures 5.3 and 5.4 the underestimation bias
has disappeared, such that the lag estimates are more accurate in addition to being precise.
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Figure 5.6: Comparison of a good sampling scenario with stacking results, inspired by Fine
et al. (2012). The three leftmost realisations are based on “single errors”; the kind of measure-
ments uncertainties of the light curve we expect based on DES/OzDES measurements. The
three realisations to the right have been applied uncertainties which are twice the size we expect
from DES/OzDES. Clearly, the single error case obtains more precise and accurate estimates
than the double error case. The first realisation for each case is based on a single estimate
with a sampling which is ten times what we can achieve with DES/OzDES. The two following
realisations are based on the expected sampling for DES/OzDES. For the second realisation
in each case we have made use of intrinsically identical light curves, and only changed the
uncertainties for each measurement. The last realisation makes use of light curves which are
intrinsically different, but still describing the same AGN. The stacking results are certainly
comparable to the good sampling scenario, the latter of which is not possible to obtain for
DES/OzDES. The good stacking results are very promising for our surveys.

tool. We now attempt recreating such positive stacking results, only using the Javelin
method presented in Section 4.2 instead of correlation functions to recover the time lags.
The scenario we consider is less extreme than that of Fine et al. (2012), who only used two
measurements in each emission line light curve. We make use of the data already presented
in this Chapter, and compare them to a sampling too frequent to be possible to achieve for
DES/OzDES. In the good sampling scenario we have ten times as many photometric and
spectroscopic measurements as DES/OzDES, and these are spread out evenly over the survey
duration. The good sampling scenario cases are created for a realistic 375 day lag AGN, and
compared to stacked estimates of corresponding time lag recoveries based on DES/OzDES
sampling, presented in Sections 5.1 and 5.2.

In figure 5.6 we present the results of time lag estimates for well sampled light curves
together with the stacked results discussed in Sections 5.1 and 5.2. We see that the stacking
method is very successful, and very much comparable to, or even better than, the individual
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time lag recoveries for good sampling scenarios. We are again reminded that the sample
estimates are more accurate when the intrinsic light curves are different, a very promising
result for DES/OzDES. The excellent time lag recoveries obtained by stacking represent an
extremely important result, as they imply that we should be able to utilise stacking to make
up for the poor sampling of DES/OzDES, yet still achieve results of high quality.



6
Realistic Scenario Stacking

In Chapter 5 we presented the results of utilising stacking of individual AGN time lag
estimates to obtain a time lag recovery for a group of identical AGN; a perfect scenario.
While such results are instructive, it is obviously of great importance to know how to best
apply such a technique to observations from a specific survey. Our wish is to optimise the
binning of AGN to suit the DES/OzDES data. We also wish to see whether we can make use
of the three years’ worth of data we already have. King et al. (2015) show that the number
of successful individual time lag estimates at such an early stage will be limited. However,
knowing that a stacked analysis is more likely too achieve reliable time lag recoveries than
individual estimates, we see the potential of early time reverberation mapping results if
optimised stacking can be applied to our data. In this Chapter, we therefore present the
results of optimising binning of DES/OzDES AGN data for reverberation mapping purposes.

6.1 Binning AGN

As mentioned in Section 4.2, we bin AGN by their absolute magnitudes. As discussed in
the same Section, working with absolute magnitudes forces us to make certain assumptions,
more specifically about the cosmology of our Universe. We make use of the same cosmology
as MacLeod et al. (2010) – ΛCDM with ΩM = 0.30, ΩΛ = 0.70, and H0 = 70 km/s/Mpc
– to utilise their method of defining τD and SF∞. To simplify the computational process,
we create AGN with their i-band absolute magnitude and redshift predefined, and use the
assumed cosmology to calculate the apparent magnitude from them. When applying the
stacking method to observational data, the code will have to be slightly modified, since the
absolute magnitude of any object will be unknown. Instead, we will need to take in apparent
magnitude and redshift as the observables, and calculate the absolute magnitude from them
before assigning each AGN into their correct bins. Such a modification will, however, only
be minor, and most of the programming to allow for it is already written and ready to be
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implemented.
There are a number of ways one could go about optimising the binning of AGN. Regard-

less of method, it is important to consider the fact that the optimal bin sizes could change
with the magnitude of the objects considered, due to the nature of the R − L relationship.
The R− L relationship dictates

τ0 ∝
√
L, (6.1)

which we equivalently may write as

τ 2
0 = CL, (6.2)

where C is a constant. We find C utilising the relationship between flux and luminosity
presented in Equation (2.2), where we let the distance be the BLR radius;

r2
BLR =

L

4πFc
(6.3)

τ 2
0 =

L

4πc2Fc
≡ CL, (6.4)

where c is the speed of light, and Fc is the flux necessary to ionise the BLR gas. Inserting
this into the definition of absolute magnitude, we obtain

M −M� = −2.5(logL− logL�) (6.5)

log
τ 2

0

C
= logL� + 0.4M� − 0.4M (6.6)

τ0 =

√
L�

4πc2Fc
e0.2M�e−0.2M ≡ Ae−0.2M . (6.7)

Here A is a value which is not necessarily constant, but is not going to vary such as to
counteract the influence of the exponential in Equation (6.7). The nature of the time lag’s
dependency on the magnitude indicates that a change in the absolute magnitude will have
a varying effect on the change in the time lag, depending on what the initial magnitude
was. For this reason, optimisation of the AGN binning should be done as a function of the
absolute magnitude, to the extent it is possible.

For a real life survey with a fixed number of objects, we know that there will be two
opposing effects contributing to the goodness of time lag recoveries obtained by stacking.
One the one hand, adding more objects to stack together should increase the signal-to-noise
ratio, allowing for more precise estimates. It would hence be interesting to see how many
objects are needed in order to obtain an uncertainty satisfying a predetermined criterion.
On the other hand, we know that in order to obtain a greater number of objects in reality, we
need to expand the size of our bins. Larger bins means more different AGN will be grouped
together, something which inevitably will lead to poorer constraints on the time lag due to
the intrinsic variation of time lags within the sample itself becoming larger. To test the
optimal bin size on its own, one could keep the number of AGN constant, and increase the
bin size until the intrinsic diversity becomes too large.



6.2 Optimising for the DES/OzDES Sample 53

Figure 6.1: Distribution of AGN monitored by DES/OzDES for the reverberation mapping
project. The vertical lines mark the redshifts at which a new emission line can be used, or can
no longer be used. The distribution is here shown in terms of redshift and apparent magnitude,
the observables for DES/OzDES. When performing stacking analysis, we instead consider the
distribution in terms of absolute magnitude.

6.2 Optimising for the DES/OzDES Sample
Learning about the intrinsic optimal AGN binning for stacking analysis would most certainly
be interesting. However, because the redshift and magnitude distribution of AGN monitored
by DES/OzDES is known, we decide to tailor the optimisation for the AGN in our sample,
portrayed in Figure 6.1, directly. Doing so saves a large amount of computational time,
since we do not have to worry about whether the bin size or the number of AGN should be
optimised first. It simplifies the task, allowing us to directly look at what the best solution
for our surveys will be, rather than having to analyse the surveys to find out how to apply
the general results.

Considering one emission line at a time, we choose ourselves an absolute magnitude to
start at, and create a bin from there. We shift the other end of the magnitude bin to increase
and decrease the size of the bin, including or excluding AGN dependent on how many AGN
we know there are in such a bin based on the DES/OzDES sample. We calculate the average
lag of the AGN in the sample, and analyse the intrinsic lag differences between the AGN. We
make use of Javelin to estimate the individual time lag of each AGN based on a simulated
three years’ worth of observations, and stack the individual estimates in order to obtain
a time lag recovery for the sample as a whole. We calculate the time lag estimate with
uncertainties for the sample within the current bin, and compare it to the known average
lag and intrinsic variation. We calculate the intrinsic variation by finding the standard
deviation of the known time lags of the AGN in the bin. The uncertainty of the stacked time
lag recovery is calculated using a maximum likelihood method, as well as using the median.
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Figure 6.2: In this Figure we present the size of the standard deviation between lags in an
AGN sample, marked with blue dots, together with the uncertainty of the stacked time lag
recovery for the same AGN sample, marked by red and green crosses. By adding together the
intrinsic variation and the estimate uncertainty, we can obtain uncertainty curves which we
can use to find the bin size for which we can obtain the smallest total uncertainty.

Unlike the intrinsic variation, for which we assume a symmetric distribution of lags, the
posterior distribution of the stacked time lag estimate can be asymmetric. This allows for
the upper and lower uncertainty bounds to differ in value. We choose to use the average
of the upper and lower uncertainty bounds to represent the lag estimate uncertainty within
each bin to compare it to the intrinsic lag variation within the corresponding bin sample.

To find the optimal bin size for any sample of AGN, we need to consider both the intrinsic
variation within the sample, as well as the uncertainty of the stacked estimate. One way of
deciding on the best bin size is to add up the intrinsic variation together with the uncertainty
of the stacked estimate, and find the bin size which corresponds to a minimum of the total
uncertainty. Figure 6.2 shows an example of this procedure. In it, we show the uncertainty
data by points, and overplot a curve obtained by adding together the uncertainties, interpo-
lating between the points, and smoothing the result. Generally, we find that the sum of the
uncertainties can fluctuate somewhat as a function of the bin width. More importantly, we
find that the sum generally has a minimum at rather small bin widths – more specifically,
the minimum occurs for bin widths where the uncertainty of the stacked time lag recovery
is larger than the intrinsic variation within the AGN sample of the same bin. We decide to
move away from the minimum uncertainty procedure in favour of choosing a bin size where
the intrinsic variation and stacked estimate uncertainty are (approximately) the same. If
we were to choose a bin width which led to the stacked estimate uncertainties being bigger
than the intrinsic variation, then our estimates would be too imprecise to really say anything
about the AGN sample. If, on the other hand, the intrinsic variation was to be larger than
the uncertainty of the stacked estimate, the estimate would only reflect a sub-sample of the
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AGN. By allowing the uncertainties to be the equal in size, the recovered time lag for the
AGN sample as a whole reflects the lag of the true sample in the way we believe to be the
most realistic.

6.3 Three Year Results
In Figures 6.3 and 6.4 we show examples of the analysis performed to optimise the bin sizes.
In each sub-figure there are numbers above each set points, representing the number of AGN
within that bin. Figures 6.3a, 6.3c and 6.4a show the average time lags of the AGN within
the bins, and the stacked time lag estimates, together with the uncertainties for both. The
average time lag value within an AGN bin is not constant as a function of the bin width.
This is because a change in the bin size opens up for different time lags to change the mean
lag of the sample. If the bin is expanded such that AGN with lower magnitudes are included,
the average luminosity of the AGN in the sample increases, leading to a longer average time
lag for the sample. Conversely, if AGN with higher magnitude values are included in the
sample, the average time lag of the AGN becomes shorter. In Figures 6.3b, 6.3d and 6.4b we
plot the magnitude of the uncertainties represented by the error bars in Figures 6.3a, 6.3c
and 6.4a. For the stacked time lag recoveries, the error bars can by asymmetric, in which
case we have taken the average of the higher and lower uncertainty limit. As expected, the
true uncertainty for a sample (or, more correctly: the intrinsic variation of AGN lags within
the bin) grows as a function of the bin size. This is because larger bin sizes imply more AGN
are included, allowing for larger discrepancies between the AGN lags. The uncertainties for
the stacked time lag recoveries also follow the expected behaviour, yielding more precise
estimates when more AGN are included.

A surprising result of the optimisation is the size of the optimal bins. Based on Equa-
tion (6.7) we expect that the intrinsic lag variation within an AGN sample becomes larger
if the magnitudes are lower, even if the bin size remains constant, and thus that the bin size
may have to decrease with lower magnitudes. On the other hand, we are aware that if we
stack more AGN we expect to obtain more precise estimates, so we could expect the bin
sizes to be smaller for magnitudes where the AGN density is higher. However, our analysis
shows that the preferred bin size is ∆Mi = 0.4 mag. Only one bin shows a somewhat better
result for a different bin size, namely ∆Mi = 0.5 mag. Finding such results allows us to
again appreciate the survey specific optimisation method, because general optimisations like
those discussed in Section 6.1 would likely not have suggested the same kind of binning to
suit our data the best.

Not surprisingly, we experience difficulties when performing stacking with a low number
of AGN. Considering Figure 6.5 one can expect that it potentially can be difficult to find
bins with enough AGN to recover reliable time lags for magnitudes above Mi ∼ −22.5 mag
and below Mi ∼ −25.5 mag. This is an effect we indeed find to be true. Figures 6.3a and
6.3b show an example of a stacking attempt for a bin starting at Mi = −22.35 mag and
continuing towards higher absolute magnitudes. We see that the uncertainties of the stacked
time lag recoveries do not continue decreasing in size as a function of the bin width. The
uncertainties remain the same due to the lack of AGN in that part of the absolute magnitude
space to help with decreasing the estimate uncertainty. We find the same effect when we
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(a) Bins for Mi = −22.35 mag and dimmer. (b) Bins for Mi = −22.35 mag and dimmer.

(c) Bins for Mi = −24.95 mag and brighter. (d) Bins for Mi = −24.95 mag and brighter.

Figure 6.3: Two examples of bin size optimisation. The plots on the left hand size show
the lag of the AGN samples, both in terms of the actual average lag and standard deviation,
and the estimate and uncertainty for the sample. As the bin size increases, a larger variation
of AGN is included in the sample, thus resulting a changing average and standard deviation.
On the other hand, as more AGN are included, the stacking procedure allows for more precise
estimates. On the right hand side, the intrinsic variation within the AGN sample is plotted
together with the uncertainties of the estimates. The top two plots show the analysis for a bin
starting at Mi = −22.35 mag, and ending at a higher absolute magnitude. For the two lower
plots, the bin started at Mi = −24.95 mag, and ending at an even lower absolute magnitude.
Because we wish to use a bin size for which the intrinsic variation and estimate uncertainty are
approximately equal when applying stacking analysis to observational data, the bin starting at
Mi = −22.35 mag will not be used for stacking purposes, as an optimal bin size could not be
found. While the analysis was successful for the bin starting at Mi = −24.95 mag in the sense
that it allowed to decide on an optimal bin size of ∆Mi = 0.4 mag, the left hand side figure
shows a bias toward underestimating the time lag.



6.3 Three Year Results 57

(a) Time lag estimates. (b) Time lag uncertaintites.

Figure 6.4: Bin size optimisation for a bin starting at Mi = −24.95 mag, and ending at
an even lower absolute magnitude. The plot on the left hand side shows the lag of the AGN
samples, both in terms of the actual average lag and standard deviation, and the estimate and
uncertainty for the sample. As the bin size increases, a larger variation of AGN is included
in the sample, thus resulting a changing average and standard deviation. On the other hand,
as more AGN are included, the stacking procedure allows for more precise estimates. On the
right hand side, the intrinsic variation within the AGN sample is plotted together with the
uncertainties of the estimates. We will be using the bin size for which the intrinsic variation
and estimate uncertainty when applying stacking analysis to observational data. The analysis
was very successful for this bin, showing clear trends, no bias, and allowing to easily decide on
an optimal bin size of ∆Mi = 0.4 mag.

look for a bin below Mi = − 26.15 mag. The conclusion for these places of the absolute
magnitude space is simply that the AGN we observe with DES/OzDES that fall into these
categories cannot be used for the purposes of stacked reverberation mapping.

When analysing stacked estimates of time lags for groups of similar AGN, we find that
intrinsic time lags shorter than approximately two months seem to be more difficult to
constrain than longer lags. This is especially the case for AGN with lags of a month and
shorter. We have a number of suggestions for the reason behind this behaviour. Firstly,
it could be that the bin sizes for these lags should ideally be somewhat smaller, but the
number of AGN in the bins are too small to obtain a good time lag recovery even after
stacking has been applied. This effect can easily be tested by repeating the same stacking
analysis, but with some more AGN in the bins. The second explanation concerns aliasing.
Figure 4.1 shows the distribution of time lags considered by Javelin for an AGN with a
time lag of τ0 = 129 days. Such a histogram will resemble the likelihood function of the time
lag. Although there is one very clear peak around τ = 129 days, there are two secondary
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peaks for longer time lags, whose presence is due to aliasing that occurs when Javelin
considers a time lag range much larger than the underlying lag. Because the shortest prior
we use in Javelin is 1000 days, shorter time lags are likely of suffering from aliasing. When
we stack the posterior distributions of a number of AGN with short time lags we may be
stacking secondary peaks which are present due to aliasing, thus creating a noisy result, for
which it is more difficult to find a good time lag estimate. This, too, can be tested, this
time by decreasing the range of time lags Javelin is to investigate. Finally, the cadence
of the spectroscopic observations by OzDES, and thus the emission line measurements, is
approximately a month. Short time lags may thus simply not be sampled well enough to
obtain particularly successful estimates. To test this, we can run our simulations with a
higher cadence for the observations. In Section 5.3 we showed that stacking of individual
time lag estimates yields a better precision of the recovered time lag for an AGN sample,
which is comparable to the individual time lag recoveries obtained when increasing the
sampling of light curves. This, of course, implies that a higher observation cadence results in
better estimates. We expect the two latter explanations to be the most likely, because they
are based on effects we already have observed. The first explanation is possible still, but we
consider it unlikely, since we struggle finding very good estimates for magnitudes even below
Mi = −23.0 mag, where there are a large number of AGN whose time lag estimates may be
stacked.

Figure 6.4 shows the analysis for the bin which had the best outcome. In contrast to this
bin, most other bins show that the stacked time lag recoveries are biased towards underes-
timating the average time lag of the samples. An example of this is shown in Figures 6.3c
and 6.3d. While the bias is concerning, it is an effect we expect to be able to apply the right
corrections to in order to extract real physics, given some more investigation time.

We have found the bin sizes for optimal stacked reverberation mapping to be performed
with DES/OzDES data for the full extent of the Mg ii emission line. Figure 6.5 shows the
distribution of AGN monitored by DES/OzDES, with the redshift-magnitude space which
should allow for stacking analysis to be successful when applied to three years’ worth of
DES/OzDES data highlighted in a semi-transparent pink colour. The size of the individual
bins can be recognised by a brighter or darker shade of pink, and the optimal bin size is
∆Mi = 0.4 mag for all bins except the uppermost one, which has a preferred bin size of
∆Mi = 0.5 mag. The redshifts corresponding to transitions between various emission lines
are given by vertical, dark grey lines. While we will exclude some AGN from the stacking
procedure, the majority – 95.9% – of the AGN where the Mg ii line is well detected can be
used to estimate time lags. A similar analysis may, of course, be made for the Hβ and C iv
lines. In addition, we expect it to be very instructive to analyse bins for redshifts where there
is an overlap between two emission lines. Further analysis of this kind is the next step for
statistical reverberation mapping with DES/OzDES AGN samples, and will be commenced
shortly. The reason it is not included in this Thesis, is simply shortness of time.

Although the third year of observations for DES/OzDES has finished, the emission line
data we need to perform reverberation mapping have not yet been extracted. A team lead
by Gisella de Rosa (Ohio State University, and Space Telescope Science Institute) is working
on the line measurements. It is expected that the data will be available shortly after the
submission of this Thesis. At that point in time, reverberation mapping in bulk will be
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Figure 6.5: Distribution of AGN monitored by DES/OzDES for the reverberation mapping
project, together with the area in magnitude-redshift space which we have found can be used
for time lag recoveries in bulk. The dark grey, vertical lines mark the redshifts at which a new
emission line can be used, or can no longer be used. The light pink area spans all redshifts as
which Mg ii can be used for reverberation mapping, and shows the magnitudes for which we
can expect to obtain useful time lag estimates for AGN samples. Each individual bin is marked
by a brighter or darker shade of pink.

started immediately. Figure 6.4 shows an example of a bin for which we expect to obtain a
very successful time lag recovery, and we also expect our analysis to have improved by the
time the data are made available, allowing to obtain even better time lag recoveries. For the
Mg ii line, we have found that 95.9% of the AGN will contribute to the stacked reverberation
work. This is a great improvement from the 35-45% of AGN King et al. (2015) estimated to
allow for successful time lag recoveries.
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7
Conclusion

In this Thesis we have focused on one method allowing us to learn more about AGN, namely
reverberation mapping. With reverberation mapping we are able to study the innermost
regions of AGN, and thus the closest environments of supermassive black holes. Although
the method of reverberation mapping has been known for decades, it has become more
important after Watson et al. (2011) showed that by utilising this method we may be able
to use AGN as standard candles. This is a very promising result, because while current
standard candles only can be seen to a redshift of z ∼ 2 (Jones et al., 2013), AGN can be
observed to redshifts of z ∼ 7 (Mortlock et al., 2011). By establishing AGN as standard
candles we will be able to more reliably determine distances that were previously unreachable.
Such measurements can help with testing the values of cosmological parameters, and have
the potential of teaching us new and surprising things about the Universe. Whenever a new
observation or measurement type has become available, more information about the Universe
has been unfold. The use of type Ia supernovae as standard candles led to the surprising
discovery of an accelerating expansion of the Universe (Riess et al., 1998; Perlmutter et al.,
1999), driven by a property we call dark energy. Establishing AGN as standard candles
would open up a new window to information not yet available to us, potentially allowing to
probe the exotic and poorly understood dark energy, and investigating whether it changes
over time.

Progress in technology has allowed for reverberation mapping to become somewhat more
effective than it has been before. However, it is still an observationally time consuming
process. In an effort to make the most out of available observations, Fine et al. (2012)
introduced the method of composite reverberation mapping, in which noisy, individual time
lag estimates are stacked to obtain a time lag recovery for the average lag within a group of
AGN. Showing promising results, Fine et al. (2013) made use of Panoramic Survey Telescope
& Rapid Response System 1 (Pan-STARRS1) medium-deep survey data in such a stacking
procedure, and the results they obtained were in agreement with existing knowledge based
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on individual time lag recoveries. Brewer & Elliott (2014) presented an alternative stacking
method, in which they made use of a Bayesian hierarchical model. For the analysis in this
Thesis we implemented a stacking procedure based on standard Bayesian statistics, without
making use of a hierarchical model.

7.1 Work in This Thesis
Instead of using the more traditional technique of cross-correlation, we have made use of
Javelin to recover the time lags of individual AGN. To ensure optimal usage of the program,
we tested the various parameters the user of the software can manipulate. We found that
the chain length, as well as the burn-in period of the MCMC, had to be increased from
the default values set for the program. Wishing to not bias our analysis, we chose to allow
Javelin to always search for the true time lag within a large range of time lags, without
penalising any particular lag values. With simulated data based on what we expect to obtain
from DES/OzDES observations, we found that the program was not tuned for data as noisy
as ours, and had to be modified slightly to avoid numerical problems.

We have explored the transfer function, deriving its shape based on a small number of
idealised cloud distributions. Infinitesimally thin distributions of clouds in the form of a
face-on disk or a sphere around the black hole both lead to a top-hat transfer function. A
top-hat transfer function is not only a simple function to work with, but it also leads to
conservative results. This is because the emission line light curve, to which the continuum
light curve is compared, will be smoothed strongly by a transfer function of this shape.

Because the geometric distribution of BLR clouds is unknown, the transfer function,
too, is unknown. Javelin assumes a top-hat transfer function, and to test the credibility
of the program for realistic data, we made use of different transfer functions to produce
emission line light curves, and allowed Javelin to recover time lags for these. We found
that Javelin’s ability to estimate time lags correctly was not influenced by a change of
transfer function.

After careful considerations, we developed a simple stacking method that suits our analy-
sis with Javelin. Making use of the likelihoods calculated for each step of the MCMC within
Javelin, we stacked individual time lag estimates by implementing a Bayesian statistics
model. The method resembled that of Brewer & Elliott (2014), but assumed instead that
the distribution of time lags within a group of AGN could be described by a δ-function for
simplicity, reducing a hierarchical model to a more standard Bayesian analysis.

In order to test the goodness of stacking, we considered a few idealistic cases, where we
found and stacked the individual time lag estimates for ten different light curve realisations
of a single AGN. We found that stacking allowed to find more precise time lag estimates.
When increasing the measurement uncertainty in our simulations to twice the expected size,
the stacked time lag estimates were better than the individual time lag recoveries where the
measurement uncertainties were kept at the expected size. We also found that by allowing
the intrinsic light curves to vary, although still being based on the same AGN, we would
obtain time lag recoveries which were less biased than if the underlying light curve was the
same for all AGN. We are happy about this result, because we know that when stacking will
be applied to observational data, the AGN, and thus the light curves, will differ from each
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other. Knowing that the use of different light curves in stacking analysis not only preserves,
but also improves, the reliability of the stacked time lag recovery is very reassuring. Finally,
we also compared stacked time lag estimates to individual estimates obtained for AGN whose
light curves had been sampled more often. Based on Fine et al. (2012), we hoped that the
stacked time lag recovery would be comparable to an individual time lag recovery based on
better sampled light curves. Indeed, we found that the stacked time lag recoveries were at
least as good as the estimates for an individual AGN with well sampled light curves – at
least when the underlying light curves were different. If the underlying light curves were
identical, the stacked result was in our case biased towards time lag underestimation due to
the shape of the light curve.

We applied the stacking method to simulated three years’ worth of data to see if time
lag estimates could be obtained at this point in time. By changing the sizes of the bins and
comparing the intrinsic variation of time lags within an AGN bin to the uncertainty of the
stacked time lag estimate, we found the optimal absolute magnitude bin sizes for all of the
AGN monitored by DES/OzDES where Mg ii will be used as the reverberation mapping
emission line. In the majority of the cases, the optimal bin size was ∆Mi = 0.4 mag, the
exception being a single bin with an optimal bin size of ∆Mi = 0.5 mag. While we observed
a bias towards the stacked time lag recoveries to underestimate the average lag within the
bins, we expect that by further exploring the bias we will reach a point where the stacked
estimates can be trusted. Even with the bias present, the true value of the average time
lag within a group of AGN was mostly found to be contained within the uncertainty of the
stacked time lag recovery. Moreover, the 1σ uncertainties of the stacked time lag estimates
were found to be of the order of only 10% of the time lag values, which is a very good result.

7.2 Future Work
The analysis performed for this Thesis can, and will, easily be extended to include analysis
for other emission lines, as well as recovering time lags for groups of AGN more reliably. The
results we have obtained here are preliminary, but of great importance, as they show that we
can expect as many as 95% of the AGN monitored by DES/OzDES to contribute to teaching
us more about the Universe already this year. We expect to obtain even better results by
the end of the survey in two years, and we look forward to seeing the total number of AGN
with recovered time lags increase immensely in size from the small number it is today. It is
no doubt that the work in this Thesis will be important in the years to come, when more
reverberation mapping data will become available, and AGN will contribute to a far more
thorough study of the Universe and its evolution than ever before.

An important step in coming analysis will be to extend the bin optimisation to include
the other emission lines, and to perform calibration of the R−L relationship between them.
This should not be much of a problem for the Mg ii and the C iv lines, since there is a
big overlap with a large number of AGN in the DES/OzDES catalogue. Calibrating the
R − L relationship between the Hβ and Mg ii lines will be more difficult because of the
small overlap within the DES/OzDES sample, but an attempt will most certainly be made.
In analysis to come we plan to advance our methods to a full hierarchical model, which will
allow us to obtain better uncertainty estimates capable of describing the intrinsic variation
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within each AGN bin. Such information will become very important when taking the step
from simulations to observational data.

One of the first steps to take now, will be to extract emission line data from the
DES/OzDES observations to make it possible for reverberation mapping to be done, and
to and apply the results from this Thesis to real life data. The work on emission line data
extraction has already been started, and is led by Gisella de Rosa (Ohio State University,
and Space Telescope Science Institute). The working group includes a number of interna-
tional collaborators, including members of DES and OzDES. De Rosa also recently received a
grant which can partially be used to involve a professional software developer in the process,
something which will take place in a few months.

If AGN are to be used for distance measurements, a very important calibration to be made
is one between AGN and type Ia supernovae. Such a calibration will be extremely important,
as it will strengthen the reliability of supernova distance measurements, in addition to fully
establishing the role of AGN as standard candles. A calibration like this is likely to happen
years from now, however, it is a very important goal to keep in mind.

The prospect of using AGN as standard candles is, of course, very exciting. A very fortu-
nate aspect of the analysis performed for this Thesis is, however, that our work will be useful
even in the event where AGN should turn out to not be useful for distance measurements.
Reverberation mapping is also important for black hole mass measurements beyond the local
universe. The results from this Thesis are thus also applicable for learning more about black
hole growth – a topic for which there are not many observational measurements. It is likely
that the methods and code developed for this Thesis will be useful in the future to study
black hole evolution, by current or future collaborators.
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A
Choice of MCMC Parameters for Javelin

When we started our analysis, we based the value of the MCMC parameters in Javelin
– the number of walkers w, burn-in period b, and chain length (number of steps after the
burn in period) c – on those used by King et al. (2015). By default, Javelin uses w = 100,
b = 50, and c = 50. King et al. (2015) used w = 100, b = 150, and c = 150, obtaining very
reasonable results. Knowing that a large amount of simulations would be required for this
project, we wished to investigate whether these numbers could be made smaller to shorten
the computational time, without the results suffering notably statistically.

A.1 Convergence Analysis

We performed a careful study of the behaviour of the MCMC chains for a number of combi-
nations of MCMC parameters. Finding unexpected behaviour, we contacted the developer
of Javelin, learning that the program had changed since being described in Zu, Kochanek
& Peterson (2011). Users of Javelin are now encouraged to use MCMC parameter val-
ues larger than the defaults of the program. The MCMC routine has also been changed.
In the older version of the software, Spear, the standard Metropolis-Hastings algorithm
(Metropolis et al., 1953; Hastings, 1970) was used, whereas Javelin makes use of the newer
emcee algorithm, developed specifically for the Python language by Foreman-Mackey et al.
(2013). The emcee algorithm explained the suspicious behaviour we had seen, but required
a different type of analysis to find the optimal MCMC parameters for our use.

Foreman-Mackey et al. (2013) recommend a large number of walkers – preferably hun-
dreds – when utilising the emcee algorithm. The need to run the chains for long enough is
also stressed. To test whether the chains are run for long enough, Foreman-Mackey et al.
(2013) suggest to plot the autocorrelation as a function of time. A chain which has not
been run for long enough will be found to have an autocorrelation time which is a sizeable
fraction of the chain, so Foreman-Mackey et al. (2013) suggest to run the chains until the
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autocorrelation length, the number of steps required for the value of the autocorrelation to
drop to zero on average, is at about one tenth of the chain lengths. In Figure A.1 we present
the autocorrelation as a function of step number for chains of various lengths. We see that
the autocorrelation requirement clearly is not satisfied by c = 15 steps in Figure A.1a, but
is satisfied in Figure A.1c with c = 10 000 steps, and potentially also by c = 1000 steps in
Figure A.1b. A chain length of only a few hundred steps must therefore be rejected, as it is
not satisfactory by the standards of the emcee algorithm.

When studying the time lag estimates when the chains were chosen to be long (for the
c = 10 000 steps case in particular, but also for the c = 1000 steps case), the time lags were
found to be hard to estimate due to a much wider likelihood distribution than seen when
shorter chain lengths were used. Upon further investigation, we found that Javelin had
problems estimating the transfer function width and height, searching for suitable values as
high as 1047 days for transfer function width. The diverging parameters affected the ability
to constrain the remaining parameters, including the time lag. Knowing that the transfer
function is determined by the distribution of BLR clouds, and we found in Section 3.1 that
our worst case scenario, an infinitesimally thin sphere of BLR clouds, results in a top-hat
transfer function of width twice the BLR radius, we determined to set an upper limit based
on our knowledge about the BLR sizes in the DES/OzDES AGN sample. Not expecting
the transfer function to take the worst case scenario, nor to observe many time lags longer
than 500 days, we modified the Javelin source code to assume an upper limit of 1000 days
for the width of the transfer function. We set an somewhat more arbitrary, but consistent
with previous results, limit for the height of the transfer function, allowing it only to grow
up to a value of 5. Putting upper limits on the parameters describing the transfer function
allowed Javelin to explore parameter values known to be physically reasonable, resulting
in far better time lag estimates.

Javelin allows the user to specify boundaries between which is is supposed to look for
time lags, and to logarithmically penalise lags larger than a certain fraction of the length
of the baseline, which is the total span of the input light curves. The default in Javelin
is to look for time lags within the full baseline, but to penalise lags longer than 30% of the
baseline. Not wanting to impose any bias onto our results, we chose not to penalise any time
lags. However, with a baseline of 1931 days we found strong aliasing in our results, leading
us to search for alternative boundary limits. King et al. (2015) used a boundary rule of zero
to three times the true time lag for their simulations, however, knowing that we can end
up looking at time lags shorter than a month, we felt uncomfortable using this rule, as the
range within which Javelin would be searching for time lags in such a case would be very
small. We decided to set the limits to be between 0 and 1000 days, but to rise the upper
limit to three times the time lag if this value exceeds 1000 days.

After making sure that Javelin was running smoothly with the settings we had chosen,
we again investigated the number of walkers, as well as the length of the burn-in period, and
the chain length after it, making sure all five of the parameters Javelin is fitting for were
considered. We found that we needed w = 100 walkers to get satisfactory results, and that
the burn in length could be set to b = 500 steps. When considering chain lengths of c = 500
steps, we found that Javelin had some difficulties estimating some of the parameters, as
shown by the rough, dotted histograms in Figure A.2. Increasing the number of steps to
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(a) MCMC with chain length 15 steps

(b) MCMC with chain length 1000 steps

(c) MCMC with chain length 10 000 steps

Figure A.1: The autocorrelation is here plotted as a function of chain step for four different
chain lengths. For short chain lengths, such as only 15 steps, the autocorrelation length is a
sizeable fraction of the chain length. When 10 000 steps were used, on the other hand, the
autocorrelation length is distinctly shorter than the chain length. Based on the 1000 and 10 000
step cases, we can draw the conclusion that the chains need to be 1000 steps long at the very
least in order to for the estimate based on the emcee MCMC process to be reliable.
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Figure A.2: Distributions of values for SF∞, τD, τ , and the width and height of the transfer
function considered by Javelin for chain lengths c = 500, c = 1000, and c = 5000. The
histograms are normalised such that the total areas under the curves equal to unity, and they
are close to proportionally related to the final estimate of the values. The lag estimates, shown
in the lower left sub-figure, are within 1σ of the true value for all chain lengths. Given that
the autocorrelation length being approximately 100 steps, we can therefore decide on a chain
length of 1000 steps without worrying about the possibility of it potentially being too short.

c = 1000 allowed Javelin to better center around a value both for SF∞ and the transfer
function width. All distributions are even smoother if the number of steps is increased to
c = 5000 steps, as shown in Figure A.2. Note that there are secondary tops in the time
lag distribution for lags higher than the underlying lag, τ0 = 129 days, especially for the
c = 500 and c = 1000 cases. This is due to aliasing, because Javelin had to search for time
lags along a time segment much longer than the underlying time lag. Although running the
chains for c = 5000 steps yielded smoother, potentially more reliable distributions than for
c = 1000, we decided to go for the latter option for our simulations in this project. This was
in order to limit the computational time, which would increase significantly by increasing the
number of steps by a factor of five, without yielding significantly better time lag estimates.

A.2 Concerns With Parameter Estimates

Considering Figure A.2, one may get somewhat concerned about the parameter values one
will estimate from the distributions. While the time lag estimate is not too far off the true
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value, τ0 = 129 days, the width of the transfer function, which is chosen to be 20% of the
time lag value in our simulations, seems to have a preferred value of several hundred. We
suspect the reason for this to be aliasing, similar to the aliasing we observe when recovering
AGN time lags. The transfer function used to create the light curve behind Figure A.2
would have been almost 30 days wide – a number which clearly is much smaller than the
1000 days allowed by the MCMC to explore. If this is the case, a better sampling of the
light curve should allow for an estimate closer to 30 days to be found. To investigate this,
we created a set of light curves which we sampled such that the total number of photometric
and spectroscopic measurements would be ten times the number of measurements we expect
to obtain from DES/OzDES. We also created one set of light curves with the same kind
of excellent sampling, but excluded the measurements which fell within the seasonal gaps
of DES/OzDES. Having decided on a chain length of c = 1000 steps, we used the same
chain length when analysing the good sampling scenarios, and compared the results to those
from the standard DES/OzDES sampling with c = 1000 steps. The distributions equivalent
to those in Figure A.2, but comparing three different sampling scenarios are shown in Fig-
ure A.3. As expected, we see most distributions becoming narrower with better sampling,
implying that a more precise estimate can be found for the parameters. Considering the
distributions for the transfer function width, we see that a shorter transfer function width
becomes favourable if the light curves are sampled well. This suggests that more frequent
sampling would be beneficial to our surveys. However, we believe our time lag estimates are
still to be trusted with the standard DES/OzDES sampling and chains running for c = 1000
days. We have two reasons for this; firstly, the time lag estimates are consistently accurate in
our simulations, and secondly, the reason behind a longer preferred transfer function width
for poor sampling can be explained by Javelin estimating the lags based on light curve
features with long time variations as opposed to short time variations, which it easily could
interpret as a wider transfer function.

A second point of concern in Figure A.2 is that the values of SF∞ and τD are both un-
derestimated compared to the underlying values of the parameters we chose when creating
the light curves which were analysed by Javelin to create these distributions. However,
according to Zu, Kochanek & Peterson (2011), Javelin is set with priors on these param-
eters, and deviating values are logarithmically penalised. For τD, the prior is favouring τD
values close to the median sampling interval. With the photometric sampling interval being
one or two days for the good sampling scenarios, and approximately a week for the real
measurements, it is not too surprising that τD values of several hundred days can be difficult
to estimate correctly. As for SF∞, we recall that this parameter describes how much an
AGN’s luminosity is capable of varying, and is only obtained when studying the magnitude
over very long periods of time. Even though DES/OzDES represent far longer reverbera-
tion mapping surveys than performed before, it can be difficult to correctly estimate this
parameter. The fact that both parameters are underestimated can thus be explained by the
nature of Javelin, and physical reasons. Because these parameters only assist Javelin
in modelling the continuum light curve, and the software still is capable of recovering the
time lags well, we conclude that our estimates based on MCMC runs with chain lengths of
c = 1000 steps can be trusted.
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Figure A.3: Distributions of values for SF∞, τD, τ , and the width and height of the transfer
function considered by Javelin for samplings based on the DES/OzDES sampling rate, a
sampling with 10 times the number of samplings expected for DES/OzDES spread evenly
throughout the the survey lengths, and one with the same same kind of good sampling rate,
but with the half year long seasonal gaps of DES/OzDES. The histograms are normalised such
that the total areas under the curves equal to unity, and they are close to proportionally related
to the final estimate of the values. A higher sampling rate of a light curve allows for better
constraints of all parameters, and decreases the aliasing for the time lag recovery.
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