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Abstract

This thesis is an investigation of currents in the outer Oslofjord using avail-
able tools. Current records and output from the NorKyst-800 model are
examined and compared using statistical methods. Internal tidal waves are
observed in the Drøbak Strait. Non-tidal frequencies are found to be the
most energetic. The strongest currents are found near Bastøy, possibly asso-
ciated with freshwater flow from Drammenselva. There are often two layers
of current, of which the uppermost layer could be wind-driven and the sec-
ond layer could be associated with the estuarine circulation. Topographic
waves seem to exist near the bottom. Integral time scales are about one day.
There is a weak clockwise turning of current with depth near the surface. In
general, the current tends to go along-fjord. The currents are statistically
Gaussian. Similarities to baroclinic modes with rough bottom are found.
There are quite a few differences between the data and the model output,
mostly due to the model bathymetry. Some differences, like the absence of
bottom-strengthened currents, could be associated with a low vertical reso-
lution. It is concluded that more current sensors recording over a longer time
period, in addition to salinity and temperature loggers, are needed in order
to fully understand the dynamics in the outer Oslofjord.
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Chapter 1

Introduction

1.1 The Oslofjord

The Oslofjord is a roughly 120 km long fjord stretching from Færder light-
house via Oslo Harbour to Ås (Baalsrud and Magnusson, 1990). It is an
important recreational area for the population around it. Leisure boat driv-
ing and fishing are popular activities in the fjord. Furthermore, there is a lot
of ship traffic by cargo ships, cruise ships, public transport boats and fishing
trawlers (Baalsrud and Magnusson, 2002).

The Oslofjord is not formed like a typical fjord, because it is part of a
geological rift (Staalstrøm et al., 2012). The Drøbak Sill splits the fjord into
its inner and outer part, of which only the outer part is studied here. The
inner fjord has a maximum width of about 7 km before it narrows down to
about 1 km in the Drøbak Strait, see Figure 1.1. Its width extends to about
18 km in the Breiangen basin. Near Bastøy, the width decreases to about 10
km before the fjord opens up towards Skagerrak.

The fjord has two large fjord arms, namely the Bunnefjord (from Oslo to
Ås) and the Drammenfjord (from Breiangen to Drammen). There are many
islands in the fjord, of which the largest one is Jeløya (close to Moss) with
an area of about 19.7 km2. H̊aøya and Bastøy are also fairly large.

The depth of the inner fjord peaks at about 150 m. It decreases to 20
m at the Drøbak Sill, before it goes back to about 150 m in the rest of the
Drøbak basin. A sill of 100 m isolates this basin from the Breiangen basin,
which is also around 150 m at most. Further south, after another sill of
approximately 100 m, we find the Bastøy basin, which is about 300 m deep
at most. The two southernmost basins in the fjord are the Rauer basin and
the Hvaler deep, of which the latter is the deepest basin with a maximum
depth of 450 m.
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Figure 1.1: A map of the Oslofjord with the names of its basins. Adapted from Staal-
strøm and Ghaffari (2015).
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The surface wind over the Oslofjord follows certain patterns. In the win-
tertime it is typically northerly. It peaks in strength in January and is usually
weaker than 3 (3.3 ms−1) on the Beaufort scale. In the summer, the wind has
a more variable direction. South-southeasterly winds are most frequent, but
northerly winds are also common. The summer winds are strongly modified
by sea and land breeze on warm days, and they are strongest in the afternoon.
They do typically not exceed 3 on the Beaufort scale either (Gade, 1968).
Climate change is not shown to alter these wind patterns, see Thaulow and
Faafeng (2014).

The main freshwater supply comes from Glomma (annual average 720
m3s−1) and Drammenselva (annual average 330 m3s−1). Only a small part
comes from the rivers in the Inner Oslofjord (Akerselva, Lysakerelva etc.,
annual average 27 m3s−1). Because of this, the brackish surface current often
flows inward rather than outward. This is not a typical fjord circulation
(Gade, 1968). It occurs particularly in early summer, when Glomma and
Drammenselva have large water fluxes and the spring flood in the small rivers
are over. It also happens on warm days in which the evaporation in the inner
fjord is larger than the runoff from local rivers (Baalsrud and Magnusson,
2002).

The earliest oceanographic studies of the Oslofjord consider its hydrogra-
phy, that is, its water mass characteristics (Hjort and Gran, 1900; Braarud
and Ruud, 1937). The water masses in the fjord are a mixture of Skagerrak
water and local water affected by rivers (Baalsrud and Magnusson, 2002).
In the Skagerrak the North Atlantic Current, the Jylland Current and the
relatively fresh Baltic Current meets (Rodhe, 1996). Thus, the Skagerrak
contains a mixture of many different water masses. The most important
mechanisms exchanging water masses between the fjord and the Skagerrak
are the estuarine circulation and the wind driven circulation (Gade, 1968).
For instance, Klinck et al. (1981) finds that along-shore winds outside the
fjord (i.e. near the Skagerrak) can initiate flooding of (in this case mostly)
Baltic water.

Despite being somewhat affected by Skagerrak, most of the water in the
fjord is locally formed. Numerous eddies contribute to this by increasing the
mean residence time (Dahl et al., 1990). These eddies are mainly generated
through tides and cyclones and anticyclones (Gade, 1968). The average water
level variation caused by tides is about 28 cm. It can be larger if there is
a strong high or low pressure system over the fjord. In extreme cases the
water level can change by several meters over a period of 5-6 hours (Baalsrud
and Magnusson, 2002). The dominant tidal frequency in the fjord is the M2

component, with a mean amplitude of about 14 cm (Aas, 2011, p. 112).
With an estimated fjord surface area of 550m2 north of Bastøy, this gives an
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approximated tidal water flux near Bastøy of about 7000m3s−1. Stigebrandt
(1979) gives observational evidence for internal waves of tidal origin in the
fjord. Staalstrøm et al. (2012) finds that due to these internal waves, the
diffusivity near the Drøbak Sill is more than four times larger than in the
rest of the fjord. This, in turn, is proven to affect the frequency of deepwater
renewals.

One of the earliest studies of surface current patterns in the Oslofjord
is done by Johannessen (1967). In this study, current crosses are used to
investigate the currents in the Vestfjord (see Figure 1.1). It is found that
the currents are mainly going northwards and southwards, that is, along the
fjord axis. Furthermore, the surface currents respond relatively swiftly to
wind events, typically within one or two days.

The Norwegian Institute of Water Research (NIVA) investigates measure-
ments of surface currents in the outer Oslofjord and compare them with a
reduced gravity model (Dahl and Hackett, 1988; Sk̊atun and Røed, 1988;
Dahl et al., 1990; Røed et al., 1990; Røed and Sk̊atun, 1990). The surface
currents are found to be baroclinic and directed mainly southwards. Further-
more, four central surface eddy areas are detected between Breiangen and
Færder, occasionally joining to one big cyclonic eddy. The typical time scale
for the motion is found to be on the order of 4-6 days.

Other examples of model studies in the Oslofjord include Svendsen et al.
(1995), Grinde (2011) and Isachsen (2014). The latter compares output
from the NorKyst-800 model in the fjord to a model with higher spatial
resolution. It is found that in open regions, the two models give similar
results. However, particle trajectories are different and the model with higher
resolution resolves smaller, stronger eddies.

1.2 An overview of this study

The main focus in this thesis is the examination of current records in the
outer Oslofjord. There are several examples of studies which have a similar
objective, e.g. for the Gulf Stream at 68◦ west (Hall, 1986). A subgoal is
to find out how well the NorKyst-800 model, provided from the Norwegian
Meteorological Institute (NMI), reproduces the currents. We will compare
the current records to model output for the same period. Examples of earlier
studies of this kind is the one by NIVA mentioned earlier and LaCasce and
Engedahl (2005) and LaCasce (2005b) for the western Norwegian shelf and
slope.

We look for typical frequencies in the motion, for instance to see what
kind of tidal regime is found in the fjord. Are the diurnal or semidiurnal tides
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most important? Exactly which tidal frequencies dominate? Furthermore,
we are interested in the non-tidal frequencies. What is the typical frequency
of motion when the tides are removed?

We will also look for general characteristics of the flow. At which depths
and locations is the flow strongest? Is the current going mainly along or
across the isobaths? When does a strong current occur, and how long does
it typically last? What is the typical time scales for motion in the fjord, that
is, how fast does the current change?

In addition, we will check if there are particular patterns in the flow di-
rection. Is it going mostly northwards or eastwards, for instance? Does the
current mainly follow the bathymetry or the coastline? Does the direction
change with depth or with location? We will also check the degree of random-
ness of the current strength. Are there any statistically significant current
anomalies, or are the currents more or less random?

Moreover, the vertical variation of current is considered. Is it strongest
near the surface or further down? How does it evolve with depth? Does it
decay or increase towards the bottom? How many times does it change sign
with depth?

When it comes to the model, we want to know how well it reconstructs
the flow, as already mentioned. Does the model resolve small eddies in the
current? Are the directions approximately correct? Are there any differences
in agreement between grid points close to the coast and grid points in the
middle of the fjord?

Several statistical measures are calculated in order to answer these ques-
tions. Power spectral densities (PSDs) are used to find dominant frequencies.
Tidal currents are removed with the use of harmonic analysis and Butter-
worth filtering. Typical time scales are found via autocorrelation functions.
Variance ellipses are applied to find the typical flow directions and PDFs
are used to find extreme values. Lastly, empirical orthogonal functions are
calculated to examine the vertical structure of the flow.

What do we expect to find? Because Stigebrandt (1979) finds evidence
for internal tides, we expect to find it in these data as well. Furthermore, we
expect time scales of about 4-6 days, just like in the joint model and measure-
ment study from NIVA. Moreover, the currents should follow the fjord-axis,
just like Johannessen (1967) finds in the inner fjord, if the dynamics are
similar.

There are several motivations for this study. Firstly, because few mea-
surements are taken in the outer Oslofjord, it is interesting to see how the
currents behave there. If the model validation is promising, it can be used
to further investigate the dynamics of the fjord, by for instance considering
larger areas or longer time periods. Experimenting with different driving
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forces could also be helpful. A better physical understanding of the fjord
dynamics is advantageous, for instance due to all the ship traffic. The model
could make forecasts of the fjord currents as well. This could be useful in the
event of an oil spill like Godafoss (Broström et al., 2011) or a man over board
situation. In addition, if one knows the typical current strengths, tension on
constructions in the fjord can be estimated.

This thesis is arranged as follows. The next chapter discusses background
theory. After this, the measurement campaign is described, followed by an
outline of the NorKyst-800 model. Then the statistical tools, such as the
variance ellipses, are explained. Next, the results from using these tools are
described for the measurements (Chapter 6) and for the model (Chapter 7).
The last chapter is a summary of these results.
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Chapter 2

Theory

This chapter discusses some topics that are relevant for the interpretation of
the results. First, there is a section on tides (Section 2.1). Next, baroclinic
modes are considered (Section 2.2). We then finish off the chapter with a
discussion on topographic waves (Section 2.3).

2.1 Tidal currents

Tidal currents are induced by the sum of gravitational forces from the Sun
and the Moon on the Earth. These forces can be described as a sum of
a finite set of sinusoids at specific frequencies. The frequencies are linear
combinations of six fundamental frequencies arising from planetary motion
(Pawlowicz et al., 2002). Among these frequencies the most important ones
are the lunar day (the rotation of the Earth about its rotation axis), the lunar
month (the rotation of the Moon around the Earth) and the tropical year (the
orbit time of the Earth around the Sun). Linear combinations of these give
the typical frequencies of tidal currents, such as the M2 (lunar semidiurnal)
component of 12.42 hours and the K1 (lunisolar diurnal) component of 23.93
hours.

Tidal dynamics are not always linear, that is, the ocean does not nec-
essarily respond with the same frequencies as the forcing (Pawlowicz et al.,
2002). This is the case if the tidal waves are of comparable height to the
ocean depth. Then shallow-water tidal components are introduced, which
have higher frequencies than the standard tidal components. These frequen-
cies can also be determined from linear combinations of the fundamental
frequencies (Aas, 2011).
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2.2 Baroclinic modes
The depth profile of the velocity in the ocean can be decomposed into a linear
combination of a set of functions called modes. The modes can be obtained
from the Navier-Stokes equations with the following assumptions:

- The topographic gradient is weak
- The Rossby number is small
- The beta-effect is small

Assumption number one means that there can be no steep slopes in the sea
floor. Thus we must have that |h|

D0
� 1, where D0 is a reference depth and

h(x, y) is the local deviation from D0. x and y are the zonal and meridional
coordinates, respectively.

The second assumption requires that the local acceleration is much less
than the Coriolis force. Mathematically, we must have that U

fLxy
� 1, where

U is the order of magnitude of the current, f = 2Ω sin(θ) is the Coriolis
parameter (Ω = 7.27 × 10−5s−1 is the Earth’s rotation rate and θ is the
latitude) and Lxy is the typical length scale of motion.

The lateral variation in the Coriolis force must be small for the last as-
sumption to be fulfilled. If we simplify the Coriolis parameter to f = f0+βy,
we must have | βy |� f0. In this formula, f0 is the mean Coriolis parameter
over a smaller area (e.g. for the Oslofjord) and β is a constant parameter.
One may write β = 2Ω

a
cos(θ), where a is the radius of the Earth. In practice,

this assumption means that we can only consider a limited meridional range
(LaCasce, 2012).

Through these assumptions we obtain the quasi-geostrophic potential vor-
ticity (QGPV) equation, which upon linearization takes the form

[
∇2ψ +

( f 2

N2
ψz
)
z

]
t
+ βψx = 0 (2.1)

It is an equation for the streamfunction ψ = p
ρf
, where p is pressure and ρ is

density. ψ relates to the velocity vector u = ui + vj + wk as u = k · ∇ψ.
Subscripts mean "differentiated with respect to". z is the vertical position, t
is the time and N is the Brunt-Väisälä frequency N2 = −g

ρ
ρz, where g is the

acceleration of gravity. The modes are found by assuming a wave solution
of 2.1 with a depth-varying factor, to compensate for the stratification: ψ =
φ(z)φ̂ei(kx+ly−ωt). Here k and l are the wave numbers in the x and y direction,
respectively, and ω is the frequency (LaCasce, 2012).

It is common practice to assume flat surfaces at the upper and lower
boundary, which can be expressed as w = φz = 0 at z = 0 and z = −H,
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Figure 2.1: Figure showing the baroclinic modes (abbreviated to BC). Here α = H/5.
The depth z is normalized.

where H is the ocean depth (Wunsch, 1997). In the outer Oslofjord, however,
it is better to take the ocean floor to be steep or rough, i.e. put u and v equal
to zero at z = −H instead of w (Pedlosky, 1987; LaCasce, 2012). This is
because in relatively shallow waters (the Oslofjord is usually less than 200 m
deep), bottom friction has a larger relative influence on the flow. This affects
the vertical structure. Another reason for saying that u and v are small, as
opposed to w, is that all the measurements have been taken on places with
steep bathymetry (although the inclination is still less than 1%, see Figure
3.1).

The simplest modes are found by assuming that the stratification is con-
stant. A more realistic solution is obtained by saying that the stratification
is exponential, i.e. N2 = N2

0 e
z/α, where N0 is the stratification at the surface

and α is a constant scaling parameter. Figure 2.1 shows how the baroclinic
rough bottom modes look for exponential stratification. We can see that
the first mode (BC1) has no zero crossings and decays fairly rapidly towards
zero, whereas the higher modes have more zero crossings.
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2.3 Topographic waves
A topographic slope also supports low frequency wave solutions like those
in the previous section. To see this, consider again the linearized QGPV
equation 2.1. If we assume that the mean flow is negligible, put β = 0
(that is, the area of interest is fairly small so that f ≈ f0) and assume no
stratification (constant N), we get

∇2ψt +
f 2

0

N2
ψzzt = 0 (2.2)

We assume a linear bottom topography H = D0 − ky (k is constant) and,
like before, a wave solution of the type ψ = φ(z)φ̂ei(kx+ly−ωt). With this, we
find that the shallow water is to the right of the propagation direction in the
Northern Hemisphere. The waves have an exponentially decaying amplitude
from the sea floor, given by

φ(z) = Ae−Nκz/|f0| (2.3)

Here A is the wave amplitude at the sea floor and κ =
√
k2 + l2. From

this formula, it is possible to estimate the size of topographic waves if they
exist. The vertical extent of the waves can be estimated from the e-folding
scale, Lz = |f0|

Nκ
= |f0|λ

2πN
, where λ is the wavelength of the waves. Thus, if one

reformulates this equation, the wavelength can be estimated as λ = 2πN
|f0| Lz,

assuming Lz is known.
The most common approach for observing topographic waves is to look

for spatial correlations (with some lag) between measurements along the
same isobaths. LaCasce (2005b) did this for data from the west coast of
Norway, but did not find much evidence for topographic waves, at least not
for separations down to 10 km. A simpler way of spotting topographic waves
is by looking for intensification in the flow near the bottom (Equation 2.3).
Topographic waves have been observed many places, for instance near oceanic
shelves where the sea floor is steep (Smith and Schwing, 1991; Moseidjord
et al., 1999; Wåhlin, 2002).
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Chapter 3

Data

3.1 Field work

Current sensors were deployed in the outer Oslofjord from the 16th September
to the 25th November 2014. A map of the study area with all the sensor
locations and the nearest weather station is shown in Figure 3.1. In Table
3.1, the exact measuring period, the location and the water depth for each
sensor is specified. Some of the instruments stopped recording before the
25th November, due to loss of battery power.

Station Name of Start End Total Latitude
number location time time depth [m] Longitude

1 Småskjær 17/9 25/11 20 59.350124
14:00 7:20 10.497661

2 Laksetrappa 17/9 25/11 75 59.343452
14:00 7:50 10.581023

3 Botnegrunnen 19/9 18/11 96 59.352375
14:00 21:30 10.626822

4 Evje 16/9 25/11 64 59.363182
14:00 8:40 10.653576

5 Brenntangen 18/9 25/11 54 59.581803
14:00 13:40 10.646087

6 Filtvedt 17/9 9/11 153 59.582064
21:20 11:50 10.627372

Table 3.1: Table showing the recording times, the local ocean depth and the location for
each sensor.

The data collecting process was a collaboration between NIVA, Statnett,
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Figure 3.1: Map showing all the sensor locations (red crosses) and the location of the
nearest operational weather station (Gullholmen).

the University of Oslo (UiO) and Akvaplan NIVA. The research vessel R/V
Trygve Braarud was used for the field work. The sensor positions were chosen
from Statnett’s high-resolution terrain model.

As we can see in Figure 3.1, two sensors were installed in the southern end
of the Drøbak Strait (station 5 "Brenntangen" and station 6 "Filtvedt" in
the Figure). The bathymetry is steep on both sides of this channel-like area.
Statnett is planning on installing power cables on the sea floor approximately
where these two sensors are located.

Furthermore, four sensors were placed slightly south of Bastøy (see Figure
3.1). Along this cross-section, cables have been installed at the sea floor.
Some of these stations have been given names based on their bathymetry. For
instance, station 1 is located close to some tiny skerries, hence the station
name "Småskjær" (in English: "Small skerry"). Station 2, on the other
hand, is located in an area with staircase-like bathymetry and is thus called
"Laksetrappa" (in English: "Salmon staircase"). Station 3 "Botnegrunnen"
is situated on a fairly steep slope in the east-west direction and station 4
"Evje" is hidden inside a small bay with a decent slope. There is a deep
channel in the middle of the cross-section.

The wind at Gullholmen during the measuring period is shown in Figure
3.2. The location of this weather station can be found in Figure 3.1. The
time resolution for these measurements is 6 hours. We can see that the wind
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Figure 3.2: Wind speed measured at the weather station at Gullholmen from 16th
September to 25th November.

ranges from almost calm conditions (0.3 ms−1) to about 16 ms−1 (moderate
gale). Normally, it is between 2 ms−1 and 9 ms−1.

3.2 Current profilers

Two types of Acoustic Doppler Current Profilers (ADCP) were used for the
data acquisition; the Nortek Aquadopp and the Nortek Continental. They
measure three-dimensional current in an adjustable number of depths within
the water column. See Table 3.2 for the depths chosen for each station. The
instruments send beams in three different directions, each oriented 25◦ from
the vertical centre line. These beams are reflected from particles in the water
column. The current is calculated from usage of the Doppler principle. The
built-in magnetic compass and the tilt sensor helps to calculate the current
in the x−, y− and z− direction.

The resolution was chosen so that the precision never was worse than 2
cms−1 (see Table 3.2). A better precision requires a decrease in vertical res-
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St. Instrument Res. Min. Max. Freq. Avg. Prec.
no. [m] [m] [m] [Hz] [s] [cms−1]

1 Aquadopp600 2 4.5 16.5 600 180 1.8AQP1531

2 Aquadopp400 3 14 71 400 220 1.7AQP4689

3 Continental 7 13 83 190 110 1.4WAV6117

4 Aquadopp400 3 9 60 400 240 1.6AQP2931

5 Aquadopp400 3 8 50 400 240 1.6AQP5608

6 Continental 5 16 146 190 220 1.4CNL6037

Table 3.2: Instrument specifications. St. no = station number, res. = resolution
(vertical), min. = minimum depth, max. = maximum depth, freq. = frequency, avg. =
averaging period and prec. = precision

olution. In order to have a large vertical range, the frequency of beams must
be low. As we can see in Table 3.2, the frequency, given by the instrument
hardware, ranges from 190 Hz to 600 Hz.

The instruments give a new reading every 10 minutes. The readings
are averages of the signal recorded during an averaging period within these
10 minutes. A longer averaging period gives a better precision, but it also
consumes more battery. Thus, choosing the averaging period is a balance
between precision and battery power needs (in this case battery power was
needed for two months and about 8-9 days). From the requirement of a 2
cms−1 precision, averaging periods in the range of 2-4 minutes had to be
used, depending on the vertical precision (see Table 3.2).

The current sensors were moored to the seafloor with stones. In order
to stabilize the instruments during strong currents, floats were attached to
the upper part of the mooring system. Maximum tilt angles for the current
profilers ranged from 1.6◦ to 15.27◦ (Staalstrøm and Ghaffari, 2014). Acoustic
release mechanisms were used to recover the instruments.
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Chapter 4

The NorKyst-800 model

NorKyst-800 is a numerical model which covers the entire Norwegian coast.
The model was developed at the Institute of Marine Research (IMR) in coop-
eration with NMI and NIVA. The grid is rectangular and contains 2600×900
cells in the horizontal. Like the name suggests each cell is 800×800 m. There
are 17 depth levels, and the vertical resolution is highest near the surface.
The time step is one hour, which enables the model to resolve the most im-
portant topographical features and dynamical processes along the Norwegian
coast (Asplin, 2011). In this thesis, only daily mean output is used.

The model gives the state of the sea, that is, the ocean temperature,
the salinity, the sea level and the current in real time, a few days into the
future and up to several decades backwards. It utilizes Arakawa C grids.
This means that the free surface, the density and active/passive tracers are
calculated in the middle of each grid cell, while the east-west velocity and
the north-south velocity is calculated on the east/west and the north/south
edges.

There are many applications for this, of which some have already been
mentioned specificly for the Oslofjord in Section 1.2. In a broader sense, the
Norwegian coast is complex and presents many challenges for the offshore
industry. For instance, companies building and maintaining hydro power
stations and oil rigs can benefit from knowing the typical ocean condition
at some particular locations. Furthermore, the model can be used to check
the effects of for instance eutrophication near the coast. Another useful
application is to get an overview of the coastal environment (Albretsen, 2011;
Asplin, 2011).

The model requires initial conditions for current, salinity and tempera-
ture. In addition comes the boundary conditions, which include bathymetry,
atmospheric forcing and river runoff. Bathymetry with original resolution of
50 m taken from Statens Kartverk Sjø has been modified to fit to the model

18



grid. Open boundary conditions are taken from the partially overlapping
ROMS application Nordic4km, which is a 4 km resolution model covering the
Norwegian Waters (Shchepetkin and McWilliams, 2005). The atmospheric
forcing consists of daily (00, 06, 12, 18 UTC) analysis of wind, temperature,
pressure, cloud cover and humidity. Furthermore, 12 hour accumulated fields
of precipitation and long wave radiation and 24 hour accumulated fields for
short wave radiation are utilized. The runoff input is based on modeled dis-
charge by the Norwegian Water Resources and Energy Directorate (NVE)
from a total of 249 catchment areas along the Norwegian and Swedish coast
(Beldring et al., 2003; Albretsen, 2011).
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Chapter 5

Methods

In this chapter, all the different methods used to analyze the measurements
and the model output are presented. First, two different techniques for re-
moving tidal frequencies are described. This is followed by a discussion of
PSDs which are used to find the typical (tidal and non-tidal) frequencies of
motion. After this, a method of finding typical time scales (the autocorrela-
tion function) is outlined. Variance ellipses, which are used to find direction
patterns, are explained afterwards. Then comes an account of PDFs, applied
to detect for instance extreme flows. The last topic in the chapter is the
empirical orthogonal functions. These are used to look at the vertical profile
of current.

5.1 De-tiding of the current

The current signal can be split into a high-frequency (periods shorter than
about a day) and a low-frequency component. The tidal signal is contained
in the former. In this thesis, much emphasis is given to the low-frequency
signal. Two different methods for de-tiding the measurements are applied:
The harmonic analysis (Pawlowicz et al., 2002) and the Butterworth filter
(Roberts and Roberts, 1978).

5.1.1 Harmonic analysis

Harmonic analysis has been applied to estimate the tidal currents. The tide
ũ can be written as a sum of harmonic components (see also 2.1):

ũ =
∑
i

Ui cos(ωit− θi) (5.1)
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Figure 5.1: Plots of raw current data (blue curve) and harmonic analysis (red curve) for
station 1’s zonal flow component at 4.5 m depth, from the 17th to the 24th of September.

where Ui, ωi and θi are the amplitudes, frequencies and phases of tidal com-
ponent i, respectively. Once these constants are found, ũ is simply subtracted
from the flow to give the non-tidal current. This is sometimes an efficient
technique, because it exploits the deterministic character of the tidal signal.

The method has some drawbacks, however. For instance, in order to
resolve all the possible tidal frequencies, 18.6 years of time series is needed.
This is because the smallest fundamental frequency, which is the lunar orbit
tilt, has this period. For shorter time series, this problem can be solved by
introducing nodal corrections. These are small temporal variations in the
tidal constituents. However, if the record length is smaller than one year,
such as here, this correction can be ignored.

On the other hand, if the record is much shorter than one year, the fre-
quency resolution becomes quite low. Then it is hard to distinguish between
different tidal frequencies. This might be the case with the data presented
here, see Figure 5.1. We can see that the raw data (blue curve) and the
harmonic analysis (red curve) do not follow each other very well. Although
the non-tidal signal also is important, this might indicate that the frequency
resolution for the analysis is too low.

Another issue with the method is that it is not so easy to check the
origin of each frequency. Sometimes the method might give output coming
from the non-tidal broad-spectrum variability, and this is not easy to detect.
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Furthermore, the method does not account for temporal variations in the
tidal signal. Since we are looking at a fjord, the tide is nonstationary. There
are seasonal variations in the tidal response, caused by for instance seasonal
salinity changes.

In addition, non-linear effects may occur. These can not be captured
by harmonic analysis (Pawlowicz et al., 2002). As mentioned earlier (Section
2.1), non-linear effects tend to show up when the tidal wave has an amplitude
comparable to the ocean depth. The typical tidal variation in the Oslofjord
is about 20 cm (Section 1.1), while the lowest depth is about 20 m, which is
a factor 100 larger. Thus, non-linear effects are probably of minor concern
in this case.

The MATLAB function t_tide is used to determine the harmonic signal.
This function accounts for 45 astronomical and up to 101 shallow water
components in the harmonic analysis. The default choice is to include the 24
most important shallow water components, which is done here, in addition
to shallow water component M10. The tidal response model in t_tide is

c(t) = b0 + b1t+
K∑
k=1

(ake
iσkt + a−ke

−iσkt) (5.2)

where c is the tidal response and the σk are frequencies. The first two terms
represent a possible offset and an optionally added drift current, respectively.
Without these terms the equation resembles Equation 5.1, except that it
uses complex numbers. The coefficients a = [b0, b1, a1, a−1, a2, a−2, ...a−K ] are
determined through a least squares fit to the observations o = [o(t1), ...o(tM)],
where M is the length of the time series.

5.1.2 Butterworth filtering

As we have seen, the removal of harmonic components may not always remove
the full tidal signal. In order to make it less likely to have tidal remnants
in the data, a low-pass filter has been used. A low-pass filter is a filter
where frequencies above a certain threshold are removed, leaving the lower
frequencies unaffected.

A good low-pass filter should have a sharp cutoff at the maximum fre-
quency, have a sensible response to sudden peaks in the data, have a minimal
phase shift, be as flat as possible in the passband and require little computer
time (Roberts and Roberts, 1978). There are many filters that score well
on the first four requirements, e.g. the Cosine-Lanczos filter, the Gaussian
filter and the ideal filter. The Butterworth filter, however, retains these ad-
vantages without the high computational cost present in the three former
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Figure 5.2: A comparison of the squared Butterworth filter, the Cosine-Lanczos filter,
the Ideal filter and the Gaussian filter. Figure adapted from Roberts and Roberts (1978).
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filters.
For a discrete system, the Butterworth filter is defined as the square of

its transform function HB:

|HB(iω)|2 = |1 +
tan(ωT/2)

tan(ωCT/2)
|−2n (5.3)

Here T is the sampling time and n is the order of the filter. ωC is the cutoff
frequency. In this work, n = 4 and ωC = 1/25. Roberts and Roberts (1978)
showed that an order of 4 removes the tides sufficiently. A higher order makes
the filter more prone to roundoff errors. A cutoff frequency of 1/25 should be
sufficient for removing all the dirunal and semidiurnal tides, but as we will
see (Section 6.3), there seems to be some remnants of short period signals in
the filtered data.

The Butterworth filter equation (Equation 5.3) is compared to the other
mentioned filters in Figure 5.2. We can see that the ideal filter has the
sharpest cutoff and is flattest in the passband. However, this results in a
worse response to spurious signal changes, and this is not present in the
Butterworth filter. The Butterworth filter also scores fairly well on cutoff
sharpness and passband flatness.

In order to apply the filter to the data, the filter coefficients {cn} and
{dn}, which are the poles of 5.3, are calculated. These are fed into the
filter equation c1Om = d1om + d2om−1 + ... + dnd+1om−nd − c − 2Om−1 −
... − cnc+1Om−nc , which is solved in MATLAB.Here Om is the filtered time
series at time tm. nc and nd are the feedback and feedforward filter orders,
respectively. We can see that the filter is recursive, i.e. past values are needed
as input. Unfortunately, a phase shift will occur, but this can be avoided if
one filters forwards and then backwards. Then the power gain function will
be the square of the original, and this is what is shown in Figure 5.2.

5.2 Power spectral densities

One purpose of the PSD estimate is to find dominant frequencies in a signal.
That is the purpose it has served in this thesis.

The PSD can be expressed as:

P̂ (ω) =
dt

M
|
M−1∑
m=0

ome
−i2πωm|2 (5.4)

P̂ is called a periodogram of the signal and dt is the time step. The sum over
frequencies of the spectrum is equal to the total (horizontal) kinetic energy,
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and thus the spectrum says something about the importance of different
frequencies. In order to calculate the Fourier transform mentioned above, one
has to assume that the motion is stationary. In this case, stationarity means
that the mean and variance does not change significantly within neighbouring
time intervals.

If the time series is relatively long, that is, spanning several years, one
can divide it into several segments with some overlap and apply a window
to each segment. These windows typically have decreasing values near the
extremities for smooth overlap between them. For instance, a Hamming
window is used in Welch’s method (Welch, 1967) while in Thompson’s mul-
titaper method (Thomson, 2000) Slepian windows are used. The advantage
with overlaps is that the spectral estimate gets smoother. However, for short
time series like the ones presented here it makes more sense to consider the
periodogram itself without overlaps.

In this thesis, the PSDs are normalised. This eases the comparison of
different spectra in the same graph. Moreover, they are plotted in a semilog-
arithmic coordinate system so that the high frequencies are better resolved.
Vertical lines representing different tidal constituents are plotted in the same
graphs for comparison.

5.3 Autocorrelation functions

In order to find typical time scales for the currents, the autocorrelation func-
tion

r(τ) =
o′(t)o′(t+ τ)

o′(t)o′(t)
(5.5)

is calculated. Here, overbars are temporal block averages and o′ = o − ō.
From r, the integral time scale can be obtained. This time scale is important
for three reasons: Firstly, it is the time scale over which perturbations remain
correlated. Secondly, it is proportional to the inverse of the peak frequency
in the PSD. Thirdly, it must be well resolved by the averaging period, which
is about 2-4 minutes for the measurements. For the model output, it is one
day.

It is common to determine the integral time scale by assuming that the
autocorrelation function decays exponentially with respect to time (see e.g.
Roberts and Roberts (1978); LaCasce (2005b)). That is, one assumes that
r(tj) ∝ e−

tj
T where T is the integral time scale, also called the e-folding

time scale (Lenschow et al., 1994; LaCasce and Engedahl, 2005). The least
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squares method can be applied to fit the autocorrelation to an exponential.
If the e-folding time for instance is 3 days, this usually means that a typical
fluctuation in the current lasts for about 3 days before it is decorrelated.

We will see that the autocorrelation functions presented here do not fit so
well to exponentials (Section 6.3). Therefore, another method for determin-
ing the integral time scale is also used, namely the convergence value of the
cumulative sum of the autocorrelation function multiplied by dt (Lenschow
et al., 1994; LaCasce et al., 2014).

5.4 Variance ellipses

The purpose with variance ellipses is to find the dominant directions of vari-
ability for a dataset. Like the name suggests, one gets information about the
variance as well.

In order to calculate variance ellipses, one first needs the covariance ma-
trix

Cu =

[
σ2
u u′v′

u′v′ σ2
v

]
(5.6)

where u and v are the east-west and the north-south components of the ve-
locity vector, respectively. The σ are variances in the u- and v-direction, and
u′v′ is the covariance. The eigenvectors and eigenvalues of the covariance
matrix define the orientation and the size of the ellipse, respectively. The
major axis of the ellipse goes along the eigenvector with the largest eigen-
value. This eigenvalue corresponds to half the length of the major axis, say,
a. Similarly, the minor axis has the length of the smallest eigenvalue (e.g. b)
and the direction of the corresponding eigenvector. The coefficients a and b
also correspond to the variances in the direction of the eigenvectors.

The equation for the ellipse becomes

(
X

a

)2

+

(
Y

b

)2

= s (5.7)

where X and Y are the coordinates of the ellipse and s works as a scaling.
By usage of the chi-square cumulative distribution (Lilliefors, 1967), s can
be chosen so that a given percentage of data points can fit inside the ellipse.
These values can be looked up in tables. For instance, in order to fit 95% of
the data points into the ellipse, which we do here, s has to be 5.991.
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5.5 Probability density functions

As we have seen, variance ellipses only capture variability within +/− a
standard deviation from the mean. Probability density functions (PDF), on
the other hand, also show data which is several standard deviations away
from the mean.

An empirical PDF is a histogram where the data is sorted into normalized
bins. It can be approximated by a distribution function. An example of such
a distribution function is the Gaussian distribution, which is given by

p(o) =
1

σo
√

2π
e
− (o−ō)2

2σ2
o (5.8)

Here σo is the standard deviation of the variable o.
A PDF might differ significantly from the Gaussian distribution. If that

is the case, it shows that there are significant extreme values in the data.
Examples of PDF plots can be found in LaCasce (2005b). In this article,
some PDFs have peaks at +/− 4 standard deviations away from the mean.
This shows that there are persistent flow features in the dataset. A similar
situation is found in LaCasce (2005a).

The Kolmogorov-Smirnov test is a way of comparing two different PDFs.
In this thesis, we compare PDFs from the current meters with Gaussian
distributions. If s(o) is the sample cumulative distribution and f(o) is the
Gaussian distribution, the value of B = max|f(o) − s(o)| determines if the
test is rejected or not. If it is rejected, the data is not Gaussian, or normally
distributed. The critical value of B for different amounts of data are obtained
from Monte Carlo calculations (Lilliefors, 1967). They can be looked up in
tables.

5.6 Empirical orthogonal functions

So far we have looked at ways to describe temporal variability, current
strength and current direction. Empirical orthogonal functions (EOFs), on
the other hand, can be used to characterize spatial (here: vertical) variation
of data. The EOFs resemble the dynamical modes in Section 2.2, see also
(Wunsch, 1997).

In order to compute EOFs, data from each station must be organized into
a matrix F = [f

1
...f

m
...f

M
]. Each column vector f

m
is a depth profile of

the current at time tm. The covariance matrix R = M−1FF T is then cal-
culated and the eigenvalues and eigenvectors of R are found through solving
RC = CΛ. (Notice that this covariance matrix is organized differently from

27



that in Section 5.4.) Here, C = [v1. . . vj. . . vJ ] contains the eigenvectors of R
and Λ = diag(λ1. . . λj. . . λJ) contains the corresponding eigenvalues of R (J
is the number of depth levels recorded). Each eigenvector is an EOF. Its cor-
responding eigenvalue equals the fraction of total variance in R explained by
that particular eigenvector. In other words, vj has a relative resemblance of
λj to all the observation vectors f simultaneously (Kutzbach, 1967; Bjornsson
and Venegas, 1997).
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Chapter 6

Results and discussion

In this chapter, the results of applying the methods in Chapter 5 to the
data in Chapter 3 is presented, starting off with power spectral densities.
The currents are projected onto components along and across the isobaths.
This is because it makes it easier to detect phenomena which are related to
topography.

6.1 Power spectral densities

The PSD shows how much variance that is contained in each frequency. In
other words, it states which frequencies are most important in the motion.
One reason for calculating PSDs is to find out whether the current is dom-
inated by tides or not. Furthermore, one can see which tidal or non-tidal
frequencies are most significant.

The PSDs for the lowermost recording level at station 1 is shown in Figure
6.1. We can see that there is a peak near the M2 frequency. There are also
peaks at harmonic overtides of theM2 component. This is also seen at station
2 and 6.

For the stations in the Drøbak Strait, the M2 peak is clearest near the
surface, i.e. at about 15-20 m depth. It is most dominant in the component
across the topography. As mentioned earlier, internal waves of tidal origin
(M2) propagate from the Drøbak Sill, which is also about 20 m deep. The
stations near Bastøy, which are further away from the Drøbak Sill, have
a stronger M2 signal at about 50-60 m depth. The sharpest stratification
gradients are found at these depths.

Station 4 is the only station where theM2 component is not the dominant
tidal signal. This station is slightly sheltered inside a small bay. Instead,
there are significant contributions from O1, K1 and S2. These dominate at
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Figure 6.1: PSDs for station 1 for the parallel flow (purple) and the normal flow (black).
The recording closest to the bottom has been chosen. Vertical lines representing different
tidal constituents are plotted, in order to find out which ones that dominate. From left to
right: K1, M2, M4, M6 and M8

different depths. Some of them are more important in the parallel flow than
in the normal flow, and vice versa.

The largest peaks in the PSDs are fairly often sub-tidal. They have a pe-
riod ranging from 2 days to about the duration of the time series. Moreover,
they are often multiples of each other. For instance, a period of 7.3 days
is often accompanied by a period of 14.6 days. The record length is fairly
short, and this might affect the frequency spectrum. Sub-tidal frequencies
are normally most dominant near the surface. They are clearest in the flow
normal to the contours in the Drøbak Strait.

6.2 Hovmöller diagrams

From this section onwards, only the low-frequency (de-tided) currents are
studied. Hovmöller diagrams are useful for giving an overview of the temporal
and spatial (here depth) variability. They can show whether the flow is
strongest along or across the topography, and how strong it is in each of
these components. In addition, one can see how the current fluctuates with
time, for instance how fast it changes. One can also see how long strong flow
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Hovmöller diagram for normal flow at mooring 1
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Hovmöller diagram for parallel flow at mooring 1
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Figure 6.2: Hovmöller diagram of parallel and normal flow at station 1.

Hovmöller diagram for normal flow at mooring 2
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Hovmöller diagram for parallel flow at mooring 2
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Figure 6.3: Hovmöller diagram of parallel and normal flow at station 2.
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Hovmöller diagram for normal flow at mooring 3
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Hovmöller diagram for parallel flow at mooring 3
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Figure 6.4: Hovmöller diagram of parallel and normal flow at station 3.
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Figure 6.5: Hovmöller diagram of parallel and normal flow at station 4.
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Hovmöller diagram for normal flow at mooring 5
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Hovmöller diagram for parallel flow at mooring 5
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Figure 6.6: Hovmöller diagram of parallel and normal flow at station 5.
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0

0
0

0

0

0

0

0 0

0

0 0

0

0

0

0

0

0

0

0

0

0

0

0
0

0

0

00

0

0

0

0

0.
05 0.05

0
.0

5

0
.0

5

0
.0

5

0
.0

5

09/21 09/28 10/05 10/12 10/19 10/26 11/02 11/09

Date [month/day]

-140

-120

-100

-80

-60

-40

-20

D
e

p
th

 [
m

]

-0.1

0

0.1

C
u
rr

e
n
t 
[m

/s
]

Figure 6.7: Hovmöller diagram of parallel and normal flow at station 6.
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events typically last. Is it one day or one week? The diagrams may also show
whether there are vertical layers in the flow where it is generally stronger or
weaker. For instance, it may show whether the flow is bottom intensified, or
if there is a surface intensification. Furthermore, although not done here, one
can be able to tell how fast a flow event spreads vertically. More specificly,
one can estimate the vertical diffusion.

Figure 6.2, 6.3, 6.4, 6.5, 6.6 and 6.7 shows Hovmöller diagrams of the
along and across current measured at each station. The strongest currents
are found at station 1, which is the shallowest station (only 20 m deep). The
currents are up to 0.5 ms−1. This is also the only station with measurements
closer than 10 m from the surface. Station 2 also has quite significant cur-
rents, about 0.4 ms−1 at most. These moorings are both located near the
Drammensfjord, from which a strong brackish flow is expected due to Dram-
menselva. The currents at the other stations are typically on the order of
0.1-0.2 ms−1. The weakest flow is found at station 4, which is closest to the
coastline.

The flow is usually strongest along the isobaths. The strongest dominance
of the parallel flow compared to the normal flow is found at the stations in
the Drøbak Strait, especially at station 6. In this area the fjord is narrow,
and it is formed like a channel. At station 2 the perpendicular component
dominates instead. Here, the isobaths are approximately perpendicular to
the fjord ’axis’.

Normally, the flow seems to have two distinct layers. The exception is
station 1, where the flow events are always near the surface. As mentioned
earlier, this station is shallow. Occasionally, one can see three different layers.
This is typically at the deepest stations.

The uppermost layer near the surface can be distinguished from its short-
lived current events. The peaks decay in strength down to about 10-12 m,
and sometimes even further. They last for about 1-3 days, and they tend
to appear simultaneously at all the stations. The frequency of occurrence is
about 2-4 times per month. Both wind forcing and brackish water currents
can generate such events. A visual comparison is done between the surface
events and the wind strength at Gullholmen (Figure 3.2). Sometimes, a
strong wind event is followed by a current maximum, while on other occa-
sions there is no apparent response in the surface current. The water flux
from Drammenselva is also compared to the surface currents, but with little
agreement.

Below the surface layer, the flow often goes in the opposite direction.
This pattern resembles that of estuarine circulation. Sometimes, the flow in
this intermediate layer is stronger than the near-surface flow. Unfortunately,
there are no measurements from the uppermost 5-10 m, except at station 1.
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The currents in the third layer, when it exists, are typically reversed with
respect to the currents in the second layer. The events in the intermediate
layers have variable vertical extents of about 5-20 m.

Near the bottom the flow weakens, and it decays more rapidly across the
topography. At some stations, however, in particular station 3 and 4, the
flow intensifies near the bottom instead. This phenomenon often appears
in the cross-isobath flow. At these two stations, the isobaths are at right
angles to the fjord orientation, which we will see is the general flow direction.
Topographic waves are often excited by such bathymetry. If topographic
waves exist in the area, their wavelength can be estimated by knowing their
approximate vertical extent and the stratification (see Section 2.3). The
vertical extent can be estimated visually. For for station 4’s component
normal to the topography, it is about 3 m. The stratification, estimated
from CTD measurements in the vicinity, is found to be in the range 0.015-
0.025 s−1. Thus, the estimated wavelength is 2.3-3.8 km.

6.3 Autocorrelation functions

The main reason for calculating autocorrelation functions is to see how fast
the currents change with time. It gives us the typical time scale for motion.
For instance, one can find out whether the time scale changes with depth or
with location.

Station 1 Station 2 Station 3
z τN τP z τN τP z τN τP
4.5 1.1 1.3 17 1.3 1.3 13 1.2 1.2
6.5 1.0 1.1 26 1.3 0.9 20 1.3 1.5
8.5 0.9 0.9 35 1.5 0.9 27 1.1 1.2
10.5 0.8 0.9 44 1.2 0.9 41 1.3 1.1
12.5 0.7 0.9 53 1.2 1.0 55 0.7 1.0
14.5 0.7 0.8 62 1.0 1.0 69 2.5 2.4
16.5 0.7 0.7 71 1.3 0.8 83 1.0 0.8

Table 6.1: Table showing the calculated e-folding time scales
for station 1-3. z is the depth in meters. τN is the time scale
for the flow normal to the isobaths and τP is the time scale for
the flow parallel to the isobaths.

As mentioned ear-
lier, autocorrelation
functions are often
compared to expo-
nentials. However,
the autocorrelation func-
tions in this study do
not resemble expo-
nential functions (see
Figure 6.8). Re-
call that the time se-
ries is relatively short
(about two months).
The function also has
a lot of wiggles at
large values of τ . E-
folding (integral) time scales have been estimated as the time delay for which
normalized autocorrelation functions are reduced to 1/e, see Table 6.1 and
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6.2.

Station 1 Station 2 Station 3
z τN τP z τN τP z τN τP
9 1.6 1.2 8 3.3 0.9 16 0.7 0.9
15 0.7 0.7 11 1.0 1.0 36 0.7 0.9
24 2.1 0.9 14 0.8 0.8 56 1.2 0.6
33 1.1 0.8 23 3.0 0.9 76 0.9 0.7
42 3.4 1.9 32 1.0 0.9 96 1.0 0.7
51 0.9 0.7 41 0.6 0.7 116 0.7 0.9
60 1.8 1.5 50 0.7 0.9 136 1.1 0.8

Table 6.2: Table showing the calculated e-folding time scales
for station 4-6. z is the depth in meters. τN is the time scale
for the flow normal to the isobaths and τP is the time scale for
the flow parallel to the isobaths.

For the flow along
the isobaths, sur-
face e-folding time
scales of around 1.2
days are often found
near Bastøy (see Ta-
ble ??). The typi-
cal bottom value for
the same area is usu-
ally around 0.7 days.
At station 1, the
time scale decreases
steadily towards the
bottom, whereas at
the other stations it
fluctuates more. For

instance, values up to 2.9 days are found near the bottom at station 3. In the
Drøbak Strait, the time scales are generally smaller for the isobath-following
component, typically less than unity.

Across the isobaths, the currents seem to be slightly more persistent. In
this component, time scales of up to 4.0 days are observed. Near Bastøy, the
time scales are typically between 0.6 and 1.7 days, with some larger values
at a few intermediate depths. At the Drøbak Strait, the time scales are often
around 0.7-0.8 days, but there are some depths with values of 2-3 days too.
In general, these time scales agree quite well with the fact that the peaks in
the Hovmöller diagrams (Section 6.2) typically last for 1-3 days.

We can see that the autocorrelation function in Figure 6.8 looks like
a cosine times exponential function rather than a pure exponential func-
tion. Therefore, another possible estimate of the autocorrelation function is
r(tj) ∝ e−tj/T1 cos(tj/T2). In this formula there are two time scales, of which
T1 resembles the e-folding scale while T2 is a time scale representing the fluc-
tuations. T1 is often found to be less than the integral time scales obtained
in the previous paragraphs.

A third method to determine integral time scales is also used. The method
comprises taking the asymptotic value of the cumulative sum of the autocor-
relation and multiply it by dt (see Section 5.3). This often gives values close
to zero (see e.g. Figure 6.9). Therefore, the average value where the cumu-
lative sum is approximately constant is used instead. Because the graphs
fluctuate much, it is hard to find this constant value. Nevertheless, values in
the range 0.7-1 day are often found. There are also a few depths with larger

36



values, up to 4-5 days (mostly across the contours).

0 1 2 3 4 5 6 7

Time [days]

-0.2

0
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0.8

1
Mooring 1 at depth 4.50 m

Figure 6.8: Example plot of autocorrelation function (blue curve) together with expo-
nential function (red curve) and exponential times cosine function (green curve). Station
1 at 4.5 m depth.

Neither the harmonic analysis nor the Butterworth filter are perfect tech-
niques for removing the tides. It is still a little bit surprising to find time
scales that are less than a day for the filtered currents. In Section 5.3, we
see that the integral time scale is proportional to the inverse of the peak
frequency in the PSDs. If we use this fact, we can deduce the time scales
from the de-tided PSDs. This gives the longest time scales at the stations
south of Bastøy, which are closest to the open ocean. These stations get time
scales of about 4 days, while the stations in the Drøbak Strait get time scales
of about 2 days (although for some depths around 5 days).

As mentioned in Section 5.3, the time scale must be well resolved by the
averaging period. The shortest time scale is about 0.6 days. The maximum
averaging period of 4 minutes is about 0.5% of this time scale. Thus, the
time scale is fairly well resolved. However, considering that it is in fact 10
minutes between each recording, the percentage increases to 1-2%.
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Figure 6.9: Example plots of the convergence values for the autocorrelation functions.
Station 4 near the bottom, flow normal to the contours.

6.4 Variance ellipses

Variance ellipses give information about both the variance and the current
direction. Firstly, they show where the variance is greatest. The wider the
ellipse, the more variance in the data. Furthermore, they show directional
patterns, for instance how the current turns with depth. If plotted in a
map (like here), they can also show how the current direction compares to
topography. Horizontal variations in flow direction can also be detected.

Figure 6.10, 6.11, 6.12, 6.13, 6.14 and 6.15 shows examples of variance
ellipses for the low-passed velocities at each station. The variance is greatest
at station 1 and 2, where the current is strongest (see Section 6.2). Values
up to 0.2 ms−1 occur along the major axis. Station 3, 5 and 6 have 0.1 ms−1

variance along the major axis near the surface. Station 4 clearly has the least
variance. Along the minor axis, the variance is typically in the range 0.01-0.1
ms−1 for all the stations.

The variance is always greatest near the surface. It typically decreases
smoothly with depth, except at station 3. At this station, there is a small
oceanic shelf in the vicinity. Near the bottom, the variance goes down to
about 0.01-0.05 ms−1. The largest bottom values are found near Drøbak
(station 5 and 6), where the fjord is narrowest. Previously, we have seen that
the parallel flow dominates at these stations (Section 6.2).
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Figure 6.10: Variance ellipses at station 1.
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Figure 6.11: Variance ellipses at station 2.
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Figure 6.12: Variance ellipses at station 3.
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Figure 6.13: Variance ellipses at station 4.
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Figure 6.14: Variance ellipses at station 5.
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Figure 6.15: Variance ellipses at station 6.
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From the Figures, we can see that the ellipses often turn clockwise with
depth near the surface. For some of the stations, the turning direction
switches between being clockwise and anticlockwise many times. At the
shallow station 1 and at station 6, on the other hand, a more or less constant
flow direction is found. The variance ellipses near the bottom are usually
oriented along the isobaths. At station 4, however, they are aligned with the
slope instead. As mentioned earlier, this station is sheltered from the mean
flow. Most of the ellipses are more or less oriented along-fjord. The fjord is
of comparable width to a Rossby radius, implying that effects of the Earth’s
rotation is of minor importance. The only places where the flow is perpen-
dicular to the fjord shape is at station 3 near the bottom and at station 4 at
mid-depth.

One can get extra insight into the current directions by considering the
mean flows. From these, it is found that the flow goes northwards on the east
side of the Drøbak Strait and southwards on its west side. This is a typical
circulation pattern in fjords where the Coriolis force is important. On the
east side of Bastøy (station 2), the flow is mainly due north, while on its west
side it is due south. Otherwise, the direction is quite variable.

6.5 Probability density functions

All the statistical moments derive from the PDF. Thus, one is able to see
for instance the skewness in the data. Are the currents mostly close to the
mean, or do they deviate significantly from the mean? In other words, the
structure of the PDF has implications for the temporal variation of current.

The Kolmogorov-Smirnov test gives a value of 1 for all the measure-
ments. This means that the PDFs are statistically Gaussian, i.e. normally
distributed. Thus, no deviations in the data are significant from a statistical
point of view. However, the record length is relatively short, i.e., less than a
year. With a longer measurement duration, the deviations could have been
more significant.

Figure 6.16 shows an example of a PDF, together with a Gaussian curve.
We can see that the distribution looks somewhat skewed. This is the case for
most of the PDFs at station 1 and 2. These stations are closest to the largely
freshwater affected Drammensfjord. At these stations, the most frequently
occuring current has a more negative component along the isobaths and a
more positive component across the isobaths, compared to the mean.

In accordance with the above results, the skewness for station 2 is positive
(vertical mean 0.19) across the isobaths and negative (vertical mean -0.48)
along the isobaths. At station 1, however, the skewness is negative (vertical
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Figure 6.16: PDF plot for station 1 along the isobaths at 12.5 m depth.

mean -0.77) across the isobaths and positive (vertical mean 0.75) along the
isobaths. This is because of peaks in the far left (left tail) along the isobaths
and in the far right (right tail) across the isobaths (mostly near the surface).
The other stations also have significant tails at specific depths. Station 3 has
a negative tail near the surface along the topography. At about 50 m depth,
negative tails are found along the isobaths at station 4. Moreover, at station
5 there are positive tails in the across component near the surface.

6.6 Empirical orthogonal functions

In this thesis, the main purpose with empirical orthogonal functions is to
find typical vertical variations in the flow. The structure of the EOFs could
for instance resemble barotropic or baroclinic modes with different kinds of
stratification. It might also differ significantly, for instance if there are large
values at intermediate depths or near the bottom. Furthermore, one can find
out how much percentage of variance that is covered in a specific EOF. Is for
instance the first EOF very dominant?

In Figure 6.17 and 6.18, we can see the EOFs covering the largest amount
of variance at each station. From these plots, we can see that the most
dominant EOF often has a strong gradient near the surface. Some EOFs,
however, peak near mid-depth instead. We have previously seen both surface
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Figure 6.17: EOFs for the flow parallel to the contours. The decimal numbers are the
fractions of total variance covered by each EOF.

and intermediate current events in the Hovmöller diagrams presented earlier
(see Section 6.2).

Most of the EOFs go to zero near the bottom. At station 3 and at
station 4 along the contours, on the other hand, the amplitude increases
near the bottom. This might be an effect of topographic waves as well. In
the Hovmöller diagrams, we saw that station 2 and station 4 had intensified
flow near the bottom. This occurred mainly in the normal component.

Usually, there is more variance in the EOFs along the contours. This is
seen at station 1, 4 and 6. We have seen that the current often is following
the isobaths. At station 3 and 5, the amount of variance is approximately
equal for both components. The cross-isobath EOFs have most variance at
station 2, however. We have already seen that this station has strongest flow
across the isobaths.

The primary EOFs for station 1 and 6 do not change sign with depth.
From Section 6.4, we recall that these were the stations with the least changes
in direction. Station 3’s most important EOF also has the same sign through-
out, but in contrary to the aforementioned stations, which have a fairly
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smooth shape, it has a zigzag shape. The best examples of zigzags, however,
are the EOFs at station 4 and 5 (normal to the contours). At these stations,
we have seen that the direction changes much with depth (see again Section
6.4).
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Figure 6.18: EOFs for the flow normal to the contours. The decimal numbers are the
fractions of total variance covered by each EOF.

The variance covered by each EOF is also shown in Figure 6.17 and 6.18.
We can see that at station 1, about 90% of the variance is in the primary EOF.
Normally, only 40-50% of the variance is in the first EOF. This percentage is
larger for the normal component of the flow, which tends to be the weakest
component.

We can see that the EOFs have some resemblance to baroclinic modes
with rough bottom, see Figure 2.1. The first mode is found at station 1.
Similarities to the second mode can be observed at station 1 and 2, as well
as at station 3 and 5 along the contours. Higher baroclinic rough bottom
modes can also be found. The presence of these modes shows that the flow is
significantly affected by bottom roughness. It also shows that there is some
stratification at these locations, possibly near-exponential (see Section 2.2).
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6.7 Model validation
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Figure 6.19: Plot of the model grid. Red crosses indicate grid points and cyan crosses
are the real station locations.

In this chapter, the model output is presented and compared to the mea-
surements. Figure 6.19 shows a portion of the model grid that covers the
locations of the six moorings. Notice that the model grid is too shallow.
For instance, the deepest trenches are less than 200 m deep while in reality
being close to 300 m deep. At station 6, the model is about 50 m while
measurements stretch down to 150 m. This is due to the smoothing of the
grid, which is done to avoid numerical noise.

In the comparison, the closest grid point to each station is chosen. Hovmöller
diagrams, variance ellipses and empirical orthogonal functions are plotted.
As mentioned earlier, the output files used here have a temporal resolution of
1 day. Thus, the autocorrelation functions only give a rough estimate of the
e-folding time scale, which is found to be about 1-3 days. The measurements
gave values in approximately the same range. The frequency spectra for the
model were found to be of minor importance, due to the lack of tidal periods.
PDFs were also omitted because there is not enough data.
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6.7.1 Hovmöller diagrams

Figure 6.20, 6.21, 6.22, 6.23, 6.24 and 6.25 shows the Hovmöller diagrams for
the grid points closest to each station. We can see that the strongest currents
are found near station 3 and 6. There are also fairly energetic currents near
station 5. In the measurements, the largest values were found near Bastøy,
i.e. at station 1 and 2. Recall that the local bathymetry is slightly different.

The model current strengths are up to 0.6 ms−1. On average, the model
output gives currents of about 0.3-0.4 ms−1. The observations have maximum
values of about 0.4-0.5 ms−1 and average values between 0.1 and 0.2 ms−1. In
general, the model grid is shallower than the real bathymetry of the Oslofjord.

The flow is typically about equally strong along and across the contours.
Near station 2 and 5, the current is slightly stronger along the isobaths, while
near station 3 the opposite is seen. Close to station 6, the flow across the
contours is clearly strongest. It is up to 0.5 ms−1, while it never exceeds 0.3
ms−1 along the contours. This is exactly the opposite of what we saw in the
measurements.

In the measurements, it is possible to distinguish between different layers
of current. This is not as easy in the model output, which has a low vertical
resolution. Nevertheless, there seems to be a surface layer. The surface
events have a typical vertical extent of about 5-12 m. They sometimes stretch
deeper down, however, almost reaching the sea floor. The typical surface peak
duration is around 2-3 days. Station 5 has a few current maxima which last
for about a week. 1-3 days is a more common value for the measurements,
which have a finer temporal scale (10 minutes). The model peaks occur about
4-6 times per month. The corresponding number for the measurements is
about 2-4 times per month.

Occasionally, it is possible to see weak signs of return flows at intermediate
depths. These flows are never stronger than the surface flows. In the data, we
see that there are situations were the intermediate flow is the strongest flow.
There is a lack of measurements from the uppermost few meters, though.
The peaks have typical vertical extents of 5-20 m. This is approximately in
the same range as for the measurements.

In Section 6.2, we see that the flow usually decays near the bottom. We
also see that it gets particularly weak across the contours. Furthermore, we
see that there are some cases where it is strong near the bottom. All of these
features can be seen in the model too. Thus, topographic waves might be
resolved in the model.
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NorKyst-800 parallel flow near mooring 1
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Figure 6.20: Hovmöller diagram for parallel and normal flow near station 1.
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Figure 6.21: Hovmöller diagram for parallel and normal flow near station 2.
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Hovmuller diagrams NorKyst-800 near mooring 3
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Figure 6.22: Hovmöller diagram for parallel and normal flow near station 3.
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Figure 6.23: Hovmöller diagram for parallel and normal flow near station 4.
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Hovmuller diagrams NorKyst-800 near mooring 5
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Figure 6.24: Hovmöller diagram for parallel and normal flow near station 5.

NorKyst-800 parallel flow near mooring 6
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Figure 6.25: Hovmöller diagram for parallel and normal flow near station 6.
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6.7.2 Variance ellipses

In Figure 6.26, 6.27, 6.28, 6.29, 6.30 and 6.31 variance ellipses for model
grid points are plotted. The variance is strongest near station 1, with val-
ues up to 0.4 ms−1. In the data, the maximum variance is 0.2 ms−1. The
current strengths are fairly weak at this station. Station 3 and 6, which
have the strongest currents, also have a fairly large variance. The smallest
values are found at station 4. This is also observed in the measurements.
The variance decreases quite smoothly with depth, and near the bottom the
variance decreases to about 0.01-0.03 ms−1. The largest bottom values are
found near station 2 and 3. Slightly larger bottom variance is found in the
measurements.
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Figure 6.26: Variance ellipse from the model near station 1.

The ellipses often turn anticlockwise with depth near the surface. Further
down, they turn clockwise. In the meantime, a predominantly clockwise
turning with depth is found to dominate in the measurements. Most of the
model ellipses are oriented to the northeast. We recall that the ellipses in
the data tend to align with the fjord. Near the bottom, the model ellipses
are usually aligned with the bathymetric contours. This also applies to the
data.
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Figure 6.27: Variance ellipse from the model near station 2.
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Figure 6.28: Variance ellipse from the model near station 3.
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Figure 6.29: Variance ellipse from the model near station 4.
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Figure 6.30: Variance ellipse from the model near station 5.
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Figure 6.31: Variance ellipse from the model near station 6.

6.7.3 Empirical orthogonal functions

In Figure 6.32 and 6.33, EOFs from the model have been plotted along and
across the topography, respectively. There is a strong gradient near the
surface, especially in the first EOF. We see this surface gradient in the mea-
surements (Section 6.6), as well as in the model Hovmöller diagrams. No
mid-depth maxima are present. However, the model vertical resolution is
not as good as for the measurements. A decay of variance is observed in the
model output near the bottom. In the data, variance increase is seen towards
the bottom at some stations (in particular station 3 and 4). This relatively
small scale feature can not be found in the model output. The model vertical
resolution gets worse with depth, however.

The magnitude of the variance is fairly similar for the two components.
There is an exception to this near station 6, where the component normal to
the isobaths dominates. Previously, we have seen that the modeled current
at this station is strongest across the isobaths as well.

We can see that for many of the chosen locations, the primary EOF has
a very simple structure. Most of the time, it does not cross the zero line.
Furthermore, there is typically a smooth increase in amplitude towards the
surface. For some of the grid cells, this EOF changes sign once or twice. In
Section 6.6, we see that the leading EOF for the data has a quite complex
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Figure 6.32: EOFs for the parallel flow near each station.
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Figure 6.33: EOFs for the normal flow near each station.
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structure some places.
We can see that the primary EOF often covers more than 70% of the vari-

ance. The percentage is up to 90% some places. In the measurements, we see
that the first EOF normally only accounts for about 40-50%. There is not a
big difference in variance between the parallel and normal flow components.
The only exception is found near station 6, where the normal component
dominates. The measurements give a different picture, always having domi-
nating components normal to the contours.

In the measurements we can observe baroclinic modes with rough bottom.
Resemblances of the first baroclinic mode is present in the model output as
well. An example of this is the most significant EOF at station 1. Similarities
to the second baroclinic mode is occasionally important as well. It is rarely
a dominating trend though.
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Chapter 7

Summary and conclusions

In this study in-situ measurements from the Outer Oslofjord are analyzed
with different statistical tools. Hourly output from similar locations in the
NorKyst-800 model grid are analyzed in a similar manner. PSDs are cal-
culated for the raw data. Two ways of de-tiding the raw data are applied;
harmonic analysis and Butterworth filtering. The filtered currents (and the
model output) are plotted in Hovmöller diagrams. Autocorrelation functions
are found, in addition to variance ellipses, PDFs (only for the data) and
empirical orthogonal functions.

When it comes to tides, theM2 frequency dominates. Harmonic overtides
of the M2 component are also seen. This finding agrees well with Staalstrøm
et al. (2012) and Stigebrandt (1979). Staalstrøm et al. (2012) argues that
internal tidal waves propagate in the Drøbak Strait. The measurements
substantiate this statement, because the peak of the M2 frequency at station
5 and 6 is at about sill depth (20 m). Near Bastøy, the M2 component has a
deeper peak, possibly due to the strong stratification gradient there. Close to
the coast (station 4), other tidal frequencies are found to be more important.
Usually, the non-tidal frequencies are the most important ones. Some of
them are unphysical, probably due to the shortness of the time series.

The Hovmöller diagrams show that the strongest currents are near Bastøy,
with maximum flow speeds of 50 cms−1. This is possibly due to the freshwater
flux from Drammenselva or very shallow measurements (station 1). The
weakest flow is found at station 4. The flow tends to follow the isobaths,
except at station 2, where the isobaths are at right angles with the coastline.
One can distinguish between two layers of current. The fluctuations in the
surface layer are most likely driven by winds, although the freshwater input
could also affect it. This is in accordance with Staalstrøm et al. (2012). In
the second layer, the flow often reverses, which might be a sign of an estuarine
circulation. The currents are sometimes strongest in this layer, perhaps due
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to missing records near the surface. Near the bottom, the flow is normally
weak, feeling the friction from the seafloor. However, it intensifies some
places as well. Topographic waves with wavelengths of about 3 km might
be the reason for this. This is particularly likely to happen at station 3 and
station 4 because the isobaths at these locations are perpendicular to the
general flow direction.

Various ways of interpreting the autocorrelation functions gave integral
time scales of about a day. Slightly longer time scales were found near the
surface. Occasionally, large values were found at some intermediate depths,
up to 3 days. These observations do not agree with the model study done
by NIVA (Section 1.1), which finds time scales of 4-6 days in the Oslofjord.
However, short time scales are observed other places, for instance at the shelf
off the west coast of Norway (LaCasce, 2005b). Here, time scales of 1-3 days
are found for the low-passed current, with larger values near the surface (in
the Norwegian Atlantic Current core). Furthermore, Roberts and Roberts
(1978) obtains time scales of 2-3 days in the Gulf of Alaska (with a cutoff
frequency of 1/3h−1). Deduction from the peak frequency of the PSDs gives
longer time scales. Near Bastøy, the time scale is then about 4 days, while
typically being 2 days in the southern Drøbak Strait.

The variance is greatest where the strongest currents are found. The
ellipses follow the isobaths near the bottom. This could be connected with
the topographic waves mentioned earlier, which propagate along the isobaths.
There is a weak clockwise turning of current with depth near the surface.
This resembles the results of other studies elsewhere, like Kundu (1976) and
Lenn and Chereskin (2009). These argued that it could be signs of Ekman
currents (Ekman, 1905). Broadly speaking, the variance tends to align with
the fjord shape, in particular in narrow areas like the Drøbak Strait. This
agrees well with Johannessen (1967), which found currents following the fjord
shape in the inner fjord. The mean current vectors show that the circulation
resembles that of fjords which are significantly affected by the Coriolis force,
even though the Rossby radius is not well resolved by the fjord width.

There is some deviation from the normal distribution at the stations
closest to the Drammensfjord. It might be that the freshwater flux is what
causes these deviations, although they are not only found in the surface. They
could also be related to the closeness to Bastøy. The Kolmogorov-Smirnov
test, however, shows that the currents are statistically Gaussian. LaCasce
(2005b) found non-Gaussianity in the flow offshore of the western Norwegian
shelf. However, the record was longer and in the middle of a strong, already
known current. Bracco et al. (2000) found PDF plots with extended wings
in the Northern and equatorial Atlantic Ocean and explained these with the
existence of eddies.
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From the EOFs, one can recognize several features that could also be
seen in the Hovmöller diagrams. This includes flow intensification near the
surface and flow weakening near the bottom. Occasionally, the EOF has an
increasing amplitude near the bottom along the isobaths, which fits well with
the existence of topographic waves. The primary EOF is almost constant at
station 1 and 6, in consistence with the little degree of turning at these
stations. At station 4 and 5, which have much direction change with depth,
the EOFs have zigzag patterns. About 40-50% of the variance is normally
covered in the primary EOF. The percentage tends to be largest in the normal
component, possibly because it has weaker flow. 90% variance is covered in
both components at station 1, due to its simple flow structure. Baroclinic
rough bottom modes are found. Hall (1986) found the first baroclinic mode
to be important along the Gulf Stream. Here, winds or freshwater pulses
could excite the 1st baroclinic mode. The 2nd baroclinic mode could be
associated with the return flow in the estuarine circulation. Gade (1968)
found both estuarine circulation and wind driven circulation to be important
in the Oslofjord.

The model has strongest currents at other locations than the measure-
ments. This could be due to differences between the model grid and the real
bathymetry, for instance. Furthermore, it slightly overestimates the currents
in general, probably due to that the grid is too shallow, requiring higher
velocities for equal volume flux. The two flow components have a similar
magnitude, except near station 6 where the normal flow component is clearly
strongest. The reason for this might be that the model bathymetry is fairly
smooth, so that it can not affect the dynamics as much as it does in reality. A
surface layer is seen in the model output, but the peaks last longer, probably
due to a lower temporal resolution. There is also a weak intermediate layer
a few places. Near the bottom, the flow intensifies sometimes, possibly due
to topographic waves like in the data.

Analogously to the stronger currents, the model also has more variance
in general. It decreases more smoothly than in the measurements. Instead
of turning clockwise, the model output gives ellipses that turn anticlockwise
with depth near the surface. The most typical orientation direction is north-
eastwards/ south-westwards.

A strong gradient is found in the model’s primary EOFs near the sur-
face. There is little evidence for mid-depth maxima, just like in the model
Hovmöller diagrams. A difference to these Hovmöller diagrams, however, is
that the EOFs do not capture bottom intensification. The first EOF in the
model captures more variance than in the measurements. Baroclinic modes
with rough bottom can be seen in the model output.

Possible future improvements for this thesis include increasing the record-
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ing period, for instance to one year. This would increase the reliability of the
statistics used. In particular, it would make it more likely to find statistically
significant deviations in the flow. In addition, it could reduce the uncertainty
in the autocorrelation functions. Error estimates for the results, such as the
e-folding time scales, could be useful as well.

The number of instruments could be increased so that it is easier to see
horizontal changes, for instance in the variance ellipses. In LaCasce (2005b),
several tens of instruments were used, and horizontal patterns were thus eas-
ier to detect. However, this study was done in an area where the bathymetry
was of major importance. Another advantage could be enabling calculation
of force magnitudes in the Navier-Stokes equation. This requires a fairly
high spatial resolution because of horizontal gradients. In addition, spatial
coherence scales would be easier to estimate, see e.g. (LaCasce, 2005b).

Analyzing Hovmöller diagrams, variance ellipses and empirical orthogonal
functions for the tidal currents could also be an useful advancement. This
could give more insight into the role of the tides in the fjord. For instance,
the ellipses could show how the tides affect the directional patterns of flow.
Moreover, the EOFs could illuminate more of the vertical variability of the
tidal signal.

When it comes to the model output, hourly (full and de-tided) files could
be used instead. This could for instance improve the resolution of the au-
tocorrelation functions, and possibly resolve more short-lived current events.
In general, it should improve how well the model reproduces the data. Fur-
thermore, a model with higher spatial resolution would be advantageous, in
particular for areas near the coast, like station 4, see Isachsen (2014).

It would be interesting to find out how much different forcing mechanisms
contribute to the flow. In order to do so, it could be useful to run the
model several times leaving out different mechanisms, such as the tides or the
freshwater input. Temporal correlations between the surface or intermediate
flow and e.g. the wind could also be calculated.
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