
Voxel-Based Level-of-Detail
Visualization of Isogeometric
Volumes

Sveinung Fossås
Master’s Thesis Spring 2016

Voxel-Based Level-of-Detail Visualization of
Isogeometric Volumes

Sveinung Fossås

May 27, 2016

ii

Abstract

3D models created in Computer Aided Design (CAD) software are ubiquitous in the
manufacturing industry. Preparing for analysis on them has typically been a very time-
consuming process, and isogeometric analysis was therefore proposed as an alternative
approach. It is desirable to be able to visualize the models during isogeometric analysis,
but this is not a straightforward process due to how the CAD models are defined.
A recently developed approach allows interactive visualization of these models as
volumes by ray-casting. This approach ensures highly accurate renderings, but at the
cost of being computationally expensive.

This thesis explores ways of achieving improved performance while rendering these
models, by looking at combining the isogeometric models with simplified voxelized
representations. A 2D prototype was developed to experiment and test different ray-
casting methods, before moving to a 3D implementation. To determine the visual
accuracy of the different methods the CIEDE2000 algorithm for color difference was
used to compare the results from rendering to a reference solution.

Several methods have been proposed in this thesis that significantly improves the
rendering performance with the results also having good visual accuracy. This includes
hybrid methods that dynamically switch between isogeometric models and their
voxelized representations while ensuring that samples are pixel accurate. The methods
have been compared against each other in different examples, and the generated results
show that some of the proposed methods are very good candidates for visualizing
isogeometric volumes with increased performance.

iii

iv

Acknowledgements

I wish to sincerely thank my supervisors at SINTEF, Jon M. Hjelmervik and Franz G.
Fuchs for their help on this project, all the valuable advice, and for pushing me in the
right direction throughout the project. I would also like to thank my supervisor at the
University of Oslo, Eigil Samset for his helpful feedback.

I would also like to thank my friends for being there through the toughest times
during the project. My thanks also go out to my brother Ole Johnny and my mother
Astrid for their patience and support throughout these years. A special thanks goes to
Hana for all her love and support.

v

vi

Contents

1 Introduction 1
1.1 Overview . 1
1.2 Motivation . 1
1.3 Research goal . 3
1.4 Outline . 3

2 Background 5
2.1 3D models . 5
2.2 Isogeometric analysis . 8
2.3 Scientific visualization . 10
2.4 Visualizing isogeometric models . 13
2.5 Performance and memory . 16

3 Methods for ray-casting 21
3.1 Scope . 21
3.2 Validating methods . 21
3.3 Direct method . 23
3.4 Reduced models . 24
3.5 Voxelized method . 26
3.6 Boundary accurate method . 29
3.7 Hybrid method based on a geometric criterion 31

4 Comparison of methods in 2D 35
4.1 2D prototype . 35
4.2 Implementation of ray-casting methods 38
4.3 Comparing the methods . 44
4.4 Case A: Trivial geometry, trivial scalar field 46
4.5 Case B: Trivial geometry, non-trivial scalar field 49
4.6 Case C: Non-trivial geometry, trivial scalar field 52
4.7 Case D: Non-trivial geometry, non-trivial scalar field 54

vii

5 Comparison of methods in 3D 57
5.1 3D framework . 57
5.2 Implementation of ray-casting methods 58
5.3 Comparing the methods . 64
5.4 Case A: Hybrid switchover . 66
5.5 Case B: Far . 73
5.6 Case C: Visual artifacts . 75
5.7 Case D: Multiple volume blocks . 78

6 Discussion 81
6.1 General discussion . 81
6.2 Conclusion . 82
6.3 Future work . 82

viii

List of Figures

1.1 The different stages for isogeometric models. Visualization and diagram
by Fuchs and Hjelmervik [8], model from the TERRIFIC project. 2

2.1 A voxel grid of size 83. Each voxel contains information about its own
region in the volume. 6

2.2 A spline curve of degree 3 shown in green, and the corresponding control
polygon in blue. The blue dots mark the control points. 8

2.3 Rendering isogeometric models. The geometry is denoted G, while P is
the parameter domain. Diagram by Fuchs and Hjelmervik [8]. 9

2.4 In the simplified model, only absorption and emission affect the
radiation along a view-ray. (Wenke and Vornberger, 2010) 11

2.5 Visualization of a middle ear with pre- and post-classification. Figure
from Rezk-Salama and Hastreiter [27]. 13

2.6 Discrete LOD example for a boundary representation model. A lower
LOD is used as the model of the car the further away it gets from the
camera. Figure from Project CARS [26]. 17

2.7 A small example of a 2D sparse texture. Figures from Barrett [25]. 19

3.1 Visualization of the volume block from dataset 1. 24
3.2 Sampling the model with orthogonal projection as part of the voxeliza-

tion process. Here an 8x8 texture is created. The black lines illustrate the
sampling rays and each sample point is marked with a green circle. . . . 27

3.3 Comparison of the smooth boundary of the spline model (blue line), and
the serrated boundary of the generated voxel grid. 30

3.4 Illustration of a pixel frustum in 2D. The view-ray, marked as a blue
dotted line, starts at the eye, goes through the middle of a pixel, and
continues into the scene. The sample point g is somewhere inside the
isogeometric model, and ε denotes the projected size of the current pixel
at this point. The view-ray separates the frustum into an upper and a
lower part, which can be of different sizes. To achieve pixel accuracy, the
distance between two diagonally adjacent voxels must be lower or equal
to the minimum radius, which in this illustration is r1. 32

4.1 Visualization of the transfer function from dataset 1. 37

ix

4.2 Ray-casting with the direct method. The reference solution shown in (a)
compared to the results from ray-casting with the pixel accurate direct
method shown in (b). The CIEDE2000 color difference is visualized in (c). 39

4.3 A generated texture of size 32x32. Each texel is shown as a square with
a greyscale color depending on the scalar value. Notice that the texture
coordinates ranges from 0 to 1 inside the bounding box, shown with a
blue dashed line. 40

4.4 Ray-casting with the voxelized method. The reference solution shown in
(a) compared to the results from ray-casting with the voxelized method.
A texture of size 192x192 has been used to generate the result in (b), and
(c) shows the CIEDE2000 color difference. Figure (d) and (e) similarly
shows the results from using a texture of size 256x256. 41

4.5 Ray-casting with the boundary accurate method. The reference solution
shown in (a) compared to the results from ray-casting with the boundary
accurate method. A texture of size 192x192 has been used to generate the
result in (b), and (c) shows the CIEDE2000 color difference. 42

4.6 Comparison of mean color difference when clamping to edge versus
clamping to border. A texture of size 322 has been used for all
sampling distances. The results have been generated from ray-casting an
isogeometric model with trivial geometry, meaning that φ(u, v) = (u, v).
The scalar field is the same as was shown in figure 3.1b, and the transfer
function is the same as was shown in figure 4.1. 43

4.7 Ray-casting with a hybrid of the direct method and the boundary
accurate method using a 192x192 texture. Figure (a) shows the reference
solution, the hybrid solution in (b), and the CIEDE2000 color difference
in (c). The ratio between sample points from the spline model and
sample points from the voxel grid is shown in (d), where the lighter the
color is, the more samples have been taken from the voxel grid. 44

4.8 Illustration of the visual accuracy for Case A: Trivial geometry, trivial
scalar field. The dataset is ray-casted with the different methods using
different sample distances. These distances are dependent on the size
of the textures. Along the horizontal axes, the numbers show one
dimension of the quadratic texture sizes used. The resulting pixel colors
are then compared to a reference solution with the CIEDE2000 algorithm
to find the color differences. Subsequently the maximum and the mean
of these are found to generate the data points shown in the graphs here.
The vertical axes show the ∆E color difference value. 47

4.9 Illustration of the visual accuracy for Case B: Trivial geometry, non-trivial
scalar field, similarly to figure 4.8. 49

4.10 Illustration of the visual accuracy for Case C: Non-trivial geometry,
trivial scalar field, similarly to figure 4.8. 52

4.11 Illustration of the visual accuracy for Case D: Non-trivial geometry, non-
trivial scalar field, similarly to figure 4.8. 54

x

5.1 The boundary accurate method can introduce visual artifacts for specific
view-angles. 60

5.2 A 2D illustration of the problem with the boundary accurate method.
The blue line represent the boundary of the spline model, while the
greyscale rectangles represent the voxels in the voxel grid. The red
lines represent two of the view-rays from the camera below the model,
that cast upward through the model. Blue dots represent sample points
where the spline model has been sampled, while green dots indicate
samples from the voxel grid. Due to the area inside the spline model
that has no voxels, the boundary accurate method has a larger sample
distance between the first sample points on the rightmost view-ray. This
leads to a somewhat different scalar value in this case, and therefore also
a noticeable different resulting pixel color. The end result can be sharp
transitions of color in the model, causing visual artifacts. 61

5.3 The thick method reduces the visual artifacts introduced by the thin
boundary accurate method. 62

5.4 Visualization of the reference solution for Case A: Hybrid switchover. . 66
5.5 Case A: Hybrid switchover. Color differences for different methods

compared to a reference solution. The methods based on using a voxel
grid have used a texture size of 5123. All the methods have used the same
sampling distance of 0.008, and supersampling with 20 steps. 67

5.6 Hybrid ratio for Case A: Hybrid switchover. The ratio represents the
number of samples from the spline model compared to the number of
samples from the voxel grid. For pixels with black color, all of the
samples have been sampled from the spline model. The lighter the color
is; the more samples have been made from the voxel grid. 68

5.7 Case A: Hybrid switchover. Color differences for the boundary accurate
methods and their corresponding hybrid methods. The methods based
on using a voxel grid have used a texture size of 5123. All the methods
have used the same sampling distance of 0.008, and supersampling with
20 steps. 69

5.8 Graphs of the color differences for different methods in Case A: Hybrid
switchover. 72

5.9 Visualization of the reference solution and the hybrid ratio for Case B: Far. 73
5.10 Visualization of Case C: Visual artifacts. The image shows a screen

capture of the full 640x480 OpenGL viewport while rendering the
reference solution. The geometric criterion is never met, meaning that
the whole model is too close to the camera to use the voxel grid for any
sample point. 75

5.11 Visualization of the model used in Case D: Multiple volume blocks. . . . 78

xi

xii

List of Tables

3.1 Color codes used for CIEDE2000 color difference. 23

4.1 Statistics for Case A: Trivial geometry, trivial scalar field. max(#S)
indicates the maximum number of sample points along a ray. Color
differences have been calculated between the results from each method
and the reference solution using the CIEDE2000 algorithm. The columns
with max/mean/var(∆E) shows the maximum, mean and variance of
the color differences respectively. max(∆E) and mean(∆E) values that
satisfy the threshold requirements are marked with a grey background.
For the methods that use a voxel grid, the texture sizes are shown under
#V. 48

4.2 Statistics for Case B: Trivial geometry, non-trivial scalar field. max(#S)
indicates the maximum number of sample points along a ray. Color
differences have been calculated between the results from each method
and the reference solution using the CIEDE2000 algorithm. The columns
with max/mean/var(∆E) shows the maximum, mean and variance of
the color differences respectively. max(∆E) and mean(∆E) values that
satisfy the threshold requirements are marked with a grey background.
For the methods that use a voxel grid, the texture sizes are shown under
#V. 51

4.3 Statistics for Case C: Non-trivial geometry, trivial scalar field. max(#S)
indicates the maximum number of sample points along a ray. Color
differences have been calculated between the results from each method
and the reference solution using the CIEDE2000 algorithm. The columns
with max/mean/var(∆E) shows the maximum, mean and variance of
the color differences respectively. max(∆E) and mean(∆E) values that
satisfy the threshold requirements are marked with a grey background.
For the methods that use a voxel grid, the texture sizes are shown under
#V. 53

xiii

4.4 Statistics for Case D: Non-trivial geometry, non-trivial scalar field.
max(#S) indicates the maximum number of sample points along a ray.
Color differences have been calculated between the results from each
method and the reference solution using the CIEDE2000 algorithm.
The columns with max/mean/var(∆E) shows the maximum, mean and
variance of the color differences respectively. max(∆E) and mean(∆E)
values that satisfy the threshold requirements are marked with a grey
background. For the methods that use a voxel grid, the texture sizes are
shown under #V. 55

5.1 Statistics for Case A: Hybrid switchover. max(#S) indicates the max-
imum number of sample points along a ray. Color differences have
been calculated between the results from each method and the ref-
erence solution using the CIEDE2000 algorithm. The columns with
max/mean/var(∆E) shows the maximum, mean and variance of the
color differences respectively. max(∆E) and mean(∆E) values that sat-
isfy the threshold requirements are marked with a grey background. The
FPS column shows the performance in frames per second while render-
ing on an NVIDIA GeForce GTX 680 GPU, and is marked with a grey
background when both of the threshold requirements are met. 71

5.2 Statistics for Case B: Far. max(#S) indicates the maximum number
of sample points along a ray. Color differences have been calculated
between the results from each method and the reference solution using
the CIEDE2000 algorithm. The columns with max/mean/var(∆E) shows
the maximum, mean and variance of the color differences respectively.
max(∆E) and mean(∆E) values that satisfy the threshold requirements
are marked with a grey background. The FPS column shows the
performance in frames per second while rendering on an NVIDIA
GeForce GTX 680 GPU, and is marked with a grey background when
both of the threshold requirements are met. 74

5.3 Statistics for Case C: Visual artifacts. max(#S) indicates the maximum
number of sample points along a ray. Color differences have been calcu-
lated between the results from each method and the reference solution
using the CIEDE2000 algorithm. The columns with max/mean/var(∆E)
shows the maximum, mean and variance of the color differences respec-
tively. max(∆E) and mean(∆E) values that satisfy the threshold require-
ments are marked with a grey background. The FPS column shows
the performance in frames per second while rendering on an NVIDIA
GeForce GTX 680 GPU, and is marked with a grey background when
both of the threshold requirements are met. 77

xiv

5.4 Statistics for Case D: Multiple volume blocks. max(#S) indicates the
maximum number of sample points along a ray. Color differences
have been calculated between the results from each method and the
reference solution using the CIEDE2000 algorithm. The columns with
max/mean/var(∆E) shows the maximum, mean and variance of the
color differences respectively. max(∆E) and mean(∆E) values that satisfy
the threshold requirements are marked with a grey background. The FPS
column shows the performance in frames per second while rendering
on an NVIDIA GeForce GTX 680 GPU, and is marked with a grey
background when both of the threshold requirements are met. 79

xv

xvi

Chapter 1

Introduction

1.1 Overview

Today, when a new car is made, the individual parts of the car are most likely designed
digitally in computer-aided design (CAD) software. Before a part goes into production,
it is analyzed to see how it reacts to stress and strain. The CAD model is typically
converted to another representation that is suitable for this type of analysis. Creating
this representation usually takes longer than the analysis itself for complex parts. In
addition, the representation only approximates the CAD model. A recently proposed
approach called isogeometric analysis allows for analysis directly on the CAD model,
and thus have the same representation during the different stages in the engineering,
see figure 1.1. Throughout the whole process, visualization is a helpful tool for both
inspection and quality control. Visualizing the isogeometric models is challenging
however, because the data used in analysis must be approximated for each sample
point in the geometry. Because of the nature of isogeometric models, determining
good approximations for the analysis data is computationally expensive. Fuchs and
Hjelmervik [8] recently developed an approach for visualizing volumes based on
isogeometric analysis in real-time. However, if the models are sufficiently complex,
or a scene contains many isogeometric models, it may not be possible to achieve real-
time performance using their approach directly. In this thesis I will look at ways of
improving performance when rendering isogeometric models by looking at ways of
creating reduced models, and level-of-detail methods for such models.

1.2 Motivation

Designs made in CAD software can express a host of different shapes, including
models with smooth surfaces. The models are considered to be "exact", which is
important in production when machines shape the model from raw materials. The
industrial practice has been to convert the CAD models to meshes suitable for analysis.
However, these mesh-based models are typically only approximations of the original

1

Figure 1.1: The different stages for isogeometric models. Visualization and diagram by
Fuchs and Hjelmervik [8], model from the TERRIFIC project.

CAD models. This means that the results from the analysis may not be accurate. To
increase the accuracy of the mesh-based models, it is typical to increase the resolution
of the mesh at critical areas in the model. This usually takes time as it is difficult to do
automatically. If a change is made in the design, the mesh must be made anew before
it can be analyzed. Changes to the design are made on a daily basis in the automotive
industry, and it has been estimated that as much as 80% of the total analysis time is
spent creating these meshes [11]. A better solution would be to use the same model for
both design and analysis. This is the motivation behind isogeometric analysis.

The results from analysis can basically be represented as numbers within a given
range. With numerous detailed results, getting an overview can be difficult. By
visualizing the results, much information can be conveyed in a short amount of time.
Interactive visualization also allows the user to inspect effects made from changes in
real-time. With isogeometric analysis, changes could be made to a CAD model, and
the results from analysis could then be visualized directly. To rely on the visualization
however, it is important that the results from rendering are visually accurate.

Visualizing isogeometric models is not a trivial task, and is computationally
expensive. New demanding applications such as VR (virtual reality) requires both
high resolution images and high frame rates to be optimal. It is therefore desirable
to find methods to simplify the rendering process, but while keeping the result visually
accurate. A popular technique in traditional 3D rendering is level-of-detail, where the
3D models are simplified, and the simpler versions are used when the user would not
notice the difference compared to the original model. The same techniques are however
not directly applicable to isogeometric models.

2

1.3 Research goal

Based on the research by Fuchs and Hjelmervik [8], the main goal for this thesis is
to explore if there are ways of improving performance when visualizing isogeometric
models. This is based on using simplified models, and using these in combination with
the original model. While an alternative method should have better performance, it is
also important that the result from rendering is visually accurate.

1.4 Outline

This thesis consists of six chapters, starting with this introduction. The following
chapter gives a thorough background on the topics related to the thesis.

Chapter 3 introduces different ray-casting methods and discusses how these
can solve the research problem. The following chapter describes how these were
implemented in a 2D prototype, and the insight gained from the results after
comparing them against each other. Chapter 5 contains details of the challenges
when implementing the ray-casting methods in 3D, along with results from rendering
different examples.

The last part concludes this thesis, with discussion about the results shown
throughout the thesis and suggestions for future work.

3

4

Chapter 2

Background

2.1 3D models

In many 3D graphics applications, such as video games, the objects in a scene are
represented by their surfaces. These surfaces can be thought of as infinitesimally
thin shells that outline the objects, and are also known as boundary representations.
The surfaces are typically comprised by a set of adjacent simple polygons such as
triangles. Each triangle is defined by three vertices, and each vertex defines a point
in the geometry, along with additional information such as normals, colors, etc. The
whole model is stored as a mesh of all the vertices which are uploaded to the GPU
before rendering.

Some phenomena are difficult to represent with boundary representations. Clouds
and smoke for instance do not have a solid barrier and are also typically transparent
to some degree. It is therefore difficult to define these based on a thin outer shell,
as the information about the interior of the object is needed as well. These are
therefore normally defined as volumes instead, which makes it possible to calculate
light interactions at the interior of the objects.

Volume data are typically represented in a discrete grid. A uniform grid of discrete
samples is called a voxel grid, which consist of many equally sized voxels. Voxel is short
for "volume element", analogous to the 2D equivalent pixel, which is short for "picture
element". Voxel grids may be represented as a grid of small cubes such as in figure 2.1.

Voxel grids can be stored on the GPU in so-called textures, as demonstrated by, e.g.,
Wilson, Van Gelder, and Wilhelms [22]. Textures are typically used to store images
that are mapped onto surfaces, hence the name. They are not limited to this use
however, and can more generally be thought of as data structures that are uploaded
to the GPU. The individual elements of textures are called texels. Points in the texture
are determined by texture coordinates, which normally ranges from 0 to 1. Doing a
lookup in a texture at a given coordinate is called doing a texture fetch.

Voxel grids are discretized representations, which means that the data are not
defined continuously. When doing a texture fetch, the coordinate will most likely not
be at the exact same point where a texel has been defined. Normally this is solved by

5

Figure 2.1: A voxel grid of size 83. Each voxel contains information about its own region
in the volume.

interpolation. The value for a given coordinate is calculated using the nearest texels and
their distances to the coordinate as weights. This has been implemented natively in
hardware on modern GPUs.

Triangle meshes and voxel grids work well for representing objects with straight
surfaces, but is not ideal for objects with curved surfaces. A workaround is to use more
data points for curved surfaces, as many that are needed so that the surfaces appear
to be curved. However, in some applications, such as engineering and manufacturing,
there is a need for accurate models. Such models can be created using computational
geometry.

Computational geometry

A designer use Computer Aided Design (CAD) software to create computational
geometry. CAD models based on splines, such as NURBS (Non-Uniform Rational B-
splines), have become the industry standard [18]. Splines are mathematical functions
that are piece by piece defined with polynomials of degree p.

The term spline predates computer technology, and is the name given to flexible
strips made from wood, plastic or metal. They were held in place with weights, and
combined with the elasticity of the spline material, these strips would take a smooth
shape that minimized the total bending energy. Draftsmen used these to draw smooth
curves in designs by hand, especially in the shipbuilding industry.

Similarly to the draftsman’s splines, the mathematical splines are also typically
smooth. How the polynomials are pieced together is defined by parameters called
knots. A nondecreasing sequence of these is called a knot vector. The points where
the polynomial pieces connect can have up to p− 1 continuous derivatives, depending
on the choice of knots. A spline can be represented as a linear combination of certain

6

basis functions, called B-splines. A spline curve can thus be defined as

f (u) =
n

∑
i=1

ciBi,p(u). (2.1)

The ith B-spline of degree p is defined recursively as

Bi,p(u) =
u− τi

τi+p − τi
Bi,p−1(u) +

τi+p+1 − u
τi+p+1 − τi+1

Bi+1,p−1(u), (2.2)

where u is a real number and

Bi,0(u) =

{
1, τi ≤ u < τi+1;
0, otherwise.

(2.3)

The parameters (τi)
n+p+1
i=1 are the so-called knots. For a more thorough introduction to

splines, see e.g., de Boor [5].
Given a set of points, the simplest way of constructing a curve would be to linearly

interpolate the points, i.e., forcing the curve to pass through the points. In contrast,
a spline can create a curve that is "influenced" by the points, and does not actually
pass through them. The points in this context are often called control points, and the
piecewise linear interpolation is called the control polygon, see figure 2.2. The degree
of the polynomials dictates the degree of the spline. Higher degree splines have more
flexibility, but can introduce more "wiggles". The most often used are cubic splines
and are considered to have the best trade-off between stiffness and flexibility, but also
compute time.

A property of spline curves is that they are contained in the convex hull of their
corresponding control points. A shape is convex if for any two points within the shape,
the whole line connecting them is also within the shape. Further, a convex hull for a
set of points is the smallest convex shape that contains the points. This means that the
maximum extent of the curve can be determined from the control points.

A volume or solid can be represented with a trivariate B-spline as

f (u, v, w) =
n1

∑
i1=1

n2

∑
i2=1

n3

∑
i3=1

Bi1,p1(u)Bi2,p2(v)Bi3,p3(w)ci1,i2,i3 , (2.4)

where Bi1,p1 , Bi2,p2 and Bi3,p3 are the B-spline basis functions of degree p1, p2 and
p3 respectively. The B-splines are defined with the underlying knot vectors τ =
{τ1, τ2, . . . , τn1+p1+1}, σ = {σ1, σ2, . . . , σn2+p2+1} and ω = {ω1, ω2, . . . , ωn3+p3+1}. The
convex hull property of B-spline curves also holds for B-spline solids.

If the parameters are limited to given intervals, such that u ∈ [ua, ub], v ∈ [va, vb]
and w ∈ [wa, wb], then the parameters are contained inside a rectangular cell. This
cell is called the parameter domain, here denoted P. By fixing a parameter and let the
other two parameters vary, we have an axis-aligned surface. Doing this for all three
parameters and for each of the endpoints of the intervals, we get the six boundary

7

0 1 2 3 4 5
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Figure 2.2: A spline curve of degree 3 shown in green, and the corresponding control
polygon in blue. The blue dots mark the control points.

faces of the cell. All these faces map to surfaces in the geometry domain, here denoted
G. Since the faces share boundaries in P, the surfaces in G also share boundaries and
create a closed volume.

2.2 Isogeometric analysis

The purpose of analysis in engineering is to reveal potential issues in products or
systems. For instance, if force is applied to an object, it would be desirable to know
how this affects the structural properties of the object. It would then be necessary to be
able to analyze stresses, strains or displacements at each material point. To solve this
analytically, it is necessary to solve multiple partial differential equations, which cannot
be done in practice. Approaches that approximate the exact solution are therefore used
instead.

Finite element analysis (FEA) is a numerical method that has become widely used
in engineering analysis. A complex model is discretized into a finite element model,
which is a mesh of so-called elements. The accuracy of the mesh depends on the
discretization interval, and may vary throughout the material. Usually, the density of
the mesh is higher in areas where it is anticipated more change, such as in stress levels.
The elements contain material and structural properties at the areas they represent in
the model. This is defined by simple functions that approximates the true function of
the original model.

Since the mesh only approximates the model, there may be some loss of accuracy.
This means that if the approximation is not good enough, there is a possibility that the
result from analysis does not match "the reality". A part of creating these meshes is to

8

Figure 2.3: Rendering isogeometric models. The geometry is denoted G, while P is the
parameter domain. Diagram by Fuchs and Hjelmervik [8].

identify where the areas of interest are, so these can be presented more accurately in the
mesh. If an issue is revealed while analyzing, the CAD model can be updated to solve
the issue at hand. It would however then be necessary to create a new mesh based on
the updated CAD model. Creating these meshes can be quite time consuming, and can
take as much as four months for an entire vehicle in the automotive industry [11].

Isogeometric analysis, often abbreviated IGA, is a newly developed approach for
doing analysis directly on CAD models. It was pioneered by Hughes, Cottrell, and
Bazilevs [11]. Isogeometry basically means "having the same geometry", so IGA could
therefore be thought of as "doing analysis on the same geometry". The idea behind is
to represent the fields, which describes physical values such as temperature or velocity,
by using the same basis functions that defines the geometry.

The geometry is represented through a spline, here denoted φ, while the field is
represented by a second spline ρ. Both φ and ρ are defined on the same parameter
domain P, see figure 2.3. In three dimensions, the parameter domain P is a rectangular
cell Pu × Pv × Pw ⊂ R3. The corresponding geometry G ⊂ R3 is a closed volume of
arbitrary shape. The faces of P maps to surfaces in G.

A set of φ and ρ defines a so-called volume block. In some cases, it is not possible
to create the whole model from one coherent volume block. A typical case is if the
physical object that is to be modeled has holes in it. An isogeometric volume may
therefore consist of multiple adjacent volume blocks. This may also be done to improve
the parametrization of the model [8]. Industrially relevant isogeometric models consist
of many such blocks.

To be able to analyze the interior of a block it can be visualized as a semi-transparent
volume. Typically, some of the volume blocks are completely transparent. Before
looking at how to visualize isogeometric models, some background is needed on
scientific visualization.

9

2.3 Scientific visualization

Scientific visualization is the practice of graphically illustrating scientific data. The
purpose is for scientists to get an improved understanding and insight. The data can
come from a variety of different fields. One of the early fields that saw the use for
scientific visualization was medical imaging. CT (computerized tomography) and MRI
(magnetic resonance imaging) are examples that generates data by scanning the body
of a patient.

Typically, the data is defined as a discretely sampled 3D grid of scalars. With
discretized data we want to be able to reconstruct the underlying continuous function.
How accurately this can be done is dependent on the number of samples available.
Sampling theory tells us that to be able to correctly reconstruct a continuous signal
from a discrete signal, the sampling frequency must be greater than twice the highest
frequency of the input. This is called the Nyquist sampling rate, see e.g., Higgins
[9] for more details. Reconstruction between discrete samples is typically done by
interpolation.

The objective is to project 3D data onto a 2D screen. A simple approach for scientific
visualization is to only render the surfaces of objects. This approach is quite similar to
rendering triangle meshes, and is therefore also typically computationally inexpensive.
The main drawback is that no information about the interior of objects are shown,
although this approach can be ideal when the interior is mostly uniform.

Another approach to visualizing 3D data is called isosurface extraction. An isosurface
is a 3D surface where the underlying data have a particular scalar value, called the
isovalue. The isosurface separates regions with higher and lower scalar values. The
volume inside the surface contains scalar values that are greater (or less) than the
chosen isovalue, while the volume outside has the opposite. The marching cubes
algorithm [15] is an often used technique for isosurface creation. The algorithm creates
an intermediate polygonal representation based on discretely sampled 3D data. The
polygonal representation can then be efficiently rendered on a GPU. Since it is the
intermediate representation that is visualized, and not the 3D data itself, isosurface
extraction is also called indirect volume visualization.

The goal of direct volume visualization is to use the volume data directly to render
each image without any intermediary geometrical representations. To achieve realistic
imagery, volume rendering is based on the physical model for light transport. An
often used simplified model is the so-called emission-absorption model. In this model
the participating medium can both emit and absorb light, but scattering and indirect
illumination are omitted. It can be expressed as the volume-rendering integral

I(d) = I(0)T(0, d) +
d∫

0

q(t)T(t, d)dt, (2.5)

where I is the accumulated radiance. T(t, d) specifies absorption of light energy from
t to d, and q(t) defines the emission at t. An illustration of absorption and emission is

10

Figure 2.4: In the simplified model, only absorption and emission affect the radiation
along a view-ray. (Wenke and Vornberger, 2010)

shown in figure 2.4. In practice the integral is approximated as there are no closed-form
solutions known. This is commonly done by splitting the integral into intervals, and
finding the approximate for each interval. The intervals may be of different lengths.
The approximation can be written as

I(d) =
n

∑
i=0

Ci

n

∏
j=i+1

Tj, where C0 = I(0). (2.6)

Here Ci denotes the color and Ti denotes the transparency for the ith segment. For a
more in-depth description, see e.g., Engel et al. [7]. 3D graphics APIs most commonly
represent the optical properties as RGBA values. The emission is represented by the
colors red, green and blue (RGB), and the absorption is represented by an alpha value
(A).

Ray-casting is a commonly used approach for direct volume visualization. It is an
image order technique where the image is generated pixel by pixel. The basic idea is to
cast a view-ray from an imaginary eye, through each pixel of the screen, and into the
scene. More formally, a view-ray γ is defined by

γ(t) = O + tv, (2.7)

where O is the origin (eye) and v is a unit vector pointing in the direction of the ray.
Color values are determined by sampling inside the volumes along each ray, and

these are composed to the pixel’s final color value. The approximated intervals of
the volume rendering integral are composited to generate the final color. The most
common schemes for compositing are front-to-back and back-to-front compositing.
These compose the interval colors in sequential operations, and can be efficiently
implemented on modern graphics hardware.

Front-to-back compositing has a distinct advantage compared to back-to-front
compositing when ray-casting. It is used when the view rays are traversed from the
camera into the volume. As the pixel color is composited along a ray, eventually
the colors at sample points have little to no influence on the final color. This means
that sampling along a ray can in some cases stop before the whole volume has been
traversed, without the end result being any different. This is called early ray termination.
Readers interested in more details about compositing may find more information in,
e.g., Engel et al. [7].

11

The equations for the compositing schemes depends on whether or not the colors
are associated. This term was introduced by Blinn [2], and the color components of these
colors have already been premultiplied with the opacity. Here, only nonassociated
colors will be covered, and the front-to-back compositing equation can then be
expressed as

T ← (1− αsrc)
∆si
` ,

Cdst ← Cdst + (1− αdst)(1− T)Csrc,
αdst ← αdst + (1− αdst)(1− T).

(2.8)

Here, C represents the color components, typically RGB, α is the opacity, and ` is the
standard length. The standard length determines how quickly the color is satiated
based on a sampling distance.

So far it has been assumed that the optical properties, the emission and the
absorption coefficients, have been available directly in the 3D data of the volume
when compositing. However, in scientific visualization the 3D volume data are usually
scalar. Determining the optical properties based on the scalar values is a process called
classification.

Classification

Classification is to determine what the different scalar values in 3D data actually
represent. For example, in data from a CT scan of a human, the skin, the bones and the
veins all have different scalar values, and the user may want to classify these so that
they are visually distinguishable. This means that different scalar values are assigned
different colors, a process called color mapping. This is realized by a transfer function. A
1D transfer function may be defined as (Ci, αi) = TF(si), where si is a scalar value and
TF is the transfer function. Some applications use two separate transfer functions, one
for the color components and one for the opacity value. Higher dimensional transfer
functions are also possible to achieve more flexibility.

Although there exist approaches to automatically generate transfer functions, it is
generally done manually due to the requirement of detailed knowledge of a given data
set [7]. It is therefore desirable to be able to modify the transfer function in real-time
while visualizing the volume.

At which stage the classification is done gives visually different results. Under pre-
classification, the transfer function is applied before any interpolation. This means that
the scalar values are passed to a transfer function directly, and the resulting colors are
stored in a volume. To find the color of a given point in the volume, the nearby colors
are interpolated.

Alternatively, the transfer function can be applied after interpolation. This is called
post-classification. The volume representation would then consist of the scalar values.
To find the color of a given point in the volume, an interpolated scalar value is first
retrieved, and then the transfer function is applied.

12

(a) Pre-classification (b) Post-classification

Figure 2.5: Visualization of a middle ear with pre- and post-classification. Figure from
Rezk-Salama and Hastreiter [27].

The transfer function may introduce additional high frequencies. This means that
even if the discretized volume data are a result of sampling at or above the Nyquist
rate of the scalar field, high frequencies in the transfer function can lead to inaccurate
reconstruction. Supersampling can be used to deal with these high frequencies.
Between two scalar values for two sample points, an additional n linearly spaced
samples are added.

To overcome the problem of high Nyquist frequencies, a third option is by using
pre-integrated transfer functions. The basic idea is to create a lookup table that takes
two scalar values as arguments. The sampling distance must however be constant and
known before creating the lookup table. A color is then stored in the lookup table based
on calculating the volume rendering integral. This table is then used to determine the
color for segments along the view-ray. The lookup table is pre-calculated, which means
that during rendering the color of a ray segment is determined by a O(1) lookup. Even
if the transfer function is nonlinear, pre-integrated classification allows sampling the
underlying scalar field without needing to increase the sample rate. This can lead to
increased performance, but can also lead to a more accurate result. A disadvantage
of pre-integrated classification is that the lookup table must be regenerated when the
transfer function changes.

2.4 Visualizing isogeometric models

Having a tool for visualizing isogeometric models is useful while analyzing, such as for
quality inspection. In particular, it is scientific visualization of these models that is of
interest. The 3D data is defined by continuous functions, which differs from traditional
volume rendering where the volume data contain discrete samples. This means that the
traditional methods for volume visualization cannot be used on isogeometric models

13

directly.
Determining the optical properties for a point is dependent on the field data at the

point. One of the main challenges in visualizing isogeometric models is finding the
correct field data value for a point in the geometry. Since both the geometry function φ
and the field function ρ are defined on the parameter domain P, the field data values
are not directly available from the geometry. Mapping points in the geometry to points
in the parameter domain is equivalent to finding the inverse of φ. The problem is that
there is no closed-form solution known for the inverse of a spline. It can however
be approximated numerically, for instance with the Newton-Raphson method. The
method is used to find the parameters of a function that approximates the roots of the
same function. It has quadratic convergence given that the initial guess x0 is good. For
a univariate function f (x), the equation

xn+1 = xn −
f (xn)

f ′(xn)
(2.9)

is solved iteratively until the solution is sufficiently accurate. For a trivariate function
F(v) where v = (x, y, z)T and F(v) ∈ R3, the derivative of the function is expressed
with a Jacobian matrix

JF =
[

∂F
∂x

∂F
∂y

∂F
∂z

]
=


∂F1
∂x

∂F1
∂y

∂F1
∂z

∂F2
∂x

∂F2
∂y

∂F2
∂z

∂F3
∂x

∂F3
∂y

∂F3
∂z

 , (2.10)

where ∂Fj
∂x denotes the partial derivative of F with respect to x, and the result is the

j-th element of the output vector. To solve equation 2.9 for a trivariate function it
is necessary to find the inverse of the Jacobian matrix, which can be a numerically
unstable operation. Alternatively, an iteration of the Newton-Raphson method can be
expressed as a system of linear equations

JF(xn)(xn+1 − xn) = −F(xn), (2.11)

which is solved for (xn+1 − xn). Here, xn is an approximation to the root of F.
Another challenge is that evaluating splines is computationally expensive. This

makes sampling computationally expensive as well, which affects real-time perfor-
mance.

Iso-surface extraction

In section 2.3, a brief description of iso-surface extraction was given related to
traditional scientific visualization. The typical approach is to use the marching cubes
algorithm. However, this algorithm expects discretely sampled 3D data. Since
isogeometric models are defined with continuous functions, this algorithm cannot be
used directly.

14

Another algorithm for iso-surface extraction was presented by Martin and Cohen
[17]. Their approach is tailored to trivariate spline volumes, along with so-called
attribute descriptions. The paper predates Hughes, Cottrell, and Bazilevs [11] where
the term isogeometry was coined, but Martin and Cohen’s "attribute description" is
similar to the field in isogeometric analysis. Finding an iso-surface is formulated as
finding the zeros to a function. The volume is then subdivided into smaller volumes
until the control points of each volume partition meets a certain criterion. At the
same time a list is constructed containing the subvolumes that contain the roots of the
function. Finally, the roots are approximated by using the Newton-Raphson method,
and a polygonal approximation is created to visualize the iso-surface.

Volume rendering

Martin and Cohen [17] also proposed an approach for ray-casting isogeometric
volumes. In their approach, the volume is ray-casted starting from the camera and
then by traversing through the volume. The first step is to find the first point where the
view-ray intersects with the volume. The problem is formulated as implicit equations,
and by using the Newton-Raphson method approximated solutions are found. In a
pre-process step, multiple hierarchies of bounding volumes are created for the volume.
When ray-casting, the bounding volumes that can not contain any intersection are
culled. Parameters inside the remaining bounding volumes are used as initial guesses
for the Newton-Raphson method. The result is a list of 2n intersection points, where n
is a non-negative integer. The attribute data at the first intersection point are evaluated
to obtain the optical properties. The volume is then traversed, starting at the first
intersection point. Successive points are determined by traversing a small distance
along the view-ray. At each point the Newton-Raphson method is used to approximate
the parameters, and these are used to find the optical properties. The colors and
opacities are accumulated by front-to-back compositing.

Fuchs and Hjelmervik [8] recently developed an approach for visualizing isogeo-
metric volumes in real-time. Similarly to [17], the first step is finding the ray-surface
intersections. Instead of solving by finding zeros of a function, Fuchs and Hjelmervik
restates the problem by that of finding approximate surfaces of the volume. This ap-
proach can be efficiently implemented on a GPU, as demonstrated in [10]. Since the
ray-surface intersections are found in parallel, they must subsequently be sorted ac-
cording to the distance from the camera. Internal points of the volume are then sam-
pled along the view-ray. In addition to approximating φ−1 by the Newton-Raphson
method, Fuchs and Hjelmervik proposed an alternative based on ordinary differential
equations (ODEs).

Each pixel’s color is determined by approximating the volume rendering integral.
Radiance at sample points are determined by scalar values from the volume.

In the spirit of isogeometry, it is desirable that the visualization is accurate as
well. In the approach to volume visualization by Martin and Cohen, due to the
approximation of φ−1 the corresponding parameter can have any arbitrary value. The

15

approach by Fuchs and Hjelmervik guarantees that the information used for the colors
of a pixel comes from the frustum of the given pixel, i.e., the visualization is pixel-
accurate.

Pixel-accuracy

For a given point g in the geometry, the corresponding color must be found for that
point. The color is dependent on the transfer function used, and the scalar value s
for the point. Since the scalar function ρ is defined on the parameter domain P, the
parameter p must first be found, which maps to g. Since there is no closed-form
solution known for φ−1, it must be approximated. Depending on the approach for
approximating and how accurately a solution is approximated, there can be multiple
distinct approximations p̃ = φ−1(g). These parameters can potentially map to any
point in the geometry by g̃ = φ(p̃), which is not desirable.

To render isogeometric objects correctly, certain requirements must be fulfilled
when sampling from the geometry. Yeo, Bin, and Peters [23] proposed a definition
for pixel-accuracy based on parametric accuracy and covering accuracy. Fuchs and
Hjelmervik [8] further defined pixel-accurate rendering of isogeometric objects. In their
definition, a point p̃ fulfills the requirement of parametric accuracy if the mapped point
in the geometry g̃ projects into the pixel of the current view-ray. This basically means
that the geometric point must be guaranteed to be within the current pixel’s frustum.
Covering accuracy is achieved by assuring that the sample points have the correct
depth order along the view-ray. In other words, after orthogonally projecting all the
sample points onto the view-ray, each subsequent sample point would be further away
from the camera than the previous sample point.

Volume visualization can be used to represent light interactions at the interior of
objects. However, it is generally more computationally expensive than surface-based
rendering methods such as visualization of isosurfaces. Speed-up techniques such as
level-of-detail may be essential to achieve acceptable real-time performance.

2.5 Performance and memory

2.5.1 Level-of-detail

Level-of-detail, or LOD for short, is the idea of reducing the complexity of objects before
rendering. The intention is to increase performance by reducing the overall workload
of the graphics pipeline. Objects that are far away from the viewer for instance, can be
replaced with simpler objects without the viewer noticing.

Luebke et al. [16] categorizes level-of-detail into discrete, continuous and view-
dependent LOD. Discrete LOD uses multiple versions of each object, where each version
has a different level of detail. These are generated either manually or automatically as
a separate process before the actual rendering. During rendering an object is visualized
by one of these versions, and changed to another on-the-fly when appropriate.

16

Figure 2.6: Discrete LOD example for a boundary representation model. A lower LOD
is used as the model of the car the further away it gets from the camera. Figure from
Project CARS [26].

However, the transition from one discrete representation to another cannot be done
smoothly, and it can in some cases be visible by the viewer. An example of discrete
LOD is shown in figure 2.6.

A more gradual change between levels of detail can be achieved by using
continuous LOD. Under simplification, a hierarchical data structure is created with
the original object at the top. Each lower level in the structure has a decomposition
of the object at the level above. While rendering, the desired level of detail is generated
from this structure. View-dependent LOD is also a form for continuous LOD, but the
criteria for simplification is view-dependent. A single object can thus be represented
by multiple levels of detail simultaneously. This is more ideal for large objects, where
some parts of the object may be close to the camera, while others may be far away at the
same time. View-dependent LOD also allows for keeping a high degree of detail close
to the outline of an object, even if the object is far away. This can prevent noticeable
inaccuracies in the outline when reducing the level of detail.

Discrete simplifications of textures can be created with hardware acceleration. This
type of LOD is called mipmapping. As described by Williams [21], the basic idea is to
have the original texture accompanied with pre-generated smaller versions of the same
texture. The norm is for each smaller texture to be half the size of the previous texture
in each dimension. This continues until the last texture is a single texel. For instance,
mipmapping a 16x16 2D texture will generate 8x8, 4x4, 2x2 and 1x1 sized subtextures.

La Mar, Hamann, and Joy [13] demonstrated level of detail for volume visualiza-
tion. In their approach, a model is partitioned into so-called bricks. The bricks may be of
different sizes, and a hierarchy of them is stored in an octree. Each brick is represented
by a texture. Regions of interest are represented by more bricks than other regions. The
original data is defined at the leaves of the tree, and internal nodes defines version with
lower resolutions. During rendering, the bricks are chosen according to the distance
from the camera and the view frustum. To represent volumes accurately at the finest
level, it would typically be necessary to use large textures. The textures reside in the
GPU memory while rendering, which is a limited resource.

17

2.5.2 GPU memory

So far the problem of scarce GPU memory has briefly been discussed. Whether a voxel
grid is stored in one large or several smaller sized 3D textures, even modern GPUs will
eventually run out of memory when the models get sufficiently large. In this section,
some existing proposed solutions will be discussed.

GigaVoxels

Crassin et al. [4] proposed an approach that allows real-time rendering of voxel-based
models larger than the size of the video memory. In their approach, voxels are stored in
an octree structure which subdivides the volume hierarchically. Each node in the octree
indicates either homogeneous or empty space, or points to a so-called brick. The bricks
are small voxel grids of a predetermined size. At the leaf nodes in the octree, the bricks
represent a portion of the volume at the highest resolution. The brick at an internal
node represents the volume of all of its children, but at a lower level of detail. While
ray-casting, the distance to the eye decides what level from the octree to sample from.

A brick may also be absent from GPU memory. If such a brick is requested while
rendering, an update is triggered, and the CPU uploads the requested data to the GPU.
The new data replaces the brick(s) that were used least recently in the GPU memory.

There are some disadvantages to this approach, however. The voxels are not
accessed directly as in a mipmapped 3D texture, but through the octree. This means that
the octree must be traversed for each sample point along a ray. In addition, the different
LODs are stored in the same memory pool. Hardware accelerated interpolation
between mipmaps can therefore not be utilized. These problems can be solved by the
use of sparse textures.

Sparse textures

Sparse textures, also known as Partially Resident Textures, were recently implemented
as an extension to OpenGL. The concept behind is that only a portion of a texture needs
to be resident in the GPU video memory. When using sufficiently large textures, not
all of the texture content will be visible at any given time. By virtual addressing,
an application can manage textures larger than the actual texture allocated in video
memory. When a portion of the texture that is not currently addressable by the GPU is
needed, it signals the application which then can upload an updated texture. Mipmaps
of the original texture can also be stored in the same virtual texture. The application can
then specify the lowest level of detail allowed, so that the GPU may use a mipmapped
texture while waiting for a higher level of detail texture to be uploaded from the
application.

Similarly to the approach proposed by Crassin et al. [4], regions of the texture may
be marked as non-resident. This means that for such regions there are no higher level
of detail available. Empty regions or regions with the same values in a voxel grid can
thus be marked as non-resident.

18

(a) The original texture (b) Parts of the texture that has
visible texels

(c) Texture in GPU memory

Figure 2.7: A small example of a 2D sparse texture. Figures from Barrett [25].

An example on a small 2D texture is shown in figure 2.7. The texture is partitioned
into fixed-size pages, shown as a grid in figure 2.7b. If any of the texels from a page is
needed, the entire page must be present in GPU memory. Notice that the mipmapped
textures are also stored in the same texture in figure 2.7c. Sparse textures are also
extensible to 3D textures.

19

20

Chapter 3

Methods for ray-casting

This chapter explores ways of improving performance when visualizing isogeometric
volumes. Different methods for ray-casting are then described. These have different
assurances for visual accuracy, which also affects the performance.

3.1 Scope

In section 2.4, different approaches for visualizing isogeometric models were described.
Visualizing these as volumes is perhaps the most useful under analysis since not only
data about the surfaces of the object are shown, but also for the internals. In this thesis
the focus will therefore be on volume visualization. Fuchs and Hjelmervik developed
an approach for ray-casting isogeometric volumes interactively, but the performance
will deteriorate if a scene contains many isogeometric models. However, to the best of
my knowledge, no other implementation exists that is able to visualize such volumes in
real-time. The research in this thesis will therefore be based on the same approach for
visualization as the one introduced in their paper [8]. Similarly to [8], the isogeometric
models will also be restricted to B-splines, and the field is assumed to be scalar. In
addition, only one dimensional transfer functions are used in the examples and results
presented here.

3.2 Validating methods

In this thesis, different ray-casting methods are proposed. To evaluate them, there
must be a way of validating the results from ray-casting. Measuring time is a natural
way of seeing how each method performs compared to each other. However, it is
important that the visual results are also validated. It is easy to create a method which
performs good but where the visual results are inaccurate. In the spirit of isogeometry
it is desirable to maintain the accuracy in the visualization. This depends on the
approximations that are done and the margins of error related to these.

21

3.2.1 Factors affecting accuracy

To visualize isogeometric volumes, several approximations must be made. Section 2.4
described how it is necessary to approximate the inverse of a spline to sample at a given
point in the geometry. In section 2.3, it was discussed how to approximate the volume
rendering integral. Finally, it was explained that a discretization such as a voxel grid
would need to approximately reconstruct the field by a filter. These factors affecting
accuracy can be summarized as follows:

• Inverse of geometry

• Volume rendering integral

• Reconstruction of scalar field (interpolation)

3.2.2 Evaluating visual results

Ideally, the isogeometric objects should be rendered with a small room for error as
cheap as possible. Since the inverse of the geometric function must be approximated,
there will be a margin for error regardless of the approach chosen. Different methods
lead to different algorithms for ray-casting, which can lead to different colored pixels
from rendering. To evaluate the visual results of each method, the results need to be
compared to a reference solution. The reference solution should be the most accurate
solution possible, which means that it should have very good approximations for
the potential inaccuracies listed above. Comparing the approximation and quality of
different approaches is done by comparing each pixel to one or more corresponding
pixels in the reference solution. To compare the colors objectively, a quantifiable
measurement is needed for the color difference.

Color difference

The Commission Internationale de l’Eclaraige (International Commission on Illumi-
nation, CIE) is an organization that standardizes color metrics. They have defined a
distance metric between colors which they call ∆E. For a more in-depth description
about color difference, see e.g., Sharma and Bala [19]. CIE recommends the CIEDE2000
algorithm to calculate ∆E [14]. CIEDE2000 is currently the latest standard proposed
by CIE, and is recommended as a replacement for previous standards such as the CIE
1976 formula and the CIE 1994 formula. The algorithm calculates the color difference
between colors in the L*a*b* color space. In computer graphics the RGB color space is
mostly used, but conversion to L*a*b* is possible.

∆E is a scalar where 0 essentially means that the two compared colors are the same
color, and the greater the color difference is, the greater ∆E is. When testing different
approaches, all the pixel color differences should be lower than a certain limit. This
limit is ideally where it is no longer possible to see any difference between the compared
colors. It has been considered that if the ∆E values calculated between colors are below

22

∆E Color Description
∈ [0, 1] No noticeable color difference
∈ (1, 5] Acceptable color difference
∈ (5, 10] Noticeable color difference between most color pairs
∈ (10,+∞] Clear color difference between color pairs

Table 3.1: Color codes used for CIEDE2000 color difference.

1.0, the color differences are not visible to the human eye. Different ∆E values have
been proposed that cause a "just noticeable difference" between colors, but a common
threshold is 1.0. Similarly to Fuchs and Hjelmervik [8], a threshold of 1.0 will be
used here for the mean color difference, and a threshold of 5.0 for the maximum. The
argument for the higher maximum threshold is that when the mean is below 1.0, and
there are sufficiently many pixels on the screen, then only a small number of pixels may
have a slightly different color. The visual perception of the result will not be changed
in any significant way. To visualize the ∆E values in this thesis, they have been color
coded. In the illustrations shown here, pixels are colored according to table 3.1.

3.3 Direct method

Fuchs and Hjelmervik [8] presented an approach for ray-casting isogeometric models.
Since the isogeometric models are used directly, their method will here be referred to as
the direct method. The visual accuracy depends on how good the approximations are,
and to achieve real-time performance the approximations are considered good enough
when there is pixel accuracy. Since using the isogeometric model directly generates the
most accurate visual results, the reference solution will also be based upon this method.
The approximations for the reference solution can however be made more accurate than
what is feasible when rendering interactively. This involves better approximations of
the volume rendering integral and the parameters of each sample point.

A 2D example of an isogeometric model is shown in figure 3.1. The geometry
defined by the spline φ is visualized in figure 3.1a, while figure 3.1b is a visualization of
the scalar field defined by the spline ρ. Both φ and ρ have been defined on a parameter
domain Pu × Pv where u ∈ [0, 1] and v ∈ [0, 1].

While ray-casting, the isogeometric volume is sampled directly. For each view-ray
that has two intersections, the next step is to traverse the model starting at g0 = gIn,
where gIn is the intersection point closest to the camera. Point i in the geometry is
determined by

gi = gi−1 + ∆si
gOut − gIn

‖gOut − gIn‖
, (3.1)

where si is the sampling distance for the ith segment, and ‖v‖ denotes the Euclidean
distance of the vector v. Since φ−1 must be approximated, gi is only an ideal sample

23

0.25 0.00 0.25 0.50 0.75 1.00 1.25
0.25

0.00

0.25

0.50

0.75

1.00

1.25

(a) The geometry defined by the bivariate
spline φ. The grid consists of isoparametric
curves, a result from fixing one parameter
to a value, and let the other vary. This has
been done for both parameters and for ten
uniformly spaced different fixed values.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

(b) The scalar field defined by ρ. The
greyscale color is determined by using the
scalar value for all three color components
(RGB).

Figure 3.1: Visualization of the volume block from dataset 1.

point. The actual sample point is g̃i = φ(p̃i) = φ(φ−1(gi)), as explained in section 2.4.

So far the direct method for ray-casting an isogeometric model have been
described. The problem is that rendering isogeometric volumes with this method is
computationally expensive. Level-of-detail methods have already been proposed for
traditional volume rendering [4, 20]. Since both the geometry and field of isogeometric
models are given through splines, the earlier proposed approaches cannot be used
directly. Similarly to LOD for traditional volume rendering, it is necessary to create
reduced approximate models to realize LOD for isogeometric models.

3.4 Reduced models

In this section different approaches for creating reduced models that approximates iso-
geometric models will be discussed. One of the reasons why visualizing isogeometric
volumes is computationally expensive is because of the spline evaluations needed at
each sample point. The first approach that will be discussed is based on generating
simpler spline-based models.

24

3.4.1 Models based on splines

B-splines are computed recursively, as shown in equation (2.2). The lower the degree
of the spline, the fewer steps will be necessary to evaluate it. An algorithm for degree
reduction of B-spline curves has been presented by, e.g., Yong et al. [24]. Reducing the
degree will however alter the shape to some extent. How many times we can perform a
degree reduction will be dependent on the original degree and can be severely limited.
Degree reductions affect the whole spline, so it can only create discrete simplifications.

Another option is to reduce the amount of control points. Fewer control points make
the spline simpler and lead to faster evaluation as there are fewer terms in equation
(2.1). The number of control points is affected by how many knots there are. Eck and
Hadenfeld [6] have proposed an algorithm for knot removal. But as they mentioned in
their article, this will also alter the shape of the spline curve. Knot removal can be done
locally, which means that a spline can have multiple levels of simplification.

Both of these approaches reduce the complexity of the model. However, they create
models that are no longer a true representation of the original model, they will only
be approximations. They may be appropriate in a LOD system, since some deviations
from the original model are acceptable at lower levels of detail. Working with splines
is still computationally burdensome however, so it is also worth taking a look at
discretized volume representations.

3.4.2 Simplices

In traditional volume rendering, volumes consist of discrete samples that are structured
in a grid. An example is a grid of so-called simplices. Simplex grids can span arbitrary
dimensions. In 2 dimensions, each simplex would be represented by a triangle, and in
3D the simplices are represented by tetrahedrons. An example use case for simplices are
the elements in finite element analysis (FEA). The simplex grids are non-uniform, which
means they are flexible and can match arbitrary volumes closely. This can be ideal for
approximating isogeometric models, which typically have smooth surfaces. However,
the flexibility also means that a lot of computation is needed to solve seemingly simple
problems. Finding a neighboring simplex is one example. This problem becomes trivial
for uniform voxel grids.

3.4.3 Voxel grid

Voxel grids are the most commonly used approach to represent discretely sampled
volume data [7]. There are different interpretations of what voxels precisely are, one
is that each voxel is a small 3D cube where the value given to the voxel is homogeneous
for the whole cube. In this thesis I will use the interpretation that they are points in 3D
space. This means that when casting a ray through a voxel grid, the sampling points
will usually not be at the same position as the voxels. In those cases, the surrounding
voxels are interpolated. The simplicity of voxel grids make them ideal for representing

25

volumes with high performance. Throughout the rest of this text, I will restrict my
attention to using voxel grids as the reduced models.

3.5 Voxelized method

3.5.1 Voxelization

To represent isogeometric models as voxels, there must be a voxelization process. If the
models are static, i.e., the geometry of the models does not change while rendering, the
voxelization only needs to be precomputed once before the actual rendering. Dynamic
scenes, such as simulations, must either be voxelized for every frame, or all simulation
states must be voxelized before any rendering. Voxelization can be done by viewing
the models in an orthogonal projection, and use equidistant sample points along each
view-ray. In an orthogonal projection all the view-rays are parallel. The resulting voxel
grid will ultimately be a rectilinear box for simplicity and convenience under storage.
Since each volume block in an isogeometric model can have any arbitrary shape, a
corresponding box-shaped voxel grid can contain many non-resident voxels, meaning
voxels without a defined value. It is important that the non-resident voxels are not
included when interpolating.

The distance between each sample point must also be determined, which affects
how many voxels are needed to represent a scene. The larger the sampling point
distance, the fewer voxels there will be, decreasing the amount of memory needed.
Typically, isogeometric models have smooth geometry, which can be problematic to
represent with a coarse voxel grid. As Fuchs and Hjelmervik argued in [8], to represent
the scalar field accurately, a very high number of voxels may potentially be needed.
This is especially true at the outline of an object, where deviations from the original
model are more easily visible.

For every internal sample point gi using the direct method, it is necessary to evalu-
ate ρ(φ−1(gi)) to determine the scalar, followed by a lookup in the transfer function. By
having a simpler discretized model representation, the numerous computationally ex-
pensive spline evaluations can be replaced with hardware accelerated texture fetches.
As a consequence, it is expected to see an increase in performance, while the visual
accuracy is expected to be reduced.

In the voxelized model approach, the isogeometric model is represented as a
discretized voxel grid. The first step when generating this is to define a bounding box B
that completely encloses the geometry. Recall from section 2.1 the convex hull property
of B-splines. The volume block is enclosed within the convex hull from the coefficients
c of the spline φ. The bounding box can thus be determined by using the extrema of c
along each axis.

The isogeometric model is then sampled inside the bounding box B using
orthogonal projection, see figure 3.2. Since voxel grids are uniform, both the sampling
rays and the sampling distances must be equidistant. The resolution of the resulting
voxel grid depends on the chosen number of rays and the number of samples along

26

0.2 0.0 0.2 0.4 0.6 0.8 1.0
0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

(a) The geometry domain. The dashed line
shows the bounding box.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

(b) The parameter domain.

Figure 3.2: Sampling the model with orthogonal projection as part of the voxelization
process. Here an 8x8 texture is created. The black lines illustrate the sampling rays and
each sample point is marked with a green circle.

each ray. For each sample point gi in the volume, the parameter p = φ−1(gi) is
approximated. Generating these voxel grids can be done in a pre-process step, as
it has no dependency on the observer. This means that the approximation can be
made highly accurate, since this has no effect on the performance while rendering.
The parameters are approximated using the Newton-Raphson method similarly to the
reference solution, and a very small tolerance can be used as the stopping criterion.

There are some challenges when reducing isogeometric models to voxel grids.
The first challenge that is discussed is related to what to store in each voxel and
subsequently how to generate the LODs. This depends on when the classification is
applied.

3.5.2 Classification

Since the classification is difficult to do automatically, it is desirable to be able to
change the transfer function on-the-fly while visualizing in real-time. For isogeometric
volumes, the 3D data is represented as a continuous field defined by a spline ρ. A
discretized representation of volume data contains discrete samples. What to store for
each sample depends on the type of classification.

27

Pre-classification

In pre-classification, the optical properties are stored directly in the volume representa-
tion. For the case with voxelizing isogeometric models, this would mean that we would
have to apply the transfer function for every sample point, and then store the resulting
optical property. In other words, each texel in a 3D texture stores an RGBA value. The
color for a given point in the volume is determined by interpolating the surrounding
texels. If the transfer function were changed however, the original field data would not
be available in the texture. That means that a new voxelized model must be created as
soon as the transfer function changes. Depending on the discretization interval of the
voxelization process, this could severely affect performance in real-time rendering. For
every sample point φ−1 has to be approximated and an evaluation of ρ is necessary to
get the field data. It is also necessary to evaluate the transfer function, but this would
typically only be a 1D texture fetch and thus insignificant in comparison. In the end it is
unlikely that this approach would allow the user to change the transfer function while
visualizing in real-time.

In addition, this approach stores four elements (RGBA) in each texel of the texture.
The precision of these values affects the total size of the whole texture. As was
explained in section 2.5.2, even for modern GPUs memory may become a scarce
resource.

Creating mipmaps for textures with RGBA values is a pretty straightforward
process, and is done by down-sampling the original texture. A simple way of down-
sampling is by using a box filter, where each new texel is computed as the average
of the four nearest texels in the original texture. Other more advanced filters, such as
Gaussian, Kaiser or Lanczos, will in most cases give a better result [1]. However, if the
transfer function changes, the mipmap textures must also be recreated.

Post-classification

If the volume representation stores field data instead, we have post-classification. In
the isogeometric model setting, we would still have to approximate φ−1 and evaluate
ρ for every sample point when voxelizing, but the transfer function is not evaluated at
this time. The texels in the 3D texture now contain discretized field data. The color
for a given point is determined by interpolating the field data, and then apply the
transfer function on the result. This means that the transfer function can be changed
in real-time without having to recreate the volume representation. There is however an
additional texture fetch, i.e. a lookup in the transfer function, for every sample point
while rendering.

How to actually generate mipmap textures for this approach is not obvious. By
uncritically interpolating the values when down-sampling, the end result may be that
all the values are more or less similar. Distinctive features from the original data may
be lost which can make classification difficult. How to achieve the same image quality
when down-sampling scalar values is unclear [12].

28

3.5.3 Ray-casting

After having created the voxel grid, the ray-casting can begin. Similarly to the direct
model, the ray-casting starts where the view-ray intersects with the model. This time
however, the model is the voxel grid, so it is where the view-ray intersects with the
boundaries of the voxel grid that is of interest. The boundaries are defined with same
bounding box that was used when creating the voxel grid. Note that in the direct
model there were 2n intersection points with the volume block per view-ray, while
in the voxelized model there are always either 0 or 2. Traversing the volume is done by
equation 3.1.

The actual sampling process is identical for the intersection points and the internal
sample points. Based on the point gi, the corresponding point ti in the voxel grid texture
is found by

ti = (gi − Bmin)� (Bmax − Bmin), (3.2)

where B is the bounding box defined by its corners, and � denotes element-wise
division. Bmax is the corner of the bounding box furthest towards positive infinity
along each axis, while Bmin is the opposite. If any of the elements of ti is outside the
interval [0, 1], then the sample point gi is outside the voxel grid. Otherwise, a texture
lookup is performed. Scalar values in the texture are then interpolated to generate the
scalar value at ti. The optical properties are determined by the transfer function, and
these are composited from front to back. Since the sample points are not approximated
and are used directly, the same sample distances from equation 3.1 are also used while
compositing.

3.6 Boundary accurate method

One of the problems with a voxelized model is the representation of the boundaries
of the volume block. While the isogeometric model may have smooth boundaries,
the voxelized model will typically have more serrated representations, see e.g., figure
3.3. When ray-casting with the direct method, the first sampling point will be the
intersection point between the view-ray and one of the boundaries of the spline
geometry. However, when ray-casting with the voxelized method, the intersection
between the view-ray and the bounding box will be the first sampling point. This
means that for a non-trivial geometry the same sample points are not chosen for the
two different approaches. In fact, it is likely that the first sample point for the voxelized
method results in a lookup at non-resident texels in the texture. The location of the
next sample point is determined by the sampling distance ∆si, and the boundary of the
voxelized model will therefore typically be skipped. An attempt to combat the issue
with the voxel grid boundaries is the boundary accurate method.

The boundary accurate method does not introduce a new model, but uses a
combination of the isogeometric and the voxelized models. The idea is to use the
intersection points from the isogeometric model, and the internal sample points from
the voxelized model. Similarly to the direct model, the ray-casting starts at the

29

Figure 3.3: Comparison of the smooth boundary of the spline model (blue line), and the
serrated boundary of the generated voxel grid.

first intersection point between the view-ray and one of the boundaries of the spline
geometry. The model is then traversed between pairs of intersection points using
equation 3.1.

For each intersection point, an approximated point g̃ in the geometry is found, along
with the corresponding parameter p̃. Determining the scalar at the point may be done
by evaluating the spline function ρ(p̃), or by doing a lookup in the voxel grid texture
based on g̃. Even though the spline geometry has a boundary at g̃, the voxelized model
may not have, as can be seen in figure 3.3. A texture lookup based on g̃ would then
return a non-resident sample, and the previously mentioned issues with the voxelized
model remain. It is therefore more appropriate to evaluate ρ(p̃), even though it is more
computationally expensive.

The internal points in the model is sampled similarly to the voxelized method. Note
that even though these sample points are guaranteed to be inside the isogeometric
model, they may be outside of the voxelized model. Lookups in the voxel grid
texture will then return non-resident samples. Using the direct method for these
sample points will most likely generate a more visually accurate result, but at the cost
of computationally expensive spline evaluations. These sample points will typically
not be numerous however, since they only appear near the boundaries of the model.
Another option is therefore to just ignore sampling at these points.

Since the intersections between the view-ray and the spline geometry must be found
for each ray, it is expected that the voxelized method will perform better than the
boundary accurate method. In the implementation presented by Fuchs and Hjelmervik
[8], the hardware tesselator in modern GPUs are used to find the intersections. In an
example shown in their paper, a total of 0.86 ms is spent finding intersections for each
frame on a 640x480 viewport using an NVIDIA Titan GPU. Comparatively, between

30

5-20 µs is spent for each sample point in their implementation of the voxelized method.

3.7 Hybrid method based on a geometric criterion

By avoiding spline evaluations while rendering, the voxelized method was shown to be
performing better than the direct method in [8]. The performance comes at the cost of
loss of visual accuracy however. In the case where a volume block is far into the scene,
it would only project onto a small amount of pixels on the screen. The result from
using the voxelized method may be sufficient in this scenario to achieve the desired
level of visual accuracy. At the same time there may be volume blocks close to the
observer where the results from the voxelized method are too inaccurate, and it would
be desirable to use the direct method.

This introduces the notion of a hybrid model, where the direct and the voxelized
methods are combined. The basic idea is to use the voxelized method whenever it
generates results that are accurate enough, and the direct method otherwise. Which
method to use is specified by some sort of criteria. While ray-casting, the criteria is
checked to see if the current sample point can use the voxelized method. This means
however that checking the criteria cannot be too computationally expensive, as it would
mean losing the main advantage of using the voxelized method.

One of the problems with the voxelized method is that if the texture size is not
sufficiently large enough, then there is no guarantee that the visualization is pixel
accurate. The data points in the voxel grid are highly accurate, given that a small εSample
was used under voxelization. Typically, a sample point gi will not be exactly at the point
where a voxel is defined. The underlying functions are then reconstructed with linear
interpolation. If the geometry or the field of the isogeometric model is non-linear, this
interpolated value may not be the same as the result from evaluating ρ(φ−1(gi)) using
the direct method. However, as long as the splines φ and ρ are continuous functions,
the interpolated value can be replicated by evaluating ρ(φ−1(ι)), where ι is an unknown
point in the spline geometry. To achieve pixel accuracy with the voxelized method,
there must therefore be a guarantee that ι is within the frustum of the current pixel.

Each voxel in the voxel grid is defined for a given point in the geometry. This point
will be called the voxel point here. For a given sample point gi, the four closest voxel
points are denoted (νi,k)

7
k=0.

The interpolated scalar at gi will always be bound by the lowest and the highest of
the scalars defined at the eight voxel points closest to gi in the geometry. Assuming
that the spline functions are continuous, the point ι must be within the bounding box
defined by (νi,k)

7
k=0. If the bounding box is ensured to be within the pixel frustum, then

pixel accuracy has been guaranteed.
It is important to note that the horizontal distance between voxels can be different to

the vertical distance. In the worst case, the direction of a line connecting two diagonally
adjacent voxels runs perpendicular to one of the extents of the pixel frustum. The
sample point may be at one of the corners of its surrounding voxel point bounding
box, and ι can be anywhere inside the bounding box. The frustum must be sufficiently

31

pixel

far
ǫ

r1

r2α1

α2

g

Figure 3.4: Illustration of a pixel frustum in 2D. The view-ray, marked as a blue dotted
line, starts at the eye, goes through the middle of a pixel, and continues into the scene.
The sample point g is somewhere inside the isogeometric model, and ε denotes the
projected size of the current pixel at this point. The view-ray separates the frustum into
an upper and a lower part, which can be of different sizes. To achieve pixel accuracy,
the distance between two diagonally adjacent voxels must be lower or equal to the
minimum radius, which in this illustration is r1.

wide so that the whole bounding box the sample point is a part of is enclosed within
the frustum. This means that to achieve pixel accuracy, the shortest distance between
the sample point to one of the extents of the pixel frustum must be at least the distance
Vd between diagonally adjacent voxels.

The pixel frustum is not always symmetrical along the view-ray, so the pixel
frustum is here split into an upper and a lower frustum, see figure 3.4. Both of the
two pixel frustum radiuses, r1 and r2, must be larger or equal to Vd to ensure pixel
accuracy. The figure shows a frustum with a wide angle for illustration purposes, while
in practice the angles are very narrow, meaning that r1 ≈ r2. In addition, we know that
ε is slightly larger than r1 + r2. To simplify, there is pixel accuracy when 0.5ε > Vd,
which will be the geometric criterion.

Determining if the voxelized method can be used depends on the radius of the

32

pixel frustum at the sample point. A hybrid method based on a geometric criterion
is basically a form of view-dependent level-of-detail based on the distance from the
observer. As soon as one of the sample points along a ray can use the voxelized method,
then all subsequent sample points can use the voxelized method as well.

The hybrid model can also be further extended to use a level-of-detail hierarchy.
With the direct model being the most accurate, it defines level 0 in the hierarchy. Level
1 is defined by a high resolution voxel grid. The subsequent levels are then defined by
mipmaps of the original voxel grid with progressively lower resolution.

33

34

Chapter 4

Comparison of methods in 2D

4.1 2D prototype

Fuchs and Hjelmervik [8] developed a framework for visualizing isogeometric volumes
in OpenGL. This framework was available during the project, but early on it was
decided to start developing a 2D prototype. The main purpose for doing this was to
have a platform for testing new methods and different approaches during the project.
Although the 3D implementation could be used for this directly, implementing different
approaches would be simpler while being limited to only two dimensions, and it would
also be easier to visualize different aspects of the process. OpenGL code is also difficult
to debug compared to programs that run exclusively on the CPU. This meant that a
volume visualization framework had to be implemented from scratch. It was estimated
that the time implementing the 2D prototype would be less than the extra time spent
developing directly on the 3D implementation. Developing the framework also turned
out to be quite helpful to get a better understanding of the problem domain.

4.1.1 Comparison to 3D

In 2D, both the parameter domain P and the geometry domain G are in R2, while the
spline φ is a mapping R2 → R2, and ρ is a mapping R2 → R. The parameter domain is
limited to a rectangle, where each of the sides maps to lines that bounds the geometry.
An isogeometric model in this setting is therefore not a volume, but can be thought of
as an area in a plane that result from slicing the volume where one of the parameters is
constant. The view-rays are also limited to the same plane.

Similar to equation 2.4, a surface can be represented by B-splines as

f (u, v) =
n1

∑
i1=1

n2

∑
i2=1

Bi1,p1(u)Bi2,p2(v)ci1,i2 , (4.1)

where Bi1,p1 and Bi2,p2 are the B-spline basis functions of degree p1 and p2 respectively.
The B-splines are defined with the underlying knot vectors τ = {τ1, τ2, . . . , τn1+p1+1}
and σ = {σ1, σ2, . . . , σn2+p2+1}.

35

Similar to the approach by Fuchs and Hjelmervik, the 2D prototype also implement
visualization with ray-casting. In 2D, a surface has four boundary lines which the view-
rays can intersect.

4.1.2 Limitations

While the 3D implementation utilizes the GPU as a co-processor, the 2D prototype runs
entirely on the CPU. How a 3D GPU implementation performs is not only related to
what method is used, but also how efficiently the hardware is used, such as the rate
of occupancy on the GPU. The 2D prototype can therefore not easily reflect how the
methods will perform on the GPU. However, most likely the spline evaluations and
approximating the inverse of the geometric spline φ are the bottlenecks in the current
3D implementation. Methods that reduce the amount of spline evaluations would
therefore be good candidates for improved performance.

For simplicity, the prototype has not been designed to be able to ray-cast any type
of model. The purpose of the prototype is to develop and test new methods for ray-
casting isogeometric models. It is assumed that a scene only contains one isogeometric
model, consisting of only one volume block. Secondly, it is assumed that the geometry
of the models used are such that every ray will either intersect with the geometry
exactly twice, or not at all. Of course, in practice most models have a geometry that is
more complex than this. However, solving the ray-cast problem for models with more
intersections is equivalent to solving the ray-cast problem between two intersections
multiple times. New methods can therefore be tested for the general case by solving
the ray-cast problem between only two intersections for these new methods.

In section 2.4 different approaches for approximating φ−1 were described. For
simplicity, only the Newton-Raphson method has been used in the prototype. The
Newton-Raphson method has also been used to find the intersection points, as
previously demonstrated by Martin and Cohen [17].

4.1.3 Setup

In the examples shown here, a static 1D transfer function has been used. The transfer
function has been designed to have many different properties, including being linear
in some intervals while having peaks in others. Most input to the transfer function
also generates output with high transparency, while a small interval generates opaque
colors. Figure 4.1a is a visualization of the transfer function where it is shown the
value of the RGBA components based on the scalar value. The result after applying the
transfer function to the scalar field from figure 3.1b is shown in figure 4.1b.

All the rays start at the location of an imaginary observer. The point (−1.2, 0.65) in
the geometry has been used in all the results shown here. Each ray then passes through
the middle of a pixel on the screen, before it goes into the scene. The screen has been
defined as the line segment from (−0.5, 0.2) to (−0.5, 0.9) in the geometry, containing
100 pixels. This setup gives insight about the different methods, while more varied
setups are later used in the 3D implementation.

36

0.0 0.2 0.4 0.6 0.8 1.0
0.0

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

1.0

(a) The 1D transfer function. From top to
bottom is the Red, Green, Blue and Alpha
channels of the output. The vertical axes
show the intensity of each channel, while the
input scalar varies along the horizontal axes.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0

1.0

(b) Applying the transfer function to the
scalar field shown in figure 3.1b.

Figure 4.1: Visualization of the transfer function from dataset 1.

4.1.4 Software and tools

In this section a brief explanation will be made for the choice of software and tools used
to make the prototype.

Python

The prototype has been implemented using the Python1 programming language.
Python is a high-level language, which makes it ideal for prototyping, as one does not
have to account for small details when programming, and can focus more on solving
problems in the prototype domain. Even though it may not produce programs with
the same level of performance as programs written in C/C++, at this stage it was more
important to develop methods and test the visual accuracy of these than testing the
actual performance. One of the main reasons for choosing Python, was the range of
useful libraries available to it.

Python libraries

The plots shown in this thesis have been plotted by using the Matplotlib2 library.
Matplotlib is an easy to use plotting library which offers both an object-oriented
approach, as well as an interface that resembles MATLAB.

For scientific computing, mathematical modules have been used from the NumPy3

1https://www.python.org/
2http://matplotlib.org/
3http://www.numpy.org/

37

https://www.python.org/
http://matplotlib.org/
http://www.numpy.org/

and the SciPy4 libraries. SciPy offers ready to use spline evaluation, (bi-)linear
interpolation among others.

To compare the different results, the CIEDE2000 implementation in the color
module from scikit-image5 have also been used.

4.2 Implementation of ray-casting methods

4.2.1 Direct method

As explained in section 2.4, the first step while ray-casting is to locate where the view-
ray γ intersects with the boundaries of the geometry defined by φ. In 2D, this process
means dealing with the intersections on each of the four bounding lines of the model.
An intersection between the view-ray γ and a boundary S is given by

S(x)− γ(t) = 0, (4.2)

where S(x) ∈ {φ(0, x), φ(1, x), φ(x, 0), φ(x, 1)}. Equation 4.2 is approximated for x and
t using the Newton-Raphson method. Each iteration gives the approximations x̃ and t̃,
and the Boolean test

S(x̃)− γ(t̃) < εIntersect (4.3)

is used as a stopping criterion where εIntersect is a predetermined tolerance. The
Newton-Raphson method has quadratic convergence, and if the test fails for 20
consecutive iterations it is assumed that the view-ray does not intersect with the
geometry.

When ray-casting the direct model in the prototype, an ellipse is used for each point
to ensure pixel accuracy. The size of the ellipse is determined by the radius of the
pixel frustum at a given sample point and the sampling distance. This means that an
ellipse for a given sample point will not overlap with any other similar ellipses. When
a candidate parameter p̃i is found and its corresponding point g̃i in the geometry, a test
is performed if g̃i is enclosed by the ellipse. If the test fails, then p̃i is used as the guess
for the next iteration. Ellipses were chosen because it is easy to test if a point is inside
or not. By having all sample points inside their corresponding ellipses along a ray both
parametric accuracy as well as covering accuracy have been guaranteed. This approach
does however set a stricter requirement for the sample points than just pixel accuracy.

When generating the reference solution, better approximations can be made.
Instead of using pixel accuracy as the stopping criterion for the Newton-Raphson
method, a small maximum tolerance is used. In this case the equation

φ(pi)− gi = 0 (4.4)

is approximated for pi, where gi is the ideal sample point. The Newton-Raphson
method is repeated until the Boolean test

‖φ(p̃i)− gi‖ < εSample (4.5)

4http://www.scipy.org/scipylib/index.html
5http://scikit-image.org/

38

http://www.scipy.org/scipylib/index.html
http://scikit-image.org/

(a)

(b)

(c)

Color Description
No noticeable color difference
Acceptable color difference
Noticeable color difference between most color pairs
Clear color difference between color pairs

(d) Color codes used for CIEDE2000 color difference.

Figure 4.2: Ray-casting with the direct method. The reference solution shown in (a)
compared to the results from ray-casting with the pixel accurate direct method shown
in (b). The CIEDE2000 color difference is visualized in (c).

holds. In addition, the sampling distance in equation 3.1 is made smaller for
the reference solution to achieve a better approximation of the volume rendering
integral. The reference solution used throughout this chapter have been generated with
εIntersect = εSample = 10−5 and a constant sampling distance ∆s = 10−5.

For each approximated sample point g̃i, the scalar s is determined by s = ρ(p̃i) and
the optical properties by TF(s), where TF is the transfer function. The color at each
sample point contributes to the final color of the pixel by front-to-back compositing
using equation 2.8. Since typically the approximated sample point g̃i 6= gi, then ∆si
from equation 3.1 does not reflect the actual sample distance. While compositing the
sample distance ∆s̃i = ‖g̃i − g̃i−1‖ is used instead. The ray-casting ends when the
resulting color has been saturated (alpha value at 1.0), or at the second intersection
point gOut, whichever comes first.

The result from ray-casting the model from dataset 1 using the direct method can be
seen in figure 4.2. In the top the colors of the 100 pixels from the reference solution are
shown horizontally. Below this is the result from ray-casting the pixel accurate direct
method, where εIntersect = 10−3 and ∆s = 10−2. In the bottom a visualization of the
color difference is shown. To generate this the CIEDE2000 algorithm has been utilized,
which was described in more detail in section 3.2.2. The algorithm calculates scalars
representing the color differences between the pixels from the reference solution, to the
pixels from the pixel accurate direct method. Each scalar has then been color coded
according to table 4.2d. As expected, the pixel accurate result deviates slightly from
the reference solution due to having less accurate sample points and a longer sample
distance.

39

0.0 1.0
0.0

1.0

Figure 4.3: A generated texture of size 32x32. Each texel is shown as a square with
a greyscale color depending on the scalar value. Notice that the texture coordinates
ranges from 0 to 1 inside the bounding box, shown with a blue dashed line.

4.2.2 Voxelized method

In 3D, the discretization process is also called voxelization. Even though volume and
voxel is not the correct terms for a 2D setting, they will be used here to more easily
compare the 2D prototype to a 3D implementation.

Under the voxelization process, the isogeometric model is sampled inside the
bounding box, as was explained in section 3.5.1. For each sample point, equation 4.5
is used to approximate the parameter p, with a tolerance εSample = 10−5. The scalar
s = ρ(p) is then stored in the voxel grid. Samples outside the volume are given
the invalid scalar value −1. In addition to the scalar values, the texture also stores
indicators. For texels with a valid scalar value the indicator is set to 0, while for non-
resident texels the indicator is set to 1.

The result after sampling is a matrix of scalars. These discrete samples form
a basis for approximate reconstruction of the smooth isogeometric model. Bilinear
interpolation is used as the reconstruction filter of the scalar field. Ideally the methods
created in the prototype should be easy transferable to a 3D implementation. A texture
is a common way of storing a voxel grid in OpenGL applications, so a simple texture
is mimicked in the prototype. Doing a texture lookup in OpenGL usually involves
hardware accelerated interpolation as well. SciPy’s interp2d class in the interpolate
sub-package have been used in the prototype for this purpose. The texture coordinates
are limited to the interval [0, 1], similarly to normal use in OpenGL.

The voxel grid is rectilinear, but the isogeometric model can have any arbitrary
shape. This means that there will typically be many non-resident texels in the generated

40

(a)

(b)

(c)

(d)

(e)

Color Description
No noticeable color difference
Acceptable color difference
Noticeable color difference between most color pairs
Clear color difference between color pairs

(f) Color codes used for CIEDE2000 color difference.

Figure 4.4: Ray-casting with the voxelized method. The reference solution shown in (a)
compared to the results from ray-casting with the voxelized method. A texture of size
192x192 has been used to generate the result in (b), and (c) shows the CIEDE2000 color
difference. Figure (d) and (e) similarly shows the results from using a texture of size
256x256.

voxel grid. When doing a lookup near the edges of the discretized model, there may be
fewer than four resident texels available to do bilinear interpolation. It is important that
none of the non-resident texels are involved when interpolating, as this will introduce
artifacts along the edges. When the texture is sampled the indicator is also bilinearly
interpolated, and if the interpolated indicator differs from 0, then a non-resident texel
is involved in interpolation and the sample is discarded.

A problem emerges with this simple texture imitation when doing a lookup at a
coordinate near the edges of the texture. To do bilinear interpolation, the four nearest
texels surrounding a given point are used, but on the edges there are only one or
two such texels. In OpenGL this is solved by a texture wrap parameter. This allows
interpolation at the edge of a texture by defining how the lookup behaves outside the
interval [0, 1]. A common approach is clamping to edge, where the outermost texels
extend virtually infinitely out from the texture. In this case the values at the outermost
texels are used at the texture edges, which means that the scalar samples at the edges
can be worse approximations than at other points in the texture. However, the voxel
grid can approximate the geometry closer than if the points at the edges were ignored.
To get the clamping to edge behavior while using interp2d, the prototype use ghost
cells. These are basically texels that create a border around the original texels. The
value of each texel is the same as the texel next to it towards the center of the texture.

Figure 4.4 shows results from ray-casting with the voxelized method. As expected,

41

(a)

(b)

(c)

Color Description
No noticeable color difference
Acceptable color difference
Noticeable color difference between most color pairs
Clear color difference between color pairs

(d) Color codes used for CIEDE2000 color difference.

Figure 4.5: Ray-casting with the boundary accurate method. The reference solution
shown in (a) compared to the results from ray-casting with the boundary accurate
method. A texture of size 192x192 has been used to generate the result in (b), and
(c) shows the CIEDE2000 color difference.

the color differences are greater in average than compared to the direct method.
However, since there are no spline evaluations while ray-casting, it is also expected
that this method will perform better. By increasing the size of the texture, the voxelized
method generates a result that more closely resembles the reference solution. This
suggests that a desired level of accuracy can be achieved by using appropriately sized
textures. However, depending on the isogeometric model, the size of the texture might
have to be very high to be able to accurately reconstruct the scalar field [8]. Hardware
restrictions will typically limit the maximum texture size available.

4.2.3 Boundary accurate method

The boundary accurate method uses both the spline model and the voxelized model
while ray-casting. Sampling at the intersection points will always use the spline model.
Sampling at subsequent points normally use the voxel grid, although it is possible
that sampling at such a point would result in a non-resident sample. In the prototype
these points are ignored while sampling. When compositing it is therefore important
to notice that the sampling distances may differ from ∆si used in equation 3.1. An
example is if there is sampling at the points gi and gi+2, but sampling at gi+1 resulted
in non-resident texels and is therefore ignored. The sampling distance for gi will then
be ∆si + ∆si+1.

In the voxelized method, a clamp to edge approach was used for solving the
problem of sampling at the edges of a texture. The argument was that even though
the approximation of the scalar field could be inaccurate at these points, that the
approximation of the geometry is typically better. For the boundary accurate method,
the geometry is approximated as good as in the direct method. The disadvantage of

42

2-102-92-82-72-62-52-42-32-2

Sampling distance

2-9

2-8

2-7

2-6

2-5

2-4

2-3

2-2

2-1

20

21

22

23

24

25

Co
lo

r d
iff

er
en

ce
 (∆

E
)

(a) Texture with clamp to edge as wrap
parameter.

2-102-92-82-72-62-52-42-32-2

Sampling distance

2-9

2-8

2-7

2-6

2-5

2-4

2-3

2-2

2-1

20

21

22

23

24

25

Co
lo

r d
iff

er
en

ce
 (∆

E
)

(b) Texture with clamp to border as wrap
parameter.

Direct
Voxelized
Boundary accurate

Figure 4.6: Comparison of mean color difference when clamping to edge versus
clamping to border. A texture of size 322 has been used for all sampling distances.
The results have been generated from ray-casting an isogeometric model with trivial
geometry, meaning that φ(u, v) = (u, v). The scalar field is the same as was shown in
figure 3.1b, and the transfer function is the same as was shown in figure 4.1.

using the clamp to edge approach can therefore outweigh the advantage when using
the boundary accurate method, see e.g., figure 4.6a. When the sampling distances get
small enough, more sample points lay at the edges of the texture. While the overall
results for the voxelized method is better with a clamp to edge approach, the results get
worse for small sampling distances with the boundary accurate method. An alternative
approach is so-called clamp to border, where edge samples are interpolated with a fixed
border value. By marking the border as non-resident, the less accurate approximated
samples at the edges of the texture are ignored. The mean color differences for this
approach can be seen in figure 4.6b, and for this example the results are clearly better
for small sampling distances. The graph shows that the mean for the boundary accurate
method does not really change after hitting the sample distance of 2−6. This is because
points inside the texture are linearly interpolated, and having a sample distance lower
than the distance between voxels does not make the result more accurate.

In figure 4.5 the results from visualizing the model with the boundary accurate
method is shown. The average color difference is noticeably better than for the
voxelized method, even though the performance is expected to be almost similar. Since

43

(a)

(b)

(c)

(d)

Color Description
No noticeable color difference
Acceptable color difference
Noticeable color difference between most color pairs
Clear color difference between color pairs

(e) Color codes used for CIEDE2000 color difference.

Figure 4.7: Ray-casting with a hybrid of the direct method and the boundary accurate
method using a 192x192 texture. Figure (a) shows the reference solution, the hybrid
solution in (b), and the CIEDE2000 color difference in (c). The ratio between sample
points from the spline model and sample points from the voxel grid is shown in (d),
where the lighter the color is, the more samples have been taken from the voxel grid.

the internal sample points are considered less accurate than the intersection points, the
visual accuracy is likely to be affected the more internal sample points there are.

4.2.4 Hybrid

The hybrid method switches between the spline model and the voxelized model based
on a geometric criterion. In section 3.7, it was explained that the geometric criterion
depends on the size of the smallest of the radiuses of the pixel frustum at a given
sample point. Although the exact size of the radiuses can be found in the 2D prototype,
we want to compare against the projected pixel size ε because it will later be useful
for the 3D implementation. Finding ε in the 2D prototype is trivial with trigonometric
functions and will not be covered here.

The hybrid method can also combine the direct method with the boundary accurate
method. The results from visualizing with this type of hybrid can be seen in figure
4.7. The ratio between the use of the spline model and the voxelized model has also
been visualized. As expected the color differences reaches a middle ground between
the voxelized method and the direct method.

4.3 Comparing the methods

The ray-casting methods generates results with varying degrees of visual accuracy,
depending on how many samples are taken from the spline model compared to the

44

voxel grid, which is highly likely to affect the performance while rendering. Since the
geometry, defined with the function φ, and the scalar field, defined with the function ρ,
are independent of each other, they can be combined from different datasets to create
interesting cases. Dataset 0 includes the trivial geometry defined as φ0(u, v) = (u, v),
and the trivial scalar field is defined as ρ0(u, v) = v. Recall that to determine (u, v)
based on a point in the geometry, it is necessary to evaluate the inverse of φ. When φ
is a spline function, the inverse must be approximated. Note that in the cases with a
trivial geometry, φ−1 can be evaluated exactly. For dataset 1 both φ1 and ρ1 are spline
functions. Visualization of the geometry defined by φ1 can be seen in figure 3.1a, and
of the scalar field defined by ρ1 in figure 3.1b. In all the cases the static transfer function
visualized in figure 4.1a has been used.

The setup for the cases presented here is similar as before, with the view-rays
starting from an imaginary observer located at (−1.2, 0.65) in the geometry. Ray-casting
has been performed on a vertical screen, defined as a line segment from (−0.5, 0.2) to
(−0.5, 0.9) in the geometry containing 100 pixels. The result from visualizing is a 1D
array of RGB colors, and the CIEDE2000 algorithm has been used to calculate the color
difference against a reference solution. The reference solution in all the different cases
have been generated by visualizing the model with the direct method, with a sampling
distance of 10−5 along the view-rays, and a tolerance of 10−5 for approximating φ−1.

In the methods that use a voxel grid, bilinear interpolation is used to determine
the value at a given point in the texture. Since the reconstruction is linear, having
multiple sample points within the size of a voxel does not yield a more accurate
result. The sampling distance can therefore be made greater for coarser textures. In
the results shown here, the sampling distance have been set to a constant half of the
distance between two adjacent voxels. To allow for a fair comparison, the same constant
sampling distances are used for all different methods, including the direct method.

The visual accuracies of the different methods are then compared. The CIEDE2000
algorithm returns a color difference as a scalar between pairs of colors. For each
method there is therefore generated 100 scalars representing the color difference. To
compare the different methods, the maximum, the mean and the variance of all pixel’s
scalar values are calculated. The results are shown in tables here, rounded to two
decimal places. The mean and maximum of the color differences are also illustrated
in graphs. Note however that the axes are logarithmic. The graphs have been color
coded depending on the method used to generate the data. The data points are shown
with markers, with separate markers for each method. Note also that the data points are
linearly interpolated in the graphs, so the points between the data points are therefore
not accurately represented.

When the results for a specific method are good enough was specified in section
3.2.2. To summarize, the maximum color difference should not exceed 5.0, and the
mean color difference should not exceed 1.0. Below is a brief overview of the cases
presented in this chapter which have been used to generate results.

• Case A: Trivial geometry, trivial scalar field. In this case the isogeometric model
is defined by trivial functions. The voxel grid can therefore represent the

45

isogeometric model accurately. This serves as a control case where it is expected
that the different methods generate similar results.

• Case B: Trivial geometry, non-trivial scalar field. While using the same geometry
as in case A, the scalar field is for this case defined by a spline function. A
voxelized version can represent the geometry exactly, but not the scalar field. This
case therefore shows how the different methods compare when the scalar field is
reconstructed approximately.

• Case C: Non-trivial geometry, trivial scalar field. The geometry for the isogeometric
model in this case is defined by a spline, while the scalar field is kept trivial.
While an isogeometric model typically has smooth boundaries, a voxelized
representation is restricted to a grid. By having a trivial scalar field which can
be reconstructed, the problem of approximating the geometry is isolated.

• Case D: Non-trivial geometry, non-trivial scalar field. This is the most complete
example, as it has an isogeometric model defined by spline functions. The
results from this case is the most interesting as it generated from a more practical
example.

4.4 Case A: Trivial geometry, trivial scalar field

In this case the volume block is defined with the trivial functions φ0 and ρ0. The
results can be seen in table 4.1, and an illustration of these in figure 4.8. Since the
geometry is rectilinear and axis-aligned, the voxel grid represents the boundaries of
the geometry exactly. The trivial scalar function is also linear, which means that it can
be reconstructed exactly using linear interpolation. As expected, the visual accuracy
results show that in this case there are no significant difference between using the
different methods. The solutions do differ from the reference solution however because
of the transfer function and the way the volume rendering integral is approximated.
Recall from section 2.3 the algorithm for front-to-back compositing. In the prototype
it is assumed that the color for a segment between the sample points gi and gi+1 only
depends on the color at sample point gi and the sampling distance between the points.
This leads to a step function approximation of the volume rendering integral. The lower
the sampling distance gets, the closer the results get to the reference solution.

The visual accuracy of all methods converge towards the reference solution
approximately by linear decay. The maximum and mean thresholds are shown in their
respective graphs as dashed horizontal lines. In the mean graph, the threshold is at the
very top of the graph window. For all but the lowest texture size, the requirements for
visual accuracy are met for all methods.

46

23 24 25 26 27 28 29 210

Texture size

2-8

2-7

2-6

2-5

2-4

2-3

2-2

2-1

20

21

22

23

24

Co
lo

r d
iff

er
en

ce
 (∆

E
)

(a) Max.

23 24 25 26 27 28 29 210

Texture size

2-12

2-11

2-10

2-9

2-8

2-7

2-6

2-5

2-4

2-3

2-2

2-1

20

Co
lo

r d
iff

er
en

ce
 (∆

E
)

(b) Mean.
Direct
Voxelized
Boundary accurate
Hybrid (direct/voxelized)
Hybrid (direct/boundary accurate)

Figure 4.8: Illustration of the visual accuracy for Case A: Trivial geometry, trivial scalar
field. The dataset is ray-casted with the different methods using different sample
distances. These distances are dependent on the size of the textures. Along the
horizontal axes, the numbers show one dimension of the quadratic texture sizes used.
The resulting pixel colors are then compared to a reference solution with the CIEDE2000
algorithm to find the color differences. Subsequently the maximum and the mean of
these are found to generate the data points shown in the graphs here. The vertical axes
show the ∆E color difference value.

47

(a) Direct method.

max(#S) max(∆E) mean(∆E) var(∆E)
18 1.49 0.10 0.06
35 0.75 0.05 0.02
68 0.38 0.03 0.00

135 0.19 0.01 0.00
268 0.09 0.01 0.00
534 0.04 0.00 0.00

1067 0.02 0.00 0.00
2133 0.01 0.00 0.00

(b) Voxelized method.

#V max(#S) max(∆E) mean(∆E) var(∆E)
82 18 11.58 0.78 4.88

162 35 1.75 0.09 0.06
322 68 0.66 0.04 0.01
642 135 0.19 0.02 0.00

1282 268 0.09 0.01 0.00
2562 534 0.04 0.00 0.00
5122 1067 0.02 0.00 0.00

10242 2133 0.01 0.00 0.00

(c) Boundary accurate method.

#V max(#S) max(∆E) mean(∆E) var(∆E)
82 18 6.08 0.47 1.19

162 35 0.94 0.08 0.03
322 68 0.48 0.03 0.01
642 135 0.19 0.01 0.00

1282 268 0.09 0.01 0.00
2562 534 0.04 0.00 0.00
5122 1067 0.02 0.00 0.00

10242 2133 0.01 0.00 0.00
(d) Hybrid method
(direct/voxelized).

#V max(#S) max(∆E) mean(∆E) var(∆E)
82 18 1.49 0.10 0.06

162 35 0.75 0.05 0.02
322 68 0.38 0.03 0.00
642 135 0.19 0.01 0.00

1282 268 0.09 0.01 0.00
2562 534 0.04 0.00 0.00
5122 1067 0.02 0.00 0.00

10242 2133 0.01 0.00 0.00

(e) Hybrid method (direct/boundary accu-
rate).

#V max(#S) max(∆E) mean(∆E) var(∆E)
82 18 1.49 0.10 0.06

162 35 0.75 0.05 0.02
322 68 0.38 0.03 0.00
642 135 0.19 0.01 0.00

1282 268 0.09 0.01 0.00
2562 534 0.04 0.00 0.00
5122 1067 0.02 0.00 0.00

10242 2133 0.01 0.00 0.00

Table 4.1: Statistics for Case A: Trivial geometry, trivial scalar field. max(#S) indicates
the maximum number of sample points along a ray. Color differences have been
calculated between the results from each method and the reference solution using the
CIEDE2000 algorithm. The columns with max/mean/var(∆E) shows the maximum,
mean and variance of the color differences respectively. max(∆E) and mean(∆E) values
that satisfy the threshold requirements are marked with a grey background. For the
methods that use a voxel grid, the texture sizes are shown under #V.

48

23 24 25 26 27 28 29 210

Texture size

2-5

2-4

2-3

2-2

2-1

20

21

22

23

24

25

26

Co
lo

r d
iff

er
en

ce
 (∆

E
)

(a) Max.

23 24 25 26 27 28 29 210

Texture size

2-10

2-9

2-8

2-7

2-6

2-5

2-4

2-3

2-2

2-1

20

21

22

23

24

Co
lo

r d
iff

er
en

ce
 (∆

E
)

(b) Mean.
Direct
Voxelized
Boundary accurate
Hybrid (direct/voxelized)
Hybrid (direct/boundary accurate)

Figure 4.9: Illustration of the visual accuracy for Case B: Trivial geometry, non-trivial
scalar field, similarly to figure 4.8.

4.5 Case B: Trivial geometry, non-trivial scalar field

Similarly to case A, the geometry is also in this case defined with φ0 and the boundaries
can be represented exactly with a voxel grid. In this case however, the scalar field
is defined with the non-linear function ρ1. This means that since bilinear interpolation
between discrete sample points is used to reconstruct the scalar field, the reconstruction
will only be an approximation. The more sample points there are, the better the
approximation will be. It is therefore expected that the results from methods based
on a voxel grid gets closer to the reference solution the higher the resolution of the
voxel grid used is. The results for this case can be seen in table 4.2, and an illustration
in figure 4.9.

The graphs show that the results from the boundary accurate method fluctuates
compared to the direct method. It is worth noting that approximations must be made
for all methods. The inverse of the geometry function is approximated differently for
the direct method compared to the reference solution, and the other methods use a
different approximation for the geometry altogether. The methods based on a voxelized
representation are also dependent on an approximate reconstruction of the scalar field.
Since the boundary accurate method combines these models, the approximations can

49

in some cases be better by chance, which can explain the fluctuations in the results.
An interesting detail in the graphs is where the switchover happens for the hybrid

methods. For the initial texture sizes, the geometric criterion is never satisfied because
the distances between the voxels are too big. As soon as the distances get small enough,
the geometric criterion is satisfied for the samples furthest from the observer. The
distance between two diagonally adjacent voxels seems to be small enough to meet
the geometric criterion when the texture size is somewhere between 1282 and 2562. The
graphs show that the visual accuracy gets worse for both the hybrid methods compared
to the direct method after the switchover. This is as expected since the direct method is
the most accurate. However, the question is if the visual accuracy is good enough after
the switchover. For the hybrids the graphs show that both methods satisfy having a
mean below 1.0, and max below 5.0 for all the chosen texture sizes. However, while the
boundary accurate hybrid method consequently gives better results when the texture
size is doubled, this is not the case for the voxelized hybrid method.

50

(a) Direct method.

max(#S) max(∆E) mean(∆E) var(∆E)
18 19.68 1.69 6.93
35 7.35 0.55 1.01
68 3.26 0.17 0.14

135 1.52 0.06 0.03
268 0.55 0.03 0.00
534 0.24 0.01 0.00

1067 0.10 0.00 0.00
2133 0.03 0.00 0.00

(b) Voxelized method.

#V max(#S) max(∆E) mean(∆E) var(∆E)
82 18 49.04 10.93 132.68

162 35 44.15 5.23 81.68
322 68 29.33 2.65 35.36
642 135 27.41 1.39 22.00

1282 268 17.00 0.45 3.94
2562 534 2.97 0.07 0.10
5122 1067 2.00 0.03 0.04

10242 2133 0.44 0.01 0.00

(c) Boundary accurate method.

#V max(#S) max(∆E) mean(∆E) var(∆E)
82 18 38.51 3.58 36.80

162 35 12.93 1.20 3.87
322 68 3.44 0.40 0.33
642 135 7.83 0.21 0.63

1282 268 0.45 0.04 0.01
2562 534 0.25 0.01 0.00
5122 1067 0.17 0.01 0.00

10242 2133 0.05 0.00 0.00
(d) Hybrid method
(direct/voxelized).

#V max(#S) max(∆E) mean(∆E) var(∆E)
82 18 19.68 1.69 6.93

162 35 7.35 0.55 1.01
322 68 3.26 0.17 0.14
642 135 1.52 0.06 0.03

1282 268 0.55 0.03 0.00
2562 534 2.97 0.07 0.10
5122 1067 2.00 0.03 0.04

10242 2133 0.44 0.01 0.00

(e) Hybrid method (direct/boundary accu-
rate).

#V max(#S) max(∆E) mean(∆E) var(∆E)
82 18 19.68 1.69 6.93

162 35 7.35 0.55 1.01
322 68 3.26 0.17 0.14
642 135 1.52 0.06 0.03

1282 268 0.55 0.03 0.00
2562 534 0.25 0.01 0.00
5122 1067 0.17 0.01 0.00

10242 2133 0.05 0.00 0.00

Table 4.2: Statistics for Case B: Trivial geometry, non-trivial scalar field. max(#S)
indicates the maximum number of sample points along a ray. Color differences have
been calculated between the results from each method and the reference solution
using the CIEDE2000 algorithm. The columns with max/mean/var(∆E) shows the
maximum, mean and variance of the color differences respectively. max(∆E) and
mean(∆E) values that satisfy the threshold requirements are marked with a grey
background. For the methods that use a voxel grid, the texture sizes are shown under
#V.

51

23 24 25 26 27 28 29 210

Texture size

2-7

2-6

2-5

2-4

2-3

2-2

2-1

20

21

22

23

24

25

26

27

Co
lo

r d
iff

er
en

ce
 (∆

E
)

(a) Max.

23 24 25 26 27 28 29 210

Texture size

2-11

2-9

2-7

2-5

2-3

2-1

21

23

Co
lo

r d
iff

er
en

ce
 (∆

E
)

(b) Mean.
Direct
Voxelized
Boundary accurate
Hybrid (direct/voxelized)
Hybrid (direct/boundary accurate)

Figure 4.10: Illustration of the visual accuracy for Case C: Non-trivial geometry, trivial
scalar field, similarly to figure 4.8.

4.6 Case C: Non-trivial geometry, trivial scalar field

In cases with a non-trivial geometry, the simplified model only approximates the
boundaries of the isogeometric model. It is therefore expected that at least the pure
voxelized method will lose some of the visual accuracy compared to the direct method.
Graphs for this case are shown in figure 4.10, and shows that the voxelized method
consistently has the worst color difference among all the methods. The boundary
accurate method is not affected as much by this, since it uses the boundaries of
the spline geometry instead. It therefore significantly improves the visual accuracy
compared to the voxelized method. Increasing the resolution of the voxel grid will lead
to a better approximation of the geometry, so it is again expected that the results get
closer to the reference solution with higher voxel grid resolutions.

Once again it can be seen that the boundary accurate method always generates
better results when doubling the texture size, while the voxelized hybrid method
does not. When using a texture size of 5122, the voxelized hybrid method does
not even meet the requirement for maximum color difference. The visual accuracy
is largely affected by the boundary issues with the voxelized method, which also
affects the direct/voxelized hybrid method. The geometric criterion is sensible for

52

the direct/boundary accurate hybrid method, which universally has a maximum color
difference below 5.0.

(a) Direct method.

max(#S) max(∆E) mean(∆E) var(∆E)
17 4.63 0.33 0.55
32 2.54 0.17 0.16
63 1.16 0.07 0.03

125 0.52 0.03 0.01
248 0.24 0.01 0.00
494 0.11 0.01 0.00
986 0.05 0.00 0.00

1971 0.01 0.00 0.00

(b) Voxelized method.

#V max(#S) max(∆E) mean(∆E) var(∆E)
82 18 92.56 9.80 272.28

162 34 99.95 9.14 363.63
322 60 75.12 5.65 165.88
642 122 48.67 3.09 57.81

1282 245 33.93 1.43 17.92
2562 492 23.04 0.74 6.52
5122 983 8.28 0.38 1.28

10242 1968 3.14 0.15 0.18

(c) Boundary accurate method.

#V max(#S) max(∆E) mean(∆E) var(∆E)
82 17 27.59 1.10 9.29

162 32 4.41 0.31 0.45
322 62 1.92 0.10 0.06
642 124 0.82 0.05 0.02

1282 247 0.34 0.02 0.00
2562 493 0.13 0.01 0.00
5122 985 0.06 0.00 0.00

10242 1970 0.02 0.00 0.00
(d) Hybrid method
(direct/voxelized).

#V max(#S) max(∆E) mean(∆E) var(∆E)
82 17 4.63 0.33 0.55

162 32 2.54 0.17 0.16
322 63 1.16 0.07 0.03
642 125 0.52 0.03 0.01

1282 248 0.24 0.01 0.00
2562 492 1.05 0.05 0.03
5122 983 8.28 0.38 1.28

10242 1968 3.14 0.15 0.18

(e) Hybrid method (direct/boundary accu-
rate).

#V max(#S) max(∆E) mean(∆E) var(∆E)
82 17 4.63 0.33 0.55

162 32 2.54 0.17 0.16
322 63 1.16 0.07 0.03
642 125 0.52 0.03 0.01

1282 248 0.24 0.01 0.00
2562 493 0.11 0.01 0.00
5122 985 0.06 0.00 0.00

10242 1970 0.02 0.00 0.00

Table 4.3: Statistics for Case C: Non-trivial geometry, trivial scalar field. max(#S)
indicates the maximum number of sample points along a ray. Color differences have
been calculated between the results from each method and the reference solution
using the CIEDE2000 algorithm. The columns with max/mean/var(∆E) shows the
maximum, mean and variance of the color differences respectively. max(∆E) and
mean(∆E) values that satisfy the threshold requirements are marked with a grey
background. For the methods that use a voxel grid, the texture sizes are shown under
#V.

53

23 24 25 26 27 28 29 210

Texture size

2-7

2-6

2-5

2-4

2-3

2-2

2-1

20

21

22

23

24

25

26

27

Co
lo

r d
iff

er
en

ce
 (∆

E
)

(a) Max.

23 24 25 26 27 28 29 210

Texture size

2-10

2-9

2-8

2-7

2-6

2-5

2-4

2-3

2-2

2-1

20

21

22

23

Co
lo

r d
iff

er
en

ce
 (∆

E
)

(b) Mean.
Direct
Voxelized
Boundary accurate
Hybrid (direct/voxelized)
Hybrid (direct/boundary accurate)

Figure 4.11: Illustration of the visual accuracy for Case D: Non-trivial geometry, non-
trivial scalar field, similarly to figure 4.8.

4.7 Case D: Non-trivial geometry, non-trivial scalar field

This is the most interesting case, as the dataset reflects a more practical scenario. As has
been seen when the geometry or the field was approximated, the visual accuracy gets
better as the resolution of the voxel grid is increased. When these approximations are
combined, it is therefore also expected that the same trend will be visible here. Figure
4.11 illustrates the visual accuracy for this case.

The boundary accurate method meets the requirements as soon as the direct method
does. It is therefore a good alternative in this case, and is also likely to achieve higher
performance since it has fewer spline evaluations. Both of the hybrid methods generate
results with color differences lower than the thresholds for all the chosen texture sizes,
which indicates that a hybrid method based on a geometric criterion works as expected.

54

(a) Direct method.

max(#S) max(∆E) mean(∆E) var(∆E)
17 10.92 0.68 2.24
32 7.96 0.52 1.69
63 3.27 0.19 0.28

125 0.49 0.06 0.01
248 0.19 0.02 0.00
494 0.08 0.01 0.00
986 0.03 0.00 0.00

1971 0.01 0.00 0.00

(b) Voxelized method.

#V max(#S) max(∆E) mean(∆E) var(∆E)
82 18 61.90 7.95 148.85

162 34 75.82 7.22 162.51
322 60 75.82 5.75 172.59
642 122 55.86 3.11 58.76

1282 245 36.04 1.32 15.85
2562 492 8.20 0.55 1.38
5122 983 2.54 0.25 0.25

10242 1968 2.00 0.13 0.09

(c) Boundary accurate method.

#V max(#S) max(∆E) mean(∆E) var(∆E)
82 17 10.27 1.76 5.89

162 32 7.49 0.98 2.28
322 62 2.64 0.36 0.32
642 124 2.43 0.19 0.16

1282 247 0.74 0.07 0.02
2562 493 0.13 0.02 0.00
5122 985 0.04 0.01 0.00

10242 1970 0.01 0.00 0.00
(d) Hybrid method
(direct/voxelized).

#V max(#S) max(∆E) mean(∆E) var(∆E)
82 17 10.92 0.68 2.24

162 32 7.96 0.52 1.69
322 63 3.27 0.19 0.28
642 125 0.49 0.06 0.01

1282 248 0.19 0.02 0.00
2562 492 0.93 0.03 0.01
5122 983 2.54 0.25 0.25

10242 1968 2.00 0.13 0.09

(e) Hybrid method (direct/boundary accu-
rate).

#V max(#S) max(∆E) mean(∆E) var(∆E)
82 17 10.92 0.68 2.24

162 32 7.96 0.52 1.69
322 63 3.27 0.19 0.28
642 125 0.49 0.06 0.01

1282 248 0.19 0.02 0.00
2562 493 0.13 0.02 0.00
5122 985 0.04 0.01 0.00

10242 1970 0.01 0.00 0.00

Table 4.4: Statistics for Case D: Non-trivial geometry, non-trivial scalar field. max(#S)
indicates the maximum number of sample points along a ray. Color differences have
been calculated between the results from each method and the reference solution
using the CIEDE2000 algorithm. The columns with max/mean/var(∆E) shows the
maximum, mean and variance of the color differences respectively. max(∆E) and
mean(∆E) values that satisfy the threshold requirements are marked with a grey
background. For the methods that use a voxel grid, the texture sizes are shown under
#V.

55

56

Chapter 5

Comparison of methods in 3D

Different methods for ray-casting isogeometric models were described in chapter 3.
This chapter deals with how these were implemented in 3D.

5.1 3D framework

Fuchs and Hjelmervik [8] developed a framework for visualizing isogeometric
volumes, and this framework was used as a basis for further implementation. Before
project start, the framework already contained implementations for the direct method
and the voxelized method, so these were not implemented as part of this project.

5.1.1 Software and tools

The software used was mostly dependent on the existing framework. The framework
had been implemented in C++, and with OpenGL as the graphics API for interacting
with the GPU. Additional libraries are used for components such as GUI, but since
these are not relevant for this project they will not be covered here in detail. During the
project the C++ code was compiled using the GNU Compiler Collection (gcc 4.8.4) on
a system running Ubuntu 14.04.

5.1.2 Differences compared to the 2D prototype

While developing the 2D prototype, some choices were made to simplify the problem of
ray-casting isogeometric models. This included limiting the number of volume blocks
to one, and assuming that each view-ray only intersects with the model a maximum of
two times. These limitations do not apply for the 3D implementation.

In the prototype a view-ray was defined to be a point in the geometry along
with a directional vector. In the direct method, an intersection point was found by
approximating the roots to a function with a small tolerance. The function was based
on an expression of the view-ray as well as another expression for the spline model
boundary. In the 3D implementation, a view-ray is defined by an even number of

57

intersection points with the boundaries of the isogeometric model. These are found
by solving the problem of finding approximations of the surfaces of the volume. For
this the approach in [10] is used, which is an efficient implementation due to the use
of the hardware tesselator of modern GPUs. Finding the intersections are done in the
first pass while rendering. The results are stored in textures, including the parameter
for each intersection point.

It was difficult to evaluate the performance of the different methods in the
prototype. Evaluating performance by measuring the time spent rendering would
not give an accurate description, as the setup was not reflecting the 3D setup well
since all of the code ran on the CPU. While the ray-casting happens in parallel on
the GPU, they are sequential on the CPU. Some features like texture interpolation that
could be hardware accelerated in 3D, was limited to software implementations in the
prototype. In the 3D implementation the performance of the methods can be compared
by measuring the time for drawing a complete frame.

5.1.3 Limitations

Fuchs and Hjelmervik [8] presented different approaches for approximating the inverse
of a spline function. While implementing the new ray-casting methods, only the
Newton-Raphson method has been used for this purpose. However, using another
approach should not pose any difficulty in the implementation.

It has also been assumed that color mapping is carried out with a 1D transfer
function. This is for the same reason as with the 2D prototype to reduce the scope
of the project, and does not affect the results of comparing different methods in any
meaningful way.

5.2 Implementation of ray-casting methods

The direct and the voxelized methods were implemented in the framework ahead of
time, and will therefore not be covered in great detail here. The 2D prototype was
limited to isogeometric models of only one volume block. In the general case and in the
3D implementation, an isogeometric models may consist of multiple volume blocks.
The voxel grid is created in a pre-process step by first determining a bounding box
enclosing the whole isogeometric model. The model is then sampled with orthogonal
projection from one direction. This means that even though the isogeometric model
may consist of multiple volume blocks, the result will be one voxel grid texture for the
whole model.

5.2.1 Boundary accurate methods

For the boundary accurate method, the approach to finding intersections are identical
to the approach by the direct method. The parameter of the first intersection point
is fetched from one of the textures generated in the first pass, and the corresponding

58

point in the geometry is determined by evaluating the spline function φ defining the
geometry. The next step is to sample the model between pairs of intersection points,
along the view-ray in the geometry. For the boundary accurate method all the internal
sample points are attempted sampled from the voxel grid. In some cases, the voxel
grid will not contain data at a sample point. These points are marked as invalid, and
the boundary accurate method skips these sample points.

Subsequent sample points are calculated using the geometric representation of the
first intersection point and the direction of the view-ray. Coordinates in the texture
ranges from 0 to 1, and is determined based on the position of the current sample point
in the geometry. This is done by equation 3.2, similarly to the 2D prototype except
that the vectors are now three dimensional. Since points in the geometry are used to
determine points in the texture, sampling internally in multiple volume blocks does
lookup in the same voxel grid.

The texture representing the voxel grid is rectilinear, but the isogeometric model
may not be. Each entry in the texture has therefore two elements; one scalar value, and
a value that indicates whether or not the current point is inside the model. For each
sample point the indicator is checked before using the scalar value. When the distance
between the current sample point and the first intersection point is longer than the
distance between the two intersection points, the sampling from the texture ends. The
scalar at the out intersection point is then used. Sampling can alternatively end earlier
if the pixel color is saturated while compositing along the view-ray.

Similar to the prototype, the problem of sampling at the edge of the texture is solved
by clamping to border. In OpenGL this is implemented by setting the appropriate flag
as texture parameters, see listing 5.1. This causes interpolating with the border value to
return an invalid sample.

Listing 5.1: C++ implementation of setting the texture wrap parameter for the boundary
accurate method.
f l o a t color [] = { 1 . 0 f , 1 . 0 f , 1 . 0 f , 1 . 0 f } ;
glTexParameterfv (GL_TEXTURE_3D , GL_TEXTURE_BORDER_COLOR , color) ;
glTexParameteri (GL_TEXTURE_3D , GL_TEXTURE_WRAP_S , GL_CLAMP_TO_BORDER) ;
glTexParameteri (GL_TEXTURE_3D , GL_TEXTURE_WRAP_T , GL_CLAMP_TO_BORDER) ;
glTexParameteri (GL_TEXTURE_3D , GL_TEXTURE_WRAP_R , GL_CLAMP_TO_BORDER) ;

While the boundary accurate method gave very good visual accuracy results in the
2D prototype, it turns out it can introduce artifacts in 3D for specific view-angles, see
figure 5.1. The reason for this turns out to be because the sampling distance between
the first intersection point and the next sample point can vary, and the change can be
very big from one pixel to the next adjacent to it. While two intersection points for two
adjacent pixels may have almost the same scalar value, if the sample distance to the next
sample point is different, the scalar value at the next sample point may be completely
different. An illustration of the problem in 2D is shown in figure 5.2. Some areas along
the boundary of the model may therefore not be sampled at all.

To reduce the effect of this problem the spline model can be sampled in these areas.

59

(a) Direct method. (b) Thin boundary accurate method.

Figure 5.1: The boundary accurate method can introduce visual artifacts for specific
view-angles.

This will prevent there from being sudden changes in sample distances due to the
approximation of the geometry by the voxel grid. As opposed to the original boundary
accurate method which only uses the shell boundary of the spline model, this approach
uses a thicker boundary where the spline model extends further out than the voxel grid.
This alternative approach will therefore be called the thick boundary accurate method,
or thick method. The original boundary accurate method will also be called the thin
method to distinguish between them. Figure 5.3 shows the same example as in figure
5.1 with the thick method, and the serrated visual artifacts have reduced visibility. The
additional spline evaluations will however most likely lead to a lower performance
than the thin boundary accurate method.

The thick method starts by evaluating the spline model at an intersection point. It
will then traverse the volume, and may sample from the spline model at additional
sample points before sampling from the voxel grid. While approximating the inverse
of the geometric spline, the Newton-Raphson method will have quadratic convergence
given that the initial guess is good. The sampling distance between sample points is
typically small, so a good initial guess is to use the parameter at the previous sample
point. After the thick boundary accurate has sampled from the voxel grid, it may need
a sample where the voxel grid texture indicates it has no valid value. Attempting to
sample from the spline model here can be problematic, as there may not be a good
guess for the parameter for the Newton-Raphson method.

This problem can be solved in different ways. One way is to store parameters
in the voxel grid texture. This could mean having a good initial guess for the
Newton-Raphson method after having sampled the voxel grid texture. By interpolating
parameter values in the texture the guess might be better. Without interpolation the
closest parameter value could be used, but this would typically not be particularly
close compared to the next intersection point. It does however drastically increase the
texture size. Larger textures may be a better use of the memory space, because they
may increase the visual accuracy more than using this method.

60

(a) Sample points when using the boundary
accurate method. The spline model is only
sampled where the view-rays intersect with
the isogeometric model.

(b) A solution to the problem by modifying
the boundary accurate method slightly. The
spline model is additionally sampled at inter-
nal points where the voxel grid texture does
not contain data.

Figure 5.2: A 2D illustration of the problem with the boundary accurate method. The
blue line represent the boundary of the spline model, while the greyscale rectangles
represent the voxels in the voxel grid. The red lines represent two of the view-rays
from the camera below the model, that cast upward through the model. Blue dots
represent sample points where the spline model has been sampled, while green dots
indicate samples from the voxel grid. Due to the area inside the spline model that has
no voxels, the boundary accurate method has a larger sample distance between the
first sample points on the rightmost view-ray. This leads to a somewhat different scalar
value in this case, and therefore also a noticeable different resulting pixel color. The end
result can be sharp transitions of color in the model, causing visual artifacts.

Another solution is to ray-cast from out-intersection points in the opposite direction.
This would be similar as for the in-intersection points, and a good parameter guess is
updated for each subsequent point into the volume. If the volume is largely opaque
however, these sample points may not contribute to the end result because the color
is saturated before the ray reaches these sample points. This means that some work
may be wasted. The compositing would also be more complicated. While the normal
ray composites from front to back, the opposite ray does back-to-front compositing.
Handling two compositing schemes at the same time would also increase the number
of registers and variables needed in the shader.

The solution used in the thick method is to run more iterations of the Newton-
Raphson method when approximating the parameter p̃i of the first sample point gi

61

Figure 5.3: The thick method reduces the visual artifacts introduced by the thin
boundary accurate method.

following the sample points from the voxel grid. Normally the Newton-Raphson
method has three conditions for termination. The first is after a given number of
iterations, the second is if the distance between gi and g̃i = φ(p̃i) is below a certain
threshold, and the last one is if g̃i is inside the pixel frustum. The last termination
condition could lead to using the parameter for a point far from the actual sample
point. This condition is therefore disabled for the first sample point from the spline
model after the voxel grid. In addition, the number of allowed iterations is doubled to
16 compared to the normal 8.

Note that in the example shown in figure 5.1, the visual artifacts are worst on a part
of the model close to the observer. How much these affect the result when the model
is further into the scene is difficult to tell. Another solution may therefore be to use a
hybrid method.

5.2.2 Hybrid methods

For the hybrid method in the 2D prototype, there was a geometric criterion that when
met it had been assured that there was pixel accuracy for sampling from the voxel grid.
This criterion was trivial in that case, as the eye and all sample points were limited to
one plane. In OpenGL, projection is achieved by the matrix-vector multiplication

A 0 B 0
0 C D 0
0 0 E F
0 0 −1 0




xes
yes
zes
wes

 =


xcs
ycs
zcs
wcs

 , (5.1)

where the 4x4 matrix is the so-called projection matrix, and vectors in eye space (es) are
transformed into vectors in clip space (cs). Similarly to Hjelmervik [10], this will be
used as a basis for calculating the maximum projected error from a given sample point
that ensures pixel accuracy. Vectors in clip space are transformed to screen space (ss)
by dividing the xcs, ycs and zcs components by the wcs component. For the x component

62

this becomes
xss = −

Axes + Bzes

zes
. (5.2)

Pixel accuracy is assured when all the sample points for a ray is projected into the
current pixel in screen space. From the pixel center, there is a maximum perturbation
of half the pixel size that is acceptable to be part of the same pixel. If the normalization
and the projection is reversed, we have the maximum perturbation in eye space. This
is of interest because it can be used as a basis for a geometric criterion.

With perturbation ε in eye space equation 5.1 becomes
A 0 B 0
0 C D 0
0 0 E F
0 0 −1 0




xes + εes,x
yes + εes,y
zes + εes,z

wes

 =


xcs + εcs,x
ycs + εcs,y
zcs + εcs,z

wcs

 , (5.3)

and subsequently the first component of the screen space coordinate becomes

xss + εss,x =
A(xes + εes,x) + B(zes + εes,z)

−(zes + εes,z)
. (5.4)

To simplify matters, εes,x = εes,y = εes,z = εw, since it is based on the width of a pixel.
This means that there will be a bounding sphere with radius εw around a given point,
where any sample point that is bounded by this sphere will be pixel accurate. Equation
5.4 can then be written as

εw = −Axes + zes(B + xss + εss,x)

A + B + xss + εss,x
. (5.5)

Inserting 5.2 into 5.5 results in

εw =
εss,xzes

2

A(|xes| − zes)− εss,xzes
(5.6)

which describes the maximum allowed perturbation in eye space that ensures pixel
accuracy based on the width of a pixel. Similarly, the maximum allowed perturbation
based on pixel height is given by

εh =
εss,yzes

2

C(|yes| − zes)− εss,yzes
. (5.7)

Deciding if the voxel grid can be used is then determined similarly as in the 2D
prototype, which was covered in section 3.7. The distance Vd between two diagonally
adjacent voxels is now based on three dimensions. To have pixel accuracy, the
sample point must be within the pixel frustum. When sampling from the voxel
grid, the result is an interpolated scalar s based on the surrounding voxel points
(νi,k)

7
k=0. However, the point ι where ρ(φ−1(ι)) = s can be anywhere within the

63

bounding box defined by (νi,k)
7
k=0. This bounding box must therefore be within the

pixel frustum to achieve pixel accuracy. Since the sample point may be close to a
voxel point, the point ι can in the worst case be Vd in distance from the sample
point. To simplify the criterion, there can be assurance that the pixel frustum
encloses all points with distance Vd from the sample point when 0.5εh > Vd and
0.5εw > Vd. If the tests pass for a sample point, the voxel grid can be sampled
with pixel accuracy. Listing 5.2 shows the implementation in the fragment shader.

Listing 5.2: Implementation of the geometric criterion in the OpenGL Shading
Language. P is the projection matrix, while MV is the model-view matrix, transforming
vectors in the geometry to eye space. pixel_size is a uniform vector defined to be the
pixel size in x and y direction in clip space, and voxel_distance is a uniform variable
set to the distance Vd between two diagonally adjacent voxels. The Boolean variable
useVoxelGrid is then later used to determine whether the current sample point should
be sampled from the spline model or the voxel grid.
vec4 current_eyespace = MV * vec4 (current_geo , 1 . 0 f) ;
f l o a t A = P [0] [0] ;
f l o a t C = P [1] [1] ;
f l o a t x = abs (current_eyespace . x) ;
f l o a t y = abs (current_eyespace . y) ;
f l o a t z = current_eyespace . z ;

f l o a t epsilonW = (pixel_size . x *z *z) / (A * (x−z) − pixel_size . x *z) ;
f l o a t epsilonH = (pixel_size . y *z *z) / (C * (y−z) − pixel_size . y *z) ;

bool useVoxelGrid = 0 . 5 * min (epsilonW , epsilonH) > voxel_distance ;

In the 2D prototype, two different variations of the hybrid method were analyzed
and compared to each other. The results did however show that the direct/voxelized
hybrid never had better visual accuracy than the direct/boundary accurate method.
The cost comes at the price of performance, but since the voxelized model approximates
the boundaries of the geometry poorly, the increase in visual accuracy compared
to the cost is greater on the boundaries than on average. It is likely that when
using the direct/voxelized hybrid method, the texture size must be higher in general.
The direct/voxelized hybrid method was therefore not implemented in the 3D
implementation.

5.3 Comparing the methods

In the 2D prototype, it was shown that it was possible to combine the spline model
with a simplified voxelized representation of the same model. This was to visualize
an isogeometric model with most likely higher performance, and with visual results
within the acceptable threshold. From the comparison in chapter 4, it was evident that

64

some methods had better properties than others, usually with a tradeoff between visual
accuracy and possibly performance. Hybrid methods was introduced and allowed
switching between models dynamically based on the resolution of the voxel grid. The
hybrid combining the direct method with the pure voxelized method was however
considered to not be ideal, and has therefore not been implemented in 3D. Because
of the possible visual artifacts from the original boundary accurate method, a slightly
modified method was also introduced as an alternative, called the thick method.

In the three first cases presented here, a model of a twisted bar will be used as the
isogeometric volume. It is the same as the one used in the in-depth example shown
by Fuchs and Hjelmervik [8]. Additionally, the same transfer function that were used
in their example has been used in cases A and B. This transfer function provides a
model with high transparency, which makes it suited for testing volume rendering
performance, and has some sharp transitions, which can make visual accuracy more
difficult for discretized models. In all of the cases, a texture of size 5123 has been used
as the voxel grid. Below is a brief overview of the different cases.

• Case A: Hybrid switchover. In this case the distance from the observer to the model
has been set such that the threshold where the geometric criterion passes goes
through the volume. It is the most complete example as it gives different results
for each method, and is therefore also covered in most detail. The purpose is to
have an example where all the methods can be tested, and for showing whether
or not a hybrid based on a geometric criterion works in practice.

• Case B: Far. A similar case to case A, but this time the model is placed further
away from the observer. It is placed at a distance where the geometric criterion
is always met. This demonstrates how well the alternative methods can perform
compared to the direct method.

• Case C: Visual artifacts. This case demonstrates the problem with the thin
boundary accurate method. Even though the visual accuracy are comparable
between the thin method and the thick method in most cases, the thin method
can give poor visual accuracy for certain transfer functions and view-angles.

• Case D: Multiple volume blocks. While the other cases use a model consisting of
only one volume block, isogeometric models usually consist of multiple volume
blocks. The purpose of this case is to demonstrate the methods on a more
industrially relevant model.

Performance have been measured in frames per second (FPS) while rendering on an
NVIDIA GeForce GTX 680 GPU. The scene has been rendered in an OpenGL viewport
with the resolution of 640x480. Reference solutions for each case have been generated
by using a sample distance of 0.0005, which is half of the lowest sample distances used
for the other methods. The supersampling in the reference solutions is also performed
with 40 steps, compared to 20 steps for the other methods.

65

(a) Screen capture of the full 640x480 OpenGL
viewport.

(b) Each individual pixel made more easily
visible after cropping and scaling the screen
capture.

Figure 5.4: Visualization of the reference solution for Case A: Hybrid switchover.

5.4 Case A: Hybrid switchover

Visualization of the twisted bar model can be seen in figure 5.4a. It shows a screen
capture of the whole 640x480 viewport while rendering the reference solution. The
reason why the model is placed at that distance from the camera is because the hybrid
methods will be tested on the same example. To make each individual pixel more
easily visible, figure 5.4b shows the same example, but the image has been cropped
and scaled with point filtering. The rest of the figures from this example have been
similarly cropped and scaled.

After generating the reference solution, a voxelized representation of the model was
created. Due to the shape of the model, this means that the distance between voxels is
greater along the z-axis of the model, compared to the other two axes. The isogeometric
model is then visualized with each of the different methods. The orientation of the
model and the transfer function have been kept the same for all methods so that they
can be compared against each other. For each method a range of sampling distances
are used, and screen captures are made. These screen captures are then compared to
the reference solution with the CIEDE2000 algorithm, which generates a scalar for color
difference for each pixel pair. Figure 5.5 shows a comparison of the color differences for
the different ray-casting methods. The color differences have been visualized according
to table 3.1. Note that the images here don’t show the full OpenGL viewport, but have
been cropped and scaled with point filtering to make each individual pixel more easily
visible.

The direct method does not perfectly portray the reference solution, as can be
seen in figure 5.5a. This is due to having a larger sampling distance and fewer steps
while supersampling. However, the visualization does not show any green or red
pixels, which means that the maximum color difference ∆E is below the threshold of
5.0. Having more grey pixels than blue is also a good indication that the mean color
difference ∆E is below the threshold of 1.0. The voxelized method on the other hand,

66

(a) Direct (b) Voxelized

(c) Thin boundary accurate (d) Thick boundary accurate
Color Description

No noticeable color difference
Acceptable color difference
Noticeable color difference between most color pairs
Clear color difference between color pairs

(e) Color codes used for CIEDE2000 color difference.

Figure 5.5: Case A: Hybrid switchover. Color differences for different methods
compared to a reference solution. The methods based on using a voxel grid have used
a texture size of 5123. All the methods have used the same sampling distance of 0.008,
and supersampling with 20 steps.

67

Figure 5.6: Hybrid ratio for Case A: Hybrid switchover. The ratio represents the
number of samples from the spline model compared to the number of samples from
the voxel grid. For pixels with black color, all of the samples have been sampled from
the spline model. The lighter the color is; the more samples have been made from the
voxel grid.

does not produce a result with good visual accuracy. This is again due to the problem
the voxelized method has of representing the boundary. This can be confirmed by
comparing figure 5.5b to the thin boundary accurate method in figure 5.5c, where the
latter has a significantly improved color difference by using the boundaries from the
spline model. The CIEDE2000 result for the thin method does however show a green
pixel, meaning that the color difference ∆E for this pixel is above the threshold of 5.0.
The thick boundary accurate method can in theory generate results with better visual
accuracy, but only for the pixels where the conditions are such that they can take more
samples. Figure 5.5d shows the result for the thick method, and it is apparent that
results are improved. Since there are no red or green colored pixels, there is a good
indication that the requirements set in section 3.2.2 are met.

Since the thin method does not meet the requirements for visual accuracy, a
reasonable explanation is that in this example, the resolution of the voxel grid is too
small to use the method directly. A hybrid method can be used to take advantage of the
voxel grid where possible. Figure 5.6 shows the hybrid ratio for this example, based
on the geometric criterion explained in section 5.2.2. It illustrates for a hybrid method,
how many samples are taken from the voxel grid compared to from the spline model
for each ray. Dark color means mostly samples from the spline model, and light color
means mostly samples from the voxel grid. Note that since the boundary accurate
methods evaluate the spline model at the boundaries, there will be at least one sample
from the spline model for each pixel. It can be seen that in the middle of the screen,
the geometric criterion is met earlier than at the pixels further from the center. The
geometric criterion is based on the size of the pixel frustum, and the closer the observer
is to the screen, the wider the pixel frustum gets. Since the pixels in the middle of
the screen are the closest to the observer, they will therefore also meet the geometric
criterion earlier.

68

(a) Thin boundary accurate (b) Hybrid (direct/thin boundary accurate)

(c) Thick boundary accurate (d) Hybrid (direct/thick boundary accurate)
Color Description

No noticeable color difference
Acceptable color difference
Noticeable color difference between most color pairs
Clear color difference between color pairs

(e) Color codes used for CIEDE2000 color difference.

Figure 5.7: Case A: Hybrid switchover. Color differences for the boundary accurate
methods and their corresponding hybrid methods. The methods based on using a voxel
grid have used a texture size of 5123. All the methods have used the same sampling
distance of 0.008, and supersampling with 20 steps.

69

Comparing the hybrid ratio to the color difference results for the thin boundary
accurate method, it can be seen that the pixel with the largest pixel difference is in the
dark area of the hybrid ratio illustration. This means that sampling from the voxel grid
here, as was done when ray-casting, is not guaranteed to be pixel accurate. The result
could therefore be improved by using a hybrid method.

Illustrations of color differences with hybrid methods are shown in figure 5.7. It is
apparent that the visual accuracy improves in the areas such as at the left and right ends
where the geometric criterion is not met. For this example, the threshold criteria are
met for both of the hybrid methods. The results from the thin and the thick boundary
accurate hybrid methods are quite similar, and the color difference illustrations are
identical.

More detailed results including performance measurements can be seen in table
5.1. For each subsequent row in each table, the sampling distance is halved. The
same sampling distances have been used for the pure voxelized method as well, but
the number of sample points differ because the view-rays intersect with the model at
different points than for methods that use the spline boundaries. The color difference
illustrations in figures 5.5 and 5.7 corresponds to the fifth data row in each table. As
expected, the direct method converges towards the reference solution, as was shown
in [8]. This is also true for the voxelized method, although it converges more slowly.
When comparing the thin and the thick methods, the thick method does consistently
generate results with slightly lower color differences at the cost of a moderate drop in
performance. The mean color difference converges towards the reference solution for
both of these methods. The max color difference does however fluctuate slightly. This is
likely due to the reconstruction of the continuous functions from the discretized voxel
grid, which is done with trilinear interpolation. Since the isogeometric model is not
linear, the reconstruction is only an approximation. It can be seen from the tables that
the maximum color difference can also increase with a lower sampling distance for the
pure voxelized method. For the boundary accurate methods, the mean color differences
are below the threshold for the same sampling distances as for the direct method, but
the maximum color differences do not consistently stay below the threshold. They do
however for the hybrid methods, and here the difference between the thin and the thick
methods are small.

In this example the thick method would be the best alternative to the direct method,
since it can meet the threshold requirements with the best performance. However, pixel
accuracy is not assured for all the samples from the voxel grid since the geometric
criterion is not met for all sample points in the model. This is assured by the hybrid
methods, and both of these have performance similar to the direct method.

For the example with the sampling distance of 0.008, the thin boundary accurate
hybrid method has about 3% more frames per second while rendering, while the thick
boundary accurate hybrid method has about 8% less. Comparatively, the regular thick
method has about 2.9 times more frames per second than the direct method. Graphs of
the max and the mean color differences for this case is shown in figure 5.8.

70

(a) Direct method.

max(#S) max(∆E) mean(∆E) var(∆E) FPS
10 50.343 2.469 16.385 354.9
20 17.393 1.096 3.021 213.4
39 5.030 0.434 0.363 118.9
78 1.683 0.192 0.063 63.2

156 1.131 0.111 0.031 32.8
312 1.062 0.076 0.022 18.4
623 1.023 0.059 0.017 8.7

1246 1.058 0.039 0.009 4.3

(b) Voxelized method.

max(#S) max(∆E) mean(∆E) var(∆E) FPS
9 71.388 12.448 239.877 2601.4

17 70.058 11.506 209.217 2122.9
33 68.528 10.492 179.643 1571.4
65 66.525 9.265 141.591 1030.0

130 56.639 8.063 106.217 630.4
260 56.646 7.331 87.167 357.3
519 56.392 6.920 78.371 206.2

1037 56.393 6.671 72.561 107.2
(c) Thin boundary accurate

max(#S) max(∆E) mean(∆E) var(∆E) FPS
10 50.346 2.494 16.500 849.2
20 17.216 1.130 3.138 740.3
39 6.828 0.480 0.424 583.8
78 6.541 0.256 0.119 414.2

156 5.132 0.205 0.090 263.9
312 4.928 0.185 0.090 156.4
623 4.821 0.173 0.090 86.7

1246 4.825 0.166 0.092 46.1

(d) Hybrid (direct/thin boundary accurate)

max(#S) max(∆E) mean(∆E) var(∆E) FPS
10 50.346 2.475 16.411 363.3
20 17.393 1.103 3.033 216.1
39 5.030 0.442 0.368 120.2
78 1.955 0.200 0.066 64.2

156 1.743 0.120 0.034 33.8
312 1.666 0.087 0.026 18.7
623 1.646 0.071 0.021 8.7

1246 1.650 0.053 0.014 4.4
(e) Thick boundary accurate method.

max(#S) max(∆E) mean(∆E) var(∆E) FPS
10 50.346 2.482 16.451 556.9
20 17.216 1.112 3.084 464.5
39 4.824 0.457 0.389 294.7
78 2.868 0.228 0.084 169.7

156 3.416 0.166 0.063 93.8
312 3.636 0.145 0.066 52.6
623 3.401 0.131 0.059 27.2

1246 3.191 0.114 0.051 13.8

(f) Hybrid (direct/thick boundary accurate)

max(#S) max(∆E) mean(∆E) var(∆E) FPS
10 50.346 2.472 16.393 346.0
20 17.393 1.098 3.024 202.2
39 5.030 0.436 0.364 113.1
78 2.003 0.195 0.064 59.2

156 1.793 0.115 0.032 30.1
312 1.710 0.082 0.024 17.3
623 1.690 0.065 0.018 8.2

1246 1.695 0.046 0.011 4.1

Table 5.1: Statistics for Case A: Hybrid switchover. max(#S) indicates the maximum
number of sample points along a ray. Color differences have been calculated
between the results from each method and the reference solution using the CIEDE2000
algorithm. The columns with max/mean/var(∆E) shows the maximum, mean and
variance of the color differences respectively. max(∆E) and mean(∆E) values that satisfy
the threshold requirements are marked with a grey background. The FPS column
shows the performance in frames per second while rendering on an NVIDIA GeForce
GTX 680 GPU, and is marked with a grey background when both of the threshold
requirements are met.

71

2-102-92-82-72-62-52-42-32-2

Sample distance

20

21

22

23

24

25

26

27

Co
lo

r d
iff

er
en

ce
 (∆

E
)

(a) Max.

2-102-92-82-72-62-52-42-32-2

Sample distance

2-5

2-4

2-3

2-2

2-1

20

21

22

23

24

Co
lo

r d
iff

er
en

ce
 (∆

E
)

(b) Mean.
Direct
Voxelized
Thin boundary accurate
Thick boundary accurate
Hybrid (direct/thin boundary accurate)
Hybrid (direct/thick boundary accurate)

Figure 5.8: Graphs of the color differences for different methods in Case A: Hybrid
switchover.

72

(a) Screen capture of the full 640x480 OpenGL
viewport.

(b) Hybrid ratio for the thin method. The
screen capture has been cropped and scaled.
Pixels are dark colored for rays where the
distance between the in intersection and the
out intersection is smaller than the sampling
distance.

Figure 5.9: Visualization of the reference solution and the hybrid ratio for Case B: Far.

5.5 Case B: Far

In this case, the twisted bar model is placed further from the camera. A screen capture
of the OpenGL viewport is shown in figure 5.9a. The purpose of this case is to show
an example where the alternative ray-casting methods can visualize the isogeometric
model with a noticeable improved frame rate compared to the direct method. The
model is placed at a distance from the camera where the geometric criterion is always
met, see figure 5.9b for an illustration of the hybrid ratio. This means that all samples
from the voxel grid should be pixel accurate, and it is expected that the visual accuracy
will be within the thresholds.

The results are shown in table 5.2. All the methods except the voxelized method
meet the threshold requirements on the fourth row. The performance is noticeably
improved for the boundary accurate methods, especially for the thin method, compared
to the direct method. The thick method does not achieve the same level of performance,
but has slightly better visual accuracy than the thin method. Since the geometric
criterion is always met, the hybrid methods do not improve the visual accuracy in any
way, compared to their non-hybrid counterparts. As expected, they do have a slight
drop in performance due to the additional code needed to check the geometric criterion
for each sample point.

For this case the thin method is the best alternative to the direct method, having
good visual accuracy and significantly improved performance. Since the geometric
criterion is always met, there is also pixel accuracy for all the samples from the voxel
grid. Using the hybrid method leads to a slight drop in performance, but would also
assure that samples are pixel accurate if the model is moved closer to the camera.
In this example, the thin hybrid method has about 6 to 9 times more frames per

73

second depending on the sampling distance. The thick hybrid method is also a good
alternative, with about 2 to 3 times more frames per second depending on the sampling
distance.

(a) Direct method.

max(#S) max(∆E) mean(∆E) var(∆E) FPS
11 47.421 2.574 17.562 438.1
20 23.578 1.136 3.476 251.7
40 5.991 0.436 0.392 137.6
79 2.725 0.191 0.064 75.2

158 1.509 0.108 0.030 38.9
315 1.096 0.073 0.021 21.6
630 1.030 0.055 0.015 10.3

1260 0.597 0.034 0.006 5.1

(b) Voxelized method.

max(#S) max(∆E) mean(∆E) var(∆E) FPS
9 69.935 21.283 271.742 2783.2

17 68.929 20.828 261.404 2322.7
33 68.610 20.298 259.387 1777.2
65 68.529 20.284 260.961 1218.8

129 70.255 20.466 267.287 770.2
258 73.742 20.591 271.339 452.5
515 73.976 20.712 276.327 263.7

1029 73.978 20.796 278.968 143.9
(c) Thin boundary accurate

max(#S) max(∆E) mean(∆E) var(∆E) FPS
11 47.428 2.601 17.698 977.0
20 23.783 1.165 3.533 864.1
40 6.662 0.480 0.438 699.3
79 3.002 0.254 0.114 511.5

158 2.952 0.206 0.095 331.0
315 3.149 0.190 0.097 194.8
630 3.519 0.178 0.097 108.5

1260 3.524 0.169 0.097 58.4

(d) Hybrid (direct/thin boundary accurate)

max(#S) max(∆E) mean(∆E) var(∆E) FPS
11 47.428 2.601 17.698 974.0
20 23.783 1.165 3.533 840.2
40 6.662 0.480 0.438 657.7
79 3.002 0.254 0.114 466.6

158 2.952 0.206 0.095 292.4
315 3.149 0.190 0.097 169.5
630 3.519 0.178 0.097 94.1

1260 3.524 0.169 0.097 49.4
(e) Thick boundary accurate method.

max(#S) max(∆E) mean(∆E) var(∆E) FPS
11 47.428 2.587 17.634 702.3
20 23.783 1.149 3.508 513.5
40 6.662 0.462 0.418 312.1
79 2.851 0.231 0.093 191.8

158 2.952 0.171 0.072 109.9
315 3.149 0.148 0.073 63.1
630 3.519 0.133 0.066 31.3

1260 3.299 0.116 0.062 16.7

(f) Hybrid (direct/thick boundary accurate)

max(#S) max(∆E) mean(∆E) var(∆E) FPS
11 47.428 2.587 17.634 672.7
20 23.783 1.149 3.508 507.5
40 6.662 0.462 0.418 303.4
79 2.851 0.231 0.093 191.8

158 2.952 0.171 0.072 114.7
315 3.149 0.148 0.073 66.5
630 3.519 0.133 0.066 34.1

1260 3.299 0.116 0.062 17.7

Table 5.2: Statistics for Case B: Far. max(#S) indicates the maximum number of sample
points along a ray. Color differences have been calculated between the results from each
method and the reference solution using the CIEDE2000 algorithm. The columns with
max/mean/var(∆E) shows the maximum, mean and variance of the color differences
respectively. max(∆E) and mean(∆E) values that satisfy the threshold requirements are
marked with a grey background. The FPS column shows the performance in frames
per second while rendering on an NVIDIA GeForce GTX 680 GPU, and is marked with
a grey background when both of the threshold requirements are met.

74

Figure 5.10: Visualization of Case C: Visual artifacts. The image shows a screen capture
of the full 640x480 OpenGL viewport while rendering the reference solution. The
geometric criterion is never met, meaning that the whole model is too close to the
camera to use the voxel grid for any sample point.

5.6 Case C: Visual artifacts

In the previous example, the thin method was a better alternative to the direct method
than the thick method. In section 5.2.1 however, it was shown that the thin method
could generate results with visual artifacts. An example where this is the case will be
analyzed here. As was explained in section 5.2.1, this could happen when choosing
specific view angles, combined with tailored transfer functions. Visualization of the
reference solution can be seen in figure 5.10. The transfer function used in this case
is largely opaque and black for most scalar values, but with small peaks where color
is introduced. This means that if large sampling distances are used while ray-casting,
these peaks may be completely skipped, generating a result with low visual accuracy.

The color difference results are shown in table 5.3. The first results here have
poor visual accuracy, even for the direct method. This is due to sampling with a
small sampling distance, and the transfer function containing peaks. Since the transfer
function also is largely opaque, ray-casting mostly stops with early ray termination.
Halving the sampling distance does therefore not always increase the maximum
number of sample points. The first three rows of the table for the direct method have
the same number for the maximum number of sample points. However, the average
number of sample points do change, which is the reason why the measured frames per
second changes.

Once again the thin method drastically improves the visual accuracy compared to
the voxelized method. It does not satisfy the threshold requirements for any of the
sampling distances used here however, but this does not come as a surprise since the
geometric criterion is not met for any of the sample points. This is also the explanation
why all of the hybrid methods generate the exact same visual results as the direct
method. The hybrid methods do however suffer a slight penalty to performance
compared to the direct method, due to having to test the geometric criterion for each
internal sample point.

75

The thick method has once again the best visual accuracy of the boundary accurate
methods. The visual accuracy is actually within the set thresholds for both the
maximum and the average color difference for the lowest sampling distances used here.
However, it should be noted that since the geometric criterion is not met, there is no
guarantee that the sampling is pixel accurate, which means that the result could be
above the thresholds for other examples. Since the transfer function is largely opaque,
it means that the model is mostly sampled close to the boundaries facing the camera.
This means that when ray-casting with the thick method, a large share of the sample
points will be from the spline model, reducing the overall performance compared to
the thin method. The measured frames per second also drops faster when halving the
sampling distance compared to the thin method, since a bigger share of the sampling
points come from the spline model.

Both of the hybrid methods will in this case generate results with the same visual
accuracy as the direct method, although with a slight performance penalty. For the
thick hybrid version, there is a larger performance penalty than for the thin method,
due to having a more complicated test for each sample point in the shader in addition to
testing the geometric criterion. In this example the thin hybrid method has on average
a 2% drop in frames per second, while the thick hybrid method has roughly 8-15% drop
in performance compared to the direct method.

76

(a) Direct method.

max(#S) max(∆E) mean(∆E) var(∆E) FPS
5 56.893 8.510 104.362 208.4
5 49.037 7.243 84.485 210.2
5 29.127 4.559 31.176 168.5
6 10.440 1.912 4.101 138.7
8 2.990 0.567 0.237 102.2

12 0.817 0.152 0.017 66.0
21 0.288 0.057 0.002 38.4
39 0.261 0.023 0.000 20.4

(b) Voxelized method.

max(#S) max(∆E) mean(∆E) var(∆E) FPS
10 107.733 16.984 473.553 1079.9
19 106.170 15.426 374.003 1009.0
37 107.600 14.753 334.957 849.2
73 105.742 15.278 376.315 703.3

146 106.952 14.647 349.405 525.0
291 107.055 12.855 291.048 349.7
581 89.510 11.869 254.333 221.6

1161 88.594 11.281 228.135 127.7
(c) Thin boundary accurate

max(#S) max(∆E) mean(∆E) var(∆E) FPS
5 56.893 8.511 104.314 253.7
5 53.606 7.277 85.453 255.2
7 45.581 4.664 33.246 248.3

11 22.729 2.150 5.743 241.3
19 12.051 1.156 1.965 230.8
30 11.856 0.925 1.471 212.6
57 11.856 0.779 1.131 179.5

121 12.323 0.702 0.964 139.0

(d) Hybrid (direct/thin boundary accurate)

max(#S) max(∆E) mean(∆E) var(∆E) FPS
5 56.893 8.510 104.362 204.6
5 49.037 7.243 84.485 206.6
5 29.127 4.559 31.176 167.0
6 10.440 1.912 4.101 136.6
8 2.990 0.567 0.237 101.5

12 0.817 0.152 0.017 65.5
21 0.288 0.057 0.002 38.1
39 0.261 0.023 0.000 20.4

(e) Thick boundary accurate method.

max(#S) max(∆E) mean(∆E) var(∆E) FPS
5 56.893 8.512 104.359 241.0
5 49.127 7.256 84.692 241.3
5 29.148 4.609 31.921 202.6
6 12.455 2.050 4.899 168.8
8 6.787 0.818 0.798 113.5

12 4.124 0.451 0.306 68.5
21 3.451 0.377 0.250 39.1
39 3.315 0.355 0.245 22.2

(f) Hybrid (direct/thick boundary accurate)

max(#S) max(∆E) mean(∆E) var(∆E) FPS
5 56.893 8.510 104.362 192.4
5 49.037 7.243 84.485 193.2
5 29.127 4.559 31.176 152.5
6 10.440 1.912 4.101 123.0
8 2.990 0.567 0.237 89.2

12 0.817 0.152 0.017 57.1
21 0.288 0.057 0.002 32.6
39 0.261 0.023 0.000 17.5

Table 5.3: Statistics for Case C: Visual artifacts. max(#S) indicates the maximum number
of sample points along a ray. Color differences have been calculated between the
results from each method and the reference solution using the CIEDE2000 algorithm.
The columns with max/mean/var(∆E) shows the maximum, mean and variance of
the color differences respectively. max(∆E) and mean(∆E) values that satisfy the
threshold requirements are marked with a grey background. The FPS column shows
the performance in frames per second while rendering on an NVIDIA GeForce GTX 680
GPU, and is marked with a grey background when both of the threshold requirements
are met.

77

(a) Screen capture of the full 640x480 OpenGL
viewport.

(b) Visualization of the block structure of the
model. A different color has been used on
each volume block.

Figure 5.11: Visualization of the model used in Case D: Multiple volume blocks.

5.7 Case D: Multiple volume blocks

All the cases presented so far, including those on the 2D prototype, have been on
models consisting of only one volume block. In section 4.1.2 it was argued that solving
the ray-casting problem for multiple volume blocks would be similar to solving the
ray-casting problem for one volume block multiple times. Here the methods are
demonstrated on a more industrially relevant model consisting of 15 volume blocks.
The model itself is a demonstration from the TERRIFIC1 project, and a visualization of
the model is shown in figure 5.11. It shows von Mises stress for the bent object, which is
a common approach for checking if a design can withstand a given load. This case uses
the same view-matrix and transfer function as the example in [8] on the same model.

For this model the direct method needs a small sampling distance to meet the
threshold requirements. Both of the boundary accurate methods also fulfill the
requirements for this sampling distance, but with better performance. Once again the
difference in visual accuracy between these two is small, but the performance difference
is more noticeable. Since the whole model is close to the camera, the geometric criterion
is never met, and the color difference results for the hybrid methods are identical to the
direct method. They do however suffer from slight performance penalties due to the
extra test for checking the geometric criterion.

1http://www.terrific-project.eu/

78

http://www.terrific-project.eu/

(a) Direct method.

max(#S) max(∆E) mean(∆E) var(∆E) FPS
8 47.788 1.783 11.929 49.8
8 47.788 1.770 11.844 45.7
9 28.672 1.058 4.440 30.4

11 14.071 0.508 1.123 18.8
16 10.572 0.203 0.258 10.6
27 5.852 0.074 0.056 5.7
50 3.347 0.024 0.010 2.9
94 1.129 0.007 0.001 1.5

(b) Voxelized method.

max(#S) max(∆E) mean(∆E) var(∆E) FPS
8 66.941 5.811 83.015 1104.9

16 51.783 5.876 83.894 899.1
32 51.684 6.092 91.913 651.3
64 51.989 6.231 98.587 429.1

128 53.753 6.346 103.320 247.5
255 54.456 6.418 105.718 134.3
509 54.851 6.458 106.976 85.4

1018 55.872 6.479 107.651 48.0
(c) Thin boundary accurate

max(#S) max(∆E) mean(∆E) var(∆E) FPS
8 47.788 1.783 11.929 46.4
8 47.788 1.770 11.847 46.4
9 32.093 1.059 4.442 45.6

11 16.131 0.509 1.128 44.7
16 10.384 0.203 0.259 43.5
27 5.842 0.076 0.058 41.4
50 3.002 0.030 0.013 38.2
94 2.474 0.016 0.005 33.4

(d) Hybrid (direct/thin boundary accurate)

max(#S) max(∆E) mean(∆E) var(∆E) FPS
8 47.788 1.783 11.929 46.9
8 47.788 1.770 11.844 42.7
9 28.672 1.058 4.440 28.4

11 14.071 0.508 1.123 17.6
16 10.572 0.203 0.258 9.9
27 5.852 0.074 0.056 5.3
50 3.347 0.024 0.010 2.7
94 1.129 0.007 0.001 1.4

(e) Thick boundary accurate method.

max(#S) max(∆E) mean(∆E) var(∆E) FPS
8 47.788 1.783 11.929 47.7
8 47.788 1.770 11.845 46.6
9 32.093 1.058 4.439 42.5

11 14.061 0.508 1.123 37.2
16 10.384 0.202 0.258 29.7
27 5.842 0.075 0.056 20.9
50 3.004 0.028 0.011 12.7
94 1.377 0.013 0.002 6.4

(f) Hybrid (direct/thick boundary accurate)

max(#S) max(∆E) mean(∆E) var(∆E) FPS
8 47.788 1.783 11.929 47.2
8 47.788 1.770 11.844 43.1
9 28.672 1.058 4.440 28.7

11 14.071 0.508 1.123 17.8
16 10.572 0.203 0.258 9.8
27 5.852 0.074 0.056 5.3
50 3.347 0.024 0.010 2.8
94 1.129 0.007 0.001 1.4

Table 5.4: Statistics for Case D: Multiple volume blocks. max(#S) indicates the
maximum number of sample points along a ray. Color differences have been calculated
between the results from each method and the reference solution using the CIEDE2000
algorithm. The columns with max/mean/var(∆E) shows the maximum, mean and
variance of the color differences respectively. max(∆E) and mean(∆E) values that satisfy
the threshold requirements are marked with a grey background. The FPS column
shows the performance in frames per second while rendering on an NVIDIA GeForce
GTX 680 GPU, and is marked with a grey background when both of the threshold
requirements are met.

79

80

Chapter 6

Discussion

6.1 General discussion

The research goal for this thesis was to explore if there were ways of improving
performance when visualizing isogeometric models. During planning some different
approaches were considered, but in the end it was argued that creating reduced models
based on voxel grids would have the most potential. Based on this different ray-casting
methods were proposed, and compared against an existing solution.

By using the boundaries of the spline model combined with internal sample points
from a voxelized representation, visual accuracy was shown to improve drastically
compared to using only a voxelized model. This is due to the problem a voxel
grid has of representing the boundaries of a model. It was however not enough to
satisfy the requirements for visual accuracy at all viewing distances alone. Hybrid
methods were then introduced that would in theory choose the voxelized model where
it would be "good enough", and the spline model elsewhere. In 2D, the boundary
accurate hybrid method showed results with good visual accuracy. The voxelized
hybrid method showed consistently worse results, and could in some cases go above
the thresholds after the hybrid switchover. This was again likely due to the boundary
problem with the voxelized model. Since the boundary accurate hybrid method had
substantially better visual accuracy with a relatively small performance penalty, the
voxelized hybrid method was not considered to be a good alternative for ray-casting
isogeometric models.

When implementing the thin boundary accurate method in 3D, it was discovered
that it could in some cases generate results with visual artifacts. The thick method was
therefore proposed as an alternative to prevent this. Although this method would cause
a further drop in performance, visual artifacts were less visible and the overall visual
accuracy was also improved.

81

6.2 Conclusion

In this thesis it has been shown that it is possible to combine a spline model
with a simplified voxelized version to visualize isogeometric models with higher
performance, and with good visual accuracy. To have a good assurance of the visual
accuracy, a hybrid method should preferably be used over a non-hybrid method. The
hybrid methods do however have a slight performance penalty compared to the direct
method when the whole isogeometric model is close to the camera, but when the model
is beyond a certain distance, the performance is drastically improved.

From the 3D implementation, the two proposed boundary accurate methods
generated different results. The thin method had consistently the best performance, but
never the best visual accuracy. The main problem with this method however, is that it
can generate results with visual artifacts for certain viewing angles and specific transfer
functions. In conclusion, the most ideal boundary accurate method would therefore be
the thick method. The hybrid version gives a good assurance of high visual accuracy at
all viewing distances.

6.3 Future work

The ray-casting methods presented in this thesis works well for the general case, but
typically an isogeometric model is largely displayed with homogeneous or transparent
colors. When a ray traverses through such areas, there is an opportunity to increase
the sampling distance. Currently the implementation uses a fixed step length, but
having an adaptive step length could decrease the amount of samples, which would
in turn increase performance. This is applicable for both the direct method and for
methods based on using a voxel grid. However, how to determine the step length is not
immediately obvious. Earlier work has suggested to use a so-called importance volume,
which could be implemented as a lookup texture for sampling distances. This could
be generated based on the spline functions defining the geometry and the scalar field.
Basing it on the transfer function as well could in turn allow for potentially higher
rendering performance, although the importance volume must then be recreated as
soon as the transfer function is changed.

The hybrid methods presented here have been based on a geometric criterion. It
assures pixel accuracy by ensuring that the distance between two diagonally adjacent
voxels can fit into the pixel frustum. For volumes that are largely homogeneous or
transparent, this requirement is needlessly strict. In those cases, doing a lookup in the
voxel grid could be sufficiently accurate, even though the geometric criterion is not met.
A hybrid method based on the adaptive sampling distance from an importance volume
could therefore take more opportunities at sampling from the voxel grid.

Isogeometric models with large homogeneous areas would also in turn lead to a
generated voxel grid which contains many individual voxels with roughly the same
value. This is not an efficient use of memory space on the GPU. Using sparse textures,
which was recently introduced in OpenGL, could reduce the amount of duplicate

82

information in a texture. With these there are different levels of detail in the same
texture, and a texel at any level can be defined to be at the finest level of detail. It is thus
possible to cover a large rectilinear homogeneous area with one texel in the texture.

The main problem with the voxelized models are the representation of the
boundaries of isogeometric models. In this thesis voxelization leads to voxels of two
possible states, either indicated to have a defined value or not. This leads to serrated
edge representations. Chen [3] described a technique to more accurately represent
curved boundaries with voxel grids. Here the boundaries are used to extrapolate values
to the first voxels outside the volume covered by the model. Sampling at these voxels
would indicate that they are non-resident, but due to linear interpolation, the spline
boundaries are represented at points where the indicator passes a certain value, for
instance 0. Even though this is likely to create better representations of the boundaries
in the voxel grid, the boundary accurate methods will always be more visually accurate,
since they use the spline models directly. But it is possible that with a more accurate
voxel grid, the thin method could achieve better results without the problem of visual
artifacts, making the thick method obsolete.

83

84

Bibliography

[1] Tomas Akenine-Möller, Eric Haines, and Naty Hoffman. Real-time rendering. CRC
Press, 2008.

[2] Jim F. Blinn. “Compositing. 1. Theory.” In: IEEE Computer Graphics and Applica-
tions 14.5 (Sept. 1994), pp. 83–87. ISSN: 0272-1716. DOI: 10.1109/38.310740.

[3] Yuan Chen. Techniques for Three-dimensional Scalar and Vector Field Visualization
with Error Evaluation. ProQuest, 2009.

[4] Cyril Crassin et al. “Gigavoxels: Ray-guided streaming for efficient and detailed
voxel rendering.” In: Proceedings of the 2009 symposium on Interactive 3D graphics
and games. ACM. 2009, pp. 15–22.

[5] Carl de Boor. “A practical guide to splines.” In: Mathematics of Computation (1978).

[6] Matthias Eck and Jan Hadenfeld. “Knot removal for B-spline curves.” In:
Computer Aided Geometric Design 12.3 (1995), pp. 259–282.

[7] Klaus Engel et al. Real-time volume graphics. AK Peters, Ltd., 2006.

[8] Franz G. Fuchs and Jon M. Hjelmervik. “Interactive Isogeometric Volume Visual-
ization with Pixel-Accurate Geometry.” In: IEEE Transactions on Visualization and
Computer Graphics 22.2 (Feb. 2016), pp. 1102–1114. ISSN: 1077-2626.

[9] John R. Higgins. Sampling Theory in Fourier and Signal Analysis: Foundations.
Oxford University Press on Demand, 1996.

[10] Jon M. Hjelmervik. “Direct Pixel-Accurate Rendering of Smooth Surfaces.” In:
Mathematical Methods for Curves and Surfaces: 8th International Conference, MMCS
2012, Oslo, Norway, June 28 – July 3, 2012, Revised Selected Papers. Springer Berlin
Heidelberg, 2014, pp. 238–247. ISBN: 978-3-642-54382-1.

[11] Thomas J. R. Hughes, John A. Cottrell, and Yuri Bazilevs. “Isogeometric analysis:
CAD, finite elements, NURBS, exact geometry and mesh refinement.” In:
Computer methods in applied mechanics and engineering 194.39 (2005), pp. 4135–4195.

[12] Martin Kraus and Kai Bürger. “Interpolating and Downsampling RGBA Volume
Data.” In: VMV. 2008, pp. 323–332.

85

http://dx.doi.org/10.1109/38.310740

[13] Eric C. La Mar, Bernd Hamann, and Kenneth I. Joy. “Multiresolution Techniques
for Interactive Texture-based Volume Visualization.” In: Proceedings of the 10th
IEEE Visualization 1999 Conference (VIS ’99). VISUALIZATION ’99. Washington,
DC, USA: IEEE Computer Society, 1999. ISBN: 0-7803-5897-X.

[14] CIE Commision Internationale de l’Éclairage. Improvement to industrial colour-
difference evaluation. Tech. rep. CIE Technical Report, Publication 142.(CIE Central
Bureau: Vienna), 2001.

[15] William E. Lorensen and Harvey E. Cline. “Marching Cubes: A High Resolution
3D Surface Construction Algorithm.” In: SIGGRAPH Comput. Graph. 21.4 (Aug.
1987), pp. 163–169. ISSN: 0097-8930. DOI: 10.1145/37402.37422.

[16] David Luebke et al. Level of Detail for 3D graphics. Morgan Kaufmann, 2003.

[17] William Martin and Elaine Cohen. “Representation and Extraction of Volumetric
Attributes Using Trivariate Splines: A Mathematical Framework.” In: Proceedings
of the Sixth ACM Symposium on Solid Modeling and Applications. SMA ’01. Ann
Arbor, Michigan, USA: ACM, 2001, pp. 234–240. ISBN: 1-58113-366-9. DOI: 10 .
1145/376957.376984.

[18] Les Piegl and Wayne Tiller. The NURBS book. Springer Science & Business Media,
2012.

[19] Gaurav Sharma and Raja Bala. Digital color imaging handbook. CRC press, 2002.

[20] Manfred Weiler et al. “Level-of-detail Volume Rendering via 3D Textures.” In:
Proceedings of the 2000 IEEE Symposium on Volume Visualization. VVS ’00. Salt Lake
City, Utah, USA: ACM, 2000, pp. 7–13. ISBN: 1-58113-308-1. DOI: 10.1145/353888.
353889.

[21] Lance Williams. “Pyramidal parametrics.” In: ACM Siggraph Computer Graphics.
Vol. 17. 3. ACM. 1983, pp. 1–11.

[22] Orion Wilson, Allen Van Gelder, and Jane Wilhelms. Direct Volume Rendering Via
3D Textures. Tech. rep. 1994.

[23] Young In Yeo, Lihan Bin, and Jörg Peters. “Efficient pixel-accurate rendering of
curved surfaces.” In: Proceedings of the ACM SIGGRAPH Symposium on Interactive
3D Graphics and Games. ACM. 2012, pp. 165–174.

[24] Jun-Hai Yong et al. “Degree reduction of B-spline curves.” In: Computer Aided
Geometric Design 18.2 (2001), pp. 117–127.

86

http://dx.doi.org/10.1145/37402.37422
http://dx.doi.org/10.1145/376957.376984
http://dx.doi.org/10.1145/376957.376984
http://dx.doi.org/10.1145/353888.353889
http://dx.doi.org/10.1145/353888.353889

Figures

[25] Sean Barrett. Sparse Virtual Textures. Digital image. 2008. URL: http : / /
silverspaceship.com/src/svt (visited on Apr. 27, 2015).

[26] Project CARS. LOD - Level Of Detail. Digital image. 2013. URL: http://en.pcars.
shoutwiki.com/wiki/LOD_-_Level_Of_Detail (visited on Apr. 29, 2015).

[27] Christoph Rezk-Salama and Peter Hastreiter. Pre- and Post-Classification. Digital
image. 2013. URL: http : / / schorsch . efi . fh - nuernberg . de / roettger / index . php /
VolumeRendering/Pre-AndPost-Classification (visited on May 13, 2015).

[28] Henning Wenke and Oliver Vornberger. Volume Rendering Integral. Digital image.
2010. URL: http : / /media2mult . uos . de / pmwiki / fields / cg - II - 09 / index . php ? n=
VolumeRendering.VolumeRenderingIntegral (visited on May 13, 2015).

87

http://silverspaceship.com/src/svt
http://silverspaceship.com/src/svt
http://en.pcars.shoutwiki.com/wiki/LOD_-_Level_Of_Detail
http://en.pcars.shoutwiki.com/wiki/LOD_-_Level_Of_Detail
http://schorsch.efi.fh-nuernberg.de/roettger/index.php/VolumeRendering/Pre-AndPost-Classification
http://schorsch.efi.fh-nuernberg.de/roettger/index.php/VolumeRendering/Pre-AndPost-Classification
http://media2mult.uos.de/pmwiki/fields/cg-II-09/index.php?n=VolumeRendering.VolumeRenderingIntegral
http://media2mult.uos.de/pmwiki/fields/cg-II-09/index.php?n=VolumeRendering.VolumeRenderingIntegral

	Introduction
	Overview
	Motivation
	Research goal
	Outline

	Background
	3D models
	Isogeometric analysis
	Scientific visualization
	Visualizing isogeometric models
	Performance and memory

	Methods for ray-casting
	Scope
	Validating methods
	Direct method
	Reduced models
	Voxelized method
	Boundary accurate method
	Hybrid method based on a geometric criterion

	Comparison of methods in 2D
	2D prototype
	Implementation of ray-casting methods
	Comparing the methods
	Case A: Trivial geometry, trivial scalar field
	Case B: Trivial geometry, non-trivial scalar field
	Case C: Non-trivial geometry, trivial scalar field
	Case D: Non-trivial geometry, non-trivial scalar field

	Comparison of methods in 3D
	3D framework
	Implementation of ray-casting methods
	Comparing the methods
	Case A: Hybrid switchover
	Case B: Far
	Case C: Visual artifacts
	Case D: Multiple volume blocks

	Discussion
	General discussion
	Conclusion
	Future work

