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Chapter 1

Introduction

The Cerebrospinal Fluid (CSF) surrounds the brain and acts as a protection to
the brain inside the skull. As a result of the cardiac cycle, the CSF will flow up
and down the subarachnoid space (SAS) surrounding the spinal cord. The Chiari
malformation is a downwards displacement of a part of the brain known as the
cerebellar tonsils that partially block CSF flow entering and leaving the SAS. This
malformation is associated with syringomyelia, which is the presence of a fluid filled
cavity within the spinal cord tissue known as a syrinx. Treatment may include de-
compression surgery to remove parts of the bones of the skull to relieve pressure.
Studies (e.g. Paul et al. (1983) [1], Lorenzo et al. (1995) [2], Guo et al. (2007)[3])
have shown that in many cases the syrinx gradually vanishes after surgery. The un-
derlying mechanisms behind neither the formation nor the vanishing of the syrinx
are yet fully understood.

In vivo measurements by Quigley et al. (2004) [4] and Haughton et al. (2003)
[5] have shown that abnormal CSF flow is associated with the Chiari malformation.
Many researchers have thus suggested computational fluid dynamics (CFD) as a
tool to give useful insight, as experiments are very difficult and expensive. Ideal-
ized models have predicted abnormal CSF flow due to tonsillar herniation (Linge
et al. (2011) [6]) as well as normalization of flow patterns by modeling cases of
post-operative decompression surgery (Linge et al. (2014) [7]). CFD-studies in
patient-specific models (Rutkowska et al (2012) [8], Clarke et al. (2013) [9]) have
given further evidence that abnormal anatomy of the SAS contributes to abnormal
pressure and flow patters. Cheng et al. (2014) [10] investigated effects of fluid
structure interaction (FSI) on CSF pressure and velocities and concluded that cord
motion was negligible.

On the other hand, in vitro FSI models by Martin and Loth (2009) [11] and Martin
et al. (2010) [12] have suggested that the presence and location of a syrinx have a
critical impact on the pressure environment in the SAS. Bertram et al. [13, 14, 15]
have, in a series of in silico studies using FSI, investigated pressure waves trav-
eling along the cord during a cough. Initially, it was believed that the so called
“slosh” mechanism may not generate sufficient force to lengthen a syrinx. However,
Bertram (2010) [16] has later discussed possible limitations of these studies and
have suggested that the slosh effect could be of importance.

1



2 CHAPTER 1. INTRODUCTION

Kylstad (2014) [17] simulated the viscoelastic response of the spinal cord from ap-
plied pressure and compared displacement patterns between elastic and poroelastic
models. Displacement patterns were shown to be similar but differ in magnitude
depending on the material parameter setting. In the most extreme cases, displace-
ment magnitudes were approximately 15 times larger for viscoelasticity, and a lag
of 10 ms was observed compared to elastic models. These are both effects that can
be triggered by altering parameters for the elastic spinal cord model. Stgverud et
al. (2015) [18] used poroelastic models to describe the spinal cord using in vivo
pressure measurements as boundary conditions. To the authors knowledge poroe-
lastic flow in the spinal cord has not yet been coupled to fluid flow in the SAS to
investigate syringomyelia.

Therefore, the goal of this study is to model CSF flow around the cord and in-
side the syrinx by coupling computational models of viscous fluid flow in the SAS
with elastic and, for the first time, poroelastic models for the spinal cord. In par-
ticular, changes in pressure and velocity distributions in the SAS as well as cord
displacements due to the presence of a syrinx will be investigated. The governing
equations are the Navier-Stokes equations in the SAS coupled to linear elasticity
or Biot’s (poroelastic) theory in cord tissue. The models will be implemented with
the finite element method using FEniCS [19], a software package for automated
scientific computing with main focus on partial differential equations. A mixed
function space consisting of P2-P1-P1 (quadratic — linear — linear) elements are
used in the elastic models and P2-P1-P2 elements are used in poroelastic models to
represent velocities, pressure and displacements, respectively. Numerical solutions
for the fluid domain are validated against exact solutions as well as benchmark
simulations by Hron and Turek (2006) [20]. The same benchmark configuration is
used to validate the elastic part as well as fluid-structure interaction simulations.
Regarding model equations, extension to poroelasticity is not complicated, but a
similar rigorous validation were not possible in this case due to the complexity of
the problem as well as lack of comparative results.

Raw data from pressure measurements by Per Kristian Eide (Oslo University
Hospital - Rikshospitalet) have also been taken into account and might add new
insights in understanding flow patterns in the SAS or syrinx.
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1.1 Outline

The field of biomechanics requires multidisciplinary knowledge within medicine,
mathematics, mechanics and numerical modeling. The authors main field of study
as well as the main focus in this thesis lie in the last three.

In chapter 2, necessary background information to understand the physical problem
from the physiological point of view is presented.

The mathematical description of the physical problem based on laws of classical
mechanics is given in chapter 3. The ALE-formulation, a necessary abstraction
from the physical problem is also presented in this chapter.

Chapter 4 gives an introduction to the FEniCS software including a few examples
validating the CFD-solver used in the thesis. Error estimates are also considered in

this chapter.

In chapter 5, the implementation of a FSI model is described and validated by
comparing results to a benchmark problem.

Implementation of the poroelastic model is given in chapter 6, and has been devoted
a chapter itself due to differences in notation.

Chapter 7 gives a justification of the material parameters used in simulations of
the SAS-spinal cord-syrinx system

Chapter 8 gives a short discussion of previous literature followed by main results
from simulations of the medical problem.

In chapter 9, discussion, limitations, summary and possible future work is given.

Python code used in this thesis can be found at:

https://github.com/vegarvi/CSF_code


https://github.com/vegarvi/CSF_code
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Chapter 2
Medical Background

In this chapter, a short description of the problem setting from a medical point of
view is given. If not specified, the information given below is based on the textbook
Human Anatomy and Physiology”, by Van Wynsberghe, Noback, and Carola [21]

2.1 Anatomy of the central nervous system

The human nervous system consists of peripheral nervous system, and the central
nervous system (CNS). The former consists of spinal and cranial nerves and sensory
receptor organs while the latter consists of two parts: the brain and the spinal cord.
The CNS receives and processes information from all parts of the body. Conse-
quently, studies on the CNS are crucial for our understanding of human anatomy.

2.2 The Spinal Cord

central cana\\_. Y grey matter

-
anterior median \ it "
fissure "~ = ~——white matter
Rl g
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nerve roots

! : g ~ pia mater

SAS-L

/ dura mater
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Figure 2.1: Schematic figure of the spinal cord. The pia mater surrounds the spinal cord,
and between the pia mater and dura mater lies the subarachnoid space where CSF flows.
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The spinal cord carries information between the body and the brain. It is di-
vided into four or five regions from top to bottom: cervical (C), thoracic (T), lumbar
(L) and sacral (S) in addition to the coccygeal part at the very bottom. The upper
end of the spinal cord is continuous with the lowermost part of the brain, while the
lower part tapers at the filum terminale, which attaches to the coccyx, known as
the tailbone. Along the cord, there are 31 pairs of nerves exiting: 8 in the cervical
region, 12 in the thoracic region, 5 in the lumbar region, 5 in the sacral region
and one in the coccygeal region. The first four segments of the cord are usually
referred as C1-C8, T1-T12, L1-L5, S1-S5. The tissue within the spinal cord consists
of nervous tissue in form of white and grey matter which differs in both structure
and function. In the center of the spinal cord, lies a tiny central spinal canal where
CSF can flow. This channel closes off with age and should not be confused with the
spinal canal which is sometimes used to denote the SAS. Surrounding the central
canal lies the gray matter in an H-shape, similar to a butterfly. The rest consists of
white matter, and the ratio between white and gray matter differs along the spinal
cord.

There are three layers covering the brain and spinal cord known as meninges. The
innermost layer surrounds the spinal cord and is known as the pia mater. The pia
contains blood vessels that nourish the spinal cord. The middle layer, the arach-
noid runs caudally extending almost all the way down the spinal cord. At the S2
vertebral level, the arachnoid joins the filum terminale. The outermost layer of the
meninges protecting the spinal cord is known as the dura mater and is a though
fibrous membrane.

2.3 The Chiari malformation

The Chiari malformation, also known as Arnold-Chiari Malformation, is a neu-
rological condition where a displacement of a part of the brain, the cerebellum,
or more presice the cerebellar tonsils, down through the foramen magnum occur.
The condition is classified into four types, I-IV, where IV is the most severe. The
main focus in this thesis is on type I. In a Chiari patient, the cerebellar tonsils
obstructs the CSF flow (see figure 2.2) and even Chiari I patients have shown to
have greater CSF velocities and a more complex flow pattern than healthy subjects
[4]. These patients could also experience severe headaches, dizziness, tinnitus and
muscle weakness. As the cerebellum is the part of the brain controlling balance,
loss of coordination have also been reported.

2.3.1 Syringomyelia

In some cases, Chiari patients develop a fluid cavity, known as a syrinx within the
spinal cord. Some of the symptoms are similar to the Chiari patients in general.
These include muscle and back pain, weakness, numbness and inabilities to feel tem-
perature changes. Many theories on the underlying mechanisms (pathogenesis) of
syringomyelia have been proposed, though the details are not yet fully understood.
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Figure 2.2: The Chiari malformation. Healthy subject to the left and a downward dis-
placement into the CSF space known as the foramen magnum of the cerebellar tonsils on
the right.

In patients diagnosed with Chiari I, about 2/3 develops syrinxes within the spinal
cord tissue. It should be noted that not all Chiari patients have syringomyelia
and in addition patients with syringomyeila does not necessary have the Chiari
malformation.

Even though researchers do not seem to agree on the pathogenesis of syringomyelia,
most seem to agree on the fact that altered CSF dynamics is associated with the
formation of the syrinx. A few of these theories are given in the following section,
literature review is given by Levine (2004) [22] or Elliott et al. (2013) [23]

2.3.2 Theories on the pathogenesis of syringomyelia

Williams (1980) [24] proposed that pressure waves traveling downwards in the SAS
is transmitted to the cord and cause downwards acceleration of fluid inside the
syrinx, possibly damaging spinal cord tissue. To explain upwards progression of
syrinxes, Williams argued that coughing could play an important role. During a
cough, the initial upwards motion is the sharpest and the upwards fluid rush is way
more destructive than the downwards motion. Williams named his theory the slosh
mechanism.

Greitz (2006) [25] proposed that obstruction in the SAS causes increased velocities
and a pressure drop due to the Venturi effect. This causes the cord to expand
radially leaving space for excess fluid within the cord. Radial expansion of the cord
further increase velocities in narrowed regions of the SAS, causing an even greater
Venturi effect.

Thompson et al. (2016) [26] have in a recent study suggested the anatomy of the
cervical spinal canal plays a role in the formation of syrinxes. The study compared
subjects with Chiari I with and without syringomyelia. The study showed that
Chiari patients with syringomyelia had greater positive C4-C7-tapering (expanding
caudally) of the cervical spinal canal, but no significant difference was found on C'1-
C4-tapering. Most notably, this shows that anatomy below the syrinx may also
play an important role in the pathogenesis of syringomyelia.
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Chapter 3

Mathematical background

The flow of CSF around the spinal cord requires equations for fluid flow to be
coupled with equations for elasticity, or in the optimal case, poroelasticity. The
underlying concepts of these kinds of problems were originally developed somewhat
independently within petroleum engineering, geomechanics and hydrogeology. At
first, the equations will be presented separately. Later in the chapter, coupling con-
ditions will be discussed. Several quantities will be discussed, and as far as possible,
we try to use a consistent notation for each quantity throughout the study.

This chapter aims to give a short description of the mathematical theory behind
modeling CSF. The equations are first introduced by assuming a fixed set of coor-
dinates. Later, the two fundamental descriptions of motion are discussed.

In providing the necessary mathematical background, it is convenient to give an
overview of the notation used. If not specifically specified otherwise, we use:

v - Velocity of the material. In the fluid, v represents fluid velocity, while in
the solid v denotes the velocity of the solid.

U - Total displacement of the solid. %—? = v relates displacements and veloci-

ties in the solid whereas in the fluid, U represents the total mesh displacement.

p - Pressure in the fluid. In the case of elasticity, no pressure variable exist in
the solid. In the case of poroelasticity, p represents the pore pressure inside the
fluid /solid mixture.

w - Domain velocity (i.e, all material points within the domain moves with ve-
locity w). In the case of a pure elastic medium, the solid domain changes with
the velocity of the solid, v. Hence, in the solid we have v = w, which will not
necessarily hold in the fluid.

Unit vectors in the Cartesian coordinate system are denoted i = (1,0,0),j = (0,1,0)
and k = (0,0,1). For summation convention, the common choice i;, 1;,1; are used
respectively.
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The index notation to denote components of vectors and tensors are used to-
gether with Einstein summation convention v;i; = vii; + vqi; + vsix for a vector
v = (v1, v2,v3) are used occasionally. A sum is taken over a repeated index.

It should be noted that the definition of V differs in the literature. We define
V as a tensor, V = iiﬁ, and thus Vv = %ijii
(3 J

Subscripts f and s are used to denote fluid and solid quantities, respectively

3.1 Fluid flow

The most fundamental equations in fluid flow are the conservation laws. These equa-
tions are based on classical mechanics, and states conservation of mass, momentum
and energy. In the literature, these are often referred to as balance equations.

3.1.1 The Divergence Theorem

The divergence theorem is result that relates the flow of a vector field through a
closed surface to the divergence of the vector field inside the surface. The theorem
is usually credited to Green or Gauss, but other mathematicians also contributed
(see e.g. [27] for a brief history) . For a vector field F in a region V; bounded by a
closed surface Sy, the divergence theorem states that

V-FdV:/ F - ndsS, (3.1)
Vo SO

where n is the outward unit normal on Sy. For a second rank tensor T = Tj;i;i;
for 7,5 = 1,2, 3, the divergence theorem becomes a vector equation, and will differ
slightly with the tensor notation used in this thesis. We have

T .

. 0 ..
V . T =1, Tkjlklj = a—xll]

aiCi

To ensure the divergence theorem to hold for each direction i;, the volume integral
over this expression must equal the surface integral of

Ejniij = nzil : T]k’i]ik‘ =n-T.
Therefore, the divergence theorem for a second-rank tensor becomes

V-TdV:/ n - TdS. (3.2)
Vo SO

For a symmetric tensor, n - T = T - n holds, hence equation is (3.1). On the other
hand, when dealing with non-symmetric tensors the form (3.2) must be used.
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3.1.2 Reynolds Transport Theorem

The famous engineer and scientist Osbourne Reynold stated the general conserva-
tion law the following way [28]:

Any change whatsoever in the quantity of any entity within a closed surface can

only be effected in one or other of two distinct ways:

1. it may be effected by the production or destruction of the entity within the
surface, or

2. by the passage of the entity across the surface.

v

Figure 3.1: Fized control volume with flow as indicated by streamlines

It should be noted that the transport theorem can be approached in two different
ways. One for a fixed set of spatial coordinates, a fixed control volume, where fluid
can enter and exit the boundaries of the defined body. The other approach has a
control volume consisting of the same material particles at all times. Therefore the
body has to follow the flow, and no fluid will cross the boundary. In this approach,
one has to take into account the movement of the boundary of the body and the fact
that the body can change it’s volume. More on descriptions of motion is described
in section 3.5

Now, consider a fixed control volume, V; and some fluid property Q(x,t). The rate
of change of () within the control volume can be written

d
— t)dVv.
dt VO Q(X7 )
The net change of () must be equal the rate of change in ) within the control
volume plus the net rate of mass flow out of the volume. In other words:
0Q(x, t)

d
& v Q(x,t)dV = /Vo Tdv + . Q(x,t)v - ndS.
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TN

Figure 3.2: A moving control volume, consisting of the same fluid particles at time t (left)
and time t + At (right)

Here, v denotes fluid velocity, and n denotes the outward pointing unit-normal, i.e.
n points out of the fluid. This equation is known as Reynold’s transport theorem.
The right hand side could be rewritten by using the divergence theorem on the last
term.

0Q(x, t)

%TWQ@ﬁdV:AJ—37—+V%Q@ﬁWMV (3.3)

3.1.3 Conservation of mass and momentum

Choose Q(x,t) = p, where p is fluid density. Conservation of mass means that

d
— [ pav =0
dt Vop Y

which can be rewritten by using the transport theorem (3.3):

/V [%—FV-(pV)]dV:O.

This should hold for any volume Vj, hence the integrand has to be zero. If there
existed a point where the integrand were not zero, the control volume could be an
arbitrary small enclosed sphere around this point, and the volume integral would
not be zero. Therefore,

dp

5 TV (v) =0 (3.4)

Equation (3.4) is known as the continuity equation and states conservation of mass.
To derive a similar property for momentum, Newton’s second law of motion is

used. The net change of momentum must be equal to the applied forces to the
system. The forces can be divided into volume forces, acting on the entire control
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volume, and forces acting only on the control surface. The forces acting on the sur-
face can be written oy - n, where oy = o¢(v,p) is the (symmetric) tensor denoting
the total stress.

Thus, balance of momentum requires that

4 pv(x,t)dV = /

y af-ndS—i—/ F,dV.
Vo A% Vo

By using the transport theorem on the left hand side and the divergence theorem
on the surface integral on the right hand side, we end up with

0
/ [ﬂ+v-(pvv)—v-af—Fv]dV:O.
v, Ot
With the same argument as before the integrand has to be zero, and with some
rearrangement:
dpv

W“}‘V'(pVV)ZV'Uf—f—FU. (35)

The left hand side can be rewritten as

ov ap _ (Ov ap
pa—l—va+Vv-Vp+pv-Vv—|—vp-VV—p<at—l—(v V)V)—l—(at—l—v (v,o)),

where the last term is zero due to mass conservation. Equation (3.5) can then be
written
ov
p(g-i-(V-V)V) :V-Uf—FFU. (3.6)
The stress tensor, oy, depends on fluid properties and will be defined in the
next subsection. Equation (3.6) is known as the momentum equation as it states
conservation of momentum.

3.1.4 Incompressible Newtonian fluids

In this text we will only consider incompressible fluid flow for a Newtonian fluid.
The information given below is based on explanations by White, [29, pp. 65-66]
and Gjevik [30]

The assumption of a Newtonian fluid requires the viscous stresses to be linear
functions of the components of the strain-rate tensor, denoted by €. These assump-
tions were first made by Stokes in 1845. Stokes’ assumptions have later proven to
be quite accurate for all gases and most common fluids. Stokes’ three postulates
regarding the deformation laws are:

1. The fluid is continuous, and its stress tensor, oy, is at most a linear function
of the strain rates, €;;
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2. The fluid is isotropic, i.e., its properties are independent of direction, and
therefore the deformation law is independent of the coordinate axes in which
it is expressed.

3. When the strain rates are zero, the deformation law must reduce to the hy-
drostatic pressure condition, oy, = —pd;;, where d;; is the Kroenecker delta
function.

From the first and third condition the following assumption can be made
Ufij = —péij + Mijklekl (37)

As done by Gjevik, listing each component, it can be shown that symmetry of
os and e also requires symmetry of M. This assumption reduces the number of
coefficients in equation (3.7) from 36 to 21. If Stokes’ second condition is also taken
into account and the fluid properties are identical in each direction, the number of
coefficients are further reduced to 2. These simplifications allow us to denote the
stress tensor as

Ufij = —p5zj -+ Z,U/Eij + AV - V(Sij, (38)

ov; %
Ox; ox;
constants. In the present study we only consider incompressible flow where p is
constant. From the continuity equation (3.4), this implies V - v = 0 and the last

term in equation (3.8) vanishes. Furthermore,

0 Ov;  Ov ., 0 % ov;

-2 = — e 1. — 1.
v pe ai[)j (81’1 8a:j )12 M(amz 833'j + axjaxj )IZ Mal'jaxj

where €;; = %( ), p is the fluid pressure and p and X are known as Lame’s

Which simplifies the representation of V - oy in (3.6) for an incompressible fluid

3.2 Navier-Stokes equations for incompressible flow

The system of equations (3.4),(3.6) are commonly referred to as the Navier-Stokes
equations written in divergence form, where the Cauchy stress tensor, o is explicitly
included in the momentum equation and contributes to the momentum through its
divergence. However, in the case of Newtonian incompressible fluids, the simplifi-
cations described in the previous section allows us to write the system of equations
in Laplace form

%,
p(a—z +(v-V)v) = =Vp+uV?v +F,

V-v=0.

The parameters p and p describe fluid density and dynamic viscosity. Often, the
momentum equation is written in terms of the kinematic viscosity v = %, by divid-
ing the momentum equation with p.
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It should be noted that the two formulations of the momentum equation are equiv-
alent in their original form. In textbooks, see e.g. [29, 31, 32], the Laplace form is
usually the form first presented as the Navier-Stokes equations probably because it
is the simplest form explicitly including the two unknowns v and p.

Navier-Stokes equations are coupled and non-linear, and can generally not be solved
analytically. However, numeruous analytical solutions have been carried out for dif-
ferent specific problems, and a good overview is given by White [29, pp. 97-164].
(Further references are also given in this textbook for the interested reader) These
problems are often very simple and idealized. Hence, numerical solutions are a
necessity to obtain useful solutions to real-life problems. Such methods will be
discussed in chapters 4,5 and 6.

3.2.1 Boundary conditions

Before the equations can be solved, appropriate boundary conditions needs to be
imposed on all boundaries of the domain. For a specific fluid occupying a domain,
the treatment of boundary conditions is what distinguishes different flow patterns
as the governing equations inside the domain stays exactly the same.

A fluid generally moves around between solid boundaries, 0{2p and boundaries
known as traction boundaries 0€)y.

On 0€Q2p e.g. the interface between a fluid and a solid wall, the fluid velocity must
equal the wall velocity in all directions, often known as the no-slip boundary con-
dition. For instance at a rigid wall, the boundary condition will be v = 0 on 0¢2p,
or in general

v=vg ondflp

On 09y external forces on the system must be imposed. At surfaces where arbitrary
forces F are acting, the fluid stress on the surface must equal these external forces.
This can be written

oc-n=F on 0Oy

Where n is the outward normal unit vector.
This is also the case of a free surface, except the shear forces are negligible and that
only external pressures are applied. This yields

c-n=—pn on Jy

where pg is a known external pressure, for instance atmospheric pressure at the
ocean surface.

A third option is the so called pseudo-traction boundary condition, where we set

5, ~Pn=—ponon 00N (3.9)
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where pg is some prescribed pressure. With the tensor notation of V, the normal

derivative is defined as g—:’l = n - Vv. This boundary condition is often associated
with the Laplace form of the Navier-Stokes equation as it is what naturally appears

on the boundary when integrating the weak form of the Laplace term by parts.

It should also be noted that the physical implications between the pseudo-traction
condition is different from the external force boundary condition ¢-n = F. Assume
we have two-dimensional horizontal channel, and take a moment to examine the
interpretation, or physical implications, of the pseudo-traction condition (3.9) on
the outlet (n = (1,0))

ov
Ma— — pn = —pon.
n

With unit-vectors i and j in the x- and y-direction and the velocity vector v =
(v1,v9), the two components can be written

(%1 B
2 ox P = —Po,
8?)2
— =0.
W ow
The second condition can be interpreted as having the vertical component, v, equal
just outside and just inside the domain. This should mimic a continuation of the

channel under the assumption that vy = 0 inside the channel which is valid due to
mass conservation.

A condition on ¢ - n on the boundary is a more general approach for setting exter-
nal forces on the boundary. The physical implications of no external forces on the
outlet in the previous example could be compared to a garden hose, where water
can exit in all directions and creep around the corners of the outlet.

0
Hg, —pn =0
—> —1>
_— S e
—> —>

Figure 3.3: The pseudo traction boundary condition implies a continuation of the channel
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Figure 3.4: No external forces implies an open end of the channel, and fluid can escape
in all directions
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3.3 Linear Elasticity

The equation describing elasticity is derived by using Reynolds Transport theorem
on a moving domain, 2, consisting of the same particles at all times. For conserva-
tion of momentum, the change in momentum must equal the applied forces to the
system as well as body forces:

4 pvdV = pa—VdV —i—/ pvv -ndS = / os - ndS +/ F,dV,
dt Qt Qt at aﬂt aﬂt Qt

where o, is the stress tensor describing the elastic material. By applying the diver-
gence theorem again, we end up with the general elasticity equation in a moving
domain:

pg—zﬂtp(v-V)v:V-as%—Fv. (3.10)
Linear elasticity is an approximation used for small deformations for elastic solids.
As a rule of thumb, the approximation of linear elasticity is usually valid for de-
formations up to 10% relative to the solid. The stress tensor for a linear elastic
medium is very similar to (3.8) describing an incompressible Newtonian fluid, ex-
cept there is no fluid pressure, and the stress is related to the total displacement U
rather than the velocity v. Assuming a linear relation between stress and strain, the
stress tensor for such a material reads o, = 2ue(U) + Atr(e(U))d, where € is defined
exactly as the strain rate tensor for a Newtonian fluid. Within the framework of
linear elasticity, the convective term is regarded as small and thus neglected. It is

then common to write the equation only involving one unknown, U by substituting
ou

o~V

We choose to keep the equation (3.10) for simulations in this thesis. The reason for
choosing the solid velocity v as the unknown will be discussed in chapter 5. Also,
by using this form, the nonlinear term add no complexity to the coupled system
we want to solve later, as the momentum equation in the fluid will have a similar
term. Thus, our linear elasticity approximation lies in the inexact description of oy,
which in general will consist of nonlinear terms depending on the elasticity model.

3.4 Linear Poroelasticity

In this section, the equations describing fluid flowing through an elastic, porous
medium is presented. For a more detailed discussion, derivation and history within
the field we refer to Wang [33] on Linear Poroelasticity. The equations describing
linear poroelasticity are often referred to as Biot’s equations.
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3.4.1 Fluid flow through a porous medium

A porous medium is a solid structure with pores in which fluid can flow. The
principles of modeling porous flow consist of macroscopic averaging over the pores.
The structural part is often denoted skeleton, matrix or frame, and in general all the
pores will have different size and shape. In this subsection the skeleton is assumed
rigid. The nature of the material defines whether we will be able to fully solve the
problem with no-slip conditions on all skeleton parts, or if some kind of volumetric
averaging can be done. If the observer is interested in velocity variations on the
scales of the pores, conventional fluid dynamics must be used. When there are
many pores and channels, the complexity of the problem makes the full Navier-
Stokes system difficult to solve. In these cases, macroscopic volume averaging is
usually done, where the effects of the skeleton is modeled by introducing parameters
constant over the material considered, such as permeability and conductivity.
These kinds of simplifications results in the famous Darcy’s law (see e.g. Nield and
Bejan (2013)[34]) generalized in three dimensions:

1

Here K is the permeability tensor, and p is the dynamic viscosity of the fluid. If
the medium considered is isotropic, the permeability is a scalar value and equation
(3.11) can be expressed as

K
q=——Vp.
7]

Sometimes the permeability is given through the hydraulic conductivity, x, where
K= % relates the two parameters for a fully saturated porous medium. It should be

noted that the velocity q, known as the Darcy velocity (or Darcy flux), represents
the average flux over a representative elementary volume, and thus the average
fluid velocity experienced by a particle in the pores will be v, = % where ¢ is the
porosity and describes the ratio of the pore volume versus the total volume. A high
porosity indicates a large volume of pores compared to the skeleton and in general
less obstruction of fluid.

3.4.2 Biot’s equations

As in the previous section, we let the domain consist of a skeleton with fluid filled
pores. The extension for the Biot problem is that the skeleton is now free to move as
an elastic material. Incompressibility for the fluid and solid is assumed. We define
the filtration velocity q = ¢(v, — v,) where v, is the fluid velocity in the pores and
v, is the structural velocity. q is thus regarded as the relative velocity of the fluid
compared to the solid. The velocity of the skeleton v, the filtration velocity q, and
the pore pressure p, can now be related by the following set of equations[35],[36],[37]
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Representative —
elementary
volume (r.e.v.)

Flow domain

Figure 8.5: Representation of porous media where the averaging approach is used. From
Nield and Bejan (2013)

Figure 3.6: River flow around two islands representing the pores. The full Navier-Stokes
system should be solved for this problem

dv, dq
— V.o, —f, 3.12
Pp & +pfdt + Vp—V.0,U0) ( )
dvy dql 1
——+ K =f 3.13
pfdt+pfdt¢+ q+ Vp 4 (3.13)

V-(vi+q) =0. (3.14)

These equations state conservation of momentum equation for the total force bal-
ance (3.12), conservation of momentum for the fluid phase only, (3.13) and the
constraint of incompressibility (3.14). p; is the density of the fluid in the pores,
and p, = ps(1 — @) + prp where p; is the density of the skeleton.

In relation to Darcy’s law without external forces, equation (3.13) describes an
extension both in terms of the material derivative of q, as well as extension into
the poroelastic regime. The former is an extension to Darcy’s law as proposed
by Nield and Bejan (2013), where originally we have used + as the acceleration
coefficient tensor. Biot’s equations have bdeen much used in applied geoscience and

a

hydrogeology, where the time derivative 3 is small. This assumption is probably

less valid for some applications within biomedical computing, however as the spinal
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cord has previously believed to be impermeable, and also according to previous
results by Drgsdal [38], we expect q to be small and that the material derivative
can be dropped. The term K ~'q should be kept, as K is assumed to be comparable
to q in orders of magnitude.

3.5 Descriptions of Motion

The conservation equations for Newtonian fluids were derived from Reynolds’ trans-
port theorem by using a control volume fixed in space, while for elastic materials a
moving control volume was used. In addition, we saw for instance that the stress
tensor for elastic solids were linked to the total displacement, or deviation from the
stress-free configuration, in the material. The stresses and velocity in the material
will depend on the current deformation of the material with respect to the stress-
free configuration.

To this end, it will be convenient to provide the reader with two classical descrip-
tions of a continuum in motion.

3.5.1 Lagrangian and Eulerian descriptions of motion

We consider a domain Qx € R? consisting of material particles X. The domain can
undergo deformations, and the deformed domain, €, is the current configuration
at time t.

Ox /g\ Qg

Figure 3.7: Lagrangian description of motion. The mapping B maps the reference coor-
dinates to the spatial ones

We define the one-to-one mapping;:

B Qx x[0,T] — Qx x [0,7]
(X, 1) = B(X, 1) = (x,1),

which takes any point X in the reference configuration to a new position x = (X, t)
at time t. As the mapping is one-to-one, it is also possible to keep track of the history
of the motion by the inverse, 37!. Time is measured with the same variable, ¢, in
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both domains. The gradient of 5 with respect to (X,¢) can be written in matrix
form as:
ox
O(X, t) 0 1)’

ox
v(X,t) = e (3.15)

where the material velocity

is the temporal change in the spatial variable x while holding X fixed. 07 denotes
a null vector.

The Lagrangian description, where we follow a fixed set of material particles as
suggested by the mapping [, is often used. In the Lagrangian description all quan-
tities are expressed in terms of the reference configuration 2x and time. In other
words, even though the material is deformed, we can still compute displacements
and particle velocities using the material coordinates X. For instance, the displace-
ment from the starting material configuration will be given as 5(X,¢) — X and the
velocity as given in equation (3.15).

Because the grid coincides with the material coordinates, there are no convective
terms in the Lagrangian description. In the context of Reynold’s Transport theo-
rem, the Lagrangian approach coincides with a moving control volume consisting
of the same material points at all time. When a material undergoes large deforma-
tions, or for instance vortices or turbulence occur, the material velocity from the
Lagrangian point of view becomes difficult to handle.

In fluid mechanics the Fulerian description is the most used, which means that
fluid flows through a fixed region in space and in each point we can measure various
properties or quantities such as velocity, pressure and temperature. The conser-
vation equations in the Fulerian description are expressed in terms of the spatial
coordinates x and time, and are neither connected to a reference configuration nor
the material coordinates. Compared to the Lagrangian approach, large material
deformations is not a problem, as material can enter and leave the fixed domain.
This movement of a material through a fixed region results in convective effects,
and convection operators can often be problematic in computational fluid dynamics
due to their non-symmetric nature.

3.5.2 The Arbitrary Eulerian Lagrangian description

In order to couple the Lagrangian approach for the solid with the Eulerian approach
for the fluid, we need some referential system, not attached to the material points
neither totally fixed in space. This type of description is common in FSI analysis
and is known as the arbitrary Lagrangian-Eulerian (ALE) description.

The following derivation is inspired by the work on Arbitrary Lagrangian-Eulerian
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methods by Donea et al. (2004) [39].

In need of an additional set of coordinates, an independent referential system with
reference coordinates y is introduced. This introduces two new mappings to relate
all the different configurations as shown in figure 3.8

:QX 5 = e
Q £y ’Y/

Figure 3.8: The three domains needed in the ALE formulation

The mappings are defined similarly to 5:
v oo Q% [0,T] = Qx x [0,7]
(1) = (1) = (x,1),
and the gradient of ~ is

In addition

(1) 0X
w = —
X? at
denotes mesh velocity. Both the mesh and the material can move independently of
the fixed set of laboratory coordinates. More precise, relative to some referential
point in space, the fluid moves with velocity v and the domain moves with velocity
w.

X

To complete the relation between the different velocities, we define the inverse of «
directly:
a”lr Qx < [0,7] = Q, x [0,T]
(X, 1) = a7 H(X, 1) = (x, 1)



24 CHAPTER 3. MATHEMATICAL BACKGROUND

The gradient is given as

da~! B g—)’g v
oxX,t) \of 1)’
where the velocity
5%
v(X,t) = —=— 3.16
(X0 =X (3.16)

denotes the temporal change in the referential system while holding the material
particle X fixed. Therefore the velocity v can be interpreted as the particle velocity
in the referential domain.

We use that 8 = o a™! = v(a™}(X,t)) and obtain a relation between the different
velocities by differentiating (:

op oy Oa~t
ax. XY = g @ EW g0
0y da~!

~ (. 1) ) a(X, t) (X.0)

In matrix form this equation is written

ox ox o N
x VY_ (5 W % vy
0" 1 0" 1 0" 1

After block-multiplication of the right hand side, we end up with an equation re-
lating the different velocities:

ox ot
V=—-V W.
x

To this end, it is convenient to define the convective velocity

ox
C=V—-—W=— -V,

ox

which is the relative velocity between the material and the mesh.

To obtain relation between quantities to formulate the balance equations, we let
a scalar quantity, @ be defined as Q(x,t), Q*(x,t) and Q**(X,t) in the spatial, ref-
erential and material domains respectively.

To obtain a relation between the spatial description, (), and material description
Q™" we use the previously described mapping £:

Q™ (X, 1) = Q(B(X,1),t) =Q o B.
The gradient of Q** can then be computed as

Q™ 0Q 08
a(X, 1) ax. 1) " aX, 1)

(X, 1) =

(X, 1), (3.17)
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or in matrix form:
ox

o o v
(86%( Mgt ) = (% %) <8)T( 1)' (3.18)

After matrix multiplication, one can obtain the well known equation between ma-
terial and spatial time derivatives:

o™ 0 0
ot at  ox
To ease notation we now recognize the material and spatial time derivatives 8%* =
% , % = %—? , and define the material and spatial derivatives the following way
X X
d 0 g 0
dt = otlx ot Otlx

The relation (3.19) can now be written in a form probably already known to the
reader:

dQ@ _9Q
E = W + (V : V)Q (320)

The next step is to relate the material and the referential description of the quantity,
@™ and Q* respectively, by the mapping «. This relation is written as

Q** — Q* o Oéil.
By proceeding the exact same way as way as in (3.17) and (3.18), the relation
between material and referential time derivatives is written
= + - V.

ot ot ox
If we rather want to express the spatial derivative of Q* in the spatial domain, we
can use the definition of ¥ from equation (3.16) to end up with

o™  0Q*  9Q

o ot Tox ©

This equation can be written in more common notation, and the following is known
as The fundamental ALE equation

d@ 9@

— =—| +(c-V 3.21

=5 e (321)
and states that the time derivative in the material configuration equals its local
(referential) derivative plus a convective term taking into account the relative dif-
ference in velocity between the two systems. It should be noted that the relations
presented also holds for vector quantities.

Also, by combining equations (3.20) and (3.21), we can relate the spatial time
derivative with the referential time derivative as

0Q  0Q

9% wova (3.22)
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3.6 Balance equations in the ALE framework

To obtain appropriate balance equations in the ALE framework we start by noting
that the balance equations can be written in terms of the material derivatives as

dp  9Op

E—E+V~Vp:—p'VV
dv ov
pa—p(a—F(V-V)V)—V-O.

By using equation (3.22), the spatial time derivatives can be replaced to obtain
equations ine the ALE framework. The following equations should hold in any time-
dependent domain which does not necessarily need to coincide with the movement
of material particles.

dp

ot

ov

P ( ot

These equations show that all one have to do in order to transform the Eulerian
form of the balance equations into the ALE formulation is to replace the convective
velocity with the relative velocity between the material and the mesh. In our simula-
tions the solid domain and interface physically moves, and the fluid domain adjusts
thereafter. It could be argued that mesh update is not necessary in combination
with linear elasticity, and for the solid domain, this might be the case. The bene-
fit of such a description is reflected in solid-to-fluid coupling by geometry change.
For instance, if the fluid region is computed to be narrowed, fluid will flow faster
through these areas with our description. This would not be the case when solving
fluid equations in the rigid domain. The close relation to the Eulerian method has

induced some authors to denote this approach the quasi-Eulerian description. (See
e.g. [40]

+c¢-Vp=—pV-v inQf

X

+(C-V)V>:V-a in O
X

3.6.1 Mesh updating

The velocity w can be seen as the mesh velocity when a computational mesh is
used. In FSI, the ALE framework provides flexibility to combine the Lagrangian
and Eulerian descriptions of motion. On the structural part, as well as on the
fluid-structure interface, the domain €2, consists of the same material particles at
all times and moves exactly with the material points within the structure. That
is, v, = ws. The fluid domain has to follow the changes on the fluid-structure
interface. Other than that the mesh velocity in the fluid domain is arbitrary in
principle, but the choice of mesh velocity in the fluid domain is important for the
accuracy of the solver. In general, important aspects to consider is distortion and
squeeze of each element in the fluid domain.

A Laplacian smoothing algorithm is used to update the mesh, consisting of solving
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a Laplace (or Poisson) equation for the mesh displacement in the fluid. The method
is a mesh regularization method where the lines in the mesh have equal potential.
This method was first introduced by Winslow in 1963 [41].

3.7 Fluid Structure Interaction

By establishing the flexibility of the ALE formulation together with an equation for
a moving domain we can now state the governing equations for the Fluid-Structure
interaction problem. In the case of an Newtonian incompressible fluid together with
a linear elastic material in the absence of body forces, the mathematical problem
consists of solving the following set of equations:

ov .
pf<a + ((v—w) - V)V) —V.o(v,p) =0 in
V-v=0 inQ?

VPU=0 in©Q}

psz—‘tf +ps(v-V)v-=V-0,U)=0 in Q!

w=v in

In the case of fluid interacting with a solid structure, no material can cross the
moving boundary I'*, and thus the fluid and solid velocity must be equal on the
interface between the fluid and the solid. In general, mass conservation on the
boundary must be ensured. In addition, the forces acting on each side of the
surface must be equal. A difference in forces from each material on the interface
would result in infinite acceleration on the infinitely thin surface. Mathematically,
these two conditions can be stated as

Of-N1 =051
on I',
Vy = Vg

and will be used at all interfaces in FSI simulations. Kinematic or dynamic bound-
ary conditions will be needed on the other boundaries as well, but will differ de-
pending on the problem considered.

3.8 Coupling Fluid Flow with Poroelasticity

In a similar fashion to the Fluid-Structure interaction problem, and with the sim-
plifications assuming a small filtration velocity, the Biot problem together with
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Navier-Stokes equations consists of solving:

ov .
Py <a—tf +((vy—w)- V)"f) —Vop(vp,pp) =0 inQ
V- Vi = 0 in Qjc
VPU=0 in}

v, )
ppa—‘; + pp(vs - V)vg =V -0,(U)+Vp, =0 in QL

Ovs .
Prar +pp(ve V)V + K 'q+Vp, =0 in

V-(vi+q)=0 inQ

Boundary conditions at the interface for the given problem have been discussed
over the years, and in 1967 Beavers and Joseph [42] published a paper describing
experiments investigating the slip rate at a horizontal permeable wall located at

= 0 with fluid flow above the porous medium. According to Beavers and Joseph,
the boundary condition at the wall y = 0 should be

8Uf . AaBRBJ

where vy is the fluid velocity tangential to the plane, ¢ is the seepage or filtration
velocity in the porous medium, K is the permeability, and agj is a constant depend-
ing on the material parameters of the porous medium close to the boundary. The
derivative on the left hand side of equation (3.23) should be evaluated just above
the plane, while ¢ should be evaluated just below the plane. In 1971 Saffmann [43]
generalized the problem to other geometries, showing that the filtration velocity ¢
could be left out of the equation only adding errors of order O(K). Jones, (1973)
[44] assumed shortly afterwards that the velocity jump was proportional to the
shear stress rather than velocity shear. These additions to the original boundary
condition proposed by Beavers and Joseph (known as the Beavers-Joseph-Saffmann
(BJS) condition) was used in spinal canal models by Drgsdal:

1/2

2n-e(vy) - T=ap K vy o7

and showed to have minimal effect on key value measurements such as filtration
velocity in the cord as well as fluid velocity in both the SAS and inside the syrinx.
(Values changed by 1071% for apy ranging from 0 to 1). This condition is therefore
omitted in this thesis.

As in the FSI case, we assume conservation of mass and continuity of stresses
at the interface. The boundary condition is related through the velocities and the
Darcy flux at the boundary:

= v, +
Vi verd } on I* (3.24)

Of'N =0,-N—ppn
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Strictly speaking, mass conservation does not necessarily imply the tangential ve-
locitites to be continuous at the interface, and the transition in tangential velocity
is what the BJS-condition tries to capture. However, as we shall see later, with the
limitiations by using continuous functions in the computational modeling the tan-
gential velocities will also have to be continuous. This limitation is also the case for
the pressure, and as pointed out by Nield and Bejan (2013) [34] these assumptions
together with the BJS-condition results in an overdetermined system. The pressure
will be continuous on the microscopic scale, but only approximately continuous
on the macroscopic (averaging) scale. Despite these limitations, we stick with the
boundary conditions (3.24) assuming, as showed on porous flow, the BJS-condition
barely alters the solution.



30

CHAPTER 3. MATHEMATICAL BACKGROUND



Chapter 4

Numerical Methods

4.1 The Finite Element Method

The theory presented in this section is partly inspired by the works of Langtangen
in Finite Element Method - INF5620 lecture notes” [45]
Consider the Poisson-equation with generalized boundary conditions:

V3 =f inQ (4.1)
v=1y ondp (4.2
0
a—z =g ondQy (4.3)

Here, Q € R? is a domain, v = v(z) is an unknown function, and f is a source func-
tion. The boundary, 0f) is divided into two parts: d€)p for the Dirichlet boundary
condition, and 02y for the Neumann condition.

4.1.1 Variational formulation

Equation (4.1) is known as the strong form of problem. In order to obtain the weak
formulation, we multiply the equation with a test function, ¢ € \7, where V is some
function space, and integrate over the domain. Weak formulations allow differential
equations to be transformed into systems of linear equations. In the rest of this
text, the following notation is used for the inner product of two functions

(v, &) = /Qwsdx.

By multiplying (4.1) with a test function, ¢ and integrating over the domain,
the weak form is obtained:

(Vo4 f,0)a=0 YoeV.

We are now searching for a v to satisfy the weak form instead of the strong. This
equation should hold for all ¢ in the function space V. The trial function does not

31
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necessarily have to lie in the same function space, in general v € V.

In this thesis we will use two Sobolev spaces (named after the Russian math-
ematician Sergei Sobolev) widely used in Finite Element computing. For these
definitions to be valid, we assume that the functions v are all locally integrable
and in the case of definition (4.2), has one weak derivative. For more details
on weak derivatives and the generalized concept of Sobolev spaces and functional
analysis, we refer to the textbook by Brenner and Scott [46].

Definition 4.1 Let 2 be an open subset of R with a piecewise smooth boundary.
We then define the L*-norm as follows

o]l 220) = (Jo v?da)?
The corresponding L?-space is defined via

L2(Q) = {v: Q = R| [,v?dz < oo}

Definition 4.2 Let 2 be an open subset of R with a piecewise smooth boundary.
We then define the H'-norm as follows

vl @) = (Jo[v* + (Vv)*]da)2
The corresponding H'-space is defined via

HY Q) ={v: Q= R| [,[v* + (Vv)*]dz < oo}

In other words, using functions from these spaces, we are guaranteed that the
integrals involved in the variational form are bounded. By the divergence theorem
(3.1), we can state the variational problem as follows:

find v €V such that
(Vo,Vé)a = (f,d)a + (9, 0)oay VO EV (4.4)

Where we have used that g—g = g on 0Qy. (4.4) is known as the variational for-
mulation of the Poisson problem. The left hand side is known as the bilinear form
while the right hand side is the linear form. In generic form the equation can be
written

a(v, ¢) = L(¢) (4.5)

The first derivative of v appears in the variational form. A common choice is then
Vi={ve HY(Q):v=1v,0ondp}
V:={ve H(Q):v=0ondQp}

In other words, the trial and test functions are in the same function space, except
on the boundary.
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4.1.2 Finite elements

The next step is to approximate v with a sum of basis functions in the finite-
dimensional function space, V' = span{¢y, ¢1, ..., o }. Here, ¢; represents the basis
functions and we search for a solution v, € V such that v, can be written as
a linear combination of the basis functions. The first step in the finite element
method consists of dividing the domain into smaller parts

Q=QUQ U...UQy,

where N, is the number of elements. Each element have a number of nodes within
them depending on what type of basis functions to be used. Let us first consider
the continuous Galerkin basis functions in a one-dimensional domain. There is
exactly one basis function for each node located at x;. These basis functions have

the following property:
1 fori=y
$i(x;) = {

0 fori#j

That is, the basis functions ¢; are zero on all nodes except at node 7. Each ba-

1.0f

0.8}

0.6 -

04p

0.2

0.0

0.0 0.2 0.4 0.6 0.8 1.0

Figure 4.1: The three first linear basis functions on the unit interval divided uniformly
into 5 elements, Qo = [0,0.2], Q1 = [0.2,0.4] and so on. In the case of Dirichlet Boundary
conditions at x = 0, ¢g will not be included in the function space

sis function is constructed by taking the Lagrange-polynomial with value 1 at the
given node and 0 on the neighboring nodes. Note that the basis functions are two
Lagrange-polynomials “pieced together” at the node where its value is 1. On the
rest of the domain, the basis functions are defined to be 0.
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Now, let us consider the original problem (4.1)-(4.3) in scalar form. We start
by approximating v as a linear combination of all the basis functions.

N

Unh = Z Cis-

=0

The definitions of v, and V now give rise to a linear system. Using the Einstein
summation convention, x;y; = Zﬁio x;y;, the discretized version of (4.4) is now
written

—¢i(Voi, Véj)a = (f, ¢5)a — (9, 05)00x -

In the case of Dirichlet boundary conditions, all test functions ¢; will take the
value 0 on 0€Qp, so the linear system will be adjusted to take these boundary
conditions into account.

The system can be written in matrix form, and in the end the problem consists of
solving the linear system

A@jCi = bj.

4.2 The FEniCS software

When the variational form has been carried out, implementation in FEniCS is
relatively simple. The following examples and programs in this thesis are all written
in Python. When programming with Python, we first need to import DOLFIN to
access the DOLFIN library, containing classes convinient and efficient for finite
element computing. In Python the full library can be imported using

from dolfin import *

Now, let us focus our attention on solving the following problem:

V20 =20x inQ

v(0,y) =0, v(l,y)=1
ov(z,0)  Ov(z,1) 0
on  on

where € is the unit square, Q = [0, 1] x [0, 1].

The first step is to define the computational mesh:
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mesh = UnitSquareMesh(10,10)

The class UnitSquareMesh initializes a mesh with triangular cells. The mesh con-
sists of n x m squares depending on the arguments n and m, sent into the con-
structor. Each of these squares are divided on the diagonal to form two triangles,
and these triangles are the computational cells. In this case we get the unit square
divided into 10x 10 smaller squares and thus the total number of triangles, or cells,
will be 200.

The next thing to do is to define an appropriate function space for the test func-
tions. The solution will be a linear combination of these functions and will be in
(almost) the same function space.

V = FunctionSpace(mesh,’CG’,1)

The function space needs a domain, type of element, and the degree of the element.
In this case we use continuous Galerkin elements (CG) with degree 1. These basis
functions are visualized in Figure 4.1

We can then define our test and trial functions v and ¢ through

v = TrialFunction(V)
phi = TestFunction(V)

Note that the test and trial functions seem to be in the exact same function space.
This is the case except when imposing Dirichlet boundary conditions. The functions
f, vo, and g can be defined by using the classes Constant or Expression. We set
f = 20z, use the Dirichlet boundary conditions v(0,y) = 0, v(1,y) = 1, and the
Neumann conditions 8”&’0) = ‘%éi’l) = 0. The homogeneous Neumann condition is
simple in the finite element method as the terms appearing after integration by parts
can be dropped. If this is not the case, we can insert ¢ for % on the boundary
integral appearing in the variational form. When the Neumann conditions are
incorporated this way we say that the boundary conditions are weakly imposed.

Functions (or classes) describing the boundaries must also be defined:

f = Expression(’20*x[0]’)
def boundaryO(x,on_bnd) :

return on_bnd and near(x[0],0.0)
def boundaryl(x,on_bnd) :

return on_bnd and near(x[0],1.0)

bcO = DirichletBC(V,0.0,boundary0)
bcl = DirichletBC(V,1.0,boundaryl)
bcs = [bc0,bcl]

Note that “x[0]” means first dimension in space, “x[1]” means second dimension
and so on. The Dirichlet conditions are put in a list. Next, the variational form is
defined, and when solving for a function v, the boundary conditions are added to
the “magic” solve() function.
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F = inner(grad(v),grad(phi))*dx - inner(f,phi)*dx
v = Function(V)

solve(lhs(F)==rhs(F),v,bcs)

plot(v)

The functions lhs and rhs separate the form F into the left hand side, equivalent
to the bilinear form, and to the right hand side, equivalent to the linear form.
Specifying the form F right away is convenient when the equations are short and
simple. In writing these forms, the Unified Form Language (UFL) is used which
is imported with DOLFIN. If we want to relate the code to the mathematics as
written in equation (4.5), we can define these forms manually.

a = inner(grad(v),grad(phi))x*dx
L = inner(f,phi)*dx
v = Function(V)

solve(a==L,v,bcs)

0475

0,00

Figure 4.2: Slightly rotated plot of the computed solution. The solution is independent of
y-position, as expected.
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4.3 Womersley Flow

In the cardiovascular system, pressure pulses travel along different blood vessels
such as veins, capillaries, and the aorta. These types of pulsating flows are named
Womersley flow after John R. Womersley on his work with pulsatile blood flow [47].
The characteristics and velocity profile of the flow depend of several parameters
such as the length of the tube or channel, pulsation frequency and fluid properties.
In the end, the ratio between transient inertial forces and viscous forces is the
fundamental difference separating flow patterns in pulsating flow. To this end the
Womersley number « is defined as:

o,  transient inertial force pwV. Lwp

viscous force VL2 o

where p is the fluid denisty, p is the dynamic viscosity, L is a length scale and w
is the pulsation frequency. In the 2D-model presented here, the modeling of SAS
around the spinal cord consists of two channels where the Womersley number

wp, 1
= L(=5)2,
a=r1(2)

would have a large impact on flow characteristics. A low Womersley number (typ-
ically o < 1) suggests a low frequency, and hence the flow will develop a velocity
profile close to a parabola at each cycle. When « is large (o > 10) the inertial
forces dominate and more complicated phenomena such as bidirectional flow, i.e.
flow in opposite directions over a cross section, could occur.

Even though the flow should be aligned with the channel due to the incompress-
ibility constraint, pulsating flow tends to give rise to some horizontal or radial flow
with the boundary conditions previously described due to numerical errors. This
error is associated with the Neumann condition on the boundary. We will return
to this issue in the next subsection. For now we assume the following conditions to

hold:
v-7 =0 on 0,
v-7 =0 o0on 0y, (4.6)

where 7 is the tangential vector on the boundary surface, and 0€2;, and 0, de-
notes the inlet and outlet of the channel.

If the channel walls are denoted 0f2,, the pulsating velocity and pressure should
satisfy

g—;’—i—(v-V)V:V-U in Q,
V-ou=0 in €,
v=0 on 0¥,
ov
,ua——pn:pin(t)n andv-7=0  on 0,,
n

p— —pn =pog(tnand v-7=0 on 0Qy.
n
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We now aim to solve the problem 4.3 numerically to validate the CFD solver. In
FEniCS, a mixed function space, consisting of one vector and one scalar function
space, can be used to solve coupled equations. The implementation is explained
more in detail in section 5.2.5.

Exact solutions exists to both the channel and pipe cases. Langlois and Deville
[48] have derived several solutions to equations of viscous flow, including channel
flow with a pulsatile pressure gradient as above. We now add a oscillating pressure
gradient so that

10p
T —C cos(wt), (4.7)

h=4
p = C cos(wt) p=0

[ =60

Figure 4.3: Schematic of Womersley flow with dimensions as in the upper spinal cord

where C is a constant describing the strength of the pulse. Due to the assumption
of axial flow only, the momentum equation in x-direction gives:

(%1 1 3]) 82@1
Ou _ 1op 0w 4,
ot~ pom  Von (48)

With the relation (4.7), the solution presented by Langlois and Deville is:

(1 - M) sin(wt) — % cos(wt) (4.9)

where

ce(x) = cos(x) cosh(z),
ss(z) = sin(z) sinh(z),
fi(w, z3) = cc(kxs)ce(kh) + ss(kxs)ss(kh),
folw, x3) = cc(kxs)ss(kh) — ss(kxs)cc(kh),
fo(w) = cc?(w) + 552 (w).

We found some descrepancy in the computed and analytical solutions, therefore an
opportunity to use the symbolic Python package Sympy arose. The package lets
the user define symbols to work with. Regular multiplication and general Python
functions can also be used. In order to verify the solution, we assume (4.9) to be
the correct velocity, solve equation (4.8) for %, and expect to obtain the relation

(4.7).
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from sympy import *
x3, C, x, h, t, w, nu = symbols(’x3 C x h t w nu’)
k = sqrt(w/(2*nu))
def cc(x):
return cos(x)*cosh(x)

£f3 = cc(w)**x2 + ss(w)**2

u = -C/wx((1-f1/£3)*sin(w*t) - f2/f3*cos(w*t)) # presented solution
d2u = nuxdiff (diff (u,x3),x3)
dt = diff(u,t)

print simplify(d2u-dt)

From (4.8) the code snippet should print the already known pressure gradient di-
vided by the density

Lop

o, = C cos(wt),

which was not the case when using the solution (4.9).
When using the solution

C

VG = —
w

f2 (wa I3)
f3(kh)

cos(wt) |,

(1 — %) sin(wt) +

where the sign before the cos-term is changed, the code snippet gave the correct
pressure gradient, and hence this solution was used when error-estimates were in-
vestigated.

4.3.1 Error estimates

To understand the problems arising with Neumann Conditions on both inlet and
outlet we first consider the convection-diffusion equation.

—uV*u+v-Vu=f inQ

u = ug on 02p (4.10)
u@ =g on My,
on

where v is an unknown function, v is a prescribed velocity, i is a diffusion constant
and f is a source term. For the sake of simplicity we assume incompressibility. The
weak formulation reads:
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Find w € H' such that

uo

ILL(V'U,, V(b)ﬂ + (V ’ VU, (b)ﬂ = (f7 ¢)Q + (ga ¢)8QN for all (b € Hé

Where the subscript on the two H-spaces indicate the values for functions on 92
for these spaces.

What has not been mentioned so far is the existence and uniqueness of the fi-
nite element solutions. To establish some concepts addressing these questions we
let V denote a function space. V is now a Hilbert space, which has to satisfy given
conditions on the associated inner product, where the inner product is denoted
(+,-)v and the norm || - ||y, (see e.g. Elman et al [49]). We define the following:

Definition 4.3 (Coercivity)
A bilinear form a(-,-) is said to be coercive with respect to the norm || - ||v if there
s a positive constant v such that

a(u,u) > y||ull3 for allu eV

Definition 4.4 (Continuity)
A bilinear form a(-,-) is continuous with respect to the norm || - ||v if there is a
positive constant I' such that

a(u, @) < U||ullv]||o]lv for all u,¢ € V

A linear functional L(¢) is continuous with respect to ||-||v if there is a constant

A such that
L(¢) < Al|@||v for allp € V

In order to have a well posed problem, and ensure the existence of a unique solution
u € V satistying

a(u, @) = L(¢) for all p € V,
a(+,-) and L(-) have to satisfy these criteria. This is known as the Lax-Milgram

lemma. If these criteria are satisfied, the following a priori error estimates are
obtained:

1o = wnllze < CLR™ o4

lv = vpllm < Colt'[[0] |1
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where h is the cell size, t is the degree of the polynomial on the elements, v is the
analytical solution and vy, is the computed solution. The convergence rate can then
be computed as

The convection term

c(u, @) = (v-Vu,p)a (4.11)

makes the problem (4.10) more challenging to solve numerically than the Poisson-
problem (4.1),(4.2), (4.3). In light of definitions 4.3 and 4.4, we apply the divergence
theorem to equation (4.11):

c(u,d) = /Q<;§V - Vudx

:—/uv-ngdx—/uqbV-vda:—l—/ upv - ndS
Q Q IO

= —c(¢,u) + /BQ ugpv - ndS, (4.12)

where the last step follows from the assumption of incompressibility. Rearrangement
of (4.12) yields:

1
clu,u) = = u*v - ndS.
2 Jay

It is obvious that a Neumann condition on the inflow boundary, where v and n
points in opposite directions, makes a negative contribution to the bilinear form
a(u,u). Therefore, coercivity can not be completely ensured, and stability typically
depends on the magnitude of the velocity at the inlet.

In several problems, prescribing Neumann conditions are simpler than providing
inlet velocities. The pressure is set as a scalar value and can be assumed to have
no spatial variation over the boundaries if the model has flat surfaces with normals
aligned with the longitudinal axis on the inlet and outlet.

4.3.2 A penalty method on the boundary

Barth and Carey [50] have described a penalty method for ensuring the constraint
(4.6). This was needed as horizontal flow at, and close to the boundaries caused
problems interacting with the elastic spinal cord. The penalty method consists of
adding a term at the relevant boundaries, penalizing parts where the boundary
condition do not hold. For the velocity, we want v — (v -n)n = 0 on the bound-
ary, therefore the first variation of the least squares penalty functional is added to
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the variational formulation. This has been done in all simulations with Neumann
boundary conditions at the inlet in this thesis. The penalty functional is given as

1

_[(V):2—E o

[v—(v-n)n] - [v— (v -n)n]ds,

where 0 < € << 1 is the penalty parameter. The contribution from the first
variation will be

I'(v)(®) = 1/ [v—(v-n)n] - [®— (@ n)n]ds.
€ Joq,

This term will clearly contribute positively to the bilinear form, and the penalty
parameter should ensure that this contribution is large. The method is tested on
the coupled CFD solver, first with one time step of the Backwards Scheme and
gradually refinement of the rectangular mesh consisting of N elements on each
boundary. The time step is small (At = 107%), so the error introduced by the time
discretization is negligible.

N | dofs | ||lv—vp||r2 | rate | [|v —vp||m | rate
4 | 187 1.00e+00 | - 6.65e4-00 -
8 | 659 1.50e-01 2.739 | 1.95e4-00 1.768

16 | 2467 | 1.91e-02 2.977 | 4.95e-01 1.981
3219539 | 2.39¢-03 2.997 | 1.24e-01 1.997
64 | 37507 | 2.99e-04 2.998 | 3.10e-02 1.999

Table 4.1: Errors P2-P1 elements

N | dofs | ||lv—vn||z2 | rate | [|v —vp||m | rate
4 | 419 1.42e+01 | - 1.43e+02 -

8 | 1539 | 7.84e-01 4.180 | 1.57e+01 3.186
16 | 5891 | 4.75e-02 4.045 | 1.90e4-00 3.047
32 | 23043 | 2.97e-03 3.999 | 2.38e-01 3.000
64 | 91139 | 1.86e-04 3.999 | 2.97e-02 2.999

Table 4.2: Errors P3-P2 elements

Some error is also introduced by the time discretization. The Backward-Euler
scheme is motivated by Taylor expansion around the time-point ¢ + At of a time
dependent function f(t)

ft) = f(t+ At) — Atf/(t + At) + O(A?),

which shows that the error introduced by one time step should be proportional to
At?. On the other hand, if we want to progress until a given end time 7', the number
of steps will be N = %. The error each time step is O(At?), so the accumulated



4.3. WOMERSLEY FLOW 43

error introduced by the time discretization will be O(At). We test both these error
estimates on the Womersley flow and the results are summarized in table 4.3 and
table 4.4. It should be noted that no a priori error estimate has been done for the
H'-norm of the error in relation to the time step. However, it should be expected
to decrease with A¢. Similarly to the previous tables, we used a fine grid (N=128)
so the error introduced by spatial discretization is negligible in comparison.

At dofs L2 error | rate | HI error | rate
1.00e-01 | 148739 | 2.08e+02 | — 3.26e+402 | —
5.00e-02 | 148739 | 3.48e+01 | 2.581 | 6.72e+01 | 2.278
2.50e-02 | 148739 | 6.63e+00 | 2.394 | 1.58e+01 | 2.089
1.25e-02 | 148739 | 1.44e+00 | 2.203 | 4.02e+400 | 1.974

Table 4.3: Errors, one time step. P2-P1 elements.

At dofs L2 error | rate | HI error | rate
1.00e-01 | 148739 | 2.08¢e+02 | — 3.26e+02 | —
5.00e-02 | 148739 | 9.65e+01 | 1.111 | 1.58e+02 | 1.045
2.50e-02 | 148739 | 4.63e+01 | 1.058 | 7.81e+01 | 1.017
1.25e-02 | 148739 | 2.27e+01 | 1.030 | 3.88e+01 | 1.007

Table 4.4: Errors at T=0.1. P2-P1 elements.

In figure 4.4, the effect of adding the penalty term is shown in comparison to
the regular method. We have used a strong driving force (C = 1000 in equation
(4.7)), and compared the two methods at t = 0.1 with At = 0.001. Velocities are
approximately 100 in magnitude so the velocities in y-direction are small (=~ 0.1%
and =~ 0.02% of the magnitude), but accumulates over time in the regular method.

Figure 4.4: Velocity distribution in y-direction without (left) and with (right) the penalty
term at the outlet.
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Chapter 5

Numerical methods for FSI

5.1 A benchmark FSI problem

Within CFD, a benchmark is a configuration or a test case which should help to
validate and compare different numerical methods and code implementations. A
classical Fluid Dynamics problem regarding flow around a circular cylinder has been
under vast research the last 50 years, working as a test case for both laminar and
turbulent flows. One of the most cited benchmark proposals for this case is the
problem described by Michael Schéfer et. al in 1996 [51]. Schéfer’s research group
still focus on these kinds of problems. In 2006 one of the co-authors of the 1996
paper, Stefan Turek, together with Jaroslav Hron proposed a similar benchmark for
F'SI solvers, consisting of the exact same domain and rigid cylinder, but now with
an elastic flag attached to it [52].

The first results presented will contain a validation of the present FSI-solver imple-
mented in FEniCS compared to the results of Turek and Hron in their benchmark
proposal. These results are not directly comparable for large deformations. We
have used a linear elasticity model while the reference results are results from a
nonlinear constitutive model (St. Venant-Kirchhoff)

A proper validation of a FSI solver requires separate verification of the fluid and
structural parts as well as coupled tests. In the present study we solve the system
of equations with a monolithic approach, i.e. full coupling between the fluid and
solid. The alternative would be a partitioned approach, where the fluid and solid
equations are solved separately. For instance, one can solve the fluid equations in-
dependently and then proceed by solving the solid equation with prescribed stress
on the interface computed from the fluid solution. Iteration back and forth would
be needed until convergence.

The fully coupled monolithic scheme is usually preferred with respect to accuracy
and stability. Also, when the systems are strongly coupled in nature, i.e. the solid
movement is affected by the fluid movement and vice versa, a monolithic scheme
would be advantageous. The partitioned approach, on the other hand, can benefit
from numerous previous studies where efficiency and stability for various solution
techniques have been investigated. See e.g. [53] for a short review. In addition,
solving many smaller matrix systems will be way faster than solving one large sys-
tem with the same number of unknowns.

45
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Fig. 2. Detail of the structure part

Figure 5.1: The Domain as published in [52]

5.1.1 Problem Set Up

The origin is set at the bottom left corner. We also set:

- The channel height, H = 0.41

- The channel length, L = 2.5

- The circle center C = (0.2,0.2)

- The right bottom corner of the elastic structure has position (0.6,0.19)
- The elastic structure has length, 1=0.35 and heigth h=0.02

- At the left boundary, the inlet, of the channel, we set a prescribed parabolic
velocity profile

v _ s YH —y)
m(O,y) 1.5 0 (%)2

- In the case of unsteady flow a smooth increase in time is used:

0,y)=2EY it <20

vin(0,7) otherwise

Vin

Vin(t,0,y) = {

P

- On the outlet, the condition ¢ - n = 0 is applied
- On rigid walls the no-slip condition is used
- On the interface, I'*, the following coupling conditions are applied:

gfrNNl =051
! ° on I'!
Vg = Vg
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In addition to the interface I'* it may be convenient to define the other boundaries as
well. We let GQ‘} consist of the outer rectangle and the part of the circle boundary
in contact with the fluid, and the solid boundary, Q% consist of the circle boundary
in contact with the solid.

5.2 FSI using the Finite Element Method

A solver was implemented from scratch in Python using the DOLFIN library even
though FSI solvers within the FEniCS framework already exists (e.g. Unicorn or
CBC.twist). For instance, Selin [54] implemented a partitioned solver in FEniCS in
his PhD-thesis, using the already existing modules for solving fluid flow and struc-
tural deformations separately (CBC.Flow and CBC.Twist). The approach we have
used is aimed to explain how a simple FSI model can be implemented in FEniCS.
If the underlying concepts are understood, the equations can be changed whether
we want the spinal cord to be porous, elastic, poroelastic or viscoelastic. The use of
two separate solvers is also problematic for the monolithic approach, when all equa-
tions should be solved simultaneously. On the other hand, solvers implemented by
experienced and skilled research groups will probably be more efficient and already
validated.

In the rest of this section, we give a brief explanation of the mathematics and
implementation in FEniCS. Thanks to UFL, we saw in section 4.2 the close link
between code and mathematics:

a(v,®) = (Vv,V®)q
L(v) = (f,®)q
Translates to

a = inner(grad(v),grad(phi)*dx
L = inner(f,phi)*dx

In deriving variational forms, we try to keep this close link by recalling the sym-
bols used for velocity (v), total displacement (U), pressure (p), and mesh velocity
(w). Also, recall that in the solid the mesh moves exactly with the velocity of the
structure, and thus w, = v,

5.2.1 Temporal discretization

In order not to overload this thesis with notation and superscripts, we have used
the notation v := v"™! to denote the value of a function at the next time-step.
Similarly, we define v(*) := v™ to denote the (known) value of a function at the
present time step.

The total displacement U can be expressed as a function of the displacement from

the previous time step, UM, and the mesh velocity w. We have used an implicit

. . . é n+1l__n n+1 _17(D)
scheme in time, i.e, (%—‘t’)"+1 = ¥Y—, and %—Itj( ) — % =
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5.2.2 Spatial discretization

When dealing with nonlinear equations, such as the Navier-Stokes equations, lin-
earization is needed in order to solve these. In nonlinear terms, we simply replace
one (or more) of the unknown v’s with a “guess” to get an equation linear in v.
This guess is denoted as v(®). Since we have three unknown functions, we use a
mixed function space with three function spaces, ®, n and V. We now aim to solve
the FSI system as presented in section 3.7. In the fluid we multiply the momentum
equation with ®, the continuity equation with n and the equation for mesh velocity
with ¥ and integrate over the domain in its current configuration, Q. In the fluid,
this yields:

'O—J;(V, D)o, + pr((v = w) - VIV, ) — (p, V- D)gy, + 2py(e(v), VD)gy, =

A
B0, @)ay = (0(p, V) 1, ®)any, — (07(p,V) -1y, D),

_<v : V77]>Qtf = 07

AW, VP)q, = —(VUW, V)q; + (VU + AtVw] - n, W)onr
+ ([VUW 4 AtVw] - np, ),

and in the solid
P (v, ®)a, + pe((v - VIV, )+ AL(0,(v), V(B))g, = L= (vD, ®)q,

At
—(0s(UM), V®)q, — ([os(UN) + Atoy(v)] - n, @) gy

— ([os(UY) + Atoy(v)] - ng, @)1,

s

s

S W), — 5w, W)o, =0

The parameter § should be small and ensures the importance of vy = wg inside
the solid. On the interface, we have distinguished between the normal vector with
respect to the fluid and solid domain. In general ny = —n,. To be able to set up
and assemble the matrices for this system, the equations should be added to form
one bilinear form a(v,p, w, ®,n, ¥) and one linear form L(®,n, V).

5.2.3 A discussion on function spaces

We have previously defined the L? (def. 4.1) and H' (def. 4.2) spaces, as well as
the linear continuous Galerkin basis functions (section 4.1.2). In order to have a
well posed-problem, we need a triple (®, 7, V) to satisfy a few given conditions. In
the following, a brief justification of the choice of function spaces used in this study
are given.

For the incompressible Navier-Stokes equations, much of the mathematical theory
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and understanding have been developed by investigation of the simplified Stokes
flow where the acceleration term is neglected in the momentum equation, that is:

—uV*v+Vp=f

Numerous possible pairs (®,7) have been proposed over the years since the first re-
port by Taylor and Hood (1973) [55]. The discretization used by Taylor and Hood
consists of quadratic piecewise polynomials for the velocity components and linear
piecewise polynomials for the pressure, and is still a very popular choice of basis
functions. These types of elements are often referred to as Taylor-Hood elements
or simply just P2-P1 elements.

As mentioned earlier, the final step in the finite element method consists of solving

a linear system of equations. In the case of Stokes equations with body forces f, a
matrix system on the following form needs to be solved

5 301

Av+Bp=f (5.1)

Which means that

B'v=0 (5.2)
To get an expression for v, we multiply (5.1) with A~! to obtain
v=A"'(f - Bp)
And insert this expression into (5.2) to get an equation only involving the pressure
BTA"!(f — Bp) = 0
or
BTA'Bp =BTA!f

For the solution to be unique, the matrix BT A~'B often referred to as the Schur
complement needs to be non-singular. A necessary and sufficient condition for this
is that Ker(B) = {0}, or

Sup/phV -vp > 0.
Vh

For all discrete pressures p, # 0. This ensures solvability. For convergence, the
famous Babuska-Brezzi (BB), or inf-sup condition needs to be satisfied [56]

V-.v
infsupw > D >0,
Ph vy ||Vh||1||ph||0
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where D is a constant independent of the mesh resolution.

Provided this condition is satisfied, the following error estimate holds for Stokes
equations

HVh - VHl + th —pHo < C<thVHk+1 + thHPHlH)

Where k and 1 are the degrees of polynomials used for velocity components and
pressure, respectively. To obtain optimal convergence for the solution the polyno-
mial degree should be one higher for the velocity components than for the pressure,
that is, k = [ + 1. For instance, using P3-P1 elements, computer resources are
“wasted” by introducing more degrees of freedom (dofs) without improving conver-
gence. Several choices of element type combinations, for instance Linear elements
(P1) both for velocity and pressure do not satisfy the BB condition, and as a con-
sequence unphysical oscillations in pressure can be seen.

Elements not satisfying the BB condition can be used if a proper stabilization
is introduced. Due to the drastic reduction of dofs, P1-P1 elements are often used
when large systems are solved for instance in commercial software. This combina-
tion is default in COMSOL, while for 3D problems in FLUENT, a slightly different
element, the “mini-element” is used as first developed by Fortin (1981) [57]. This el-
ement is linear but with an extra degree of freedom known as a bubble in the center.

In this study, P2-P1 elements are used for the material velocity and pressure. How-
ever, a function space is also needed for the domain velocity, w. As discussed by
Quaini [58], P1-elements for the domain velocity will ensure the transformation of
straight lines in the new domain. In the fluid momentum equation, the function w
is only used in the term ((v —w) - V)v(® and since v is a polynomial of degree 2,
v — w will also be a polynomial of degree 2. Therefore, we use the combination
P2-P1-P1 for velocity, pressure and displacement, respectively.

5.2.4 Treatment of boundary conditions

In addition to the boundary conditions described by Turek and Hron [20], homogen-
uous Dirichlet conditions are prescribed to the mesh displacement velocity on the
domain boundary, i.e

w = 0 on 90} U 99

Except for the fluid velocity on the outlet, the domain boundaries (not interface)
have prescribed Dirichlet conditions on both u and w. Therefore the test functions
® and ¥ will be zero on these boundaries.

If we add all the equations in the previous section together, the contributions to
the boundary integral on the interface gives:

—(of(p,v) -nyg, @)t — ([O'S(U(l)) + Atog(w)] - ng, @)t
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By leaving this out of the variational form, we weakly impose
of(p,v) -m=0,(U)-n
On the interface. The choice of n (n = ny or n = ny) is arbitrary, but the same for

each side of the equation.

Because we use the same function for fluid velocity and solid velocity, the no-slip
condition is naturally incorporated for the fluid on the structure

Vi = Vg o0n It

Because the functions v; and v, share nodes on the interface.

The additional equation for w in the fluid also gives rise to boundary conditions on

%—g on the interface. To this end we set
ou
= -0
on

and rather let the parameter ¢ underline the importance of w = v inside the solid,
whereas w in the fluid should just ensure a smooth mesh displacement.

On the outlet, we assign the stress-free condition o¢(p,v) -n = 0 so the bound-
ary integral also vanish on the outlet for the momentum equation in the fluid.

This means that all integrals involving boundaries will vanish in the variational
form. The Dirichlet conditions are imposed in FEniCS as described in section 4.2.

5.2.5 FSI in FEniCS

There will be some changes and a great leap in complexity compared to the previ-
ous example using FEniCS. The main differences and additions are explained here.
The code snippets in this section is of course subject to changes and updates in
the DOLFIN library. This thesis do not intend to present a full solver with great
complexity and many dependencies, but rather outline the most important lines of
code and explain difficulties behind the FSI problem in FEniCS. The explanation
here is meant such that a reader familiar with FEniCS should be able to implement
such a code within a short amount of time.

The computational mesh is constructed in Gmsh with a straight boundary dividing
the fluid and the solid. This way, the class MeshFunction can be used to divide the
mesh into two subdomains. We now assume we have classes describing the solid
and fluid region, implemented simliary to the boundary functions in the Poisson
example 4.2.

mesh = Mesh(’FSI_mesh.xml’)

SD = MeshFunction(’uint’, mesh, mesh.topology().dim())
SD.set_all(0)

Elastic() .mark(SD,1)
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where

class Elastic(SubDomain) :
def inside(self,x,on_bnd):
# returns True if vector x in solid.

‘uint’ means that the MeshFunction has values of nonnegative integers. The last
argument ensures the MeshFunction to have the same dimension as the mesh.

Using the MeshFunction, the fluid domain has been marked 0, and the solid domain
has been marked 1. Integration over the two domains can be separated by passing
this number to dx in the variational formulation. A similar class, the FacetFunction

boundaries = FacetFunction("size_t",mesh)

is used to mark the boundaries and, if needed, separate integration over specific
parts of the boundary.

For the FacetFunction, ’size_t’ has the same interpretation as ’'uint’ has for the
MeshFunction.

We need function spaces for all three test functions, corresponding to v,p and
w, and in this case we can use a class in FEniCS to create a mixed function space.
Test and trial functions should also be created from this mixed space.

VectorFunctionSpace (mesh, ’CG’,2)
= FunctionSpace(mesh,’CG’,1)
VectorFunctionSpace(mesh,’CG’, 1)
VPW = MixedFunctionSpace([V,P,W])
v,p,w = TrialFunctions (VPW)
phi,eta,psi = TestFunctions (VPW)

= v <
|

All Dirichlet boundary conditions need to be specified, and the functions need to be
in the space of the respective trial function where the condition is set. For instance,
the top boundary of the domain has been marked 2 with the FacetFunction, and
we want to prescribe the no-slip condition on the fluid velocity.

noslip = Constant((0.0,0.0))
bcv2 = DirichletBC(VPW.sub(0) ,noslip,boundaries,2) # Top

All Dirichlet boundary conditions are put together in a list, bcs.

When the MeshFunction and FacetFunction have been properly marked, we need
to map the information from these classes to the different measures, dx, ds, and dS

representing integration over cells, exterior facets and interior facets, respectively.
This is done by:
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ds
dx
ds

Measure(’dS’) [boundaries]
Measure(’dx’) [SD]
Measure(’ds’) [boundaries]

dx_f£

dx_s

dx (0, subdomain_data=SD)
dx (1, subdomain_data=SD)

The last two lines simplifies the integrands in the variational form and make it more
clear which expressions have to be used in the fluid domain, and which should be
used in the solid domain.

It can be convinient to define the constants used in FEniCS as instances of the class
Constant, to avoid re-compiling if the value of the constant is changed:

dt = 0.0003
k = Constant(dt)

Initial conditions are needed, and are imposed by setting

U = Function(W)
vl = Function(V)
vO = Function(V)

The initial conditions are simply set to be zero both for velocity and displacement.
Before preceding to the variational formulation, note that regular Python functions
can be used within UFL. For example:

def eps(v):
return sym(grad(v))

def sigma_s(U):
return 2*mu_s*eps(U) + lamdaxtr(eps(U))*Identity(2)

We define the bilinear and linear forms, a and L, for each separate equation, mo-
mentum, continuity and the movement of the domain in both the fluid and solid
domain (except for continuity in the solid). For instance, aMF will denote the
bilinear form a for the momentum equation in the fluid.
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# FLUID

aMF = rho_f/kxinner (v,phi)*dx_f \
+ rho_fx*inner (grad(v0)* (v-w) ,phi)*dx_f \
- inner(p,div(phi))*dx_f \
+ 2#mu_f*inner (eps(v),grad(phi))*dx_f

LMF

rho_f/kxinner(vl,phi)*dx_f
aCF = -inner(div(v) ,eta)*dx_f

aDF = kxinner (grad(w) ,grad(psi))*dx_f
LDF = -inner(grad(U),grad(psi))*dx_f

aF = aMF + aCF + aDF
LF = LMF + LDF
# SOLID

aMS = rho_s/k*inner(v,phi)*dx_s \
+ rho_s*inner (grad(v0)*v,phi)*dx_s
+ kxinner(sigma_s(v),grad(phi))*dx_s

LMS = rho_s/k*inner(vl,phi)*dx_s \
- inner(sigma_s(U),grad(phi))*dx_s
aDS = 1/delta*inner(v,w)*dx_s \
- 1/deltaxinner(d,w)*dx_s
aS = aMS + aDS
LS = LMS

The forms can now be added to obtain one bilinear and one linear form:

aS + aF
LS + LF

a
L

Before the time loop starts we define a function to hold the solution:
VPW_ = Function(VPW)

This function will consist of all values for v, p and w.

The time loop runs until the current time exceeds the specified end time, T. The
forms change in time, and thus needs to be assembled to use correct values for
vD, w UMD and v(©. The linear form needs an update each time step, while the
bilinear form needs to be updated every single iteration inside the time loop. For
the iterative method, we have chosen the Picard iteration based on the simplicity of
the algorithm compared to Newton’s method, especially when dealing with a mixed
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function space consisting of three separate spaces. Balaban (2012) [59] implemented
a Netwon iteration method for FSI, but the code is not compatible with newer ver-
sions of DOLFIN. The Picard iteration runs until the L? norm of (v — v(?) is less
than a given tolerace, or if the number of iterations becomes to large.

while t < T:
b = assemble(L)

while error > tau and k_iter < max_iter:
A = assemble(a)
A = ident.zeros()
[bc.apply(A,b) for bc in bcsl
solve(A,VPW_.vector,b,’1u’)
V_,p_,w_ = VPW_.split(True)
eps = errornorm(v_,v0,degree_rise=3)
k_iter += 1

v0.assign(v_)

The second statement within the iteration loop is needed because the lack of an
equation for p within the solid. The ident.zeros() function replaces zeros with ones
on the diagonal of the matrix block, and the solution vector for p will be zero inside
the solid. In FEniCS, a Function has to be defined over the whole mesh, and ad-
justing the linear system as described is a way to overcome this issue in the present
version of DOLFIN (1.6.0). To assign a new value for v0, and later be able to
calculate drag and lift, we split the solution vector with the argument True. The
chosen solver is the direct “lu” solver. Iterative solvers are in general faster, but in
this case no Krylov Solver was found to converge.

The next step is to address how the mesh should be updated. The domain should
now move with velocity w, so the mesh moves Atw from one time step to the next.
For the total displacement, the update U = U + Atw should also be taken into
account. In FEniCS, the actual update of the mesh is done with the functions

ALE.move() and bounding_boz_tree().build()

w_vector() [:] *= float(k)
U_.vector()[:] += w_vector()[:]

ALE .move(mesh,w_)
mesh.bounding_box_tree() .build(mesh)

vl.assign(v_)

The final line updates the velocity in order to proceed to the next time step. Note
that the velocity in both the fluid and the solid is updated by this call.
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5.3 Benchmark Results

5.3.1 CFD tests

For the CFD tests we perform tests treating the flag as a rigid object. This can
be done by changing the structural parameters, or simply by adjust the mesh to
include the fluid domain only. In this validation we choose the latter. We show
convergence with Mesh, where mesh 0 is the coarsest version. The Ref. are the
reference values as given in the original benchmark paper.

Parameter | CFD1 | CFD2 | CFD3
pr[10°25] |1 1 1
vp[107°27) | 1 1 1
v 0.2 1 2

’Re:@ \20 \100 \200 \

vf

Table 5.1: Parameters for the CFD test cases

cells | dofs | Drag Lift

1334 | 6443 | 13.9344 | 1.0980
5336 | 24892 | 14.1165 | 1.0836
21344 | 97808 | 14.1865 | 1.0944

| Ref. | [14.29 [1.119 |

Table 5.2: Results for CFD1

cells | dofs | Drag Lift

1334 | 6443 | 130.092948352 | 10.9117261826
5336 | 24892 | 134.43022177 | 10.473965217
21344 | 97808 | 135.777285175 | 10.7118857057

| Ref. | | 136.7 | 10.53 |

Table 5.3: Results for CFD2

5.3.2 CSM tests

The structural tests are performed by adding the gravitational force to the structural
part only. The CSM3 test is computed as a time-dependent case, starting from the
initial position while CSM1 and CSM2 are Steady State (SS) solutions. For CSM3,
the total energy is not conserved as the Backward Euler scheme used to discretize
in time slightly reduces the amplitude for oscillating solutions. For this reason,
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cells | dofs | Drag Lift
1334 | 6443 | 391.305 £ 2.039 | -28.536 £ 200.149
5336 | 24892 | 428.769 + 5.735 | -18.001 £ 429.410
21344 | 97808 | 437.211 + 5.802 | -16.204 4+ 422.331
cells | dofs | Drag Lift
755 6443 | 391.401 £ 2.460 -22.652 £ 232.090
5336 | 24892 | 428.787 + 5.773 -14.575 £+ 441.152
21344 | 97808 | 438.013 + 5.822 -14.819 4 425.841
| Ref. | | 439.45 + 5.6183 | -11.893 + 437.81 |

Table 5.4: Results for CFD3 for At = 0.0005 and At = 0.0001

a third parameter of interest is included in the results, namely the reduction of
amplitude from one cycle to the next. From the reference results it appears that
the flag bounces above the initial position in steady state, meaning that some
energy must have been added due to their choice of scheme. This is also clear
when closely examining the attached plots. This was not further discussed, and no
time-dependent amplitude was reported. The temporal discretization in the original
benchmark proposal was done by the Cranck-Nicholson scheme, which in general
have better conservation properties than the Backward-Euler scheme but is known
to be less stable [20]. Again, it should be noted that we did not used the same
constitutive model for the elastic material, so some differences would be expected
in cases with large displacements.

Parameter | CSM1 | CSM2 | CSM3
ps [10°58] |1 1 1

Vs 04 |04 |04

115 [10°2] [ 0.5 2 0.5
g[™] 2 2 2

Table 5.5: Parameters for the CSM test cases

cells | dofs | U, of A[107%] | U, of A [1077]
738 [ 4596 | -12.410569 -60.599246
2952 [ 17305 | -12.419505 -60.622920
11808 | 67077 | -12.422290 -60.630433

| Ref. | | -7.187 | -66.10

Table 5.6: Results for CSM1
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cells | dofs | U, of A[107%] | U, of A [1077]
738 4596 | -0.92479395 -16.853778
2952 | 17305 | -0.92558954 -16.861757
11808 | 67077 | -0.92583356 -16.864252

| Ref. | | -0.4690 [ -16.97 |

Table 5.7: Results for CSM2

cells | dofs | U, of A [1077] U, of A [1077] Amp reduction y (%)
738 4596 | -44.175 £+ 44.007 -72.712 £ 65.281 5.4
2952 | 17305 | -44.176 £ 44.001 -72.720 £ 65.281 5.4
11808 | 67077 | -44.177 £ 44.001 -72.720 £ 65.281 5.4

| Ref. | -14.305 + 14.305 | -63.607 + 65.160 |

cells | dofs | U, of A [1073] U, of A [1077] Amp reduction y (%)
738 4596 | -44.631 £ 44.628 -69.702 £ 69.290 0.3
2952 | 17305 | -44.633 £ 44.629 -69.701 £ 69.289 0.3
11808 | 67077 | -44.094 £ 44.091 -69.703 £ 69.289 0.3

| Ref. | | -14.305 + 14.305 | -63.607 £ 65.160 |

Table 5.8: Results for CSM3, At = 0.01,0.001
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(a) displacement x vs time
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(b) displacement x vs time
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(d) displacement y vs time

Figure 5.2: Displacements for the CSMS3 test case. At = 0.001
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5.3.3 FSI tests

Parameter | FS1 | FSI2 | FSI3
pr10°%] |1 |1 |1

v 1079 1 |1 1

T 02 |1 2
Re="79""1720 [100 [200
Parameter | FSI1 | FSI2 | FSI3
ps [10°:5] |1 10 |1

Vs 04 |04 |04
s [10°7°] 105 0.5 |2

Figure 5.3: Steady state displacement in y-direction for the FSII test case for the medium
refinement version of the mesh. The mesh around the structural part also has been slightly

adjusted
cells | dofs U, of A [107°] | U, of A [107°] | Drag Lift
2698 [ 15329 [ 0.015596 0.74221 14.0876279441 | 0.756130219216
10792 | 60336 | 0.017738 0.77636 14.1777783843 | 0.763145083966
43168 | 239384 | 0.019824 0.79558 14.1869409712 | 0.758109277348
| Ref. | | 0.0227 | 0.8209 | 14.295 | 0.7638

Table 5.9: Results for FSI1
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cells | dofs | U, of A[1073] | U, of A [1073] | Drag Lift
2698 | 15329 | —4.33+4.54 [ 1.40£29.96 | 441.45+33.15 | —2.30 + 178.00
10792 | 60336 | -4.84 £ 4.62 | 1.27 £ 31.74 | 469.11 & 44.50 | 0.92 + 97.27

| Ref. | | -2.69 + 2.53 | 1.48 + 34.38 | 457.3 + 22.66 | 2.22 + 149.78 |

Table 5.10: Results for FSI3, At = 0.0003
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Figure 5.4: Plots from the FSI3 test case. At = 0.0003

5.3.4 Comments

The FSI 2 test case includes displacements ~ 2.5 times greater than the flag height.
The linear elasticity model was not applicable to these magnitudes. In addition,
further mesh refinement of the FSI 3 case was not possible due to problems with
mesh updates. Rapid changes and great magnitudes in displacement caused some
cells to overlap to other, causing instabilities. Whether this is due to how the func-
tion mesh.move() works, or a result of the discrete equations itself remains unclear.
However, results in this chapter indicates that our models performs qualitatively
well when the mesh acts as expected. However, the relative displacements in these
tests are many orders of magnitude higher than in the spinal cord.
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(a) t=10.88 (b) t=10.91

(c) t=10.94 (d) t=10.97

(e) t=11.00 (f) t=11.03

Figure 5.5: The colormap shows the magnitude of the velocity around the flag at six
different states of time in fully developed flow on the coarsest mesh. Mazimum velocity
reaches 4.37. The mesh consists of a smooth curve at the interface, and the domains are
separated beforehand in FEniCS



Chapter 6

Numerical Methods for the Biot
Problem

As seen in chapter 3, the Biot problem is similar to linear elasticity, but from the
modeling point of view, some problems arise. We have previously taken advantage
of the continuous Galerkin elements in the sense that the fluid velocity is continuous
with the structural velocity. The boundary condition

vi=vs+qonl, (6.1)

will not allow us to have one continuous function describing fluid velocity vy, in
the fluid domain and skeleton velocity v, in the poroelastic medium. The right
hand side of the boundary condition describes the total (macroscopic) velocity in
the poroelastic medium. Therefore, if continuous Galerkin elements are used we
automatically end up with vy = v, on the interface, implying q = 0 and no flux
over the surface. In the following we show a workaround for this problem, and it
should now be stressed that the notation have to change in a way to implement the
problem in FEniCS. We now use the following:

v — fluid velocity in the fluid domain. Total velocity (darcy flux + skeleton ve-
locity) in the poroelastic domain.

w — domain (or mesh) velocity in the fluid domain. Skeleton velocity in the poroe-
lastic domain.

p — fluid pressure in the fluid domain. Pore pressure in the poroelastic domain.

U — domain (or mesh) displacement in the fluid domain. Skeleton displacement
in the poroelastic domain.

63



64 CHAPTER 6. NUMERICAL METHODS FOR THE BIOT PROBLEM

6.1 Previous work

Within biomechanics poroelasticity is a subject of interest as fluid frequently flow
through tissue in the human body. The spinal cord has been modeled as a poroe-
lastic structure by Stgverud (2015) [18], without coupling to the surrounding SAS.
Coupling between poroelastic and viscous equations have been done to model flow
through the brain, e.g. by Tully and Ventikos (2009) [60] and Vardakis et al. (2016)
[61]. The two latter have used iterative methods both to couple pressure and ve-
locity in the fluid domain as well as a partitioned approach regarding the coupling
between viscous and poroelastic equations. However, in hemodynamics fluid and
structure densities are of the same order making these equations hard to couple
[62]. We aim to have the whole system coupled, making the problem easier with
respect to stability, however the computational time needed is greatly increased.

6.2 Weak form of the equations

The weak form is obtained in a similar way as for the FSI problem. The notation has

changed slightly and the equations in the poroelastic domain are slightly different.

By omiting the inertia term 99, the momentum equation (3.13) for the fluid phase

dt
can be written

dw
q=—-KVp— P g

and inserting this into equation (6.1), now using w as the skeleton velocity gives

dw
V:W—KVp—ppE.

As before let the domain € be split into the deformable fluid domain Q} and the
deformable solid domain Q. The exterior boundaries are denoted 9€} and 9,
and the interface is named I'*. In the fluid, the weak form reads

Z—j;(v, (I))Qf +pr(((v—w) - V>V(0)7 ‘I))Q; —(p, V- (I))Qtf + 25 (e(v), VCD)Q} =

Ps

At (V(l)v (I))Qsc - (Uf(pa V) -1, (D)BQ; - (0f<pa V) sy, (I))Ft7

_(V ’ Van)ﬂ; = 07

AHVW, VP)q = —(VUW, Vo + (VU + AtVW] -0, W),
+ ([VUY + AtVw] - np, U)p,
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and in the poroelastic medium we have

%(Wa D)ot + ps((W- V)W, @)t — (p, V - W)u +AL(0,(w), V(P))o, = Z_;(W(l), D)o,
—(0,(UY), V®)q, — ([05(UY) + Atay(w)] - n, ®)an;
— ([o,(UD) + Atoy(w)] - ng, @),
1 1 K K K,
3<V’ V)ar — 5(W7 U)o + g(vp, Y)ar + me(wa U)o = me(w U)o,

(Vv n)ay = 0.

It should be noted that in order to have a well posed problem, we would have
to use P2-P1-P2 elements for v, p and w because w is now basically the solution
to a Navier-Stokes equation. (ref. discussion in section 5.2.3)
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Chapter 7

Material parameters

The governing equations describing fluid flow, linear elasticity and poroelasticity
requires material parameters describing properties of the fluid and the solid mate-
rial. The dura mater (outside fluid walls) are assumed rigid. In the following, a
justification of the material parameters used in our models is given. While some
material parameters are relatively easy to determine, other are reported to differ
with several orders of magnitude. At this point, some choices regarding material
parameters have to be made, and in the following we explain these coices.

We have used a simple geometry, consisting of two rectangular channels on each
side of the rectangular spinal cord. A comparison of model and real MRI-images
are given in the next chapter under figure 8.2. Branching nerves from the spinal
cord were neglected to simplify the problem from the modeling point of view.
This last simplification has been done in similar studies within CFD and FSI,
both computational and experimental, using idealized and patient-specific mod-
els. [6, 7, 8,09, 12, 13, 14, 15, 63]

In the simulations the units millimeters and grams are used. This combination

gives back the SI-unit % = fzgm@ = =2 = Pa for pressure, and is also convenient

when considering the scale of the spinal cord. CSF consists of 99% water [64], and
2

thus CSF is modeled as water at 37°C, i.e py = 1073—L; and vy = 0.658 ™.

mms3

For the spinal cord, studies have shown a huge variety in material parameters.
One of the most measured properties in the mammalian central nervous system is
probably the Young’s modulus, £ according to Smith, Humphrey [65]. In addition
to this, values for Poisson’s ratio, vp needs to be found. In the literature, there
is a huge gap in reported Young’s modulus for spinal cord tissue. These values lie
in the range 0.0119-1.198MPa. Most of these studies do not distinguish between
grey and white matter in the spinal cord, and neither will we. In general, grey and
white matter will have different elastic and porous properties, however, as shown by
Steverud et al (2015) [18], the distinction between the two as well as the inclusion of
the median fissure as shown in figure 2.1, have shown to have negligible effect except
for in small local regions depending on the anatomy of each patient. Developing
patient-specific models are highly relevant for a precise description of the CSF flow,
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but is not the main goal for this thesis. In the same study, inclusion of a stiffer pia
surrounding the spinal cord tissue was also investigated and was shown to affect the
pressure distribution within the cord in poroelastic models. In this thesis, we will
test different values of Young’s modulus for the Spinal cord, but similar to models
by Bertram et al. [13, 14, 15], and Martin et al. [12], the pia itself is not included.

Article Region Model Parameters
Hung et al. [66] spinal cord Experimental E = 0.26 MPa
Ben-Hatira et al. [67] spinal cord Nonlinear elastic E = 1.4 MPa

v = 0.499
Ozawa et al. [68] spinal cord Experimental E = 16 kPa
Smith and Humphrey [65] brain Experimental E = 5.0 kPa

v =0.479
Cheng et al. [69] spinal cord Review E = 0.0119-1.98 MPa
Clarke [70] spinal cord Review E = 0.012-1.37 MPa
Persson et al. [71] spinal cord Review E = 0.26-1.3MPa

(linear elastic)

Table 7.1: Summary of elastic parameters used in literature (as presented in Kylstad [17])

From this, Lame’s parameters for the spinal cord were determined as

E

M = o+ up)

and
I/pE

(1 + VP>(1 — 2VP>

The spinal cord has fibers oriented in the axial direction and a direction-dependent
Young’s modulus would then be expected. In the literature values range between
0.012 to 1.98 MPa. As reported by Clarke (2010) [70], most spinal cord experimen-
tal studies use a tensile test, and the stress-strain and stress-relaxation responses
of the spinal cord are nonlinear. Therefore, it will in general be hard to compare
results from different studies using different arbitrary levels of strain. Another ap-
proach used by Kwon (2002) [72], focuses more on spinal cord injuries and are thus
more interested in properties during compression at greater stress. Studies focusing
on spinal cord injury due to impact needs stress to be several orders of magnitude
higher than for stress occurring during the cardiac cycle. The linear slope of stress
as a function of strain is what determines the value of Young’s modulus to be used.
This slope is probably very different in the regions of stress during the cardiac cycle
compared to the regions capable of inflicting injury to the cord, and might explain
some of the differences in reported values. Better constitutive models could be at-
tained by combining results from several of these studies. Also, studies by Zarzur

As =
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(1996) [73] and Patin et al. (1993) [74] have shown that the cord is substantially
stronger transversally than axially. In this work, however, we limit Young’s mod-
ulus to be a constant independent of spatial direction. For the spinal cord, this
assumption has been made in most previous cited works in this thesis. Ozawa et
al. (2004) [68] measured the spinal cord with and without an intact pia mater.
Without the pia, Young’s modulus were measured as 5 kPa and the value reported
in table 7.1 is with an intact pia. This value is of interest as there might not be
a stiff protecting membrane surrounding the syrinx, and thus the fluid inside the
syrinx interacts with a structure with this property. We also use the value used by
Bertram (2009) [15] without time dependence, which leaves us with three values of
Young’s modulus to test for E = 5 kPa, E = 16 kPa and E = 62.5 kPa.

As for the density of the spinal cord, no value were found in the literature. For
human bone however, density values from literature were reported between 1500
and 2010 kg/m?, with an average of 1750 kg/m? [75]. In general, spinal cord den-
sities should differ between elastic and poroelastic models because the spinal cord
consists of fluid filled pores. When using an elastic model, spinal cord density should
simply be the weight per volume of the saturated cord. Poroelasticity, on the other
hand is requires the density of the spinal cord tissue itself to be determined. Assum-
ing the fluid filled pores to occupy 20 % of the cord, (porosity, ¢ = 0.2) based on
Nicholson (2001) [76], yields little difference between the two approaches. Therefore
a denisty of

ps = 1.75py, (7.1)

have been used for both models. In Watsons textbook on the spinal cord [77] the
weight of the cord was given as 35g. A different study by Ko (2004) [78] measured
spinal cord segment volumes, but were not interested in the total volume of the
cord. A rough estimate of the added volumes of all segments gave a total spinal
cord volume of 16-17 ¢cm? yielding a density of just above 2000 kg/m?* which means
that the assumption (7.1) is probably not too far away.

The permeability, x is used as a measurement for the how fluid flows in a porous
medium. A large permeability indicates a pervious medium. We use the value

k=14-10""m?

which has been used in previous studies. [38, 79]
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Chapter 8

Simulating CSF Flow and Spinal
Cord Motion

8.1 Overview of previous studies

Some studies have investigated the effects of F'SI on the spinal cord movement and
CSF pressure in geometries without a syrinx. Clark (2013) [9] assumed the Young’s
modulus to be 1 MPa for the spinal cord, and in their initial tests this choice caused
only small displacements. Therefore the conclusion was that FSI had a negligible
effect on CSF pressure in the SAS.

Cheng et al. (2014) [10] investigated FSI effects on a patient-specific 3D-geometry.
In their model they assumed a Young’s modulus of 0.7 MPa, and reached the same
conclusion as Clark. As highlighted: This study informs that fluid structure inter-
action has no effect on CSF pressure”.

Clearly, a too high elastic modulus will undermine the effects of FSI, if they do
exist. Considering the wide range of material parameters reported in the litera-
ture for the spinal cord, we believe further investigation is necessary to be able to
make such a statement. In addition, these two studies do not seem to investigate
syringomyelia as a primary target, and therefore important effects of FSI could
have been overlooked in these specific cases. It has correctly been argued that the
pressures involved in these studies (< 100Pa) are almost negligible in magnitude
compared to even the lowest estimates of the elastic modulus of the Spinal cord
(> 5kPa). This should cause only very small displacements, and this also seem to
be the case for healthy subjects. However, when the syrinx is large, there is only a
thin membrane of spinal cord tissue separating the SAS and the fluid in the syrinx
allowing larger cord movements.

In porous models presented by Drgsdal, [38] fluid pressure within the cord was
altered by the presence of a syrinx but the CSF pressure in the SAS was not. Ve-
locities up to only 3e-7 cm/s inside the syrinx were reported, and therefore there
must be some other effects causing the more rapid fluid movement inside the syrinx.

To our knowledge, the most noted groups working on mechanical explanations of
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syringomyelia using FSI, include the groups of Chris D. Bertram at the University
of Sydney and Bryn Martin at the University of Idaho. Bertram’s work include re-
search on pressure waves propagating in the spinal cord in the presence of a syrinx
[13, 14, 15, 16]. Even though in this series of papers the main focus is on the overlap
between the cervical and thoracic segments of the spinal cord, the mechanisms of
interest remains the same. Reflections back and forth are also discussed, which in
our opinion only could be related to amplitudes associated with coughing. Bryn
Martin has made several in vitro models of the CSF-cord system [11, 12, 80, 81]
and shown altered pressure environments due to the presence of a syrinx and ob-
structions in the SAS.

Even with today’s high quality magnetic resonance imaging, (MRI) or phase con-
trast MRI (PC-MRI), exact velocities are hard to measure. Healthy subjects also
have more complex CSF flow and thus difficult to observe or quantify. Since the
Chiari I malformation is associated with abnormal CSF flow, a realistic model
simulating the pre-operative case needs abnormal inflow or pressure boundary con-
ditions. The latter is extremely hard to measure exact. To this end, it would be
beneficial to quantitatively be able to describe the pressure environment in the cord
as a possible source of applying correct boundary conditions.

8.1.1 Pressure measurements in patients with Chiari I

Williams (1981) [82] and Héck (2001) [83] investigated the pressure gradient between
the intracranial and spinal (lumbar) CSF compartments. In their work the pulsatile
pressure were not analyzed, which seem to be more reliable in predicting intracranial
compliance according to more recent studies by Eide [84, 85, 86, 87]. Fri¢ and
Eide (2015) [88] also measured the pulsatile pressure gradient between the two
compartments and have found significantly higher (mean wave amplitude, MWA)
gradients in patients with evidence of syringomyelia (12/26 patients) than in those
without. (3.7 &+ 2.0 mmHg vs 2.1 £ 1.3 mmHg;p = 0.02). See figure 8.1 for a
graphical representation.

Static pressure gradient
(MeanICP — Mean LP) (mmHg)

Pulsatile pressure gradient
(MWA ce — MWA, o) (mmHg)

o L ___ L i _ ________ S 15 L
No Yes 15 No Yes

Syringomyelia Syringomyelia

Figure 8.1: Pulsatile (left) and static (right) pressure gradient in patients as used in the
study by Fri¢ and Eide [88]
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Fri¢ and Eide (2015) [88] also reported that pulsatile intracranial pressure (ICP)
as well as pulsatile pressure gradients were clearly abnormal or with borderline val-
ues in 69 and 71 % of Chiari I patients, respectively. Without any further spec-
ulation, it is interesting to note that these numbers are very close to the number
of Chiari I patients that develops a syrinx. The median pressure difference in pa-
tients with abnormal pressure gradient were 2.6 mm Hg between the intracranial
CSF pressure and the lumbar (LP) CSF pressure. The actual mean static ICP was
measured to a median of 7.1 mmHg for the patients (range -0.7 — 13.0), whereas
the median of the mean lumbar pressure LP in the patients were 15.1 mm Hg.
Czosnyka and Pickard [89] reported ICP for healthy adult subjects to be 7—15 mm
Hg. Williams [90] measured pressure up to 70 mm Hg and 97 mmHg in the SAS
in the cisternal (just below the cerebellum) and lumbar region, respectively during
coughing. Sansur et al. [91] measured the SAS pressure at the L5-level and found
pressures up to 125 mm Hg in patients coughing. The baseline pressures for healthy
subjects were reported to be 8.6 — 13.4 mm Hg.

These studies have provided useful information in determining abnormal pressure
environment related to the Chiari as well as the possible importance of coughing
on the pathogenesis of syringomyelia. Whether or not these pressure measurements
can be used in computer models are discussed in the following.
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Figure 8.2: Intracranial (ICP) and lumbar (LP) pressure measured simultaneuously by
Fri¢ and Eide
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8.1.2 Applicability of medical measurements

From the modeling point of view, pressure measurements are of high interest in
prescribing the correct boundary conditions at the top and bottom of the cord and
SAS model. There are some challenges however. From our understanding, the
main focus in most of the studies mentioned in the previous section seem to be
to measure pressure differences in Chiari patients compared to healthy subjects.
As shown by all these studies, altered pressure environment, and thus altered CSF
dynamics is somehow related to syringomyelia. However, from a CFD point of
view, the actual values of the pressure is also of high interest, and in particular
the pressure difference between the Intracranial region and the lumbar region for
a specific patient. Simultaneous measurements of ICP and LP was measured for
the first time by Fri¢ and Eide (2015) [88]. They measured the pressure over night
in subjects laying down. The mean LP was found to have a median value SmmHg
higher than the mean ICP. In addition to this, the pressure was always higher at
the Lumbar region as depicted in figure 8.2. From a fluid mechanics point of view,
this implies flow in the cranial direction at all times since no hydrostatic pressure
should be present when laying down. This is in contradiction to results obtained
by Bruker et al. (not yet published data, see A), where the net flux seem to be in
the caudal direction. The measurements also contraticts the common belief that
the net flux should be zero over a cycle, but according to flow measurements could
be investigated further. As for now, these pressure measurements can probably
be used for prescribing a normalized pressure waveform at the inlet, but to the
authors opinion the actual pressure measurements can not to be used as boundary
conditions to obtain reliable results. The minimal modifications must be a shift of
baseline in either ICP or LP.

8.2 CSF velocities in syringomyelia

Substantial flow within the syrinx have been reported, e.g. by Brugieres et al.
(2000) [92] where large syrinxes (graded A or AB) had mean peak velocities of 2.93
cm/s, and small syrinxes (graded B or C) had mean peak velocities of 1.5 cm/s.
Brucker et al. (A) reported flow up to 3.1 cm/s inside the syrinx in an assessment
of CSF velocities and Cord Motion Before and After Chiari 1 Decompression. The
weighted spatial average of the syrinx velocity were found to be 2.03 cm/s. Fluid
flow within the syrinx is also supported by Pinna et al. (2000) [93], and it was also
pointed out that flow direction inside the syrinx did not necessarily parallel with
those observed in the SAS, and that these patterns may vary from patient to patient.

We hypothesized that FSI-effects (deformation and pressure wave propagation) was
at least partially responsible for the syrinx velocities reported in the literature, and
therefore aimed to match SAS velocities as reported by Brucker et al. A, and ob-
serve the effect on syrinx velocities. CSF flow was measured with PC-MRI on
three different stages: Pre-operative, 2 months post-operative and 10 months post-
operative, when the patient had no remaining symptoms. The peak velocity was
reported to be 9.4 cm/s in the caudal direction for the pre-operative case. The
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Figure 8.3: MRI image of 14 year old female subject before and 10 months after decom-
pression. Note the withdrawal of the cerebellar tonsils in the post-operative image on the
right

velocities varied a lot over a cross-section of the cord, meaning the peak velocity 9.4
cm/s is not representative for the general velocity in the SAS. For the Cross section
depicted in figure 8.4 the maximal velocities were registered at the upper left and
upper right part of the circle. Along the axis of the cord, velocities in these areas
lie around 4-6 cm/s. Figures 8.5 and 8.6 show a comparison between MRI images
and the idealized geometries used in this study.
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Figure 8.4: Cross-section of the spinal cord. The top of this cross-section is towards the
face and the bottom is towards the neck
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Figure 8.5: Comparison of the spinal cord and the coarsest version of the computational
mesh (healthy subject)
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Figure 8.6: Comparison of the spinal cord an the coarsest version of the computational
mesh (subject with syringomyelia)
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8.3 A note on interface conditions

Since we want continuity of stresses on the interface, we use the divergence form
(3.6) of the momentum equation, to obtain these when integrating by parts. For
the outflow and inflow boundaries for the fluid the pseudo traction condition are the
condition of interest. The unknown shear term n - (Vv7) should then be added to
the bilinear form in the variational formulation. With the pseudo traction condition
we have:

c-n=—-pn+p(Vv+(Vv)") -n=[—pn+un-Vv] +n- (Vv’")
ov
- [ —pn + ,u%} 4n - (VvT)
— — pon +n - (Vvh).  (8.1)

It should be noted that the grad function in FEniCS is in fact given such that
grad(v) = (Vv)T, and the extra term in (8.1) can be written

grad(v) . T*n

in FEniCS. So far we have only dealt with symmetric operations regarding the grad
function and therefore this distinction did not have to be made before this point.
Similarly, the term

o
on

can in fact be included in the variational form by subtracting the term
kxinner (grad(w(’-’))*n(’-’) ,psi(’-?))*dS(5)

to the domain bilinear form aDF in section 5.2.5. And adding the term
inner (grad(U(’-’))*n(’-’) ,psi(’-’))*dS(5)

to the linear form LDF in the same set of equations. The interface have been given
the value 5 and (’-’) is used to distinguish variables in the fluid domain from the
solid domain. This should give no restriction on U except that it will be continuous
over the interface. In initial tests, the inclusion of these terms gave no visible effect
on displacements, velocities or pressure. These terms were not included in the val-
idation of the solver, but this is something that will not be further investigated at
the present time, and we keep these terms in the following simulations.

Other than that, no slip conditions have been imposed at both ends of the spinal
cord as well as the outer fluid walls for velocity and displacements. The no slip
condition for displacement is also imposed on fluid inlets and outlets. All results
presented up to section 8.7 are results obtained with an elastic description of the
spinal cord.
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8.4 Results: elastic cord

All results presented up to section 8.7 are results obtained with an elastic descrip-
tion of the spinal cord. The previously described models from chapter 5 and 6 is
used on a geometry describing idealized versions of the spinal cord. The meshes
have the same dimensions as found in previous work by Drgsdal (2011), [38]. The
height of the model is 60mm, and the spinal cord have a radius r=bmm. The dis-
tance from the cord to the rigid dura mater is 4 mm, and this space is where CSF
flows. The fluid cavity, where free fluid flow is allowed, is placed in the centre of the
model, extending between heights 10mm and 50mm in the longitudinal direction.
We investigate three cases: No syrinx, a case with syrinx 1 mm radius and a syrinx
with 3 mm radius. We will refer to the case r=3mm as a large syrinx and r=1mm
as a small syrinx. The origin is placed at the bottom of the cord at the centerline
such that the geometry is spanned by the rectangle defined by the two points (-9,0)
and (9,60).

First, a sinusoidal varying pressure was applied to the boundaries with a maxi-
mum of 20 Pa difference between top and bottom. This applied pressure gradient
was reported by Drgsdal to result in peak velocities of around 5-6 ¢cm/s assuming
a rigid, but porous cord. Simulations were run 10 seconds where a steady state
was reached (i.e. measurements do not change from cycle to cycle). To ensure our
solution to be grid independent, mesh-refinement tests are done. The results are
summarized in tables under the three following subsections. In doing so, quantities
of interest are the peak velocity in the SAS, max|v|, the peak velocity inside the
syrinx in the spinal canal, max|v,.| and the maximum displacement, max|U]| in
both x- and y-direction.

Tables for the mesh refinement tests follow in the next three subsections.
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8.4.1

No syrinx

N, | N, | dofs | max|v|[cm/s] | max|U,| mm] | max|U,| mm)]
18 |30 | 6281 | 5.68 0.007 0.02
36 | 60 | 24437 | 5.63 0.007 0.02
54 | 90 | 54473 | 5.63 0.007 0.02

Table 8.1: E = 5kPa, At = 0.002s,T = 10, p, = 1.75p;

N, | N, | dofs | max|v|[cm/s] | max|U,|mm] | max|U,| mm)]
18 | 30 | 6281 | 5.68 0.002 0.006
36 | 60 | 24437 | 5.62 0.002 0.006
54 | 90 | 54473 | 5.62 0.002 0.006

Table 8.2: E = 16kPa, At = 0.002s,T = 10, ps = 1.75py

N, | N, | dofs | max|v|[cm/s] | max|U,| mm] | max|U,| mm)]
18 | 30 | 6281 | 5.67 Se-4 0.002
36 | 60 | 24437 | 5.61 Se-4 0.002
54 | 90 | 54473 | 5.62 Se-4 0.002

Table 8.3: E = 62.5kPa, At = 0.002s,T = 10, ps = 1.75py
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8.4.2 1mm syrinx
N, | Ny | dofs | max|v|[cm/s] | max|v|[cm/s] | max|U,|mm]| | max|U,|mm]
18 | 30 | 6281 | 5.94 2.10 0.20 0.08
36 | 60 | 24437 | 5.91 2.14 0.20 0.08
54 | 90 | 54473 | 5.91 2.17 0.20 0.08
72 1 120 | 96389 | 5.92 2.18 0.20 0.08
Table 8.4: E = 5kPa, At = 0.002s,T = 10s, ps = 1.75py
N, | N, | dofs | max|v|[cm/s] | max|vs|[cm/s] | max|U,|[mm]| | max|U,|[mm]
18 | 30 | 6281 | 5.76 0.57 0.05 0.02
36 | 60 | 24437 | 5.68 0.57 0.05 0.02
54 | 90 | 54473 | 5.69 0.58 0.05 0.02
72 1 120 | 96389 | 5.70 0.58 0.05 0.02
Table 8.5: E = 16kPa, At = 0.002s,T = 10s, ps = 1.75pf
N, | N, | dofs | max|v|[cm/s] | max|vs|[cm/s] | max|U,|[mm]| | max|U,|[mm]
18 | 30 | 6281 | 5.69 0.14 0.01 0.005
36 | 60 | 24437 | 5.63 0.14 0.01 0.005
54 | 90 | 54473 | 5.64 0.14 0.01 0.005
72 1 120 | 96389 | 5.64 0.14 0.01 0.005

Table 8.6: E = 62.5kPa, At = 0.002s,T = 10s, ps = 1.75py
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8.4.3 3mm syrinx

N, | N, | dofs | max|v|[cm/s] | max|vs|[cm/s] | max|U,|[mm]| | max|U,|[mm]
18 |30 | 6281 | 7.62 2.34 1.30 0.24
36 | 60 | 24437 | 7.15 2.54 1.13 0.23
54 190 | 54473 | 7.05 2.61 1.10 0.22
72 | 120 | 96389 | 7.01 2.66 1.07 0.22
Table 8.7: E = 5kPa, At = 0.002s,T = 10s, ps = 1.75p;
N, | N, | dofs | max|v|[cm/s] | max|vg|[cm/s] | max|U,|[mm]| | max|U,|[mm]
18 |30 | 6281 |6.11 0.79 0.34 0.06
36 | 60 | 24437 | 6.01 0.83 0.33 0.06
54 190 | 54473 | 6.00 0.84 0.33 0.06
72 | 120 | 96389 | 6.00 0.85 0.33 0.06
Table 8.8: E = 16kPa, At = 0.002s,T = 10s, ps = 1.75py
N, | N, | dofs | max|v|[cm/s] | max|vs|[cm/s] | max|U,|[mm]| | max|U,|[mm]
18 | 30 | 6281 | 5.79 0.21 0.07 0.01
36 | 60 | 24437 | 5.70 0.21 0.07 0.01
o4 190 | 54473 | 5.71 0.21 0.07 0.01
72 | 120 | 96389 | 5.72 0.22 0.07 0.01

Table 8.9: E = 62.5kPa, At = 0.002s,T = 10s, ps = 1.75p¢

With the above tests, a mesh consisting of 2 % 54 % 90 cells (row 3) should
be sufficient to capture the qualitative behavior of the system as well as being
acceptable on computational time. This version of the mesh is used in the following
simulations. Most notable in these simulations is that syrinx velocities occur in the
opposite direction to that of the surrounding CSF flow. Peak syrinx velocities range
from 0.14 to 2.66 cm/s. Velocities within the syrinx only increase by approximately
25-55 % (depending on Young’s modulus) when the syrinx is made 200 % wider.
For a large Young’s modulus, syrinx size is more critical for fluid velocities inside
it. It should also be noted that syrinx size affects SAS velocities. For E = 5kPa, a
small syrinx (r=1mm) increases the maximal CSF velocity in the SAS from 5.6cm/s
to 5.9 cm/s. With a large syrinx, (r=3mm) maximal velocities up to 7.0 cm/s are
measured. A large syrinx causes greater displacements and therefore a narrowing
of the SAS. Figure 8.7 shows that this leads to greater pressure gradients in these
regions and thus greater flow velocities. It is also evident that pressure amplitudes
are greater in the SAS than in the syrinx, but the baseline pressure is zero for
both regions. Flow patters are visualized under section 8.5.2 in comparison to
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different pressure boundary conditions (left in figures 8.11 and 8.12). These figures
also reveals that velocity patterns within the syrinx also differs between the two
cases, something that could explain lower syrinx velocities than expected with a
large syrinx. Figure 8.11 shows that the natural fluid frequency inside the large
syrinx with a surrounding cord with E=5kPa is disrupted by the frequency in the
SAS. This is not as evident with a small syrinx, but could be seen as syrinx as
SAS velocities do not intersect at zero velocity. Figure 8.8 shows the inlet velocity
as a result of the sinusoidal pressure boundary condition. The velocity profile at
maximal flow is similar the parabolic Poiseuille flow, but peak velocities do not
occur in the center of the SAS.
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8.4. RESULTS: ELASTIC CORD 85

604 604
55 55
50 50
45 254
40 40
5]
0]
25+ 25+
20 20
15 15
10 10
W5 w5
E . E .
R T
-10 10
15 15
-20 20
25 25
35 _a5]
-40+ -40
45 -45
004 =504
-b54 -b54
o s i 5 3 75 3 3 3 o s ‘ s 3 75 3 s 3
Distance along inlets (mm) Distance along inlets (mm)
(a) Inlet velocity at t=9.0 (b) Inlet velocity at t=9.25
604 604
554 554
50 50
454 45
04
|
25+ 25
20 20
15 15
10 10
W s W s
E . E .
Er =
10 -10
15 15
20 20
25 25
20 20
35 35
a0 -40
454 -45
004 -504
55 55
b o U‘.n I 15 2 258 J‘ 'dlb lll b o 851 I 15 2 25 J‘ 'd:b 4‘
Distance along inlets (mm) Distance along inlets (mm)
(c) Inlet velocity at t=9.5 (d) Inlet velocity at t=9.75

Figure 8.8: Temporal and spatial characteristics of the resulting inlet velocities. The shape
1s similar on each inlet



86 CHAPTER 8. SIMULATING CSF FLOW AND SPINAL CORD MOTION

8.5 Effect of asymmetric pressure gradient

As mentioned in section 8.1.2, pressure measurements comparing the top and bot-
tom of the cord is hard to obtain. If the temporal data in figure 8.2 can be trusted,
the temporal variation in the lumbar region is almost negligible compared to the
wave amplitude in the cranial region. For this reason, we use the ICP measurements
as the pressure difference between the top and bottom of the model and scale this
data to obtain approximately expected CSF velocities. However, it should be noted
that pressure measurements were done in the lumbar region, lower than the bottom
part of the computational model presented here, and therefore the wave amplitude
would be greater than in the lumbar region. The methodology is by no means
perfect, but in light of theories describing formations of a syrinx, it models a more
realistic case than prescribing symmetric pressure. The term symmetric boundary
condition (or symmetric pressure gradient) is used when the applied pressure can
be phase-shifted to a symmetric function. (e.g. sin(¢) is denoted a symmetrical
boundary condition because sin(t + %) is a symmetric function)

The asymmetric applied pressure was obtained by extracting data from ICP mea-
surements over one representative cycle (1.1 s) and fitting to a 5-th degree spline
(See figure 8.9) to obtain continuous pressure data. The data extraction was done
with ginput and image() in MATLAB with figure 8.2. This spline does not capture
the pressure rise at t=0.4 of the cycle, but is reasonable within the limitations de-
scribed above. The pressure was set to 0 on the bottom of the cord. Both boundary
conditions were set with the Pseudo-traction condition as previously described in
chapter 4 and section 8.3. Without the presence of a syrinx, this applied pres-
sure caused maximal velocities of around 2-3 cm/s and 5-6 cm/s in the cranial and
caudal directions, respectively. These values are in agreement with the studies dis-
cussed in the introduction to section 8.2. However, as can be seen in figure 8.10
flow in caudal direction has a longer duration than cranial flow, which is not the
case according to the medical expert contributing to this work (Victor Haughton,
M.D. ). On the other hand, the data in (A) suggest net flux accumulating towards
the center of the model, so these data should be used with care. In addition to
setting up asymmetric velocity patterns, the asymmetric boundary condition has
another interesting property in comparison to the sine-function: A steeper pressure
gradient, which could be associated with the Chiari malformation as discussed in
section 8.1.1, and as indicated to the left in figure 8.1. Even though the symmetric
boundary conditions are not perfectly physiological plausible, we compare the sym-
metric and asymmetric boundary conditions to investigate the effects of a steeper
pressure gradient.

To highlight differences between the two types of boundary conditions, we com-
pare the two applied pressures with Young’s modulus of E=5kPa.



8.5. EFFECT OF ASYMMETRIC PRESSURE GRADIENT 87

e Eide
— Spline
— 20sin(27 t/T)

time [s]

Figure 8.9: Pressure difference between top and bottom of the cord in comparison to
measured ICP by FEide. In order to compare pressure characteristics, the sine function
have been stretched out to match the period T=1.1 from the measured data.

8.5.1 No syrinx

Without a syrinx, radial displacements of the cord are in general very small com-
pared to the diameter of the cord. ( < 0.1 %). The manual shift of the spline in
figure 8.9 to achieve the desired peak velocities in the SAS resulted in a considerable
net flux in the caudal direction. This is not expected, and not realistic. However
we investigate effects on cord motion and syrinx velocities as a preliminary result.
At least, including the rapid rise in pressure should cause displacements patterns in
the cord to differ compared to the sinusoidal wave. More discussion related to the
pressure wave is given in section 8.6 and appendix B. Displacements and vertical
velocities with the symmetric and asymmetric boundary conditions are shown in
figure 8.10. Displacements are measured at the left cord wall at height y=55mm.
The velocity is measured at the same height in the middle of the surrounding SAS.
Radial displacement patterns are in phase with pressures from figure 8.9. The asym-
metric pressure gradient causes greater displacements even though SAS velocities
are lower.
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8.5.2 Effect on syrinx velocity dynamics

SAS velocity patterns are affected by the change in pressure environment, but the
shape is still fairly intact, not too different from a sinusoidal variation. On the
other hand, velocities within the syrinx differ drastically. The introduction of an
additional oscillation as well as increased peak velocities inside the syrinx, even
though SAS velocities are lower are the most striking. Double syrinx velocity fre-
quency compared to the surrounding SAS is also reported by Brucker et al. (A).
Their subject had a large syrinx (depicted in the left frame of figure 8.2). In shape,
post-operative syrinx velocities obtained with PC-MRI (A) seem to be in agreement
with the right frame figure 8.11 (large syrinx), with every other peak being equal.
A similar pattern is shown in figure 8.12 with a small syrinx. Symmetric boundary
conditions causes CSF flow in the SAS and flow within the syrinx to be approxi-
mately 180 degrees out of phase. Our results suggests that the relative timing of
the pressure wave compared to the oscillating fluid movement within the syrinx is
of great importance. It seems evident that the timing of the pressure wave oppose
fluid velocities within the syrinx to the left in figure 8.11. SAS velocities follow a
sinusoidal pattern, while this periodic movement seem to be disturbed within the
syrinx, causing peak velocities to slow down. This relative timing seem to be more
enhancing on syrinx velocities in the right frame of figure 8.12, and might explain
why peak syrinx velocities are higher with a small syrinx. It should also be noted
that a small syrinx has less fluid to accelerate each cycle.

When cord motion is large, peak velocities might occur in different directions at
different sections of the cord. The narrowing and widening of the cord causing CSF
to flow faster in narrow regions and slower in wider regions. Temporal patterns in
the middle of the SAS is shown in figure 8.13. In the most extreme cases, this effect
might be partly responsible for abnormal pressure and flow environments in the
short term after decompression surgery. Abnormalities in CSF short term following
surgery was also shown by Brukcer et al. A. Visually, no difference in tonsillar
herniation can be seen when comparing 2 months and 10 months post operative
images. However, the associated velocity patters in the SAS were different.
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8.6 Shape of the pressure wave

Previous authors [17, 79, 94] have frequently assumed a pressure similar to that
reported as ICP by Fri¢ and Eide (2015) [88] and shown in figure 8.9. It is possible
that this pressure wave is the main driver of CSF flow, and that the pressure dif-
ference dp(t) = pc1 — por between the regions C1 and C7 has a similar shape. This
pressure difference is characterized by a short period of positive pressure gradient
(i.e. pc1 > per) during systole (heart contracts) and a long resting period with
a small negative pressure gradient during diastole (heart refills with blood). It is
commonly believed that these pressure waves causes short rapid fluid movement in
the caudal direction and slow, steady flow in the cranial direction. This is not in
agreement with our results from figure 8.10¢, where cranial flow only occurs 25 % of
the cardiac cycle. This is partly explained by greater peak velocities caudally, but
is most probably caused by an incorrect shape of the pressure wave in our simulation.

If pressure is the main driver of channel flow, the velocity and pressure are related
approximately through

ov

Por ~

And shows that if pressure is the main driver of channel flow, a pressure gradient
causes changes in velocity, meaning changes in velocity sign must occur after than
sudden changes in sign for pressure gradients (i.e. the velocity needs more time to
“adjust” to sudden changes in pressure environment). From the opposite point of
view, a forced change in velocity, must result in an even faster change in pressure
gradient especially when there is a change in velocity direction. Therefore, if sys-
tole is characterized by the length of the positive plug-shaped pressure, the CSF
may not change its flow direction before roughly halfway through systole. Simi-
larly, the transition to diastole causes CSF to slow down, but because of the low
magnitude of the negative pressure gradient during diastole, the velocity will flow
the same direction for a longer period. This means that the plug shaped pressure
gradient used causes longer periods of flow in the caudal direction unless some great
downwards spike” also exists to quickly slow down the rapid fluid movement. At
steady sinusoidal flow, the pressure wave is 90 degrees out of phase compared to
the CSF wave. This need not be the case for other characteristics of flow or velocity.

It should also be noted that due to viscous forces, the integral of dp(t) does not
necessarily need to be zero.

Using standard channel flow with the previously validated coupled CFD solver,
the extracted pressure measurements by Eide at I[CP was normalized and shifted
to cause zero net flux and prescribed as the boundary condition at C1, the pressure
(pseudo traction) was set to 0 Pa at the end of the channel. Surprisingly, if the
function is turned upside down” (i.e. multiplied with -1), we obtain the velocity
patterns as described in the literature. (see figure 8.14). The net flux over a cycle is
zero, the maximal caudal velocity is 5-6 cm/s and the maximal cranial velocity is 3
cm/s. It still possible that the pressure gradient has a short, powerful upstroke but
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these simple tests show that there also need to be a strong force (i.e. a great neg-
ative pressure gradient) quickly causing CSF to slow down and eventually change
the flow direction to cranial. This observation was further investigated, by applying
also these boundary conditions to the elastic and poroelastic models. To also inves-
tigate the pressure rise at ¢t ~ 0.4s of the cycle, we use a PChipInterpolator from
scipy to fit the data set. This pressure rise is present at most heart beats, but does
not occur every cycle (see B). To visualize the flow-pressure coupling, the vertical

a5
— Pressure (Pa)
— SASvelocity (mmy/s)

68 7 12 14 16 82 2.4 8.6 28

78 8
time (s)

Figure 8.14: Pressure difference between top and bottom and velocities in the same plot
for the elastic model. E=62.5 kPa, no syrinz

velocity is plotted together with velocity in figure 8.14 with the most rigid cord.
The inlet velocities in the elastic model has the same shape as preliminary tests
with rigid walls. Both quantities are measured at inflow boundaries, and the flow is
aligned along the axis of the cord. The pressure rise at the middle of systole creates
a short decline in velocity, which slightly prolongs the period of cranial flow. Other
than that, this rise (here, decline) in pressure does not seem to qualitatively affect
velocities in the SAS. However the short “bump” in velocity during upstroke is the
exact same as seen in appendix A. Peak velocity occur in the caudal direction, but
the temporal change of the velocity is considerably greater at upstroke because of
the sharp decline in pressure at the top.
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8.7 Results: poroelastic cord
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Without a syrinx, we measure the same quantities as before in addition to the
maximal Darcy flux in the cord, max|q| as well as the magnitude of the flux in
the center point of the cord, max|q|o. The pressure boundary conditions are now
sinusoidal, as in section 8.4. Additional mesh refinement tests are performed with
a Ilmm syrinx to ensure mesh independence. Other tables are given for different
values of E,

8.7.1 No syrinx

E [kPa] | max|U,|[mm]| | max|U,|[mm]| | max|q|[cm/s] | max|q|o [cm/s]

) 5.63 0.006 0.02 4.12¢-6 3.28e-8
16 5.62 0.002 0.007 3.51e-6 3.36e-8
62.5 5.62 oe-4 0.002 2.42e-6 3.37e-8

Table 8.10: Comparison of different values of E. No syrinz, At = 0.002, [Ny, Ny =

[54,90]
8.7.2 1mm syrinx

N, | N, | max|v|[cm/s] | max|vg|[cm/s] | max|U,|[mm] | max|U,|[mm] | max|q|[cm/s]
18 [ 30 | 5.78 1.48 0.13 0.06 2.93e-6

36 | 60 | 5.71 1.46 0.13 0.06 7.82e-6

54 190 | 5.70 1.47 0.13 0.06 1.40e-5

Table 8.11: E = 5kPa, Imm syrinx, At = 0.002

N, | N, | max|v|[cm/s] | max|vg|[cm/s] | max|U,|[mm] | max|U,|[mm] | max|q|[cm/s]
18 [ 30 | 5.68 0.53 0.05 0.02 2.39e-6

36 | 60 | 5.67 0.53 0.05 0.02 6.72e-6

54 190 | 5.68 0.49 0.04 0.02 1.09e-5

Table 8.12: E = 16kPa, Imm syrinxz, At = 0.002

The Darcy flux is small but mesh dependent, and thus our model would need
further refinement to capture effects of accumulation of flow towards the syrinx.
This thesis do not intend to explain the accumulation towards the syrinx, but this
could be investigated as future work. For the other variables, mesh refinement does
not seem to critically alter the solution.
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N, | N, | max|v|[cm/s] | max|vg|[cm/s] | max|U,|[mm] | max|U,|[mm] | max|q|[cm/s]
18 |1 30 | 5.69 0.13 0.01 0.005 2.05e-6
36 | 60 | 5.63 0.13 0.01 0.005 4.52e-6
54 |90 | 5.63 0.13 0.01 0.005 7.30e-6

8.7.3 3mm syrinx

Table 8.13: E = 62.5kPa, 1mm syrinz, At = 0.002

E [kPa] | max|v|[cm/s] | max|v,.|[cm/s| | max|U,|mm] | max|U,|[mm] | max|q|[cm/s]
5) 6.26 1.14 0.41 0.08 7.32e-5
16 5.98 0.71 0.22 0.05 7.93e-5
62.5 5.61 0.21 0.07 0.01 1.70e-5

Table 8.14: Comparison of different values of E. 3mm syrinz, At = 0.002, [Ny, Ny] =

54, 90]

Comparing table 8.14 with table 8.11, it is evident that a larger syrinx does not
necessarily imply a larger peak syrinx velocity in the poroelastic model. This could
be related to the relative timing of the pressure compared to syrinx velocities as

discussed in section 8.5.2.
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8.8 Comparison of Elastic and Poroelastic models

Poroelastic models predict smaller displacements and lower peak syrinx velocities
than elastic models. Maximal peak syrinx velocities reached 2.66 cm/s in the elas-
tic model and 1.47 cm/s in the poroelastic model. From a physical point of view,
this is reasonable, as waves entering the poroelastic cord can also be damped by
fluid entering the spinal cord, and thus some energy is transmitted to slow fluid
movement within the cord rather than structural displacement. Elliott (2012) [95]
discussed pressure wave damping in 1D-models, and found that the propagation of
the pressure wave is aided by a less permeable pial membrane but a more permeable
spinal cord. This suggests that syrinx velocities predicted by poroelastic models in
this thesis might be underestimated, and that the permeability is an important fac-
tor in syrinx velocity dynamics. In the SAS, great displacements predicted by the
elastic models causes CSF to flow faster in regions where the SAS is temporarily
narrowed and slower where it is temporarily wider.

The velocity profile in the SAS is more sensitive to variations in Young’s modu-
lus with the elastic model than with the poroelastic model. This is due to greater
displacements predicted by the elastic model. From figure 8.16 the velocity pattern
seem to be completely different for the elastic model, with greater peak velocities in
the cranial direction. At the middle height, the cord radially contracts with down-
ward movements of fluid causing CSF to flow slower in the wider regions of the SAS.
Similarly, when the cord radially contracts, a wider SAS results in faster upward
fluid movement in these specific regions. At y = 40, for instance, the opposite is
the case. Here the cord expands at downward fluid movement causing faster flow
downwards.

To investigate differences during a sharp pressure pulse, we apply the asymmet-
ric boundary condition as described in 8.6 to the two models. One of the most
striking differences is the impact of the mentioned damping effect on syrinx veloci-
ties. Figure 8.15 compares elastic and poroelastic models with the most rigid cord
(E=62.5 kPa). In the elastic model, the pressure pulse causes rapid fluid movement
in the cranial direction (opposite to that in the SAS) within the syrinx and when
the pulse reaches the bottom of the syrinx cavity, it is reflected back and forth until
a new pulse arrives. These oscillating patterns are also predicted by Bertram (2009)
[15] after a cough. With E = 62.5 kPa, peak syrinx velocities are below what is
measured in vivo as mentioned in section 8.2. These velocities appears in the cra-
nial direction and reaches 1.1 cm/s and 0.4 cm/s with the elastic and poroelastic
models, respectively. In figure 8.16, it becomes evident that also syrinx velocities
are more sensitive to variations in Young’s modulus in elastic models compared to
poroelastic. By reducing Young’s modulus to E = 5 kPa, peak syrinx velocities in-
crease to 6 cm/s in the elastic model, while only reaching 0.6 cm/s in the poroelastic
model.
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Figure 8.15: Comparison of SAS velocities (left) and syrinz velocities (right) for a thick
syrinz (r=3mm). E=62.5 kPa

An interesting observation is that the waveform of the inlet pressure seems to be
directly related to the temporal variation of syrinx velocities. In figure 8.17 pressures
at the inlet is plotted together with velocities in the middle of the syrinx for the
poroelastic model. If such a direct coupling between the two should exist, no major
reflections of fluid should be present in the syrinx, and the fluid velocity within it
should be relatively low at the arrival of the pressure pulse. Considering the low
velocities often reported near the end of the cardiac cycle, it is not unlikely that the
gradient and amplitude of the pressure wave could have a direct impact on syrinx
velocity, and thus be directly related to the impact of the slosh mechanism. With E
= 62.5 kPa, this close relation was also present in the elastic model at the arrival of
the pressure pulse, but after the initial wave, reflections dominated syrinx velocity
characteristics until a new pulse arrived.
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Figure 8.16: Comparison of SAS velocities (left) and syrinz velocities (right) for a thick
syrinz. E=5 kPa



8.8. COMPARISON OF ELASTIC AND POROELASTIC MODELS 99

20

22

— Pressure (P
— Syrirx velocity (mmys)

IS

— Prassure (P
— Syrinx velocity (mmy/s)

|

i8

8

8.2 8.4

time (s)

8.6

88

9

92

9.4

22

86 88 ] 9.2 94 B 78
time (s)

Figure 8.17: Comparison of pressure wave and corresponding syrinz velocities with E =

5 kPa (left) and E = 62.5 kPa (right)



100  CHAPTER 8. SIMULATING CSF FLOW AND SPINAL CORD MOTION



Chapter 9

Discussion, Conclusions and
Future Work

9.1 Discussion

We have developed models for elastic and poroelastic representation of the spinal
cord in interaction with CSF in the SAS. Elastic models have been validated against
benchmark results in a different geometry. Poroelastic models were shown to be
grid independent for the quantities of interest for three different values of Young’s
modulus. The main concern with the poroelastic models in this case lie in the ap-
proximation of pressure continuity on the interface on the macro scale, especially
in the case of only a thin tissue separating the SAS and the syrinx.

We have shown that the slosh effect can be explained with FSI or poroelastic-
ity due to an asymmetric pressure boundary condition. Exact characteristics of
syrinx velocities under the cardiac cycle can not be determined from this study due
to uncertainty in the pressure wave applied to the system as well as other limita-
tions explained in the next section. With a sinusoidal varying SAS velocity, syrinx
velocities were shown to occur in opposite direction for all elastic models. In these
models SAS velocities of 5.5 - 7.0 cm/s resulted in syrinx velocities of 0.2 - 2.6 cm/s
with a large (r=3mm) syrinx and 0.14 - 2.2 cm/s with a small (r=1mm) syrinx. An-
other interesting finding is that under physiologically realistic conditions (i.e. slow
fluid velocities before a sharp pressure pulse arrives) syrinx velocities seem to be
directly related to the shape of the pressure pulse. Syrinx velocities were shown to
be asymmetric pressure gradients, syrinx size and elastic properties of the cord also
altered these patterns, and in agreement with Pinna (2000) [93], we might conclude
that these patterns may vary from patient to patient.

As compared to Clark (2013) [9], and Cheng et al. (2014) [10], our experiments have
given further evidence that FSl-effects on CSF-dynamics are negligible in models of
healthy subjects. In these models more than a 10-fold increase in Youngs modulus
gives at most a decrease in 0.02 cm/s, (< 0.5%) and no visible effect on CSF-
velocities. Cord displacements vary approximately linearly with Youngs modulus,
an expected result with a linear elasticity model. The greatest displacements are

101
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7pum and 20pm in the radial and axial directions, respectively. These displacements
are below the resolution limit of MRI. [80]

In the diseased state, (i.e. in the presence of a syrinx) Bertram (2010) [16], Martin
et al. [80, 12] have all concluded that effects of FSI on pressure in the SAS as well
as syrinx velocities are important. In these models, the presence of a syrinx leaves
only a small segment of spinal cord tissue between it and the surrounding SAS.
This allows for greater displacements of the cord and thus fluid movement inside
the syrinx. Our elastic models predict the same importance of FSI in the case of
syringomyelia. Syrinx velocities are comparable to in vivo results by Brucker (A),
and in vitro results by Martin et al. (2010), but does not quantitatively match in
all our experiments. For instance, the long resting phase during diastole with slow,
almost constant SAS velocities were not seen. In addition, high-frequent oscillations
within the syrinx, (in our model, due to a more rigid spinal cord) have not been
reported during the cardiac cycle. Peak syrinx velocities in the elastic models range
from 0.14 cm/s to 6.1 cm/s.

Poroelastic models dampen FSI effects by allowing some fluid to flow into the spinal
cord. The extent of damping is affected by spinal cord permeability [95], which was
not investigated further in our model. The poroelastic models did not predict rapid
oscillations within the spinal cord during the cardiac cycle. Peak syrinx velocities
in these models ranged from 0.13 cm/s to 1.47 cm/s. Our models were not accurate
enough to capture accumulation of fluid flow towards the cord, where an accuracy
for fluid velocity of order 107® m/s is needed within the spinal cord tissue.

The main difference between the two models is in presence of a short and steep
pressure pulse, where the relative timing of the pulse compared to the oscillatory
movement within the syrinx is crucial for peak syrinx velocities. This relative timing
of the pressure pulse has been reported to be of importance for syrinx progression
[96].

The pressure field within the syrinx is opposite of that in the SAS in both models,
meaning rapid change in pressure from the CSF along the cord wall to fluid within
the syrinx. The pressure wave in the possibly thin tissue separating the two is com-
plex and still needs more investigation. In contrast with Martin et al. (2005), [80]
a general statement whether pressure is higher in the SAS or in the syrinx can not
be given. To analyze pressure differences between the SAS and inside the syrinx,
points of equal height should be used as the pressure varies along the cord both in
the SAS and in the syrinx. At a given height, pressures have similar shape, but
differs in amplitude. The SAS pressure has greater amplitudes, and thus syrinx
pressure will be greater than SAS pressure when pressures are below baseline pres-
sures.

New pressure measurements by Fri¢ and Eide (2015) [88] suggests substantial damp-
ing of the signal as the pressure pulse travels along the spinal cord. According to
these result, the damping is to the extent that reflecting waves from the bottom
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of the spinal cord could be neglected. Exceptions include coughing as discussed by
Bertram (2009) [15] and also shown in vivo by Williams (1976) [90]. These pres-
sure data did not give the expected flow patterns, (i.e. slow steady upwards, and a
short, powerful peak downwards) but Quigley (2004) [4] reported velocities oppo-
site of that, more similar to figure 8.10d shifted upwards. However, Quigley’s study
contradicts other studies of CSF flow and can not be fully trusted. On the other
hand, if peak velocities appear in the cranial direction, anatomical differences below
the site of the syrinx could also be of importance. Thompson et al. (2015) [26] stud-
ied differences in tapering, showing that Chiari I patients with syringomyelia had a
wider spinal canal at C7 than Chiari patients without syringomyelia. No significant
difference were found at C4. This causes CSF velocities to increase when moving
towards C4 in the cranial direction which again alters the pressure environment.

9.2 Limitations

This study has limitations, and in the following we mention some.

9.2.1 Geometry

Our simulations were done in 2D channels and are not directly comparable to 3D
results. We expect many of the same characteristics to be present in 3D models as
well, but quantitative comparison between simulation and in vivo measurements is
limited. As mentioned earlier, our model ignore branching nerves from the spinal
cord, as well as perivascular spaces. Bilston et al. (2010) [96] have suggested the
latter to play an important role in fluid accumulation within the cord resulting in
syrinx formation. Obstruction at the foramen magnum could affect the relative
timing of CSF wave resulting in pressure differences between the CSF in the SAS
and fluid within perivascular spaces. This study did neither include perivascular
spaces, nor fluid obstruction at the foramen magnum. If inclusion of obstructions
had been done in our model, a drawback is that the two channels do not directly
communicate (i.e. fluid can not flow from one channel to the other).

The inclusion of a thin and stiff pia mater was shown by Stgverud et al. (2015)
[18] to be important by increasing radial pressure gradients. The pia permeability
has also been shown to affect fluid accumulation within the cord [95]. Inclusion of
a pia mater justifies the choice of a low Young’s modulus of the spinal cord (E =
5kPa). If this value is representative for the cord itself, rapid oscillations within
the syrinx will not be seen. The dura mater (outer fluid walls) have been assumed
rigid, which is not true but does probably not affect the solution as the dura mater
is of several orders higher magnitude stiffer than the pia mater and cord.

9.2.2 Boundary conditions

The pressure boundary conditions determines both CSF and syrinx velocity dynam-
ics, and the pressure used in this study is approximated by a sinusoidal waveform or
based on assumption that might not be completely correct. Pressure measurements
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are done intracranial and in the lumbar region, while Chiari related patient-specific
computational models typically focuses on the upper part of the cord. In addition
to this the no slip boundary condition for structural displacement at the top and
bottom will not be completely realistic. At the top and bottom of the cord, the
fluid velocity also had to be set to 0 in the poroelastic model. Before conclusions
with reliable results can be done, validation of this assumption could be done by
e.g. extending the model caudally. The same concern is present for the fluid flux at
the top and bottom in the poroelastic models. Also, because continuous elements
were used for pressure, the conclusion that the Beavers-Joseph Saffmann condition
is negligible might be erroneous.

9.2.3 Model equations

Biot’s theory has been simplified by omitting the inertia term of the Darcy flux.
Linear elasticity has been assumed for the structural part which, at best, only holds
for small deformations. In addition assumption of continuity of pressure over the
interface due to linear elements in FEniCS could introduce some errors.

9.2.4 Physiological understanding

The physiological concept of CSF production and circulation is not fully understood.
It is not clear whether the net flux over a cycle has to be zero. To the most extreme,
we have heard of studies reporting a net flux of 50L. CSF in the cranial direction over
a 24h period. These results have not been published, but opens the possibility that
CSF might leave the SAS in intracranial regions, and later reappear at the bottom
of the spinal cord. Furthermore, the possibility of tearing of biological tissue due
to slosh is something we did not investigate.

9.3 Conclusions

9.3.1 Syrinx velocities explained in silico

Our model has provided a mechanical explanation for syrinx velocities within the
spinal cord. The magnitude of syrinx flow is related to elastic properties of the cord,
and the temporal variation is possibly directly related to the shape of the pressure
wave in the SAS.

9.3.2 Applicability of in vivo pressure measurements

In vivo pressure measurements give new insight to the understanding of pressure-
velocity coupling in the SAS. Although this is fairly well understood in healthy
subjects, computer models applying Dirichlet conditions at both caudal and cranial
ends should be able to predict measured pressure in the same way as our model
should be able to predict SAS velocities. To our knowledge we are the first to apply
these in vivo pressure measurements to computational models.
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9.3.3 Poroelasticity alters syrinx dynamics

Poroelastic results differ from elastic results mainly by the syrinx velocity in re-
sponse to a sharp pressure pulse. Most importantly, poroelastic models preticts
substantial damping of the initial pressure pulse as well as damping of oscillatory
syrinx velocities during diastole.

9.4 Future Research

Expanding the model to 3D would be beneficial, but so far we have not managed our
meshing tools (Gmsh, mshr) to generate matching surfaces with an ellipsoid (syrinx)
enclosed by two cylinders (spinal cord and SAS) as a starting point for idealized
models. With the present model, it would be interesting to investigate whether
the exact in vitro experimental setups by Martin et al. (2005,2010) [80, 12] could
be replicated and produce the same results. This would also include some kind of
obstruction of the SAS in our model. The computational model presented in this
thesis could be a starting point to compare these in vitro studies. Furthermore,
the recent discovered difference in spinal canal anatomy between Chiari I patients
with and without syringomyelia [26] could be subject to computational investiga-
tion with our model. Propagation characteristics of the pressure wave needs more
investigation, because the shape of the pressure wave could be directly related to
syrinx velocities. As a beginning, damping of pressure waves along the cord in the
poroelastic models can be compared to damping reported in pressure measurements
by Fri¢ and Eide (2015) [88]. As the pressure wave can both enhance and oppose
fluid movement within the syrinx depending on the frequency, we suggest that heart
rate could be investigated as a variable affecting peak syrinx velocities.
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Appendix A

Assessment of CSF Velocities
using MRI

The following graphics show CSF velocities obtained with MRI. Curtesy of Justin
Brucker, MD, Victor Haughton, MD, Allison Grayev, MD and Andrew Wentland,
PhD. We would like to thank Justin Brucker for allowing this unpublished data to
be used in this thesis. The 14-year old female subject underwent decompression
surgery, and CSF velocities were measured with PCMR before, 2 months after and
finally 10 months after surgery, when symptoms had vanished. The CSF velocities
are measured in 12 different regions over a cross section named after the numbering
around the clock. Thus, plots labeled as a reference to the clock, shows CSF
velocities at a given position of a cross section over one cycle (14 measurements
were done each cycle). 6 different cross sections were analyzed: C1, C1-C2, C2-C3,
C3, C3-C4 and C4-C5. What should be noted is the extreme variety, and if the
flux of each cross section is analyzed, too much fluid seem to accumulate in the
center of the SAS. Figure A.1 shows an example of tables in the spreadsheet of
raw data. The flux column has been calculated by the author. The study only
involved one subject, and can not be used as a certain measurement of exact CSF
velocities. It is an interesting direction in measuring syrinx velocity dynamics and
long term improvement of CSF characteristics. In these images, and in most medical
literature, positive values means in the caudal direction (i.e. downwards)

11:00 12:00 1:00 2:00 3:00

5:00 Syrinx _|Avera
|Area (mm ~2) 7.91}

18.46| 15.82| 14.94] 14.94] 19.34]
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Figure A.1: Example of CSF wvelocities. Measurements at the C1-C2 level
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(d) Velocities at 3:00
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(d) Velocities at 11:00
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Appendix B

In vivo Pressure Measurements

B.1 Estimating pressures at the cervical region

In figure 8.2 it was established that baseline pressures were always higher in Lumbar
regions than in the intracranial region. If this difference in baseline pressure is
omitted, we noted that there seem to be some wave propagating downwards being
damped and smoothened out, with diffusion-like behavior. We asked for raw data
from Rikshospitalet to more accurately investigate these observations. Data files
consists of one number on each line giving intracranial pressure (ICP) or lumar
pressure (LP). The sampling rate is 200 Hz, so real time data can be made. Two
files exists for each subject, one measuring ICP and the other LP. An example of
unedited data is shown in figure B.1. We used a butterworth filter design of order
7 with a critical frequency of 15 Hz. We used the filtfilt() function in scipy to apply
the filter twice, once forward and once backwards. After the jump in pressure, the
lumbar pressure is always higher in agreement with what was reported by Fri¢ and
Eide (2015) [88]. We are told to disregard the first and last part of these data and
focus on the middle part. This seems legit, as data differs at these edges as well as
being unstable with large-amplitude oscillations. For single beats, is is claimed that
the baseline for the two parts should be ignored. We created a corresponding time
series to investigate the propagation along the cord in time. We apply a butterworth
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Figure B.1: Intracranial (left) and lumbar (right) pressure measurements
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filter with 10 Hz as the critical frequency. Raw data and filtered data are compared
in figure B.2 A very simple equation describing damping of signals and smoothing
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Figure B.2: ICP measurements with filtered data (left) and filtered ICP and LP in the
same plot (right)

is the heat equation. We try to estimate the pressure at cervical regions by letting
the pressure be a function in space, p(x) that is smoothened out over time. This is
not necessarily the case, but is built on the observation that this kind of damping
seems to occur. The method can be regarded as a simplification of the damped
wave equation as described in [95]. In other words we solve

op _, Op
ot Ox2

where k is a constant. Obviously, as we have been told, the baseline pressures
can not be trusted as the lumbar pressure is of several magnitudes higher at all
times. We therefore shift the two curves to have the same baseline pressure. The
first step is to adjust k so that solving up to some end time, T" gives the lumbar
pressure curve. In this first data set, very little response was observed at lumbar
regions making this a bit more difficult. We use the filtered ICP as initial conditions
and baseline pressure Dirichlet boundary conditions on both sides. Solving until
Tona = 0.2s and k = 0.1 m?/s gives results given in figure B.3. In this case, the
signal was estimated to reach the bottom at the global minimum of the LP yielding
a wave speed of ~ 2.4m/s. The dampened signal from the ICP was therefore shifted
along the z-axis according to this, so that the estimated damped signal would not
reach the bottom of the cord earlier than the data suggests.

The idea is now to solve the same equation, but now solving for a shorter
end time. For instance, the pressure halfway down the cord would be estimated by
solving with the same value of k until " = T.,,4/2. The total length of the spinal cord
is L = 45¢m, and our model only has a length of | = 6em. We therefore solve only up
toT = Tend%. Bertram (2009) [15] showed that the presence of a syrinx critically
changes wave speeds, and we have omited this fact in this method by assuming
the same wave characteristics all along the cord. The results are summarized in
figure B.4. This method acts as a preliminary test for solving the dampened wave
equation with ICP measurements at the cranial end and homogeneous Neumann
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Figure B.3: Left: ICP, LP and estimated LP pressure. Right: Pressure difference dp =
ICP - estimated LP

conditions at the caudal end. The actual pressure value at the caudal end could be
recorded and compared to measurements of LP. The results presented in this section
needs more investigation but successfully capture the shape of the pressure wave as
estimated by Ringstad et al. (2016, not yet published) [97]. The results here also
suggest a strong negative pressure gradient following the first wave, a necessity to
obtain physiological flow patterns (ref. section 8.6). Using the same approach on
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Figure B.4: Left: ICP, LP and estimated cervical pressure (CP) at C6. Right: Pressure
difference dp = ICP - estimated CP

the published data by Fri¢ and Eide (2015) [88] as shown in figure 8.2, gives results
depicted in figure B.5

B.1.1 Example of a different wave

In section 8.5, we chose a 5th degree spline to investigate effects of a steeper pressure
gradient. It did not capture the pressure rise at ¢ ~ 0.4 into the cycle. Figure B.6
shows that this pressure rise is not present at every heart beat, which, according to
our results in sections 8.5 and 8.5.2, could affect displacement patterns and syrinx
velocity dynamics.
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