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Abstract

Both previous experimental and numerical studies revealed that there are two di�erent

regimes when waves propagate from deep water over a slope to shallow water. For shallow

water and/or abrupt depth transition there can be a local maximum of extreme waves near

the shallow edge of the bottom slope, while for deep water and/or mild depth transition

no such local maximum of extreme waves is found. Standard simpli�ed wave models,

in particular nonlinear Schrödinger equations for nonuniform depth, have not been able

to account for the transition between these two regimes. With this background, in this

thesis we derive a modi�ed NLS equation for nonuniform depth in order to better represent

abrupt bathymetry of arbitrary depth, in the hope that this may allow NLS models to

account for previous experimental observations. The NLS equation derived in this thesis

is expressed in space and time evolution forms which can be used for both �nite and

in�nite depth. In the limit of �nite depth, the stability analysis for both space and time

evolution equations indicates that wave trains on water of uniform depth, h, are unstable if

the wavenumber, k, satis�es kh > 1.363, but they are otherwise stable. Furthermore, our

investigation in stability analysis shows that the asymptotic behavior of the �nite-depth

results reproduce the deep-water results.
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Chapter 1

Introduction

1.1 Previous works

Understanding of ocean waves is a key factor for ship navigation, o�shore platforms, re-
newable energy devices, o�shore wind turbine foundations, etc. For instance, considerable
forces on o�shore structures are produced when waves occur often, and become extreme.
Therefore, an estimate of extreme wave condition and the statistics of waves have been a
topic of interest in the scienti�c community for several decades.

The term rogue or freak has been used by the researchers and engineers for waves that are
surprisingly large amplitude waves in comparison with the other waves in the sea state.
Some classic criteria for freak waves are ηc > 1.25Hs or H > 2Hs where ηc is the crest
height, H is the wave height and Hs is the signi�cant wave height (Dysthe et al., 2008).
The signi�cant wave height is de�ned as four times the standard deviation of the surface
elevation.

The importance of freak waves has led many scientists devote their attention to the
study of the formation and dynamics of these waves in open ocean domains with deep
water condition [e.g. (Dysthe et al., 2008) ,(Kharif et al., 2009)]. It is known that the
probability of occurrence of freak waves can be indicated by the value of the kurtosis
parameter (normalized fourth-order moment of free surface elevation). For instance, an
expression for the probability density function (PDF) of the maximum wave height was
derived in Mori and Janssen (2006) based on the value of the Benjamin-Feir Index (BFI).
Although, the e�ect of �nite water depth or variable water depth assumptions on freak
waves have been a topic of interest for researchers and engineers, there are few experi-
mental, theoretical and numerical studies of freak waves in �nite depth or considering the
e�ect of variable water depth in coastal areas, as discussed hereafter.
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1.1.1 Experimental investigations

Experimental investigations of freak wave occurrence are rare. In recent years, some
experiments have been carried out to investigate if the change of depth can provoke in-
creased likelihood of freak waves. Some of these experimental studies are discussed in the
following text.

A set of experiments was performed at Marin in the Netherlands by Bunnik (2010) with
long-crested wave conditions over a sloping bottom. In these experiments, three cases of
long-crested irregular waves were investigated by considering three di�erent wave �elds.
They de�ned small parameter ε = kpac as the steepness of the waves where kp and ac
showed the peak wavenumber and the characteristic amplitude, respectively. The three
wave �elds had a steepness respectively kpac = 0.057, 0.038 and 0.028, and a depth of
respectively kph = 1.6, 1.1 and 0.81 on the deep side, and kph = 0.99, 0.70 and 0.54 at the
shallow side with a steepness kpac = 0.070, 0.049 and 0.038, respectively. A JONSWAP
spectrum with peak enhancement factor γ = 3.3 was used to simulate these irregular
waves. All these three irregular long-crested waves were propagated over a 1:20 slope
from water of constant depth 0.60 m to shallower side with constant depth 0.30 m. This
set of experiments was recently analyzed by Trulsen et al. (2012), and they concluded
that as the waves propagate over the slope, from deeper to the shallower side, a local
maximum of kurtosis and skewness can be attained near the shallower part of the slope.
In addition, they have anticipated that in this region, which kurtosis and skewness gain
their local maximum, there can also be a corresponding local maximum of freak waves
probability.

Recently a set of experiments was carried out in a random wave �ume by Kashima et al.
(2013) and Kashima et al. (2014) in Japan. In these studies, various bottom pro�les were
considered, and a series of physical experiments was performed to examine the behav-
ior of unidirectional random waves from deep water propagating to shallow water region.
They selected four di�erent types of bathymetry con�gurations: (1) �at bottom, (2) slope
bottom with �xed impermeable 1:20 slope, (3) the complex bathymetries composed of a
skewed portion with slope 1:30 and a horizontal portion, (4) the bottom topography
consisted of two skewed portions with di�erent slopes 1:30 and 1:10. We are interested
only in type (3), since it is the only type which can be relevant to our investigation. For
bathymetry type (3), they examined a case of random waves simulated based on the JON-
SWAP spectrum with peak enhancement factor γ = 10.0. A two-dimensional wave tank
with 0.6 m width, 1.5 m height and 35.0 m length, was used to conduct this experiment.
They have investigated the behavior of the kurtosis and, their results also illustrated a
signi�cant increase of the kurtosis in the region around the end of the sloping part of the
bottom pro�le.

A series of experiments was conducted in China by Ma et al. (2014) to study varia-
tions of statistics in random waves passing over a submerged symmetrical bar. They
used a wave �ume which was 50.0 m long, 3.0 m wide and 1.0 m deep. A submerged
isosceles trapezoidal bar was employed as a bottom topography with slope 1:20 and a
3 m horizontal crest. They examined 4 cases of random waves simulated based on the
JONSWAP spectrum by considering constant signi�cant wave heights Hs and constant
peak frequencies fp, but various peak enhancement factors γ. They concluded that the
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remarkable increase of the kurtosis can occur in the region around the end of the sloping
part of the bottom pro�le. Additionally, some freak waves can appear in the shoaling
region near the top of the bar.

In the master thesis of Raustøl (2014), a set of experiments was conducted recently to
investigate the freak waves on variable depth. A wave tank with 24.6 m length and 0.5
m width was used to perform these experiments. The bottom pro�le was formed of two
skewed portions with slope 0.2625 and a horizontal portion, each having length 1.6 m, and
the height of construction was 0.42 m. Furthermore, they carried out these experiments
by considering two water depths 0.5 m and 0.6 m. Various cases for deep-water regime
and the transition between the far- and shallow water regime were examined by changing
the period of random waves simulated by the JONSWAP spectrum. In this study, a local
maximum of kurtosis over the shoal has been found for small shallow-water depth. In
addition, the experimental results revealed that as the shallow-water depth is increased,
the maximum of kurtosis is suppressed, and eventually vanishes.

Based on this review of previous experimental studies on uneven bottom, we can catego-
rize the applied bottom topographies in these works to two types of bathymetry. These
bottom pro�les are described by �gures 1.1 and 1.2. Furthermore, table 1.1 indicates the
type of bottom and parameter values employed in theses experimental studies.

Figure 1.1: Bottom topography type 1.

Figure 1.2: Bottom topography type 2.
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Study Type of bottom Case ∂h
∂x

Order k0hmax Order k0[1/m] ε γ Skemax Kurmax

Trulsen et al. (2012) 1 1 0.05 ε 1.59 ε0.1 2.66 0.05 3.3 0.2 3.25

� � 2 � ε0.9 0.32 ε0.02 1.83 0.03 � 0.32 3.10

� � 3 � ε0.8 0.81 ε0.05 1.35 0.02 � 0.48 3.25

Kashima et al. (2014) 1 6 0.03 ε 2.022 ε0.2 4.044 0.04 10 � �

Raustøl (2014) 2 1 0.2625 ε0.4 4.11 ε0.4 8.22 0.0489 3.3 0.9 4.00

� � � � ε0.4 3.16 ε0.3 6.32 0.0378 � 1.00 4.5

� � � � ε0.3 2.52 ε0.2 5.04 0.0306 � 0.75 3.85

� � � � ε0.3 2.08 ε0.1 4.16 0.0241 � 0.5 3.38

� � � � ε0.3 1.76 ε0.0.1 3.52 0.0180 � 0.42 3.45

� � 2 � ε0.5 4.93 ε0.5 8.216 0.0617 � 0.35 3.32

� � � � ε0.5 4.29 ε0.5 7.15 0.0598 � 0.23 3.32

� � � � ε0.5 3.78 ε0.4 6.30 0.0577 � 0.21 3.30

� � � � ε0.4 3.35 ε0.4 5.58 0.0541 � 0.20 3.25

� � � � ε0.4 3.00 ε0.3 5.00 0.0559 � 0.19 3.24

� � � � ε0.4 2.45 ε0.2 4.08 0.0487 � 0.19 3.24

Ma et al. (2014) 2 1 0.05 ε1.1 1.89 ε0.2 4.2141 0.0729 1.5 * *

� � � � ε1.1 � ε0.2 � � 3.3 * *

� � � � ε1.1 � ε0.2 � � 5.0 * *

� � � � ε1.1 � ε0.2 � � 7.0 * *

Table 1.1: Experimental quantities: ∂h
∂x , k0hmax, k0, ε, γ, Skemax and Kurmax indicate bot-

tom slope, largest dimensionless depth, characteristic wavenumber applies to maximum depth,

steepness of the waves, peak enhancement factor, maximum amount of skewness and maximum

amount of kurtosis, respectively. �: The results were not reported. ∗: Skewness and kurtosis

were not reported in the proper scales comparable to the other works.

4



1.1.2 Theoretical and numerical studies

In recent years, wave models have been developed in order to improve understanding of
waves, and to be able to interpret results reported by di�erent experimental studies with
theory. One of the simplest nonlinear models for water waves on �nite depth is the nonlin-
ear Schrödinger equation with variable coe�cients and a shoaling term for slowly varying
depth derived by Djordjevi¢ and Redekopp (1978). They assumed small wave steepness
ε = ka � 1, and the depth varied on the scale of ε so that h = h(ε2x) with mild slope
∂h
∂x

= O(ε2). Their model was appropriate to describe the behavior of waves propagate
over a nonuniform bathymetry with a bottom variation of order ε2. By employing the
multiple scale method, the NLS equation was derived, and in this derivation the induced
mean �ow φ̄0 and the set-down η̄0 were expanded in power series of ε. The expansions
employed for φ̄0 and η̄0 are justi�ed only for su�ciently small depth, limited from above
and kh = O(1). This restricted assumption causes that their results can not be valid for
greater depth.

In the study by Iusim and Stiassnie (1985), the NLS equation derived by Djordjevic
& Redekopp was re�ned by investigating the evolution during the shoaling of a modu-
lated wave train. By considering the small wave steepness ε = ka� 1, slow variation for
depth was assumed, ∂h

∂x
= O(ε2), and it was in agreement with the assumption for bottom

variation considered by Djordjevi¢ and Redekopp (1978). To derive the NLS equation, the
same method of derivation used by Djordjevi¢ and Redekopp (1978) was applied, but they
considered di�erent strategy to treat with the induced mean �ow φ̄0 and the set-down η̄0.
They presented a rather general model which consisted of a coupled system of equations
for the complex wave envelope and the induced mean �ow potential.

A more sophisticated model was investigated in the theoretical study of Liu and Dinge-
mans (1989) who relaxed the assumption for slowly varying depth to ∂h

∂x
= O(ε), where ε

was de�ned as steepness of waves. The bathymetry consisted of two components h0 and
h1 varied on the scale of ε so that h0 = h0(εx) and h1 = h1(ε0x). Furthermore, h1 was
assumed to be small, O(kh1) = O(ε2), where k was the characteristic wavenumber. These
assumptions led to express depth by h = h0(x1) + εh1(x1) where x1 = εx. By expanding
the velocity potential and the free surface displacement in terms of small parameter ε,
they derived a third-order evolution equation for the envelope of a modulated wave train
propagating over uneven bottom and the associated long-wave equation. By expanding φ̄0

and η̄0 in the power series of ε, their model is also restricted to shallow water assumption,
kh = O(1), and it is not valid for greater depth.

Recent numerical studies have investigated variations of statistics in random waves prop-
agating over variable depths with di�erent pro�les, and the probability of occurrence of
freak waves for these cases. Numerical modeling of the formation and dynamics of freak
waves in uneven bottom cases is challenging since it requires an accurate numerical code
based on a mathematical model able to properly represent both nonlinear e�ects and
dispersive e�ects. The Korteweg de Vries (KdV) frameworks, nonlinear Schrödinger-type
equations (NLSE) and Boussinesq-type models can be mentioned as the approximation
models to investigate the transformation of a random wave �eld in variable water depth.
In several studies for shallow water, Boussinesq-type models have been applied, with dif-
ferent orders of approximation for dispersive and nonlinear e�ects [(Kashima et al., 2014),
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(Gramstad et al., 2013)]. However the standard Boussinesq equations can not be applied
to deep water due to increasing error with increment of depth from the linear dispersion
relation (Zhao et al., 2004), and they are valid when the water depth is small kh < 0.75
(Madsen et al., 2002), where k is the wavenumber that corresponds to the depth h. Due
to this, several teams have considered an extension of NLS-type models instead of Boussi-
nesq equations to describe waves propagating over variable bathymetry.

A Korteweg de Vries equation has been employed by Sergeeva et al. (2011) to study the
transformation of a random wave �eld in variable shallow water depth. They reported
that the kurtosis increases as the water depth decrease, and the kurtosis can attain a local
maximum around the shallower side.

Recently the Boussinesq model with improved linear dispersion was employed by Gram-
stad et al. (2013) as an approximation model for shallow water. In their study, random
long-crested wave �elds were investigated when they propagated over uneven bottom with
bottom variation ∂h

∂x
= O(ε), both from deeper to shallower and from shallower to deeper

region. They have used a bottom consisting of a step with an upward slope, then a hor-
izontal portion followed by a downward slope which is shown in �gure 1.2. The studied
cases were kh = 1.06 in the deep part of the domain, and three cases of depth at the
shallow part kh = 0.55, 0.70 and 0.82. In addition, similar cases studied experimentally
in Trulsen et al. (2012) were simulated. This investigation has shown that signi�cantly
increased skewness, kurtosis and probability of freak waves, both at the shallow end of the
slope and for some distance after the slope, can occur when long-crested waves propagate
over a slope. They found good agreement with the experiments described by Trulsen et al.
(2012) which is reported in table 1.1.

In the study of Zeng and Trulsen (2012), the development of freak waves in a wave
�eld with long-crested waves propagated from deeper to shallower water, was studied.
The depth was assumed �nite but not too small, (k0h)−1 = O(1), that the depth h(x) was
slowly varying, ∂h

∂x
= O(ε2) where ε de�ned as steepness of waves. The bottom topography

applied in their study can be demonstrated by �gure 1.1. The velocity potential φ and the
surface displacement η were expanded in terms of the small parameter ε. By employing
power series of ε to expand the induced mean �ow φ̄0 and the set-down η̄0, they derived
the nonlinear Schrödinger equation in terms of surface displacement valid only for shallow
water. The nonlinear Schrödinger equation with variable coe�cients and a shoaling term
for slowly varying depths were implemented. The previous �ndings have shown that the
critical depth for narrowband long-crested waves may be subjected to modulational insta-
bility, is given by kh ≈ 1.363. By motivating from this fact, simulations were performed
at depths approximately equal to this critical depth or deeper. Three di�erent wave trains
were simulated with di�erent Benjamin-Feir Index (BFI = ε/δ, where ε de�nes steepness
of waves and δ shows bandwidth) that propagated across �ve di�erent slopes. The depth
at the front of the slope was kh = 10 for all simulations, while depths at the shallow part
of the slope were kh = 1.2, 1.363, 2.065, 3.015 and 4.003. The results showed that the
kurtosis and skewness decrease for decreasing deep and get a local minimum where the
shallow part of the slope begin. Furthermore, they anticipated that the probability of
freak waves on or near the edge of the continental shelf may exhibit a rather complicated
spatial structure for wave �elds entering from deep sea (Zeng and Trulsen, 2012).
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Instead of using an approximate model like KdV, Boussinesq and NLS, a full numerical
implementation of the potential �ow equations can be used to investigate wave dynamic
over variable depth. Viotti and Dias (2014) have employed this framework to study wave
dynamic over a plateau-like bathymetry pro�le. This fully nonlinear method applied by
them was valid for any depth. They reported the freak wave activities close to the shal-
lower region.

Figure 1.3 shows an overview of the cases studied experimentally and numerically in
previous works.

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0 1 2 3 4 5

c
g
 ω

 /
 g

kh

Figure 1.3: Group velocity as a function of kh (−), the depth kh = 1.363 (−−). Experi-
mental study by Trulsen et al. (2012): three cases, red solid line (−). Experimental study
by Kashima et al. (2014): blue dashed (−−). Experimental study by Raustøl (2014):
eleven cases, green solid line(−). Experimental study by Ma et al. (2014): magenta dash-
dot(−.). Numerical study by Sergeeva et al. (2011): yellow solid line (−). Numerical
study by Zeng and Trulsen (2012): the waves come from the deep side, kh = 10, which
is not shown in this �gure, shallow side is shown by cyan solid line (−). Numerical study
by Gramstad et al. (2013): three cases, blue solid line (−). Numerical study by Viotti
and Dias (2014): magenta solid line (−).
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1.2 Motivation

The experimental and numerical results found by Trulsen et al. (2012), Raustøl (2014)
and Gramstad et al. (2013) are in good agreement with each other, as they reported there
can be a local maximum of kurtosis after the slope. However, the behavior of kurtosis
after the slope according to the nonlinear Schrödinger equation employed by Zeng and
Trulsen (2012), which was there can be a local minimum of kurtosis after the slope, is
opposite from the experiments presented by Trulsen et al. (2012) and Raustøl (2014) and
the numerical results by Gramstad et al. (2013). Zeng and Trulsen (2012) used a numer-
ical implementation of the nonlinear Schrödinger equation valid only for slowly varying
depth with ∂h

∂x
= O(ε2), whereas the assumption for the bottom variation in both studies

by Trulsen et al. (2012) and Gramstad et al. (2013) was relaxed to ∂h
∂x

= O(ε), and in the
experiments associated with thesis of Raustøl (2014) bottom was varying rapidly with
∂h
∂x

= O(ε
1
2 ). These are important systematic di�erences between the work by Zeng and

Trulsen (2012) and the studies of Trulsen et al. (2012), Raustøl (2014) and Gramstad
et al. (2013).

Based on previous experimental and theoretical works, it appears that there are two
di�erent regimes when waves propagate from deep water over a slope to shallow water,
a shallower regime with a possible local maximum of extreme waves near the shallow
edge of the bottom slope, and a deeper regime with no such local maximum of extreme
waves. Standard simpli�ed wave models, in particular NLS equations for nonuniform
depth employed by Djordjevi¢ and Redekopp (1978), Iusim and Stiassnie (1985) and
Zeng and Trulsen (2012), have not been able to account for the transition between these
two regimes. This is because a nonlinear Schrödinger equation enhanced with shoaling
terms and depth�dependent coe�cients should be employed for investigating wave dy-
namics over arbitrary depth and arbitrary nonuniform bathymetry. Furthermore, the
NLS equation derived by Liu and Dingemans (1989) could not capture the qualitative
change between these two regimes since it is valid only for shallow water. Therefore,
it seems that there is not a proper model which is capable to bridge the gap between
the works of Trulsen et al. (2012), Raustøl (2014) and Gramstad et al. (2013) and the
study by Zeng and Trulsen (2012). The main focus in this thesis is to improve previous
NLS equations for nonuniform depth in order to better represent abrupt bathymetry of
arbitrary depth, in the hope that this may allow NLS models to account for the experi-
mental observations by Raustøl (2014), and investigate if there is a qualitative di�erence
behavior depending on bottom slope. In comparison with the full nonlinear model used
by Viotti and Dias (2014), we hope our analytical approach will give further insight into
the problem, and we hope that our �nal equations will be signi�cantly faster for numerical
simulation. Moreover, modulational instability of Stokes wave as one of the mechanisms
responsible for the formation of freak waves is studied for the �at bottom case.
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1.3 Outline

In chapter 2, the experiments performed by Raustøl (2014) and results reported by her
are presented in detail. In addition, appropriate modulation scales, assumptions for steep-
ness, bottom amplitude and bottom slope are described based on her experimental work.

Chapter 3 describes the derivation of the Nonlinear Schrödinger equation for uneven bot-
tom. Starting from the governing equations which describe propagation of a water-wave
train over a variable depth, and approximating the velocity potential function and the
surface displacement by using WKB expansions. Finding the equations for the zeroth,
�rst and second harmonics leads to �nd the space and time evolution equations valid
for arbitrary depth with variable coe�cients and enhanced with shoaling terms. These
equations are presented in terms of the surface displacement.

Chapter 4 is dedicated to investigate some special cases. The Green's law is recovered for
space evolution equations. By considering �at bottom topography, both space and time
evolution equations are studied, and analytical solutions of the induced mean �ow and
the set-down are found.

Chapter 5 contains the modulational instability for space and time evolution equations.
Instability for each of these equations is studied by considering two di�erent cases deep
water and �nite depth in the limit of �at bottom.

In chapter 6, we present a discussion how the results achieved in chapters 3, 4, 5 are
connected with previous researches and whether these can be compared. Some possible
future works are also suggested in this chapter.

Finally, in chapter 7 a concluding remark is presented to explain what is found in this
study.
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Chapter 2

Experiments of Raustøl

Based on previous works, it seems that there are two opposite regimes, a �shallower�
regime where kurtosis and skewness get a local maximum at the shallow part of the slope,
and a �deeper� regime with the reduction of kurtosis and skewness toward the shallower
side. An experimental study has been carried out by Raustøl (2014), in order to �nd the
transition between these two regimes. The aim of her thesis was to carry out experiments
that could say something about the transition between deeper regime and shallower regime
for long-crested waves propagating over a sloping bottom. Since the main focus in this
thesis is to derive a theory that could explain the experiment of Raustøl (2014), in this
chapter a summary of her work will be presented. Finally, speci�ed assumptions for
mathematical model in this thesis will be introduced based on the experimental study of
Raustøl (2014).

2.1 Experimental setup

Variations of statistics such as variance, skewness and kurtosis of irregular wave trains that
propagating over uneven bottom were studied experimentally in her thesis. An isosce-
les trapezoidal bar was considered as an inhomogeneous pro�le for the bottom. Since the
nonuniform bottom pro�le was assumed, the signi�cant wave height has been investigated
locally, which means that the freak wave criterion has been viewed locally.

Bottom pro�le, shown in �gure 2.1, was considered in her thesis, where the bottom to-
pography consisted of two skewed portions and a horizontal portion, each having the
same length L. The height of the bottom and the water depth outside the slope were
shown by H and h1 respectively. Therefore, water depth of shallow side could be given
by h2 = h1 −H.

The experiments were performed in a wave tank in the Hydrodynamic Laboratory at the
University of Oslo. The length and width of the wave tank were 24.6 m and 0.5 m, re-
spectively. Surface displacement was measured by locating 16 equispaced probes placed
∆x = 0.3 m apart. These probes were used in four di�erent positions along the tank and
they could be moved along the tank. For the experiments, irregular waves were generated
by the JONSWAP spectrum with the peak enhancement factor γ = 3.3, and their prop-
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L = 1.6m L L

h1

h2

H = 0.42m

Figure 2.1: Sketch of ramp placed at the bottom of the wave tank. H is the height of ramp,

h1 is the depth of the deep side, h2 is the depth of the shallow side, ∂h∂x = 0.2625.

agation along the wave tank was studied. Since she was interested in modeling realistic
ocean waves in the wave tank, the waves generated by JONSWAP spectrum were the best
choice.

Di�erent experiments were performed by changing the period of the waves propagat-
ing over nonuniform bottom in the tank. Di�erent cases for the deep water regime, and
the transition between the deep- and the shallow water regime were examined. Tables 2.1
and 2.2 demonstrate various experiments which have been carried out for two di�erent
water depth h1 = 0.5 m and 0.6 m.

Tp[s] λ1[m] k1h1
cg1ω

g
k2h2

cg2ω

g
L
λ1

0.4 0.25 12.6 0.5 2.08 0.548 6.61
0.5 0.39 8.05 0.5 1.44 0.592 4.59
0.6 0.562 5.59 0.5 1.11 0.598 3.54
0.7 0.765 4.11 0.502 0.911 0.579 2.9
0.8 0.996 3.16 0.51 0.774 0.549 2.47
0.9 1.25 2.52 0.526 0.675 0.515 2.15
1.0 1.51 2.08 0.548 0.6 0.482 1.91
1.1 1.78 1.76 0.569 0.54 0.451 1.72

Table 2.1: L = 1.6 m, H = 0.42 m, h1 = 0.5 m. Index 1 indicates deep water, index 2
indicates shallow water.
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Tp[s] λ1[m] k1h1
cg1ω

g
k2h2

cg2ω

g
L
λ1

0.4 0.25 15.1 0.5 4.53 0.501 6.41
0.5 0.39 9.66 0.5 2.91 0.514 4.12
0.6 0.562 6.71 0.5 2.08 0.548 2.94
0.7 0.765 4.93 0.5 1.6 0.581 2.27
0.8 0.998 3.78 0.503 1.31 0.598 1.85
0.9 1.26 3 0.512 1.11 0.598 1.57
1.0 1.54 2.45 0.529 0.968 0.587 1.37
1.1 1.83 2.06 0.549 0.86 0.57 1.22
0.75 0.88 4.29 0.501 1.44 0.591 1.82
0.85 1.13 3.35 0.507 1.20 0.599 1.42

Table 2.2: L = 1.6 m, H = 0.42 m, h1 = 0.6 m. Index 1 indicates deep water, index 2
indicates shallow water.

2.2 Result

By performing experiments, di�erent time series have been measured which described the
surface displacement of waves propagating over uneven bathymetry. Changes of variance,
skewness and kurtosis of the surface displacement, have been investigated. The results
of variance for all time series indicated a systematic decline along wave tank, and this
indicated the dissipation of wave �eld. Moreover, it was recognized that there are local
maxima for skewness and kurtosis close to the shallower part of the bottom as long-crested
waves propagating over a sloping bathymetry, from a deeper to shallower side. These
results are consistent with the results of Trulsen et al. (2012) and Gramstad et al. (2013).
In addition, the results demonstrated that the local maximum for kurtosis disappears for
kph between 1.31 and 1.44 at the shallow side of the bottom, while the local maximum of
skewness disappears for kph between 1.44 and 1.60.

2.3 Characteristic lengths and scaling assumptions

In this section, the appropriate scaling assumptions, assumptions for steepness, bottom
amplitude and bottom slope have been introduced in such a way that it can describe a
model for the experimental study by Raustøl (2014).

Steepness:

A characteristic wave amplitude, a0, is applied to characterize surface displacement. It
is assumed to be small in comparison with a wavelength λ = 2π

k
. We de�ne a small

parameter to characterize steepness of the waves

ε = ka0 � 1 (2.1)
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Modulation scale:

This part is dedicated to discuss the natural scale for slow modulation of the wave �eld.
The standard assumption for classical nonlinear Schrödinger equations has been the slow
modulation scales x1 = εx and t1 = εt, thus assuming the steepness is the natural pa-
rameter to describe bandwidth and slow modulation. According to Trulsen and Dysthe
(1997), a typical ocean wave spectrum has wider bandwidth, and thus faster modulation,
better described by x1/2 = ε1/2x and t1/2 = ε1/2t. However, since our intention is to
use a JONSWAP spectrum, and that we anticipate such a spectrum can reasonably be
accounted for by x1 and t1, even though some previous works have suggested a realistic
ocean wave spectrum is actually more broadbanded.

Bottom:

The characteristic frequency of the central wave denoted by ω0, and the acceleration of
gravity g are applied for normalization. The characteristic wavenumber k0 for in�nitely
deep water can be estimated from the following linear dispersion relation

k0 =
ω2

0

g
(2.2)

It is natural to distinguish between di�erent regimes with respect to the water depth. If
the depth satis�es (k0h)−1 = O(ε), the waves can be considered deep-water waves. In the
shallower case, i.e. (k0h)−1 = O(1), the waves can feel the bottom, and additional e�ects
must be taken into account. In this thesis the depth is assumed to be �nite but not too
small. Therefore, appropriate scaling assumption is given by

(k0h)−1 = O(1)

Since in the experiments of Raustøl (2014) the bottom variations could be large, we
assume hmax ≥ h(x) > 0, and the following appropriate scale for bottom variation is
assumed

dh

dx
= O(ε) (2.3)

Furthermore, it is considered that the bottom varies over the long horizontal coordinate
x1 = εx which is assumed for horizontal modulation of the waves. This means our theory
allows a bathymetry of the �faster� rate of variation than Djordjevi¢ and Redekopp (1978)
and Zeng and Trulsen (2012), but the similar rate of variation as Liu and Dingemans
(1989). This also means that our theory allows a bathymetry of greater variation than
most of these previous works.

13



Chapter 3

The space and time evolution

equations for variable depth

In this chapter, we aim to derive a modi�ed nonlinear Schrödinger equation which de-
scribes gravity waves propagating on the surface of a liquid of �nite and varying depth.
The governing equations of a uni-directional gravity waves are considered, and perturba-
tion expansions in the style of WKB are employed to approximate the velocity potential
function φ(x, z, t) and surface displacement η(x, t). By considering the equations for the
di�erent harmonics at di�erent orders, space evolution and time evolution equations in
terms of surface elevation have been derived.

3.1 Governing equations

We consider irrotational �ow of an inviscid and incompressible �uid over a nonuniform
bottom. A coordinate system is de�ned by x as horizontal axis along the quiescent water
level and z as the vertical coordinate. We denote the bottom as z = −h(x) and the free
surface is located at z = η(x, t). A velocity potential function is φ(x, z, t) such that

v = ∇φ(x, z, t)

where ∇ is the gradient operator.

Governing equation to satisfy continuity is the Laplace equation

∇2φ = 0 at − h(x) < z < η (3.1)

where ∇2 is the Laplacian operator.

The boundary conditions on the free surface are the kinematic and dynamic boundary
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conditions which can be written respectively as

∂η

∂t
+
∂φ

∂x

∂η

∂x
=
∂φ

∂z
at z = η (3.2)

∂φ

∂t
+ gη +

1

2
(∇φ)2 = 0 at z = η (3.3)

The boundary condition along the bottom requires

∂φ

∂z
+
∂h

∂x

∂φ

∂x
= 0 at z = −h(x) (3.4)

3.2 Normalization

In the following, all variables become dimensionless by using the characteristic wavenum-
ber k0 and the characteristic frequency w0 which are de�ned by the dispersion relation
(2.2). The magnitude of each term is shown by ordering parameter ε which is de�ned by
(2.1). New dimensionless variables and parameters in terms of a0 , k0 and ω0 are given by

t∗ = ω0t

x∗ = k0x

z∗ = k0z

h∗ = k0h

η∗ =
η

a0

φ∗ =
k0φ

ω0a0

∂

∂x∗
=

1

k0

∂

∂x

∂

∂z∗
=

1

k0

∂

∂z

∂

∂t∗
=

1

ω0

∂

∂t

By scaling according to these assumptions and dropping the stars, governing equations
then become
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Laplace equation
∇2φ = 0 at − h < z < εη (3.5)

Kinematic surface condition

∂η

∂t
+ ε

∂φ

∂x

∂η

∂x
=
∂φ

∂z
at z = εη (3.6)

Dynamic surface condition

∂φ

∂t
+ η +

1

2
ε(∇φ)2 = 0 at z = εη (3.7)

Boundary condition along the bottom

∂φ

∂z
+ ε

∂h

∂x1

∂φ

∂x
= 0 at z = −h (3.8)

where φ = φ(x, z, t), η = η(x, t) and h = h(x1). Note that our assumption regarding to
the bottom variation (2.3), has been considered in equation (3.8).

The free surface boundary conditions (3.6) and (3.7) are nonlinear. We may expand
both kinematic and dynamic surface conditions in a Taylor's series around z = 0 by ap-
plying

∂φ

∂t

∣∣∣∣
z=εη

=
∂φ

∂t

∣∣∣∣
z=0

+ εη
∂2φ

∂z∂t

∣∣∣∣
z=0

+
1

2
(εη)2 ∂3φ

∂z2∂t

∣∣∣∣
z=0

+O(ε3)

∂φ

∂x

∣∣∣∣
z=εη

=
∂φ

∂x

∣∣∣∣
z=0

+ εη
∂2φ

∂z∂x

∣∣∣∣
z=0

+
1

2
(εη)2 ∂3φ

∂z2∂x

∣∣∣∣
z=0

+O(ε3)

∂φ

∂z

∣∣∣∣
z=εη

=
∂φ

∂z

∣∣∣∣
z=0

+ εη
∂2φ

∂z2

∣∣∣∣
z=0

+
1

2
(εη)2 ∂

3φ

∂z3

∣∣∣∣
z=0

+O(ε3)

Taylor expansion of kinematic surface condition about z = 0 yields

∂η

∂t
+ ε[

∂φ

∂x
+ εη

∂2φ

∂z∂x
]
∂η

∂x
+O(ε3) =

∂φ

∂z
+ εη

∂2φ

∂z2
+

1

2
ε2η2∂

3φ

∂z3
+O(ε3) at z = 0 (3.9)

Similarly, Taylor expansion of dynamic surface condition about z = 0 can be written
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as

[
∂φ

∂t
+ εη

∂2φ

∂z∂t
+

1

2
ε2η2 ∂3φ

∂z2∂t
] +O(ε3) + η +

1

2
ε[(
∂φ

∂x
)2 + εη

∂

∂z
((
∂φ

∂x
)2)] +O(ε3)

+
1

2
ε[(
∂φ

∂z
)2 + εη

∂

∂z
((
∂φ

∂z
)2)] +O(ε3) = 0 at z = 0

(3.10)

3.2.1 Representing solution in WKB style

Instead of applying full multiple scales, we use only the slow scales. Accordingly, all
variables and parameters are scaled in term of new coordinates x1 = εx and t1 = εt, and
we consider

∂

∂x
= ε

∂

∂x1

,
∂

∂t
= ε

∂

∂t1

Governing equations in terms of new coordinates x1 and t1 can be presented as

Laplace equation

ε2
∂2φ

∂x2
1

+
∂2φ

∂z2
= 0 at − h < z < 0 (3.11)

Kinematic surface condition

ε
∂η

∂t1
+ ε3

∂φ

∂x1

∂η

∂x1

+ ε4η
∂2φ

∂z∂x1

∂η

∂x1

=
∂φ

∂z
+ εη

∂2φ

∂z2
+

1

2
ε2η2∂

3φ

∂z3
at z = 0 (3.12)

Dynamic surface condition

ε
∂φ

∂t1
+ ε2η

∂2φ

∂z∂t1
+

1

2
ε3η2 ∂3φ

∂z2∂t1
+ η +

1

2
[ε3(

∂φ

∂x1

)2 + ε4η
∂

∂z
((
∂φ

∂x1

)2)]

+
1

2
[ε(
∂φ

∂z
)2 + ε2η

∂

∂z
((
∂φ

∂z
)2)] = 0 at z = 0

(3.13)

Boundary condition along the bottom

∂φ

∂z
+ ε2

∂h

∂x1

∂φ

∂x1

= 0 at z = −h (3.14)

where φ = φ(x1, z, t1), η = η(x1, t1) and h = h(x1).

Solutions for the surface displacement η and the velocity potential φ can be represented
in harmonic expansions in WKB style
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η(x1, t1) = εη̄0 +
∞∑
m=1

εm−1(η̄mE
m + η̄−mE

−m) (3.15)

φ(x1, z, t1) = φ̄0 +
∞∑
m=1

εm−1(φ̄mE
m + φ̄−mE

−m) (3.16)

where the harmonics are identi�ed by

E = eiε
−1χ(x1,t1) (3.17)

and η̄−m =
∗
η̄m , φ̄−m =

∗
φ̄m.

χ(x1, t1) is the phase function de�ned by

k(x1) =
∂χ

∂x1

and ω = − ∂χ
∂t1

(3.18)

where ω and k are related by the dispersion relation

ω2 = gk(x1) tanh(k(x1)h(x1)) (3.19)

Notice that since our depth depends on the long spatial coordinate and the wavenumber k
depends on the depth, the wavenumber is also considered as a function of this coordinate.
Furthermore, our medium has no temporal variation, thus we �x ω to be a constant when
we compute the corresponding k(x1).

Since we are interested in dimensionless equations, ω and k(x1) are made dimensionless
in the following way

ω∗ =
ω

ω0

and k∗(x1) =
k(x1)

k0

(3.20)

where characteristic wavenumber k0 and characteristic frequency ω0 are related to each
other according to the equation (2.2). By applying new variables, following dimensionless
dispersion relation is achieved

(ω∗)2 = k∗(x1) tanh(k∗(x1)h∗(x1)) (3.21)

Since medium has no temporal variation, characteristic frequency ω0 will be the same
everywhere. Therefore, we assume ω0 as our reference frequency, such as ω = ω0, and this
implies ω∗ = 1. After normalization and dropping the stars, the normalized frequency is
1, and the normalized wavenumber is the solution of

k tanh(kh) = 1 (3.22)
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Consequently, we get the dimensionless phase function

χ(x1, t1) =

∫ x1

k(ξ) dξ − t1. (3.23)

Furthermore, the dimensionless phase speed c and the group velocity cg can be expressed
by

c =
ω∗

k∗
=

1

k
(3.24)

cg =
∂ω∗

∂k∗
=

1

2k
[1 + h(k2 − 1)] (3.25)

where k and h are dimensionless. Following �gures describe the wavenumber k, phase
speed c, group velocity cg and their asymptotes as dimensionless functions of h and kh.

h
0 5 10

k

0.5

1

1.5

2
k(h)
asymptote of k(h)

kh
0 5 10

k

0.5

1

1.5

2
k(kh)
asymptote of k(kh)

Figure 3.1: Dimensionless wavenumber k and its asymptote.
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1.5
c(kh)
asymptote of c(kh)

Figure 3.2: Dimensionless phase speed c and its asymptote.
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Figure 3.3: Dimensionless group velocity cg and its asymptote.

The induced-current potential φ̄0 and the set-down η̄0 as well as the complex harmonic
amplitudes φ̄1, φ̄2, φ̄3, · · · , η̄1, η̄2, η̄3, · · · in expansions (3.15) and (3.16), are functions of
the slow modulation variables εx and εt. Furthermore, variables φ̄1, φ̄2, φ̄3, · · · are depend
on the basic vertical coordinate z, while we need to allow the appropriate scale for z be
undecided for φ̄0. This assumption is considered since we in the limit of deep water expect
the appropriate scale to be modulation scale εz for induced-current potential φ̄0, while for
shallow water the scale will be limited by the actual depth (the depth being smaller than
the modulation length). In addition, we are not going to let the depth be shallower than
a wavelength, therefore the appropriate length scale is between εz and z. Accordingly, for
zeroth harmonic we assume following scale for the horizontal coordinate

za = εaz

where a is a scalar, and a ∈ [0, 1] that the value 0 is for �nite depth, and the value 1 is
for deep water.

3.3 Exact solution of Laplace equation over uneven

bathymetry

A study has been carried out by Kundu et al. (2013) to derive nonlinear evolution equa-
tions in a situation of crossing sea state characterized by water waves having two di�erent
spectral peaks. They introduced an operator which was denoted by

∆m = mk − iε ∂

∂x1

They explored a type of operator-form solutions of the Laplace equation via applying this
operator. In this section, we have got inspiration from the study of Kundu et al. (2013)
to �nd this type of solutions for our equations.

Upon substituting expansion (3.16) into the Laplace equation (3.11), and sorting har-
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monics, we obtain the following equation

E0[ε2a
∂2φ̄0

∂z2
a

+ ε2
∂2φ̄0

∂x2
1

] + E1[ε0(
∂2φ̄1

∂z2
−∆2

1φ̄1)]

+ E2[ε(
∂2φ̄2

∂z2
−∆2

2φ̄2)] + E3[ε2(
∂2φ̄3

∂z2
−∆2

3φ̄3)] + · · · = 0 at − h < z < 0

(3.26)

where ∆m is given by

∆m = mk − iε ∂

∂x1

Separately satisfying the coe�cients of Em,m = 1, 2, · · · on both sides of equation (3.26),
we get the following

∂2φ̄m
∂z2

−∆2
mφ̄m = 0 at − h < z < 0

The exact solution of this equation can be written as

φ̄m(x1, z, t1) = ez∆mAm(x1, t1) + e−z∆mBm(x1, t1) (3.27)

We may rewrite Am and Bm

Am =
∞∑
n=0

εnAm,n (3.28)

Bm =
∞∑
n=0

εnBm,n (3.29)

In order to get equations valid for arbitrary depth, we do not consider any speci�ed
expansions for induced-current potential φ̄0 and set-down η̄0. Whereas, the following
expansion is employed for η̄m where m > 1

η̄m =
∞∑
n=0

εnη̄m,n (3.30)

Since our interest is primarily in the surface elevation η, our strategy will be to express
Am, Bm and the �nal evolution equation in terms of η̄1,0. One advantage of this could be
that while Am and Bm are functions of z, η̄1,0 is not. Therefore, perturbation analysis has
been done with the constraint that

η̄1,n = 0 (3.31)

for n > 0, and it implies that η̄1 = η̄1,0. Note that this constraint is not employed for η̄m,n
for m > 1.
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3.4 Rewriting boundary conditions in terms of ∆m

The next step is rewriting our boundary conditions in term of ∆m, and in this stage we
need to know what the answer of following question is.

3.4.1 Question: What is ∂
∂ze

z(f(x)+ ∂
∂x )?

Write as series expansion

ez(f(x)+ ∂
∂x

) =
∞∑
n=0

zn

n!

(
f(x) +

∂

∂x

)n
(3.32)

Taking the derivative, we may factor out the common factor to the left

∂

∂z
ez(f(x)+ ∂

∂x
) =

∞∑
n=1

zn−1

(n− 1)!

(
f(x) +

∂

∂x

)n
=

(
f(x) +

∂

∂x

) ∞∑
n=0

zn

n!

(
f(x) +

∂

∂x

)n (3.33)

or to the right

∂

∂z
ez(f(x)+ ∂

∂x
) =

∞∑
n=1

zn−1

(n− 1)!

(
f(x) +

∂

∂x

)n
=
∞∑
n=0

zn

n!

(
f(x) +

∂

∂x

)n(
f(x) +

∂

∂x

) (3.34)

Clearly, it does not matter if the common factor
(
f(x) + ∂

∂x

)
is factored out to the left or

to the right, therefore we arrive at the result

∂

∂z
ez(f(x)+ ∂

∂x
) =

(
f(x) +

∂

∂x

)
ez(f(x)+ ∂

∂x
)

= ez(f(x)+ ∂
∂x

)

(
f(x) +

∂

∂x

) (3.35)

This fact is applied to derive following equations for bottom and surface conditions.
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3.4.2 Bottom condition in terms of ∆m

By substituting harmonic expansions (3.15) and (3.16) in equation (3.14), we get the
following boundary condition in terms of ∆m along the bottom

[εa
∂φ̄0

∂za
+
∞∑
m=1

εm−1(
∂φ̄m
∂z

Em + c.c.)]

+ ε2
∂h

∂x1

[ε0
∂φ̄0

∂x1

+
∞∑
m=1

iεm−2(∆mφ̄mE
m + c.c.)] = 0 at z = −h(x1)

(3.36)

Equating coe�cients of Em,m = 1, 2, · · · on both sides of obtained equation, we achieve
the following{

1 + iε
∂h

∂x1

}
ez∆m∆mAm+

{
−1 + iε

∂h

∂x1

}
e−z∆m∆mBm = 0 at z = −h(x1) (3.37)

Extracting the leading order contribution from this equation, we get for each m = 1, 2, · · ·

e−mk(x1)h(x1)mk(x1)Am,0 − emk(x1)h(x1)mk(x1)Bm,0 = 0 (3.38)

thus
Am,0 = e2mk(x1)h(x1)Bm,0 (3.39)

3.4.3 Surface conditions in terms of ∆m

After applying harmonic expansions (3.15) and (3.16) into kinematic surface condition
(3.12) and dynamic surface condition (3.13), results could be expressed by following equa-
tions.

Kinematic Surface condition
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ε[ε
∂η̄0

∂t1
−
∞∑
m=1

iεm−2(Wmη̄mE
m + c.c.)]

+ ε3[ε0
∂φ̄0

∂x1

+
∞∑
m=1

iεm−2(∆mφ̄mE
m + c.c.)][ε

∂η̄0

∂x1

+
∞∑
m=1

iεm−2(∆mη̄mE
m + c.c.)]

+ ε4[εη̄0 +
∞∑
m=1

εm−1(η̄mE
m + c.c.)][εa

∂2φ̄0

∂za∂x1

+
∞∑
m=1

iεm−2(
∂

∂z
(∆mφ̄m)Em + c.c.)]

[ε
∂η̄0

∂x1

+
∞∑
m=1

iεm−2(∆mη̄mE
m + c.c.)] = [εa

∂φ̄0

∂za
+
∞∑
m=1

εm−1(
∂φ̄m
∂z

Em + c.c.)]

+ ε[εη̄0 +
∞∑
m=1

εm−1(η̄mE
m + c.c.)][ε2a

∂2φ̄0

∂z2
a

+
∞∑
m=1

εm−1(
∂2φ̄m
∂z2

Em + c.c.)]

+
1

2
ε2[εη̄0 +

∞∑
m=1

εm−1(η̄mE
m + c.c.)]2[ε3a

∂3φ̄0

∂z3
a

+
∞∑
m=1

εm−1(
∂3φ̄m
∂z3

Em + c.c.)] at z = 0

(3.40)

Dynamic Surface condition

ε[ε0
∂φ̄0

∂t1
−
∞∑
m=1

iεm−2(Wmφ̄mE
m + c.c.)]

+ ε2[εη̄0 +
∞∑
m=1

εm−1(η̄mE
m + c.c.)][εa

∂2φ̄0

∂za∂t1
−
∞∑
m=1

iεm−2(
∂

∂z
(Wmφ̄m)Em + c.c.)]

+
1

2
ε3[εη̄0 +

∞∑
m=1

εm−1(η̄mE
m + c.c.)]2[ε2a

∂3φ̄0

∂z2
a∂t1

−
∞∑
m=1

iεm−2(
∂2

∂z2
(Wmφ̄m)Em + c.c.)]

+ [εη̄0 +
∞∑
m=1

εm−1(η̄mE
m + c.c.)] +

1

2
ε3[ε0

∂φ̄0

∂x1

+
∞∑
m=1

iεm−2(∆mφ̄mE
m + c.c.)]2

+ ε4[εη̄0 +
∞∑
m=1

εm−1(η̄mE
m + c.c.)][ε0

∂φ̄0

∂x1

+
∞∑
m=1

iεm−2(∆mφ̄mE
m + c.c.)]

[εa
∂2φ̄0

∂x1∂za
+
∞∑
m=1

iεm−2(
∂

∂z
(∆mφ̄m)Em + c.c.)] +

1

2
ε[εa

∂φ̄0

∂za
+
∞∑
m=1

εm−1(
∂φ̄m
∂z

Em + c.c.)]2

+ ε2[εη̄0 +
∞∑
m=1

εm−1(η̄mE
m + c.c.)][εa

∂φ̄0

∂za
+
∞∑
m=1

εm−1(
∂φ̄m
∂z

Em + c.c.)]

[ε2a
∂2φ̄0

∂z2
a

+
∞∑
m=1

εm−1(
∂2φ̄m
∂z2

Em + c.c.)] = 0 at z = 0

(3.41)

where Wm is the operator

Wm = m+ iε
∂

∂t1
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3.5 Derivation of equations for di�erent harmonics

For deriving equations from the bottom condition (3.36) for di�erent harmonics, we in-
troduce the following series expansion for m = 1, 2, · · ·

ez∆m =
∞∑
n=0

εnan (3.42)

where

an =
1

n!

∂n

∂εn
(ez∆m)

∣∣∣∣
ε=0

(3.43)

We evaluate (3.43) at z = −h(x1) after all di�erentiation, such that h(x1) is not sub-
ject to di�erentiation due to the di�erential operator ∆m.

By calculating an, following expansion is achieved

ez∆m = e−mkh +
1

1!
εihe−mkh

∂

∂x1

+
1

2!
ε2(−1)h2e−mkh

∂2

∂x2
1

+ · · · (3.44)

We will use this expansion to derive equations along the bottom for di�erent harmonics.

3.5.1 Equations for �rst harmonic (E1)

By substituting m = 1 in the equation (3.27), the solution of Laplace equation for the
�rst harmonic can be represented by

φ̄1 = ez∆1A1(x1, t1) + e−z∆1B1(x1, t1) (3.45)

3.5.1.1 Zeroth order problem (O(ε0)E1)

The equation corresponding to the boundary condition along the bottom is obtained by
substituting (3.45) in the bottom condition (3.36) for m = 1, and extracting the leading
order contribution

e−khA1,0 − ekhB1,0 = 0

In addition, we get the following equations for free surface conditions from equations
(3.40) and (3.41)

−kA1,0 + kB1,0 − iη̄1 = 0
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−iA1,0 − iB1,0 + η̄1 = 0

where our unknowns are A1,0 , B1,0 , η̄1.

As we aim to express the evolution equation in term of the �rst harmonic and the zeroth
order amplitude of the surface displacement, we represent our unknowns in the forms

A1,0 = −ie2hk(1 + e2hk)−1η̄1 (3.46)

B1,0 = −i(1 + e2kh)−1η̄1 (3.47)

Note that we have assumed η̄1 = η̄1,0.

3.5.1.2 First order problem (O(ε)E1)

At this order after some simpli�cations, following three equations are achieved for the
bottom condition and free surface conditions

• Bottom condition
εke−khA1,1 − εkekhB1,1 = F1,1

• Kinematic surface condition

−εkA1,1 + εkB1,1 − iεη̄1,1 = G1,1

• Dynamic surface condition

−iεA1,1 − iεB1,1 + εη̄1,1 = H1,1

where

F1,1 = ε{i[1− kh]e−kh
∂A1,0

∂x1

− i[1 + kh]ekh
∂B1,0

∂x1

− ik[e−khA1,0 + ekhB1,0]
∂h

∂x1

− ih[e−khA1,0 + ekhB1,0]
∂k

∂x1

}
(3.48)

G1,1 = −ε∂η̄1

∂t1
− iε∂A1,0

∂x1

+ iε
∂B1,0

∂x1

+ ε1+2a∂
2φ̄0

∂z2
a

η̄1 (3.49)

Clearly, the Laplace equation (3.26) for the zeroth harmonic suggests that

ε2a
∂2φ̄0

∂z2
a

= O(ε2) (3.50)
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for all value of z. Since this term appears in the equation (3.49), we conclude that the
very last term in the equation(3.49) is of order ε3, and it can be neglected.

H1,1 can be expressed by

H1,1 = −ε∂A1,0

∂t1
− ε∂B1,0

∂t1
+ iε1+a∂φ̄0

∂za
η̄1 (3.51)

The kinematic surface condition (3.40) for the zeroth harmonic suggests

εa
∂φ̄0

∂za
= O(ε2) (3.52)

at the surface. Therefore, the last term in H1,1 is of order ε3, and it does not belong to
this order. Achieved equations can be represented in the following matrix form

Mx = b

where

M =


ke−kh −kekh 0

−k k −i

−i −i 1



x =


εA1,1

εB1,1

εη̄1,1

 , b =


F1,1

G1,1

H1,1


Simply, we can verify that det(M) = 0, and it means that we get a singularity. In order
to remove the singularity, we can use the Fredholm's alternative theorem.

Fredholm's alternative theorem:

For any A ∈ Cm×n, b ∈ Cn, one and only one of the following systems has a solution

(1) Ax = b, (2) A∗y = 0, y∗b 6= 0

In other words, Ax = b has a solution if and only if

(b, ker((Ā)T )) = 0
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This is called Fredholm's alternative (Lyche, 2014).

By applying this theorem for our case, following equation which is called the solvabil-
ity condition should be satis�ed for removing the singularity

2i

k(e−kh − ekh)
F1,1 − iG1,1 +H1,1 = 0 (3.53)

Considering expressions for F1,1, G1,1 and H1,1 from (3.48), (3.49) and (3.51) in the equa-
tion (3.53), gives

iεµ
∂h

∂x1

η̄1 + iε(
∂η̄1

∂x1

+
1

cg

∂η̄1

∂t1
) = 0 (3.54)

where cg is given by the expression (3.25), and

µ =
(1− h)(k2 − 1)

4k2c2
g

(3.55)

This result has also been reported by Djordjevi¢ and Redekopp (1978) and Zeng and
Trulsen (2012).

At this stage, we aim to �nd unknowns A1,1 and B1,1 by solving the system, Mx = b.
Simply, it can be veri�ed thatM is singular. Following section follows that the generalized
inverse can be used as one of the methods to �nd the solution of this system.

Generalized inverse

Theorem:
consider linear system Ax = b of m equations in n unknowns. The following is equivalent:

1. x is a least square solution,

2. x = A†b+ z for some z ∈ Cn with Az = 0,

3. A∗Ax = A∗b.

A† is called the generalized inverse or pseudo inverse of A, and it de�nes by

A† = V1Σ−1
1 U∗1

for any singular value factorization U1Σ1V
∗

1 of A (Lyche, 2014). Mentioned matrices U1,
Σ1 and V1 can be found by applying the following theorem.

Theorem (Existence of SVD):
Suppose for m,n, r ∈ N that A ∈ Cm×n has rank r, and that (λj, ~νj) are orthonormal
eigenpairs for A∗A with λ1 ≥ . . . λr > 0 = λr+1 = . . . = λn. De�ne

1. V = [~ν1, . . . , ~νn] ∈ Cn×n,
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2. Σ ∈ Rm×n is a diagonal matrix with diagonal elements σj =
√
λj for j = 1, . . . ,min(m,n),

3. U = [~u1, . . . , ~um] ∈ Cm×m,where ~uj = σ−1
j

−−−→
(Aνj) for j = 1, . . . , r, and ~ur+1, . . . , ~um is

an extension of ~u1, . . . , ~ur to an orthonormal basis ~u1, . . . , ~um for Cm.

Then A = UΣV ∗ is an ordered singular value decomposition of A (Lyche, 2014).

Singular value factorization is a decomposition of A such as

A = U1Σ1V
∗

1

where
Σ1 = diag(σ1, . . . , σr) ∈ Rr×r

U1 = [~u1, . . . , ~ur] ∈ Cm×r

V1 = [~ν1, . . . , ~νr] ∈ Cn×r

By applying this method, we can compute the generalized inverse of the singular matrix
M , and unknowns can be found by computing x = M †b+z for some z ∈ Cn withMz = 0.
Since this matrix appears for di�erent harmonics, if someone try to solve this system for
di�erent harmonic, it can be useful to apply this method.

This method is not used in our thesis since we aim to solve this system once. There-
fore, in order to �nd the unknowns, the Gaussian elimination method is employed, which
is more convenient for our case.

Gaussian elimination method

In order to �nd A1,1, B1,1 and η̄1,1 from the matrix system, Mx = b, the Gaussian
elimination method is applied. We convert the matrix M to an upper triangular matrix
and same arithmetic operations should be applied on b. Then, via backward substitution,
unknowns in the given system can be found. Applying this technique for our system yields
an upper triangular system

Nx = d

where

N =


ke−kh −kekh 0

0 k(1− e2kh) −i

0 0 (1+e2kh)
k(1−e2kh)

+ 1



d =


F1,1

ekhF1,1 +G1,1

i(1+e2kh)
k(1−e2kh)

(ekhF1,1 +G1,1) + i
k
ekhF1,1 +H1,1


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We de�ne

σ = tanh kh =
e2kh − 1

e2kh + 1

Since kσ = 1, it follows that

N3,3 =
(1 + e2kh)

k(1− e2kh)
+ 1 = 0

Simply, we can verify that d3,1 is equal to the right hand side of the solvability condition
(3.53). Therefore, we conclude

d3,1 = 0

Hence, following simpli�ed system of equations is obtained


ke−kh −kekh 0

0 k(1− e2kh) −i

0 0 0




εA1,1

εB1,1

εη̄1,1

 =


F1,1

ekhF1,1 +G1,1

0

 .

From (3.31), we have assumed η̄1,1 = 0, and according to this assumption, A1,1 and
B1,1 can be written as

A1,1 =
ε−1ekh

k
F1,1 + e2khB1,1 (3.56)

B1,1 =
ε−1

k(1− e2kh)
[ekhF1,1 +G1,1] (3.57)

Substituting F1,1 from (3.48) and G1,1 from (3.49) and applying equation (3.54) for sub-

stituting ∂η̄1,0

∂x1
, yield

A1,1 = [
h(k2 − 1)

8k3c2
g

(h2k3 + k2h2 + (−h2 + h+ 1)k − h2 + h)]
∂h

∂x1

η̄1

+ [
(k + 1)

4k2cg
(2kh− k2h− h− 1)]

∂η̄1

∂t1

(3.58)

B1,1 = [
h(1− k2)

8k2c2
g

]
∂h

∂x1

η̄1 + [
1− k
4k2cg

(hk2 + 2kh+ h+ 1)]
∂η̄1

∂t1
(3.59)
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3.5.2 Zeroth harmonic (E0): Induced mean �ow and set-down

Since the induced mean �ow appears in the NLS equation to lower order on the �nite
depth than on the deep water, and we aim to derive the NLS equation in a general form
which can apply for both �nite and in�nite depth, in this harmonic we do not consider
any expansions for the induced-current potential φ̄0 and the set-down η̄0. By including all
�rst and second order terms in the Laplace equation, the bottom condition and bound-
ary surface conditions for zeroth harmonic, the following set of di�erential equations is
achieved.

ε2
∂2φ̄0

∂x2
1

+ ε2a
∂2φ̄0

∂z2
a

= 0 at − εah < za < 0 (3.60)

εa
∂φ̄0

∂za
+ ε2

∂h

∂x1

∂φ̄0

∂x1

= 0 at za = −εah(x1) (3.61)

ε2
∂η̄0

∂t1
− εa∂φ̄0

∂za
= ε2[−2k

∂ | η̄1 |2

∂x1

− (1− k2)

cg
| η̄1 |2

∂h

∂x1

] at za = 0 (3.62)

ε
∂φ̄0

∂t1
+ εη̄0 = ε(1− k2) | η̄1 |2 at za = 0 (3.63)

In previous studies by Djordjevi¢ and Redekopp (1978) and Liu and Dingemans (1989),
following perturbation expansions were employed for φ̄0 and η̄0

φ̄0 = εφ̄0,1 + ε2φ̄0,2 + ε3φ̄0,3 + · · ·

η̄0 = εη̄0,1 + ε2η̄0,2 + ε3η̄0,3 + · · ·

Perturbation expansions applied in the study of Zeng and Trulsen (2012) were

φ̄0 = φ̄0,1 + εφ̄0,2 + ε2φ̄0,3 + · · ·

η̄0 = η̄0,1 + εη̄0,2 + ε2η̄0,3 + · · ·

By applying these expansions, they have implicitly assumed the depth is small, limited
from above, and kh = O(1), such that the vertical scale for φ̄0 would be determined by
the actual depth. Accordingly, their solution for φ̄0 is not valid for greater depth when
φ̄0 will have vertical scale determined by the horizontal modulation of the wave z1 =
εz. Therefore, reported results by Djordjevi¢ and Redekopp (1978), Liu and Dingemans
(1989) and Zeng and Trulsen (2012) are of limited validity because they have made such
restricting assumptions of limiting depth from above. For this reason, we do not consider
any speci�ed expansions for the induced-current potential φ̄0 and the set-down η̄0 in order
to allow our depth, (kh)−1 = O(1), limited from above.
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3.5.3 Equations for second harmonic (E2)

From (3.27) for m = 2, solution for the Laplace equation can be presented by

φ̄2 = ez∆2A2(x1, t1) + e−z∆2B2(x1, t1) (3.64)

3.5.3.1 Zeroth order (O(ε0)E2)

• Bottom condition
The bottom condition for this harmonic at this order yields

A2,0 = e4khB2,0 (3.65)

• Kinematic and dynamic surface conditions
we do not get any contribution from kinematic and dynamic conditions on the free
surface for the second harmonic at the zeroth order.

3.5.3.2 First order (O(ε1)E2)

• Bottom condition
The equation from the bottom condition (3.36) for the second harmonic at the �rst
order can be expressed as

2ke−2khA2,1 − 2ke2khB2,1 = i(1− 2kh)e−2kh∂A2,0

∂x1

− i(1 + 2kh)e2kh∂B2,0

∂x1

− 2ik(e−2khA2,0 + e2hkB2,0)
∂h

∂x1

− 2ih(e−2khA2,0 + e2hkB2,0)
∂k

∂x1

(3.66)

• Kinematic surface condition
The kinematic condition on the free surface for this case requires

− 2iη̄2,0 = 2k2(A1,0 +B1,0)η̄1 + 2k(A2,0 −B2,0) (3.67)

By substituting A1,0 from the expression (3.46) and B1,0 from the expression (3.47)
and applying the expression(3.65), we end up with

η̄2,0 = k2η̄2
1 + ik(e4kh − 1)B2,0 (3.68)

• Dynamic surface condition
The following equation is the contribution from dynamic surface condition for the
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second harmonic at the �rst order

−2i(A2,0 +B2,0) + η̄2,0 = ik(A1,0 −B1,0)η̄1 −
1

2
k2(A1,0 −B1,0)2 − 1

2
k2(A1,0 +B1,0)2

(3.69)

After some simpli�cations, we get

B2,0 =
(k − 1)2(k2 − 3)

8i(k2 + 1)
η̄2

1 +
(k − 1)2

4i(k2 + 1)
η̄2,0 (3.70)

By substituting B2,0 from the expression (3.70) in the equation (3.68), we get the
second harmonic amplitude η̄2,0 of the surface displacement as below

η̄2,0 =
k2(3k2 − 1)

2
η̄2

1 (3.71)

which is consistent with the result of Zeng and Trulsen (2012).

3.5.4 Equations for �rst harmonic at second order (O(ε2)E1)

Following equations are achieved for the �rst harmonic at the second order.

• Boundary condition along the bottom

ε2ke−khA1,2 − ε2kekhB1,2 = F1,2

• Kinematic surface condition

−ε2kA1,2 + ε2kB1,2 − iε2η̄1,2 = G1,2

• Dynamic surface condition

−iε2A1,2 − iε2B1,2 + ε2η̄1,2 = H1,2
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where

F1,2 = ε2{1

2
(kh− 2)he−kh

∂2A1,0

∂x2
1

+ h2e−kh
∂k

∂x1

∂A1,0

∂x1

+
1

2
h2e−kh

∂2k

∂x2
1

A1,0

+ i(1− kh)e−kh
∂A1,1

∂x1

− ihe−kh ∂k
∂x1

A1,1 −
1

2
(kh+ 2)hekh

∂2B1,0

∂x2
1

− h2ekh
∂k

∂x1

∂B1,0

∂x1

− 1

2
h2ekh

∂2k

∂x2
1

B1,0 − i(1 + kh)ekh
∂B1,1

∂x1

− ihekh ∂k
∂x1

B1,1 − i
∂h

∂x1

[−i(1− kh)e−kh
∂A1,0

∂x1

+ ihe−kh
∂k

∂x1

A1,0

+ ke−khA1,1 − i(1 + kh)ekh
∂B1,0

∂x1

− ihekh ∂k
∂x1

B1,0 + kekhB1,1]}

(3.72)

G1,2 = ε2{2k2(A2,0 +B2,0)η̄∗1 − k2(A∗1,0 +B∗1,0)η̄2,0 + i(
∂B1,1

∂x1

− ∂A1,1

∂x1

)

+ k3(A1,0 −B1,0) | η̄1 |2 −
1

2
k3(A∗1,0 −B∗1,0)η̄2

1 − ik
∂φ̄0

∂x1

η̄1 + k2(A1,0 +B1,0)η̄0}
(3.73)

H1,2 = ε2{−(
∂A1,1

∂t1
+
∂B1,1

∂t1
)− ik(A∗1,0 −B∗1,0)η̄2,0 + 4ik(A2,0 −B2,0)η̄∗1

− 1

2
ik2(A∗1,0 +B∗1,0)η̄2

1,0 + ik2(A1,0 +B1,0) | η̄1 |2 −2k2(A∗1,0 +B∗1,0)(A2,0 +B2,0)

− 2k2(A∗1,0 −B∗1,0)(A2,0 −B2,0)− k3(A2
1,0 −B2

1,0)η̄∗1 − k3(A1,0 −B1,0)(A∗1,0 +B∗1,0)η̄1

+ k3(A2
1,0 −B2

1,0)η̄∗1 − k3[(A1,0 −B1,0)(A∗1,0 +B∗1,0) + (A1,0 +B1,0)(A∗1,0 −B∗1,0)]η̄1

− k3(A1,0 +B1,0)(A∗1,0 −B∗1,0)η̄1 + ik(A1,0 −B1,0)η̄0 − ik(A1,0 +B1,0)
∂φ̄0

∂x1

}

(3.74)

Note that all terms which get contribution from εa ∂φ̄0

∂za
and ε2a ∂

2φ̄0

∂z2
a
in the expressions (3.73)

and (3.74), are so small that they are neglected due to (3.50) and (3.52).

Matrix form of the equations can be expressed as

Mx = b

where

M =


ke−kh −kekh 0

−k k −i

−i −i 1


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x =


ε2A1,2

ε2B1,2

ε2η̄1,2

 , b =


F1,2

G1,2

H1,2


Since M is singular, the Fredholm's alternative theorem is applied to �nd the solvability
condition. It implies the following condition

2i

k(e−kh − ekh)
F1,2 − iG1,2 +H1,2 = 0 (3.75)

Substituting the expressions for F1,2, G1,2 and H1,2 from (3.72), (3.73) and (3.74) into the
solvability condition (3.75), after some algebra we obtain

ε2{λ̄∂
2η̄1

∂t21
+ ᾱ(

∂h

∂x1

)2η̄1 + β̄
∂2h

∂x2
1

η̄1 + γ̄
∂h

∂x1

∂η̄1

∂t1
+ ν̄η̄1 | η̄1 |2

+ θ̄1
∂φ̄0

∂x1

η̄1 + θ̄2η̄0η̄1} = 0 at z = 0

(3.76)

where the coe�cients are given by

cg =
1

2k
[1 + h(k2 − 1)]

ν̄ =
−k2

2
[9k4 − 10k2 + 9]

λ̄ =
−1

4k2c2
g

[−3h2 + 2h+ 1 + d(−2k) + d2(k2 + 2)]

β̄ =
−1

8k2c2
g

[h3 + h2 − 2h+ d(2k) + d2(−2h− 1) + d3(k)]

ᾱ =
−1

16k4c4
g

[k2−h4+2h2−1+d(3k−3k3)+d2(k4+k2+3h2−3h−4)+d3(6k−3k3)+d4(k2−3)]

γ̄ =
1

8k4c3
g

[−2k2 + h4 − 3h3 + 5h2 − 5h+ 2 + d(3k3 + 2k) + d2(−4k4 + 9k2

− 4h2 + 14h− 10) + d3(−k5 + 10k3 − 20k) + d4(k4 − 4k2 + 6)]
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θ̄1 = −2k

θ̄2 = 1− k2

and d = kh. Note that in this case all of the mentioned coe�cients are the functions of x1.

Since we aim to derive both space and time evolution equations in terms of η̄1, we change
all the �rst and second derivatives with respect to t1 to the �rst and second derivatives
with respect to x1 in the equation (3.76). The time and space derivatives are related to
each other based on the following expression which is achieved from the equation (3.54)

ε
∂η̄1

∂t1
= −εcg

∂η̄1

∂x1

− εcgµ
∂h

∂x1

η̄1 (3.77)

and consequently

ε
∂2η̄1

∂t21
=

∂

∂t1
[−εcg

∂η̄1

∂x1

− εcgµ
∂h

∂x1

η̄1]

= ε{cg
∂cg
∂x1

∂η̄1

∂x1

+ c2
g

∂2η̄1

∂x2
1

+ cg
∂(cgµ)

∂x1

∂h

∂x1

η̄1

+ c2
gµ
∂2h

∂x2
1

η̄1 + 2c2
gµ

∂h

∂x1

∂η̄1

∂x1

+ c2
gµ

2(
∂h

∂x1

)2η̄1}

(3.78)

By inserting into the equation (3.76), after some calculations and simpli�cations we get

ε2{Λ̄∂
2η̄1

∂x2
1

+ Ψ̄(
∂h

∂x1

)2η̄1 + Ῡ
∂2h

∂x2
1

η̄1 + Γ̄
∂h

∂x1

∂η̄1

∂x1

+ ϑ̄η̄1 | η̄1 |2

+ θ̄3
∂φ̄0

∂x1

η̄1 + θ̄4η̄0η̄1} = 0 at z = 0

(3.79)

where

cg =
1

2k
[1 + h(k2 − 1)]

ϑ̄ =
−k2

2
[9k4 − 10k2 + 9]

Λ̄ =
−1

4k2
[−3h2 + 2h+ 1 + d(−2k) + d2(k2 + 2)]

Ῡ = − 1

16k4c2
g

[k2 − 3h3 + 5h2 − h− 1 + d(2k3 − k) + d2(k4 + k2 + 7h− 7) + d3(k3 − 5k)]
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Ψ̄ =
1

64k8c4
g

[k6 − 3k4 + 2k2 + d(4k7 − 12k5 + 22k3 − 14k) + d2(5k8 − 24k6 + 61k4

− 74k2 − 2h3 + 14h2 − 32h+ 32) + d3(2k9 − 18k7 + 70k5 − 126k3 + 104k)

+ d4(−3k8 + 26k6 − 74k4 + 96k2 + 10h− 59) + d5(2k7 − 10k5 + 20k3 − 20k)]

Γ̄ =
1

8k4c2
g

[−h4 + 9h3 − 15h2 + 7h+ d(k3 − 8k) + d2(2k4 − 15k2 + 4h2 − 24h+ 28)

+ d3(k5 − 8k3 + 22k) + d4(−k4 + 4k2 − 6)]

θ̄3 = −2k

θ̄4 = 1− k2

and d = kh. These coe�cients are also the functions of x1.

3.6 Modi�ed nonlinear Schrödinger model

NLS-type equations can be formulated in di�erent forms suitable for describing the time
evolution of a spatial �eld or the space evolution of a temporal �eld (To�oli et al., 2010).
In this thesis, the nonlinear Schrödinger equation is represented in both space evolution
and time evolution equations.

3.6.1 Space evolution in terms of surface elevation

The nonlinear Schrödinger equation with variable coe�cients and shoaling terms for un-
even bottom is derived from (3.54) and (3.76)

ε{i ∂η̄1

∂x1

+
i

cg

∂η̄1

∂t1
+ iµ

∂h

∂x1

η̄1}+ ε2{λ∂
2η̄1

∂t21
+ α(

∂h

∂x1

)2η̄1 + β
∂2h

∂x2
1

η̄1

+ γ
∂h

∂x1

∂η̄1

∂t1
+ νη̄1 | η̄1 |2 +θ1

∂φ̄0

∂x1

η̄1 + θ2η̄0η̄1} = 0 at za = 0

(3.80)

where

cg =
1

2k
[1 + h(k2 − 1)]
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µ =
(1− h)(k2 − 1)

4k2c2
g

(3.81)

ν =
−k2

4cg
[9k4 − 10k2 + 9]

λ =
−1

8k2c3
g

[−3h2 + 2h+ 1 + d(−2k) + d2(k2 + 2)] (3.82)

β =
−1

16k2c3
g

[h3 + h2 − 2h+ d(2k) + d2(−2h− 1) + d3(k)]

α =
−1

32k4c5
g

[k2−h4+2h2−1+d(3k−3k3)+d2(k4+k2+3h2−3h−4)+d3(6k−3k3)+d4(k2−3)]

γ =
1

16k4c4
g

[−2k2 + h4 − 3h3 + 5h2 − 5h+ 2 + d(3k3 + 2k) + d2(−4k4 + 9k2

− 4h2 + 14h− 10) + d3(−k5 + 10k3 − 20k) + d4(k4 − 4k2 + 6)]

θ1 =
−k
cg

θ2 =
1− k2

2cg

Note that since we are interested in the space evolution in terms of the surface elevation,
all of the coe�cients of the equation (3.76) have been divided by 2cg. The coe�cients
µ and λ have also been reported in the studies by Djordjevi¢ and Redekopp (1978) and
Zeng and Trulsen (2012).

Since the induced-current potential φ̄0 and the set-down η̄0 appear in the equation (3.80),
the evolution equation is coupled with the equations from the zeroth harmonic

ε2
∂2φ̄0

∂x2
1

+ ε2a
∂2φ̄0

∂z2
a

= 0 at − εah < za < 0 (3.83)

εa
∂φ̄0

∂za
+ ε2

∂h

∂x1

∂φ̄0

∂x1

= 0 at za = −εah(x1) (3.84)
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ε2
∂η̄0

∂t1
− εa∂φ̄0

∂za
= ε2[−2k

∂ | η̄1 |2

∂x1

− (1− k2)

cg
| η̄1 |2

∂h

∂x1

] at za = 0 (3.85)

ε
∂φ̄0

∂t1
+ εη̄0 = ε(1− k2) | η̄1 |2 at za = 0 (3.86)

Clearly, the equation (3.86) suggests that

η̄0 = −∂φ̄0

∂t1

∣∣∣∣
za=0

+ (1− k2) | η̄1 |2 (3.87)

By inserting into the kinematic surface condition (3.85), we achieve

ε2
∂2φ̄0

∂t21
+ εa

∂φ̄0

∂za
= ε2[(1− k2)

∂ | η̄1 |2

∂t1
+ 2k

∂ | η̄1 |2

∂x1

+
(1− k2)

cg
| η̄1 |2

∂h

∂x1

] at za = 0

(3.88)

Following plot demonstrates behavior of the coe�cients as a function of dimensionless
depth kh on the interval [0, 10].
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Figure 3.4: Coe�cients of space evolution equations with respect to dimensionless depth
kh.
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3.6.2 Time evolution in terms of surface elevation

By considering both equations (3.54) and (3.79), the time evolution equations can be
expressed by

ε{i∂η̄1

∂t1
+ icg

∂η̄1

∂x1

+ iµ1
∂h

∂x1

η̄1}+ ε2{Λ∂
2η̄1

∂x2
1

+ Ψ(
∂h

∂x1

)2η̄1 + Υ
∂2h

∂x2
1

η̄1

+ Γ
∂h

∂x1

∂η̄1

∂x1

+ ϑη̄1 | η̄1 |2 +θ3
∂φ̄0

∂x1

η̄1 + θ4η̄0η̄1} = 0 at za = 0

(3.89)

where coe�cients are given by

cg =
1

2k
[1 + h(k2 − 1)]

µ1 =
(1− h)(k2 − 1)

4k2cg

ϑ =
−k2

4
[9k4 − 10k2 + 9]

Λ =
−1

8k2
[−3h2 + 2h+ 1 + d(−2k) + d2(k2 + 2)]

Υ = − 1

32k4c2
g

[k2 − 3h3 + 5h2 − h− 1 + d(2k3 − k) + d2(k4 + k2 + 7h− 7) + d3(k3 − 5k)]

Ψ =
1

128k8c4
g

[k6 − 3k4 + 2k2 + d(4k7 − 12k5 + 22k3 − 14k) + d2(5k8 − 24k6 + 61k4

− 74k2 − 2h3 + 14h2 − 32h+ 32) + d3(2k9 − 18k7 + 70k5 − 126k3 + 104k)

+ d4(−3k8 + 26k6 − 74k4 + 96k2 + 10h− 59) + d5(2k7 − 10k5 + 20k3 − 20k)]

Γ =
1

16k4c2
g

[−h4 + 9h3 − 15h2 + 7h+ d(k3 − 8k) + d2(2k4 − 15k2 + 4h2 − 24h+ 28)

+ d3(k5 − 8k3 + 22k) + d4(−k4 + 4k2 − 6)]

θ3 = −k
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θ4 =
1− k2

2

The induced mean �ow φ̄0 is governed by

ε2
∂2φ̄0

∂x2
1

+ ε2a
∂2φ̄0

∂z2
a

= 0 at − εah < za < 0 (3.90)

εa
∂φ̄0

∂za
+ ε2

∂h

∂x1

∂φ̄0

∂x1

= 0 at za = −εah(x1) (3.91)

ε2
∂2φ̄0

∂t21
+ εa

∂φ̄0

∂za
= ε2[(1− k2)

∂ | η̄1 |2

∂t1
+ 2k

∂ | η̄1 |2

∂x1

+
(1− k2)

cg
| η̄1 |2

∂h

∂x1

] at za = 0

(3.92)
and the set-down η̄0 can be achieved from

η̄0 = −∂φ̄0

∂t1

∣∣∣∣
za=0

+ (1− k2) | η̄1 |2 (3.93)

Note that we tried to derive the time evolution in terms of the surface elevation in the
equation (3.89), therefore all coe�cients of (3.79) have been divided by 2. The behavior
of the coe�cients with respect to dimensionless depth kh on interval [0, 10] is described
by �gure 3.5.
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Figure 3.5: Coe�cients of time evolution equations with respect to dimensionless depth
kh.
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Chapter 4

Special cases

In this chapter the Green's law is investigated for space evolution equation as a special
case. Furthermore, this chapter includes space and time evolution equations in the limit
of �at bottom for both deep water and �nite depth. Analytical solutions of induced mean
�ow φ̄0 and set-down η̄0 are also presented. We aim to use the equations derived in this
chapter to study the stability of uniform Stokes waves in chapter 5.

4.1 Green's law

Our expectation for the amplitude of a wave �eld, changes in relation to the depth when
the waves move from deeper to the shallower water, can be found by Green's law. The
Green's law states that as a consequence of the conservation of energy �ux, the amplitude
η̄1 should vary proportional to the depth h to the power −1

4
in the limit h becomes small

(Lamb, 1932). In the following, we purpose to recover the Green's law in our case. By
removing all nonlinear terms and terms which contain temporal derivatives in the equation
(3.80), following equation is achieved

i
∂η̄1

∂x1

+ iµ
∂h

∂x1

η̄1 + ε[α(
∂h

∂x1

)2η̄1 + β
∂2h

∂x2
1

η̄1] = 0 (4.1)

Since the Green's law is valid for the region of gradual shoaling, h is considered to be
small. By considering this assumption for h and applying the dominant balance technique,
we get

∂η̄1

∂x1

+ µ
∂h

∂x1

η̄1 = 0 (4.2)
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We consider S as an arbitrary function of h and S(h)η̄1 is constant, therefore we get

0 =
∂

∂x1

[S(h)η̄1]

= S(h)
∂η̄1

∂x1

+ S ′(h)
∂h

∂x1

η̄1

= S(h)[
∂η̄1

∂x1

+
S ′(h)

S(h)

∂h

∂x1

η̄1]

(4.3)

This leads to
∂η̄1

∂x1

+
S ′(h)

S(h)

∂h

∂x1

η̄1 = 0 (4.4)

In addition, since S(h) is an arbitrary function of h, we suppose S(h) = h
1
4 . In this case,

our assumption that S(h)η̄1 is constant, gives us

η̄1 ∝ h−
1
4 (4.5)

Comparing equations (4.4) and (4.2) reveals that if µ is proportional to S′(h)
S(h)

, we can claim
that the Green's law can be recovered in our case. Therefore, we need to show that

µ ∝ S ′(h)

S(h)
=

1

4
h−1

where µ is given by

µ =
(1− h)(k2 − 1)

4k2c2
g

In the limit of very shallow water, the dispersion relation is given by ω = k
√
gh. This

implies that
cg =

√
gh

Therefore, k and cg are proportional to h−
1
2 and h

1
2 respectively, and this leads to the

desired asymptotic behavior of µ

µ ∝ 1

4
h−1

4.2 Space evolution equations in the limit of �at bot-

tom

Flat bottom assumption implies that h is constant and ∂h
∂x1

= 0. By applying this as-
sumption in the equation (3.80), simpli�ed space evolution equation is expressed as

ε[i
∂η̄1

∂x1

+
i

cg

∂η̄1

∂t1
] + ε2[λ

∂2η̄1

∂t21
+ νη̄1 | η̄1 |2 +θ1

∂φ̄0

∂x1

η̄1 + θ2η̄0η̄1] = 0 at za = 0 (4.6)
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which is coupled with

ε2
∂2φ̄0

∂x2
1

+ ε2a
∂2φ̄0

∂z2
a

= 0 at − εah < za < 0 (4.7)

εa
∂φ̄0

∂za
= 0 at za = −εah (4.8)

ε2
∂2φ̄0

∂t21
+ εa

∂φ̄0

∂za
= ε2[(1− k2)

∂ | η̄1 |2

∂t1
+ 2k

∂ | η̄1 |2

∂x1

] at za = 0 (4.9)

Furthermore, the set-down η̄0 is given by

η̄0 = −∂φ̄0

∂t1

∣∣∣∣
za=0

+ (1− k2) | η̄1 |2 (4.10)

Note that all coe�cients are constant since h and k are not functions of x1 in the �at
bottom limit.

At this step, we aim to solve the general auxiliary system for the induced �ow. This
set of equations has two types of solutions, a forced (inhomogeneous) solution which will
be locked to the modulation of the short wave, and a free (homogeneous) solution which
obeys its own dispersion relation for very shallow wave. We are interested in the forced
solution only, and we do not want a free-wave solution for the induced �ow which is a very
long and shallow free wave. In order to �nd the analytical forced solution of this system,
we will apply �at bottom assumption on the �rst order Schrödinger equation (3.54). We
get

∂η̄1

∂t1
+ cg

∂η̄1

∂x1

= 0 (4.11)

and consequently
∂φ̄0

∂x1

= − 1

cg

∂φ̄0

∂t1
and

∂2φ̄0

∂x2
1

=
1

c2
g

∂2φ̄0

∂t21
(4.12)

By considering these expressions, the general auxiliary system for the induced �ow can
be simpli�ed as

ε2

c2
g

∂2φ̄0

∂t21
+ ε2a

∂2φ̄0

∂z2
a

= 0 at − εah < za < 0 (4.13)

εa
∂φ̄0

∂za
= 0 at za = −εah (4.14)

ε2
∂2φ̄0

∂t21
+ εa

∂φ̄0

∂za
= ε2[

−2k

cg
+ (1− k2)]

∂ | η̄1 |2

∂t1
at za = 0 (4.15)

Following temporal Fourier transform pair is used to solve this system of equations

ˆ̄φ0(x1, za, ω) =
1

2π

∫ ∞
−∞

φ̄0(x1, za, t1)eiωt1dt1 (4.16)
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φ̄0(x1, za, t1) =

∫ ∞
−∞

ˆ̄φ0(x1, za, ω)e−iωt1dω (4.17)

We take the Fourier transform of our system in time by considering this fact that

Ft1(
∂nφ̄0

∂tn1
) = (−iω)nFt1(φ̄0)

where Ft1 is the temporal Fourier transform operator.

The system can be expressed by

− ε2ω
2

c2
g

ˆ̄φ0 + ε2a
∂2 ˆ̄φ0

∂z2
a

= 0 at − εah < za < 0 (4.18)

εa
∂ ˆ̄φ0

∂za
= 0 at za = −εah (4.19)

− ε2ω2 ˆ̄φ0 + εa
∂̂φ̄0

∂za
= ε2(−iω)[

−2k

cg
+ (1− k2)]Ft1(| η̄1 |2) at za = 0 (4.20)

This is a standard second order ODE with constant coe�cients with two mixed boundary
conditions. The solution of this system after considering the boundary conditions, can be
express by

ˆ̄φ0(x1, za, ω) = C(x1, ω) cosh(
ω

cg
ε(1−a)(za + εah)) (4.21)

where

C(x1, ω) =
−iε[−2k

cg
+ (1− k2)]Ft1(| η̄1 |2)

−εω cosh( εωh
cg

) + 1
cg

sinh( εωh
cg

)
(4.22)

Now we take the inverse Fourier transform to represent the solution for φ̄0 in integral form

φ̄0(x1, za, t1) =

∫ ∞
−∞

C(x1, ω) cosh(
ω

cg
ε(1−a)(za + εah))e−iωt1dω (4.23)

where C(x1, ω) is given by (4.22). Moreover, the surface elevation for the zeroth harmonic
can be computed from

η̄0 = −∂φ̄0

∂t1

∣∣∣∣
za=0

+ (1− k2) | η̄1 |2 (4.24)

Since derivatives of φ̄0 with respect to the horizontal coordinate x1 and time t1 appear in
(4.6) and (4.24) respectively, we compute them in the following way

∂φ̄0

∂x1

∣∣∣∣
za=0

= −iε[−2k

cg
+ (1− k2)]

∫ ∞
−∞

∂
∂x1

(Ft1(| η̄1 |2))

−εω + 1
cg

tanh( εωh
cg

)
e−iωt1dω (4.25)
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∂φ̄0

∂t1

∣∣∣∣
za=0

= −ε[−2k

cg
+ (1− k2)]

∫ ∞
−∞

Ft1(| η̄1 |2)

−ε+ 1
ωcg

tanh( εωh
cg

)
e−iωt1dω (4.26)

Therefore, the set-down η̄0 can be represented by

η̄0 = −∂φ̄0

∂t1

∣∣∣∣
za=0

+ (1− k2) | η̄1 |2

= ε[−2k

cg
+ (1− k2)]

∫ ∞
−∞

Ft1(| η̄1 |2)

−ε+ 1
ωcg

tanh( εωh
cg

)
e−iωt1dω + (1− k2) | η̄1 |2

(4.27)

4.2.1 Deep water

In the case of deep water, the induced-current potential φ̄0 depends on the slow vertical
coordinate εz. Hence, we assume a→ 1 which gives

z1 = εz

In the sense of deep water assumption (h→∞), we also obtain

cg →
1

2

k → 1

λ→ −1

ν → −4

θ1 → −2

θ2 → 0

So the space evolution equation can be simpli�ed in the following way

ε[i
∂η̄1

∂x1

+ 2i
∂η̄1

∂t1
]− ε2[

∂2η̄1

∂t21
+ 4η̄1 | η̄1 |2 +2

∂φ̄0

∂x1

η̄1] = 0 at z1 = 0 (4.28)

The deep water limit, h → ∞, implies tanh(∞) → 1. Therefore, ∂φ̄0

∂x1
from (4.25) can be

expressed as

∂φ̄0

∂x1

∣∣∣∣
z1=0

= 2iε

∫ ∞
−∞

∂

∂x1

(Ft1(| η̄1 |2))e−iωt1dω (4.29)
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After inserting into the equation (4.28), the deep water limit of the space evolution equa-
tion is

ε[i
∂η̄1

∂x1

+ 2i
∂η̄1

∂t1
]− ε2[

∂2η̄1

∂t21
+ 4η̄1 | η̄1 |2]

− 4iε3[

∫ ∞
−∞

∂

∂x1

(Ft1(| η̄1 |2))e−iωt1dω]η̄1 = 0 at z1 = 0

(4.30)

Since we are interested in the �rst and second order terms, the last term in the equation
(4.30) can be neglected. Therefore, the deep water space evolution equation becomes

∂η̄1

∂x1

+ 2
∂η̄1

∂t1
+ iε[

∂2η̄1

∂t21
+ 4η̄1 | η̄1 |2] = 0 (4.31)

This equation is completely in agreement with the deep water space evolution equation
reported by Trulsen (2006).

4.2.2 Finite depth

In the limit of �at bathymetry, we assume ∂h
∂x1

= 0. Moreover, the �nite depth assumption
suggests that a→ 0, and it implies that the appropriate scale for the horizontal coordinate
of the induced mean �ow becomes z0 = z. By applying these assumptions in the equation
(3.80), following space evolution equation with constant coe�cients is achieved

ε[i
∂η̄1

∂x1

+
i

cg

∂η̄1

∂t1
] + ε2[λ

∂2η̄1

∂t21
+ νη̄1 | η̄1 |2 +θ1

∂φ̄0

∂x1

η̄1 + θ2η̄0η̄1] = 0 at z = 0 (4.32)

Substituting ∂φ̄0

∂x1
and the set-down η̄0 from the expressions (4.12) and (4.27), we get

ε[i
∂η̄1

∂x1

+
i

cg

∂η̄1

∂t1
]+ ε2[λ

∂2η̄1

∂t21
+(ν+θ2(1−k2))η̄1 | η̄1 |2 −(

θ1

cg
+θ2)

∂φ̄0

∂t1
η̄1] = 0 at z = 0

(4.33)

Finite depth assumption which means that the uniform depth h is small, allows us to
approximate tanh( εωh

cg
) with the �rst term of the Taylor expansion around zero. Therefore,

∂φ̄0

∂t1
from the equation (4.26) can be simpli�ed

∂φ̄0

∂t1

∣∣∣∣
za=0

= −
[−2k

cg
+ (1− k2)]

[−1 + h
c2g

]

∫ ∞
−∞
Ft1(| η̄1 |2)e−iωt1dω

= −
[−2k

cg
+ (1− k2)]

[−1 + h
c2g

]
| η̄1 |2

(4.34)
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Inserting into the evolution equation (4.33) leads to

ε[i
∂η̄1

∂x1

+
i

cg

∂η̄1

∂t1
] + ε2[λ

∂2η̄1

∂t21
+ (ν + θ2(1− k2)

+ (
θ1

cg
+ θ2)

[−2k
cg

+ (1− k2)]

[−1 + h
c2g

]
)η̄1 | η̄1 |2] = 0 at z = 0

(4.35)

4.3 Time evolution equations in the limit of �at bot-

tom

By neglecting all shoaling terms in the time evolution equation (3.89) in the sense of �at
bottom assumption, following simpli�ed nonlinear Schrödinger equation with constant
coe�cients is obtained

ε[i
∂η̄1

∂t1
+ icg

∂η̄1

∂x1

] + ε2[Λ
∂2η̄1

∂x2
1

+ ϑη̄1 | η̄1 |2 +θ3
∂φ̄0

∂x1

η̄1 + θ4η̄0η̄1] = 0 at za = 0 (4.36)

which is coupled with

ε2
∂2φ̄0

∂x2
1

+ ε2a
∂2φ̄0

∂z2
a

= 0 at − εah < za < 0 (4.37)

εa
∂φ̄0

∂za
= 0 at za = −εah (4.38)

ε2
∂2φ̄0

∂t21
+ εa

∂φ̄0

∂za
= ε2[(1− k2)

∂ | η̄1 |2

∂t1
+ 2k

∂ | η̄1 |2

∂x1

] at za = 0 (4.39)

In addition, the set-down η̄0 is given by

η̄0 = −∂φ̄0

∂t1

∣∣∣∣
za=0

+ (1− k2) | η̄1 |2 (4.40)

This set of equations has two types of solutions, a forced (inhomogeneous) solution which
will be locked to the modulation of the short wave, and a free (homogeneous) solution
which obeys its own dispersion relation for very shallow wave. The forced solution is
the solution which we are interested in, and we do not want a free-wave solution for the
induced �ow which is a very long and shallow free wave. In order to �nd the analytical
forced solution of φ̄0 from the auxiliary system, the �at bottom assumption is applied to
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the �rst order Schrödinger equation (3.54). This leads to

∂η̄1

∂t1
+ cg

∂η̄1

∂x1

= 0 (4.41)

and consequently
∂φ̄0

∂t1
= −cg

∂φ̄0

∂x1

and
∂2φ̄0

∂t21
= c2

g

∂2φ̄0

∂x2
1

(4.42)

Inserting into the auxiliary system gives

ε2
∂2φ̄0

∂x2
1

+ ε2a
∂2φ̄0

∂z2
a

= 0 at − εah < za < 0 (4.43)

εa
∂φ̄0

∂za
= 0 at za = −εah (4.44)

ε2c2
g

∂2φ̄0

∂x2
1

+ εa
∂φ̄0

∂za
= ε2[2k − (1− k2)cg]

∂ | η̄1 |2

∂x1

at za = 0 (4.45)

and η̄0 is given by

η̄0 = cg
∂φ̄0

∂x1

∣∣∣∣
za=0

+ (1− k2) | η̄1 |2

To solve this system of equations, following spatial Fourier transform pair is applied

ˆ̄φ0(κ, za, t1) =

∫ ∞
−∞

φ̄0(x1, za, t1)e−iκx1dx1 (4.46)

φ̄0(x1, za, t1) =
1

2π

∫ ∞
−∞

ˆ̄φ0(κ, za, t1)eiκx1dκ (4.47)

We take the Fourier transform of our system in space by considering this fact that

Fx1(
∂nφ̄0

∂xn1
) = (iκ)nFx1(φ̄0)

where Fx1 is the spatial Fourier transform operator.

Therefore, a standard second order ODE with two mixed boundary conditions is achieved

− ε2κ2 ˆ̄φ0 + ε2a
∂2 ˆ̄φ0

∂z2
a

= 0 at − εah < za < 0 (4.48)

εa
∂ ˆ̄φ0

∂za
= 0 at za = −εah (4.49)
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− ε2κ2c2
g
ˆ̄φ0 + εa

∂̂φ̄0

∂za
= ε2(iκ)[2k − (1− k2)cg]Fx1(| η̄1 |2) at za = 0 (4.50)

Simply, it can be veri�ed that the solution of this system is

ˆ̄φ0(κ, za, t1) = D(κ, t1) cosh(ε(1−a)κ(za + εah)) (4.51)

where

D(κ, t1) =
−iε[(1− k2)cg − 2k]Fx1(| η̄1 |2)

−εκc2
g cosh(εκh) + sinh(εκh)

(4.52)

By taking the inverse Fourier transform, the solution for φ̄0 in integral form can be
represented by

φ̄0(x1, za, t1) =
1

2π

∫ ∞
−∞

D(κ, t1) cosh(ε(1−a)κ(za + εah))eiκx1dκ (4.53)

where D(κ, t1) is given by (4.52). Furthermore, η̄0 can be expressed by

η̄0 = cg
∂φ̄0

∂x1

∣∣∣∣
za=0

+ (1− k2) | η̄1 |2

Derivative of φ̄0 with respect to x1 should be calculated in order to obtain the simpli�ed
time evolution equation. This calculation yields

∂φ̄0

∂x1

∣∣∣∣
za=0

=
ε

2π
[(1− k2)cg − 2k]

∫ ∞
−∞

Fx1(| η̄1 |2)

−εc2
g + 1

κ
tanh(εκh)

eiκx1dκ (4.54)

This gives following expression to describe the set-down

η̄0 = cg
∂φ̄0

∂x1

∣∣∣∣
za=0

+ (1− k2) | η̄1 |2

= ε
cg
2π

[(1− k2)cg − 2k]

∫ ∞
−∞

Fx1(| η̄1 |2)

−εc2
g + 1

κ
tanh(εκh)

eiκx1dκ+ (1− k2) | η̄1 |2
(4.55)

4.3.1 Deep-water limit

If the water depth is su�ciently large, the induced-current depends on the slow vertical
coordinate εz. This implies that a→ 1, and consequently

z1 = εz
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Therefore, the time evolution equation simpli�es greatly in the limit of in�nite depth, and
this is obtained by letting h→∞. We get

cg →
1

2

k → 1

Λ→ −1

8

ϑ→ −2

θ3 → −1

θ4 → 0

Hence, the deep-water limit of (4.36) is

ε[i
∂η̄1

∂t1
+
i

2

∂η̄1

∂x1

] + ε2[−1

8

∂2η̄1

∂x2
1

− 2η̄1 | η̄1 |2 −
∂φ̄0

∂x1

η̄1] = 0 at z1 = 0 (4.56)

The deep water assumption, h→∞, leads to tanh(∞)→ 1, and this implies that

∂φ̄0

∂x1

∣∣∣∣
z1=0

=
ε

2π
[(1− k2)cg − 2k]

∫ ∞
−∞

κFx1(| η̄1 |2)eiκx1dκ (4.57)

This simply suggests to ignore the last term in equation (4.56) as this term is of order ε3.
Therefore, the time evolution equation in the limit of deep water is

∂η̄1

∂t1
+

1

2

∂η̄1

∂x1

+ iε[
1

8

∂2η̄1

∂x2
1

+ 2η̄1 | η̄1 |2] = 0 at z1 = 0 (4.58)

This result is in agreement with the results reported by Trulsen (2006) and Gramstad and
Trulsen (2011) for the deep water time evolution equations.

4.3.2 Finite depth

Finite depth assumption allows us to apply a→ 0 which means that the induced-current
φ̄0 depends on the original horizontal coordinate z. Furthermore, by applying expressions
(4.41) and (4.55) in the time evolution equation (4.36), we get

ε[i
∂η̄1

∂t1
+icg

∂η̄1

∂x1

]+ε2[Λ
∂2η̄1

∂x2
1

+(ϑ+θ4(1−k2))η̄1 | η̄1 |2 +(θ3+cgθ4)
∂φ̄0

∂x1

η̄1] = 0 at z = 0

(4.59)
Since we considered the �nite depth assumption which means that the uniform depth h
is small, we are allowed to use the �rst term of the Taylor expansion of tanh(εκh) to

51



calculate ∂φ̄0

∂x1
from the expression (4.54). Hence, we obtain

∂φ̄0

∂x1

∣∣∣∣
za=0

=
[cg(1− k2)− 2k]

2π[h− c2
g]

∫ ∞
−∞
Fx1(| η̄1 |2)eiκx1dκ

=
[cg(1− k2)− 2k]

[h− c2
g]

| η̄1 |2
(4.60)

Inserting into the evolution equation (4.59) yields following time evolution equation in
the limit of �nite depth and �at bottom

ε[i
∂η̄1

∂t1
+ icg

∂η̄1

∂x1

] + ε2[Λ
∂2η̄1

∂x2
1

+ (ϑ+ θ4(1− k2)

+ (θ3 + cgθ4)
[cg(1− k2)− 2k]

[h− c2
g]

)η̄1 | η̄1 |2] = 0 at z = 0

(4.61)

The equations derived in this chapter will be employed to study the stability of the uniform
Stokes wave trains in the next chapter.
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Chapter 5

Modulational instability of Stokes

waves on �at bottom

It is natural to associate appearance of freak waves with the modulation instability of
Stokes waves (Zakharov et al., 2006). The exponential growth of unstable perturbations
such that a Stokes wave is broken, is known as modulational instability, and this phe-
nomenon can create extreme waves. Modulational instability has been a topic of interest
for scientists for several decades, and for the �rst time T. Brooke Benjamin and Jim E.
Feir explored it, for surface gravity waves on deep water. Due to this, it is also known as
the Benjamin-Feir instability.

In this chapter, the stability analysis for Stokes waves for both deep water and �nite
depth on �at bottom has been investigated via applying space and time evolution equa-
tions from the previous chapter. Furthermore, growth rates for perturbation of Stokes
waves are studied for both cases.

5.1 Space evolution equations

5.1.1 Deep water

In the limit of deep water, the space evolution equation is

∂η̄1

∂x1

+ 2
∂η̄1

∂t1
+ iε[

∂2η̄1

∂t21
+ 4η̄1 | η̄1 |2] = 0 (5.1)

We are looking for a uniform solution, by considering that the solution η̄1 is independent
of time. This leads to

∂η̄1

∂x1

+ 4iεη̄1 | η̄1 |2= 0
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This equation has a particularly simple exact wave solution known as the Stokes wave.
The solution is given by

η̄1 = B0e
−4iε|B0|2x1

where B0 is a constant.

The stability of Stokes wave can be found by perturbing it in amplitude and phase.
We set

η̄1 = B0(1 + α1 + iβ1)e−4iε|B0|2x1 (5.2)

where α1 and β1 are in�nitesimal and real.

By inserting into the equation (5.1) and after linearization, we get

∂α1

∂x1

+ i
∂β1

∂x1

+ 2
∂α1

∂t1
+ 2i

∂β1

∂t1
+ iε

∂2α1

∂t21
− ε∂

2β1

∂t21
+ 8iε | B0 |2 α1 = 0

Following pair of equations is achieved by splitting up this equation into real and imagi-
nary parts

∂α1

∂x1

+ 2
∂α1

∂t1
− ε∂

2β1

∂t21
= 0 (5.3)

∂β1

∂x1

+ 2
∂β1

∂t1
+ ε

∂2α1

∂t21
+ 8ε | B0 |2 α1 = 0 (5.4)

Assume plane-wave solutions α1

β1

 =

 α̂1

β̂1

 ei(Kx1−Ωt1) + c.c.

By inserting into equations for real and imaginary parts, we obtain

iKα̂1 − 2iΩα̂1 + εΩ2β̂1 = 0 (5.5)

iKβ̂1 − 2iΩβ̂1 − εΩ2α̂1 + 8ε | B0 |2 α̂1 = 0 (5.6)

System of equations is written in the matrix form i(K − 2Ω) εΩ2

−εΩ2 + 8ε | B0 |2 i(K − 2Ω)

 α̂1

β̂1

 =

 0

0


Since we are looking for a nontrivial solution, the determinant of the coe�cient matrix has
to be zero. Hence, it is found that the perturbation behaves according to the dispersion
relation

K = 2Ω±
√
ε2Ω2(Ω2 − 8 | B0 |2) (5.7)
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A perturbation is unstable if the modulational wavenumber K has a nonzero imaginary
part. Therefore, the unstable region is given by

| Ω |< 2
√

2 | B0 | (5.8)

The growth rate of the instability is de�ned as

| Im(K) |=
√
ε2Ω2(8 | B0 |2 −Ω2) (5.9)

This result is consistent with the study of Trulsen (2006). Figure 5.1 shows the growth
rate for perturbation of Stokes wave.
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Figure 5.1: Growth rate for perturbation of Stokes wave for the space evolution equation
in the deep-water limit.
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5.1.2 Finite depth

By applying the uniform and �nite depth assumptions, the space evolution equation can
be expressed by

ε[i
∂η̄1

∂x1

+
i

cg

∂η̄1

∂t1
] + ε2[λ

∂2η̄1

∂t21
+ (ν + θ2(1− k2)

+ (
θ1

cg
+ θ2)

[−2k
cg

+ (1− k2)]

[−1 + h
c2g

]
)η̄1 | η̄1 |2] = 0 at z = 0

(5.10)

We aim to �nd the uniform solution, by assuming that the solution η̄1 of the equation
does not vary in time. This leads to the simpli�ed equation

∂η̄1

∂x1

− iε[ν + θ2(1− k2)

+ (
θ1

cg
+ θ2)

[−2k
cg

+ (1− k2)]

[−1 + h
c2g

]
]η̄1 | η̄1 |2= 0 at z = 0

(5.11)

The exact uniform wave solution of this equation is given by the following equation known
as the Stokes wave

η̄1 = B0e
iε{ν+θ2(1−k2)+(

θ1
cg

+θ2)
[− 2k
cg

+1−k2]

[−1+ h
c2g

]
}|B0|2x1

(5.12)

where B0 is a constant.

In order to investigate the stability of the Stokes wave, it is perturbed in amplitude
and phase. We suppose

η̄1 = B0(1 + α1 + iβ1)e
iε{ν+θ2(1−k2)+(

θ1
cg

+θ2)
[− 2k
cg

+1−k2]

[−1+ h
c2g

]
}|B0|2x1

(5.13)

where α1 and β1 are in�nitesimal and real.

We aim to substitute the perturbed Stokes wave (5.13) in the equation (5.10). Therefore,
following computations are carried out and after linearization with respect to α1 and β1,
we obtain

| η̄1 |2=| B0 |2 (1 + 2α1)

η̄1 | η̄1 |2= B0 | B0 |2 (1 + 3α1 + iβ1)e
iε{ν+θ2(1−k2)+(

θ1
cg

+θ2)
[− 2k
cg

+1−k2]

[−1+ h
c2g

]
}|B0|2x1
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∂η̄1

∂x1

= {iε[ν + θ2(1− k2) + (
θ1

cg
+ θ2)

[−2k
cg

+ 1− k2]

[−1 + h
c2g

]
] | B0 |2 B0(1 + α1 + iβ1)

+B0(
∂α1

∂x1

+ i
∂β1

∂x1

)}e
iε{ν+θ2(1−k2)+(

θ1
cg

+θ2)
[− 2k
cg

+1−k2]

[−1+ h
c2g

]
}|B0|2x1

∂η̄1

∂t1
= B0(

∂α1

∂t1
+ i

∂β1

∂t1
)e
iε{ν+θ2(1−k2)+(

θ1
cg

+θ2)
[− 2k
cg

+1−k2]

[−1+ h
c2g

]
}|B0|2x1

∂2η̄1

∂t21
= B0(

∂2α1

∂t21
+ i

∂2β1

∂t21
)e
iε{ν+θ2(1−k2)+(

θ1
cg

+θ2)
[− 2k
cg

+1−k2]

[−1+ h
c2g

]
}|B0|2x1

Inserting into the equation (5.10) and simplifying, lead to the following equation

iε
∂α1

∂x1

− ε∂β1

∂x1

+
iε

cg

∂α1

∂t1
− ε

cg

∂β1

∂t1
+ ε2λ

∂2α1

∂t21
+ iε2λ

∂2β1

∂t21

+ 2ε2[ν + θ2(1− k2) + (
θ1

cg
+ θ2)

[−2k
cg

+ 1− k2]

[−1 + h
c2g

]
] | B0 |2 α1 = 0

(5.14)

This equation is split up into real and imaginary parts, and following equations are
achieved

− ε∂β1

∂x1

− ε

cg

∂β1

∂t1
+ ε2λ

∂2α1

∂t21
+ 2ε2[ν + θ2(1− k2)

+ (
θ1

cg
+ θ2)

[−2k
cg

+ 1− k2]

[−1 + h
c2g

]
] | B0 |2 α1 = 0

(5.15)

ε
∂α1

∂x1

+
ε

cg

∂α1

∂t1
+ ε2λ

∂2β1

∂t21
= 0 (5.16)

The perturbations α1 and β1 are supposed to take the following form α1

β1

 =

 α̂1

β̂1

 ei(Kx1−Ωt1) + c.c.

By inserting into equations for real and imaginary parts, we get the following pair of

57



equations

{−ε2λΩ2 + 2ε2[ν + θ2(1− k2) + (
θ1

cg
+ θ2)

[−2k
cg

+ 1− k2]

[−1 + h
c2g

]
] | B0 |2}α̂1

+ {−iε(K − Ω

cg
)}β̂1 = 0

(5.17)

{iε(K − Ω

cg
)}α̂1 − {ε2λΩ2}β̂1 = 0 (5.18)

These equations can be represented in the matrix form −ε2λΩ2+2ε2Θ|B0|2 −iε(K− Ω
cg

)

iε(K− Ω
cg

) −ε2λΩ2

 α̂1

β̂1

 =

 0

0


where

Θ = ν + θ2(1− k2) + (
θ1

cg
+ θ2)

[−2k
cg

+ 1− k2]

[−1 + h
c2g

]

By substituting ν, θ1 and θ2, we obtain

Θ = − k2

4cg
[9k4 − 10k2 + 9] +

1

2cg(h− c2
g)

[h− 2kd+ k3d+ 4k2 − 4kcg + 4k3cg] (5.19)

where d = kh.

The determinant of the coe�cient matrix has to be zero due to the condition for a non-
trivial solution for this system. This leads to the following dispersion relation

K =
Ω

cg
±
√
ε2Ω2(λ2Ω2 − 2λΘ | B0 |2) (5.20)

If the modulational wavenumber K has a nonzero imaginary part, the perturbation is
unstable. Hence, the unstable region can be expressed as

| Ω |<
√

2Θ

λ
| B0 | (5.21)

where

λ =
−1

8k2c3
g

[−3h2 + 2h+ 1 + d(−2k) + d2(k2 + 2)]
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Θ = − k2

4cg
[9k4 − 10k2 + 9] +

1

2cg(h− c2
g)

[h− 2kd+ k3d+ 4k2 − 4kcg + 4k3cg]

We can simply verify that λ takes always negative sign, whereas Θ changes its sign from
negative to positive across kh ≈ 1.363 as kh decreases, and this behavior is demonstrated
by the �gure 5.2. This means that our solution is stable to relatively small disturbances
only if Θ

λ
> 0 which leads to kh < 1.363.

kh
1.36 1.361 1.362 1.363 1.364 1.365 1.366 1.367

Θ

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

Θ

Figure 5.2: Behavior of Θ as a function of dimensionless depth kh.

We �nd also the initial growth rate of the perturbation in the form

| Im(K) |=
√
ε2Ω2(2λΘ | B0 |2 −λ2Ω2) (5.22)

The behavior of the growth rate demonstrated in �gure 5.3 is completely in agreement
with our expectation that for kh < 1.363 we do not have instability.

By supposing that the depth becomes in�nitely large, h→∞, we obtain

cg →
1

2

λ→ −1
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Figure 5.3: Growth rate for perturbation of Stokes wave for the space evolution equation
in the limit of uniform and �nite depth by assuming di�erent magnitudes of kh.

Θ→ −4

By inserting into (5.21) and (5.22), the unstable region and the growth rate can be ex-
pressed by

| Ω |< 2
√

2 | B0 | (5.23)

| Im(K) |=
√
ε2Ω2(8 | B0 |2 −Ω2) (5.24)

These results are in good agreement with the results achieved for deep-water limit pre-
sented in the previous section. This shows that the limit of the �nite-depth results when
the depth becomes in�nitely large are in fact equal to the deep-water results.

5.2 Time evolution equations

5.2.1 Deep water

The time evolution equation in the deep-water limit is

∂η̄1

∂t1
+

1

2

∂η̄1

∂x1

+ iε[
1

8

∂2η̄1

∂x2
1

+ 2η̄1 | η̄1 |2] = 0 (5.25)
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An equilibrium solution can be found, by assuming that the solution η̄0 does not vary in
space. This leads to the equation

∂η̄1

∂t1
+ 2iεη̄1 | η̄1 |2= 0

A solution of the following form which is known as the Stokes wave, is assumed

η̄1 = B0e
−2iε|B0|2t1

where B0 is a constant.

Our goal is to consider the modulational instability of the Stokes wave in the horizontal
coordinate x1. Therefore, the stability of the Stokes wave is investigated by assuming
small perturbations of the form

η̄1 = B0(1 + α1 + iβ1)e−2iε|B0|2t1

where α1 and β1 are in�nitesimal and real.

We now insert the perturbed equilibrium solution into the simpli�ed nonlinear Schrödinger
equation (5.25), and linearize with respect to α1 and β1. We obtain

∂α1

∂t1
+ i

∂β1

∂t1
+

1

2

∂α1

∂x1

+
i

2

∂β1

∂x1

+
iε

8

∂2α1

∂x2
1

− ε

8

∂2β1

∂x2
1

+ 4iε | B0 |2 α1 = 0

Splitting up this equation into real and imaginary parts gives us following pair of equations

∂α1

∂t1
+

1

2

∂α1

∂x1

− ε

8

∂2β1

∂x2
1

= 0 (5.26)

∂β1

∂t1
+

1

2

∂β1

∂x1

+
ε

8

∂2α1

∂x2
1

+ 4ε | B0 |2 α1 = 0 (5.27)

We assume plane-wave solutions for α1 and β1 in the following forms α1

β1

 =

 α̂1

β̂1

 ei(Kx1−Ωt1) + c.c.

Inserting into equations for real and imaginary parts gives a set of two linear equations

− iΩα̂1 +
iK

2
α̂1 +

εK2

8
β̂1 = 0 (5.28)

− iΩβ̂1 +
iK

2
β̂1 −

εK2

8
α̂1 + 4ε | B0 |2 α̂1 = 0 (5.29)
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Matrix form of these equations can be expressed by −i(Ω− K
2

) εK2

8

− εK2

8
+ 4ε | B0 |2 −i(Ω− K

2
)

 α̂1

β̂1

 =

 0

0

 .

In order to get a nontrivial solution of this system, the determinant of the coe�cient
matrix has to be zero. This condition leads to the dispersion relation

Ω =
K

2
±
√
ε2K2

8
(
K2

8
− 4 | B0 |2). (5.30)

If the perturbation frequency Ω has a nonzero imaginary part, the perturbations α1 and
β1 will grow unboundedly. Therefore, the system is unstable if

| K |< 4
√

2 | B0 | (5.31)

Moreover, the growth rate of the perturbations is in the form

| Im(Ω) |=
√
ε2K2

8
(4 | B0 |2 −

K2

8
) (5.32)

This result is in good agreement with the study by Trulsen (2006). The growth rate for
perturbation of Stokes wave is plotted in �gure 5.4.
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Figure 5.4: Growth rate for perturbation of Stokes wave for the time evolution equation
in the deep-water limit.
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5.2.2 Finite depth

The nonlinear Schrödinger equation which describes the time evolution for �nite depth
and �at bottom is

ε[i
∂η̄1

∂t1
+ icg

∂η̄1

∂x1

] + ε2[Λ
∂2η̄1

∂x2
1

+ (ϑ+ θ4(1− k2)

+ (θ3 + cgθ4)
[cg(1− k2)− 2k]

[h− c2
g]

)η̄1 | η̄1 |2] = 0 at z1 = 0

(5.33)

We are interested in a uniform solution of this equation, by assuming that the solution η̄1

is independent of space. This suggests

∂η̄1

∂t1
− iε[ϑ+ θ4(1− k2)

+ (θ3 + cgθ4)
[cg(1− k2)− 2k]

[h− c2
g]

]η̄1 | η̄1 |2= 0 at z1 = 0

A uniform Stokes wave solution of this equation is given by

η̄1 = B0e
iε{ϑ+θ4(1−k2)+(θ3+cgθ4)

[cg(1−k2)−2k]

[h−c2g ]
}|B0|2t1

(5.34)

where B0 is a constant.

The stability of Stokes wave is investigated by perturbing it in amplitude and phase.
We set

η̄1 = B0(1 + α1 + iβ1)e
iε{ϑ+θ4(1−k2)+(θ3+cgθ4)

[cg(1−k2)−2k]

[h−c2g ]
}|B0|2t1

(5.35)

where α1 and β1 are in�nitesimal and real.

Since we purpose to insert this solution into the equation (5.33), following computa-
tions are performed and after linearizing with respect to α1 and β1, we achieve

| η̄1 |2=| B0 |2 (1 + 2α1)

η̄1 | η̄1 |2= B0 | B0 |2 (1 + 3α1 + iβ1)e
iε{ϑ+θ4(1−k2)+(θ3+cgθ4)

[cg(1−k2)−2k]

[h−c2g ]
}|B0|2t1

∂η̄1

∂t1
= {iε{ϑ+ θ4(1− k2) + (θ3 + cgθ4)

[cg(1− k2)− 2k]

[h− c2
g]

} | B0 |2 B0(1 + α1 + iβ1)

+B0(
∂α1

∂t1
+ i

∂β1

∂t1
)}e

iε{ϑ+θ4(1−k2)+(θ3+cgθ4)
[cg(1−k2)−2k]

[h−c2g ]
}|B0|2t1
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∂η̄1

∂x1

= B0(
∂α1

∂x1

+ i
∂β1

∂x1

)e
iε{ϑ+θ4(1−k2)+(θ3+cgθ4)

[cg(1−k2)−2k]

[h−c2g ]
}|B0|2t1

∂2η̄1

∂x2
1

= B0(
∂2α1

∂x2
1

+ i
∂2β1

∂x2
1

)e
iε{ϑ+θ4(1−k2)+(θ3+cgθ4)

[cg(1−k2)−2k]

[h−c2g ]
}|B0|2t1

The perturbed uniform solution (5.35) is inserted into the time evolution equation (5.33)
and after some simpli�cation, we obtain

iε
∂α1

∂t1
− ε∂β1

∂t1
+ iεcg

∂α1

∂x1

− εcg
∂β1

∂x1

+ ε2Λ
∂2α1

∂x2
1

+ iε2Λ
∂2β1

∂x2
1

+ 2ε2[ϑ+ θ4(1− k2) + (θ3 + cgθ4)
[cg(1− k2)− 2k]

[h− c2
g]

] | B0 |2 α1 = 0

(5.36)

Splitting up this equation into real and imaginary parts yields

− ε∂β1

∂t1
− εcg

∂β1

∂x1

+ ε2Λ
∂2α1

∂x2
1

+ 2ε2[ϑ+ θ4(1− k2)

+ (θ3 + cgθ4)
[cg(1− k2)− 2k]

[h− c2
g]

] | B0 |2 α1 = 0

(5.37)

ε
∂α1

∂t1
+ εcg

∂α1

∂x1

+ ε2Λ
∂2β1

∂x2
1

= 0 (5.38)

Finally we assume that the perturbations α1 and β1 take the following form α1

β1

 =

 α̂1

β̂1

 ei(Kx1−Ωt1) + c.c.

Inserting into real and imaginary parts gives following system of equations

{−ε2ΛK2 + 2ε2[ϑ+ θ4(1− k2) + (θ3 + cgθ4)
[cg(1− k2)− 2k]

[h− c2
g]

] | B0 |2}α̂1

+ {iε(Ω− cgK)}β̂1 = 0

(5.39)

{−iε(Ω− cgK)}α̂1 − {ε2ΛK2}β̂1 = 0 (5.40)

Matrix form of this system is given by
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 −ε2ΛK2+2ε2ϕ|B0|2 iε(Ω−cgK)

−iε(Ω−cgK) −ε2ΛK2

 α̂1

β̂1

 =

 0

0


where

ϕ = ϑ+ θ4(1− k2) + (θ3 + cgθ4)
[cg(1− k2)− 2k]

[h− c2
g]

By substituting ϑ, θ3 and θ4, we get

ϕ = −k
2

4
[9k4 − 10k2 + 9] +

1

2(h− c2
g)

[h− 2kd+ k3d+ 4k2 − 4kcg + 4k3cg] (5.41)

where d = kh.

We are looking for a nontrivial solution for this system, and this forced us to consider
the determinant of the coe�cient matrix equals to zero. Hence, we achieve the following
dispersion relation

Ω = cgK ±
√
ε2K2(Λ2K2 − 2Λϕ | B0 |2) (5.42)

The unstable region is found by considering that the perturbation frequency Ω has a
nonzero imaginary part

| K |<
√

2ϕ

Λ
| B0 | (5.43)

where

Λ =
−1

8k2
[−3h2 + 2h+ 1 + d(−2k) + d2(k2 + 2)]

ϕ = −k
2

4
[9k4 − 10k2 + 9] +

1

2(h− c2
g)

[h− 2kd+ k3d+ 4k2 − 4kcg + 4k3cg]

As is seen, Λ is always negative, whereas the sign of ϕ changes from negative to positive
across kh ≈ 1.363 as kh decrease, and this feature is described by �gure 5.5. This result
is in agreement with the result reported by Hasimoto and Ono (1972) and −ϕ is identical
with X(k) represented by equation (30) in Benjamin's paper (Benjamin, 1967).

The initial growth rate is also found

| Im(Ω) |=
√
ε2K2(2Λϕ | B0 |2 −Λ2K2) (5.44)

In �gure 5.6, it is shown that wave trains on water of uniform depth h are unstable if the
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Figure 5.5: Behavior of ϕ with respect to dimensionless depth kh.

wavenumber k satis�es kh > 1.363, but they are otherwise stable. This stability criterion
is identical with that derived by Benjamin (1967).
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Figure 5.6: Growth rate for perturbation of Stokes wave for the time evolution equation
in the limit of uniform and �nite depth by assuming di�erent magnitudes of kh.
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Let us to allow that the depth h becomes in�nitely large, we get

cg →
1

2

ϕ→ −2

Λ→ −1

8

substituting in (5.43) and (5.44), the unstable region and the growth rate are expressed
as

| K |< 4
√

2 | B0 | (5.45)

| Im(Ω) |=
√
ε2K2

8
(4 | B0 |2 −

K2

8
) (5.46)

These results are consistent with the results reported for deep-water limit in the previous
section. This demonstrates that when the depth becomes in�nitely large, the limit of the
�nite-depth results for the time evolution equation reproduce the deep-water results.
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Chapter 6

Discussion and further work

In this chapter the results presented in chapters 3, 4 and 5 are discussed. First, we
present a discussion how the space and time evolution equations derived in this thesis are
connected with previous experimental and theoretical works and whether these can be
compared. Furthermore, the results for modulational instability of Stokes wave presented
in the previous chapter are discussed. The �nal section is dedicated to some future works
that will be a continuation of the work and the results of this thesis.

6.1 Modi�ed nonlinear Schrödinger equation discussed

with previous studies

In this thesis, we aim to improve previous NLS equations for nonuniform depth in order
to better represent abrupt bathymetry of arbitrary depth. As we know the nonlinear
Schrödinger equation with variable coe�cients and a shoaling term for slowly varying
depth is the �rst and simplest model for water of �nite depth derived by Djordjevi¢ and
Redekopp (1978). By slowly varying depth they meant that the depth varied with the
slope bottom of order ε2 which simply suggested ∂h

∂x
= O(ε2). The NLS equation derived

in their study was in the form of space evolution in terms of velocity potential, and the
method of derivation used by them was the multiple scale method. In the derivation
process the induced mean �ow φ̄0 and the set-down η̄0 were expanded in the power series
of ε. By employing these expansions they limited their model small depth bounded from
above and kh = O(1), and this restricted assumption caused that their result can not be
reliable for greater depth. In fact their model is appropriate to describe the behavior of
the waves propagate over a nonuniform bathymetry with a bottom variation of order ε2

for shallow water. Our assumption regarding the bottom variation is ∂h
∂x

= O(ε), and this
distinguishes our study from the study by Djordjevi¢ and Redekopp (1978). Furthermore,
since we do not employ any special expansions for φ̄0 and η̄0, we do not restrict our model
to small depth assumption, and our equations can be used as a model for arbitrary depth.
In addition, in our work both space and time evolution equations are presented in terms
of the surface elevation instead of the velocity potential, and this choice is more attractive
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for practical applications. Despite of these di�erences, some of the coe�cients such as µ
and λ represented by the equations (3.81) and (3.82) in our study, are essentially identi-
cal to µ and λ de�ned by the equations (2.15) and (2.16) in the paper by Djordjevi¢ and
Redekopp (1978).

In the study by Liu and Dingemans (1989), a third-order evolution equation for the
envelope of a modulated wave train propagating over an uneven bottom and the associ-
ated long-wave equation were derived by assuming bottom variation of order ε so that
∂h
∂x

= O(ε). The bottom topography consisted of two components h0 and h1, and they
assumed that h0 varied on the scale of ε so that h0 = h0(εx), whereas h1 was assumed to
be small, O(kh1) = O(ε2), depended on actual horizontal coordinate x. These assump-
tions suggested to present depth by h = h0(x1) + εh1(x1) where x1 = εx. The bottom
topography we describe in this thesis is di�erent from their bathymetry since we assume
h1 is zero for our case consistent with the experiment of Raustøl (2014). They got a
contribution of h1 in their NLS equation as shoaling terms, whereas these terms do not
appear in our NLS equation. On the other hand by expanding the velocity potential and
the free surface displacement in terms of the small parameter ε and applying the same
expansions for the induced mean �ow φ̄0 and the set-down η̄0, it seems their model is
also restricted to shallow water assumption, kh = O(1), and it is valid when maximum
depth is su�ciently small. Whereas, we present a model which can be applied for both
�nite and in�nite depth. We also mention that they derived a space evolution equation
in terms of velocity potential, and this representation of the NLS equation can be useful
for analytical consideration, while our representation of the NLS equation is in terms of
the surface elevation, more convenient for most practical applications.

The nonlinear Schrödinger equation with variable coe�cients by Zeng and Trulsen (2012)
as a model to describe waves passing over uneven bottom, is simpler than the NLS equa-
tion derived in this study. They assumed that the depth h was slowly varying, ∂h

∂x
= O(ε2),

and this led to only one shoaling term for uneven bottom in their NLS equation. More-
over, the same method of derivation as used by Djordjevi¢ and Redekopp (1978) and Liu
and Dingemans (1989) was employed in their investigation, which means that their model
is of limited validity because they have made such restricting assumption of limiting the
depth from above. Although, there are di�erences between their research and our study,
two of the coe�cients that appear in the space evolution equation (3.80) are identical to
the coe�cients reported by Zeng and Trulsen (2012). Theses coe�cients are µ and λ rep-
resented by (3.81) and (3.82), respectively, identical to the coe�cients µ and λ reported
by equations (11) and (12) in the study of Zeng and Trulsen (2012).

With this review of previous mathematical models, it seems that none of them are appro-
priate for describing the experimental observations by Raustøl (2014), since all of these
models assumed slower variation of the bottom topography than that one used by Raustøl
(2014), or they limited their model to shallow water. The NLS equation derived in this
study is more general since it can be used for arbitrary depth which covers both �nite
and in�nite depth. Moreover, our mathematical model seems to be more appropriate for
the previous experimental studies reported in table 1.1, and more attractive for practical
applications.
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6.2 Stability analysis discussion

In this study, a stability analysis is performed for the case of gravity waves on water of
both in�nite and �nite depth. As one of the dramatic discoveries in �uid mechanics, mod-
ulational instability of such wave trains has been proved theoretically by Whitham (1974)
and Benjamin (1967). Analysis in study by Benjamin (1967) demonstrated that according
as water deeper or shallower than the critical depth kh ≷ 1.363, a uniform wave train is
modulationally unstable or stable for in�nitesimal two dimensional perturbations. The
critical depth kh ≈ 1.363 is a limiting depth for a uniform long-crested wave being stable
or unstable to long-crested perturbations. A stability analysis presented by Benney and
Roskes (1969) has been performed for the three dimensional case of gravity waves. It is
shown that there are unstable short-crested or skewed perturbations on both sides of the
limiting value kh ≈ 1.363. By considering a two dimensional disturbance as a special case,
they could reproduce the criteria reported by Benjamin (1967). These studies have been
performed without using this fact that the evolution of such waves is governed by a simple
equation of the form NLS equation. This fact has been used for the �rst time by Hasimoto
and Ono (1972) by reducing the complicated system of two dimensional equations used
by Benjamin (1967) to a simple NLS equation. They adopted the method of multiple
scale for the equations which described gravity waves on the water layer with uniform
depth, and derived the NLS equation in the form of time evolution equation in terms of
velocity potential. In their research the important results by Whitham (1974) and Ben-
jamin (1967) were reproduced by considering the remarkable fact that the solution of NLS
equation corresponds to the Stokes wave. In the study of Davey and Stewartson (1974), a
modulational instability investigation was carried out by employing NLS equation which
described the evolution of a three dimensional wave-packet on water of �nite depth. They
made use of the method of multiple scales and derived time evolution equations in terms
of velocity potential.

In chapter 5 of this thesis, the stability of a uniform wave train is investigated for a
uniform depth by applying time and space evolution equations derived in chapter 4. By
employing the NLS equation in the form of time evolution in the limit of �nite depth, we
obtain that the Stokes wave is stable to relatively small two dimensional disturbances only
if kh < 1.363, and unstable if kh > 1.363. This result demonstrates a good agreement
with previous studies of Benjamin (1967) and Hasimoto and Ono (1972). It seems that
all the previous analyses have been performed for the NLS equation in the form of time
evolution. In this study we employ the space evolution equation for the stability analysis
of Stokes wave. Stability analysis for space evolution equation is carried out for both deep-
water limit and �nite depth. We conclude that the Stokes wave as the uniform solution of
the space evolution equation in the limit of �nite depth is unstable if kh > 1.363, and it
is stable in water shallower than the critical depth kh < 1.363. This result is in excellent
agreement with earlier studies which applied time evolution equations. Furthermore, the
surprising fact brought to light was that by applying su�ciently deep water assumption
on results for �nite depth in both temporal and spatial models, the achieved results for
deep water are reproduced for both cases.
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6.3 Further work

As the next phase, one can pick up temporal and/or spatial model(s) derived in this thesis
to carry out the numerical study in order to investigate if our model allows to account for
previous experimental observations by (Raustøl, 2014).
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Chapter 7

Conclusion

This work presents a theoretical study to develop a model to describe wave dynamics
propagating over arbitrary nonuniform depth. By assuming bottom variation of order
ε, we derive a nonlinear Schrödinger equation enhanced with shoaling terms and depth-
dependent coe�cients. The temporal and spatial models are described, and in both
models the NLS equation is coupled with the equations for the induced mean �ow and
the set-down. The analytical solutions of integral forms are also presented for the induced
mean �ow and the set-down in the case of �at bottom. The NLS equation derived in this
study is general since it can be applied for arbitrary depth which covers both �nite and
in�nite depth. Furthermore, we employ the time and space evolution equations in the limit
of deep water and �nite and uniform depth to perform the stability analysis of uniform
wave trains. In the �nite depth assumption for both time and space evolution equations,
it is found that a uniform wave train is modulationally unstable in water deeper than the
critical depth kh > 1.363, while it becomes stable in water shallower than the critical
depth kh < 1.363. Moreover, it is concluded that the limit of the �nite-depth results
when the depth becomes in�nitely large, are in fact equal to the deep-water results for
stability analysis.
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