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Abstract

Based on a paper by Beckus and Bellisard, we study the continuity of fields
of operators, mainly by studying their associated spectra. We discuss and extend
Beckus and Bellisard’s results about self-adjoint operators, including unbounded,
self-adjoint operators, and we also look briefly at bounded, normal operators.
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Introduction

This is Christian Aarset’s Master’s thesis for the course MAT5960 at the University of
Oslo.

In [3], Beckus and Bellissard discuss the following problem: Given a family of bounded
self-adjoint operators (At)t∈T indexed by a parameter t in some topological space T , what are
the different interesting forms of continuity of the spectrum of these operators, and how are
the different types of continuity connected? They conclude that for bounded, self-adjoint
operators, there is an equivalence between continuity of the gap edges, p2-continuity
of the field and Fell continuity of the spectrum; furthermore, for metric space settings,
they give results relating p2-α-Hölder continuity of (At)t∈T with α-Hölder continuity
of the gap edges and α/2-Hölder continuity of the width of gaps.

In this article, we will extend several of Beckus and Bellissard’s ideas, as well as giv-
ing detailed and precise proofs of all their claims. This is particularly true in the case
of unbounded, self-adjoint operators, which are only treated very briefly by Beckus
and Bellisard.

The first chapter serves as a refresher and an introduction to several important con-
cepts we will make extensive use of. The second chapter deals with the core results for
fields of bounded, self-adjoint operators. The third chapter deals with Hölder continu-
ity of fields of self-adjoint, bounded operators, proving and in some cases improving
Beckus and Bellisard’s estimates. The fourth chapter extends some of the earlier results
to the case of unbounded, self-adjoint operators. The fifth chapter explores some pos-
sibilities for giving results for fields of normal operators, and discusses the difficulties
involved in this approach.
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1 Preliminaries

1.1 Basic definitions

The main concept is that of a field of operators:

Definition 1.1. For any given topological space T , a family H = (Ht)t∈T of Hilbert
spaces is called a field of Hilbert spaces. If we for each t ∈ T define a linear operator At
in Ht, then the family A = (At)t∈T is called a field of operators.

We will often assume that the Ht are already given, and refer to fields of operators
without explicitly mentioning any Ht. We will also just use the word "operator" to
refer to linear operators. Whenever we are given a point t0 ∈ T , we will often use the
convention A0 := At0 to simplify notation.

Given some field A = (At)t∈T and a point t0 ∈ T , it is natural to ask whether A
is, in some way, continuous at t0. However, many of the common ways of assess-
ing continuity of families of operators fail with fields. For example, norm continuity,
strong continuity and weak continuity are all meaningless concepts when the under-
lying Hilbert spaces of the different operators are allowed to be different, that is, if for
every neighbourhood U ⊂ T of t0 there exists a t ∈ U such that Ht 6= Ht0 . Indeed, it
is easy to construct cases where the underlying Hilbert spaces are pairwise different,
that is, Ht 6= Hs for all pairs t, s ∈ T with t 6= s.

It follows that in order to have a meaningful definition of continuity, we need some
sort of property that allows for comparison. Fortunately, any linear operator, no matter
how exotic, can be related to a subset of C or R through the notion of the spectrum.

Definition 1.2. For any Hilbert space H over C, we denote the space of all bounded
linear operators in H by B(H) and the space of all invertible bounded linear operators
by GL(H), that is,

GL(H) := {B ∈ B(H) | There exists some C ∈ B(H) such that BC = CB = I}

Definition 1.3. For any Hilbert spaceH over C and any bounded operatorB : H → H ,
the spectrum of B is defined as the subset σ(B) ⊂ C where

σ(B) := {λ ∈ C | λI −B /∈ GL(H)}

It is well known that the spectrum of a bounded operator B is a non-empty, closed
and bounded (i.e., compact) subset of C such that

r(B) := sup |σ(B)| ≤ ‖B‖

with equality if B is normal, that is, if it commutes with its adjoint. Similarly, it is
known thatB is self-adjoint if and only if the spectrum is contained in R. Furthermore,
for any bounded, normal operator B and any complex function f whose restriction to
σ(B) is continuous, we have that

f(σ(B)) = σ(f(B))

1



1.1 Basic definitions

and the same is more generally true for any bounded operator B and any polynomial
p. These facts will be used throughout the article.

The complement of the spectrum, the resolvent set, is denoted by ρ(B). From the
notes above, it follows that for a bounded operator, the resolvent set is an open, non-
empty subset of C.

For any λ ∈ ρ(B), the operator

R(λ,B) := (λI −B)−1

(alternatively denoted by Rλ(B)) is called the resolvent (of B at λ).

As spectra are generally closed, we will be working extensively with closed sets, so
we introduce for every topological space X the space C (X) of all closed subsets of X .
Initially we will focus on the case where X = R, but as we progress we will consider
cases where X is a subset of R or even C.

One important word of caution: Many authors choose to let C (X) (or K (X)) de-
note the space of compact, non-empty subsets of X . However, we do not do this. Per our
definition, we have F ∈ C (X) for any closed set F ⊂ X , including empty and non-
compact F . Although this choice will result in some extra work, it will pay off later,
when we start considering unbounded operators.

Another important construction is the compactification. More accurately, we have
the following definition from [9], page 237:

Definition 1.4. A compactification of a space X is a compact Hausdorff space Y con-
taining (a copy of) X as a subspace such that X = Y . Two compactifications Y1 and
Y2 of X are said to be equivalent if there is a homeomorphism h : Y1 → Y2 such that
h(x) = x for every x ∈ X .

A fairly common compactification of R is the so-called "one-point compactification"
R ∪ {∞}, which is homeomorphic to S1. However, this compactification will not be
very useful to us. Its main issue is that it "does not differentiate between sequences
that diverge towards the left or towards the right" - for example, note that in R∪ {∞},
we get that

lim
x→0

1
x2 =∞ = lim

x→0
− 1
x2

The way to address this is to work with the two-point compactification of R, denoted
by R ∪ {±∞} or [−∞,∞], where ∞ and −∞ are the classic plus and minus infinity
symbols. The basis for the topology on [−∞,∞] consists of all intervals on the form
(a, b), [−∞, a) and (b,∞] where a, b ∈ R and a < b; see [1], page 57.

Throughout this paper, we will often look at sets that are on the form X ∪ {∞},
X ∪ {−∞} or X ∪ {±∞}, where X is some subset of R. These will always be treated
as subsets of [−∞,∞], and, where necessary, will be be endowed with the subspace
topology inherited from [−∞,∞]. For example, the space [0,∞] (occasionally written
as R+∪{∞}), which is the one-point compactification of R+, will be treated as a subset
of [−∞,∞].
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1.2 Gap edge continuity

One possible method of determining "continuity of the spectrum" is by looking not
at the spectra themselves, but at their so-called gaps, that is, the connected compo-
nents of their complements. If these gaps "vary continuously" in some manner, then it
would be reasonable to say that the spectrum, too, is continuous in that manner. More
accurately, we have the following definition:

Definition 1.5. Take F ∈ C (R). A gap of F is a connected component of its comple-
ment.

It is well known that any non-empty open subset of R can be written as a countable
union of disjoint open intervals. As such, any F ∈ C (R) with F 6= R has at most
countably many gaps. In other words, a gap of F is an interval (a, b) ⊂ R\F with
a ∈ F ∪ {−∞} and b ∈ F ∪ {∞}. The points a and b are sometimes referred to as gap
edges of F . The gap edges inf F and supF (if finite) are sometimes referred to as the
outer gap edges, while other gap edges are sometimes called the inner gap edges.

For each F ∈ C (R), there is at most one gap of F where a = −∞ and at most one
gap where b =∞, and if F is unbounded there may be no such gaps. If F = ∅, its only
gap is (−∞,∞) = R, while if F = R it has no gaps (unless we consider ∅ as a gap,
which we generally will not do).

In particular, since the spectra of self-adjoint operators are closed subsets of R, the
concepts of gaps and gap edges are well defined for them.

A useful fact to note is that if F ∈ C (R) and K ⊂ F c is a compact subset of R, then
K is contained in the union of only finitely many gaps of F . For since the gaps of F
are open sets, they form an open covering of disjoint subsets of R covering K, and by
the compactness of K there exists a finite subcover. Said differently, every connected
component of K is contained in exactly one gap of F .

We will need a formal definition of what it means for "the gap edges to be a contin-
uous function of t":

Definition 1.6. Consider a map t ∈ T 7→ Ft ∈ C (R). For any t0 ∈ T , we say that the
map t 7→ Ft is gap edge continuous at t0 if the following conditions are both satisfied:

• For every gap (a, b) of Ft0 , there exists an open neighbourhood U ⊂ T of t0 such
that for every t ∈ U , there exists a gap (at, bt) of Ft so that −∞ ≤ at < bt ≤ ∞,
with

lim
t→t0

at = a and lim
t→t0

bt = b

• Assume {tι}ι∈I is a net of points in T converging to t0, and {aι}ι∈I , {bι}ι∈I are two
convergent nets of points in [−∞,∞] such that

a := lim
ι
aι , b := lim

ι
bι

and (aι, bι) is a gap of Ftι for every ι ∈ I . Then either (a, b) is a gap of Ft0 , or a = b.

3



1.2 Gap edge continuity

We will say that the map t ∈ T 7→ Ft ∈ C (R) is gap edge continuous if it is gap edge
continuous at all points t ∈ T .

For a field of self-adjoint operators A = (At)t∈T and any t0 ∈ T , we say that A is
gap edge continuous at t0 if the map t ∈ T 7→ σ(At) ∈ C (R) is gap edge continuous at
t0 as defined above. We say that A is gap edge continuous or that the gap edges of A are
continuous if A is gap edge continuous at every t ∈ T .

Intuitively speaking, the above definition says that gap edge continuity at t0 means
that gaps cannot "appear" or "disappear" at t0.

Note that in the second condition of gap edge continuity, we clearly have that a,
b ∈ Ft0 ∪ {±∞} if (a, b) is a gap of Ft0 , by the definition of gaps. However, we did not
say anything about the case where a = b. Fortunately, we have that a, b ∈ Ft0 ∪ {±∞}
in this case as well.

Proposition 1.7. Assume that a map t ∈ T 7→ Ft ∈ C (R) is gap edge continuous at some
point t0 ∈ T . Assume also that we are given a net {tι}ι∈I of points in T converging to t0, as
well as two convergent nets {aι}ι∈I , {bι}ι∈I of points in [−∞,∞] such that each (aι, bι) is a
gap of Ftι . If

a := lim
ι
aι = lim

ι
bι =: b

then a = b ∈ Ft0 ∪ {±∞}.

Proof. Set F0 := Ft0 , and assume that a = b /∈ F0∪{±∞}. We will show that this causes
a contradiction.

Assume that F0 6= R, and thus has at least one gap, as otherwise the proof is trivial.
Since a = b /∈ F0 ∪ {±∞}, it must lie in a gap of F0; by the comments following
Definition 1.5, it follows that this gap is an interval (c, d) with c, d ∈ F0 ∪ {±∞} and
c < a = b < d.

Assume first that −∞ < c < d < ∞. By the first condition of gap edge continuity,
there exists a neighbourhood U ⊂ T of t0 such that for each t ∈ U , there exists a gap
(ct, dt) of Ft where

|ct − c| <
a− c

2 and |dt − d| <
d− a

2
However, this is impossible. For by assumption, each (aι, bι) is a gap of Ftι , and

eventually we have

max {|aι − a| , |bι − a|} < min
{
a− c

2 ,
d− a

2

}

But this implies that eventually we have ctι < aι < bι < dtι , so eventually (aι, bι) (
(ctι , dtι), while at the same time both (ctι , dtι) and (aι, bι) are gaps of Ftι , which is im-
possible as any two different gaps are necessarily disjoint. This proves that a = b ∈
F0 ∪ {±∞} in the case where −∞ < c < d <∞.
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1.2 Gap edge continuity

Next, assume that −∞ < c < d =∞. By the first condition of gap edge continuity,
we have that for any N > 0 there exists a neighbourhood U ⊂ T of t0 such that for
each t ∈ U , there exists a gap (ct, dt) of Ft with

|ct − c| <
a− c

2 and dt > N

Again, this is impossible. For, sinceN was arbitrary, we can chooseN soN > a+1.
But since each (aι, bι) is a gap of Ftι , and since aι → a and bι → a, we eventually have
that

max {|aι − a| , |bι − a|} < min
{
a− c

2 , 1
}

Since tι is eventually in U , we must eventually have that ctι < aι < bι < dtι , so
eventually (aι, bι) ( (ctι , dtι), while at the same time both (ctι , dtι) and (aι, bι) are gaps
of Ftι . But this is impossible, as any two different gaps are necessarily disjoint. This
proves that a = b ∈ F0 ∪ {±∞} in the case where −∞ < c < d =∞.

The case where −∞ = c < d <∞ is completely analoguous to the previous case.
Finally, if −∞ = c < d = ∞, it follows that F0 = ∅. By the first condition of gap

edge continuity, we know that for any N > 0 there exists a neighbourhood U ⊂ T of
t0 such that for every t ∈ U , there is a gap (ct, dt) of Ft such that

ct < −N < N < dt

As N was arbitrary, we can choose it so that N > a + 1. However, as aι → a and
bι → a, we must eventually have

min {|aι − a| , |bι − a|} < 1

Since tι is eventually in U , we must eventually have (aι, bι) ( (ctι , dtι) while both
(aι, bι) and (ctι , dtι) are gaps of Ftι . Again, this is impossible as any two different gaps
are necessarily disjoint. Thus a = b ∈ F0 ∪ {±∞} also in this case; as this exhausts all
possible cases, we are done.

The following examples serve to illustrate gap edge continuity.

Example 1.8. Set T = [0, 1] with the standard topology it inherits as a subset of R, and
consider the map t ∈ T 7→ Ft ∈ C (R) given by

Ft = (−∞,−t] ∪ [t,∞)

5



1.2 Gap edge continuity

Figure 1: A part of the map t ∈ T 7→ Ft ∈ C (R) pictured as a subset of T × [−1, 1] =
[0, 1]× [−1, 1].

We claim that the map t ∈ T 7→ Ft ∈ C (R) is gap edge continuous at all points
t ∈ T .

For all t 6= 0, we see that (−t, t) is a gap of Ft, and is indeed the only gap of Ft. Thus
for any t0 6= 0, it follows that if we set a = −t0, b = t0, U = (0, 1] and for every t ∈ U set
at = −t and bt = t, then (a, b) is a gap of Ft0 and (at, bt) is a gap of Ft for t ∈ U . Clearly,

lim
t→t0

at = a and lim
t→t0

bt = b

Thus, the first condition of gap edge continuity is satisfied at t0 6= 0.
For the second condition, we have that if {tι}ι∈I is a net in T converging to t0 such

that for each ι ∈ I we know that (atι , btι) is a gap of Ftι , then again clearly we must
have atι = −tι and btι = tι, so it follows that

lim
ι
atι = −t0 and lim

ι
btι = t0

and so the second condition is satisfied as well at t0 6= 0.
Next, note that for t0 = 0, F0 = R is a connected set and has no gaps, so the first

condition is trivally satisfied at t0 = 0. Furthermore, if {tι}ι∈I is a net in T converging
to 0 such that for each ι ∈ I we know that (atι , btι) is a gap of Ftι , then clearly we must
have atι = −tι and btι = tι, so it follows that

lim
tι→0

atι = 0 = lim
tι→0

btι ∈ F0

6



1.2 Gap edge continuity

and so the second condition is satisfied as well at t0 = 0.

Example 1.9. Consider any bounded, self-adjoint operator A0, and define the field
A := (At)t∈T := (f(t)A0)t∈T for any function f : T → R that is continuous at some
point t0 ∈ T . Since σ(At) = σ(f(t)A0) = f(t)σ(A0) for all t ∈ T , it follows that A is gap
edge continuous at t0, as can easily be verified.

Example 1.10. We claim that the standard procedure to construct the Cantor set is gap
edge continuous. More explicitly, define T := N0∪{∞}, and equip it with the subspace
topology inherited from [−∞,∞]. We make the following recursive definition:

C0 := [0, 1]

Cn := Cn−1

3 ∪
(2

3 + Cn−1

3

)
for n ∈ N

and set

C∞ :=
⋂
n∈N0

Cn

Figure 2: The steps from n = 0 to n = 6 of the Cantor set generation process. Image
courtesy of [13].

Since C0 is closed, an inductive argument shows that Cn is a closed set for every
n ∈ N0. Since C∞ is a countable intersection of closed sets, it is itself closed. It follows
that we have that Cn ∈ C (R) for every n ∈ T .

As can be seen in [5], C∞ is the standard Cantor set. Our claim that "the standard
procedure to construct the Cantor set is gap edge continuous" now becomes equivalent
to the statement that "the map n ∈ T 7→ Cn ∈ C (R) is gap edge continuous".

The first few sets can be expressed as

C1 = C0\
(1

3 ,
2
3

)
C2 = C1\

((1
9 ,

2
9

)
∪
(7

9 ,
8
9

))
C3 = C2\

(( 1
27 ,

2
27

)
∪
(7

9 ,
8
9

)
∪
(19

27 ,
20
27

)
∪
(25

27 ,
26
27

))

7



1.2 Gap edge continuity

An inductive argument shows that if we for each n ∈ N set

An := {0, 2}n

and

B0 = {0}

Bn =
{(

n∑
i=1

αi
3i

)
∈ [0, 1] | α = (α1, α2, ..., αn) ∈ An

}

then in general,

Cn = Cn−1\
⋃

β∈Bn−1

(
β + 1

3n , β + 2
3n
)

= [0, 1] \
n⋃
k=1

⋃
β∈Bk−1

(
β + 1

3k , β + 2
3k
) (1)

for 1 ≤ n < ∞, where all the sets in the union are disjoint, and the union is finite.
From this it follows that

C∞ = [0, 1] \
⋃
k∈N

⋃
β∈Bk−1

(
β + 1

3k , β + 2
3k
) (2)

As {n} is an open set for all n ∈ T with n 6= ∞, the map is trivially gap edge
continuous at all points n0 6=∞.

Next, we prove gap edge continuity at n0 = ∞. Observe that from (2) we see that
any gap G of C∞ is either (−∞, 0), (1,∞) or on the form

(
β + 1

3m , β + 2
3m
)

for some
m ∈ N and some β ∈ Bm−1.

In the first two cases, the first condition of gap edge continuity is trivially satisfied,
as (−∞, 0) and (1,∞) is a gap of Cn for all n ∈ T .

So assume G 6= (−∞, 0) and G 6= (1,∞). From (1) we see that G is a gap of Cm,
and in fact it is a gap for all Cn with n ≥ m. Since {n ∈ N | n ≥ m} ∪ {∞} is an open
neighbourhood of n0 =∞, the first condition clearly holds.

For the second condition, consider a net {nι}ι∈I of points in T converging to n0 =
∞, as well as two nets {aι}ι∈I and {bι}ι∈I of points in [−∞,∞]. Assume that we are
given that for every ι ∈ I , we have that (aι, bι) is a gap of Cnι , and that aι → a, bι → b
for some a, b ∈ [−∞,∞]. We must show that either a = b or that (a, b) is a gap of C∞.

Assume first that a = −∞. As Cn ∩ (−∞, 0) = ∅ for all n ∈ T , it follows that we
in order to have aι → −∞, we must eventually have aι = −∞. Thus, we must also
eventually have bι = 0, so the second condition is clearly satisfied in this case. The
case where b =∞ is similar.

Assume next that a 6= −∞ and b 6= ∞. As each aι and bι is a gap edge of Cnι , it
follows by the preceding discussion that aι, bι ∈ C∞∪{±∞} for all ι ∈ I . AsC∞∪{±∞}

8



1.2 Gap edge continuity

is closed, we get that a, b ∈ C∞ ∪ {±∞}, and by assumption a 6= −∞ and b 6= ∞, so
we must have a, b ∈ C∞.

Assume that a 6= b; otherwise we are done. Begin by noting that by (1), it follows
that for every ι ∈ I we have that

aι = βι + 1
3mι and bι = βι + 2

3mι

for some mι ∈ N and some βι ∈ Bmι−1. It follows that

βι = 2aι − bι and mι = − log(bι − aι)
log 3

Thus we see that the nets {βι}ι∈I and {mι}ι∈I converge to

β = 2a− b and m = − log(b− a)
log 3

respectively. We have mι ∈ N ∪ {∞} for every ι ∈ I , and N ∪ {∞} is a closed subset
of [−∞,∞], so m ∈ N ∪ {∞}. Since b 6= a, it follows that m 6=∞. But this implies that
eventually, mι = m ∈ N, and so eventually

aι = βι + 1
3m and bι = βι + 2

3m

with βι ∈ Bm−1. As Bm−1 is just a finite collection of singletons, it is a closed set. Since
{βι}ι∈I converges to β and eventually βι ∈ Bm−1, we must have β ∈ Bm−1.

Since we have

a = β + 1
3m and b = β + 2

3m

with m ∈ N and β ∈ Bm−1, it follows from (2) that (a, b) is a gap of C∞. This proves
that the second condition of gap edge continuity holds at n0 =∞, so we are done.

A very nice consequence of gap edge continuity is that if t 7→ Ft is gap edge contin-
uous at a point t0, then we can always find a neighbourhood U of t0 such that each Ft
with t ∈ U has "roughly as many" gaps as Ft0 . More formally, we have the following
definition and result.

Definition 1.11. Define the map #G : C (R)→ N0 ∪ {∞} by

#G(F ) :=
{
N if F has exactly N gaps for some N ∈ N0
∞ if F has countably infinitely many gaps

Note that, by the discussion following Definition 1.5, the map #G is well defined,
and clearly #G is a surjection from C (R) onto N0 ∪ {∞}.

Proposition 1.12. Assume that a map t ∈ T 7→ Ft ∈ C (R) is gap edge continuous at some
point t0 ∈ T . Then the following statements both hold:

9



1.2 Gap edge continuity

• If #G(Ft0) = N for some N ∈ N0, then there exists a neighbourhood U ⊂ T of t0 such
that #G(Ft) ≥ N for all t ∈ U .

• If #G(Ft0) =∞, then for every N ∈ N0 there exists a neighbourhood UN ⊂ T of t0 such
that #G(Ft) ≥ N for all t ∈ UN .

Proof. Write F0 := Ft0 . If F0 = R, then #G(F0) = 0, and there is nothing to prove. So
assume F0 6= R and thus #G(F0) 6= 0.

Start by taking any N ∈ N with N ≤ #G(F0). As each gap of F0 is on the form
(a, b) for some a, b ∈ [−∞,∞] with a < b, and as R with the standard order is a totally
ordered set, it follows that we can find a family {(an, bn)}Nn=1 of intervals in R such that
for each n with 1 ≤ n ≤ N , (an, bn) is a gap of F0 and such that

an < bn ≤ an+1 < bn+1

for all n with 1 ≤ n ≤ N − 1. As (an, bn) ∩ (am, bm) = ∅ for all n 6= m, it follows the
family {(an, bn)}Nn=1 consists of exactly N disjoint gaps of F0.

Next, define

ε1 := a2 − a1

2
εn := min

{
an+1 − an

2 ,
an − an−1

2

}
for 2 ≤ n ≤ N − 1

εN := aN − aN−1

2

By the first condition of gap edge continuity, we can for each n find a neighbour-
hood Un ⊂ T of t0 such that for each t ∈ Un, there exists a gap (an,t, bn,t) of Ft with

|an,t − an| < εn

Now set U := ⋂N
n=1 Un; as it is a finite intersection of neighbourhoods of t0, it is itself

a neighbourhood of t0. For every t ∈ U and every n, we now have a gap (an,t, bn,t) of
Ft, and from the definition of the εn’s we see that

a1,t <
a2 + a1

2
an − an−1

2 < an,t <
an+1 + an

2
aN − aN−1

2 < aN,t

for every t ∈ U and for every n with 2 ≤ n ≤ N − 1. Note that this implies that
an,t <

an+1+an
2 < an+1,t for every t ∈ U and every n with 1 ≤ N ≤ N − 1. But this

implies that we must have

an,t < bn,t ≤ an+1,t < bn+1,t

10



1.2 Gap edge continuity

for every t ∈ U and for every n with 1 ≤ n ≤ N − 1. For if not, then we must have
an+1,t < bn,t for at least one n and at least one t ∈ U . Therefore, we must have

(an,t, bn,t) ∩ (an+1,t, bn+1,t) = (an+1,t,min {bn,t, bn+1,t}) 6= ∅

while at the same time (an,t, bn,t) 6= (an+1,t, bn+1,t) as an,t < an+1,t. But this is impossible,
as both (an,t, bn,t) and (an+1,t, bn+1,t) are gaps of Ft, and any two different gaps are
necessarily disjoint.

Thus for every t ∈ U , the family {(an,t, bn,t)}Nn=1 of intervals in R consists of exactly
N disjoint gaps of Ft, implying that Ft has at least N gaps, so it follows that we must
have #G(Ft) ≥ N for every t ∈ U .

As N was arbitrary (under the restrictions N ≤ #G(F0) and N ∈ N), the proof of
the second statement follows immediately, and the proof of the first statement follows
by taking N := #G(F0).

Note that neither of the statements in the above Proposition can be improved, as
these two examples show.

Example 1.13. Set T = [0, 1] with the standard topology inherited from R, and consider
the map t ∈ T 7→ Ft ∈ C (R) given by

Ft :=
{

R\⋃k∈Z(2k − t, 2k + t) if t 6= 0
R if t = 0

It is not hard to verify that t 7→ Ft is gap edge continuous at all points t ∈ T . We
see that #G(F0) = 0 while #G(Ft) =∞ for all t 6= 0.

Example 1.14. Consider n ∈ T 7→ Cn ∈ C (R) as defined in Example 1.10. It is not hard
to see that #G(C∞) =∞, while #G(Cn) <∞ for all n ∈ N0.

We will not go much further down the path of counting and labeling gaps, although
we will reference the above Proposition later to explain the difficulties involved in
working in C.

11



1.3 Topologies on C (X)
In addition to the previous notion of gap edge continuity, we would like to have more
topological interpretations of the concept of continuity of families of closed sets. Recall
that for any topological spaceX , we let C (X) be defined as the set of all closed subsets
of X .

When X is a metric space - for example, any subset of C - we often work with
the Hausdorff distance on the space of closed subsets of X . Many authors work with
Hausdorff distance only on the space of compact, non-empty subsets of X . However, we
want to give a slightly more general formulation:

Definition 1.15. Given a metric space (X, d), we define the Hausdorff distance between
points in X and elements in C (X) by the function dist : X×C (X)→ R+∪{∞}, given
by

dist(x, Y ) := inf
y∈Y

d(x, y)

Similarly, we define the Hausdorff distance between elements in C (X) by the identi-
cally named function dist : C (X)× C (X)→ R+ ∪ {∞}, defined as

dist(Y, Z) := max
{

sup
y∈Y

dist(y, Z), sup
z∈Z

dist(z, Y )
}

= max
{

sup
y∈Y

inf
z∈Z

d(y, z), sup
z∈Z

inf
y∈Y

d(z, y)
}

Note that as by definition inf ∅ = ∞ (∞ is the biggest number that is smaller than
all numbers in the empty set), we have dist(x, ∅) =∞ for all x ∈ X , and so

dist(∅, Y ) = dist(Y, ∅) =∞

for all Y ∈ C (X) with Y 6= ∅.
It is somewhat more difficult to define dist(∅, ∅). One reasonable way to define it

would be to use the fact that sup ∅ = −∞ (−∞ is the smallest number that is greater
than all numbers in the empty set), but a more practical convention, which was sug-
gested in for example [1] and which we will use, is to simply set dist(∅, ∅) = 0.

One thing to be careful about with Hausdorff distance is that, in general, for any
given x ∈ X and F ∈ C (X) we do not have that dist(x, F ) = dist({x} , F ). For
example, when X = R with the standard metric we have dist (0, [0, 1]) = 0, but
dist ({0} , [0, 1]) = 1.

As long as all the quantities involved are finite, we have, for example from [1], page
110, that

dist(Y, Z) ≥ 0
dist(Y, Z) = 0⇔ Y = Z

dist(Y, Z) = dist(Z, Y )
dist(Y, Z) ≤ dist(Y,W ) + dist(W,Z)

12



1.3 Topologies on C (X)

for all Y, Z,W ∈ C (X), and indeed, if we restrict ourselves to non-empty, compact
sets, then we see, also from [1], that the Hausdorff distance is a metric. However, in
general the Hausdorff distance on C (X) is not a metric, as infinite distances can occur;
for example, if X = R with the standard metric, then

dist
(
(−∞, 0], [0,∞)

)
=∞

There is, however, still a natural definition of Hausdorff continuity of maps of the
form t ∈ T 7→ Ft ∈ C (X):

Definition 1.16. Given a metric space (X, d), a map t ∈ T 7→ Ft ∈ C (X) and any
t0 ∈ T , we say that the map t 7→ Ft is Hausdorff continuous at t0 if the map t ∈ T 7→
dist(Ft0 , Ft) ∈ R+ ∪ {∞} is continuous at t0, that is, if

lim
t→t0

dist(Ft0 , Ft) = 0

We can use this to define Hausdorff continuity of the spectra of self-adjoint operators:

Definition 1.17. Given a field A of self-adjoint operators and any t0 ∈ T , we say that
the spectrum function of A is Hausdorff continuous at t0 if the map t ∈ T 7→ σ(At) ∈ C (R)
is Hausdorff continuous at t0; that is, if the map

t ∈ T 7→ dist
(
σ(At0), σ(At)

)
∈ R+ ∪ {∞}

is continuous at t0.
If the spectrum function of the field is Hausdorff continuous at every point t ∈ T ,

we will say that the spectrum function of the field A of self-adjoint operators is Hausdorff
continuous.

To shorthand notation a bit, we will usually not mention the "spectrum function"
t ∈ T 7→ σ(At) ∈ C (R), and will often just say that "the spectrum of A is Hausdorff
continuous" or even just "A is Hausdorff continuous " (alternatively "Hausdorff con-
tinuous at t0").

It is well known - see for example Theorem 6.2.1(v) in [2] - that if H is a Hilbert
space, t ∈ T 7→ At ∈ B(H) is a map that is norm continuous at t0 and At is a normal
operator for every t ∈ T , then the map

t ∈ T 7→ dist
(
σ(At0), σ(At)

)
∈ R+ ∪ {∞}

is continuous at t0, that is, t 7→ At is Hausdorff continuous at t0. However, this result
is not very useful to us, as it both requires norm continuity, which is a very strict
condition, and that the underlying Hilbert space does not change with t.

As noted above, the Hausdorff distance is a metric on the space of non-empty, com-
pact subsets. Since self-adjoint, bounded operators always have non-empty, compact
spectra, it is reasonable to consider the above definition of Hausdorff continuity of the
spectra of operators as a proper topological concept.

A more explicit topological framework on C (X), which makes sense even when X
is not a metric space, turns out to be the Fell topology, first showcased by Fell himself
in [6]. We will now introduce the Fell topology as it is defined in [3].
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1.3 Topologies on C (X)

Definition 1.18. Let X be a topological space. For any K ⊂ X compact and for any
finite family F of open sets in X , define

U (K,F ) := {C ∈ C (X) | C ∩K = ∅, C ∩O 6= ∅ for all O ∈ F}

The collection of all U (K,F ) is the basis for the Fell topology on C (X).

This clearly gives us a definition of Fell continuity of maps to C (X), that is, continu-
ity with respect to the Fell topology. In simple terms, a map to C (X) is Fell continuous
if it never "jumps" into a compact set or out of a family of open sets. The following
Lemma, taken from [12], page 454, characterizes convergence in the Fell topology:

Lemma 1.19. Let X be a locally compact topological space. Let {Fι}ι∈I be a net in C (X), and
take F ∈ C (X). Then Fι → F in the Fell topology on C (X) if and only if

1. given xι ∈ Fι such that xι → x for some x ∈ X , then x ∈ F and

2. given x ∈ F , then there is a subnet {Fικ} and xικ ∈ Fικ such that xικ → x.

Proof. We start by proving the "only if" parts. To prove 1., we assume that we are given
Fι → F , xι ∈ Fι and xι → x. Assume x /∈ F . Since F is closed, there exists a compact
neighbourhood K ⊂ X of x with F ∩ K = ∅; since xι → x, we must eventually have
that xι ∈ K, which implies that we eventually have Fι /∈ U (K, ∅).

However, since F ∩ K = ∅ we have F ∈ U (K, ∅), which is now impossible since
we eventually have that Fι /∈ U (K, ∅) while we simultaneously know that Fι → F in
the Fell topology. Thus we must have x ∈ F , proving 1.

To prove 2., let ≺ be the ordering on I . Given any x ∈ F , define

Γ := {(ι, U) | ι ∈ I, U is an open neighbourhood of x, Fι ∩ U 6= ∅}

Γ is not empty as (ι,X) ∈ Γ for all ι ∈ I . We will show that Γ is a directed set
under the ordering ≺, where (ι, U)≺(ι′, U ′) if ι ≺ ι′ and U ⊇ U ′. It is clearly reflexive;
ι ≺ ι and U ⊇ U so (ι, U)≺(ι, U), and it is also transitive, for if (ι, U)≺(ι′, U ′) and
(ι′, U ′)≺(ι′′, U ′′) then we have ι ≺ ι′, ι′ ≺ ι′′, U ⊇ U ′ and U ′ ⊇ U ′′; by the transitivity of
≺ and ⊇ it follows that ι ≺ ι′′ and U ⊇ U ′′ so (ι, U)≺(ι′′, U ′′).

Finally, it also has the upper bound property. For take any two (ι, U), (ι′, U ′) ∈ Γ.
Then if we define U ′′ := U ∩ U ′, we have U ⊇ U ′′ and U ′ ⊇ U ′′, and U ′′ is an open
neighbourhood of x. Since x is also in F by assumption, F ∈ U (∅, {U ′′}) (where {U ′′}
is the finite family of open subsets of X consisting only of U ′′), and since Fι → F it
follows that there exists some ι′′ such that ι ≺ ι′′, ι′ ≺ ι′′ and Fι′′ ∈ U (∅, {U ′′}), so
(ι′′, U ′′) ∈ Γ and we have both (ι, U)≺(ι′′, U ′′) and (ι′, U ′)≺(ι′′, U ′′). Thus Γ is directed
under the ordering ≺.

Now for each (κ, U) ∈ Γ, choose some y(κ,U) in Fκ ∩ U (by the definition of Γ, these
exist); {yγ}γ∈Γ is now a net converging to x. If we for each (κ, U) ∈ Γ set Fι(κ,U) := Fκ

and xι(κ,U) := y(κ,U), it follows that
{
Fιγ

}
γ∈Γ

is a subnet of {Fι}ι∈I and
{
xιγ
}
γ∈Γ

is the

14



1.3 Topologies on C (X)

required subnet converging to x with xιγ ∈ Fιγ for every ιγ . This proves 2., and so the
"only if" part is done.

To prove the "if" part, assume that both 1. and 2. hold. Suppose F ∈ U (K,F ) for
some compact K ⊂ X and some finite family F of open subsets of X .

If we don’t eventually have Fι ∩ K = ∅, then there exists some subnet {Fικ} such
that Fικ ∩ K 6= ∅ for all ικ, and thus we can find a net {xικ} of points in X such that
xικ ∈ Fικ ∩K for every ικ. As K is compact and xικ ∈ K for all ικ, it follows that there
exists some subnet

{
xικγ

}
that converges to some x ∈ K. By 1., it also follows that

x ∈ F , so x ∈ F ∩K, contradicting the fact that F ∩K = ∅, and so we must eventually
have Fι ∩K = ∅.

Next, take any U ∈ F , and assume that we don’t eventually have Fι ∩U 6= ∅. Then
there exists some subnet {Fικ} such that Fικ ∩ U = ∅ for all ικ. Since F ∩ U 6= ∅, there
exists at least one x ∈ F ∩U . By 2., this implies that there exists a sub-subnet Fικγ such
that we can find a net

{
xικγ

}
with xικγ ∈ Fικγ with xικγ → x. Since x ∈ U we must

eventually have xικγ ∈ Fικγ ∩ U , contradicting our earlier assumption that Fικ ∩ U = ∅
for all ικ, and so we must eventually have Fι ∩ U 6= ∅.

As there are only finitely many U , it follows that eventually we must have that
Fι ∩ K = ∅ and that Fι ∩ U 6= ∅ for all U ∈ F , which implies that we eventually
have Fι ∈ U (K,F ). As K and F were arbitrary, this means that Fι → F in the Fell
topology, and we are done.

Since the spectra of operators are always closed, we can extend the concept of Fell
continuity to also cover fields of operators:

Definition 1.20. Given a field A of self-adjoint operators and any t0 ∈ T , we say that
the spectrum function of A is Fell continuous at t0 if the map

t ∈ T 7→ σ(At) ∈ C (R)

is Fell continuous at t0; that is, if for every basis element U (K,F ) of the Fell topology
on C (R) such that σ(At0) ∈ U (K,F ), there exists a neighbourhood U ⊂ T of t0 such
that σ(At) ∈ U (K,F ) for all t ∈ U .

If the spectrum function of the field is Fell continuous at every point t ∈ T , we will
say that the spectrum function of the field A of self-adjoint operators is Fell continuous.

Once again we will shorthand notation a bit; we will usually not mention the "spec-
trum function" t ∈ T 7→ σ(At) ∈ C (R), and will often just say that "the spectrum of A
is Fell continuous" or even just "A is Fell continuous " (alternatively "Fell continuous
at t0).

Although we will mainly be working with the Hausdorff and Fell topologies, it
is convenient for some purposes to introduce a third topology on C (X) when X is a
metric space - the Wijsman topology, as detailed in for example [4], page 34. It turns
out to be equivalent to the Fell topology whenever both are defined, and so it will
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1.3 Topologies on C (X)

mostly serve as an aid in certain proofs, or as a starting point for readers more familiar
with this sort of topology than they are with the Fell topology.

Definition 1.21. Let (X, d) be a metric space. For every x ∈ X and every α > 0, define
the two sets

{F ∈ C (X) | dist(x, F ) < α}

and

{F ∈ C (X) | dist(x, F ) > α}

The collection of all such sets is a subbase for the Wijsman topology on C (X).

Alternatively, one can say that a net {Fι}ι∈I of elements in C (X) converges to some
F ∈ C (X) in the Wijsman topology on C (X) if and only if

lim
ι

dist(x, Fι) = dist(x, F )

for every x ∈ X .

Lemma 1.22. Assume that we are given a metric space (X, d), some map t ∈ T 7→ Ft ∈ C (X)
and some point t0 ∈ T . Assume t ∈ T 7→ Ft ∈ C (X) is Fell continuous at t0. Then it is
Wijsman continuous at t0.

Proof. To show that t 7→ Ft is Wijsman continuous at t0, we will show that the map

t ∈ T 7→ dist(x, Ft) ∈ R+

is continuous at t0 for every x ∈ X .
Choose any x ∈ X . Write F0 := Ft0 . Assume first that that x /∈ F0.
Set r := dist(x, F0) > 0. It follows that for any 0 < ε < r, we have

F0 ∈ U
(
Br−ε(x), {Br+ε(x)}

)
Note that {Br+ε(x)} is the finite family of open sets consisting of the single element

Br+ε(x). Thus by the Fell-continuity of t 7→ Ft at t0, there exists a neighbourhood
U ⊂ T of t0 such that

Ft ∈ U
(
Br−ε(x), {Br+ε(x)}

)
for every t ∈ U . This implies that for every t ∈ U , the point in Ft closest to λ is

contained in Br+ε(x)\Br−ε(x), that is, r − ε < dist(x, Ft) < r + ε, so

|dist(x, F0)− dist(x, Ft)| < ε

16
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for all t ∈ U . Since ε was arbitrary, we have proven the continuity of the map
t 7→ dist(x, Ft) for all x /∈ F0.

Assume next that x ∈ F0. The proof in this case is exactly as in the previous case,
just by using the fact that

F0 ∈ U (∅, {Bε(x)})

and that by the Fell-continuity of t 7→ Ft at t0, there exists a neighbourhood U ⊂ T
of t0 such that

Ft ∈ U (∅, {Bε(x)})

for all t ∈ U . This proves Wijsman continuity at t0.

Lemma 1.23. Assume that we are given a metric space (X, d), some map t ∈ T 7→ Ft ∈ C (X)
and some point t0 ∈ T . Assume t ∈ T 7→ Ft ∈ C (X) is Wijsman continuous at t0. Then it is
Fell continuous at t0.

Proof. To show that t 7→ Ft is Fell continuous at t0, we will show that for every compact
K ⊂ X and every finite family F of open sets O ⊂ X such that

F0 ∈ U (K,F )

there exists some neighbourhood W ⊂ T of t0 such that

Ft ∈ U (K,F )

for every t ∈ W .

1) For every x ∈ K, consider rx = dist(x, F ) > 0. Clearly we have

K ⊂
⋃
x∈K

Brx/2(x)

and by the compactness of K there exists a finite subcollection xk ∈ K, 1 ≤ k ≤ l such
that if we write rk := rxk then

K ⊂
l⋃

k=1
Brk/2(xk)

Since for each k the map t 7→ dist(xk, Ft) is continuous at t0, we can for each k find
an open neighbourhood Uk ⊂ T of t0 such that

17
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|dist(xk, F0)− dist(xk, Ft)| < rk/2

for every t ∈ Uk, which implies that

dist(xk, Ft) > rk/2

for every t ∈ Uk.
It follows that for each k with 1 ≤ k ≤ l, we have Brk/2(xk) ∩ Ft = ∅ for all t ∈ Uk.

Thus if we define U := ⋂l
k=1 Uk, then for all t ∈ U we have

K ∩ Ft ⊂
(

l⋃
k=1

Brk/2(xk)
)
∩ Ft = ∅

As U is a finite intersection of open neighbourhoods of t0, it is itself an open neigh-
bourhood of t0, and the first part of the proof is complete.

2) Next, fix O ∈ F . We know by the fact that O ∩ F0 6= ∅ that there exists a point
x ∈ O ∩ F0 ⊂ O. Furthermore, since O is open, there exists a real number r > 0 such
that Br(x) ⊂ O.

Clearly dist(x, F0) = 0. By the continuity of t 7→ dist(x, F0) at t0, there exists an
open neighbourhood VO ⊂ T of t0 such that dist(x, Ft) < r for all t ∈ VO. But this
means that

Br(x) ∩ Ft 6= ∅

for all t ∈ VO. Since Br(x) ⊂ O, it follows that

O ∩ Ft ⊃ Br(x) ∩ Ft 6= ∅

for all t ∈ VO.
Now set V := ⋂

O∈F VO; it is a finite - remember, F is a finite family! - intersection
of open neighbourhoods of t0, so it is itself an open neighbourhood of t0, andO∩Ft 6= ∅
for all t ∈ V and all O ∈ F .

3) It follows that Ft ∈ U (K,F ) for all t ∈ W := U ∩ V . This completes the proof.

As such, we will generally not mention Wijsman continuity as anything else than
a tool for some proofs.

We would like Hausdorff continuity and Fell continuity to be equivalent to each
other. Unfortunately, as the next example shows, this is not the case.
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Example 1.24. Set T = [0, 1] with the standard subspace topology it inherits from R,
and consider a field A of bounded, self-adjoint operators with spectra given by

σ(At) :=
{
{0} if t = 0
{0} ∪ {1/t} if t > 0

We claim that this field is Fell continuous at t0 = 0, but not Hausdorff continuous
there.

1) First, we check Fell continuity at t0 = 0. Take any U (K,F ) such that we have
σ(A0) ∈ U (K,F ). To prove continuity, we must find an open neighbourhood W ⊂ T
of 0 such that σ(At) ∈ U (K,F ) for all t ∈ W .

Assume k := maxK < 0. Then it follows that σ(At) ∩K ⊆ [0,∞) ∩ (−∞, 0) = ∅ for
all t ∈ T .

We cannot have k := maxK = 0 since {0} ∩ K = ∅. So assume next that k :=
maxK > 0. Now note that K ⊂ (−∞, 0) ∪ (0, k]. But if we set U := [0, 1/k), then it
follows that

σ(At) ⊂ {0} ∪ (k,∞)

for all t ∈ U . Then clearly σ(At) ∩K = ∅ for all t ∈ U .
Next, take any O ∈ F . Since σ(A0) ∩ O 6= ∅, it follows that 0 ∈ O, so σ(At) ∩ O 6= ∅

for all t ∈ T . This is true for every O ∈ F , so we can set W := U ∩ T = U , which is the
desired neighbourhood.

This proves Fell continuity at t0.

2) To see that the spectrum of A is not Hausdorff continuous at t0, we note that for
all t 6= 0,

dist(σ(A0), σ(At)) =
{

0 if t = 0
dist ({0} , {0} ∪ {1/t}) = 1/t if t > 0

so the map t 7→ dist(σ(A0), σ(At)) is clearly discontinuous at 0.

We see that Fell continuity and Hausdorff continuity are not equivalent. However,
as is easily verified, the field is Fell continuous and Hausdorff continuous at each t 6= 0.
Indeed, it turns out that the only thing that "can go wrong" is the behaviour presented
in this example - specifically, the fact that even though the field consists of bounded
operators, there exists no neighbourhood U ⊂ T of 0 such that supt∈U ‖At‖ <∞.

Definition 1.25. Let (X, ‖·‖) be a normed space equipped with the topology induced
by the norm, and consider a map t ∈ T 7→ Ft ∈ C (X). We say that the map is locally
uniformly bounded at t0 if there exists some neighbourhood U ⊂ T of t0 such that

sup
t∈U

sup
x∈Ft
‖x‖ <∞
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Definition 1.26. Let A be a field of operators. We say that A is locally uniformly bounded
at t0 if the map t ∈ T 7→ σ(At) ∈ C (C) is locally uniformly bounded at t0. If A is a field
of bounded, normal operators, this is equivalent to demanding that there exists some
neighbourhood U ⊂ T of t0 such that

sup
t∈U
‖At‖ <∞

In many situations, we shall demand that a field be Fell continuous and locally uni-
formly bounded at t0; to be clear, this just means that we require it to both be Fell con-
tinuous at t0 and locally uniformly bounded at t0. As the following Lemmas show,
the condition of local uniform boundedness is sufficient to prove equivalence between
Fell continuity and Hausdorff continuity.

Lemma 1.27. Let X be a subset of C with the subspace metric, and assume that some map
t ∈ T 7→ Ft ∈ C (X) is Fell continuous and uniformly locally bounded at some point t0 ∈ T .
Then t ∈ T 7→ Ft ∈ C (X) is Hausdorff continuous at t0.

Proof. Fix any ε > 0, and write F0 := Ft0 . We must show that there exists a neighbour-
hood of t0 such that dist(F0, Ft) < ε for all t ∈ U .

As t 7→ Ft is uniformly locally bounded at t0, there exists an m > 0 and a neigh-
bourhood W ⊂ T of t0 such that supt∈W sup |Ft| < m; in particular, Ft = Ft ∩Bm(0) for
all t ∈ W . As such, if we define

K := Bm(0) ∩ {x ∈ X | dist(x, F0) ≥ ε}

then K is a bounded subset of X with F0 ∩K = ∅, and it is clearly also closed, so K is
compact.

Note that since F0 is closed and bounded, we have that F0 is a compact set. It
follows that since the collection

{
Bε/2(x)

}
x∈F0

of open balls covers F0, there exists a

finite subcollection
{
Bε/2(xk)

}l
k=1

which also covers F0. So set F :=
{
Bε/2(xk)

}l
k=1

.
We clearly have F0 ∈ U (K,F ). By the Fell continuity of t 7→ Ft at t0, it follows that

we can find a neighbourhood U ⊂ T of t0 such that Ft ∈ U (K,F ) for all t ∈ U . Since
Ft ∩K = ∅ for all t ∈ U , it follows that for all t ∈ U ∩W we have

Ft ∩ {x ∈ R | d(F0, x) ≥ ε} = Ft ∩ [−m,m] ∩ {x ∈ R | d(F0, x) ≥ ε}
= Ft ∩K
= ∅

and so in particular dist(xt, F0) < ε for all xt ∈ Ft. Since Ft is closed, we actually have
supxt∈Ft dist(xt, F0) < ε for all t ∈ U ∩W and all xt ∈ Ft.

Fix any x0 ∈ F0. As F covers F0, there exists a k0 with 1 ≤ k0 ≤ l such that
x0 ∈ Bε/2(xk0). Since we have Ft ∩Bε(xk0) 6= ∅ for every t ∈ U , it follows that for every
t ∈ U there exists a point xt ∈ Ft ∩Bε/2(xk0), so

|x0 − xt| ≤ |x0 − xk0|+ |xk0 − xt|
< ε/2 + ε/2 < ε
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for every t ∈ U .
Hence dist(x0, Ft) < ε for every t ∈ U . x0 was arbitrary, so we must have that

dist(x0, Ft) < ε for every x0 ∈ F0 and every t ∈ U . Since F0 is closed, we actually have
supx0∈F0 dist(x0, Ft) < ε for every t ∈ U .

As such we now have

dist(F0, Ft) = max
{

sup
x0∈F0

dist(x0, Ft), sup
xt∈Ft

dist(xt, F0)
}

< max {ε, ε}
= ε

for all t ∈ U ∩W . As ε was arbitrary, this proves that t 7→ Ft is Hausdorff continuous
at t0.

Lemma 1.28. Let X be a subset of C with the subspace metric, and assume that some map
t ∈ T 7→ Ft ∈ C (R) is Hausdorff continuous at some point t0 ∈ T and that Ft0 is bounded.
Then t ∈ T 7→ Ft ∈ C (R) is Fell continuous and locally uniformly bounded at t0.

Proof. Take any compact K ⊂ X and any finite family F of open subsets of X such
that F0 := Ft0 ∈ U (K,F ), that is, such that F0 ∩ K = ∅ and F0 ∩ O 6= ∅ for every
O ∈ F . We must find a neighbourhood of t0 such that Ft ∈ U (K,F ) for all t in this
neighbourhood.

1) We will first find a neighbourhood U ⊂ T of t0 such that Ft ∩K = ∅ for all t ∈ U .
Since F0 ∩K = ∅, there exists for every x ∈ K a real number rx > 0 such that

F0 ∩Brx(x) = ∅

Clearly the collection of smaller balls
{
Brx/2(x)

}
x∈K

is an open covering of K, and

since K by definition is compact, there exists some finite collection {xk}lk=1 of points

of K such that if we set rk := r(xk), then
{
Brk/2(xk)

}l
k=1

is also an open cover of K.
By the Hausdorff continuity of t 7→ Ft at t0, it follows that for each k we can find an

open neighbourhood Uk ⊂ T of t0 such that dist(F0, Ft) < rk/2 for all t ∈ Uk. We claim
that Ft ∩ Brk/2(xk) = ∅ for all t ∈ Uk. For if not, there exists a point yk ∈ Ft ∩ Brk/2(xk),
which implies that

|yk − xk| < rk/2

and

dist(yk, F0) ≤ dist(Ft, F0) < rk/2

But then

dist(xk, F0) ≤ dist(yk, F0) + |yk − xk|
< rk/2 + rk/2
= rk
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contradicting the fact that Brk(xk) ∩ F0 = ∅. Thus Brk/2(xk) ∩ Ft = ∅ for all t ∈ Uk.
If we set U := ⋂l

k=1 Uk, then U ⊂ T is an open neighbourhood of t0 and

Ft ∩K ⊂ Ft ∩
(

l⋃
k=1

Brk/2(xk)
)

= ∅

for all t ∈ U , so the first part is done.

2) For the second part, we must find a neighbourhood V ⊂ T of t0 such that we
have Ft ∩O 6= ∅ for all t ∈ V and all O ∈ F . Start by fixing O ∈ F .

Choose any x ∈ F0∩O; asO is open, we can choose some r > 0 such thatBr(x) ⊂ O.
Since t 7→ Ft is Hausdorff continuous at t0, we can find a subset VO ⊂ T such that

dist(F0, Ft) < r

for all t ∈ VO. Now note that for every t ∈ VO, there must exist at least one point xt ∈ Ft
that is also in Br(x); for otherwise, we would have

dist(F0, Ft) ≥ dist(x, Ft) ≥ r

for at least one t ∈ VO, which is impossible.
This implies that the required xt exists, so we have

xt ∈ Ft ∩Br(x) ⊂ Ft ∩O

for all t ∈ VO, giving us Ft ∩O 6= ∅ for all t ∈ VO.
Since F is finite, we see that V := ∩O∈FVO is an open neighbourhood of t0, and

Ft ∩O 6= ∅ for every O ∈ F and every t ∈ V . This proves the second claim.

3) We now see that for all t ∈ U ∩ V , we have Ft ∩ K = ∅ and Ft ∩ O 6= ∅ for all
O ∈ F , so Ft ∈ U (K,F ) for all t ∈ U ∩ V .

This proves Fell continuity of t 7→ Ft at t0, as K and F were arbitrary.

4) To prove local uniform boundedness, we must find a neighbourhoodW ⊂ T of t0
such that supt∈W sup |Ft| <∞. Recall that, by assumption, we have sup |F0| = m <∞.

By Hausdorff continuity, we can find a neighbourhood W ⊂ T of t0 such that
d(F0, Ft) < 1 for all t ∈ W . Since Ft is a closed set for every t ∈ T , we see that for any
t ∈ W we cannot have supFt ≥ supF0 + 1 or inf Ft ≤ inf F0− 1, as otherwise we would
have

d(F0, Ft) ≥ max {|supF0 − supFt| , |inf F0 − inf Ft|} ≥ 1

which is impossible by assumption. But then for all t ∈ W ,

sup |Ft| = max {|supFt| , |inf Ft|} < m+ 1 <∞

which proves local uniform boundedness, and the proof is complete.
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The next chapter will be devoted to proving that as long as we have this property
of local uniform boundedness, then all the types of continuity we have discussed so
far are indeed equivalent.
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2 Bounded, self-adjoint operators

2.1 Forms of continuity for fields

Now that we have laid the groundwork, we can start considering how to define conti-
nuity of a field A. The different notions of continuity for maps t ∈ T 7→ Ft ∈ C (X) are
certainly interesting, but we would like to have notions of continuity that relate more
directly to the nature of the operators involved.

For families of bounded operators {At}t∈T such that each At is an operator on the same
Hilbert space H , we have several well-known forms of continuity. Among the more
famous ones are norm continuity, strong continuity and weak continuity. In the following
discussion, we will use the term family of bounded operators to refer specifically to such
families where each operator acts on the same Hilbert space.

Definition 2.1. Let {At}t∈T be a family of bounded operators on some Hilbert space
H , and take any t0 ∈ T . We say that {At}t∈T is norm continuous at t0 if

lim
t→t0
‖At0 − At‖ := lim

t→t0
sup
‖x‖≤1

‖(At0 − At)x‖ = 0

Definition 2.2. Let {At}t∈T be a family of bounded operators on some Hilbert space
H , and take any t0 ∈ T . We say that {At}t∈T is strongly continuous at t0 if

lim
t→t0
‖(At0 − At)x‖ = 0

for every x ∈ H .

Definition 2.3. Let {At}t∈T be a family of bounded operators on some Hilbert space
H , and take any t0 ∈ T . We say that {At}t∈T is weakly continuous at t0 if

lim
t→t0

〈
(At0 − At)x, y

〉
= 0

for every pair x, y ∈ H .

However, these definitions do not necessarily make sense in the case of a field of
operators, as the Ht are allowed to be different. The term (At0 − At)x is only well
defined when both At0 and At are both actually able to operate on x, and it appears
in all three definitions. We will need to find some common area that we can use to
evaluate continuity.

Our first idea is a variation of norm continuity. While norm continuity as above is
not useful to us, we could try to see whether

lim
t→t0

∣∣∣‖At0‖ − ‖At‖∣∣∣ = 0

as this is always well defined. However, this would be far too weak a test of continuity.
For just consider the case where for all t ∈ T we have Ht = H for some Hilbert space
H and we define A = {At}t∈T by

At :=
{
‖B‖I if t = t0
B otherwise
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for some point t0 ∈ T and some bounded operator B. Then by the above notion of
continuity, we would have

lim
t→t0

∣∣∣‖At0‖ − ‖At‖∣∣∣ = lim
t→t0

∣∣∣∣∥∥∥‖B‖I ∥∥∥− ‖B‖∣∣∣∣ = 0

suggesting that A is continuous at t0, which seems quite counterintuitive, as B was
any arbitrary operator in B(H), and may be very different from the identity operator.

In [3], Beckus and Bellissard suggested that a better approach would be to use the
following method:

Definition 2.4. We say that a field A = (At)t∈T of bounded operators is p2-continuous
at a point t0 ∈ T if for every polynomial p of degree two or less with real coefficients,
the map

t ∈ T 7→ ‖p(At)‖ ∈ R+

is continuous at t0, that is, if

lim
t→t0

∣∣∣‖p(At0)‖ − ‖p(At)‖
∣∣∣ = 0

for every p as above.
We say that A is p2-continuous if A is p2-continuous at every point t ∈ T .

We can show that this definition is weaker than or equal to norm continuity in situ-
ations where both definitions make sense, and under the assumption of local uniform
boundedness.

Proposition 2.5. Let A = (At)t∈T be a field of self-adjoint, bounded operators, take t0 ∈ T
and set H := Ht0 . Assume that there exists a neighbourhood U ⊂ T of t0 such that

• Ht = H for every t ∈ U ,

• m := supt∈U ‖At‖ <∞,

• t ∈ U 7→ At ∈ B(H) is norm continuous at t0
Then A is p2-continuous at t0.

Proof. If {tκ}κ∈J is a net of points in T converging to t0, then eventually tκ ∈ U , so there
exists κ′ ∈ J such that tκ ∈ U for every κ � κ′. It follows that eventually, ‖At0 − Atκ‖ is
well defined and

lim
κ
‖At0 − Atκ‖ = 0

But for any polynomial of degree two or less with real coefficients, say p(x) =
p2x

2 + p1x+ p0, we have∣∣∣‖p(At0)‖ − ‖p(Atκ)‖
∣∣∣ ≤ ‖p(At0)− p(Atκ)‖

= ‖p2A
2
t0 + p1At0 + p0 − p2A

2
tκ − p1Atκ − p0‖

≤ |p2| ‖At0 − Atκ‖ ‖At0 + Atκ‖+ |p1| ‖At0 − Atκ‖
≤ (2|p2|m+ |p1|) ‖At0 − Atκ‖
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for every κ � κ′. It follows that

lim
κ

∣∣∣‖p(At0)‖ − ‖p(Atκ)‖
∣∣∣ = 0

and we are done.

Example 2.6. Set T = R with the standard topology, set for each t ∈ T

Ht :=
{
L2([0, 1]) if t ∈ Q
C2 if t ∈ R\Q

with their standard Hilbert space structure, and set At := tI for every t ∈ T .
Intuitively, the field A = (At)t∈T "should" be continuous due to its simple nature,

but as Ht changes as we move along T , we cannot apply the definitions of norm,
strong or weak continuity. However, A is p2-continuous at every t0 ∈ T . For take any
polynomial p(x) = p2x

2 + p1x+ p0 with real coefficients of degree two or less, and note
that ∣∣∣‖p(At0)‖ − ‖p(At)‖

∣∣∣ =
∣∣∣‖p(t0)I‖ − ‖p(t)I‖

∣∣∣
=
∣∣∣|p(t0)| − |p(t)|

∣∣∣
≤
∣∣∣p(t0)− p(t)

∣∣∣
and that limt→t0

∣∣∣p(t0)− p(t)
∣∣∣ = 0.

Example 2.7. Set T and Ht as in the previous example, but assume now that the oper-
ators At ∈ B(Ht) are self-adjoint and satisfy

σ(At) :=
{

[0, 1] if t ∈ Q
{0} ∪ {1} if t ∈ R\Q

We claim that in this case, A is not p2-continuous. For any polynomial p, it follows
from the functional calculus that

‖p(At)‖ = sup |p(σ(At)|

Set p(x) = 1 − (x − 1/2)2 = x2 − x − 3/4, and take any t0 ∈ Q. Now note that for
any t ∈ R\Q, we have∣∣∣‖p(At0)‖ − ‖p(At)‖

∣∣∣ =
∣∣∣ (sup |p([0, 1])|

)
−
(
sup |p({0} ∪ {1})|

) ∣∣∣
= |1− 3/4| = 1/4

Since any neighbourhood of t0 in T will contain at least one point in R\Q (in fact,
uncountably many), we have

lim
t→t0

∣∣∣‖p(At0)‖ − ‖p(At)‖
∣∣∣ 6= 0
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and since p is a polynomial of degree two with real coefficients, we are done in this
case. By reversing the argument, we see that this also holds for t0 ∈ R\Q, so A is
nowhere p2-continuous.

As an aside, note that ‖At‖ = sup |σ(At)| = 1 for every t ∈ T , so by our naïve first
attempt at defining continuity of fields, A would indeed be everywhere continuous.

As the last example illustrates, the truly interesting properties of an operator (with
regards to evaluating continuity) seem to lie not in its norm, but in the shape and size
of its spectrum, justifying our work so far.

We shall make a short detour, and consider what would happen if we replaced our
polynomials in the definition of p2-continuity with other sorts of functions. Although
not intuitively obvious, the choice falls on proper functions, as these will arise naturally
in our considerations later.

Definition 2.8. A continuous map f : X → Y between two topological spaces X and
Y is said to be proper if the inverse image of any compact subset is compact; that is, if
we have that f−1(K) is compact in X for every compact subset K ⊂ Y .

Definition 2.9. A fieldA = (At)t∈T of self-adjoint, bounded operators is proper-continuous
at a point t0 ∈ T if for every proper, continuous function f : R→ R, the map

t ∈ T 7→ ‖f(At)‖ ∈ R+

is continuous at t0, that is, if for every f as above we have

lim
t→t0

∣∣∣‖f(At0)‖ − ‖f(At)‖
∣∣∣ = 0

We say that A is proper-continuous if A is proper-continuous at every point t ∈ T .

Proposition 2.10. All polynomials of degree two or less with real coefficients, that is, all
polynomials on the form p : x ∈ R 7→ ax2 + bx + c ∈ R, are either proper (in the standard
topology on R) or constant functions.

Proof. For p(x) = ax2 + bx+ c, choose any compact subset K ∈ R; we must either show
that

p−1(K) =
{
λ ∈ R | aλ2 + bλ+ c ∈ K

}
is a compact subset of R, or that p is a constant function.

Assume that a 6= 0. Remember that the equation ax2 + bx+ c = y has the solutions

x =
−b±

√
b2 − 4a(c− y)

2a

whenever b2 − 4a(c− y) ≥ 0, and no (real) solutions otherwise.
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Assume a > 0. It follows that if we set

L :=
{
y ∈ R|y ≥ c− b2

4a

}

then p−1({y}) = ∅ for all y /∈ L, hence p−1(U) = p−1(U ∩ L) for all subsets U ⊂ R. L is
clearly closed.

It follows that if we define the two functions q1, q2 : L→ R by

q1 : y ∈ L 7→
−b+

√
b2 − 4a(c− y)

2a
and

q2 : y ∈ L 7→
−b−

√
b2 − 4a(c− y)

2a
then p−1(K) = p−1(K∩L) = q1(K∩L)∪q2(K∩L). Both q1 and q2 are clearly continuous
functions, and K ∩ L is compact in L by the definition of the subspace topology. It
follows that q1(K ∩ L) and q2(K ∩ L) are compact in R, so p−1(K) is compact, and we
are done with this case.

The case a < 0 is similar. If a = 0, then we have to consider the two cases b = 0 and
b 6= 0.

If b 6= 0 then p : x ∈ R 7→ bx + c ∈ R. If we define the (clearly continuous) function
q : y ∈ R 7→ y−c

b
∈ R then clearly p−1(U) = q(U) for any subset U ⊂ R; in particular, if

K is compact then p−1(K) = q(K), which is compact by the continuity of q, so in this
case we are done.

If b = 0 then p is just the constant function p : x ∈ R 7→ c ∈ R, and we are done.

Corollary 2.11. Let A = (At)t∈T be a field of self-adjoint, bounded operators, and choose any
t0 ∈ T . If A is proper-continuous at t0, then A is p2-continuous at t0.

Proof. The continuity of t ∈ T 7→ ‖aA2
t + bAt + c‖ ∈ R+ in the case where at least one

of a and b are non-zero follows directly from Proposition 2.10. When a = b = 0, we
have ∥∥∥aA2

t + bAt + c
∥∥∥ = sup |{c}| = |c|

and the map t ∈ T 7→ |c| ∈ R+ is obviously continuous, which covers the case where
p : x ∈ R 7→ c ∈ R is a constant function; this clarification is necessary, as constant
functions from non-compact spaces are not proper.

It follows that the definition of proper-continuity is stronger than or equal to that
of p2-continuity. It turns out, maybe surprisingly, that in fact these two definitions are
equivalent, and we will prove this in the next section.

So far we have discussed various different forms of continuity. We will repeat
Example 1.24 to illustrate that once again, we will need local uniform boundedness to
prove that they are all equivalent.
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Example 2.12. Set T = [0, 1] with the standard subspace topology it inherits from R,
and consider a field A of bounded, self-adjoint operators with spectra given by

σ(At) :=
{
{0} if t = 0
{0} ∪ {1/t} if t > 0

We showed in Example 1.24 that this field is Fell continuous at t0 = 0, but not
Hausdorff continuous there. We will now show that the field is gap edge continuous
at t0, but neither p2-continuous nor proper-continuous there.

1) First, we show that t 7→ σ(At) is gap edge continuous at t0.
For the first condition of gap edge continuity, note that σ(A0) has two gaps, (−∞, 0)

and (0,∞). (−∞, 0) is also a gap of σ(At) for all t ∈ T , so the first condition trivially
holds for this gap. For the gap (0,∞), we note that for any N > 0, the set

UN := {t ∈ T | 1/t > N}

is an open neighbourhood of t0 = 0, and for every t ∈ UN\ {0}, we see that σ(At) has a
gap on the form (0, bt) where bt > N . But this implies that limt→0 bt = ∞, and the first
condition of gap edge continuity holds here as well.

For the second condition of gap edge continuity, note that for any t ∈ T\ {0}, we
know that σ(At) has three gaps: (−∞, 0), (0, 1/t) and (1/t,∞). Let {tι}ι∈I be some net
of points in T converging to t0 = 0, and let {aι}ι∈I and {bι}ι∈I be two convergent nets
of points in R ∪ {±∞}. Assume that we are given that for every ι ∈ I , (aι, bι) is a gap
of σ(Atι). We must show that if aι → a and bι → b, then we have that a = b or that (a, b)
is a gap of σ(A0).

If a < 0, it follows we eventually have aι < 0. But since aι is a gap edge of σ(Atι),
it follows that eventually aι = −∞. Since (aι, bι) is a gap of σ(Atι), it follows that
eventually, we have bι = 0. But then clearly a = −∞ and b = 0, and (a, b) = (−∞, 0) is
a gap of σ(A0).

If a = 0, then eventually |aι| < 1. But, again since aι is a gap edge of σ(Atι),
it follows that eventually we have aι = 0, and so a = 0. From this it follows that
eventually bι = 1/tι, and so

b = lim
ι
bι = lim

ι
1/tι =∞

and (a, b) = (0,∞) is a gap of σ(A0).
If a > 0, then eventually we have that aι > 0. Again, we can use this and the fact

that aι is a gap edge of σ(Atι) to conclude that eventually, aι = 1/tι, which in turn leads
us to conclude that eventually bι =∞. But this implies that

a = lim
ι
aι = lim

ι
1/tι =∞

and b =∞, so a = b, and we are done.
As this exhausts all possible cases, the second condition of gap edge continuity

holds. Since both conditions of gap edge continuity hold, it follows that t 7→ σ(At) is
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gap edge continuous at t0 = 0.

2) To prove that the field is neither p2-continuous nor proper-continuous at t0 = 0,
notice that if we set p(z) = z then p(z) is a polynomial of degree one, and is also proper,
being the identity function, and

‖p(At)‖ = ‖At‖ =
{

0 if t = 0
1/t if t > 0

so t 7→ ‖p(At)‖ is clearly discontinuous at t0 = 0.

Combining the two examples, we have now demonstrated that Fell continuity and
gap edge continuity are not equivalent to the other forms of continuity. However, as
is again easily verified, the field is Fell continuous, Hausdorff continuous, gap edge
continuous, p2-continuous and proper-continuous at each t 6= 0, and we claim that
once again, the only "problem" is the lack of local uniform boundedness at t0 = 0 - a
claim we will prove in the next section.
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So far we’ve considered several main forms of continuity of spectra: Gap edge continu-
ity, p2-continuity, proper-continuity, Hausdorff continuity and Fell continuity. The first
major result of [3] shows for locally uniformly bounded fields of self-adjoint, bounded
operators, gap edge continuity, p2-continuity and Fell continuity are equivalent. Here,
we will prove an extended version of the theorem, stating that in this case, all five
forms of continuity are equivalent.

Theorem 2.13. Let A = (At)t∈T be a field of self-adjoint, bounded operators, and take any
t0 ∈ T . Consider the following statements:

1. A is gap edge continuous at t0.

2. A is Fell continuous at t0

3. A is p2-continuous at t0.

4. A is proper-continuous at t0.

5. A is Hausdorff continuous at t0.

Then 1. and 2. are equivalent. If A is locally uniformly bounded at t0, then all the above
statements are equivalent.

It should be noted that in [3], this theorem is formulated rather differently, ignor-
ing the condition of local uniform boundedness. However, Beckus and Bellisard do
acknowledge the necessity of local uniform boundedness in the proofs they give later
on in the article, although they never directly name the property. The concepts of
proper-continuity and Hausdorff continuity are not explicitly introduced in [3].

As such, our first goal is to prove the various equivalences in Theorem 2.13, while
clarifying the notation from [3] as much as possible. First, a few technical results.

Proposition 2.14. Let −∞ ≤ a < b <∞, and set X = (a, b]. Then the map

F ∈ C (X) 7→ supF ∈ R

is continuous with regards to the Fell topology on C (X) and the standard topology on R.

Proof. Fix F0 ∈ C (X) with supF0 = λ; we have λ ∈ F0 since F0 is closed and λ < ∞
since F0 ∈ C (X). To show that the map defined above is continuous, we must show
that for any real number ε > 0, there exists an open (in the Fell topology) neighbour-
hood U (Kε,Fε) around F0 such that

|supF0 − supF | < ε

for all F ∈ U (Kε,Fε).
We will begin by assuming that −∞ < a.
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First assume λ < b. For any given ε, let us define

ε̃ := min
{
ε,
λ− a

2 ,
b− λ

2

}

Now set Kε := [λ + ε̃, b] and Oε := (λ − ε̃, b]; clearly Kε is compact in X and Oε is
open in X . Furthermore F0 ∩Kε = ∅ and F0 ∩Oε 6= ∅, so F0 ∈ U (Kε, {Oε}).

Take any other F ∈ U (Kε, {Oε}). It follows that F ∩ Kε = ∅, which implies that
sup {F} < λ + ε̃, since F is closed. Furthermore, F ∩ Oε 6= ∅, which similarly implies
that λ− ε̃ < supF .

From the above, it is clear that

|supF0 − supF | < ε̃ ≤ ε

for all F ∈ U (Kε, {Oε}), which proves continuity for λ < b. But for λ = b, the exact
same proof with Kε = ∅ and ε̃ := min

{
ε, λ−a2

}
proves the result in the case −∞ < a.

In the case a = −∞, the method above works in its entirety, although one could
choose to remove the mention of λ−a

2 in the definitions of ε̃. This completes the proof.

Proposition 2.15. Let X be a topological space, Y be a locally compact Hausdorff space, and
f : X → Y be a proper, continuous function. Then the map f̂ : F ∈ C (X) 7→ f(F ) ∈ C (Y )
is Fell continuous.

Proof. A version of The Closed Map Lemma says that any proper, continuous function
from a topological space to a locally compact Hausdorff space is closed, that is, it sends
closed sets to closed sets; for a proof of this version, see [8].

Thus we see that the map f̂ is well defined. It remains to demonstrate Fell-continuity;
that is, we need to show that for every basis element U (K,F ) in the Fell topology on
Y , the set f−1 (U (K,F )) is open in the Fell topology on X . In order to do this, we will
show that there exists an open set W ⊂ C (X) in the Fell topology on X such that for
every F ∈ U (K,F ) ⊂ C (Y ), we have

F̃ := f−1(F ) ∈ W ⊂ f−1 (U (K,F )) ⊂ C (X)

which will prove continuity.
Given U (K,F ) ⊂ C (Y ), we know that K ⊂ Y is compact and that F is a fi-

nite family of open subsets O ⊂ Y . Since f is continuous and proper, we know that
f−1 (O) ⊂ X is open for every O ∈ F and that f−1(K) ⊂ X is compact. It follows that
the set U (f−1(K), f−1(F )) is open in the Fell topology on C (X); we set

W := U
(
f−1(K), f−1(F )

)
Now fix an F ∈ U (K,F ). By definition, F ∩ K = ∅ and F ∩ O 6= ∅ for every

O ∈ F . We have that

F̃ ∩ f−1(K) = ∅
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2.2 Equivalence of different forms of continuity

For, if there existed an x ∈ X with x ∈ F̃ ∩ f−1(K), then

f(x) ∈ f
(
f−1(F )

)
= F and f(x) ∈ f

(
f−1(K)

)
= K

which is impossible. We obviously have F̃ ∩O 6= ∅ for every O ∈ F ; thus

F̃ ∈ U
(
f−1(K), f−1(F )

)
Next consider any G ∈ U (f−1(K), f−1(F )); to show the inclusion

U
(
f−1(K), f−1(F )

)
⊂ f−1 (U (K,F ))

we need to show thatG ∈ f−1 (U (K,F )), i.e. that f(G) ∈ U (K,F ). Similar to above,
we must have f(G) ∩ K 6= ∅; for otherwise there would exist an x ∈ G such that
f(x) ∈ K, which implies x ∈ f−1(K), which cannot be true. Similarly it is clear that
f(G) ∩ f(O) 6= ∅ for all O ∈ F .

Proposition 2.16. Let B be a bounded, self-adjoint linear operator. For any given m > ‖B‖,
define the polynomial p(z) := m2 − z2. Then for any r < m, we have

‖p(B)‖ ≤ m2 − r2

if and only if Br(0) ∩ σ(B) = ∅, where Br(0) = {λ ∈ C | |λ| < r}.
Equivalently,

‖p(B)‖ > m2 − r2

if and only if Br(0) ∩ σ(B) 6= ∅.

Proof. SinceB is self-adjoint, σ(B) ⊂ R, and for any polynomial P , σ(P (B)) = P (σ(B)).
Since |λ| ≤ ‖B‖ for all λ ∈ σ(B), it follows that

p(λ) = m2 − λ2 ≥ m2 − ‖B‖2 > 0

for all λ ∈ σ(B); in particular |m2 − λ2| = m2 − λ2 for all λ ∈ σ(B).
Note also that Br(0) ∩ σ(B) = ∅ implies that |λ| ≥ r for all λ ∈ σ(B). Thus

‖p(B)‖ = sup |σ(p(B))|
= sup |p(σ(B))|
= sup

λ∈σ(B)
|p(λ)|

= sup
λ∈σ(B)

{∣∣∣m2 − λ2
∣∣∣}

= sup
λ∈σ(B)

{
m2 − λ2

}
≤ m2 − r2
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2.2 Equivalence of different forms of continuity

To prove the reverse implication, note that everything we did except the last line is
still valid, so ‖p(B)‖ = supλ∈σ(B) {m2 − λ2}. If we assume that ‖p(B)‖ ≤ m2 − r2, then
we have

sup
λ∈σ(B)

{
m2 − λ2

}
≤ m2 − r2

⇓
inf

λ∈σ(B)
λ2 ≥ r2

⇓
inf

λ∈σ(B)
|λ| ≥ r

which clearly implies |λ| ≥ r for all λ ∈ σ(B), which is equivalent to saying that
Br(0) ∩ σ(B) = ∅. This completes the proof of the first statement.

The second statement is logically equivalent to the first, so we are done.

We are now ready to prove the results that in turn will prove Theorem 2.13.

Lemma 2.17. Let A = (At)t∈T be a field of self-adjoint, bounded operators, let t0 be any
point of T , and assume that A is p2-continuous at t0. Then A is Fell continuous and locally
uniformly bounded at t0.

Proof. Fix t0 ∈ T , and remember our convention of writing A0 := At0 ; we must show
both that for every basis element U (K,F ) of the Fell topology on C (R) such that
σ(A0) ∈ U (K,F ), there exists a neighbourhood S ⊂ T of t0 such that σ(At) ∈
U (K,F ) for all t ∈ S, and that there exists some neighbourhood W of t0 such that
supt∈W ‖At‖ <∞.

1) Since K ∩ σ(A0) = ∅, there exists for every x ∈ K a real number r(x) > 0 such
that Br(x)(x) ∩ σ(A0) = ∅. Clearly the collection of (smaller) balls

{
Br(x)/2(x)

}
x∈K

is
an open covering of K, and since K by definition is compact, there exists some finite

collection {xk}lk=1 of points of K such that if we set rk := r(xk) then
{
Brk/2(xk)

}l
k=1

is
also an open cover of K. Clearly we still have Brk(xk) ∩ σ(A0) = ∅ for all 1 ≤ k ≤ l.

By the p2-continuity of A, there exists a neighbourhood U0 of t0 such that for all
t ∈ U0, ∣∣∣‖At‖ − ‖A0‖

∣∣∣ < 1

This implies that ‖At‖ < 1 + ‖A0‖, and, in particular, supt∈U0 ‖At‖ < ∞. Since by
compactness supx∈K |x| <∞, it follows that we can fix a real number

m > 2 sup
t∈U0

‖At‖+ sup
x∈K
|x|
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2.2 Equivalence of different forms of continuity

Furthermore, since Brk(xk) ∩ σ(A0) = ∅, we can use Proposition 2.16 to conclude
that ∥∥∥m2 − (A0 − xk)2

∥∥∥ < m2 − r2
k

By p2-continuity of A, it follows that for each k ∈ {1, ..., l} there must exist an open
neighbourhood Uk ⊂ U0 ⊂ T of t0 such that∣∣∣∥∥∥m2 − (At − xk)2

∥∥∥− ∥∥∥m2 − (A0 − xk)2
∥∥∥∣∣∣ < 3r2

k/4

for all t ∈ Uk for each k. This gives us∥∥∥m2 − (At − xk)2
∥∥∥ < ∥∥∥m2 − (A0 − xk)2

∥∥∥+ 3r2
k/4

< m2 − r2
k/4

for all t ∈ Uk for each k. It now follows that if we set U := ⋂l
k=0 Uk, we can again use

Proposition 2.16 to conclude that Brk/2(xk) ∩ σ(At) = ∅ for every k ∈ {1, ..., l} and all
t ∈ U . Since K ⊂ ⋃lk=0Brk/2(xk), it follows that K ∩ σ(At) = ∅ for all t ∈ U .

2) Take any O ∈ F . Since we have O ∩ σ(A0) 6= ∅, it follows that for any given x ∈
O ∩ σ(A0) there exists a real number r(x) > 0 such that Br(x)(x) ⊂ O, by the openness
of O. Since x ∈ σ(A0), we have |x| ≤ ‖A0‖, and accordingly ‖A0 − x‖ ≤ 2 ‖A0‖ < m
with m as earlier. Since Br(x)/2(x) ∩ σ(A0) 6= ∅ (as x ∈ σ(A0)), we get from Proposition
2.16 that ‖m2 − (A0 − x)2‖ > m2 − r(x)2/4.

Now by p2-continuity, there exists a neighbourhood VO ⊂ T of t0 such that for all
t ∈ VO, ∣∣∣‖m2 − (A0 − x)2‖ − ‖m2 − (At − x)2‖

∣∣∣ < 3r(x)2/4

which gives us

‖m2 − (A0 − x)2‖ − ‖m2 − (At − x)2‖ < 3r(x)2/4

for all t ∈ VO, implying

m2 − r(x)2/4− 3r(x)2/4 < ‖m2 − (At − x)2‖

for all t ∈ VO, so we can finally conclude

‖m2 − (At − x)2‖ > m2 − r(x)2

for all t ∈ VO. Again by Proposition 2.16, we thus have Br(x)(x) ∩ σ(At) 6= ∅ and so
O ∩ σ(At) 6= ∅ for all t ∈ VO. Since F is a finite family, V := ⋂

O∈F VO is an open,
non-empty neighbourhood of t0 and O ∩ σ(At) 6= ∅ for all O ∈ F and all t ∈ V .
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2.2 Equivalence of different forms of continuity

3) We now have that S := U ∩ V is the desired neighbourhood of t0 such that
σ(At) ∈ U (K,F ) for all t ∈ S. Since K and F were arbitrary, the proof of the first
statement now follows.

4) Local uniform boundedness at t0 was "accidentally" proved in part 1); we get the
desired W by setting W := U0. This concludes the proof.

We will need a refresher on proper functions before our next result.

Proposition 2.18. The function |·| : x ∈ R 7→ |x| ∈ R is proper (in the standard topology on
R).

Proof. Choose any compact subset K ∈ R; we must show that

|·|−1 (K) = {λ ∈ C | |λ| ∈ K}

is a compact subset of R.
As K is compact, it is bounded, so there exists a finite r > 0 such that sup |K| = r.

It follows that

sup
∣∣∣|·|−1 (K)

∣∣∣ = sup
∣∣∣{λ ∈ R | |λ| ∈ K}

∣∣∣
= sup |K| = r

so |·|−1 (K) is also bounded. By the continuity of |·|, it is also closed, which completes
the proof since closed, bounded subsets of R are compact.

Proposition 2.19. Let X and Y be two topological spaces, and let f : X → Y be a continuous
proper function. If XR ⊂ X is a closed subset of X and YR ⊂ Y is a closed subset of Y with
f(XR) ⊂ YR, then the restriction fR : XR → YR of f is a continuous proper function when
XR and YR are equipped with their respective subspace topologies.

Proof. Proving continuity is trivial, so we will focus on proving that fR is proper.
Take any compact subset KR ⊂ YR. As YR is closed, KR is a closed subset of Y .
Let {Vι}ι∈I be a covering of KR by sets open in Y . Then

{Vι ∩ YR}ι∈I

is a covering ofKR by sets open in YR, and as such there exists some finite subcovering
{Vιn ∩ YR}

k
n=1. This implies that {Vιn}

k
n=1 is a finite subcollection of {Vι}ι∈I that covers

KR, so KR is compact in Y .
As f is proper, f−1(KR) is compact in X . Since

f−1
R (KR) = f−1(KR) ∩XR

it is by definition closed as a subset of XR.
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2.2 Equivalence of different forms of continuity

Let {UR,ι}ι∈I be a covering of f−1
R (KR) by open subsets of XR. Consider the family

{UR,ι ∪ (X\XR)}ι∈I

We claim that this is a family of open subsets of X .
For any given ι ∈ I , consider any net {xκ}κ∈J of points in (UR,ι ∪ (X\XR))c. As

xκ ∈ XR for every κ ∈ J and XR is closed in X , it follows that if {xκ}κ∈J converges
towards some x ∈ X (in the topology on X), then x ∈ XR.

Furthermore, if x ∈ UR,ι then it follows that xκ → x also in the subspace topology
on XR. But this contradicts the fact that UR,ι is open in XR. It follows that if x exists,
we have

x ∈ (UR,ι ∪ (X\XR))c

so (UR,ι ∪ (X\XR))c is a closed set in X and UR,ι ∪ (X\XR) is open in X .
Now {UR,ι ∪ (X\XR)}ι∈I is a family of open subsets of X covering f−1

R (KR), which
is compact in X . Thus we have a finite subcollection

{UR,ιn ∪ (X\XR)}kn=1

that also covers f−1
R (KR).

Finally,

{(UR,ιn ∪ (X\XR)) ∩XR}kn=1 = {UR,ιn}
k
n=1

is now an open subfamily of {UR,ι}ι∈I covering f−1
R (KR). Thus f−1

R (KR) is compact as
a subset of XR, and the proof is complete.

Lemma 2.20. LetA = (At)t∈T be a field of bounded, self-adjoint operators, and choose any t0 ∈
T . If A is Fell continuous and locally uniformly bounded at t0, then A is proper-continuous at
t0.

Proof. Let f : R → R be a continuous, proper function. Recall that since each At is
self-adjoint and bounded, σ(At) is compact in R and

f(σ(At)) = σ(f(At)) ⊂ R

Furthermore, recall from Proposition 2.15 that for any continuous, proper function
h : X → Y between two locally compact Hausdorff spaces, ĥ is the (Fell-continuous)
map

F ∈ C (X)→ h(F ) ∈ C (Y )

We start by claiming that the field {f(At)}t∈T is also locally uniformly bounded at
t0. To prove this, note first that for each t ∈ T , we have

‖f(At)‖ = sup |σ(f(At))|
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2.2 Equivalence of different forms of continuity

Since A is locally uniformly bounded at t0, there exists a neighbourhood U ⊂ T of
t0 and a R > 0 such that σ(At) ⊂ [−R,R] for all t ∈ U . Since f is continuous, it follows
that there exists some R̃ > 0 such that

σ(f(At)) = f(σ(At)) ⊂ f([−R,R]) ⊂
[
−R̃, R̃

]
for all t ∈ U . Since [R,R] is compact and f is continuous,

[
−R̃, R̃

]
is also compact.

It now follows that for all t ∈ U , we have σ(f(At)) ∈ C
([
−R̃, R̃

])
and |σ(f(At))| ∈

C
((
−∞, R̃

])
. If we now look at the restrictions

fR : [−R,R]→
[
−R̃, R̃

]
and

|·|R :
[
−R̃, R̃

]
→

(
−∞, R̃

]
of f and |·|, respectively, then we see that we can write the map t ∈ U 7→ ‖f(At)‖ ∈ R
as the composition

t ∈ U 7→ σ(At) ∈ C ([−R,R]) f̂R7→ σ(f(At)) ∈ C (
[
−R̃, R̃

]
)

|̂·|R7→ |σ(f(At))| ∈ C
(
( −∞, R̃ ]

)
7→ sup |σ(f(At))| ∈ R

The first map is continuous at t0 by assumption. The second and third maps are
continuous by Proposition 2.15, since |·| is proper by Proposition 2.18 and the two
restricted maps fR and |·|R are continuous and proper by Proposition 2.19. The last
map is continuous by Lemma 2.14. This proves continuity at t0.

The comment at the end of the lemma immediately follows from the fact that all
polynomials of degree equal to or less than two with real coefficients are either proper
functions or constant functions, as shown in Proposition 2.10, and the map is obviously
continuous in the constant case.

Lemma 2.21. Assume that a map t ∈ T 7→ Ft ∈ C (R) is Fell continuous at some point
t0 ∈ T . Then t ∈ T 7→ Ft ∈ C (R) is gap edge continuous at t0.

Proof. 1) We will first show that the first condition of gap edge continuity holds. Let
(a, b) be any gap of F0 := Ft0 - if F0 has no gaps, then F0 = R, and the first condition of
gap edge continuity is trivially satisfied.

Assume first that −∞ < a < b < ∞. We will show that for any ε > 0 such that
ε < b−a

4 , there exists a neighbourhood U ⊂ T of t0 such that for each t ∈ U , there exists
a gap (at, bt) of Ft such that

|at − a| < ε and |bt − b| < ε
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2.2 Equivalence of different forms of continuity

Note that if we set

K := [a+ ε, b− ε] , Oa := (a− ε, a+ ε) and Ob := (b− ε, b+ ε)

then K is a compact set and F := {Oa, Ob} is a finite family of open sets, and we have

F0 ∩K = ∅ and F0 ∩O 6= ∅

for all O ∈ F . It follows that F0 ∈ U (K,F ). By the Fell continuity of t 7→ Ft, there
exists a neighbourhood U ⊂ T of t0 such that Ft ∈ U (K,F ) for all t ∈ U . This implies
that for all t ∈ U , we have

Ft ∩ [a+ ε, b− ε] = ∅ , Ft ∩ (a− ε, a+ ε) 6= ∅ and Ft ∩ (b− ε, b+ ε) 6= ∅

But this tells us that for each t ∈ U , there exists some gap (at, bt) of Ft containing
[a + ε, b − ε] such that its gap edges lie in (a − ε, a + ε) and (b − ε, b + ε), respectively.
Thus we must have that

|at − a| < ε and |bt − b| < ε

for all t ∈ U , and we are done in this case.
Next, assume that −∞ < a < b =∞, so that (a,∞) is a gap of F0. Choose any ε > 0

and any N > 0 such that N > a + ε. We will show that there exists a neighbourhood
U ⊂ T of t0 such that for each t ∈ U , there is a gap (at, bt) of Ft with

|at − a| < ε and bt > N

Note that if we define K := [a+ ε,N ] and O := (a− ε, a+ ε), then K is compact, O
is open, and we have

F0 ∩K = 0 and F0 ∩O 6= ∅

Thus we have F0 ∈ U (K, {O}. It follows from the Fell continuity of the map t 7→ Ft
that there exists a neighbourhood U of t0 in T such that we have Ft ∈ U (K, {O}) for
all t ∈ U . This implies that for all t ∈ U , we have

Ft ∩ [a+ ε,N ] = ∅ and Ft ∩ (a− ε, a+ ε)

This implies that for each t ∈ U , there must exist a gap (at, bt) of Ft such that it
contains [a+ε,N ] and such that its gap edges lie in (a−ε, a+ε) and (N,∞), respectively.
But this means that

|at − a| < ε and bt > N

for all t ∈ U , and we are done in this case as well.
Proving that the first condition of gap edge continuity holds in the case where

−∞ = a < b <∞ is completely analogous.
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2.2 Equivalence of different forms of continuity

Finally, if −∞ = a < b = ∞, then F0 = ∅, and given any N > 0 we will show that
there exists some neighbourhood U ⊂ T of t0 such that for every t ∈ U , there exists a
gap (at, bt) of Ft such that

at < −N and bt > N

We see that if we setK := [−N,N ], then clearly F0 ∈ U (K, ∅). By the Fell continuity
of t 7→ Ft, there exists a neighbourhoodU ⊂ T of t0 such that Ft ∈ U (K, ∅) for all t ∈ U .
Thus for all t ∈ U , we have

Ft ∩ [−N,N ] = ∅

This implies that for each t ∈ U , there exists a gap (at, bt) of Ft such that it contains
[−N,N ] and such that its gap edges lie in (−∞,−N) and (N,∞), respectively. But this
means that

at < −N and bt > N

for all t ∈ U , and we are done.
This covers all possibilities, and proves that the first condition of gap edge conti-

nuity holds at t0.

2) Assume that we are given a net {tι}ι∈I of points in T converging to t0, as well
as two nets {atι}ι∈I , {btι}ι∈I of points in [−∞,∞] such that (atι , btι) is a gap of Ftι for
every ι ∈ I , and such that atι → a and btι → b for some a, b ∈ [−∞,∞].

In order to prove that the second condition of gap edge continuity holds, we must
show that either a = b or that (a, b) is a gap of F0. So assume to the contrary that a 6= b
and that (a, b) is not a gap of F0. We will show that this causes a contradiction.

Since a 6= b and atι < btι for all ι ∈ I , it follows that a < b. Since (a, b) is not a gap of
F0, at least one of the following must hold:

• a /∈ F0 ∪ {−∞},

• b /∈ F0 ∪ {∞} or

• there exists a c ∈ F0 with a < c < b.

Assume that a /∈ F0 ∪ {−∞}. Then a ∈ (F0 ∪ {−∞})c, which is an open set. Since a
lies in an open set and a 6= ±∞ (if we had a =∞ then we could not have a < b), there
exists an ε > 0 such that F0 ∩ (a − ε, a + ε) = ∅. If we set K :=

[
a− ε

2 , a+ ε
2

]
then we

see that F0 ∩K = ∅, so F0 ∈ U (K, ∅).
By the Fell continuity of t 7→ Ft at t0, there exists a neighbourhood U ⊂ T of t0 such

that Ft ∈ U (K, ∅) for all t ∈ U . Since tι → t0, we eventually have that

Ftι ∩K = Ftι ∩
[
a− ε

2 , a+ ε

2

]
= ∅
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2.2 Equivalence of different forms of continuity

Since atι → a, we eventually have that |atι − a| < ε
2 . But this implies that we

eventually have atι ∈
[
a− ε

2 , a+ ε
2

]
= K, which is impossible, since by assumption

atι ∈ Ftι for all ι ∈ I and eventually we have Ftι ∩ K = ∅. Thus we have obtained a
contradiction in the case where a /∈ F0 ∪ {−∞}.

The proof in the case where we assume that b /∈ F0 ∪ {∞} is analogous to the case
where we assumed that a /∈ F0 ∪ {−∞}.

Finally, assume that there exists a c ∈ F0 with a < c < b. If we set

O :=
(
a+ c

2 ,
b+ c

2

)

then we have c ∈ O. Thus F0 ∈ U (∅, {O}) (remember that {O} is the family of open
sets consisting only of O). By Fell continuity, we can choose a neighbourhood U ⊂ T
of t0 such that Ft ∈ U (∅, {O}) for all t ∈ U , that is, such that Ft ∩O 6= ∅ for all t ∈ U .

Since tι → t0, it follows that we eventually have tι ∈ U . Furthermore, since atι → a
and btι → b we eventually have that |atι − a| < a+c

2 and |btι − b| < c+b
2 . This implies

that we eventually have that

atι <
a+ c

2 <
c+ b

2 < btι

and so eventually O ⊂ (atι , btι). But this is impossible - for since, by Fell continuity,
eventually we have Ftι ∩ O 6= ∅, it follows that eventually we have Ft ∩ (atι , btι) 6= ∅,
and so eventually (atι , btι) is not a gap of Ftι . This contradicts our starting assumptions,
and completes the proof.

Lemma 2.22. Assume that a map t ∈ T 7→ Ft ∈ C (R) is gap edge continuous at some point
t0 ∈ T . Then the map t 7→ Ft is Fell continuous at t0.

Proof. Choose any compact subset K ⊂ R and any finite family F of open subsets
of R such that F0 := Ft0 ∈ U (K,F ). We must find a neighbourhood of t0 such that
Ft ∈ U (K,F ) for all t in this neighbourhood.

1) We will first find a neighbourhood U ⊂ T of t0 such that Ft ∩K = ∅ for all t ∈ U .
Choose any x ∈ K. As F0 ∩K = ∅, we have x ∈ F c

0 . This implies that x ∈ (ax, bx)
where (ax, bx) is a gap of F0.

Assume first that −∞ < ax < bx < ∞. By the gap edge continuity of t 7→ Ft at
t0, there must exist some neighbourhood Ux ⊂ T of t0 such that for each t ∈ Ux, there
exists a gap (ax,t, bx,t) of Ft with

max {|ax,t − ax| , |bx,t − bx|} < min
{
x− ax

2 ,
bx − x

2

}

This implies that if we set cx := x−ax
2 and dx := bx−x

2 , it follows that we have x ∈
(cx, dx) and Ft ∩ (cx, dx) = ∅ for all t ∈ Ux.
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Next, assume that −∞ < ax < bx = ∞. By the first condition of gap edge conti-
nuity, we can find some neighbourhood Ux ⊂ T of t0 such that for each t ∈ Ux, there
exists a gap (ax,t, bx,t) of Ft such that

|ax,t − ax| <
x− ax

2 and bx,t > |x|+ 1

Thus if we set cx := x−ax
2 and dx := |x| + 1, it follows that x ∈ (cx, dx) and Ft ∩

(cx, dx) = ∅ for all t ∈ Ux.
The case where −∞ = ax < bx <∞ is completely analoguous to the previous case.
If −∞ = ax < bx = ∞, we can, again by the first condition of gap edge continuity,

find some neighbourhood Ux ⊂ T of t0 such that for each t ∈ Ux, there exists a gap
(ax,t, bx,t) such that

ax,t < − |x| − 1 and bx,t > |x|+ 1

It follows that if we set cx = − |x| − 1 and dx = |x| + 1, then x ∈ (cx, dx) and
Ft ∩ (cx, dx) = ∅ for all t ∈ Ux.

Now the collection of all (cx, dx) for x ∈ K form an open covering of K, so by the
compactness of K there exists a finite subcollection {xk}lk=1 so that the collection of all
(cxk , dxk) for 1 ≤ k ≤ l also covers K.

Define U = ⋂l
k=1 Uxk ; it follows that U is an open neighbourhood of t0 such that for

all t ∈ U ,

Ft ∩K ⊂ Ft ∩
(

l⋃
k=1

(cxk , dxk)
)

= ∅

so we have found the required U .

2) For the second part, we want to find a neighbourhood V ⊂ T of t0 such that
Ft ∩O 6= ∅ for all t ∈ V and all O ∈ F . Start by fixing O ∈ F .

Choose any x ∈ F0 ∩ O, and choose any r > 0 such that Br(x) ⊂ O. Now there
must exist an open neighbourhood VO ⊂ T of t0 such that Ft ∩Br(x) 6= ∅ for all t ∈ VO.
For if not, then for every open neighbourhood V ⊂ T of t0, there would have to exist a
tV ∈ V such that FtV ∩Br(x) = ∅ - that is, there must exist a gap (aV , bV ) of FtV with

aV ∈ [−∞, x− r] and bV ∈ [x+ r,∞]

The net {tV } (where the V ’s are open neighbourhoods of t0, ordered under reverse
inclusion) converges to t0. Furthermore, as all elements of the net {aV } lie in the com-
pact set [−∞, x− r], it follows that there exists some convergent subnet {aVι}ι∈I such
that aVι → a for some a ∈ [−∞, x− r]. Now all elements of the net {bVι}ι∈I lie in the
compact set [x+ r,∞], so there exists a convergent subnet

{
bVικ

}
κ∈J

such that bVικ → b

for some b ∈ [x+ r,∞].
Accordingly, we have that

tVικ → t0 , aVικ → a and bVικ → b
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2.2 Equivalence of different forms of continuity

and that (aVικ , bVικ ) is a gap of FVικ for each κ ∈ J . We also have

a ∈ [−∞, x− r] and b ∈ [x+ r,∞]

Thus we can use the second condition of gap edge continuity of t 7→ Ft at t0 to
conclude that (a, b) must be a gap of F0.

Now we also have x ∈ (a, b), that is, x lies in a gap of F0, so we have x /∈ F0, which
is impossible. Therefore the required VO such Ft∩O 6= ∅ for all t ∈ VO must exist. Since
F is finite, it follows that V := ⋂

O∈F VO is the required neighbourhood of t0 such that

Ft ∩O 6= ∅

for all t ∈ V and all O ∈ F .

3) It now follows that Ft ∈ U (K,F ) for every t ∈ U ∩V , with U ∩V being an open
neighbourhood of t0, so we are done.

Proof of Theorem 2.13:
Recall that we are considering a field A = (At)t∈T of self-adjoint, bounded opera-

tors; in particular, σ(At0) is a compact subset of R. Now:

• Fell continuity at t0 implies gap edge continuity at t0 by Lemma 2.21.

• Gap edge continuity at t0 implies Fell continuity at t0 by Lemma 2.22.

• Proper-continuity at t0 implies p2-continuity at t0 by Corollary 2.11.

• p2-continuity at t0 implies Fell continuity and local uniform boundedness at t0
by Lemma 2.17.

• Fell continuity and local uniform boundedness at t0 implies proper-continuity at
t0 by Lemma 2.20.

• Fell continuity and local uniform boundedness at t0 implies Hausdorff continuity
at t0 by Lemma 1.27.

• Hausdorff continuity at t0 implies Fell continuity and local uniform boundedness
at t0 by Lemma 1.28.

�
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2.3 R-continuity

Another reasonable way of considering continuity of spectra is to instead look at the
norm of the resolvent, that is, ∥∥∥(λI −B)−1

∥∥∥
for λ ∈ ρ(B). For self-adjoint operators, this is comparatively straightforward; you
"only" need to calculate the norm of the resolvent for λ in C\R, as opposed to λ in all
of C or arbitrary subsets thereof. The set C\R will always be included in the resolvent
since the spectrum is a subset of R; furthermore, as the resolvent set is open and the
resolvent is continuous in λ, the norm of the resolvent at any point in the intersection of
the resolvent and R can be approximated arbitrarily well by approaching it from above
or below, thus justifying that we do not need to verify continuity for λ ∈ R\σ(B).

The second result from [3] states that R-continuity is also equivalent with gap edge
continuity, thus allowing us to apply Theorem 2.13. In [3], the proof for this theo-
rem was extremely brief, so the majority of this section has been written from the
ground up. In particular, we have chosen to demonstrate the equivalence between
R-continuity and Fell-continuity, rather than gap edge continuity, as it both provides a
cleaner proof and generalizes more easily.

We begin with a relevant definition.

Definition 2.23. A field A = (At)t∈T of self-adjoint operators is called R-continuous if
the map t ∈ T 7→ ‖(λI − At)−1‖ ∈ R+ is continuous for every λ ∈ C\R.

We usually just write λ for the operator λI in cases where there can be no confusion
about this.

As promised, the main result of this section is that this definition of continuity is
the same as those we have encountered before:

Theorem 2.24. Let A = (At)t∈T be a field of bounded, self-adjoint operators. Then A is
R-continuous at a point t0 ∈ T if and only if the spectrum of A is Fell-continuous at t0.

The main idea behind proving this will be to use the connection between the norm
of the resolvent at λ and the distance between λ and the spectrum, allowing for a much
simpler proof based on our earlier topological considerations.

Lemma 2.25. Let B be a bounded, normal operator, and take any λ ∈ ρ(B). Then∥∥∥(λ−B)−1
∥∥∥ = 1

dist(λ, σ(B))
Proof. By the continuous functional calculus for normal bounded operators, we have∥∥∥(λ−B)−1

∥∥∥ = sup
∣∣∣∣∣ 1
σ(λ−B)

∣∣∣∣∣
= 1

infx∈σ(B) |λ− x|

= 1
dist (λ, σ(B))

44



2.3 R-continuity

Proof of Theorem 2.24:
As each At is self-adjoint, σ(At) ⊂ R for every t ∈ T . Lemma 2.25 thus implies that

for every λ ∈ C\R, the map t ∈ T 7→ ‖(λ− At)−1‖ ∈ R+ is continuous at t0 if and only
if the map t ∈ T 7→ dist(λ, σ(At)) is.

For any λ ∈ R, we have for every t ∈ T that since σ(At) ⊂ R, we can use the
Pythagorean theorem to see that

dist(λ, σ(At))2 = inf
x∈σ(At)

|λ− x|2

= inf
x∈σ(At)

|λ+ ir − x|2 − r2

= dist(λ+ ir, σ(At))2 − r2

for any r ∈ R, and so it follows that the map t ∈ T 7→ dist(λ, σ(At)) is continuous at t0
if and only if the map t ∈ T 7→ dist(λ+ ir, σ(At)) is continuous at t0 for every r ∈ R.

Thus, we see that the map t ∈ T 7→ ‖(λ− At)−1‖ ∈ R+ is continuous at t0 if and
only if the map t ∈ T 7→ dist(λ, σ(At)) is continuous at t0 for every λ ∈ C.

But this is exactly the same as demanding that t ∈ T 7→ σ(At) ∈ C (R) be Wijsman
continuous at t0, and Lemmas 1.22 and 1.23 imply that Wijsman continuity at t0 is
equivalent to Fell continuity at t0, so the result follows.

�
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3 Hölder Estimates

3.1 ∞-metrics

In this chapter, we will study what happens when we are given not just a topological
structure on T , but a metric structure. In this section, we will mostly just be dealing
with technicalities that are needed for the rest of the chapter, and the reader can safely
skip this section.

As a refresher, a metric space is a space X together with a map

d : X ×X → R+

- the so-called metric - such that for any x, y, z ∈ X , the following conditions all hold:

• d(x, y) = 0⇔ x = y (identity of indiscernibles)

• d(x, y) = d(y, x) (symmetry)

• d(x, y) ≤ d(x, z) + d(z, y) (subadditivity)

Any metric space is also a topological space, with its basis the collection of open
balls Br(x) := {y ∈ X | d(x, y) < r} for all r > 0 and all x ∈ X . However, not all
topologies arise from a metric structure. For example, let X be any non-Hausdorff
topological space. Then there exists a pair x, y ∈ X such that x 6= y, and such that for
every open set U ⊂ X we have x ∈ U if and only if y ∈ U . If the topology on X was
induced by a metric d, then we would need to have y ∈ Br(x) for all r > 0, implying
that d(x, y) = 0 even though x 6= y, which is impossible.

R with the Euclidean metric is a classic example of a metric space, and the standard
topology on R is induced by the Euclidean metric. The topology T on the two-point
compactification [−∞,∞] of R, as we defined it in Section 1.1, is also induced by a
metric, but it is not simply an extension of the Euclidean metric. For define the map
d∞ : [−∞,∞]× [−∞,∞]→ R+ ∪ {∞} by

d∞(x, y) =


|x− y| if x, y ∈ (−∞,∞)
0 if x = y ∈ {−∞,∞}
∞ otherwise

(*)

Although d∞ is an intuitive extension of the Euclidean metric, it is, in fact, not
a metric itself, and even if we did define a topology on [−∞,∞] by letting its basis
consist of all balls Br(x), it would not induce T . As d∞ takes values in R+ ∪ {∞}, it
does not match our definition of metrics - although it should be noted that it is what
we will call an∞-metric - but the issue of not inducing T is the more pressing one. To
see this, simply note that Br(∞) = {∞} for all 0 < r <∞, even though {∞} /∈ T .

As we introduced the term∞-metric, we would do well to define it properly.

Definition 3.1. Let X be a space. A map d∞ : X×X → R+∪{∞} is called an∞-metric
on X if, for every x, y, z ∈ X , the following conditions all hold:
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3.1 ∞-metrics

• d∞(x, y) = 0⇔ x = y

• d∞(x, y) = d∞(y, x)

• d∞(x, y) ≤ d∞(x, z) + d∞(z, y), with the convention that
∞ ≤∞+ a ≤ ∞+∞ for all a ≥ 0.

The space X together with the∞-metric d∞ is called an∞-metric space.

One reason why∞-metrics are not always considered is that it is quite straightfor-
ward to transform an∞-metric into a (regular) metric. For, given an∞-metric d∞ on
a space X , define either d1(x, y) := min {1, d∞(x, y)} or

d2(x, y) :=
{

d∞(x,y)
1+d∞(x,y) if d∞(x, y) <∞
1 otherwise

It is not difficult to confirm that both d1 and d2 will be metrics on X . However, they
both have a large flaw in our case - they do, again, not induce the standard topology
T on [−∞,∞], as

{x ∈ [−∞,∞] | d1(x,∞) < r} = {x ∈ [−∞,∞] | d2(x,∞) < r} = {∞} /∈ T

for all r ≤ 1.
There is, however, a way to construct the "correct" metric from d∞.

Lemma 3.2. Define d∞ : [−∞,∞] × [−∞,∞] → R+ ∪ {∞} as in (*), and define the map
sign : [−∞,∞]→ {−1, 1} by

sign(x) :=
{
−1 if x ∈ [−∞, 0)
1 otherwise

Then the map d : [−∞,∞]× [−∞,∞]→ R+ defined by

d(x, y) :=
∣∣∣sign(x)e−1/d∞(x,0) − sign(y)e−1/d∞(y,0)

∣∣∣
is a metric on [−∞,∞], and it induces the standard topology T on [−∞,∞].

Proof. It is easy to see that d(x, y) = 0 if and only if both d∞(x, 0) = d∞(y, 0) and
sign(x) = sign(y). Referring to the definition of d∞, we see that this is the case if and
only if x = y, so d satisfies identity of indiscernibles.

The symmetry of d is trivial.
To see that d is subadditive, note that for any x, y, z ∈ [−∞,∞] we have

d(x, y) =
∣∣∣sign(x)e−1/d∞(x,0) − sign(y)e−1/d∞(y,0)

∣∣∣
=
∣∣∣sign(x)e−1/d∞(x,0) − sign(z)e−1/d∞(z,0)

+ sign(z)e−1/d∞(z,0) − sign(y)e−1/d∞(y,0)
∣∣∣

≤ d(x, z) + d(z, y)
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3.1 ∞-metrics

To see that the topology generated by the basis consisting of all sets of the type
Bd
r (x) := {y ∈ [−∞,∞] | d(x, y) < r} for x ∈ [−∞,∞] and r > 0 is equivalent to T , it

is sufficient to show that for every x ∈ [−∞,∞] and for every U ∈ T with x ∈ U , there
exists some r > 0 and some x′ ∈ [−∞,∞] such that Bd

r (x′) ⊂ U , c.f. [9].
Note that by definition,

sign(x)e−1/d∞(x,0) =


1 if x =∞
sign(x)e−1/|x| if x ∈ R\ {0}
0 if x = 0
−1 if x = −∞

=



1 if x =∞
e−1/x if x ∈ (0,∞)
0 if x = 0
−e1/x if x ∈ (−∞, 0)
−1 if x = −∞

Assume first that x = ∞, and fix any U ∈ T with x ∈ U . By the definition of T ,
there exists some a ∈ R such that (a,∞] ⊂ U . If a ≤ 0, then it is easily verified that
Bd

1(∞) = {y ∈ [−∞,∞] | d(∞, y) < 1 } ⊂ (0,∞] ⊂ (a,∞) ⊂ U .
Assume a > 0. If y ∈ Bd

r (∞) for some r with 0 < r ≤ 1, then we see that we must
have y > 0 and

r >
∣∣∣e−1/∞ − e−1/y

∣∣∣ = 1− e−1/y

which implies that

e−1/y > 1− r

and so y > − 1
ln(1−r) . It follows that if r < 1 − e−1/a, then y > a for all y ∈ Bd

r (∞), so
Bd
r (∞) ⊂ (a,∞) ⊂ U .

If x ∈ (0,∞), then from the definition of T there exists some r′ > 0 and some
interval (x − r′, x + r′) ⊂ U . As the map x ∈ (0,∞) 7→ e−1/x ∈ R is bicontinuous at
all points in (0,∞), we can always find some r > 0 such that for all y ∈ (0,∞) with∣∣∣e−1/x − e−1/y

∣∣∣ < r, we have |x− y| < r′, so

Bd
r (x) ⊂ (x− r′, x+ r′) ⊂ U

If x = 0, then, again by the definition of T there exists some r′ > 0 such that
(−r′, r′) ⊂ U . Thus we need to find some r > 0 such that |x| < r′whenever

∣∣∣sign(x)e−1/|x|
∣∣∣ <

r. Clearly |sign(x)| = 1 and e−1/|x| ≥ 0 for all x ∈ [−∞,∞]. Thus if
∣∣∣sign(x)e−1/|x|

∣∣∣ < r

then e−1/|x| < r, so by similar manipulations as we did earlier we get that |x| < r′

whenever e−1/|x| < e−1/r′ , implying that

Bd
e−1/r′ (0) ⊂ (−r′, r) ⊂ U
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3.1 ∞-metrics

If x ∈ (−∞, 0) or x = −∞, then we can use methods completely analogous to those
above to find Bd

r (x) ⊂ U for any U ∈ T with x ∈ U . This proves that d induces T , and
we are done.

Note in particular that the work above means that as long as we are working only
bounded subsets (in the Euclidean metric) of (−∞,∞), then we can use the Euclidean
metric and the "new" metric d quite interchangeably, and we will do so several times
without explicitly remarking this. This is hardly news - indeed, by how we initially
defined the topology on [−∞,∞], clearly a sequence {xn}n∈N of points in [−∞,∞]
converges to a point x ∈ (−∞,∞) if and only if for every ε > 0, there exists some n′

such that |xn − x| < ε for all n ≥ n′. Similarly, xn → ∞ if and only if for every N ∈ N
there exists some n′ such that xn > N for all n ≥ n′, and xn → −∞ if and only if for
every N ∈ N there exists some n′ such that xn < −N for all n ≥ n′. In conclusion, the
metric d on [−∞,∞] will not find many practical uses, if any, and we will always use
the Euclidean metric whenever we can get away with it.

After all this work, one might expect that we will be actively avoiding∞-metrics;
however, this is not the case. In fact, we will do quite the opposite: For the remainder
of this text, we will refer to both metrics and∞-metrics whenever we speak of "metrics",
unless we explicitly say otherwise. The main motivation for this is the fact - that we
stated without proof earlier - that the Hausdorff distance that we defined in Section
1.3 is an∞-metric.

Lemma 3.3. Let (X, d) be any (non-∞) metric space, and let dist : C (X) × C (X) → R+ ∪
{∞} be the Hausdorff distance defined by

dist(Y, Z) := max
{

sup
y∈Y

inf
z∈Z

d(y, z), sup
z∈Z

inf
y∈Y

d(y, z)
}

if Y , Z 6= ∅, with dist(∅, ∅) = 0 and dist(∅, Y ) = dist(Y, ∅) = ∞ for all non-empty Y ∈
C (X). Then dist is an∞-metric on C (X).

Proof. It is not hard to see that

dist(Y, Y ) = sup
y∈Y

d(y, y) = 0

for every non-empty Y ∈ C (X). Conversely, if dist(Y, Z) = 0 for any Y , Z ∈ C (X),
then

0 = max
{

sup
y∈Y

inf
z∈Z

d(y, z), sup
z∈Z

inf
y∈Y

d(y, z)
}

implying that infz∈Z d(y, z) = 0 for every y ∈ Y and infy∈Y d(y, z) = 0 for every z ∈ Z.
As Y and Z are closed sets, this implies that for every y ∈ Y we can find some z ∈ Z
such that d(y, z) = 0, and vice versa. As d is a metric, this is equivalent to saying that
for every y ∈ Y we can find a z ∈ Z such that y = z, and vice versa; this implies that
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3.1 ∞-metrics

Y ⊂ Z and Z ⊂ Y , so we must have Y = Z. This proves that dist satisfies identity of
indiscernibles.

As d is a metric, proving symmetry is completely trivial.
To see that dist satisfies subadditivity, start by noting that as dist(∅, ∅) = 0 and

dist(∅, Y ) =∞ for all Y ∈ C (X)\ {∅}, we trivially have

dist(Y, Z) ≤ dist(Y,W ) + dist(W,Z)

if any of Y , Z and W ∈ C (X) are the empty set. So for the rest of the proof, assume
that we work only with non-empty Y , Z and W ∈ C (X).

Note that as d is a metric, we have d(y, z) ≤ d(y, w) + d(w, z) for all y, z, w ∈ X , and
recall that we defined the map dist : X×C (X)→ R+ by dist(y, Z) = infz∈Z d(y, z). We
see that for any Y , Z and W ∈ C (X), any y ∈ Y , z ∈ Z and w ∈ W we have

dist(y, Z) = inf
z∈Z

d(y, z)
≤ inf

z∈Z
(d(y, w) + d(w, z))

= d(y, w) + dist(w,Z)

≤ d(y, w) +
(

sup
w∈W

dist(w,Z)
)

≤ d(y, w) + dist(W,Z)

As this holds for all w ∈ W , we also have

dist(y, Z) ≤ inf
w∈W

(d(y, w) + dist(W,Z))
= dist(y,W ) + dist(W,Z)

≤
(

sup
y∈Y

dist(y,W )
)

+ dist(W,Z)

≤ dist(Y,W ) + dist(W,Z)

Taking supremum over Y on both sides, it follows that

sup
y∈Y

dist(y, Z) ≤ dist(Y,W ) + dist(W,Z)

By interchanging the roles of Y and Z, we see that we also have

sup
z∈Z

dist(z, Y ) ≤ dist(Y,W ) + dist(W,Z)

Thus,

dist(Y, Z) = max
{

sup
y∈Y

inf
z∈Z

d(y, z), sup
z∈Z

inf
y∈Y

d(y, z)
}

= max
{

sup
y∈Y

dist(y, Z), sup
z∈Z

dist(z, Y )
}

≤ dist(Y,W ) + dist(W,Z)
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3.1 ∞-metrics

Even so, we will attempt to be careful, and will continue to refer to dist as the
Hausdorff distance, rather than the Hausdorff metric, even though we shall treat it as an
(∞-)metric for all upcoming purposes. This is mostly to avoid confusing readers who
are familiar with the Hausdorff metric defined on the space of non-empty compact
subsets, which is a (traditional) metric, but which we shall not make use of in this
paper.
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3.2 Hölder continuity

In the case where T is a metric space, we can obtain additional information about the
continuity of the spectrum by considering Hölder continuity. More precisely, we find
a relation, albeit imperfect, between Hölder continuity of "second-order polynomi-
als of the fields" and Hölder continuity of the spectrums themselves with respect to
Hausdorff distance.

Our first order of business should be to define the different types of Hölder conti-
nuity.

Definition 3.4. Given a real number α > 0 and two metric spaces (X, dX) and (Y, dY ),
as well as a function f : X → Y , we define the α-Hölder constant of f as

Holα(f) := sup
x 6=x′

dY (f(x), f(x′))
dX (x, x′)α

We say that f is α-Hölder continuous if Holα(f) <∞.
Given a family F of functions f : Xf → Yf together with two families

{
(Xf , dXf )

}
f∈F

and
{

(Yf , dYf )
}
f∈F

of metric spaces, we define the α-Hölder constant of F as

Holα(F ) := sup
f∈F

Holα(f)

We say that F is α-Hölder continuous if Holα(F ) <∞.

Note that, as discussed in the previous section, both (X, dX) and (Y, dY ) are allowed
to be∞-metric spaces.

Example 3.5. The function x ∈ [0, 1] 7→ x1/2 ∈ R+ is a typical example of a Hölder
continuous function; indeed, it is α-Hölder continuous for every α with 0 < α ≤ 1/2.

To see that it is 1/2-Hölder continuous, begin by noting that for any x, y ∈ [0, 1],
we have by the triangle inequality that∣∣∣x1/2 − y1/2

∣∣∣ ≤ ∣∣∣x1/2
∣∣∣+ ∣∣∣y1/2

∣∣∣ =
∣∣∣x1/2 + y1/2

∣∣∣
By multiplying each side with

∣∣∣x1/2 − y1/2
∣∣∣, it follows that

∣∣∣x1/2 − y1/2
∣∣∣2 ≤ ∣∣∣x1/2 − y1/2

∣∣∣ ∣∣∣x1/2 + y1/2
∣∣∣ = |x− y|

so
∣∣∣x1/2 − y1/2

∣∣∣ ≤ |x− y|1/2 for all x, y ∈ [0, 1] and we are done. To see that this also
holds for all α with 0 < α ≤ 1/2, just note that as |x− y| ≤ 1, we have |x− y|1/2 ≤
|x− y|α, and so ∣∣∣x1/2 − y1/2

∣∣∣ ≤ |x− y|1/2 ≤ |x− y|α
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3.2 Hölder continuity

This implies that Holα(x1/2) ≤ 1 for all α with 0 < α ≤ 1/2, and since∣∣∣11/2 − 01/2
∣∣∣

|1− 0|α = 1

it follows that Holα(x1/2) = 1 for every such α, that is, the α-Hölder constant of x1/2

on the interval [0, 1] is 1 for every α with 0 < α ≤ 1/2.

Note that if α = 1, then α-Hölder continuity is just the same as the more widely
known Lipschitz continuity.

Definition 3.6. Given any M > 0, we define P2(M) as the set of polynomials p : x ∈
R 7→ p0 + p1x+ p2x

2 ∈ R with real coefficients such that

‖p‖1 := |p0|+ |p1|+ |p2| ≤M

Given any field A = (At)t∈T of bounded operators where (T, d) is a metric space,
we define for every polynomial p the function Φp : T → R+ given by

Φp(t) = ‖p(At)‖

Considering R with its standard metric, and for any α, M > 0, we further define

Cα,M := Holα ({Φp | p ∈P2(M)})

Keep in mind that the Cα,M is also dependent on the underlying field A. We will
typically only be working with one field at a time, so generally there should be no
confusion as to "which" Cα,M we are referring to.

Definition 3.7. Let (T, d) be a metric space, and take any α > 0. A field A = (At)t∈T
of bounded operators is said to be p2-α-Hölder continuous if, for all M > 0, the family
{Φp}p∈P2(M) of maps Φp : t ∈ T 7→ ‖p(At)‖ ∈ R+ is uniformly α-Hölder, that is, if for
all M > 0 we have

Cα,M <∞

Proposition 3.8. Let (T, d) be a metric space, and let A = (At)t∈T be a field of bounded
operators. For any α, M , N > 0 we have that Cα,M <∞ if and only if Cα,N <∞, and in this
case Cα,N = N

M
Cα,M .

Proof. Assume that M 6= N (otherwise we are done), and assume that we are given
Cα,M < ∞. Note first that if p(x) = p2x

2 + p1x + p0 ∈ P2(N) and we define q(x) :=
M
N
p(x), then

‖q‖1 = M

N
‖p‖1 ≤M
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and so q ∈P2(M). Since the map x ∈ R+ 7→ M
N
x ∈ R+ is a bijection for any M , N > 0,

it follows that

P2(M) = M

N
P2(N)

Thus we see that

Cα,N = sup
p∈P2(N)

sup
t6=s

∣∣∣‖p(At)‖ − ‖p(As)‖∣∣∣
d(t, s)α

= N

M
sup

p∈P2(N)
sup
t6=s

∣∣∣‖M
N
p(At)‖ − ‖MN p(As)‖

∣∣∣
d(t, s)α

= N

M
sup

q∈P2(M)
sup
t6=s

∣∣∣‖q(At)‖ − ‖q(As)‖∣∣∣
d(t, s)α

= N

M
Cα,M <∞

The reverse implication follows immediately from switching the roles of N and M
in the argument above, so we are done.

As a consequence of Proposition 3.8, proving that a given field A of bounded oper-
ators over a metric space (T, d) is p2-α-Hölder continuous is just the same as proving
that

Cα,1 := sup
p∈P2(1)

sup
t6=s

∣∣∣‖p(At)‖ − ‖p(As)‖∣∣∣
d(t, s)α <∞

and, indeed, since we just proved that Cα,M = MCα,1, we will generally just write
Cα := Cα,1, which reduces the need for computations significantly.

Another convenient consequence of p2-α-Hölder continuity is that it implies local
uniform boundedness at every t0 ∈ T .

Proposition 3.9. Let (T, d) be a metric space, take any α > 0, and let A = (At)t∈T be a field
of bounded operators. If A is p2-α-Hölder continuous, then A is locally uniformly bounded at
every t0 ∈ T .

Proof. Since A is p2-α-Hölder continuous, we have that

sup
t6=s

∣∣∣‖p(At)‖ − ‖p(As)‖∣∣∣
d(t, s)α ≤MCα

for any p ∈P2(M). In particular, with p(x) = x we have

sup
t6=s

∣∣∣‖At‖ − ‖As‖∣∣∣
d(t, s)α ≤ Cα
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Fix t0 ∈ T . If we set U := B1(t0) ⊂ T , then it follows that

sup
t∈U\{t0}

∣∣∣‖At‖ − ‖At0‖∣∣∣ ≤ sup
t∈U\{t0}

∣∣∣‖At‖ − ‖At0‖∣∣∣
d(t, t0)α

≤ sup
t6=t0

∣∣∣‖At‖ − ‖At0‖∣∣∣
d(t, t0)α

≤ Cα <∞

and, as
∣∣∣‖At0‖ − ‖At0‖∣∣∣ = 0, it follows that

sup
t∈U

∣∣∣‖At‖ − ‖At0‖∣∣∣ <∞
and hence supt∈U ‖At‖ ≤ supt∈U

∣∣∣‖At‖ − ‖At0‖∣∣∣+ ‖At0‖ <∞.
As t0 was arbitrary, this completes the proof.

Note that this does not mean that p2-α-Hölder continuity ofA implies that supt∈T ‖At‖ <
∞ - it is true if T is a bounded metric space, but not necessarily otherwise.

Definition 3.10. Let (T, d) be a metric space, take any α > 0, and let A = (At)t∈T be
a field of self-adjoint, bounded operators. We say that the spectrum of A is α-Hölder
continuous if the function t ∈ T 7→ σ(At) ∈ C (R) is α-Hölder continuous with respect
to Hausdorff distance, that is, if the α-Hölder constant

sup
t6=s

dist(σ(At), σ(As))
d(t, s)α

is finite.

We are now ready to formulate the main result of the section:

Theorem 3.11. Let (T, d) be a metric space, take any α > 0, and let A = (At)t∈T be a field of
self-adjoint, bounded operators such that supt∈T ‖At‖ <∞. Then the following both hold:

1. If A is p2-α-Hölder continuous, then the spectrum of A is α/2-Hölder continuous.

2. If the spectrum of A is α-Hölder continuous, then A is p2-α-Hölder continuous.

We will need a few technical results before proving this.

Proposition 3.12. Let (X, dX) and (Y, dY ) be metric spaces, take any α > 0, and take any
α-Hölder continuous proper function f : X → Y . Then, the map

f̂ : F ∈ C (X) 7→ f(F ) ∈ C (Y )

is α-Hölder continuous, that is, there exists a constant C > 0 such that for every pair K,
L ∈ C (X), we have

dist(f(K), f(L)) ≤ Cdist(K,L)α
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3.2 Hölder continuity

Proof. As in Proposition 2.15, f̂ is well-defined since we demand that f be continuous
and proper. We can set C := Holα(f) and use the α-Hölder continuity of f to conclude
that

dist(f(x), f(L)) = inf {dY (f(x), f(l)) | l ∈ L}
≤ inf {CdY (x, l)α | l ∈ L}
= Cdist(x, L)α

Accordingly,

dist(f(K), f(L)) = max
{

sup
k∈K

dist(f(k), f(L)), sup
l∈L

dist(f(K), f(l))
}

≤ max
{

sup
k∈K

Cdist(k, L)α, sup
l∈L

Cdist(K, l)α
}

= Cdist(K,L)α

which completes the proof.

Lemma 3.13. Let B be a bounded, self-adjoint operator, choose any m ≥ ‖B‖, and define
p := 4m2 − (z − c)2 for any c ∈ R with |c| ≤ m. Then p ∈P2(4m2 + 2), and

‖p(B)‖ = 4m2 − inf
t∈σ(B)

|t− c|2

which can be alternatively written as∥∥∥4m2 − (B − c)2
∥∥∥ = 4m2 − dist(c, σ(B))2

Proof. For the first part, we know that m ≥ |c| so |4m2 − c2| = 4m2 − c2. It follows that

‖p‖1 =
∥∥∥4m2 − c2 + 2cz − z2

∥∥∥
1

=
∣∣∣4m2 − c2

∣∣∣+ 2c+ 1
= 4m2 − c2 + 2c+ 1
= 4m2 + 2− c2 + 2c− 1
= 4m2 + 2− (c− 1)2

≤ 4m2 + 2

For the second part, we first note that∥∥∥(B − c)2
∥∥∥ ≤ ‖B − c‖2

≤ (‖B‖+ |c|)2

≤ 4m2
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It follows that 4m2 ≥ (t− c)2 for all t ∈ σ(B), so we have

‖p(B)‖ =
∥∥∥4m2 − (B − c)2

∥∥∥
= sup

t∈σ(B)

∣∣∣4m2 − (t− c)2
∣∣∣

= sup
t∈σ(B)

(
4m2 − (t− c)2

)
= 4m2 − inf

t∈σ(B)
(t− c)2

Finally, from Definition 1.15 we see that

inf
t∈σ(B)

(t− c)2 = inf
t∈σ(B)

|t− c|2

= dist(c, σ(B))2

so the proof is finished.

Lemma 3.14. Let A = (At)t∈T be a p2-α-Hölder continuous field of self-adjoint, bounded op-
erators such that m := supt∈T ‖At‖ < ∞. Then the spectrum of A is α/2-Hölder continuous
with α/2-Hölder constant less than or equal to

√
(4m2 + 2)Cα .

Proof. Consider s, t ∈ T . Choose any λ ∈ σ(At); we will show that

dist(λ, σ(As)) ≤
√

(4m2 + 2)Cα d(s, t)α/2

If λ ∈ σ(At) ∩ σ(As), then clearly dist(λ, σ(As)) = 0 and we are done. So assume
that λ ∈ σ(At)\σ(As). Since λ ∈ σ(At), it follows by Lemma 3.13 that∥∥∥4m2 − (At − λ)2

∥∥∥ = 4m2

Similarly we have∥∥∥4m2 − (As − λ)2
∥∥∥ = 4m2 − dist (λ, σ(As))2

If we define p(z) := 4m2 − (z − λ)2, then, again by Lemma 3.13, we have that
p ∈P2(4m2 + 2). It follows that

dist (λ, σ(As))2 = 4m2 − (4m2 − dist (λ, σ(As))2)
=
∣∣∣‖p(At)‖ − ‖p(As)‖∣∣∣

≤ Cα,4m2+2d(t, s)α

= (4m2 + 2)Cαd(t, s)α

Since this is true for every λ ∈ σ(At), and since we can interchange the roles of s
and t in the discussion above, it follows that

dist (σ(As), σ(At)) ≤
√

(4m2 + 2)Cα d(s, t)α/2

which completes the proof.
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Proposition 3.15. Let (X, dX), (Y, dY ) and (Z, dZ) be metric spaces, and assume that we are
given functions f : X → Y and g : Y → Z such that f is α-Hölder continuous with α-Hölder
constant C and g is β-Hölder continuous with β-Hölder constant D for some α, β, C, D > 0.
Then the composition g ◦ f : X → Z is αβ-Hölder continuous with αβ-Hölder constant less
than or equal to CβD.

Proof. Since f is α-Hölder continuous , we have

dY (f(x), f(x′)) ≤ CdX(x, x′)α

for any x, x′ ∈ X . Similarly

dZ (g(y), g(y′)) ≤ DdY (y, y′)β

for any y, y′ ∈ Y . It follows that

dZ
(
g(f(x)), g(f(x′))

)
≤ DdY

(
f(x), f(x′)

)β
≤ DCβ

(
dX(x, x′)α

)β
for any x, x′ ∈ X , and we are done.

Lemma 3.16. Let A = (At)t∈T be a field of self-adjoint, bounded operators such that m :=
supt∈T ‖At‖ < ∞. If the spectrum σ(At) is α-Hölder continuous with Hölder constant C,
then A is p2-α-Hölder continuous with Cα ≤ 2nC, where n := max {2m, 1}.

Proof. As in Lemma 2.20, the map t ∈ T 7→ ‖p(At)‖ ∈ R+ can be seen as a composition
of the maps

t 7→ σ(At)
p̂7→ σ(p(At))

|̂·|7→ |σ(p(At))|
sup7→ ‖p(At)‖

The map t 7→ σ(At) is α-Hölder continuous with Hölder constantC by assumption.
Next, we have that if p = p2x

2 + p1x+ p0 is any polynomial of degree two or less with
real coefficients, then its restriction to the compact set [−m,m] is 1-Hölder continuous
with Hölder constant less than or equal to 2m |p2|+ |p1|, as∣∣∣p2x

2 + p1x+ p0 − p2x
′2 − p1x

′ − p0

∣∣∣ ≤ ∣∣∣p2(x2 − x′2) + p1(x− x′)
∣∣∣

≤ (|p2| |x+ x′|+ |p1|) |x− x′|
≤ (2m |p2|+ |p1|) |x− x′|

for all x, x′ ∈ [−m,m]. Furthermore, there exists some m̃ > 0 such that p([−m,m]) ⊂
[−m̃, m̃] for any p ∈ P2(1). For set m̃ := max {1,m,m2}, and take any p ∈ P2(1). We
see that for any x ∈ [−m,m] we have∣∣∣p2x

2 + p1x+ p0

∣∣∣ ≤ |p2|x2 + |p1| |x|+ |p0|
≤ (|p2|+ |p1|+ |p0|) m̃
≤ m̃
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3.2 Hölder continuity

and so p([−m,m]) ⊂ [−m̃, m̃] for all p ∈P2(1).
Trivially, the map |·| : [−m̃, m̃] → [0, m̃] is also 1-Hölder continuous with Hölder

constant 1.
Finally, the map sup : C ([0, m̃]) → R is also 1-Hölder continuous with Hölder

constant less than or equal to 1. For take any F , F ′ ∈ C ([0, m̃]), and note that supF ∈ F
and supF ′ ∈ F ′ since F and F ′ are compact sets. Assume that supF ′ ≤ supF . Now
we must have

inf
x′∈F ′

|supF − x′| = |supF − supF ′|

and so it follows that

|supF − supF ′| ≤ sup
x∈F

inf
x′∈F ′

|x− x′|

If conversely we assume that supF ′ ≤ supF , then we see by the same argument as
above that

|supF − supF ′| ≤ sup
x′∈F ′

inf
x∈F
|x− x′|

But then in either case we must have

|supF − supF ′| ≤ max
{

sup
x∈F

inf
x′∈F ′

|x− x′| , sup
x′∈F ′

inf
x∈F
|x− x′|

}
= dist(F, F ′)

As F , F ′ ∈ C ([0, m̃]) were arbitrary, it follows that the map

sup : C ([0, m̃])→ R

is 1-Hölder with Hölder constant less than or equal to 1.
Now by combining Proposition 3.12 and Proposition 3.15, it follows that for each

p ∈P2(1), the map σ(At) 7→ ‖p(At)‖, that is, the composition

sup ◦ |̂·| ◦ p̂

is α-Hölder continuous with Hölder constant less than or equal to 2m |p2|+ |p1|. Thus
again by Proposition 3.15, we see that for each p ∈P2(1) we have∣∣∣‖p(As)‖ − ‖p(At)‖∣∣∣ ≤ (2m |p2|+ |p1|)Cd(s, t)α

≤ (|p2|+ |p1|) 2nCd(s, t)α

≤ 2nCd(s, t)α

As n <∞, it follows that

sup
t6=s

sup
p∈P2(1)

∣∣∣‖p(As)‖ − ‖p(At)‖∣∣∣
d(s, t)α ≤ 2nC <∞

By the comments following Proposition 3.8, it follows that A is p2-α-Hölder con-
tinuous, and we are done.
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3.3 Hölder continuity of gap edges

In a sense, the result in the previous section can be seen as an analogy, if imperfect,
to the proof that p2-continuity and Hausdorff continuity are equivalent, in a Hölder
continuity setting. It turns out that we are also able to provide a similar analogy to the
equivalence of p2-continuity and gap edge continuity.

There are a few problems involved in trying to get Hölder estimates for the position
of gap edges. For one, "continuous families of gaps" only exist locally, and their exact
area of definition is often unclear at best. The more serious issue is that even if a map
t ∈ T 7→ Ft ∈ C (R) is gap edge continuous at a point t0, then the nature of the gaps
may be very chaotic except quite close to t0, which can make the Hölder constant blow
up disproportionally or even become∞.

We can, however, make use of a "local" generalization of the concept of Hölder
continuity - the property known as the dilation:

Definition 3.17. Given two metric spaces (X, dx), (Y, dY ), a point x ∈ X , a function
f : X → Y and some r > 0, we define for each α > 0

Holαr (f) := sup
{x′ |0<dX(x,x′)<r}

dY (f(x), f(x′))
dX(x, x′)α

We say that f is locally α-Hölder continuous at x if Holαr (f) < ∞ for some r > 0, in
which case we set

dilα(f)(x) := lim
r↓0

Holαr (f)

As clearly 0 ≤ Holαr (f) ≤ Holαr′(f) for any 0 < r ≤ r′, the limit is well defined and
finite, and we call dilα(f)(x) the α-dilation of f at x.

Example 3.18. Set X := ⋃
n∈Z(n, n + 1) ⊂ R with the standard metric it inherits from

R. We claim that the function f : X → R given by

f(x) := n2 if n < x < n+ 1 for n ∈ Z

is not 1-Hölder continuous, but is locally α-Hölder continuous with α-dilation equal
to zero for all α ≥ 0 at every x ∈ X .

For note that for any x, x′ ∈ X , we have that if

n < x < n+ 1 and n′ < x′ < n′ + 1

for some n, n′ ∈ Z then |x− x′| ≤ |n− n′|+ 1. It follows that

sup
x 6=x′

|f(x)− f(x′)|
|x− x′|

≥ sup
n6=n′

|n2 − n′2|
|n− n′|+ 1

≥ sup
n6=0

|n2|
|n|+ 1 =∞
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To show that the α-dilation is 0 at every x ∈ X , start by fixing x. As |x− x′| → 0 we
must eventually have that x, x′ ∈ (nx, nx + 1) for some nx ∈ Z, so

lim
r↓0

sup
0<|x−x′|<r

|f(x)− f(x′)|
|x− x′|α

= lim
r↓0

sup
0<|x−x′|<r

|n2
x − n2

x|
|x− x′|α

= lim
r↓0

sup
0<|x−x′|<r

0
|x− x′|α

= 0

As the example shows, a function f : X → Y can be locally α-Hölder continuous at
every x ∈ X without being α-Hölder continuous. On the other hand, it is not difficult
to see from the definitions that if f is α-Hölder continuous, then it is also locally α-
Hölder continuous at every x ∈ X .

With the notion of local α-Hölder continuity developed, we want to be able to
speak of α-Hölder continuity of gaps. Before that, we will make a small remark: It is
well known that whenever we work in a topological space that is also a metric space,
we can always consider sequences instead of nets, and we will always do so. As such,
any definition or result that considers metric spaces will always only concern itself
with sequences, while any definition or result that considers topological spaces will
concern itself with nets.

Definition 3.19. For a metric space (T, d), let t ∈ T 7→ Ft ∈ C (R) be a map, and choose
any t0 ∈ T . We say that the map t 7→ Ft is α-Hölder gap edge continuous at t0 if the
following both hold:

• For every gap (a, b) of Ft0 , there exists an R > 0 and two maps

t ∈ BR(t0) 7→ at ∈ Ft ∪ {±∞} and t ∈ BR(t0) 7→ bt ∈ Ft ∪ {±∞}

such that for each t ∈ BR(t0) we have that (at, bt) is a gap of Ft with −∞ ≤ at <
bt ≤ ∞, and such that both these maps are locally α-Hölder continuous at t0 -
that is, such that

dilα(t 7→ at)(t0) := lim
r↓0

sup
{t|0<d(t0,t)<r≤R}

|a− at|
d(t0, t)α

<∞

and

dilα(t 7→ bt)(t0) := lim
r↓0

sup
{t|0<d(t0,t)<r≤R}

|b− bt|
d(t0, t)α

<∞

• Assume {tn}n∈N is a sequence of points in T converging to t0, and {an}n∈N and
{bn}n∈N are two convergent nets of points in [−∞,∞] such that

a := lim
n
an and b := lim

n
bn
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and (an, bn) is a gap of Ftn for every n ∈ N. Then either (a, b) is a gap of Ft0 or
a = b, and in either case

lim
r↓0

sup
{n|0<d(t0,tn)<r}

|a− an|
d(t0, tn)α <∞

and

lim
r↓0

sup
{n|0<d(t0,tn)<r}

|b− bn|
d(t0, tn)α <∞

On occasion, we shall say that only some given family of gaps of t 7→ Ft are α-
Hölder gap edge continuous at t0; this just means that only these specific gaps satisfy
the equations above.

If t 7→ Ft is α-Hölder gap edge continuous at t0, and given some family {(aκ, bκ)}κ∈J
of gaps of Ft0 - for example, the collection of all inner gaps of Ft0 - we call the quantity

sup
κ∈J

max {dilα(t 7→ (aκ)t),dilα(t 7→ (bκ)t)}

the α-dilation of the family, where the maps are as they were defined above.
Given a field A = (At)t∈T of self-adjoint, bounded operators, we say that the gaps of

A are α-Hölder continuous at t0 if the map t ∈ T 7→ σ(At) ∈ C (R) is α-Hölder gap edge
continuous at t0.

Theorem 3.20. For a metric space (T, d), let A = (At)t∈T be a p2-α-Hölder continuous field
of bounded, self-adjoint operators. Then A is α-Hölder gap edge continuous at every t ∈ T .

We will break down the proof into two lemmas: One where we show gap edge
continuity for outer gaps, and one where we show gap edge continuity for inner gaps.

Lemma 3.21. For a metric space (T, d), let A = (At)t∈T be a p2-α-Hölder continuous field of
self-adjoint, bounded operators. Then the outer gap edges of A are α-Hölder gap edge contin-
uous at every t ∈ T , and for each t ∈ T there exists an mt with 0 < mt < ∞ such that the
α-dilation of the outer gaps of A at t is less than or equal to (1 +mt)Cα .

Proof. Begin by fixing some t0 ∈ T . We will begin by showing that the first condition
holds.

For each t ∈ T , let lt = inf(σ(At)) be the lower outer edge of σ(At) and ut =
sup(σ(At)) be the upper outer edge of σ(At). By Proposition 3.9, there exists some
neighbourhood W ⊂ T of t0 and some mt = m > 0 such that ‖At‖ ≤ m for all t ∈ W .

We have ‖At‖ = sup |σ(At)| = max {|lt| , |ut|}. As 0 ≤ lt +m ≤ ut +m for all t ∈ W ,
it follows that

‖At +m‖ = sup |σ(At +m)|
= sup |σ(At) +m|
= max {|lt +m| , |ut +m|}
= ut +m
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for all t ∈ W .
Similarly, we have lt −m ≤ ut −m ≤ 0 for all t ∈ W , so

‖At +m‖ = sup |σ(At −m)|
= sup |σ(At)−m|
= max {|lt −m| , |ut −m|}
= m− lt

for all t ∈ W .
Now by the p2-α-Hölder continuity of A, we know that for all M > 0 there exists a

real number Cα,M > 0 such that for any p ∈P2(M),∣∣∣‖p(As)‖ − ‖p(At)‖∣∣∣ ≤ Cα,M d(s, t)α

= MCαd(s, t)α

With p1 := z − m ∈ P2(1 + m) and p2 := z + m ∈ P2(1 + m), we see that for all
t ∈ W we have

‖lt0 − lt‖ = ‖(m− lt0)− (m− lt)‖
=
∣∣∣‖At0 −m‖ − ‖At −m‖∣∣∣

=
∣∣∣‖p1(At0)‖ − ‖p1(At)‖

∣∣∣
≤ (1 +m)Cαd(t0, t)α

and similarly,

|ut0 − ut| = |(ut0 +m)− (ut +m)|
=
∣∣∣‖At0 +m‖ − ‖At +m‖

∣∣∣
=
∣∣∣‖p2(At0)‖ − ‖p2(At)‖

∣∣∣
≤ (1 +m)Cαd(t0, t)α

It follows that we have

dilα(t ∈ W 7→ lt ∈ R)(t0) = lim
r↓0

sup
{t∈W |0<d(t0,t)<r}

|lt0 − lt|
d(t0, t)α

≤ sup
t∈W\{t0}

|lt0 − lt|
d(t0, t)α

≤ (1 +m)Cα <∞

and

dilα(t ∈ W 7→ ut ∈ R)(t0) = lim
r↓0

sup
{t|0<d(t0,t)<r}

|ut0 − ut|
d(t0, t)α

≤ sup
t∈W\{t0}

|ut0 − ut|
d(t0, t)α

≤ (1 +m)Cα <∞
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3.3 Hölder continuity of gap edges

As t0 was arbitrary, the proof follows.

Corollary 3.22. For a metric space (T, d), let A = (At)t∈T be a p2-α-Hölder continuous field
of self-adjoint, bounded operators, and assume that m := supt∈T ‖At‖ < ∞. Then the outer
gap edges of A are α-Hölder gap edge continuous with α-dilation less than or equal to Cα,1+m
at every t ∈ T .

Lemma 3.23. Let A = (At)t∈T be a p2-α-Hölder continuous field of self-adjoint, bounded
operators. Then the inner gaps of A are α-Hölder continuous at every t ∈ T , and for each
t ∈ T there exists a m > 0 such that each gap (a, b) of At has α-dilation less than or equal to
(8m2 + 4)Cα/(b− a).

Proof. Fix t0 ∈ T and some inner gap (a, b) of At0 , and divide (a, b) into six equal
intervals

(a+ (n− 1)r, a+ nr)

for n ∈ {1, 2, 3, 4, 5, 6} and r := (b − a)/6. Set also c := a + 4r = b − 2r, i.e. the point
2/3rds of the way between a and b. Clearly, the p2-α-Hölder continuity of A implies
that A is p2-continuous at t0, so, by Theorem 2.13, A is gap edge continuous at t0. So
there exists some open neighbourhood U ⊂ T of t0 such that for each t ∈ U , σ(At) has
a gap (at, bt) with |at − a| < r and |bt − b| < r. It follows that for each t ∈ U , we have

bt − at = (bt − b) + (b− a) + (a− at) > −r + 6r +−r > 4r > 0

and

bt − c = (bt − b) + (b− c) > −r + 2r = r

as well as

bt − c = (bt − b) + (b− c) < r + 2r = 3r

which yields r < bt − c < 3r. Finally,

c− at = (c− a) + (a− at) > 4r − r = 3r

It follows that 0 < bt− c < 3r < c− at. In particular, this implies that at < c < bt, so
c lies in the gap (at, bt) of Ft, and as |bt − c| < |at − c|we have

dist(σ(At), c) = bt − c

By Proposition 3.9, we see that the p2-α-Hölder continuity of A implies there exists
some neighbourhood V ⊂ T of t0 and some m > 0 such that

sup
t∈V
‖At‖ ≤ m <∞
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3.3 Hölder continuity of gap edges

It follows that for all t ∈ U ∩ V , |c| ≤ ‖At‖ ≤ m. Lemma 3.13 gives us

4m2 − (bt − c)2 = 4m2 − dist(c, σ(At))

for all t ∈ U ∩ V . Set now p(z) := m2 − (z − c)2. Again by Lemma 3.13,∣∣∣‖p(At)‖ − ‖p(At0)‖
∣∣∣ =

∣∣∣4m2 − (bt − c)2 − 4m2 + (b− c)2
∣∣∣

= |bt − b| |bt + b− 2c|
= |bt − b| |bt − c+ 2r|

as b− c = 2r by definition.
By our earlier inequalities, we have, for all t ∈ U ∩V , that bt−c > r > 0, and clearly

2r > 0. It follows that

|bt − c+ 2r| = bt − c+ 2r > 3r

Since ‖p‖1 ≤ 4m2 + 2 (cf. Lemma 3.13), we have by the p2-α-Hölder continuity of
A that ∣∣∣‖p(At)‖ − ‖p(As)‖∣∣∣ ≤ Cα,4m2+2d(t, s)α

= (4m2 + 2)Cαd(t, s)α

Thus for t ∈ U ∩ V , we get

|bt − b| =

∣∣∣‖p(At)‖ − ‖p(At0)‖
∣∣∣

|bt − c+ 2r|

≤ (4m2 + 2)Cα
3r d(t, t0)α

= 2(4m2 + 2)Cα
6r d(t, t0)α

= (8m2 + 4)Cα
b− a

d(t, t0)α

The same statement holds with at and as instead of bt and bs by instead choosing
c := a + 2r = b − 4r, i.e. closer to a than to b. As t0 was arbitrary, this completes the
proof.

A note: The original result in [3] showed that the Hölder constant was equal to or
less than (12m2+6)Cα,

b−a ; however, we were able to improve upon this result.

Proof of Theorem 3.20:

Proof. This is just a combination of the two previous lemmas.
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3.4 Hölder continuity of gap widths

The final result inspired by [3] concerns itself with gap widths and the behaviour around
so-called closed gaps, and linking the α-Hölder continuity of the gap widths to the p2-α-
Hölder continuity of the field itself. Since we are working with bounded, self-adjoint
operators, the gap widths are easily defined - the width of a bounded gap G = (a, b) is
simply b− a. The "width" of the two unbounded gaps is not considered.

We will first need to introduce one new concept - we want to give a name to what
happens when a gap "closes", that is, that "a gap disappears" at certain values of t:

Definition 3.24. For a topological space T and for some t0 ∈ T , let t ∈ T 7→ Ft ∈ C (R)
be a map that is gap edge continuous at t0. We say that a point c ∈ Ft0 ∪ {±∞} is a
closed gap of Ft0 if there exists some net {tι}ι∈I of points in T\ {t0} converging to t0, and
two convergent nets {aι}ι∈I and {bι}ι∈I of points in [−∞,∞] with

lim
ι
aι = c = lim

ι
bι

and such that (aι, bι) is a gap of Ftι for every ι ∈ I .

Remembering Definition 1.6, we see that a gap is closed if it satisfies the second
option of the second condition, that is, if a = b.

It may seem strange that we allow c = ±∞ to be a closed gap. However, we have
already seen an example where it is appropriate to say that c = ∞ is a closed gap -
consider the map t ∈ [0, 1] 7→ σ(At) ∈ C (R) as we defined it in Example 1.24, that is,

σ(At) :=
{
{0} if t = 0
{0} ∪ {1/t} if t > 0

Now (1/t,∞) is a gap of σ(At) for all t 6= 0, and as limt↓0 1/t =∞ it is quite natural
to consider∞ as a closed gap of σ(A0).

Example 3.25. Recall the map t ∈ T 7→ Ft ∈ C (R) from Example 1.8 defined by

Ft = (−∞,−t] ∪ [t,∞)

We claim that the point 0 is a closed gap of Ft0 for t0 = 0. For recall that any gap
of Ft for t 6= 0 is on the form (−t, t), so if tn → t0 and (an, bn) is a gap of Ftn for every
n ∈ N, then an = −tn, bn = tn and

lim
n
an = 0 = lim

n
bn

and we are done.

Example 3.26. Consider the standard procedure to construct the Cantor set and its
associated map n ∈ T 7→ Cn ∈ C (R), as introduced in Example 1.10. It is well known
that in addition to containing points on the form β+ 1

3n or β+ 2
3n , that is, points that are

end points of removed intervals, the Cantor set C∞ also contains uncountably many

66



3.4 Hölder continuity of gap widths

other points. To shed some light on the nature of these points, we claim that every point
of the Cantor set is a closed gap.

So fix any point c ∈ C∞. It suffices to show that there for each n ∈ N exists some
gap (an, bn) of Cn such that

max {|c− an| , |c− bn|} ≤
2
3n

This will prove that c is a closed gap, as

lim
n→∞

an = c = lim
n→∞

bn

A simple inductive argument shows that eachCn is composed of intervals of length
1

3n , and to either the left or right of each such interval there is a gap (an, bn) of length
1

3n . Since c necessarily lies in one of these intervals, we must have

max {|c− an|, |c− bn|} ≤
1
3n + 1

3n = 2
3n

which proves the claim.

When T is a metric space, we will often want to consider every pair of sequences
{tn}n∈N and {(an, bn)}n∈N satisfying the conditions in Definition 3.24. First, we define
for any space X the space of sequences on X :

Definition 3.27. For any space X , we define the space XN by

XN :=
{
{xn}n∈N | xn ∈ X for all n ∈ N

}
Definition 3.28. For any metric space (T, d), any t0 ∈ T and any map t ∈ T 7→ Ft ∈
C (R), define for each closed gap c of Ft0 with c 6= ±∞ the subset G c

t0 ⊂ TN × (R2)N by

G c
t0 :=

{(
{tn}n∈N, {(an, bn)}n∈N

) ∣∣∣∣ lim tn = t0, lim an = lim bn = c,

tn 6= t0 and (an, bn) is a gap of Ftn for each n ∈ N
}

If we are given a field A = (At)t∈T , then we define G c
t0(A) as G c

t0 for the map t ∈
T 7→ σ(At) ∈ C (R).

By the definition of closed gaps, G c
t0 is always non-empty. Note in particular that we

do not define G c
t0 for c = ±∞, and that we do not accept elements

(
{tn}n∈N, {(an, bn)}n∈N

)
such that an = −∞ or bn = ∞ for any n ∈ N. The reason for this is, as we discussed
earlier, that we do not want to work with the width of the outer gaps.

By the terminology of Beckus and Bellisard, G c
t0 would be "the space of all families

of gaps closing on c at t0" (although G c
t0 was never formally introduced or used in [3]).

We will usually use the symbol g to denote elements in a space G c
t0 , which means that

any g will be on the form(
{tn}n∈N, {(an, bn)}n∈N

)
∈ TN ×

(
R2
)N
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Example 3.29. G c
t0 can be quite large. For example, set T = [0, 1] with the standard

metric it inherits from R, and define the map t ∈ T 7→ Ft ∈ C (R) by

Ft :=
⋃
k∈Z
{tk}

It is not hard to see that

G 0
0 =

{(
{tn}n∈N, {(an, bn)}n∈N

) ∣∣∣∣ lim tn = 0,

tn 6= t0 and an = tnkn, bn = tn(kn + 1) for some kn ∈ Z for each n ∈ N
}

As, for every sequence {tn}n∈N with lim tn = 0 and tn 6= t0 for all n ∈ N, there are
countably infinitely many choices of kn for every n ∈ N, it follows that G 0

0 is homeo-
morphic to TN × N2.

Definition 3.30. For a metric space (T, d) and for some t0 ∈ T , let t ∈ T 7→ Ft ∈ C (R)
be a map that is gap edge continuous at t0. If c is a closed gap of Ft0 , then we say that
the width of the gaps of t 7→ Ft closing on c at t0 is α-Hölder continuous if

sup
g∈G ct0

lim
r↓0

sup
{n|0<d(t0,tn)<r}

bn − an
d(t0, tn)α <∞

If A = (At)t∈T is a field of self-adjoint operators, we say that the width of the gaps of
A closing on c at t0 is α-Hölder continuous if

sup
g∈G ct0

(A)
lim
r↓0

sup
{n|0<d(t0,tn)<r}

bn − an
d(t0, tn)α <∞

and we refer to this quantity as the α-dilation of the width of the gaps of A closing on c at
t0.

Theorem 3.31. For a metric space (T, d), let A = (At)t∈T be a p2-α-Hölder continuous field
of bounded, self-adjoint operators, and take any t0 ∈ T . Assume that c is a closed gap of σ(At0)
such that c is an interior point of σ(At0). Then the width of the gaps of A closing on c at t0 is
α/2-Hölder continuous at t0, with α/2-dilation less than or equal to 2

√
(4m2 + 2)Cα .

Proof. For simplicity, we write Ft := σ(At) and F0 := σ(At0).
Let us consider some

g =
(
{tn}n∈N, {(an, bn)}n∈N

)
∈ G c

t0(A)

Define for all n ∈ N the number λn := (an+bn)/2. Since c is an interior point of F0, it
follows that there exists some ε > 0 such that (c− ε, c+ ε) ⊂ F0. As lim bn = lim an = c,
it follows that lim λn = c, so there exists some n′ ∈ N such that |λn − c| < ε for all
n ≥ n′, that is, such that λn ∈ F0 for all n ≥ n′.
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By Proposition 3.9, there exists some m > 0 and some neighbourhood W ⊂ T of t0
such that supt∈W |Ft| < m. As tn → t0, there exists some n′′ ∈ N with n′′ ≥ n′ such that
tn ∈ W for all n ≥ n′′. Since c is an interior point of F0, we have −∞ < c <∞, and so

−∞ < −m < an < λn < bn < m <∞

for all n ≥ n′′. Since max {‖Atn‖ , |λn|} < m, we get that

4m2 = (2m)2 >

(
sup
x∈Ftn

|λn − x|
)2

for every n ≥ n′′. It follows from Lemma 3.13 that∥∥∥4m2 − (At0 − λn)2
∥∥∥ = 4m2 − dist(λn, F0)

= 4m2

and ∥∥∥4m2 − (Atn − λn)2
∥∥∥ = 4m2 − dist(λn, Ftn)

= 4m2 − (bn − an)2/4

for all n ≥ n′′, as dist(λn, F0) = 0 for n ≥ n′′ ≥ n′.
Finally, we observe that if we for each n ≥ n′′ define the map pn : R→ R by

pn(x) := 4m2 − λ2
n + 2λnx− x2

= 4m2 − (x− λn)2

then by Lemma 3.13, ‖pn‖1 ≤ 4m2 + 2 for all n ≥ n′′, which means that we have
pn ∈P2(4m2 + 2) for all n ≥ n′′.

Using the p2-α-Hölder continuity of A at t0, we see that

1
4 (bn − an)2 =

(
4m2

)
−
(
4m2 − (bn − an)2 /4

)
=
∣∣∣‖4m2 − (At0 − λn)2‖ − ‖4m2 − (At − λn)2‖

∣∣∣
=
∣∣∣‖pn(At0)‖ − ‖pn(Atn)‖

∣∣∣
≤ Cα,4m2+2d(t0, tn)α

= (4m2 + 2)Cαd(t0, tn)α

for each n ≥ n′′, again by Lemma 3.13. It follows that

1
4 (bn − an)2 ≤ (4m2 + 2)Cαd(t0, tn)α

for all n ≥ n′′, alternatively

bn − an ≤ 2
√

(4m2 + 2)Cα d(t0, tn)α/2
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Finally, as tn → t0 and tn 6= t0 for all n ∈ N, there exists some r′ > 0 such that
d(t0, tn) < r′ if and only if n ≥ n′′, and so

lim
r↓0

sup
{n|0<d(t0,tn)<r}

bn − an
d(t0, tn)α/2 = lim

r↓0
sup

{n|0<d(t0,tn)<r≤r′}

bn − an
d(t0, tn)α/2

≤ 2
√

(4m2 + 2)Cα

As g =
(
{tn}n∈N, {(an, bn)}n∈N

)
∈ G c

t0(A) was arbitrary, it follows that

sup
g∈G ct0

(A)
lim
r↓0

sup
{n|0<d(t0,tn)<r}

bn − an
d(t0, tn)α ≤ 2

√
(4m2 + 2)Cα
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4 Unbounded Operators

4.1 Unbounded, self-adjoint operators

So far we have worked chiefly with bounded operators. However, many interesting
operators are not bounded. Unbounded operators are, in many ways, much less well
behaved than bounded operators.

One notable problem is that any unbounded operator B on a Hilbert space H is
generally not defined on all of H , but rather only on some linear subspace D(B) ⊂ H ,
the domain of B. Typically, we will demand that D(B) is dense as a subset of H , that
is, that B is densely defined. We therefore use the phrase "operator on H" to refer to any
operator, bounded or unbounded, that is defined on some dense linear subspace of H .

The following definitions and results are all taken from [10]:

Definition 4.1. Let B be an operator on some Hilbert space H . We say that B is closed
if

Γ(B) :=
{
〈x,Bx〉

∣∣∣x ∈ D(B)
}

is a closed subset of H ×H .

Definition 4.2. Let B and B′ be operators on some Hilbert space H . If Γ(B′) ⊃ Γ(B),
we say that B′ is an extension of B, and we write B′ ⊃ B. Equivalently, B′ ⊃ B if and
only if D(B′) ⊃ D(B) and B′x = Bx for all x ∈ D(B).

Definition 4.3. Let B be a densely defined linear operator on a Hilbert space H . Let
D(B∗) be the set of y ∈ H for which there is a z ∈ H with

〈Bx, y〉 = 〈x, z〉

for all x ∈ D(B). For each such y ∈ D(B∗), we define

B∗y := z

B∗ is called the adjoint of B.

Definition 4.4. A densely defined operator B on a Hilbert space H is called symmetric
if B ⊂ B∗, that is, if D(B) ⊂ D(B∗) and Bx = B∗x for all x ∈ D(B). Equivalently, B is
symmetric if and only if

〈Bx, y〉 = 〈x,By〉

for all x, y ∈ D(B).

Definition 4.5. A densely defined operator B on a Hilbert space H is called self-adjoint
if B = B∗, that is, if and only if B is symmetric and D(B) = D(B∗).

Theorem 4.6. Let B be a densely defined operator on a Hilbert space H . Then B∗ is closed.
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4.1 Unbounded, self-adjoint operators

As an immediate consequence, any self-adjoint operator is necessarily closed, and
so whenever we speak of a self-adjoint operator B, we will understand B to be densely
defined, symmetric and closed, with B = B∗ and D(B) = D(B∗).

In order to work with the inverses of unbounded operators, we need to carefully
redefine the resolvent:

Definition 4.7. Let B be a closed operator on a Hilbert space. A complex number λ is
in the resolvent set, ρ(B), if λI−B is a bijection ofD(B) ontoH with a bounded inverse.
If λ ∈ ρ(B),

Rλ(B) := (λI −B)−1

is called the resolvent of B at λ.

To be clear, the inverse of λ − B is the unique bounded operator Rλ(B) ∈ B(H)
such that Rλ(B)(H) = D(B) and such that

Rλ(B)(λID(B) −B) = ID(B)

and

(λID(B) −B)Rλ(B) = IH

where ID(B) is the identity operator on D(B) and IH is the identity operator on H .
We shall usually not bother with the subscripts and just write I instead of ID(B)

or IH . Furthermore, as before, we shall usually write λ instead of λI whenever this
can not cause any confusion. We will also interchangably use the notation Rλ(B) and
(λ−B)−1 for the inverse of λ−B, depending on which is more convenient.

Now that we have defined the resolvent ρ(B) of B, we can naturally define σ(B),
the spectrum of B, as the complement of ρ(B) in C.

Like in the bounded case, we would like to have some control over the properties
of the spectrum of B. Fortunately, as long as B is self-adjoint, σ(B) will always be a
closed subset of R.

Theorem 4.8. Let B be a closed densely defined linear operator. Then the resolvent set of B
is an open subset of the complex plane on which the resolvent is an analytic operator-valued
function. Furthermore,

{Rλ(B) | λ ∈ ρ(B)}

is a commuting family of bounded operators satisfying

Rλ(B)−Rµ(B) = (µ− λ)Rµ(B)Rλ(B)

Theorem 4.9. Let B be a closed symmetric operator on a Hilbert space H . Then the spectrum
of B is one of the following:
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1. The closed upper half-plane.

2. The closed lower half-plane.

3. The entire plane.

4. A subset of the real axis.

B is self-adjoint if and only if case 4 holds and the spectrum is non-empty.

However, unlike in the bounded case, the spectrum on an unbounded self-adjoint
operator can be empty, and if not empty it is in general an unbounded closed subset of R,
as the two following examples, both also taken from [10] (pages 291 and 254, respec-
tively), illustrate.

Example 4.10. Set H = L2(R), the space of square integrable functions on R, and let
the operator B on H be multiplication by x, that is, Bf(x) = xf(x) for every x ∈ R and
every f ∈ H .

B is obviously a linear operator. We claim that B is unbounded. For note that for
any r ∈ R, the function χ[r,r+1], that is, the indicator function for the interval [r, r + 1],
has L2-norm of 1, as

‖χ[r,r+1]‖2
L2 =

∫
R
|χ[r,r+1](x)|2dx

=
∫

[r,r+1]
1dx = 1

However, ‖Bχ[r,r+1]‖L2 grows to be arbitrarily large as r does, since

‖Bχ[r,r+1]‖2
L2 =

∫
R
|xχ[r,r+1](x)|2dx

=
∫

[r,r+1]
x2dx = r2 + r + 1

3
which tends to infinity as |r| does. Thus B is unbounded.

Next, we claim that σ(B) = R. It is not hard to see that B is self-adjoint, and so we
must have σ(B) ⊂ R. Take any λ ∈ R. Then the operator λ−B is given by

(λ−B)f(x) = (λ− x)f(x)

for every x ∈ R and every f ∈ L2(R). It follows that there cannot exist any linear operator
Sλ on H such that Sλ(λ−B) = (λ−B)Sλ = I , as

(λ−B)f(λ) = (λ− λ)f(λ) = 0

for every f ∈ L2(R), and if Sλ was a linear operator satisfying Sλ(λ−B) = I we would
necessarily have

f(λ) = If(λ) = Sλ(λ−B)f(λ) = Sλ0 = 0

for any f ∈ L2(R). As there clearly exist f ∈ L2(R) with f(λ) 6= 0, we have proven that
there exists no inverse Sλ of (λ−B). As λ ∈ R was arbitrary, it follows that σ(B) = R.
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As a side note, the above example demonstrates that there are indeed unbounded
operators whose domain of definition is all of H ; however, generally speaking, un-
bounded operators are not defined on all of H . In the below example, we will see an
unbounded operator that is defined only on a dense, proper linear subspace of the
Hilbert space it acts on.

Example 4.11. Set H = L2([0, 1]), the space of square integrable functions on [0, 1], and
denote by AC([0, 1]) the dense linear subspace of all absolutely continuous functions
on [0, 1] whose derivatives are in L2([0, 1]); the norm on H is the L2-norm. Define the
unbounded linear operator B = i d

dx
with domain

D(B) = {f ∈ AC([0, 1]) | f(0) = 0}

Again, it is simple to confirm that B is a linear operator, D(B) is clearly a dense
linear subspace of AC ([0, 1]) and thus of H , and unboundedness of the derivation
operator is also rather trivial. Fix λ ∈ R. We claim that the map Sλ defined by

(Sλg)(x) = i
∫ x

0
e−iλ(x−y)g(y) dy

for g ∈ H is a bounded linear operator on H with Sλ(H) = D(B), and satisfies the
conditions (λ−B)Sλ = IH and Sλ(λ−B) = ID(B).

Linearity is obvious. To see that Sλ is a bounded operator taking values in D(B),
note that for any g ∈ H we have that

‖Sλg‖2
L2 =

∫ 1

0
|(Sλg)(x)|2 dx

≤
(

sup
x∈[0,1]

|(Sλg)(x)|2
)

=
(

sup
x∈[0,1]

∣∣∣∣i ∫ x

0
e−iλ(x−y)g(y) dy

∣∣∣∣2
)

≤
(

sup
x∈[0,1]

∫ x

0

∣∣∣e−iλ(x−y)
∣∣∣2 dy

)(
sup
x∈[0,1]

∫ x

0
|g(y)|2 dy

)

=
(

sup
x∈[0,1]

∫ x

0

∣∣∣e−iλ(x−y)
∣∣∣2 dy

)
‖g‖2

L2

where the quantity
(

supx∈[0,1]
∫ x

0

∣∣∣e−iλ(x−y)
∣∣∣2 dy

)
is finite and depends only on λ, and

clearly

(Sλg)(0) = i
∫ 0

0
e−iλ(x−y)g(y) dy = 0

so Sλ(H) ⊂ D(B). To see that Sλ(H) = D(B), note that if we for any given f ∈ D(B)
set g(x) := −ie−iλx d

dx

[
f(x)eiλx

]
, then g ∈ H as f ∈ AC([0, 1]), and we have by the
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4.1 Unbounded, self-adjoint operators

fundamental theorem of calculus that

(Sλg)(x) = i
∫ x

0
e−iλ(x−y) (−i) e−iλy d

dy

[
f(y)eiλy

]
dy

= e−iλx
∫ x

0

d

dy

[
f(y)eiλy

]
dy

= e−iλx
(
f(x)eiλx − f(0)e0

)
= f(x)

as f(0) = 0 since f ∈ D(B).
To see that Sλ is the inverse of λ − B, note that for any g ∈ H , we have, again by

the fundamental theorem of calculus, that

((λ−B)Sλg) (x) = (λ−B)
(
i
∫ x

0
e−iλ(x−y)g(y) dy

)
= λ

(
i
∫ x

0
e−iλ(x−y)g(y) dy

)
− i d

dx

[(
i
∫ x

0
e−iλ(x−y)g(y) dy

)]
= iλ

∫ x

0
e−iλ(x−y)g(y) dy + d

dx

[
e−iλx

] ∫ x

0
eiλyg(y) dy + e−iλx

d

dx

[∫ x

0
eiλyg(y) dy

]
= iλ

∫ x

0
e−iλ(x−y)g(y) dy − iλe−iλx

∫ x

0
eiλyg(y) dy + e−iλxeiλxg(x)

= g(x)

while for any f ∈ D(B) we can use integration by parts to see that

Sλ ((λ−B)f) (x) = i
∫ x

0
e−iλ(x−y)

(
λf(y)− if ′(y)

)
dy

= iλ
∫ x

0
e−iλ(x−y)f(y) dy +

∫ x

0
e−iλ(x−y)f ′(y) dy

= iλ
∫ x

0
e−iλ(x−y)f(y) dy +

[
e−iλ(x−y)f(y)

]y=x

y=0
−
∫ x

0

d

dy

[
e−iλ(x−y)

]
f(y) dy

= iλ
∫ x

0
e−iλ(x−y)f(y) dy + e−iλ0f(x)− e−iλxf(0)− iλ

∫ x

0
e−iλ(x−y)f(y) dy

= f(x)

as we have f(0) = 0 by assumption.
As λ ∈ R was arbitrary, this shows that σ(B) ∩ R = ∅. As Theorem 4.9 shows that

the spectrum of B must be either all of C, the upper or lower (closed) half-plane or a
subset of R, this implies that the only possibility left is σ(B) = ∅. This completes the
proof.

As another remark, the above example can be manipulated to show just how im-
portant our choice of D(B) is. For had we set D(B) = AC([0, 1]), then B would still
be a well-defined unbounded operator, but its spectrum would be all of C, as we have
e−iλx ∈ AC([0, 1]) and

(λ−B)e−iλx = λe−iλx − ie−iλx d
dx

= λe−iλx + i2λe−iλx

= 0
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4.1 Unbounded, self-adjoint operators

for all λ ∈ C, and a similar argument as in Example 4.10 shows that there thus cannot
exist a bounded inverse for any λ ∈ C. With our old definition of D(B), however, we
would have e−iλx /∈ D(B) for all λ ∈ C. As such, one must always understand an
unbounded operator as being defined not only by its "form", but also its domain of
definition, as even operators who agree on a fellow domain of definition may behave
dramatically differently.
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4.2 Continuity for fields of unbounded operators

It is reasonable to ask whether the ideas and results from Chapter 2 can be extended
to fields of self-adjoint, not necessarily bounded operators. The answer is, at least in
part, yes, due to our insistence on working with C (R) and [−∞,∞] in Chapters 1 and
2, as opposed to just working with K (R) (the space of non-empty compact subsets of
R) and R.

The concept of p2-continuity can, unfortunately, not be applied to general fields
A = (At)t∈T of unbounded operators. One problem already appears when we try to
define p(At). [10] does assert that there exists a functional calculus for unbounded,
self-adjoint operators, such that f(B) is well defined for every bounded continuous
(in fact, Borel) function f on R, and that we have

‖f(B)‖ ≤ sup
x∈σ(B)

|f(x)|

However, non-constant polynomials, while continuous, are most certainly not bounded,
as limx→∞ |p(x)| = ∞ for all non-constant polynomials p. Moreover, the fact that we
only have an inequality, as opposed to an equality, makes any implementation of con-
cepts similar to p2-continuity tedious at best.

The definition of gap edge continuity, however, can be applied to unbounded oper-
ators directly from Definition 1.6. In fact, note that in this definition, we never assumed
that the sets or operators involved were bounded, and Example 1.8 is an example of
gap edge continuity for a map t ∈ T 7→ Ft ∈ C (R) where every Ft is unbounded.
Similarly, both the definition of Hausdorff continuity in Definition 1.17 and Fell conti-
nuity in Definition 1.20 were defined for any field of self-adjoint operators, bounded
or unbounded. In fact, Lemma 2.21 proved that a map t ∈ T 7→ Ft ∈ C (R) is gap edge
continuous at a point t0 if and only if it is Fell continuous at t0, without requiring the Ft
to be bounded, and so we have already shown that a field A = (At)t∈T of self-adjoint,
not necessarily bounded operators is gap edge continuous at a point t0 if and only if it
is Fell continuous at t0.

However, as we demonstrated in Example 1.24, Fell continuity and Hausdorff con-
tinuity are in general not equivalent for maps t ∈ T 7→ Ft ∈ C (R). The problem with
unbounded sets is that there can easily be cases where t 7→ Ft is Fell continuous at
some t0 ∈ T , but dist(Ft0 , Ft) =∞ for all t 6= t0; for example, set T = [0, 1] and

Ft :=
{

R if t = 0
[−1/t,∞] otherwise

In Chapter 1, we overcame this difficulty by demanding that t 7→ Ft be locally
uniformly bounded, but clearly this condition is unreasonable for fields on unbounded
operators. We instead suggest a slightly modified version of Hausdorff continuity.

Definition 4.12. For every k ∈ N, define the map Θk : C (R)→ C (R) by

Θk(F ) =
(
F ∪ {±k}

)
∩ [−k, k]
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4.2 Continuity for fields of unbounded operators

Definition 4.13. Given a map t ∈ T 7→ Ft ∈ C (R) and any t0 ∈ T , we say that the map
t 7→ Ft is N-Hausdorff continuous at t0 if for every k ∈ N, the map

t ∈ T 7→ Θk(Ft) ∈ C (R)

is Hausdorff continuous at t0, that is, if for every k ∈ N we have

lim
t→t0

dist
((
Ft0 ∪ {±k}

)
∩ [−k, k] ,

(
Ft ∪ {±k}

)
∩ [−k, k]

)
= 0

Theorem 4.14. Assume that we are given some map t ∈ T 7→ Ft ∈ C (R) and some t0 ∈ T .
Then t 7→ Ft is Fell continuous at t0 ∈ T if and only if it is N-Hausdorff continuous at t0.

Taking the intersection of Ft and [−k, k] intuitively makes sense, as we are trying
to "enforce" local uniform boundedness. The addition of the two points {±k} is less
intuitive. However, we do need them, as the following example demonstrates.

Example 4.15. We slightly modify Example 1.8. Set T = R with its standard topology,
and consider the map t ∈ T 7→ Ft ∈ C (R) given by

Ft = (−∞,−t] ∪ [t,∞)

This map is clearly both Fell continuous and Hausdorff continuous at all t ∈ T .
However, we claim that for any k ∈ N, the map t ∈ T 7→ Ft ∩ [−k, k] ∈ C (R) is neither
Fell continuous nor Hausdorff continuous at t0 = k. Proving this claim is rather simple.
We have

Ft0 = (−∞,−k] ∪ [k,∞)

and so clearly

Ft0 ∩ [−k, k] =
(
(−∞,−k] ∪ [k,∞)

)
∩ [−k, k] = {±k}

However, for any t > t0 we see that Ft ∩ [−k, k] = ∅. Thus

dist(Ft0 , Ft) = dist ({±k} , ∅) =∞

for all t > t0, so t 7→ Ft ∩ [−k, k] cannot be Hausdorff continuous at t0. Furthermore,
clearly we have Ft ∩O = ∅ ∩O = ∅ for all t > t0, even if Ft0 ∩O 6= ∅, so t 7→ Ft ∩ [−k, k]
cannot be Fell continuous either at t0.

Proposition 4.16. Assume two maps t ∈ T 7→ Ft ∈ C (R) and t ∈ T 7→ F ′t ∈ C (R) are
both Fell continuous at some point t0 ∈ T . Then the map t ∈ T 7→ Ft ∪ F ′t ∈ C (R) is Fell
continuous at t0.
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4.2 Continuity for fields of unbounded operators

Proof. Write F0 := Ft0 and F ′0 := F ′t0 , and choose any compact subset K ⊂ R and any
finite family F of open subsets of R such that F0 ∪ F ′0 ∈ U (K,F ). We must find a
neighbourhood of t0 such that Ft ∪ F ′t ∈ U (K,F ) for all t in this neighbourhood.

1) We will first find a neighbourhood U ⊂ T of t0 such that

(Ft ∪ F ′t) ∩K = ∅

for all t ∈ U .
Note that (F0 ∪ F ′0) ∩ K = ∅ implies that F0 ∩ K = ∅ and F ′0 ∩ K = ∅. By the Fell

continuity of both maps t 7→ Ft and t 7→ F ′t , there exist two neighbourhoods U1, U2 ⊂ T
of t0 such that Ft ∩K = ∅ for all t ∈ U1 and F ′t ∩K = ∅ for all t ∈ U2. It follows that if
we set U := U1 ∩ U2 then U is a neighbourhood of t0 such that

(Ft ∪ F ′t) ∩K = ∅

for all t ∈ U .

2) For the second part, we want to find a neighbourhood V ⊂ T of t0 such that

(Ft ∪ F ′t) ∩O 6= ∅

for all t ∈ V and all O ∈ F . Start by fixing O ∈ F .
As (F0 ∪ F ′0) ∩ O 6= ∅, there must exist some x ∈ (F0 ∪ F ′0) ∩ O, and we must have

that either x ∈ F0 or x ∈ F ′0. Assume the former. Then F0 ∩ O 6= ∅, and by the Fell
continuity of the map t 7→ Ft we can find some neighbourhood VO ⊂ T of t0 such that
Ft ∩ O 6= ∅ for every t ∈ O. If we instead had x ∈ F ′0, then analogously we can find
some neighbourhood VO ⊂ T of t0 such that F ′t ∩O 6= ∅ for every t ∈ O.

It follows that if we define V := ⋂
O∈F VO, then for each t ∈ V and each O ∈ F we

have either Ft ∩O 6= ∅ or F ′t ∩O 6= ∅, and so

(Ft ∪ F ′t) ∩O 6= ∅

for all t ∈ V .

3) We now see that for all t ∈ U ∩ V , (Ft ∩ F ′t) ∩K = ∅ and (Ft ∩ F ′t) ∩O 6= ∅ for all
O ∈ F , so (Ft ∩ F ′t) ∈ U (K,F ) for all t ∈ U ∩ V .

Lemma 4.17. Assume that a map t ∈ T 7→ Ft ∈ C (R) is Fell continuous at some point
t0 ∈ T . Then for any k ∈ N, the map

t ∈ T 7→ Θk(Ft) ∈ C (R)

is Fell continuous at t0.
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Proof. Fix any k ∈ N. Write F0 := Ft0 , and choose any compact subset K ⊂ R and
any finite family F of open subsets of R such that Θk(F0) ∈ U (K,F ). We must find a
neighbourhood of t0 such that Θk(Ft) ∈ U (K,F ) for all t in this neighbourhood.

1) We will first find a neighbourhood U ⊂ T of t0 such that Θk(Ft) ∩K = ∅ for all
t ∈ U .

Note that [−k, k] ∩K is a compact subset of R, and by assumption we have(
F0 ∪ {±k}

)
∩
(
[−k, k] ∩K

)
=
((
F0 ∪ {±k}

)
∩ [−k, k]

)
∩K

= Θk(F0) ∩K = ∅

As the map t 7→ Ft at t0 is Fell continuous at t0 by assumption, and as the map
t ∈ T 7→ {±k} ∈ C (R) is (rather trivially) Fell continuous, we have from Proposition
4.16 that the map t 7→ Ft ∪ {±k} is Fell continuous at t0. It follows that we can find
some neighbourhood U ⊂ T of t0 such that(

Ft ∪ {±k}
)
∩
(
[−k, k] ∩K

)
= ∅

for every t ∈ U . But(
Ft ∪ {±k}

)
∩
(
[−k, k] ∩K

)
=
((
Ft ∪ {±k}

)
∩ [−k, k]

)
∩K

= Θk(Ft) ∩K

for every t ∈ T , and so Θk(Ft) ∩K = ∅ for every t ∈ U .

2) For the second part, we want to find a neighbourhood V ⊂ T of t0 such that(
(Ft ∪ {±k}) ∩ [−k, k]

)
∩O 6= ∅

for all t ∈ V and all O ∈ F . Start by fixing O ∈ F .
By assumption, we have(

F0 ∪ {±k} ∩ [−k, k]
)
∩O 6= ∅

In particular, there exists some x ∈
(
F0 ∪ {±k}

)
∩ O with |x| ≤ k, and as B is open

there exists some r > 0 such that Br(x) ⊂ O. Accordingly,(
F0 ∪ {±k} ∩ [−k, k]

)
∩Br(x) ⊃ {x} 6=∅

and so we have(
F0 ∪ {±k}

)
∩Br(x) ⊃

(
F0 ∪ {±k} ∩ [−k, k]

)
∩Br(x) 6= ∅

Again, we use the fact that the map t 7→ Ft∪{±k} is Fell continuous at t0. It follows
that there exists some neighbourhood VO ⊂ T of t0 such that(

Ft ∪ {±k}
)
∩Br(x) 6= ∅
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for every t ∈ VO; in particular, for each t ∈ VO there exists some xt ∈ R with

xt ∈
(
Ft ∪ {±k}

)
∩Br(x)

Fix t ∈ VO. If |xt| ≤ k, then clearly

xt ∈
(
Ft ∪ {±k} ∩ [−k, k]

)
∩Br(x)

and so Θk(Ft) ∩O ⊃ Θk(Ft) ∩Br(x) 6= ∅.
If |xt| > k, then we must have k < |xt| < k + r since xt ∈ Br(x). But this implies

that k − r < |x| ≤ k, and so in particular we have either k ∈ Br(x) or −k ∈ Br(x). In
the first case, we have

k ∈
(
Ft ∪ {±k} ∩ [−k, k]

)
∩Br(x)

while in the other case we have

−k ∈
(
Ft ∪ {±k} ∩ [−k, k]

)
∩Br(x)

and so again, Θk(Ft) ∩O ⊃ Θk(Ft) ∩Br(x) 6= ∅.
As t ∈ VO was arbitrary, we have Θ(Ft) ∩ O ⊃ Θ(Ft) ∩ Br(x) 6= ∅ for all t ∈ VO.

Setting V := ⋂
O∈F , we get that

Θk(Ft) ∩Br(x) 6= ∅

for all O ∈ F and all t ∈ V .

3) We see that Θk(Ft) ∈ U (K,F ) for every t ∈ U ∩ V , and we are done.

Note the necessity of adding in the two singletons {±k}; part 2 of the above proof
would not have gone through without them.

Corollary 4.18. Assume that a map t ∈ T 7→ Ft ∈ C (R) is Fell continuous at some point
t0 ∈ T . Then the map t 7→ Ft is N-Hausdorff continuous at t0.

Proof. This follows immediately from Lemmas 4.17 and 1.27, as we clearly have that
for each k ∈ N, the map

t 7→ Θk(Ft) =
(
Ft ∪ {±k}

)
∩ [−k, k]

is locally uniformly bounded at t0.

Lemma 4.19. Assume that for some point t0 ∈ T and for any k ∈ N, the map

t ∈ T 7→
(
Ft ∪ {±k}

)
∩ [−k, k] ∈ C (R)

is Fell continuous at t0. Then t ∈ T 7→ Ft ∈ C (R) is Fell continuous at t0.
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Proof. Choose any compact subset K ⊂ R and any finite family F of open subsets
of R such that F0 := Ft0 ∈ U (K,F ). We must find a neighbourhood of t0 such that
Ft ∈ U (K,F ) for all t in this neighbourhood.

1) We will first find a neighbourhood U ⊂ T of t0 such that Ft ∩K = ∅ for all t ∈ U .
By assumption, we have F0∩K = ∅. AsK is compact, there exists some k ∈ N such

that K ⊂ [−k, k]. It follows that

F0 ∩K =
(
F0 ∪ {±k} ∩ [−k, k]

)
∩K

By the Fell continuity of t 7→
(
Ft ∪ {±k}

)
∩ [−k, k] at t0, there exists some neigh-

bourhood U ⊂ T of t0 such that(
(Ft ∪ {±k}) ∩ [−k, k]

)
∩K = ∅

for all t ∈ U . But (
(Ft ∪ {±k}) ∩ [−k, k]

)
∩K = Ft ∩K

for all t ∈ T , so we have Ft ∩K = ∅ for all t ∈ U , and so the first part is done.

2) For the second part, we want to find a neighbourhood V ⊂ T of t0 such that
Ft ∩O 6= ∅ for all t ∈ V and all O ∈ F . Start by fixing O ∈ F .

By assumption, we have F0 ∩ O 6= ∅. In particular, there exists some x ∈ F0 ∩ O.
Take any k > |x|. We see that x ∈

(
F0 ∪ {±k} ∩ [−k, k]

)
∩O and so in particular,(

F0 ∪ {±k} ∩ [−k, k]
)
∩O 6= ∅

By the Fell continuity of t 7→
(
Ft ∪ {±k}

)
∩ [−k, k] at t0, there exists some neigh-

bourhood VO ⊂ T of t0 such that(
(Ft ∪ {±k}) ∩ [−k, k]

)
∩O 6= ∅

for all t ∈ VO. It follows that

Ft ∩O ⊃
(
(Ft ∪ {±k}) ∩ [−k, k]

)
∩O 6= ∅

for all t ∈ VO. Since F is finite, it follows that V := ⋂
O∈F VO is the required neighbour-

hood of t0 such that

Ft ∩O 6= ∅

for all t ∈ V and all O ∈ F .

3) It now follows that Ft ∈ U (K,F ) for every t ∈ U ∩V , with U ∩V being an open
neighbourhood of t0, so we are done.
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Corollary 4.20. Assume that a map t ∈ T 7→ Ft ∈ C (R) is N-Hausdorff continuous at some
point t0 ∈ T . Then the map t 7→ Ft is Fell continuous at t0.

Proof. This follows immediately from Lemmas 4.19 and 1.28, as for each k ∈ N, the
map

t 7→ Θ(Ft) =
(
Ft ∪ {±k}

)
∩ [−k, k]

is locally uniformly bounded at t0.

Proof of Theorem 4.14: This is just Corollaries 4.18 and 4.20. �
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4.3 R-continuity for unbounded operators

Recall that the definition of R-continuity, specifically Definition 2.23, did not rely on
boundedness. Now that we have defined the inverse, resolvent and spectrum of un-
bounded operators, it is natural to ask what the consequences of R-continuity are in
the context of fields of unbounded operators. The main idea comes from [7], Problem
6.16 on page 177.

Proposition 4.21. Let B be a self-adjoint operator. Then for any λ ∈ ρ(B), (λ − B)−1 is a
normal operator.

Proof. With 〈·, ·〉 as the inner product on H , we see that for any x ∈ D(B) and any
y ∈ H we have〈[

(λ−B)−1
]∗ (

λ̄−B
)
x, y

〉
=
〈(
λ̄−B

)
x, (λ−B)−1 y

〉
=
〈
x,
(
λ̄−B

)∗
(λ−B)−1 y

〉
=
〈
x, (λ−B) (λ−B)−1 y

〉
= 〈x, y〉

where all the products and operations are well defined. Similarly, for any x ∈ H and
any y ∈ D(B) we have〈[

(λ−B)−1
]∗ (

λ̄−B
)
x, y

〉
=
〈(
λ̄−B

)
x, (λ−B)−1 y

〉
=
〈
x,
(
λ̄−B

)∗
(λ−B)−1 y

〉
=
〈
x, (λ−B) (λ−B)−1 y

〉
= 〈x, y〉

This implies that
[
(λ−B)−1

]∗
=
(
λ̄−B

)−1
. By Theorem 4.8, the resolvents of B

commute with each other, so[
(λ−B)−1

]∗
(λ−B)−1 =

(
λ̄−B

)−1
(λ−B)−1

= (λ−B)−1
(
λ̄−B

)−1

= (λ−B)−1
[
(λ−B)−1

]∗
and so (λ−B)−1 is normal.

Proposition 4.22. Let B be a self-adjoint operator. Then for any λ ∈ ρ(B), we have

∥∥∥(λ−B)−1
∥∥∥ = 1

dist(λ, σ(B))
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Proof. As λ ∈ ρ(B), we know by Proposition 4.21 that (λ− B)−1 is a bounded, normal
operator, so we have ∥∥∥(λ−B)−1

∥∥∥ = sup
∣∣∣σ ((λ−B)−1

)∣∣∣
We claim that for any ζ ∈ ρ(B)\ {λ}, the operator

(λ− ζ) + (λ− ζ)2 (ζ −B)−1

is the (bounded) inverse of (λ− ζ)−1 − (λ−B)−1.
To see this, we first show that the operator

Sλ,ζ := (λ−B)−1 − (ζ −B)−1 + (λ− ζ)(λ−B)−1(ζ −B)−1

satisfies Sλ,ζ(H) ⊂ D(B) and is the zero operator. For the first part, note that by
assumption we have that (λ − B)−1(H) = (ζ − B)−1(H) = D(B), which implies that
(λ − B)−1(ζ − B)−1(H) ⊂ D(B); since D(B) is a linear subspace of H , it follows that
Sλ,ζ(H) ⊂ D(B).

For the second part, note that since Sλ,ζ(H) ⊂ D(B), the product (λ−B)Sλ,ζ is
well-defined, and we have

(λ−B)Sλ,ζ =
(λ−B)

[
(λ−B)−1 − (ζ −B)−1 + (λ− ζ)(λ−B)−1(ζ −B)−1

]
=

I − λ(ζ −B)−1 +B(ζ −B)−1 + (λ− ζ)(ζ −B)−1 =
I − (ζ −B)(ζ −B)−1 = 0

As λ − B is by assumption injective on D(B), being invertible, the above implies
that we must necessarily have that (λ−B)−1 − (ζ −B)−1 + (λ− ζ)(λ−B)−1(ζ −B)−1

is the zero operator.
It follows that(

(λ− ζ)−1 − (λ−B)−1
) (

(λ− ζ) + (λ− ζ)2 (ζ −B)−1
)

=
I − (λ− ζ)(λ−B)−1 + (λ− ζ)(ζ −B)−1 − (λ− ζ)2(λ−B)−1(ζ −B)−1 =
I − (λ− ζ)

[
(λ−B)−1 − (ζ −B)−1 + (λ− ζ)(λ−B)−1(ζ −B)−1

]
=

I − (λ− ζ)Sλ,ζ = I − 0 = I

By Theorem 4.8, all the involved operators commute, so it follows that we also have(
(λ− ζ) + (λ− ζ)2 (ζ −B)−1

) (
(λ− ζ)−1 − (λ−B)−1

)
= I

Being the sum of (by assumption) bounded operators, (λ− ζ) + (λ− ζ)2 (ζ −B)−1

must be bounded as well, and thus is the inverse of (λ− ζ)−1− (λ−B)−1. So we have
(λ− ζ)−1 ∈ ρ

(
(λ−B)−1

)
for all ζ ∈ ρ(B)\ {λ}.
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4.3 R-continuity for unbounded operators

We claim that this implies that

sup
∣∣∣σ((λ−B)−1

)∣∣∣ ≤ 1
dist(λ, σ(B))

(1)

For take any z ∈ C with |z| > 1
dist(λ,σ(B)) . Clearly there exists some unique ζ ∈ C\ {λ}

such that z = 1
λ−ζ , which implies that

1
|λ− ζ|

>
1

dist(λ, σ(B))

or equivalently, |λ − ζ| < dist(λ, σ(B)). It follows by the definition of dist that we
cannot have ζ ∈ σ(B), so by our earlier calculations we must necessarily have that
z = 1

λ−ζ ∈ ρ
(
(λ−B)−1

)
for all z ∈ C with |z| > 1

dist(λ,σ(B)) , which is equivalent to (1).
Next, we claim that

sup
∣∣∣σ((λ−B)−1

)∣∣∣ ≥ 1
dist(λ, σ(B))

(2)

As was mentioned in 4.8, the map λ ∈ ρ(B) 7→ (λ − B)−1 ∈ B(H) is analytic in
λ; as is argued in [10], we have for each λ ∈ ρ(B) that ζ ∈ ρ(B) whenever we have
|λ− ζ| < ‖(λ−B)−1‖−1. Thus if we instead had ζ ∈ σ(B), then we would necessarily
have

|λ− ζ| ≥
∥∥∥(λ−B)−1

∥∥∥−1

As this holds for every ζ ∈ σ(B), we see that

dist(λ, σ(B)) = inf
x∈σ(B)

|λ− x|

≥
∥∥∥(λ−B)−1

∥∥∥−1

or equivalently

sup
∣∣∣σ((λ−B)−1

)∣∣∣ =
∥∥∥(λ−B)−1

∥∥∥ ≥ 1
dist(λ, σ(B))

Combining (1) and (2), we see that

sup
∣∣∣σ((λ−B)−1

)∣∣∣ = 1
dist(λ, σ(B))

Note that we could not simply use the bounded Borel functional calculus to prove
Proposition 4.22, unlike in the bounded cases, since - as we remarked earlier - we
generally only have

‖f(B)‖ ≤ sup
x∈σ(B)

|f(x)|
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4.3 R-continuity for unbounded operators

for unbounded operatorsB (and valid choices of f ), unlike the case whereB is bounded,
where we can obtain an equality by using the continuous functional calculus.

Theorem 4.23. Let A = (At)t∈T be a field of self-adjoint operators, and assume we are given
some point t0 ∈ T . Then A is R-continuous at t0 if and only if A is Fell continuous at t0.

Proof. Proposition 4.22 implies that A is R-continuous at t0 if and only if the map t ∈
T 7→ σ(At) ∈ C (R) is Wijsman continuous. The Lemmas 1.22 and 1.23 imply that
Wijsman continuity at t0 is equivalent to Fell continuity at t0, so the result follows.
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5 Normal Operators

5.1 The problem with normal operators

The article [3] concerned itself entirely with self-adjoint operators; this simplified mat-
ters significantly, as self-adjoint operators always have spectra belonging to the real
line, allowing for very simple characterizations of gaps as just intervals. However,
genereally speaking, the spectra of operators are considered as subsets of C, and given
a not necessarily self-adjoint operator, its spectrum may be any arbitrary closed subset
of C.

In this chapter, we will attempt to consider fields of normal, bounded operators. How-
ever, while boundedness still gives us many good properties, it turns out that normal
operators are significantly more troublesome than self-adjoint operators.

We will start by redefining some of the concepts used earlier in the setting of nor-
mal, bounded operators.

Definition 5.1. Let F be a closed subset of C. A gap of F is a connected component
G ⊂ C\F ; each G is necessarily open. A gap G is a bounded gap if G is a bounded set,
and an unbounded gap otherwise.

This definition is significantly harder to work with than the definition of gaps we
had in the first section. While the gaps of an element of C (R) can be characterized
very easily as open intervals, there is generally no such easy characterization of gaps
of an element of C (C) - gaps are still open sets, but their shape can be almost entirely
arbitrary.

One small advantage of elements F of C (C) is that if F is bounded (i.e., compact),
then F has exactly one unbounded gap; for since F is bounded, there exists some r > 0
such that F ⊂ Br(0). Now clearly C\Br(0) is connected (as a subset of F c) and thus
lies in exactly one connected component of F c. Clearly no other connected component
can be unbounded. For unbounded F , however, there is no such result - there can be
any number of unbounded gaps, including none and infinitely many.

Another problem is that when we were working in R, gaps behaved "nicely" in
the sense of the first and second conditions of gap edge continuity in R - "convergent
families of gaps" either become a single gap or close. In C, however, things are not so
simple, as the following example serves to illustrate.

Example 5.2. Set T = [0, 1] with the standard topology inherited from R, and define
the map t ∈ T 7→ Ft ∈ C (C) by

Ft := {z ∈ C | |=(z)| = 1} ∪
⋃
k∈Z
{z ∈ C | |<(z)| = k and t ≤ |=(z)| ≤ 1}

It can be checked quite easily that we indeed have Ft ∈ C (C) for every t ∈ T .
For t 6= 0, Ft has three gaps - one "above", one "below" and one "between". How-

ever, the number of gaps of F0 is countably infinite - one "above", one "below" and
countably infinite many gaps "between". While the construction of t 7→ Ft intuitively
seems "continuous", it still exhibits disturbing behaviour at t0 = 0.
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5.1 The problem with normal operators

In particular, this example demonstrates that we cannot hope to find anything re-
sembling Proposition 1.12 for the complex case, which severely complicates any at-
tempt at working with "continuity of gaps" in this setting.

The topological concepts of Hausdorff continuity and Fell continuity fortunately
still make sense in the complex setting.

Definition 5.3. Let A be a field of operators. We say that the spectrum function of A is
Hausdorff continuous at a point t0 ∈ T (or just that A is Hausdorff continuous at t0) if the
function t ∈ T 7→ σ(At) ∈ C (C) is Hausdorff continuous at t0; that is, if the map

t ∈ T 7→ dist(σ(At0), σ(At)) ∈ R+ ∪ {∞}

is continuous at t0.
If the A is Hausdorff continuous at every point t ∈ T , we will say that the spectrum

function of the field A is Hausdorff continuous (or just that A is Hausdorff continuous.

Definition 5.4. Let a A be a field of operators. We say that the spectrum of A is Fell
continuous at a point t0 ∈ T (or just thatA is Fell continuous at t0) if the spectrum function
t ∈ T 7→ σ(At) ∈ C (C) is Fell continuous at t0.

If the spectrum ofA is Fell continuous at every point t ∈ T , we say that the spectrum
of A is Fell continuous (or just that A is Fell continuous).

From Lemmas 1.27 and 1.28, we know the relation between these two forms of
continuity:

Theorem 5.5. Let A = (At)t∈T be a field of normal, bounded operators, and take t0 ∈ T .
Then A is Fell continuous and locally uniformly bounded at t0 if and only if it is Hausdorff
continuous at t0.

However, as before, these forms of continuity are not really tied to the nature of the
operators At involved, and so verifying either type of continuity cannot be done with-
out geometric study of their spectra. With bounded, self-adjoint operators, we worked
with p2-continuity and proper-continuity in order to link continuity of the spectra to
the behaviour of each operator At. Recall that the main "trick" in using p2-continuity
was that for any gap (a, b) we could define a polynomial taking its maximum value
inside that gap; see e.g. Example 2.7 or Lemma 3.13. However, a result from com-
plex analysis tells us that we cannot do anything similar in C - the famous maximum
principle, here cited (very slightly paraphrased) from [11]:

Theorem 5.6. If a function f : C → C is analytic in an open set D ⊂ C and |f(z)| achieves
its maximum value at a point z0 ∈ D, then f is constant in D.

As polynomials are a rather famous example of functions that are analytic on all of
C, it follows that no matter which polynomial p and which gap G we choose, we will
always have

sup
z∈G
|p(z)| = |p(z0)|
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5.1 The problem with normal operators

for some z0 ∈ ∂G, rendering our "trick" unusable in C. As it is not hard to find func-
tions that are both analytic and proper, we must similarly abandon any hopes of uti-
lizing proper-continuity.

There does exist a rather large class of more or less well-behaved functions that are
not analytic on all of C - the meromorphic functions. However, rather than delving into
complex analysis, we will simply note that any results that could be gained through
studying meromorphic functions can be obtained much more easily by simply study-
ing the behaviour of the inverse, as we shall do in the next section.
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5.2 R-continuity for normal operators

In Section 2.3, we stated that a field A of self-adjoint operators is called R-continuous
if for every λ ∈ C\R, the function

t ∈ T 7→
∥∥∥(λI − At)−1

∥∥∥ ∈ R+

is continuous. However, for normal operators, this definition does not make sense
- while self-adjoint operators have spectra that are always subsets of R, in general
normal operators have spectra that can be arbitrary closed subsets of C. Thus while
some arbitrary λ ∈ C may be in the resolvent set of At0 for some t0 ∈ T , there is no
guarantee that λ will lie in the resolvent set of any other At.

However, we can still define a form of R-continuity which will make sense for
general fields of bounded operators.

Definition 5.7. Let A be a field of bounded operators, and let t0 be a point in T . Then
A is R-continuous at t0 if, for every λ ∈ C, the function dλ : t ∈ T → R+ ∪{∞} defined
by

dλ(t) :=
{
‖(λI − At)−1‖ if λ ∈ ρ(At)
∞ if λ ∈ σ(At)

is continuous at t0. If A is R-continuous at every point t ∈ T , we say that A is
R-continuous.

The main result of this section is the following:

Theorem 5.8. Let A be a field of bounded, normal operators, and take any t0 ∈ T . Then A is
Fell-continuous at t0 if and only if it is R-continuous at t0.

Proof. The proof of is largely the same as in Section 2.3, with only slight modification.
We start by noting that Lemma 2.25 still holds, so for any bounded, normal operator
B we have ∥∥∥(λ−B)−1

∥∥∥ = 1
dist(λ, σ(B))

for any λ ∈ ρ(B). In particular, it follows that the map dλ : T → R+ is continuous at t0
if and only if the map t ∈ T 7→ dist(λ, σ(At)) ∈ R+ is continuous at t0. Now we just re-
use the proof from Section 2.3 - for the map t ∈ T 7→ dist(λ, σ(At)) ∈ R+ is continuous
at t0 exactly when the map t ∈ T 7→ σ(At) ∈ C (R) is Wijsman continuous at t0, and
Lemmas 1.22 and 1.23 imply that this happens if and only if it is Fell continuous at t0,
so the result follows.
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Closing thoughts

There are still many interesting questions that remain. In particular, our treatment of
normal operators was extremely superficial; however, Beckus and Bellisard point out
that many strong results can be obtained through the use of C∗-algebras, an approach
that is certainly worth pursuing further. In a similar vein, it is likely that our results
about unbounded, self-adjoint operators could have been strengthened considerably
through the use of alternative approachs. The author also suspects that, if done cor-
rectly, one can construct something similar to p2-continuity for unbounded operators,
and possibly use it to give certain Hölder estimates even in the unbounded case.

When it comes to Hölder estimates, the author also spent some time trying to find a
version of Theorem 3.31 that would hold even when the closed gap c is not an interior
point; although the results so far are too fragmentary to include in this thesis, it is quite
possibly a problem worth revisiting.

A very interesting idea, suggested by Professor Christian Pötzsche in personal con-
versation, is extending our definitions and results to encompass fields where instead
of working on Hilbert spaces, we work on Banach spaces. Unfortunately there was not
enough time and space to deal with this approach, but it is another promising future
project.
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