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Abstract

This thesis recalls the desirability of being able to apply congestion control
coupling to concurrent TCP connections between the same end hosts.
We identify challenges that must be overcome to provide practically
deployable solutions to this end, chiefly the presence of multi-path routing
mechanisms, such as Equal Cost Multi-Path Routing (ECMP) in the
network. Additionally, we identify some inherent weaknesses in previous
proposals for TCP congestion control coupling. We contribute a novel
design for a TCP-in-UDP encapsulation scheme which is able to work
around the problems created by multi-path routing, as well as delivering
other advantages, which we implement in the FreeBSD kernel. In order
to be able to test and evaluate this mechanism, we also present and
implement a design for TCP congestion control coupling based on the
Flow State Exchange architecture. Finally, we carry out an evaluation of
the combinations of these two solutions, and find that they yield tangible
performance benefits in terms of delay and packet loss reductions.
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Chapter 1

Introduction

1.1 Problem statement

The Transmission Control Protocol (TCP) provides a congestion control
mechanism. This mechanism crucially enables TCP to dynamically adjust
its sending rate to actual network conditions, the aim being to send as fast
as possible without causing disruptions (i.e. congestion).

However, congestion control is applied independently to each and
every connection, even if they are between the same host and destination
pair. Intuitively, this seems sub-optimal, as such parallel connections
logically ought to share the same network path, and thus be subject to
identical network conditions.

In practice, complications arise. Due to network mechanisms like Equal
Cost Multi-Path (ECMP) routing, one cannot be sure that such parallel
connections actually do use the same paths through the network. This
multi-path forwarding can break assumptions made by TCP congestion
control, both about packets normally being delivered in order and packets
experiencing similar round trip times, which has been shown to have
adverse effect on TCP performance [55].

1.2 Contributions

Through this master thesis project we have devised the design of,
implemented and evaluated the TCP-in-UDP encapsulation mechanism
which can work around these difficulties in order to allow congestion
control to be coupled for parallel connections, despite running over
otherwise uncooperative networks. This work was inspired by previous
work by Cheshire et al. [19], but the present encapsulation method and
implementation is novel and intended to serve different goals.

To demonstrate the potential benefits afforded by TCP with coupled
congestion control (CCC), we have also implemented and evaluated a
proof of concept CCC mechanism for TCP, contributing to ongoing work
springing out of the Flow State Exchange (FSE) concept pioneered by Islam
et al. [48]. We have been active in the design effort involved in applying the
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FSE to TCP, and present the first practical implementation of a TCP FSE, as
well as the first published evaluation results concerning this mechanism.

1.3 Research questions

Overall: Can TCP congestion control coupling be made deployable across the
Internet, without changes to the network? Will doing so actually be beneficial?

Multi-path forwarding

Can multi-path forwarding be worked around by a judicious encap-
sulation method?

TCP-in-UDP

Can such an encapsulation be designed so as not to waste either
network bandwidth nor end host processing power?

TCP congestion control coupling

How can TCP congestion control coupling be implemented in an
actual production network stack?

Interface

How can a TCP-in-UDP + TCP congestion control coupling scheme
be activated on demand in the least disruptive way possible, without
hurting latency and stability, while still affording flexibility and
control to both application developers and administrators?

Performance

Will such a scheme deliver the increase in performance predicted by
simulation data in earlier works? Can it deliver other benefits?

1.4 Organization

The remainder of this thesis is organized as follows: chapter 2 will present
some background information on the most relevant concepts, including a
look at related works, providing the context for our work.

Then we will describe the design of the two solutions we have devel-
oped. Chapters 3 and 4 give a higher-level design point of view, discussing
the architecture and mechanisms of the TCP-in-UDP encapsulation and
Flow State Exchange coupled congestion control, respectively.

In chapter 5 we follow up with an account of the implementation itself
and its particularities.

Chapter 6 presents our evaluation test setup and results, with analysis.

2



Finally, in chapter 7, we first summarize how we have answered the
research questions, before presenting further possibilities for refinements
and research avenues and wrapping up the discussion.
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Chapter 2

Background

We will now give an overview over the most relevant concepts and related
works. Section 2.1 presents an overview of TCP congestion control. In
section 2.2 we discuss ECMP and multi-path issues in modern networks in
general, with an emphasis on the challenges posed for coupled congestion
control. Then, section 2.3 affords a look at some of the most common and
relevant types of middleboxes we are likely to have to interact with. Finally,
in section 2.4, we discuss coupled congestion control, including related
work in section 2.4.2.

2.1 TCP Congestion Control

Originally, TCP only specified flow control, moderating sender behaviour
so as not to overwhelm the receiver’s buffer. Flow control does not,
however, prevent a sender, or indeed all senders from overloading the
network connecting the end hosts.

TCP Congestion Control was developed primarily by Van Jacobson at
Berkeley, as a consequence of severe congestion events suffered by the
growing Internet of the mid-to-late 1980’s [50]. The aim of congestion
control is to control sender behaviour so as not to overload the capacity
of the transmission network. In IP networks, this capacity is bounded by
the link with the lowest available capacity on the forwarding path from
sender to receiver – the bottleneck link. In practice, the bottleneck might
move dynamically between different links as their load varies.

Section 2.1.1 details the original algorithms that extended TCP with
congestion control. Next, we discuss the many enhancements that have
been made over the last two and a half decades, leading to an overview
of the state of the art in section 2.1.2. Finally we look at some of the
most important principles underpinning the design of TCP congestion
control, which we must take into consideration in our effort to couple it, in
section 2.1.3. Throughout these section, we will also comment on how TCP
is implemented in the FreeBSD operating system, since we have carried out
our implementation work in FreeBSD.1

1As a historical aside, FreeBSD’s TCP implementation directly descends from the

5



2.1.1 Early Algorithms

TCP congestion control initially consisted of the Slow-Start and Congestion
Avoidance algorithms, along with improved retransmission timeout com-
putation. This revision of TCP is referred to as TCP “Tahoe”, named after
the 4.3BSD release it originally appeared in.

In addition to the flow control receiver window (rwin), a congestion
window (cwnd) was added, which is used to limit the rate at which packets
are sent when starting a new connection or recovering from packet loss.
The amount of data that is allowed to be in flight at any time is limited to
min(cwnd, rwin).

The algorithm is self-clocking, relying upon the so-called ACK clock, i.e.
the control loop is normally updated upon the arrival of ACKs.

Jacobson formulated an informal stability criterion for TCP, the “con-
servation of packets” principle inspired by flows in physics: a stable flow
in steady-state, with a full window of data in flight, should exhibit a con-
servative behaviour, not injecting a new packet into the network until an
old packet has left. [50] He identifies three manners in which this principle
might be violated:

• The connection never reaches this equilibrium steady-state.

• Senders placing new packets into the network too soon, before an old
one has left it.

• The equilibrium state is unreachable because of resource limitations
in the network.

These issues are addressed by slow-start, better round-trip time
estimation and congestion avoidance, respectively.

Slow-Start

As stated in [50], slow-start is intended to quickly allow the congestion
controller to reach an equilibrium steady-state and establish the ACK clock.

Slow-start introduces the slow-start threshold (ssthresh), which dic-
tates when to operate in this mode; if cwnd is below ssthresh, the connec-
tion is in slow-start mode and is updated according to the following rules:

1. Initially, set cwnd equal to Sender Maximum Segment Size (SMSS), i.e.
allow one single segment to be sent.

2. If the connection is just starting up, initialize ssthresh to “infinity”,
in practice usually the maximum possible window size.

3. For each ACK received, increment cwnd by SMSS, until

original TCP/IP reference implementation by the University of California at Berkeley.
Its lineage can be traced back all the way to 1982, and there are still many parts of the
implementation which have changed little since FreeBSD imported the 4.4BSD-Lite source
code in 1994. [85] BSD stands for Berkeley Standard Distribution.
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• cwnd > ssthresh: switch to congestion avoidance mode.

• a loss is detected: set ssthresh = cwnd/2 and go back to step 1.2

This update regime is obviously not very slow at all, in fact cwnd

grows exponentially during slow-start, doubling once per RTT. However,
without slow-start, one could simply uncontrollably burst out however
many segments permitted by the flow control window all at once when
starting out a connection or resuming after an idle period, sending a quite
possibly large traffic spike through the network, leaving no time for other
senders to react before congestion would ensue. One could consider slow-
start to be a simplistic mechanism for yielding a rapid ramp-up of the
sending rate.

Round-Trip Time estimation

In the congestion control algorithm as originally presented in [50], loss was
detected solely by relying on the pre-existing Retransmission Time-Out
(RTO) timer. The RTO delay is calculated dynamically based on Round
Trip Time (RTT) measurements, i.e. the delay between sending a segment
and receiving an acknowledgment (ACK) of its reception from the receiver.
The original TCP specification [RFC793] gives the following suggestions
for an algorithm: 3

sRTT = α ∗ sRTT + (1− α) ∗ RTT (2.1)
RTO = β ∗ sRTT (2.2)

where sRTT is the smoothed RTT estimate, α a constant smoothing
factor, RTT the latest RTT measurement sample, RTO the updated timeout
value of the RTO timer and β a constant delay variance factor.

Jacobson contributes a better RTT-estimation algorithm, crucially ex-
tending it to also dynamically estimate the variation in RTT and taking that
estimate into account when computing the RTO. Equation (2.2) used a con-
stant factor to account for variation, which had a suggested value between
1.3 and 2.0, which is a poor choice because both the delay and its variance
increase rapidly with load, leading to more and more unnecessary timeouts
as the network load grows, further contributing to load it even more in a
kind of positive feedback loop. The improved algorithm can be expressed
as follows: [50, 81]

σ = (1− β) ∗ σ + β ∗ (sRTT − RTT) (2.3)
RTO = sRTT + 4 ∗ σ (2.4)

where σ is the (estimated) variation in RTT.
2The window update is technically part of the congestion avoidance algorithm, but it

would be disingenuous not to describe it here due to the effect it has on slow-start.
3In [RFC793], the RTO formula in fact also specifies clamping the value within

reasonable lower and upper bounds; we have left this out for clarity’s sake.
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Furthermore, on an RTO firing, its value is subjected to exponential
back-off, applying exponential damping to sender behaviour which en-
sures stability of the network.

Congestion Avoidance

After the initial slow-start phase, the system enters Congestion Avoidance
(CA), governed by Additive Increase, Multiplicative Decrease (AIMD) of
the window size. This makes senders highly sensitive to congestion signals,
while being more conservative in their probing of bandwidth (through
sending packets faster and faster), allowing for the timely reception of
congestion signals and stabilization of network load.

The following equations describe the behaviour of CA:

cwnd = cwnd + 1/cwnd (2.5)
cwnd = cwnd/2 (2.6)

Equation (2.5) is the additive increase part, whereby the congestion
window is opened upon reception of an ACK. Equation (2.6) represents the
sender’s reaction to loss. The congestion window is halved – multiplicative
decrease by a factor of 0.5. In practice, when combining the slow-start
and CA algorithms TCP “Tahoe” actually sets ssthresh to this value and
initiates a slow-(re)start by resetting the cwnd value to 1 ∗ SMSS. The
rationale behind this is to restart the ACK clock after it has been disturbed
by the loss event and associated pause in clocking out new segments.

Fast Retransmit / Fast Recovery

Fast Retransmit TCP “Tahoe” actually included a further refinement:
Fast Retransmit. The absence of an ACK is in fact not the only way in
which a sender can detect a loss; [RFC1122] specifies that a receiver may4

respond with an ACK to incoming segments received out-of-order. This
entails that if some segment with sequence number5 xi is lost in transit,
but subsequent segments xi+1, xi+2, ... which were in flight just “behind”
the unlucky one do make it to the receiver, the receiver will respond by
repeatedly acknowledging the highest sequence number it has received in
order so far, i.e. xi−1. Back at the sender these duplicate ACKs (dupACKs)
are an implicit signal that either of two events has occurred: either segment
xi has been lost, or there has been some packet reordering in the network
causing later segments to arrive first at the receiver. Significant reordering
events were considered far less likely than packet loss in those early days
of the Internet, so a simple threshold-based heuristic was adopted: if more

4At the time, fast retransmit was still an experimental algorithm, hence the weak
recommendation. The current TCP congestion control overview specification in [RFC5681]
states that receivers “SHOULD send an immediate duplicate ACK when an out- of-order
segment arrives”.

5TCP really counts sequence numbers in terms of byte positions within the byte-stream,
but we will count in whole segments for the sake of clarity.
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than a certain threshold (which was later fixed to three in [RFC2581])
consecutive dupACKs are received back to back, the sender considers it
an indication of loss and immediately retransmits the first outstanding
segment without waiting for the RTO timer to expire; this algorithm is
called fast retransmit.

Fast Recovery Furthermore, since ACKs are indeed being generated, the
sender can also infer that at least that many segments beyond xi were in fact
successfully transmitted. If the dupACK threshold is small in relation to the
Bandwidth Delay Product (BDP) of the connection, which is generally the
case, this means that there are still a large number of segments in transit,
enough to keep the ACK clock ticking. Therefore, it is unnecessary to go
into slow-start as part of the loss response, and cwnd can instead be kept
at roughly half of its previous value before entering a fast recovery phase.
This phase works as follows:

1. Set ssthresh = max(cwnd/2, 2 ∗ MSS) and perform a fast retransmit
of the lost segment. Set cwnd = ssthresh + 3 ∗ MSS. The constant
part compensates for the fact that we know three segments have been
received and cached by the receiver (or we wouldn’t have received
three dupACKs).

2. In the same vein, each additional dupACK inflates cwnd by one
segment, since these indicate that yet another packet has left the
network. If the window allows it, clock out a new segment.

3. On receiving the next ACK that acknowledges new data, leave fast
recovery by setting cwnd = ssthresh, deflating the window to where
congestion avoidance decreased it to upon loss. This ACK is expected
to be an acknowledgment of the retransmitted segment from step
1, and should acknowledge not only the lost segment, but also all
segments transmitted up until the reception of the third dupACK.

This is called the fast recovery algorithm, and even though it was
proposed together [51] with fast retransmit, the implementation only came
in the next 4.3BSD release, “Reno”. TCP with the combination of all four of
the congestion control algorithms we have discussed until now (slow-start,
congestion avoidance, fast retransmit and recovery) is informally referred
to as TCP “Reno” and was specified in [RFC2001]. The fast retransmit/fast
recovery combination ensures that the ACK clock is kept ticking happily
away even in the face of having to retransmit a segment, and additionally
the fast recovery phase prevents the congestion controller from reacting to
losses more than once per RTT. That said, it is far from certain that recovery
will be successful - if the ACK in step 3 is not received in a timely manner,
the RTO timer will expire and prompt a regular loss response in the form
of slow-start.

9



2.1.2 Congestion Control Evolution

TCP Congestion Control has been constantly evolving since its inception to
this day. We now summarize some of the most important milestones and
provide an overview of the state of the art.

Fast Recovery Advances

“New Reno” As shown by Hoe in [43], the fast retransmit/fast recovery
algorithms only properly cope with a single loss per window, yet
multiple losses from a single window are in fact highly likely to occur,
particularly during the start-up transient phase of the connection. The
author’s recommendations in that thesis and later in [42] provided the
impetus for improvements to fast recovery which would culminate in
TCP “New Reno”. Originally specified in [RFC2582] and updated by
[RFC6582], it further improves on this mechanism by differentiating
between partial ACKs, which only acknowledge some of the segments
sent before triggering Fast Recovery, and full ACKs which acknowledge all
outstanding data. Fast Recovery will only end in the latter case, allowing
for multiple fast retransmissions of distinct lost segments. The precise
change to the original “Reno” algorithm is as follows:

• In the first step, the highest sequence number transmitted up until
that point in time is stored in a variable called recover.

• In step 3, a partial or full ACK is distinguished by checking whether
it acknowledges all outstanding data up to recover, inclusive.

– In case it does not, this is a partial ACK, and we may assume that
it actually points to another “hole” in the sequence of received
segments. Therefore, the first unacknowledged segment is
retransmitted, cwnd is partially deflated according to how much
outstanding data was just acknowledged and the algorithm
jumps to step 2, re-inflating the window by a segment and if
possible clocking out another. Thus the fast recovery phase
continues.

– In case it did, this is a full ACK and we have recovered from
the loss event. Return to congestion avoidance, in either of two
manners:

1. Deflate the congestion window by setting cwnd =
min(ssthresh, FlightSize + MSS) where FlightSize is the
amount of currently outstanding (sent, but not yet acknowl-
edged) data.

2. Deflate the congestion window like in “Reno”, by setting
cwnd = ssthresh. However, “New Reno” specifies that im-
plementations opting for this variant should take measures
to protect against suddenly sending a large burst of data into
the network.6

6As we shall see, FreeBSD performs a kind of slow-start to accomplish this.
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SACK The Selective ACKnowledgment (SACK) TCP option [RFC2018]
enables receivers to explicitly inform the sender of which segments have
actually been received, enabling it to perform multiple precisely targeted
retransmissions per RTT in fast recovery instead of only being able to detect
one hole each RTT.

By leveraging this information, the performance of the fast recovery
and of TCP in general can greatly be improved.

“New Reno” with optional conservative SACK recovery [RFC3517, 31]
is the TCP congestion control variant used by default in current versions of
FreeBSD, and is the base we use to implement our modifications. 7

Explicit Congestion Notification

An Explicit Congestion Notification (ECN) mechanism [RFC3168] has also
been introduced, which enables routers to explicitly announce that they are
experiencing unsustainable load, rather than rely on indirect observations
such as packet loss and delay measurements.

ECN works by using the two least significant bits of what was the Type
of Service field in the IP header to both signal ECN support to routers, and
for letting routers mark packets as having experienced congestion. When
an ECN-enabled router would otherwise have dropped a packet, it can
instead mark it with the value Congestion Experienced (CE) if that packet
carries a mark signifying ECN Capable Transport (ECT), which would have
been set by an originating host that has ECN enabled.

While the actual ECN marking happens in the IP header, the receiver of
a CE-marked packet must echo this signal back to the sender using features
of the transport protocol. In TCP, two formerly reserved bits were assigned
as ECN-related flag values: ECN-Echo (ECE) and Congestion Window
Reduced (CWR). On receiving an ECE-marked packet, the receiver TCP
responds by setting the ECE flag to 1 on all outgoing segments (including
pure control messages) on the same connection. It keeps on doing so until
the sender affirms that the ECN signal has been received and reacted upon
by setting CWR to 1 on a new packet in the forward direction. An ECN
negotiation protocol using TCP options was also specified, allowing hosts
to dynamically enable ECN on a per-connection basis.

Active Queue Management

To be able to mark instead of dropping packets, it is clear that routers
must detect and react to congestion before it becomes so pressing that
the buffers overflow and experience “tail drops”. Taking into account the
fact that queuing packets inherently also means delaying them, it becomes
obvious that there are significant benefits to such an early reaction, which
would serve to curb the size of queues, not least due to TCP’s RTT-limited
performance [60, 68].

7There has since been a revision in [RFC6675], but FreeBSD has not implemented it at
the time of writing according to [21].

11



Active Queue Management (AQM) [RFC2309] is the general term for
queue management disciplines that are more advanced than simply setting
a queue limit. One of the best known AQM schemes is Random Early
Detection (RED) [33], which will randomly drop or mark incoming packets
when the average queue size exceeds a certain target threshold. Compared
to traditional drop-tail queueing, this approach confers several advantages:

• avoiding global synchronization where many independent flows expe-
rience losses at the same time, subsequently all reducing their send-
ing rate simultaneously. This leads to under-utilization of the link,
and may further lead to a phase effect when all those connections
again exceed the available bandwidth at approximately the same
time, assuming their RTTs are relatively similar.

• fairness between flows exhibiting different behaviours; drop-tail
queues will tend to impact bursty flows more than flows which send
at a steady rate, even if that rate is very high.

A number of more sophisticated AQMs have since been proposed,
including Adaptive RED [32], PIE [69] and (FlowQueue-)CoDel [44, 64].
Modern AQMs mostly auto-tune their parameters, while the original RED
required difficult configuration to achieve good performance, and have
started to see some deployment [44].

Alternative algorithms

Many novel congestion control algorithms for TCP have surfaced over the
last two decades, such as Westwood [59], CUBIC [37], Proportional Rate
Reduction [26, RFC6937] and Data center TCP [2]. Many of these try to
make better use of the information at hand (such as delay, ACK rate, etc.)
to be able to avoid congestion even before a loss happens. In this work, we
will only consider New Reno behaviour.

For a more in-depth explanation of TCP congestion control behaviour,
see e.g. [81].

Initial Window increase

The Initial Window (IW) size, which is the value cwnd is initialized to
at the start of a connection, has been raised by the IETF twice. As of
2002 [RFC3390] increased it min[4 ∗MSS, max(2 ∗MSS, 4380)], in practice
usually yielding 3 segments. 11 years later, it was experimentally further
increased to min[10 ∗MSS, max(2 ∗MSS, 14600)], i.e. 10 segments at MTU
1500, by [RFC6928]. Note that both of these documents specify an upper
bound, implementations may choose to use a lower value, for example if
the link is known to have a limited capacity. Higher IW matters especially
much with respect to Web use cases, allowing a large proportion of requests
to be completed within a single RTT, which was also the main rationale
behind [RFC6928].
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2.1.3 Principles

Reaction to loss

TCP detects loss in two ways: 1) by expiration of the Retransmission
TimeOut (RTO) timer and 2) by reception of a certain number of duplicate
ACKs (dupACKs), i.e. ACKs that acknowledge the same segment. The
RTO duration is dynamically computed based on the RTT estimate, in order
to achieve a sensible trade-off between reaction time in case of loss and low
probability of false positives.

When congestion arises, overflowing a buffer, it is likely that several
segments in flight at the same time will meet a full buffer and be dropped.
However, it would be wrong to treat these as separate events, since a
proper reaction to the first of these losses ought to alleviate the load on the
bottleneck. Indeed, TCP’s multiplicative decrease loss reaction is already
rather conservative. Thus, in order to attain stability, TCP congestion
control is designed to only react once to a particular loss event, as defined
by loss during one single window (RTT duration).

The fast recovery (FR) algorithm ensures this behaviour, since the only
further reaction to loss while already in FR consists of one of two things: 1)
a new hole in the sequence number space is discovered, accompanied by
a further retransmission, or 2) an RTO timer fires, causing a slow-start. FR
normally lasts at least for a single RTT, since that is the time it takes for the
initially retransmitted segment to arrive and be acknowledged.

Spurious timeouts

It is important to note that there is an underlying assumption that a
timeout shall only happen when all outstanding packets have been lost,
interrupting the ACK clock. If we receive an ACK for the original
transmission of a segment after its RTO has expired, this means there was
no real loss event (on the forward path at least), but that there was for some
reason a delay in delivering the ACK. This is called a spurious timeout,
and TCP’s conservative loss reaction on RTO expiry – return to slow-start –
can severely degrade performance upon such timeouts. Several algorithms
have been devised to detect these so the CC state can be rectified.

FreeBSD currently has a simple heuristic implemented for detecting
spurious timeouts, due to Allman and Paxson [3]: if an ACK for a
retransmitted segment is received within 1

2 RTT of the retransmission time,
it is assumed that the timeout was in error, and the congestion state of the
connection is reset to how it was before the RTO.

In response to the increasing prevalence of wireless link layer tech-
nologies, which tend to exhibit significant delay variations, several more
sophisticated algorithms for detecting such spurious timeouts have been
proposed, including Eifel [58, RFC3522], Forward RTO-Recovery (F-RTO)
[74, RFC5682] and D-SACK [15, RFC3708]. In order to illustrate how these
mechanisms work around the so-called retransmission ambiguity problem of
not being able to distinguish between ACKs for initial transmissions and
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retransmissions of a certain segment [53], we will briefly describe the Eifel
algorithm.

Eifel takes advantage of the TCP timestamp option [RFC7323], and re-
quires them to function8. When a retransmission takes place, the corre-
sponding timestamp is stored. When the first ACK covering the retrans-
mitted segment is received, its timestamp is compared with the stored one;
if the ACK timestamp is older, which by the TCP timestamp semantics in-
dicates that the ACK was sent before receiving the retransmission, then the
transmission is considered spurious. On detecting a spurious timeout, the
sender either resets the CC state to how it was before or moderates the re-
transmission behaviour depending on how many segments were already
retransmitted at that point.

Perhaps somewhat surprisingly, given the fact that Eifel was originally
implemented on top of FreeBSD’s TCP, FreeBSD does not support it; the
code was unfortunately never merged into the upstream project.

Aggregate behaviour

Currently deployed standard TCP congestion control is entirely connection-
oriented, and does not explicitly take into account the possibility of several
parallel connections between the same two hosts. The dynamic behaviour
of a pack of such independent congestion controllers can be quite disrup-
tive and unfair amongst each other, especially until they reach steady-state.
Section 2.4 will further explain the motivation and challenges for coupling
such connections.

2.2 Multi-Path routing

ECMP [RFC2991] is a routing technique which allows packets to be
forwarded along multiple paths as long as they have the same cost metric –
allowing to share traffic load across “tied” routes, so to speak. It has gained
widespread adoption since it allows for load balancing of networks and
better utilization of link resources. Link Aggregation [46] is a similar link
layer mechanism, which permits several point-to-point links between the
same two machines – referred to as component links – to be aggregated into
a single Link Aggregation Group (LAG), which the end hosts can treat as
if it were a single link. This permits increased bandwidth, load balancing
and automatic fail-over in the event of a component link going down.

Unfortunately, these mechanisms also make it difficult to infer path-
specific attributes by observing single connections and extrapolating them
to other connections that one would logically assume be routed along the
same path, i.e. connections that share the same source and destination IP
addresses.

8In [58], the authors note that it could be implemented by any other means of
distinguishing an ACK for a duplicate received segment.
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2.2.1 Flow identification

As we shall discuss further below, ECMP and LAG implementations will
usually attempt to minimize the probability of inducing reordering within
individual packet flows. How such flows are classified, however, is not
entirely obvious.

Header five-tuple

While there is no standard that explicitly requires it, a number of sources
provide strong indications that most ECMP and LAG equipment will
identify and equally treat flows based on the five-tuple consisting of the
following header fields:

(〈IP destination address〉,
〈IP source address〉,
〈Transport destination port〉,
〈Transport source port〉,
〈IP protocol number〉)

This behaviour is described in several documents:

• [RFC2991] and [RFC2992] warn about the disruption potential of
load balancing algorithms that induce packet reordering, such as
round-robin, given the well-known performance issues caused by
reordering on TCP [13, 55].

• [RFC6437] and [RFC6438] claim that use of the five-tuple is an opera-
tion reality: “In practice, many implementations [of ECMP/LAG] use
the 5-tuple dest addr, source addr, protocol, dest port, source port as
input keys to the hash function, to maximize the probability of evenly
sharing traffic over the equal cost paths.” [RFC6438, p. 2].

• Vendor documentation such as [79] generally supports this assump-
tion and affirms that default behaviour is to forward flows over a
single link.

IPv6 flow label

IPv6 specifies an explicit flow identification field, the flow label [RFC6437].
It is intended to allow flows to be identified only by comparing fields in the
fixed part of the IPv6 header, which is more efficient for routers and other
network layer devices, especially considering the fact that IPv6 allows
chaining extension headers of variable size. That makes it more difficult
for routers to look up transport protocol fields, since they may be located
at a variable offset from the beginning of the IP datagram. Another goal is
actually to enhance interactions with ECMP and LAG, as recommended in
[RFC6438].
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The flow label is a 20-bit field, and if its value is zero the datagram is
considered unlabeled. If a value has been set, then it must be delivered
intact end-to-end; middleboxes are not allowed to interfere with it. When
in use, flows can be identified by the three-tuple consisting of:

(〈IP destination address〉,
〈IP source address〉,
〈IP flow label〉)

In practice, it is highly uncertain to what degree routers actually respect
this marking at the time of writing.

2.3 Middleboxes

There exist a great many sorts of mechanisms in the network that
intercept and modify traffic. They are usually referred to collectively
as Middleboxes, which [RFC3234] defines as “any intermediary device
performing functions other than the normal, standard functions of an IP
router on the datagram path between a source host and destination host.”
Examples of such contraptions are firewalls, traffic shapers, load balancers
and so on.

2.3.1 Network Address Translation

One of the undoubtedly most common kind of middleboxes is the Network
Address Translator (NAT) [RFC2663]. NAT is a traffic rewriting and
multiplexing technique which is predominantly used to share a single or
a few globally routable IP addresses between a larger set of hosts. Since
appearing in the late 1990’s, it has become almost ubiquitous in access
networks that connect end-users (both consumers and enterprises) to the
Internet due to the increasingly precarious shortage of IPv4 address space.

NAT functions by intercepting packets at a gateway between the local
domain and the rest of the network, rewriting addresses and ports while
maintaining a mapping of current connections. Thus, local hosts may
be assigned IP addresses in private address space, and only the NAT
gateway’s externally facing network interface needs a globally routable
address.

However, this approach poses a problem when establishing new
connections. If the translator has not seen outbound packets in a flow, it
does not have any mapping of which local host traffic is destined for. This
affects both passive ends of TCP connections (listening servers) and UDP
endpoints. To overcome this, one can configure static translation rules at
the gateway, or attempt the connection in reverse.

The problem is compounded if both hosts attempting to connect
to each other are behind NAT, since neither of them can in that case
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successfully receive a packet from the other end without access to
configure the gateway. Mechanisms using a third party rendezvous server
have been developed to work around this problem, such as Interactive
Connectivity Establishment (ICE) [RFC5245], which leverages the Session
Traversal Utilities for NAT (STUN) [RFC5389] and Traversal Using Relays
around NAT (TURN) [RFC5766] protocols. Initially designed to facilitate
Session Initial Protocol (SIP) [RFC3261] call establishment across NATs,
ICE has been extended both to other real-time media use cases and to
TCP connection establishment [RFC6544]. These work by having both
endpoints coordinate their connection establishment via the rendezvous
(RV) point, which is a server known to both endpoints in advance. The
endpoints can learn of their public IP addresses, as well as establish and
infer NAT port mappings when communicating with the RV server. The
RV server distributes this information to the other endpoint, and the ICE
system generates a list of candidate solutions for connection establishment
according to defined rules and policies, which are attempted one after the
other until the connection succeeds. In the worst case, it is possible to
communicate using a relay server using TURN if none of the candidates
lead to a successful connection establishment.

2.3.2 Network Security Appliances

Following the Internet’s widespread adoption and commercialization, the
lack of emphasis on security in its original architecture and design [11]
has prompted the development of a diverse range of network security
appliances. Perhaps the most widespread of these is the firewall, a policy
enforcement tool located on a (sub-)network border. These perform packet
filtering with variable depths of inspection, ranging from simple network-
layer origin and destination checks to complete application-layer protocol
inspection (Deep Packet Inspection).

Modern firewalls often have rules for dealing with TCP behaviour, and
although measurements performed by Honda et al. [45] indicates that
the large majority of middleboxes are compliant with the standard which
states that “A TCP MUST ignore without error any TCP option it does
not implement, assuming that the option has a length field” [RFC1122],
there is still a significant number of them which either drop connections
or remove the options in transit when they encounter an unknown (to
the middlebox implementation) option. In fact, there is an entire class of
network security appliance, scrubbers [80], that actively normalize protocol
behaviour. While most of these appear not to hamper connectivity, they
might very well prevent end hosts from negotiating and using TCP options
that are supported by both end hosts, but not by the middlebox.

A common issue is that firewalls are configured with policies so
conservative that they effectively block all peer-to-peer TCP connections.
There exist measurements which indicate that UDP traffic is more likely
than TCP to pass through firewalls in both directions [35]. Thus, by
encapsulating TCP in UDP, we may be able to facilitate peer-to-peer
connections even behind overly restrictive firewalls. While it may seem
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disingenuous to circumvent such a policy, it can also be argued that such
policies often are unwarranted and restrict perfectly valid and safe use
cases, for example a file transfer while connected to a hotel access network.
When combined with the ability to multiplex STUN messages over the
same UDP association, even NATs can be traversed in this manner. This
is discussed further in section 3.2.2.

2.3.3 Performance Enhancing Proxies

[RFC3135] defines a Performance Enhancing Proxy (PEP) as “an entity in
the network acting on behalf of an end system or user (with or without
the knowledge of the end system or user) in order to enhance protocol
performance.” In the TCP context, these middleboxes compensate for
troublesome characteristics of the underlying network by manipulating
TCP connections. Such characteristics would be factors that interact badly
with TCP’s congestion control, such as very high RTT (satellite links),
relatively high, fluctuating loss rates or jittery RTT (both common on
wireless links).

There are several classes of TCP PEPs, some of which will actively
terminate connections in a man-in-the-middle manner, while others just
rewrite or suppress segments without actually terminating the end-to-end
connection.

TCP Splitting (also known as TCP spoofing) [6] is a kind of active PEP,
generally used to segment a network path consisting of some high-RTT
sub-path, typically a satellite link, and a sub-network exhibiting shorter
RTT, like a regular terrestrial wired network. The PEP terminates the end-
system’s TCP connection and opens a separate connection between itself
and the other end-host, allowing separate congestion control instances to
run on the two sub-paths. However, this behaviour is not what the end-
hosts expect, nor is it known to them, and there can be repercussions
to breaking the end-to-end principle, e.g. if the PEP implementation
acknowledges data to a sender before receiving the corresponding ACK
from the actual receiver. Application layer proxies, such as HTTP reverse
proxies located near the web server [10] which are often used to enhance
the performance of high-traffic web sites, implicitly act like TCP splitters.

An example of a non-terminating PEP is an ACK filter [8], which rate-
limits ACKs before they hit a low-bandwidth return path by dropping
redundant ACKs from the forwarding queue. ACK congestion can be a
big problem over highly asymmetric connection where the return path has
a lower capacity than the forward path, although one should be careful not
to drop so many ACKs that the sender’s ACK clock is disturbed.

Sometimes actual PEP implementations combine both terminating and
non-terminating mechanisms.

Existing TCP PEPs will not recognize TCP-in-UDP encapsulated seg-
ments since these appear to be UDP datagrams, and as such be completely
bypassed. One could of course modify them to detect TCP-in-UDP, but
care would need to be taken to ensure that the TCP-in-UDP handshake-in-
handshake remains coherent across terminating PEPs, cf. section 3.3.2.
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2.4 Congestion Control Coupling

As we have discussed in section 2.1.3, TCP congestion control is tradition-
ally applied strictly on a per-connection basis, even in the presence of mul-
tiple parallel connections between the same end-hosts. In section 2.4.1 we
explain why it would be beneficial to take a more coordinated approach to
this, dubbed congestion control coupling (CCC). We relate the lessons learned
from previous forays into TCP congestion control coupling and contextual-
ize TCP CCC within a wider collection of related congestion control works
in section 2.4.2. Section 2.4.3 discusses the requirements for successfully
applying congestion control coupling to TCP, before we conclude by iden-
tifying shortcomings of existing proposals and how we can address them
in section 2.4.4.

2.4.1 Motivation

There would not be much point in adding complexity to an already
adequately performing system, which TCP arguably already is, without
some upside. We will now discuss the main benefits of coupling TCP
congestion control, from a theoretical point of view.

Performance benefits

By coupling the congestion control loops of parallel connections, we expect
several performance benefits.

Latency By only letting a single control loop probe the network capacity,
which in TCP’s case really means gradually increasing the sending
rate past the capacity, we expect the queue length at the bottleneck
link will be shorter on average compared to the current situation
where each connection is probing independently in a more or less
synchronized manner. This in turn means the latency will improve,
as the delay from waiting in buffers will decrease.

Loss rate Similarly, we also expect to see fewer lost segments, due to the
bottleneck buffer overflowing less frequently.

Prioritization Applying a coupled congestion control mechanism also
paves the way for introducing new features; when congestion control
is performed over an aggregate, the rate distribution function can be
adapted in order to give certain flows higher (or lower) precedence
compared to the others in the aggregate.

Fairness It becomes possible to achieve perfect fairness among flows, since
the rate allocation is tightly controlled among them. Furthermore, by
preventing flows from taking different paths and thus experiencing
heterogeneous RTTs, unfairness due to differences in RTT is elimi-
nated.
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2.4.2 Related Works

Herein we enumerate the most prominent earlier works directly relating
to TCP congestion control coupling. An overview of how the different
proposals share congestion state information among connections is shown
in table 2.1.

Reference Information usage

RFC2140, “temporal sharing” Flow 1 has ended. Flow 2 joins, and uses
the information only initially

RFC2140, “ensemble sharing” Flow 1 is ongoing. Flow 2 joins, and uses
the information only initially.

E-TCP, EFCM, CM, TiU Flow 1 is ongoing. Flow 2 joins, and
both flows share the information for
their lifetime

Table 2.1: Congestion state sharing

After discussing the relevant coupled congestion control works, we
also briefly present some multi-streaming protocols, a related class of
congestion control mechanisms.

TCB interdependence

[RFC2140] advocates sharing state in an interdependent fashion among
“similar concurrent connections” and “similar connection instances”;
referring to concurrently ongoing connections and subsequent connections,
respectively. While not definitely specifying what constitutes a “similar”
connection, it is suggested that one might apply this to connections
between the same two end hosts, or perhaps even between hosts in the
same sub-networks.

The authors classify those parts of TCP state, as defined by the contents
of the TCP Control Block (TCB), that they deem to be characteristics of
the association between a certain host pair, rather than of the individual
connections, and thus are candidates for being shared, into two groups:

• Clearly host-pair dependent state

– Maximum Segment Size
– Round Trip Time and its variance

• Host-pair dependent state in aggregate

– Congestion window size (cwnd)
– Slow-start threshold (ssthresh)
– High-water mark (largest observed window size)

It is worth emphasizing that this document advocates sharing state at
TCB initialization time only.

The authors of [RFC2140] outline two mechanisms for sharing such
state: temporal sharing and ensemble sharing.
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Temporal sharing Parameters can be shared by caching them for reuse
when opening subsequent connections, e.g. to overcome slow-start,
although this could lead to problems if network behavior has changed in
the mean time. In this mode, state is normally only updated in the cache
upon a connection ending.

Ensemble sharing In ensemble sharing mode, state is cached even
as connections are ongoing, and may be used to initialize the TCB of
connections starting up concurrently with existing connections to the same
destination host.

Adoption Parts of RFC2140 are currently or have been implemented
by mainstream operating systems such as FreeBSD (the TCP host cache
mechanism) and Linux. However, this information is only used in a limited
manner in recent versions. Inspection of the source code confirms that, at
the time of writing, FreeBSD definitely uses cached MTU/MSS, RTT and
RTT variance values. In addition it caches and uses ssthresh, although
this is not explicitly recommended for sharing in [RFC2140].

Ensemble-TCP

Eggert et al. built on [RFC2140] and proposed the Ensemble-TCP (E-TCP)
[30] extension to the TCP stack. E-TCP strives to coordinate bundles of
concurrent connections so that their aggregate behaviour is akin to that
of a single TCP “Reno” connection. In difference to [RFC2140], in E-TCP
state is shared in real-time between flows, not only on connection start-up.
The authors make essentially the same recommendations about grouping
choices as those in [RFC2140].

Shared state E-TCP’s state sharing mechanism consists of replacing some
per-connection state in TCBs with pointers to variables located in per-
ensemble (connection group) Ensemble Control Blocks (ECBs). ECB’s
contain the common variables identified by [RFC2140] (see above), as well
as state specific to the E-TCP ensemble sharing algorithm:

• List of member TCBs (connections)

• Chronologically sorted list of unacknowledged segments transmitted
by member connections

• Rate-based pacing flag

Operation As previously mentioned, some of this state only makes sense
to share in aggregate. The strategy chosen in E-TCP to address this is
twofold: 1) a scheduler is introduced, which determines which flow should
be allowed to transmit when, and 2) the ensembles as a whole runs on a
common ACK clock. ACKs and loss signals then have their usual effect
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on the congestion window and ssthresh, but how flows may consume the
window is moderated by the scheduler.

The E-TCP scheduler supports giving different weights to each member
of an ensemble, allowing some flows to receive precedence over others.
In the paper [30], several weighting strategies are outlined, tailored to
different use cases.

When new connections join an ensemble, the transmission of the first
packets is paced to avoid sending sudden, large bursts into network.
Such bursts would likely induce congestion, since the congestion window
represents the amount of data it is safe to transmit over the whole course of a
round-trip time.

Appropriate detection of duplicate ACKs is handled using the previ-
ously mentioned list of outstanding segments. Each segment is associated
with a counter that is increased each time a preceding segment is acknowl-
edged. The sum of increments to each connection’s segments is then added
to that connection’s duplicate ACK counter, ensuring proper operation of
the fast recovery mechanism.

Evaluation Evaluations by simulation related in [30] demonstrate the
potential benefits of coupling together the congestion control of connection
ensembles, particularly with regard to Web use cases. Web pages usually
consist of a number of objects which can be requested in parallel to
lower the page load time, which is the essential performance metric in
this application. Allowing previous and parallel connections to open the
congestion window for such parallel requests is then clearly beneficial,
especially given the fact that the file sizes are most commonly small.

To the best of our knowledge, E-TCP has not been implemented outside
of the simulator.

EFCM

Another solution was presented by Savorić et al. in [75]: Ensemble
Flow Congestion Management (EFCM). They argue that it is appropriate
for a connection bundle consisting of n flows to be as aggressive as n
independent TCP “Reno” connections, seeing as how such aggressive
behaviour would be the alternative to performing congestion control
coupling.

Under EFCM, the shared TCP state is the same as in E-TCP and
[RFC2140]. As described in [75], EFCM does not support temporal sharing,
state may only be shared among concurrently ongoing connections.

Operation The congestion control state sharing algorithm of EFCM is
slightly simpler than that of E-TCP. Each connection runs its own ACK
clock and maintains the congestion window as normal. When the window
is updated, it is aggregated by summation and redistributed according
to fair share between all coupled flows. EFCM does not incorporate any
prioritization system.
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EFCM incorporates a pacing mechanism to reduce bursting behaviour.
It works by limiting each connection to sending at most two segments per
burst, and spacing out such bursts according to the formula:

∆t = α ∗ sRTTagg/cwndagg

where ∆t is the time between bursts, α is a pacing factor and
sRTTagg, cwndagg are the ensemble’s aggregated smoothed RTT estimate
and congestion window, respectively.

Evaluation A simulation-based evaluation of EFCM is outlined in [75].
The authors show performance improvements compared to standard TCP
“Reno” both in scenarios involving a reliable last hop (e.g. wire-line
networks) and an unreliable last hop (e.g. wireless networks), with
particularly positive results in the latter case.

We have not been able to find any non-simulator implementations of
EFCM.

Congestion Manager

The Congestion Manager (CM) [9, RFC3124] was an extensive proposal
by Balakrishnan et al. which went farther than merely extending TCP
congestion control. Indeed, the CM is a suite of protocols and APIs
intended to revamp Internet congestion control as a whole and throughout
the network stack.

Architecture The CM consists of several components:

• Algorithms and protocol

– Additive Increase, Multiplicative Decrease window-based con-
gestion control algorithm with traffic shaping capabilities

– Receiver-feedback protocol
– State storage with information aging support
– Flow scheduler
– Prober that can perform active network measurements

• CM adaption API that relays congestion control information between
the CM and the application and transport layers.

These components replace some portions of existing protocols, such as
TCP. In [9], the authors outline the design of TCP-over-CM (TCP/CM),
wherein TCP/CM no longer keeps track of the congestion window, but
still does flow control. Flow control information, e.g. loss information
and RTT estimates, are fed into the CM, which maintains an aggregate
congestion window. The CM flow scheduler then doles the window out to
any takers, such as TCP/CM, which entails an asynchronous notification of
an opportunity to send. TCP/CM is comparable to E-TCP, in that a bundle
of parallel TCP/CM flows is coordinated to behave as a single TCP “New
Reno” flow.
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Generalized congestion control One of the goals of the CM is to be able
to manage congestion in a holistic way even across different transport
protocols. In order to achieve this, and due to the fact that many unreliable
protocols do not signal back much, if any, feedback from the receiver,
the CM can: 1) receive explicit feedback from its client transport or
application protocols, 2) actively measure congestion using probe messages
or 3) passively monitor for congestion by inserting a CM protocol header
between the IP and transport layer headers. Options 2) and 3) require the
CM framework to be running on the receiver side as well, whilst option 1)
can function in a sender-only manner (e.g. TCP). The CM-based feedback
system also requires additional CM protocol handshaking to set up.

Evaluation A simulation evaluation presented in [9] validates the ability
of the CM to fairly schedule flows.

Adoption Although the CM has been both standardised by the IETF with
proposed standard status in [RFC3124], and implemented within the Linux
kernel network stack [4] (although not merged upstream), it has not seen
any widespread use.

We submit that the reasons for this probably encompass the sheer
complexity of the system and the fact that it requires large changes to the
network stack. Indeed, the CM entails changes both at the network and
transport layers, and introduces a transport protocol number of its own.
Experience with the deployment of IPv6 and novel transport protocols
such as SCTP or DCCP have exposed an overwhelming inertia working
against larger changes to the network protocols. Even a relatively simple
IPv4 extension like ECN is only just becoming generally available for use,
over a decade and a half after being conceived. Furthermore, the threats to
Internet stability the proponents of CM warned of have not materialized,
or at least not resulted in destabilization of the network. TCP is still
the dominant protocol in the Internet, and despite the congestion control
landscape having become more diverse over the last decades, there are
arguably no signs of a new congestion collapse looming on the horizon.

Multi-streaming transport protocols

A number of proposed and standardised transport protocols include some
form of multi-streaming support. By multi-streaming we mean that these
protocols permit the embedding of several more or less independent sub-
flows of messages within a single connection or association between the
same two end hosts. Many of these also perform some kind of congestion
control coupling. We now briefly present some of the most prominent such
multi-streaming protocols and relate them to our project.

SCTP The Stream Control Transmission Protocol (SCTP) [RFC4960]
supports this kind of scenario right out of the box because it supports
multi-streaming using only one congestion control instance for all streams.
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However, SCTP traffic may not actually pass through all middleboxes
because it is a relatively new, at least in Internet terms.

There has been some work [14, 65, 83] toward enabling SCTP adoption
without having to modify application code through the use of a TCP-to-
SCTP shim layer. The authors of [83] found that there were tangible benefits
to doing this in several cases, even when accounting for the overhead
incurred by their user-space shim layer’s connection management. Since
the SCTP network transparency problem remains and is likely to persist
for some time still, we find these results encouraging with respect to the
mid-term usefulness of our own UDP-based solution, which does not suffer
from the former.

HTTP/2 (SPDY) Hypertext Transfer Protocol version 2 (HTTP/2) [RFC7540]
is a recent revision of the HTTP protocol, which powers the World Wide
Web. It evolved from Google’s experimental SPDY protocol [12, 76]. While
still running on top of TCP, HTTP/2 specifies multiplexing several HTTP
virtual connections, streams, over a TCP single connection. This alleviates
HTTP application layer HOL blocking issues; earlier revisions of the pro-
tocol required that requests be responded to strictly in order of arrival, but
now requests can be made in separate streams and thus served as fast as
possible. Obviously, transport layer TCP HOL blocking remains a concern.

QUIC QUIC [17, 38] is Google’s proposed solution to the above men-
tioned HOL issues in HTTP/2, in addition to addressing issues related to
connection setup latency, congestion control and endpoint identification.
By transporting HTTP/2 multiplexed streams over UDP instead of TCP,
delivery of messages from different streams become truly independent of
one another, eliminating inter-stream HOL blocking.

QUIC brings several other advantages for common Web use cases: In
the (common) case of short Web flows, connection setup latency often
makes up a substantial portion of the total request completion time, thus
doing away with the TCP three-way handshake can yield improved page
load times. Since UDP does not provide any congestion control, QUIC
provides an opportunity to define CC mechanisms that are not restricted
over compliance with TCP CC standards. Finally, QUIC specifies an
application layer endpoint identification mechanism for catering to mobile
roaming use cases, a space in which existing standard efforts like Mobile IP
[RFC5944, 70] have in practice all but stranded.

In some ways, QUIC is similar to our approach, in that it proposes to
multiplex what would previously (in HTTP/1.1) have been transported
over separate, but parallel TCP connections, over a single UDP connection.
However it goes further, completely doing away with TCP and is aimed
squarely at serving Web use cases and their requirements, while our
proposal is more general and retains almost all standard TCP semantics.

RTMFP The Secure Real-Time Media Flow Protocol (RTMFP) [RFC7016]
is a protocol developed by Adobe Systems primarily for the transport of
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real-time media. It multiplexes several logical flows within a single holis-
tically congestion controlled UDP connection. The protocol is message-
oriented and supports any configuration of full, partial or no reliability
combined with both ordered and unordered delivery. NAT traversal and
rendezvous-point assisted peer-to-peer connection setup is an integral part
of the protocol, along with mobile roaming capabilities.

Probably owing to its origin as a proprietary and closed protocol 9,
there are few if any published independent evaluations of this protocol.
However, the transport services described by [RFC7016] do cover what
we are aiming to achieve, namely coupled congestion control via flow
multiplexing, and the protocol is designed to be able to transport any
application layer stream.

Minion The Minion suite [67], is a proposal that aims to provide new
transport services delivered in a form that looks and superficially behaves
like commonly accepted and deployed legacy transport protocols (TCP,
UDP and SSL). By ensuring the wire behaviour is not easily distinguishable
from how those protocols usually work, it becomes possible to pass
through middleboxes in the network, and even benefit from them in the
case of PEPs. By using message boundary encodings and with some
modifications to the end point TCP implementations, the TCP (and SSL)
minions are able to provide unordered datagram delivery on top of the
TCP ordered byte stream, easing the HOL problem. However, only the
UDP minion, which simply encapsulates newer transports as payload
while mirroring the port numbers of the encapsulated datagram, is able
to provide unreliable or partially reliable unordered delivery; the TCP and
by extension SSL minions will still need to retransmit any datagrams that
are lost, potentially hurting performance.

The main emphasis of Minion seems to be on providing (some)
newer transport services along with increased ability to make it through
the network by mimicking the very most common protocols currently
deployed in the Internet.

MultiPath TCP MultiPath TCP (MPTCP) [RFC6824, 84] is a protocol
which orchestrates a number of TCP connections in concert as sub-flows
in a MPTCP super-connection. Congestion control is coupled across these
sub-flows, although the base assumption is that they forward segments
along different paths through the network, usually by taking advantage of
multi-homing, i.e. connecting hosts to several distinct access networks.
MPTCP has also been shown [72] to be able to provide benefits even
between single-homed hosts, provided that network contains some multi-
path mechanism such as ECMP that splits the paths taken by sub-flows
within the network itself.

9While Adobe Systems later published an open protocol description in [RFC7016], this
document does not fully specify the necessary authentication mechanisms to inter-operate
with their own implementation in the Adobe Flash Player and Adobe AIR products. At
the time of writing, there is at least one actively maintained open source implementation:
https://github.com/MonaSolutions/MonaServer.
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The coupled congestion control mechanism in MPTCP is different
from what we are aiming to create, however, in that it coordinates the
transmission of data onto several TCP sub-flows that in turn apply their
own end-to-end congestion control. One could consider sender-side
MPTCP as an inverse multiplexing mechanism [27]. 10

In contrast, our goal is to join together a number of related, but separate
TCP connections and apply CC over the aggregate as if it was a single flow.
Our CCC mechanism can be considered the inverse of MPTCP’s, i.e. a
sender-side multiplexer.

Substrate Protocol for User Datagrams (SPUD)

The Substrate Protocol for User Datagrams (SPUD) [28, 78] is a proposed
UDP encapsulation protocol with built-in end-host to middlebox signaling
and cooperation. The concept is that by explicitly tagging sub-flows while
informing middleboxes of its properties and intended behaviour, they will
both be able and amenable to giving those flows the treatment of their
choice with respect to priority, ECN support and so on. Furthermore, the
actual payload is hidden using cryptography out of privacy concerns.

SPUD does not explicitly deal with congestion control, but it does
multiplex several flows over a single UDP port pair, which would usually
prevent path splitting by ECMP, although one could imagine that the flow
itself could export a preference in this respect explicitly, too.

It would be possible to imagine a combination of our scheme with
SPUD.

2.4.3 Requirements

Based on our analysis of the previous works, we submit that successfully
applying CCC to TCP ultimately has requirements that extend beyond a
good algorithm for amalgamating the congestion control state of related
connections.

Single-path delivery

In order to make TCP CCC useful, it is imperative to somehow ensure that
all the parallel connections use the same network path. One way of doing
this is to bundle together the connections so that they all look like a single
flow to an external observer along the route. In other words, ensuring
that they will receive the same per-flow treatment at routers implementing
multi-path routing such as ECMP or LAG as described in section 2.2.

That said, there are actually means of marrying multi-path routing with
CCC techniques in order to achieve better load balancing and performance.
In [72] the authors combine ECMP with MPTCP in a data center “fat tree”
topology, yielding far better performance even for communication between
single-homed hosts. Without ECMP load balancing within the network,

10It is not a demultiplexer, since the sub-flows remain tightly interrelated.
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this would not be achievable. Of course, this is thanks to the fact that
MPTCP’s CCC is designed around handling multi-path networks.

Pacing

TCP’s bursty sending behaviour is a well known consequence of ACK
clocking and how the congestion window is updated. This is an
undesirable dynamic in any case, and especially in high Bandwidth-Delay
Product (BDP) situations. Bursts can lead to rapid queue growth and
thus higher latency, not to mention inducing packet losses and introducing
oscillations in the congestion controller resulting in lower link utilization
than optimal.

In coupling congestion control across connections, one risks exacerbat-
ing this problem, since connections might gain cwnd in large chunks in a
manner that would not occur in regular TCP congestion control. Addition-
ally, assuming each connection maintains its own independent ACK clock,
one might experience odd effects due to desynchronization.

In general, a number of approaches for moderating TCP’s burstiness
have been suggested. On the sender path, [RFC3742] e.g. limits congestion
window growth in Slow-Start in high-bandwidth environments, while
proposals such as [7] modulate the feedback stream of ACKs to induce
pacing from within the network.

An alternative is to simply delay packets at the sender to spread them
out more evenly in the time domain, i.e. (rate-based) pacing. In relation
to coupled congestion control, EFCM [75] implements such a pacer, whilst
both E-TCP and the CM introduce full-blown schedulers.

In our case, we are unfortunate as the FreeBSD TCP stack does not
support pacing at this time, and it is outside the scope of this thesis to
attempt to implement it. 11

Deployability

Practical deployability concerns must be taken into consideration. If a
proposed solution is not incrementally deployable, it seems extremely
unlikely that it might be adopted in the public Internet today. Preferably
it should be possible to deploy changes on the sender-side only, although
that may prove hard to reconcile with the single-path requirement stated
above. In any case, sweeping changes to system architecture appear to
hinder the uptake of otherwise well founded solutions; if applications can
benefit from changes without being modified, this is clearly an advantage.

2.4.4 Weaknesses in previous proposals

Both E-TCP and EFCM break the TCP loss event model described in
section 2.1.3, but in different ways. E-TCP lets all flows react to their

11TCP pacing was experimentally implemented for FreeBSD by a team of researchers at
BBN Technologies, but was never adopted by the main project. See http://web.archive.org/
web/20090907003159/http://www.ir.bbn.com/projects/pace/.
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individual losses independently, which leads to behaviour that is too
conservative, e.g. when a flow experiences a timeout, this forces the
aggregate into slow-start even if other flows are still receiving ACKs.
EFCM, on the other hand, behaves aggressively by only applying loss
reactions to the individual congestion windows; in a member of a ten flow
ensemble experiences a loss, it will halve it’s own rate and sum it with
the other nine flows, leading to a very moderate decrease from 10x to
9.5x aggregate congestion window size. We attempt to settle on a more
appropriate, middle ground behaviour.

The algorithm for sharing the slow-start threshold in EFCM can also
lead to issues, as it allows a joining flow to share it’s “infinite” initial
ssthresh value with the ensemble, switching the whole aggregate into
slow-start and triggering a severe bursting event due to the fact that the
other flows already have running ACK clocks. We will instead let newly
joined flows inherit the ssthresh of the ensemble, since it is an estimate of
a safe level to slow-start to based on actual observations of the network.
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Chapter 3

Design: TCP-in-UDP
encapsulation

In this chapter, we will present the design of the chief contribution of this
thesis, our proposed solution to the multi-path routing issues facing TCP
CCC: TCP-in-UDP encapsulation.

TCP segments are encapsulated as UDP datagrams, while compressing
the TCP header in order to maintain the same Sender Maximum Segment
Size (SMSS). All encapsulated segments are multiplexed onto the same
UDP port-pair, so they appear as one UDP flow on the wire, i.e. have
the same flow-identifying five-tuple. This means it is very likely that they
will take the same path through the network, as previously discussed in
section 2.2.1.

While our approach does require changes to the network stack at
both ends of the connection, it avoids Head of Line (HOL) blocking
between flows since each segment is sent and delivered as separate and
independent datagrams. By omitting fields that are redundantly present
in the UDP header or little used, we are able to preserve the same SMSS as
unencapsulated TCP over the same path and avoid unnecessarily repeating
computationally expensive checksum calculations.

TCP-in-UDP encapsulation can be made transparent to the application
layer, all transformation happens at the transport layer and behaviour is
like that of a regular TCP connection from the perspective of the upper
network layers. The removal of certain header fields, which is necessary
in order to preserve SMSS, does slightly affect what services TCP is able to
provide to the application layer.

In addition to ensuring single-path passage through the network, this
encapsulation method delivers even more desirable features:

• Inside the tunnel, we make the rules; we gain the freedom to
experiment with TCP options without having to fear the interference
of middleboxes. Notably, we can also enable options that extend the
TCP option space, which has proved quite restrictive as the number
of common options has grown.

• With an astute reordering of header fields, we may even multiplex
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other protocols over the same UDP port-pair. One possible applica-
tion of this is to enable automatic NAT traversal using ICE and STUN.

The next sections describe TCP-in-UDP in depth.

3.1 Requirements

In designing the encapsulation system, we drafted the following require-
ments:

Transparent to the application Applications should not need to be modi-
fied in any way to be able to take advantage of the encapsulation (and
CCC) scheme.

Configurability However, it must be possible to control it both as a
system-wide policy, but also per-socket if that is desired.

SMSS conservation Sender Maximum Segment Size (SMSS) must not be
decreased by the encapsulation.

Opportunistic use It should be possible to opportunistically detect the
availability of the mechanism and enable it on the fly, with a fallback
to regular TCP.

No connection delay We do not want to delay the already relatively long
TCP connection setup. We must not impose further delays beyond
the normal three-way handshake.

Low overhead The mechanism must lend itself to an efficient implemen-
tation so as not to hurt performance.

Simplicity The encapsulation system should be implemented with as little
disruption of the existing network stack as possible.

ICE multiplexing As evidenced by related works, it is trivial to lay the
groundwork for multiplexing of Interactive Connectivity Establish-
ment (ICE) messages over the same UDP port pair.

We will now detail the rationale for these requirements.

3.1.1 Application transparency

Many existing TCP-based applications could benefit from the use of CCC.
One common example are Web browsers and servers, which typically
need to complete a series of requests in order to load a web page. First,
the HTML markup defining the page must be transmitted. Then, other
resources such as images, Cascading Style Sheets, Javascript source files
and so on, embedded in the page must also be transmitted – these requests
can and do in fact gradually happen even before the entire HTML content
is received. HyperText Transfer Protocol (HTTP) version 1.1 [RFC7230]
compliant browsers usually use a combination of two methods to speed
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up this process: they make multiple concurrent persistent connections to
the server, which allow several requests to be made sequentially over each
TCP connection, and one concurrent request per connection opened. 1

Clearly, it would be an advantage to couple the congestion control of
these concurrent connections. With respect to the time needed to complete
all requests, essentially the same as the page load time which is important
for user experience, it would be very advantageous to share the cwnd of the
initial HTML-fetching connection with other connections opened to request
other objects, bypassing the need for slow-start on those connections.

Therefore, we require the CCC and encapsulation mechanisms to be
able to be turned on and used completely transparently to existing TCP
applications. In this case, it is the system administrator who decides
whether or not to use them. Note that this does not preclude affording
TCP-in-UDP aware applications more control.

3.1.2 Configurability

As we have stated above, we want our mechanism to be able to be
employed without application-level configuration. However, it is also
highly desirable that new applications should be able to be made aware
of the mechanism and allowed to configure it. There are also some other
means by which this could be achieved on a per-application basis without
modifying the application itself. One way would be to use a wrapper-
library and linker preloading to override socket calls, in the vein of [65].
We will not pursue this within the scope of the present project.

System administrators also need to be able to set system-wide policies
governing the use (or not) of TCP-in-UDP.

3.1.3 Maximum Segment Size conservation

In order to achieve the highest possible performance, we must take care not
to reduce the Sender Maximum Segment Size (SMSS) parameter of TCP. It
is already small compared to the transmission capacity of modern network
links, being constrained by the link-layer Ethernet Maximum Transmission
Unit (MTU) of 1500 bytes. Although modern link layer technology often
does support higher MTUs, this size is still considered the safest choice for
ensuring your packets will pass through the Internet.

While it would be possible to let Path MTU Discovery (PMTUD) or
IP fragmentation take care of this problem, these solutions incur great
costs. In the case of PMTUD, you are likely to lose a number of packets
before adapting to an acceptable MTU (and by extension SMSS), causing
unacceptable delays and perhaps interfering with CC. IP fragmentation is
well known to hurt TCP performance, e.g. by causing reordering, and adds
to the computational load of the end hosts.

1HTTP/1.1 does in fact also sport a pipelining feature, which allows the client to make
many requests without waiting for them to be serviced first, however popular browsers
have historically not turned it on by default.
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The solution then is to avoid inflating the size of generated IP
datagrams. In turn, this means we must reclaim the additional 8 bytes
taken up by the UDP header somewhere in the TCP header.

3.1.4 Opportunistic and Timely Connection Establishment

The delay in setting up a TCP connection is already lamented by some
as too leisurely. Owing to the three-way handshake, and to the fact that
due to the threat of denial-of-service attack, TCP implementations delay
processing, and in fact usually discard, any payload data sent before the
connection is confirmed, it usually takes at least a whole RTT before a
TCP client can successfully transmit any data. In most client-server model
systems, like HTTP, this puts a lower bound of 2 RTTs on the total waiting
time for a request to complete, so it is highly desirable to minimize this
delay.

Any failures, e.g. from packets dropped by middleboxes, during the
handshake will significantly increase the delay; not only are these crucial
packets lost, but it usually takes a very long time to react to the loss because
the initial RTO value is set very conservatively and many middleboxes, or
indeed end hosts that do not understand how to process a packet, will
not signal an error in any way. It is then crucial that our connection
establishment phase does not rely on anything middleboxes may consider
out of the ordinary, or on explicit error signaling by way of ICMP messages.

This is the same dilemma facing those seeking to gradually deploy
IPv6. Many networks would drop IPv6 packets silently, and these networks
could be anywhere along the path between the sender and receiver.
The Happy Eyeballs algorithm [RFC6555] is a widely deployed solution
that permits dual-stack IPv4/IPv6 networking, where the system can
seamlessly pick either IPv4 or IPv6 on the fly.

Efforts such as QUIC and TCP Fast Open (TFO) [RFC7413, 71] permit
zero RTT connection establishment delay in repeat connections to the same
host. QUIC can be considered a completely alternative transport protocol
solution, and we will not consider it in our design. TFO is a TCP extension,
and it may be possible to accommodate our design to work with it, but we
will not investigate this within the scope of this thesis. 2

3.1.5 Minimal Overhead

Any encapsulation obviously requires more work to be done during packet
processing, and consequently introduces some incremental delay as well.
Both in order to keep latency to a minimum, and to economise on valuable
computing resources in the end hosts, we must strive to design our scheme
so it lends itself to a highly efficient implementation.

2Incidentally, FreeBSD support for TFO was added after we forked off from the main
source tree. Early attempts to keep up with upstream changes to the tree proved very
costly in terms of time and effort, so we have refrained from merging upstream code into
our development tree for the duration of this project.
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3.1.6 Implementation Simplicity

As we noted earlier in section 2.4.2, earlier attempts at providing CCC,
notably the Congestion Manager [9, RFC3124], likely stranded at least in
part due to the sheer complexity of implementing them. The more radical
a departure from the established functioning of the network stack, the
less likely a solution is to be adopted. The likelihood of introducing new
problems also increases with complexity, and it is easier to make mistakes
during implementation.

We strive to keep our solution as simple as we can. It should interfere
minimally with the way the existing network stack works, and we try
to preserve well defined interfaces where we can. This makes for a
solution that is relatively simple to implement correctly, and which can be
modularized easily.

3.1.7 ICE multiplexing

NATs are ubiquitous, and as we discussed in section 2.3.1, often interfere
heavily with attempts to establish peer-to-peer connections. In response,
the Internet community has developed sophisticated machinery for work-
ing around this problem, chief among them is ICE (see section 2.3.1), which
will often succeed at piercing through NAT when combined with the STUN
protocol.

We borrow the ingenious mechanism for a combined STUN and TCP
encapsulation put forward by Denis-Courmont in [25] and Cheshire et
al. in [19]. It is based on the observation that the TCP offset field has a
minimum value of 5, whereas STUN messages all start with the two most
significant bits of the first octet set to zero. Therefore, if we place the TCP
offset in first position, we can know that any datagram with a value lower
than 5 encoded in the first nibble cannot be a TCP segment, and can be
handled differently by the tunnel endpoint.

Note that we will not attempt to implement any STUN handling in the
context of this project, as that is most likely a relatively large undertaking
in of itself.

3.2 Header format

To avoid issues related to the Maximum Transmission Unit size when
encapsulating TCP segments in UDP datagrams, entire segments will not
be placed as payloads in the datagrams as is. Instead, the TCP header,
depicted in figure 3.1, is rewritten, removing redundant and, infrequently
used fields. This frees up space that can be used to encode enough
information to allow a certain number of concurrent connections to be
demultiplexed.
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3.2.1 Modified fields

The checksum field is entirely redundant, since UDP provides an equiva-
lent facility. We further elide the infrequently used Urgent Pointer field,
along with the associated urgent flag. Although this will break compat-
ibility with the, admittedly few, applications that make use of this fea-
ture, it is a reasonable trade-off. As of 2011, the Internet Engineering Task
Force (IETF) has reaffirmed that TCP implementations must support the ur-
gent pointer feature, although strongly discouraging (deprecating) its use
[RFC6093].

Earlier efforts to design such a header format, as described in [19, 25],
also remove the source and destination port pairs and rely only on the port
fields in the UDP header. Unfortunately, the TCP-in-UDP design can not
replicate this since, unlike the aforementioned authors, the primary goal
is to be able to multiplex several TCP connections over the same outside-
observable transport flow, as defined by the (source address, destination
address, source port, destination port, IP protocol number) five-tuple (see
section 2.2.1). Instead, we compress the full source and destination port
fields into a narrower flow identification field at the cost of additional
complexity – the introduction of flow identifier to pair-pair negotiation,
as well as another demultiplexing step on reception – and fewer possible
parallel (encapsulated) streams.

This header format satisfies the requirement of SMSS conservation. It is
also conducive to an implementation incurring low overhead.
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TCP header,
20 bytes

Options (optional, variable length)

Figure 3.1: Standard TCP header. Fields on red background are removed by
TCP-in-UDP, those on orange background have their semantics modified.

3.2.2 Field reordering

As explained in section 3.1.7, we reorder the fields in the header so the
offset field is placed at offset zero. The most sensible way to accomplish
this with respect to alignment is to move all the other fields within the
same 32-bit word along with it.

This reordering satisfies the requirement of ICE multiplexing.
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Figure 3.2: Compressed TCP-in-UDP header. The Flow Id split-field is
highlighted in green. Notice that the port numbers in the UDP header are
those of the tunnel, not the TCP connection.
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SYN header,
20 bytes

Options (variable length)
must include TiU setup option

Figure 3.3: TCP-in-UDP SYN/SYN-ACK header.

3.3 Protocol

The TCP-in-UDP encapsulation needs a mechanism for establishing the
necessary state to correctly encapsulate connections. We will now specify
this protocol.

3.3.1 Setup negotiation

Since we are going to encode the application endpoints represented by the
source and destination port-pair in fewer bits, we must provide a means for
the two hosts to negotiate a mapping between the compressed code-points
and the full port pair as understood by TCP.

Wire format

We take advantage of the fact that we need not take into account
middlebox support when constructing tunneled segments, and convey this
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Figure 3.4: TCP-in-UDP setup option

information using a combination of a full-length header, see figure 3.3, with
our own experimental TCP-in-UDP setup option, as depicted in figure 3.4.
This special header format is only used when encapsulating SYN and SYN-
ACK segments, i.e. the first two packets in the TCP three-way-handshake.

We leave the original port pair unchanged, but reordered – swapped
with the offset, flags and window fields – and encode a five-bit flow
identifier into the setup option. The setup option follows the TCP
experimental option format defined by [RFC6994]. The experimental
identifier (ExId) has been arbitrarily chosen and checked for collisions
against the relevant Internet Assigned Numbers Authority (IANA) registry.
3 The range of valid flow identifiers is 0-31. A value of 255 in this field is
used to indicate an error condition, such as a collision with an already in-
use flow identifier.

The offset field is always set to the special value 4, which makes it easy
to decapsulate these messages differently from regular segments. 4

Using this format, we cannot preserve MTU, however, in this special
case we can live with that. Although the TCP standard allows payload
data to be included with these segments, modern TCP implementations
do not do so due to the danger of denial-of-service attacks. In so-called
“SYN flood” attacks, an attacker overwhelms a listening TCP server with
fake SYN segments, usually having spoofing the source address, meaning
the server will never get any response to its SYN-ACK and be forced to
wait until a timeout expires before being able to drop the state associated
with the (half-open) connection. If an attacker is able to generate these
fake SYNs at a high enough rate, the server will run out of resources and
be unable to do any useful work. If TCP were to accept and buffer data
appended to the SYN, which it would have to do since the connection has
not been synchronized yet, it would make the attacker’s job of starving
server resources that much easier.

As a response to this kind of attack, FreeBSD does not even instantiate
a full TCP Control Block upon receiving a SYN; rather the minimally
required state to be able to recognize when a connection is confirmed
(by the third, ACK segment from the initiator) is stored in an overwrite-

3We have not at the time of writing made a request to register this ExId with IANA,
although that may change pursuant to ongoing IETF discussion of this work, see [82].

4This choice really stems from an earlier iteration of the design, which allowed for such
negotiations to happen outside of the three-way-handshake. That proved not to be very
robust, so we have restricted it. The implementation still relies on this fact, so we have
left the old format intact in this description. Going forward, these setup headers could
instead be identified by checking the state of the SYN flag, which is always in the same,
fixed position.
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when-full SYN cache. Any data present in the SYN segment is simply not
acknowledged, a practice allowed by the semantics of the TCP standard.

Aside from these facts, we are in a position to specify such a rule in any
case, seeing as how we have full specification control of the behaviour of a
tunneled connection.

A peculiarity of this format is that we are leaving the checksum
and urgent pointer fields intact. This is purely done in the interest of
minimizing copying operations, which would be necessary in order to
remove them, which is unnecessary since we have no need to save space
when using this particular format. The fields are not filled, but the main
TCP segment construction code reserves space for them.

Negotiation protocol

The protocol used to negotiate mappings is very simple:

• On connection initialization, the initiator reserves a free flow identi-
fier and associates it with the connection’s port-pair.

• When constructing the SYN segment, the TiU setup option is
appended with the previously reserved flow id.

• When the listening TCP receives that segment, it checks if it already
has an active mapping for that flow id.

– If no, it creates one and responds with a SYN-ACK segment
appended with the TiU setup option, echoing the flow id. back
to the initiator.

– If there is a collision, the connection is marked as not encap-
sulated, but the SYN-ACK is still sent encapsulated in order to
signal back the error. This is done by appending the TiU setup
option and setting the flow id. field to 255.

• Based on the response from the listening side, the initiator either con-
firms the encapsulated connection or falls back to regular, unencap-
sulated TCP, freeing the previously reserved flow id.

Figures 3.5a and 3.5b on page 44 illustrate the messages exchanged in a
successful and failed negotiation, respectively.

Port-pair to flow identifier mappings are keyed against the source and
destination address pair, i.e. there is a unique map for each host (interface)
pairing. We do not specify any mechanism to renegotiate another flow
id. if the first one does not work, since that would necessitate a longer
handshake and introduce a connection setup delay. Collisions are very
unlikely, and should only practically happen for a short while following
some kind of state reset at the initiator side, e.g. a reboot.

In case the initiator is unable to reserve any flow id. because the map
is full, it will not attempt setup negotiation and directly fall back to regular
TCP.

By providing this mechanism, we satisfy requirements for application
transparency and zero additional connection delay.
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3.3.2 Happy eyeballs protocol

As we have set a requirement that applications should not have to deal
with controlling the scheme, we need to provide automatic activation
logic. At the same time, we satisfy the requirements for configurability
and opportunistic use.

Our solution is an implementation of the Happy Eyeballs scheme
[RFC6555] for automatic IPv4/IPv6 selection that we have adapted to fit
our needs.

On connection setup, we run the following protocol:

1. Check if we have cached any TiU capability information for the
destination host.

• If yes, we can shortcut the decision – if we know the host
supports TiU, we use it without further probing. TiU state is
set to wanted ∧ offering.

• If TiU probing has failed with some kind of error earlier, we
will not attempt probing and fall back to TCP. TiU state is set
to disabled.

2. If we could not make a decision based on cached information, we
send both an encapsulated and a regular SYN segment in rapid
sequence. TiU state is set to probing ∧ offering.

3. The listener’s response depends on which arrives and is processed
first:

• If TiU arrives first, proceed with the flow id. negotiation.
Unless that fails, we will go ahead and use encapsulation on this
connection. TiU state is set to offered. The TCP SYN will be
silently ignored when it arrives.

• In the converse case, if the TCP SYN arrives first, the connection
proceeds as normal over regular TCP. When the TiU SYN
arrives, however, we will respond to it, but indicate an error.
The corresponding host is cached as being TiU capable at the
receiver side.

4. The initiator receives either an encapsulated or regular SYN-ACK
segment back:

• If we got a TiU SYN-ACK that echoes the chosen flow id., the
encapsulated connection is confirmed. Encapsulation will be
used for the rest of the connection lifetime. TiU state is set to
enabled. The correspondent’s TiU capability is cached.

• If we got a TiU SYN-ACK that indicates an error, the connection
falls back to regular TCP. TiU state is set to disabled, but the
correspondent’s TiU capability is also cached since this response
indicates it can perform TiU.
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• If we got a regular TCP SYN-ACK, the connection falls back to
regular TCP. Nothing is cached. TiU state is set to disabled.

• Should the initiator get back an ICMP connection refused error,
we know there is no TiU tunnel endpoint active on the server.
Fall back to TCP and cache that the correspondent is unable to
handle TiU. TiU state is set to disabled.

5. Depending on the outcome of the previous step, the initiator
completes the handshake by transmitting either a TiU or TCP ACK.

6. On receipt of the ACK, the server determines if a connection in the
TiU offered state should continue to be encapsulated in TiU or not.
If it is a TiU ACK, state changes to enabled, otherwise it changes to
disabled and the connection falls back to TCP.

7. For the entire of the lifetime of the connection, segments will be
encapsulated or not based on the TiU state being either active =
enabled ∨ offering ∨ offered, or disabled. This is valid on both the
initiator and listener side of a connection.

Step 6 of this handshake-within-the-handshake is required to avoid
problems in situations where the server has seen the TiU SYN and starts
using TiU encapsulation, but the (TiU) SYN-ACK is lost in transit. If this
happens in just the wrong circumstances, the initiator will reach a limit
for the number of TiU SYN segments it will attempt and definitively fall
back to TCP. Due to the simplified test (i.e. step 7) used to determine
whether a segment should be encapsulated or not, the server would then
continue encapsulating even though the initiator had fallen back, which
also implicates that it will have released the state allowing it to correctly
decapsulate segments on this connection.

The (mostly) layered approach outline here simplifies integration of our
encapsulation implementation into the existing network stack, which is one
of the requirements we have set.

Figures 3.6a and 3.6b on page 45 show the message sequences in case
the TiU SYN or TCP SYN arrives first, respectively.

3.4 Interoptability

In this section we will briefly discuss how TCP-in-UDP affects interoptabil-
ity with other TCP implementations and standard network mechanisms.

3.4.1 Urgent Data

As previously discussed in section 3.2.1, since both the urgent pointer
field and the URG flag are removed or re-purposed by TCP-in-UDP, this
feature of standard TCP is not usable when enabling the encapsulation. In
practice, this is not very problematic because very few applications still
in widespread use actually rely on this feature. The IETF has furthermore
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deprecated the entire feature for new applications in [RFC6093], noting that
almost all current TCP implementations implement it in inconsistent and
standard-incompliant manners. telnet is one well-known example of an
existing application which depends on this functionality.

We outline a workaround for this issue in section 3.2.1.

3.4.2 Explicit Congestion Notification

TCP-in-UDP should not conflict with ECN per se, but routers will
obviously see UDP datagrams. As McQuistin et al. [62] have shown, about
98.97% of the servers they surveyed were reachable by UDP datagrams
marked as being ECN-capable, but it is uncertain whether ECN marking
will actually be applied by AQMs in favor of just dropping the packets.

It would be possible to combine TCP-in-UDP with a protocol such as
SPUD [78] to explicitly inform routers and middleboxes that the TiU UDP
flow really is ECN-aware.

3.4.3 IPv6

TCP-in-UDP does not embed any addresses within the protocol and is as
such not dependent in any way on the IP protocol version used.

IPv6 support has not been in the scope of this work implementation-
wise, however.

3.4.4 Stateful middleboxes

In the absence of explicit state-defining messages, NATs and stateful
firewalls tend to maintain soft state using timeouts for UDP flows. Idle
timeouts are typically short, on the order of 2 minutes, compared to hours
for TCP [66]. Thus one risks that a TiU encapsulated connection could get
interrupted by such a middlebox flushing it’s state if the connection goes
silent for a while.

Likewise, these middleboxes are likely to interfere with the happy
eyeballs fallback mechanism. If they don’t observe a TCP SYN coming
from inside their network, they will not prepare any TCP state for passing
in segments on the return path. It is not unlikely that fallback will fail, even
if an unencapsulated ACK segment goes through the middlebox (or at least
attempts to) from inside the network in that event. One possible solution
to this problem would be to always transmit duplicate TCP segments, even
if TiU is expected to work based on cached information. 5

3.4.5 Performance Enhancing Proxies

As we discussed in section 2.3.3, Performance Enhancing Proxies (PEPs)
will not know how to deal with TiU encapsulated traffic. This might be a
disadvantage under some circumstances, since PEPs are usually deployed

5In the IETF draft concerning the present work, we do make this recommendation. [82]
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to alleviate performance issues in environments where TCP struggles, e.g.
high-latency satellite links and so on.

3.5 Security

TCP-in-UDP is generally as secure as TCP, since its protocol behaviour truly
is that of TCP. The exception is the connection setup phase, during which
TCP-in-UDP is somewhat vulnerable to Denial of Service attacks mostly
due to the narrow flow-Id field. An attacker could easily flood a TCP-in-
UDP aware receiver with bogus TCP-in-UDP encapsulated segments on all
possible flow-Ids, with the range only being 0-31. Another attack would
consist of flooding with SYN/ACK packets with the flow-id in the TCP-
in-UDP setup option set to an invalid value, normally used to indicate
a flow-id collision. We do not, however, compromise TCP security since
sequence numbers and ports are always checked as normal after TCP-in-
UDP decapsulation, and in the event of TCP-in-UDP flow-id collisions,
fallback to regular TCP is instant.

The use of a three-way handshake-in-handshake also prevents a man-
in-the-middle attacker from inducing a desynchronized TCP-in-UDP state,
wherein the receiver would believe it to be enabled whilst the sender
believes it has failed, by dropping the SYN-ACK segment. See section 3.3.2.
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Chapter 4

Design: Coupled Congestion
Control

While the TCP-in-UDP (TiU) encapsulation mechanism can be useful in
its own right, it is mainly a means to an end. Our target has been to
overcome the challenges imposed by multi-path routing on the feasibility
of deploying coupled congestion control (CCC). In order to be able to test
and validate the TiU mechanism, we contributed to the design of and
implemented a CCC mechanism for TCP.

The mechanism we have developed is based on the Flow State
Exchange (FSE) concept originally envisaged by Islam et al. for coupled
congestion control in real-time media applications [47–49]. The original
FSE system is part of the research and standardisation effort surrounding
the WebRTC [57] family of standards and protocols for browser-based
real-time communication, and is actively being specified within the IETF
RMCAT1 working group at the time of writing.

4.1 The Flow State Exchange concept

Figure 4.1 illustrates the high-level architecture of the FSE system. S1
and S2, and D1 and D2 are the sender-side, and receiver-side congestion
controllers, respectively, for two concurrent flows running between the
two end hosts depicted. On the sender side, the congestion controllers
coordinate through the FSE.

As the name indicates, the purpose of the FSE is to allow congestion
controllers to exchange state information. The FSE contains both a storage
element and logic to appropriately share information between related
flows. In other words, it is the central component of a coupled congestion
controller.

An FSE can be either passive or active. The difference lies in whether
an update coming from one connection will actively be pushed to any
other connections coupled to it. In the situation depicted in figure 4.1,
an active FSE might trigger S2 to send some data if S1 received an ACK

1RTP Media Congestion Avoidance Techniques
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Figure 4.1: FSE abstract architecture [49]

and increased the congestion window sufficiently. In the passive case, the
window increase would just be stored and not acted upon by S2 until the
next time it made an update of its own.

4.2 Coupling Decision

The FSE must determine how to group flows together into flow groups.
This grouping should reflect which flows it is appropriate to treat as an
ensemble. A naïve approach would be to do what previous CCC solutions
did, and base this choice on the source and destination address pair. While
this may work in many instances, this approach is insufficient for general
Internet use, as we have explained in section 2.2.

4.2.1 Dynamic bottleneck detection

Research into dynamically identifying flows that share a common bottle-
neck link using measurements has shown some promise. Rubenstein et al.
[73] demonstrated the ability to identify TCP connections experiencing con-
gestion at the same point in the network based on delay and loss observa-
tions. Recent work in the context of real-time media transport for WebRTC
by Hayes et al. [29, 39] achieves the same for such flows and that mecha-
nism is in fact intended to be integrated with the RMCAT FSE. However,
to get the most out of CCC, we need to be able to accurately predict what
flows will share bottlenecks before they even start transmitting. The afore-
mentioned detection schemes are also most accurate only at times when the
flows are actually suffering congestion, and they really only detect whether
the flows share the same bottleneck, not whole network paths. Since TCP
congestion control is highly sensitive to RTT differences and reordering, we
must be reasonably certain that grouped flows really take the same paths
through the network, or we risk degrading performance severely.
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4.2.2 Bottleneck prediction

In light of this, we will instead actively attempt to force parallel connections
down the same paths using the TCP-in-UDP encapsulation described in
chapter 3, and group together those flows which are multiplexed within
the same TiU tunnel.

4.3 Passive TCP Flow State Exchange

We originally investigated an FSE design for TCP coupled congestion
control purposes based on the active FSE concept. We were able to identify
several reasons why such a design is unsuitable:

• It interferes heavily with ACK clocking.

• The state of coupled connections becomes tightly intertwined, giving
rise to complicated concurrency issues at implementation time.

• Unlike in the real-time communication application, TCP applications
rarely adapt to the congestion situation in the network; When the
sender is not application-limited, TCP flows are called “greedy” and
the only adaptation they make is to send more if they think they can
get away with it. RTC flows on the other hand generally have some
upper bound on the data rate they will transmit at, and are far more
sensitive to latency – they will actively reduce the rate at which they
push data into the transport layer to respect latency bounds. The
active FSE is more beneficial in those circumstances.

Instead, we settled on a variation of a passive FSE design. The principal
advantages of the passive architecture are that:

• It does not get in the way of ACK-clocking as much; although,
without pacing, large increases in cwnd could lead to (micro-)bursts.

• It is far easier to implement; that state which needs to be shared
among connections can be deposited in the FSE. It does not matter
if it is slightly out of date.

4.3.1 Features

Mildly conservative aggregate behaviour

The goal we have aimed for is an algorithm that makes an ensemble of
coupled TCP flows behave roughly like a single ordinary TCP “New Reno”
flow. In emulating that behaviour, it should try to do the right thing from
the perspective of the controller of such a single “New Reno” connection.
For instance, this means that if one flow experiences a timeout while others
are still getting ACKs, we should be heavily prejudiced against treating the
timeout as a true indication that all packets have been lost.

49



Straightforward implementation

The data structures and data flow of the FSE are designed to permit
a straightforward implementation that does not require making radical
changes to the existing network stack.

Weighted distribution of available bandwidth

When designing a CCC solution, one can often quite easily enhance the rate
allocation algorithm so as to provide more flexible distribution functions
that allocate bandwidth according to more flexible criterion than simple
fair share. In keeping with the RMCAT FSE, we incorporate a simple, but
powerful priority weighting bandwidth allocation scheme.

This allows the application to configure levels of precedence among
individual flows, which is useful for ensuring Quality of Service (QoS).
Unlike most other QoS solutions for Internet traffic, this scheme requires
no assistance from the network, which unfortunately has proved to be
a stumbling block for many interesting standards, e.g. Differentiated
Services [RFC2475].

4.3.2 Algorithm

Variable Description

c * † Connection identifier
cwnd TCP congestion window value

ssthresh TCP slow-start threshold value
fse_cwnd * FSE-calculated congestion window value

fse_ssthresh * FSE-calculated slow-start threshold value value
state * TCP state machine state: Slow-Start (SS), Congestion

Avoidance (CA), or Fast Recovery (FR)
P * Priority weight of a TCP flow

sum_cwnd † sum of all the cwnd values in the flow group
sum_ssthresh † sum of all the ssthresh values in the flow group

sum_P † sum of all the priority values in the flow group
CoCo † Coordinating Connection

fg_touched † Timestamp of the last time an update, join or leave
event was posted to flow group

Table 4.1: Variables used in algorithms 1, 2 and 4. Variables marked with
an asterisk * are maintained in the FSE on a per-flow basis. Those marked
with a dagger † are maintained per-flow group, while unmarked variables
are part of each flow’s TCP Control Block (TCB).

The idea behind the algorithm we are using is to designate one
connection as a leader of the pack, the Coordinating Connection (CoCo), and
control the rest of the ensemble according to the congestion state seen by
that connection. To ensure appropriate reaction to loss, the CoCo duty is
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Algorithm 1 FSE – connection registering

1: Input: c, cwnd, ssthresh, P
2: Output: fse_cwnd(c), fse_ssthresh(c)
3: if first connection in new coupled group then
4: fse_cwnd(c)← cwnd
5: sum_P← 0
6: sum_cwnd← 0
7: sum_ssthresh← 0
8: CoCo← c
9: end if

10: fg_touched← now
11: fse_P(c)← P
12: sum_P← sum_P + P
13: sum_cwnd← sum_cwnd + cwnd
14: fse_cwnd(c)← P × sum_cwnd / sum_P
15: fse_ssthresh(c)← ssthresh
16: if sum_ssthresh > 0 then
17: fse_ssthresh(c)← P × sum_ssthresh / sum_P
18: end if
19: Send fse_cwnd(c) and fse_ssthresh(c) to c

Algorithm 2 FSE – connection leaving

1: Input: c
2: if c = CoCo then
3: Coco← any active connection
4: end if
5: sum_P← sum_P - fse_P(c)
6: Free state associated with c
7: fg_touched← now

shifted to flows that experience congestion, but we are careful to avoid
sending the entire ensemble into slow-start should a single RTO timer fire.
This algorithm is an improved and corrected variant of the one specified in
[82].

Data structures

The main data structures (state information) that make up the FSE storage
element are listed in table 4.1.

The congestion control state (or phase) is stored in the FSE for two
reasons: 1) this variable records what state each individual flow’s congestion
controller determined that flow should be in at the time of the update; the
FSE may override the cwnd and ssthresh values as part of the update, so
the state cannot be inferred from these values later on. 2) This information
is needed about other flows during updates; storing it in the FSE means
there is no need to access another flow’s TCB as part of the update
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Algorithm 3 FSE – flow group reaper

1: Input: fg_list
2: for all fg ∈ fg_list do
3: if empty(fg) and (now - fg_touched(fg)) > 180s then
4: Dispose of fg
5: end if
6: end for
7: Sleep 90s
8: Goto 2

algorithm, which is prone to causing implementation problems related to
locking.

Arrivals and departures

Algorithms 1 and 2 show how flows check in and out of the FSE.
When a new flow joins, it is joined to a flow group according to some

coupling logic (not shown in the algorithm). In our case the logic groups
those flows which are tunneled over the same TiU connection, i.e. those
running between the same pair of source- and destination addresses that
are in the enabled TiU state.

The new flow’s existing congestion window size is added to the flow
group’s total, likewise for its priority weight. After updating the sums, it is
then allocated its share of the total.

Notice how ssthresh is not propagated to the flow group at this time.
It will only be inherited by the flow group after an actual loss event. In this
way, we avoid propagating the initial “infinitely high” ssthresh of flows
that have not experienced congestion yet.

When a flow leaves, we only remove its contribution to the sum of
priorities. This is appropriate, since its share of the congestion window
represents a part of the aggregate congestion window that the ensemble as
a whole has measured. On their next updates, the other flows will each
gain their rightful part of the departed flow’s cwnd.

If the departing flow was CoCo, a new one is elected. While we don’t
show it here, we will prefer a flow that is in congestion avoidance if one
can be found.

Algorithm 3 regularly purges old cached state. By allowing flow groups
to persist for a short while after they empty, we provide temporal sharing.
Joining flows will always seek to repopulate an already existing flow group
if they find one. Due to how we do not subtract from the aggregate cwnd

on departure, such flows will immediately gain the full window that was
sensed by the previous ensemble. This is entirely appropriate as long as
that information is still reasonably fresh (we expire cached flow groups
after 180s by default), but poses an opportunity for potentially deleterious
bursting if the flow does not pace the rate at which it starts consuming that
window, see section 4.4.1.
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Congestion control updates

Algorithm 4 on page 55 is the hearth of our FSE: this algorithm is
executed each time the flows’ native congestion controller has modified
their congestion control state.

It makes decisions about which flow should become (or continue to be)
the CoCo, and updates the aggregate congestion state. Each call to this
algorithm will usually return modified congestion control variables to the
flow, representing its share of the aggregate, except if a flow has suffered a
loss event and meets certain criteria.

Non-CoCo update When a flow that isn’t the CoCo makes an update,
we first check if it is in a state that requires a change of leadership. At
the moment, we always let the first flow to enter fast recovery take over
the lead, since it has the most up to date congestion information. In all
other cases, the individual flow’s connection controller is overridden by
assigning it its updated share of the aggregate.

CoCo update When the CoCo flow, which may change in the first part of
the update algorithm, is making an update, the FSE will use the congestion
control variables as updated by its individual congestion controller to
update the aggregate’s. In congestion avoidance, the aggregate is simply
adjusted proportionally.

If, however, the CoCo is in fast recovery, then we let that mechanism
do its work in peace so as to restore the normal operation of that flow as
fast as possible. Only the aggregate ssthresh is updated at first, the cwnd

correction comes as the CoCo leaves fast recovery.
If the CoCo has gone to slow-start, then either it is a) undergoing a

ramp-up after initially starting up or having been idle for too long, or b)
its RTO timer has expired. Allowing it to continue slow-start, and indeed
forcing the entire ensemble into that mode with it, is only appropriate if
all other flows are in the same situation. In case a), there is obviously no
point in doing a ramp-up to probe the network if other flows already have
a working ACK clock. Case b) entails, as we noted in section 2.1.3, that
all packets in flight have gone missing – something severe has happened
to the network. If other flows in the ensemble are receiving ACKs and are
not experiencing timeouts, then obviously this is not the case. Therefore,
we only allow this to happen if all other flows recently tried to enter slow-
start.

Note that if the FSE is signaled after a timeout, the update will have
been triggered from a special RTO-related code path. A single packet
will always be retransmitted, ensuring the ACK clock does not completely
stall should this have been a real timeout. The connection could be
severely impacted however, as it will take several RTTs before it receives
enough duplicates ACK to enter into fast recovery. Clearly, this part of the
algorithm could be improved, but that is out of the scope of this project.
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4.4 Limitations

Our TCP FSE design has some limitations, some of which are due to outside
factors, others are due to the prototypical nature of the present mechanism.
We will enumerate the most important caveats here.

4.4.1 Lack of pacing

As there is no built-in support for TCP pacing in FreeBSD, and as
designing and implementing such a mechanism is very much a non-trivial
undertaking, we will have to function without pacing. Recalling that we
identified this as an important building block of a well-functioning TCP
CCC solution in section 2.4.3, the performance of our solution is clearly
going to suffer from this shortcoming.

4.4.2 Underutilization when idle

Since we do not have any scheduler, the FSE will blindly allocate a share of
the congestion window to each flow according to their configured weights,
without taking into account whether they are actually able to make use of
that share. In situations where coupled flows undergo idle periods, this
will lead to underutilization of the available bandwidth.

A possible enhancement to reduce this performance loss would be to
temporarily remove flows from the pool that gets allocated a share of the
cwnd if they have not posted an update to the FSE for some (relatively short)
period of time.

4.4.3 Hardware acceleration

Most modern Network Interface Cards (NICs) provide a range of hardware
acceleration features. These span from simply offloading packet checksum
calculations to advanced hardware processing of transport layer logic,
e.g. TCP Offload Engines. Less advanced transport protocol hardware
assists such as Large Segment Offload / TCP Segmentation Offload (TSO)
and the converse Large Receive Offload lie somewhere in-between on this
spectrum.

Aside from checksum offloading, all of the aforementioned features
move important parts of the TCP logic into the firmware of the NIC,
where it is difficult or impossible for us to control it. Incidentally, TiU
encapsulation is impaired for the same reasons.

Therefore, we cannot combine CCC with the use of such advanced
acceleration features. On the one hand, for typical end-user client
machines, this is not likely to have any appreciable impact. On the other
hand, it may be a disadvantage for busy servers potentially on the other
end of the connection. When that is said, hardware acceleration can also
sometimes induce sub-optimal performance on its own, see [87].
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Algorithm 4 FSE - connection update

1: Input: c, cwnd, ssthresh, state
2: Output: fse_cwnd(c), fse_ssthresh(c)
3: fse_state(c)← state . Store what state the controller wanted to be in
4: fg_touched← now
5:
6: if CoCo 6= c then
7: if state=FR ∧ fse_state(x) = CA ∀x 6= c then
8: CoCo← c . If c is the only flow in FR, make it the new CoCo
9: else

10: if state=CA ∨ state=SS then
11: . If c is neither CoCo nor in FR, update c’s share and override
12: fse_cwnd(c)← fse_P(c) × sum_cwnd / sum_P
13: fse_ssthresh(c)← fse_P(c)× sum_ssthresh / sum_P
14: end if
15: end if
16: end if
17:
18: if CoCo = c then
19: if state = CA then . Normal happy day update
20: if cwnd ≥ fse_cwnd(c) then . Increased cwnd
21: sum_cwnd← sum_cwnd + cwnd - fse_cwnd(c)
22: else . Proportional reduction of sum_cwnd
23: sum_cwnd← sum_cwnd× cwnd / fse_cwnd(c)
24: end if
25:
26: fse_cwnd(c)← fse_P(c) × sum_cwnd / sum_P
27: fse_ssthresh(c)← ssthresh
28:
29: if sum_ssthresh > 0 then
30: fse_ssthresh(c)← fse_P(c)× sum_ssthresh / sum_P
31: end if
32: else if state = FR then . Allow FR to carry on
33: sum_ssthresh← sum_cwnd/2
34: else if state = SS then . Check if SS is really necessary
35: if fse_state(x) = SS ∀x 6= c then . Everyone wants SS
36: sum_ssthresh← sum_cwnd/2
37: sum_cwnd← sum_cwnd× cwnd / fse_cwnd(c)
38: fse_cwnd(c)← fse_P(c) × sum_cwnd / sum_P
39: else . Someone is still getting ACKs. Let them lead.
40: CoCo← first connection where fse_state 6= SS
41: end if
42: end if
43: end if
44:
45: if state 6= FR then
46: Send fse_cwnd(c) and fse_ssthresh(c) to c
47: end if
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Chapter 5

FreeBSD implementation

The TCP-in-UDP mechanism with TCP CC coupling will be implemented
in the FreeBSD1 operating system’s network stack. FreeBSD was chosen
because it is a high quality Free Software operating system, with a
well documented (see e.g. [61, 85]), standards-compliant [21] and well-
performing IP network stack.

5.1 Application layer interface

5.1.1 Control interface

Our implementations is controllable using a combination of both the
sysctl (system control) configuration system for administratively setting
system-wide policies, as well as socket options allowing per-connection
configuration by the applications.

Both TiU and the FSE fully support the VIMAGE network virtualisation
[86] feature of FreeBSD, allowing them to be selectively enabled and
otherwise configured per virtual network stack. This proved advantageous
to us during development and testing.

5.1.2 Transparency

A major goal of the implementation of both the TCP-in-UDP and CCC
schemes has been to make them as transparent as possible to the
application layer. This way, legacy applications can benefit from them
without any adaption, much like they would from other TCP congestion
control improvements.

However, as discussed in sections 3.2.1 and 3.4.1, TiU does replace
the TCP header information supporting the Urgent Data feature of TCP.
Consequently, applications that rely on that feature will not function
correctly if TiU is enabled. If such applications need to run on a system
where one desires to use TiU, there are still some options, though:

• Modifying the offending application to explicitly disable TiU on its
sockets.

1http://freebsd.org
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• Setting TiU off by default, and modifying other applications to
explicitly request it on their sockets.

• Enabling VIMAGE network virtualisation, and confining either the
applications that require Urgent Data, or the applications that should
use TiU, in appropriately configured jails.2

The latter option may often be preferable, since it requires no modifica-
tions to the applications themselves.

5.1.3 Conventions

In the following sections, we will present implementation details, including
some source code listings.

You may notice many calls to macros with names like CTRx . These
are calls to the kernel tracing facility, which is a kernel debugging log
framework. All of these calls are compiled out in release mode builds, such
as those we used to evaluate the implementation in chapter 6.

For brevity’s sake, we will skip over source excerpts that only consist
of logging output or lengthy comments wherever it makes sense. Hence,
there are some “jumps” in line numbering in a few places. Likewise, we
will refrain from drilling down into the most mundane functions that only
perform actions like looking up entries in hash tables, etc. The particularly
interested reader is invited to consult the full source code, see appendix A.

A number of variables have names of the form V_name . These are in
reality macro invocations that will fetch variables attached to the current
virtual network stack (VNET) instance; if VIMAGE is not enabled, there is
only one such instance and the macros compile to a direct reference to a
single variable.

We have opted not to detail the data structures we use in great detail
here, since the code should make it quite obvious how they work. Both the
encapsulation and coupled congestion control components make use of the
standard queue (list) and hash table libraries included in FreeBSD.

5.2 TCP-in-UDP encapsulation

Conceptually, our implementation of TCP-in-UDP encapsulation (TiU) can
be considered as a kind of shim sub-layer that sits near the bottom of the
transport layer, wedged between TCP and UDP. Figure 5.1 illustrates the
flow of data through the TiU-enabled network stack.

All changes necessary to implement TiU are made at the transport layer,
the only visible change to upper layers is the addition of socket options that
allow applications to (optionally) configure TiU use. Lower layers simply
see TiU encapsulated traffic as UDP traffic and treat it as such.

2The jail mechanism [52] is a lightweight virtualisation framework built into FreeBSD.
The previously discussed VIMAGE feature enables each jail to have its own virtualised
network stack.
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Figure 5.1: TiU data flow

Most of the present section will detail some of the most important
code sections that make up our TiU implementation. We present them
in an approximation of the order they will be executed when initiating a
connection and transmitting data.

5.2.1 Modularity

In a bid to keep our implementation easily understandable, we have strived
to modularize the code to the extent it was reasonable. By separating
out most of our code from the existing network stack implementation, it
becomes easier to keep track of the changes introduced by our work.

Most of the actual code-wise changes have been made in the form of
new functions defined in a new source file, tcp_hijack.c 3.

Hooks that call into these functions, and some code related to connec-
tion setup, have been inserted directly into the main TCP input and output
code, as well as in the TCP SYN- and host-caches code, in tcp_input.c,
tcp_output.c, tcp_syncache.c and tcp_hostcache.c, respectively. Some
other initialization and management code is also distributed among the
other TCP source files.

In order to capture incoming TiU segments, we have inserted a hook
into the UDP input path. Likewise, we’ve also hooked the UDP control
input routine, which lets us handle ICMP errors destined for the tunnel
endpoint. Both of these changes are made in the file udp_usrreq.c.

5.2.2 Connection setup

The TCP connection establishment routines have been extended to support
the TiU happy-eyeballs connection establishment mechanism as described
in section 3.3.2.

3We have used the prefix tcp_hijack to define a kind of namespace for most our
functions and variables in the kernel. The name is due to the fact that TiU “hijacks” packets,
diverting their normal processing flow.
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Connection creation

When an initiator application makes calls using the sockets API to connect
a TCP socket, the tcp_connect function initializes the state of the TCB.

tcp_usrreq.c: initialize initiator’s TCB TiU state
1201 /* Init. TCPinUDP flags from hostcache: */
1202 if (V_tcp_hijack_enabled) {
1203 tp->t_hijackflags |= tcp_hc_get_tcpinudp (&inp ->

inp_inc);
1204 if (V_tcp_hijack_default_disabled
1205 && !(tp->t_hijackflags & TCP_HIJACK_WANTED))
1206 tp->t_hijackflags |= TCP_HIJACK_DISABLED;
1207 /*
1208 * If we end up with the all clear to try TiU to a
1209 * host with unknown TiU capability , enable parallel
1210 * TCP/UDP probing:
1211 */
1212 if (!(tp->t_hijackflags & (TCP_HIJACK_DISABLED |

TCP_HIJACK_CAPABLE)))
1213 tp->t_hijackflags |= TCP_HIJACK_PROBING;
1214
1215 CTR2(KTR_TCPINUDP , "tcp_connect: TiU flags =%0x faddr

=%x\n",
1216 tp->t_hijackflags , inp ->inp_inc.inc_faddr.s_addr

);
1217 }

When doing so, we check the host cache to see if we know anything
about the other end’s TiU capability. If it is known to support it,
immediately try with TiU. If we know it has resulted in permanent errors
before, do not attempt it at all. In other cases, use Happy Eyeballs to see if
it is possible to use TiU.

Three-way-handshake: SYN

tcp_output.c: SYN construction
749 if ((flags & TH_SYN) && V_tcp_hijack_enabled) {
750 CTR1(KTR_TCPINUDP , "tcp_output: SYN: TiU flags =%0x\

n",
751 tp ->t_hijackflags);
752 if (!(tp->t_hijackflags & TCP_HIJACK_DISABLED)) {
753 CTR0(KTR_TCPINUDP ,
754 "tcp_output: TCPinUDP not disabled for this

connection\n");

This is part of the code, in the function tcp_output, that constructs SYN
segments. First, check whether TiU is globally enabled in this VNET, and
then whether TiU has been explicitly disabled for this connection.

tcp_output.c: Flow ID assignment
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755 /* After the max retry limit we fall back to
regular TCP */

756 if (tp->t_tiucb ->tiu_setup_attempts <
V_tcp_tiumaxretries) {

757 /* Avoid reassigning flowIds on retransmits: */
758 if (tp->t_tiucb ->tiu_flowid ==

TCPINUDP_INVALFLOWID)
759 to.to_tiuflow = tcp_hijack_connect(tp);
760 else
761 to.to_tiuflow = tp->t_tiucb ->tiu_flowid;
762
763 CTR1(KTR_TCPINUDP , "tcp_output: flowid =%hhu\n",
764 to.to_tiuflow);
765
766 if (to.to_tiuflow != TCPINUDP_INVALFLOWID) {
767 to.to_flags |= TOF_TCPINUDP;
768 tp ->t_tiucb ->tiu_setup_attempts += 1;
769 CTR1(KTR_TCPINUDP ,
770 "tcp_output: TiU SYN attempt %u\n",
771 tp ->t_tiucb ->tiu_setup_attempts);
772 }

Attempt to reserve a flow ID for this connection, as long as this isn’t
a SYN retransmission that would exceed the configured retry limit. The
default is to only try twice, then give up on TiU.

tcp_output.c: SYN retry limit
773 } else {
774 tp ->t_hijackflags &=
775 ~( TCP_HIJACK_ACTIVE | TCP_HIJACK_PROBING);
776 CTR0(KTR_TCPINUDP ,
777 "tcp_output: exceeded max TiU SYN rxmit

limit.\n");
778 }
779 }
780 }

This code ensures TiU is disabled and no further probing will take place
if we exceeded the retry threshold (see line 756).

tcp_output.c: parallel output of TiU and TCP SYN
1386 /* NB SYN -ACK doesn ’t take this code path , hence no
1387 * special treatment for it */
1388 struct mbuf *m_tcp;
1389 int tiu_dorace = tp ->t_hijackflags &

TCP_HIJACK_PROBING;
1390 if (tiu_dorace) {
1391 /* We create a copy of the mbuf chain , since
1392 * the original chain will be consumed when it
1393 * goes down the stack */
1394 m_tcp = m_dup(m, M_NOWAIT);
1395 }
1396
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1397 error = tcp_hijack_output(m, tp->t_inpcb ->inp_options
, &ro ,

1398 ((so->so_options & SO_DONTROUTE) ?
IP_ROUTETOIF : 0),

1399 0, tp ->t_inpcb);
1400
1401 if (tiu_dorace) {
1402 /* NOP out TiU option */
1403 ip = mtod(m_tcp , struct ip *);
1404 th = (struct tcphdr *)(ip + 1);
1405 memset (( uint8_t *)(th + 1) + to.to_tiuoff ,

TCPOPT_NOP , TCPOLEN_TCPINUDP);
1406 error = ip_output(m_tcp , tp->t_inpcb ->inp_options ,

&ro ,
1407 ((so->so_options & SO_DONTROUTE) ?

IP_ROUTETOIF : 0), 0,
1408 tp->t_inpcb);
1409 }

This code is responsible for handing the segment to the TiU shim-layer.
If we are doing the Happy Eyeballs probing procedure, the segment is
duplicated and the duplicate segment’s TiU setup option is overwritten
with no-op sequences to avoid confusing any potential middleboxes, before
being handed straight to the IP layer. This code is executed sequentially on
the same thread (ensured by locking), so the TiU segment will be processed
first and should get a head start onto the wire.

The actual encapsulation and decapsulation is documented in sec-
tion 5.2.4.

Listener side SYN handling

tcp_input.c: detect TiU segments
1617 /*
1618 * We need to know if a packet came over the tunnel

when
1619 * handling the three way handshake.
1620 */
1621 if (V_tcp_hijack_enabled
1622 && (( thflags & TH_SYN) || (tp ->t_hijackflags &

TCP_HIJACK_OFFERED))) {
1623 tiu_tunneled = (m_tag_locate(m, TCP_TIUMTAG_COOKIE ,

TCP_TIUMTAG , NULL)
1624 != NULL);
1625 }

During setup, some of the code we have embedded in the main TCP
input handling needs to know if the current segment cave from the TiU
tunnel. We recognize this by checking for the presence of a tag [54] attached
to the mbuf by the decapsulation function.

tcp_input.c: parse TiU setup option
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3347 case TCPOPT_TCPINUDP:
3348 if (optlen != TCPOLEN_TCPINUDP)
3349 continue;
3350 if (ntohs (*( uint16_t *)(cp + 2)) !=

TCPOEXID_TCPINUDP)
3351 continue;
3352 to ->to_flags |= TOF_TCPINUDP;
3353 to ->to_tiuflow = cp[4];
3354 CTR1(KTR_TCPINUDP , "Saw a TCP -in -UDP enabled flag ,

flowId =%hhu\n",
3355 cp[4]);
3356 break;

Here we recognize and parse the TiU setup option.

SYN arrival: syncache_add The syncache_add function is called when
TCP receives a SYN.

tcp_syncache.c: handle incoming SYN: TiU SYN
1418 if ((to->to_flags & TOF_TCPINUDP) &&

V_tcp_hijack_enabled) {
1419 /* raise TCP -in -UDP flag */
1420 sc ->sc_flags |= SCF_TCPINUDP;
1421 /* Try to reserve flow; if fails , send invalid id
1422 * back to signal failure */
1423 if (to->to_tiuflow > TCPINUDP_MAXFLOWID ||
1424 tcp_hijack_reserveflow(inc , to ->to_tiuflow) != 0)
1425 sc ->sc_tiuflow = TCPINUDP_INVALFLOWID;
1426 else
1427 sc ->sc_tiuflow = to ->to_tiuflow;
1428 /* Mark this host as TiU capable */
1429 tcp_hc_update_tcpinudp(inc , TCP_HIJACK_CAPABLE);
1430 CTR0(KTR_TCPINUDP , "syncache_add: saw TiU option .\n")

;
1431 }

Here an incoming SYN with the TiU setup option is handled. The
offered flow id. is checked against the local map for collisions; if there
is one, it will be rejected and we will fall back to regular TCP, otherwise it
is echoed back in the SYN-ACK.

tcp_syncache.c: handle incoming SYN: late TCP SYN
1230 /* With TCP -in -UDP we send simultaneous SYNs over
1231 * both TCP and UDP , so we are bound to get dups most
1232 * the time */
1233 if (V_tcp_hijack_enabled) {
1234 int tunneled = (m_tag_locate(m, TCP_TIUMTAG_COOKIE ,

TCP_TIUMTAG , NULL)
1235 != NULL);
1236 /* XXX This check really means
1237 (TiU enabled XOR tunneled) -> drop */
1238 if (sc->sc_flags & SCF_TCPINUDP &&
1239 !tunneled) {
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1240 /* TCP SYN arriving late , silently drop */
1241 /* XXX what if this was a rxmit instead ?! */
1242 CTR0(KTR_TCPINUDP , "syncache_add: late TCP SYN ,

dropping\n");
1243 SCH_UNLOCK(sch);
1244 goto done;

Usually duplicates just trigger a retransmit and an increment of the
retransmit counter, but we need to handle that a bit differently. This first
part detects a TCP SYN arriving after a TiU SYN already created a SYN
cache entry; it will be ignored.

tcp_syncache.c: handle incoming SYN: late TiU SYN
1245 } else if ((sc->sc_flags & SCF_TCPINUDP) == 0 &&
1246 tunneled)
1247 {
1248 /*
1249 * UDP SYN arriving late , we need to
1250 * send a reply to let the other end
1251 * know we support TiU
1252 */
1253 CTR0(KTR_TCPINUDP ,
1254 "syncache_add: late UDP SYN , sending dummy

response\n");
1255 sc->sc_flags |= SCF_TCPINUDP;
1256 sc->sc_tiuflow = TCPINUDP_INVALFLOWID;
1257 syncache_respond(sc , sch , 1);
1258 sc->sc_flags &= ~SCF_TCPINUDP;
1259 SCH_UNLOCK(sch);
1260 goto done;
1261
1262 }

This is the same case for a late TiU SYN. It will be ignored, but we do
send a reply to allow the initiator to know that we in fact do support TiU.

tcp_syncache.c: handle incoming SYN: retransmission
1264 /* If we got here , this was a SYN rxmit over
1265 * the same transport as the first we saw ,
1266 * proceed to rxmit SYN -ACK */
1267 CTR2(KTR_TCPINUDP , "syncache_add: TiU dup SYN -

flags =%0x tun=%d\n",
1268 sc ->sc_flags , tunneled);
1269 }

If we get here, it really was a retransmission we received; the standard
behaviour will ensue.

SYN response: syncache_respond

tcp_syncache.c: Echo back the flow id.
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1629 if (sc->sc_flags & SCF_TCPINUDP) {
1630 /* TCP -in-UDP capability back , inform of
1631 * flowid decision */
1632 to.to_flags |= TOF_TCPINUDP;
1633 to.to_tiuflow = sc->sc_tiuflow;
1634 }

Part of the syncache_respond function, which constructs and sends
back a SYN-ACK segment. If we got an acceptable TiU flow id. offer, echo
it back using a TiU setup option.

tcp_syncache.c: divert response over TiU
1693 if (sc->sc_flags & SCF_TCPINUDP)
1694 error = tcp_hijack_output(m, sc->sc_ipopts , NULL ,

0, NULL , NULL);

This code makes sure a TiU SYN-ACK response is sent for encapsula-
tion.

SYN-ACK retransmissions: syncache_timer

tcp_syncache.c: limit number of TiU SYN-ACK retransmissions
480 if ((sc->sc_flags & SCF_TCPINUDP) && sc->sc_rxmits >

V_tcp_tiumaxretries) {
481 /* Give up UDP , might be blocked */
482 sc ->sc_flags &= ~SCF_TCPINUDP;

490 }

This is part of the syncache’s separate timeout handling code. We will
only allow a few (default: 2) retransmissions of the SYN-ACK segment over
TiU, because we might be losing those segments due to some permanent
problem, like a firewall blocking all outbound UDP traffic (or vice-versa at
the initiator’s end).

5.2.3 Initiator side SYN-ACK handling

tcp_input.c: SYN-ACK handling; TiU comes back
1655 if (V_tcp_hijack_enabled) {

1658 if ((to.to_flags & TOF_TCPINUDP) && tiu_tunneled) {
1659 tp ->t_hijackflags |= TCP_HIJACK_CAPABLE;
1660 CTR0(KTR_TCPINUDP , "tcp_input: saw TCP -in-UDP

capability\n");
1661 tcp_hc_update_tcpinudp(inc , tp ->t_hijackflags);
1662
1663 /* Other end rejected the flowid , fallback to TCP

*/
1664 if (tp->t_hijackflags & TCP_HIJACK_OFFERING &&
1665 to.to_tiuflow != tp->t_tiucb ->tiu_flowid) {
1666 tcp_hijack_disconnect(tp);
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1667 tp ->t_hijackflags &= ~( TCP_HIJACK_ACTIVE |
TCP_HIJACK_PROBING);

1668 } else {
1669 /* Tunnel confirmed */
1670 tp ->t_hijackflags |= TCP_HIJACK_ENABLED;
1671 tp ->t_hijackflags &= ~TCP_HIJACK_PROBING;
1672 CTR2(KTR_TCPINUDP , "tcp_input: tunnel confirmed

to %x "
1673 "with flowid =%d\n",
1674 inc ->inc_faddr.s_addr ,
1675 to.to_tiuflow);
1676 }
1677 } else if (! tiu_tunneled && tp->t_hijackflags &

TCP_HIJACK_PROBING) {

This is where we handle the SYN-ACK segment and determine whether
TiU or TCP should continue to be used. If it came back over TiU, the host
cache entry for the corresponding host is updated to reflect that we have
learnt that it supports TiU. Then the flow id. passed in the TiU setup option
is checked for validity. In case of an error, TiU is abandoned for the current
connection, otherwise the use of TiU has been confirmed and will be used
for the remainder of the session.

tcp_input.c: SYN-ACK handling; TCP comes back
1677 } else if (! tiu_tunneled && tp->t_hijackflags &

TCP_HIJACK_PROBING) {
1678 /* Got SYN -ACK back over TCP => TCP
1679 * won the race this time */
1680 tcp_hijack_disconnect(tp);
1681 tp->t_hijackflags &= ~( TCP_HIJACK_ACTIVE |

TCP_HIJACK_PROBING);
1682 CTR1(KTR_TCPINUDP , "tcp_input: TCP won SYN -race

connecting to %x\n",
1683 inc ->inc_faddr.s_addr);
1684 }

This is what happens in the opposite case, of a TCP SYN-ACK. TiU will
not be used any more for the remainder of this session.

tcp_input.c: late TiU SYN arrival
2207 if (tiu_tunneled && (tp->t_hijackflags &

TCP_HIJACK_ACTIVE) == 0) {
2208 /* UDP lost , but endpoint supports TiU */
2209 tp->t_hijackflags |= TCP_HIJACK_CAPABLE;
2210 tcp_hc_update_tcpinudp(inc , tp ->t_hijackflags);
2211 CTR1(KTR_TCPINUDP , "tcp_input: endpoint %x supports

TCP -in-UDP\n",
2212 inc ->inc_faddr.s_addr);
2213 goto drop;
2214 }

Here we detect a TiU SYN segment at a time we have already decided
to use TCP. The capability of the other end is cached and the segment
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otherwise ignored.

Listener side handshake conclusion

tcp_input.c: end of three-way-handshake: TiU confirmed
2446 if (V_tcp_hijack_enabled) {
2447 if (tiu_tunneled && (tp->t_hijackflags &

TCP_HIJACK_OFFERED)) {
2448 tp ->t_hijackflags |= TCP_HIJACK_ENABLED;
2449 tp ->t_hijackflags &= ~TCP_HIJACK_OFFERED;
2450 CTR2(KTR_TCPINUDP , "tcp_input: 3WHS succeeded ,

tunnel to "
2451 "%x up on flowid %d.\n", inc ->inc_faddr.

s_addr ,
2452 tp ->t_tiucb ->tiu_flowid);
2453 }

2456 }

Here the listener receives the third segment of the three-way-handshake
(ACK) over TiU after having been offered a TiU tunnel, so the TiU
encapsulation is confirmed at the server side.

tcp_syncache.c: save TiU state from SYN cache into TCB
927 #ifdef TCP_IN_UDP
928 /*
929 * Copy in TCPinUDP state we negotiated.
930 */
931 if (sc->sc_flags & SCF_TCPINUDP) {
932 tp ->t_hijackflags |= TCP_HIJACK_OFFERED;
933 tp ->t_tiucb ->tiu_flowid = sc ->sc_tiuflow;
934 }
935 #endif

This code is part of the function syncache_socket, which creates the
permanent data structures representing a TCP connection’s state upon a
three-way-handshake concluding successfully. We cache the TiU flow id.
in the SYN cache, so we must update the newly created TCB with it. The
TiU state at this point is offered, which is necessary for further processing
in the main TCP input path to make the right choices.

5.2.4 Encapsulation

In the encapsulation step proper, the TCP segment header is rewritten as
described in section 3.2. Then the segment is passed as outgoing payload
data to UDP.

Proper TCP segments will be reconstructed before being passed to
normal TCP processing upon reception at the destination. This involves
splicing out the UDP header and rewriting both the IP and TCP headers –
the FreeBSD transport layer expects to be presented with a full IP datagram.
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The encapsulation and decapsulation steps introduce some minor delay
into packet processing, notably due to having to carry out some additional
copy operations on the message buffers in order to rewrite them.

It would have possible to alleviate this slightly by embedding the
implementation deeper within the existing TCP and UDP implementation,
however we have avoided this to reduce the complexity of the code.

Encapsulation preparation: segment construction

tcp_output.c: copy from socket buffer
1004 #ifndef TCP_IN_UDP
1005 if (len <= MHLEN - hdrlen - max_linkhdr) {
1006 m_copydata(mb, moff , (int)len ,
1007 mtod(m, caddr_t) + hdrlen);
1008 m->m_len += len;
1009 } else
1010 #endif /* TCP_IN_UDP */
1011 {
1012 m->m_next = m_copy(mb, moff , (int)len);
1013 if (m->m_next == NULL) {
1014 SOCKBUF_UNLOCK (&so ->so_snd);
1015 (void) m_free(m);
1016 error = ENOBUFS;
1017 sack_rxmit = 0;
1018 goto out;
1019 }
1020 }

Copy the appropriate amount of data from the upper layer socket buffer
into the mbuf we are constructing the current segment in. Mbufs are buffers
with attached meta-data that can be chained together, a data structure used
throughout the network stack. Normally, TCP will append data into the
first mbuf if there is enough space left in it, after the IP and TCP headers
as well as space reserved for the Ethernet link layer header, to hold the
amount of data we are about to send. When TiU is enabled in the kernel
build, we change this behaviour to always copy data into a new mbuf,
which is then chained onto the one containing the headers. This way,
we can minimize the amount of buffer copying in the encapsulation step,
because we will only need to move the relatively short TCP header in order
to fit the UDP header in, without having to touch payload data. 4

Diversion to encapsulation

tcp_output.c: output to TiU/IP
1375 #ifdef TCP_IN_UDP
1376 if (V_tcp_hijack_enabled && (tp ->t_hijackflags &

TCP_HIJACK_ACTIVE))

4It should be noted here that there may be “gaps” at the beginning and end of an mbuf’s
data field, but not in the middle of it.
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1377 {

1397 error = tcp_hijack_output(m, tp->t_inpcb ->inp_options
, &ro ,

1398 ((so->so_options & SO_DONTROUTE) ?
IP_ROUTETOIF : 0),

1399 0, tp ->t_inpcb);

1410 } else
1411 #endif /* TCP_IN_UDP */
1412 {
1413 error = ip_output(m, tp ->t_inpcb ->inp_options , &ro,
1414 ((so->so_options & SO_DONTROUTE) ? IP_ROUTETOIF

: 0), 0,
1415 tp ->t_inpcb);
1416 }

At this point, the segment has been constructed fully. Determine
whether to output it to IP as normal, or divert it through the TiU
encapsulation routine. We have omitted code covered in section 5.2.2.

Encapsulation

Actual encapsulation of the segment is performed by the tcp_hijack_output
function.

tcp_hijack.c: initial encapsulation checks
452 int
453 tcp_hijack_output(struct mbuf *m, struct mbuf *opt ,

struct route *ro , int flags ,
454 struct ip_moptions *imo , struct inpcb *inp)
455 {
456 int error = 0;
457 struct ip *ip = NULL;
458 struct in_addr src , dst;
459 struct sockaddr_in sin;
460 struct tcpcb *tp = NULL;
461 uint8_t flowid = TCPINUDP_INVALFLOWID;
462
463 if (! V_tcp_hijack_enabled) {
464 return ENETDOWN;
465 }
466
467 if (inp != NULL) {
468 tp = intotcpcb(inp);
469 if (tp != NULL)
470 flowid = tp ->t_tiucb ->tiu_flowid;

477 }
478
479 if (! PFIL_HOOKED (& V_tiu_pfil_hook))
480 goto rewrite;
481
482 if (pfil_run_hooks (& V_tiu_pfil_hook , &m, NULL , PFIL_OUT

, inp)) {
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483 CTR0(KTR_TCPINUDP , "tcp_hijack_output: pfil ate our
packet !\n");

484 return IPPROTO_DONE;
485 }

Do some sanity checks and find the flow id. of this connection. Before
rewriting the segment, feed it into the pfil framework, which will let
SIFTR (see section 6.1.2) trace it.

tcp_hijack.c: header rewrite and UDP pass-down
487 rewrite:
488 /* Copy out src and dst addresses from IP header , then

rip it off */

492 ip = mtod(m, struct ip *);
493 src = ip->ip_src;
494 dst = ip->ip_dst;
495 m_adj(m, sizeof(struct ip));
496
497 memset (&sin , 0, sizeof(struct sockaddr_in));
498 sin.sin_family = AF_INET;
499 sin.sin_port = htons(V_tcp_hijack_port);
500 sin.sin_addr = dst;
501 sin.sin_len = sizeof(struct sockaddr_in);

512 tcp_hijack_thcomp(m, flowid , (tp != NULL && tp ->t_state
>= TCPS_ESTABLISHED));

520 error = udp_usrreqs.pru_send(V_tcp_hijack_tsock , 0, m,
(struct sockaddr *)&sin ,

521 NULL , curthread);
522 CTR1(KTR_TCPINUDP , "tcp_hijack_output: UDP returned %d\

n", error);
523 return (error);
524 }

Extract the IP addresses from the IP header, and remove it; UDP will
all one instead. The actual rewriting is performed by a helper function,
tcp_hijack_thcomp which we present below. Finally, pass the modified
packet buffer into UDP as payload. It will not receive any special handling
in the UDP transmission code path.

tcp_hijack.c: header rewrite, common case
404 static __inline void
405 tcp_hijack_thcomp(struct mbuf *m, uint8_t flowid , int

rewrite)
406 {
407 struct tcphdr *th;
408 uint8_t swapb [4]; /* For reordering FIXME magic

number? */
409
410 th = mtod(m, struct tcphdr *);

415 if (rewrite) {
416 /* Encode flowid (4 highest bits into reserved bits ,

lowest
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417 * bit into URG flag) */
418 th ->th_x2 = (flowid >> 1); /* 4 highest bits */
419 /* lowest bit; can I make a bitwise expression? */
420 if (flowid & 1) {
421 th ->th_flags |= TH_URG;
422 } else {
423 th ->th_flags &= ~TH_URG;
424 }
425
426 /* Reorder offset , overwriting ports */
427 bcopy(TCPHDR_OFF(th), &th ->th_sport , sizeof(swapb));
428
429 /* Overwrite Urgent Pointer + Checksum fields by

moving up
430 * whatever comes after (options) */
431 if (m->m_len > sizeof(struct tcphdr)) {
432 bcopy(th + 1, TCPHDR_OFF(th), m->m_len - sizeof(

struct tcphdr));
433 }
434
435 m->m_len -= 8; /* Length of cksum + urgptr + {s,d}

ports fields */
436 m->m_pkthdr.len -= 8;

Here we see how the tcp_hijack_thcomp routine modifies the header to
the format presented in section 3.2, for the common, non-SYN/SYN-ACK
case.

tcp_hijack.c: header rewrite, SYN/SYN-ACK case
437 } else {
438 th ->th_off = TCPINUDP_SETUPSEGMENT;
439
440 /* Swap ports and offset ... */
441 bcopy(&th ->th_sport , swapb , sizeof(swapb));
442 bcopy(TCPHDR_OFF(th), &th ->th_sport , sizeof(swapb));
443 bcopy(swapb , TCPHDR_OFF(th), sizeof(swapb));
444 }
445 }

The final part of the routine only swaps the ports and offset-row to
produce the setup header format in figure 3.3.

Receive side UDP handling

udp_usrreq.c: redirect TiU segments into TiU decapsulation routine
323 /* Detect TCP -in -UDP tunnel receive */
324 if (V_tcp_hijack_enabled && inp ->inp_socket ==

V_tcp_hijack_tsock) {
325 CTR1(KTR_TCPINUDP , "TCP -in-UDP received tunneled data

(%u bytes)... \n",
326 m_length(n, NULL));
327
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328 int eredir;
329 /* Drop lock before continuing */
330 INP_RUNLOCK(inp);
331 eredir = tcp_hijack_input (&n, &off , IPPROTO_TCP);
332 CTR1(KTR_TCPINUDP , "udp_append: eredir =%d.\n", eredir

);
333
334 /* Reacquire lock because udp_input unlocks it */
335 /* TODO change this behaviour? */
336 INP_RLOCK(inp);
337 return;

The function udp_append usually appends the payload attached to an
incoming datagram to the end of the socket buffer. We hook this to instead
divert datagrams that contain TiU encapsulated TCP segments into our
decapsulation code, which will subsequently pass it into the TCP stack.

udp_usrreq.c: detect ICMP errors destined for TiU endpoint
796 /* TCPinUDP tunnel errors need
797 * special handling: */
798 /* XXX: Tunnel socket doesn’t get bound to
799 * each destination , hence no inp match for it */
800 if (V_tcp_hijack_enabled &&
801 uh->uh_dport == htons(V_tcp_hijack_port)) {
802 CTR0(KTR_TCPINUDP , "ICMP error matched tunnel");
803 tcp_hijack_ctlinput(ip , inetctlerrmap[cmd]);
804 } else {

Sometimes we might get a response back from the listener side in the
form of an ICMP “Connection Refused” error. This normally means the
port was closed. Obviously, if the TiU port is not open, there can be no TiU
tunnel. Here we detect and properly handle such error feedback within the
udp_common_ctlinput function.

TCP error responses

tcp_subr.c: capture RST segments that should be encapsulated
738 if (m_tag_locate(m, TCP_TIUMTAG_COOKIE , TCP_TIUMTAG ,

NULL) != NULL ||
739 (tp != NULL && tp ->t_hijackflags &

TCP_HIJACK_ENABLED))
740 tcp_hijack_output(m, NULL , NULL , ipflags , NULL , inp

);

Sometimes a host may respond to a connection attempt or other
message with a reset, e.g. if a port is closed or the connection becomes
completely desynchronized. These resets are handled by a special function,
tcp_respond, which sends the appropriate response by checking the
header of the segment that triggered the response. Therefore, we must add
another hook for TiU encapsulation here, based on detecting the TiU mbuf
tag which the decapsulation mechanism appends to all incoming segments.
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Decapsulation

tcp_hijack_input is the function that receives UDP datagrams that are
identified as being destined for the tunnel endpoint.

tcp_hijack.c: UDP decapsulation
645 int
646 tcp_hijack_input(struct mbuf **mp, int *offp , int proto)
647 {
648 int error = 0;
649 struct mbuf *m = *mp;
650 caddr_t ip; /* We want to do ptr arithmetic by
651 * the byte with these */
652 caddr_t ip_orig;
653 struct ip *ip_hdr;
654 struct tcphdr *th;
655 int inflated;
656 int off = *offp; /* This will be set to the IP hdr
657 * length */
658 uint8_t flowid;
659 int rewritten;
660 struct tcp_tiumap *map = NULL;
661 struct tcp_tiumtag *tag;
662 struct inpcb *inp = NULL;

667 /* Relocate IP header , overwriting UDP header */
668
669 ip_orig = mtod(m, caddr_t);

674 ip = (ip_orig + sizeof(struct udphdr));
675 CTR2(KTR_TCPINUDP , "ip=%p src=%p\n", ip, ip_orig);
676 memmove(ip, ip_orig , off);
677 m->m_data = ip;
678 m->m_len -= sizeof(struct udphdr);
679 m->m_pkthdr.len -= sizeof(struct udphdr);

First, the UDP header is removed.

tcp_hijack.c: rewrite back to TCP format
684 /* Inflate the TCP header to be as normal */
685 inflated = tcp_hijack_thinfl(mp , off , &flowid , &

rewritten);
686 if (inflated == -1) {
687 /* mbuf will have been freed in _thinfl */
688 CTR0(KTR_TCPINUDP ,
689 "tcp_hijack_input: inflater could not rewrite

header;abort\n----\n");
690 error = IPPROTO_DONE;
691 *mp = NULL;
692
693 return (error);
694 }

The tcp_hijack_thinfl routine does the hard work of rewriting the
header. If it encountered invalid input, it will have freed the buffer and we
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can return.

Reverse rewrite We now jump into the actual (reverse) rewrite:

tcp_hijack.c: prepare buffer
533 static __inline int
534 tcp_hijack_thinfl(struct mbuf **mp , int off , uint8_t *

flowid , int *rewritten)
535 {
536 struct tcphdr *th;
537 struct mbuf *m = *mp;
538 caddr_t ip;
539 int tcplen , expectedsize;
540 uint8_t swapb [4];

545 ip = mtod(m, caddr_t);
546
547 /* TCP header might be in next mbuf ... */
548 if (m->m_len < off + 1) {

550 /* Check if there is actually another (filled) mbuf
*/

551 if (m->m_next == NULL || m->m_len < 1)
552 return -1;
553 th = (struct tcphdr *)(m->m_next ->m_data);
554 } else
555 th = (struct tcphdr *)(ip + off);
556
557 if (TCPHDR_REWRITTENOFF(th) == TCPINUDP_SETUPSEGMENT) {
558 *rewritten = 0;
559 expectedsize = sizeof(struct tcphdr);
560 } else {
561 *rewritten = 1;
562 /* -8 because we compress by that much (TODO get rid

of magic number !) */
563 expectedsize = sizeof(struct tcphdr) - 8;
564 }

569 /*
570 * Pull up TCP header , which might be in the next mbuf.
571 * This will save an m_pullup in tcp_input when that is

the
572 * case.
573 */

575 if ((m = m_pullup(m, expectedsize + off)) == NULL) {
576 /* Ouch , this was a bad packet. m_pullup freed m for

us. */
577 return -1;
578 }
579
580 /* In case there was a realloc in m_pullup we have to

do this: */
581 *mp = m;
582 ip = mtod(m, caddr_t);
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583 th = (struct tcphdr *)(ip + off);
584
585 /* length of TCP segment present in first mbuf */
586 tcplen = m->m_len - off;

Locate header offsets within the datagram. The buffer is adjusted, if
necessary, so that the entire TCP fixed TCP header is located within the first
mbuf. This might have to be repeated if we are unlucky and TCP options
end up split between two mbufs, but it is not possible to know that without
beginning to parse the TCP header.

tcp_hijack.c: rewrite header: common case
588 if (* rewritten) {
589 /* Move TCP opts + anything after down 8 bytes */

595 if (m->m_len > (expectedsize + off)) {
596 bcopy(TCPHDR_OFF(th), th + 1, tcplen - sizeof(

struct tcphdr) + 8);
597 }
598 memset (&(th->th_sum), 0, 4); /* Zero out checksum +

urgentptr */
599 m->m_len += 8; /* Length of inflated fields */
600 m->m_pkthdr.len += 8;
601
602 /* Put offset and friends back where TCP expects them

*/
603 bcopy(&th ->th_sport , TCPHDR_OFF(th), sizeof(swapb));
604
605 *flowid = th->th_x2 << 1;
606 if (th->th_flags & TH_URG) {
607 *flowid +=1;
608 th ->th_flags &= ~TH_URG;
609 }
610
611 if (* flowid > TCPINUDP_MAXFLOWID) {
612 m_freem(m);
613 *mp = NULL;
614 return -1;
615 }

Rewrite the non-SYN/SYN-ACK header format into regular TCP
format.

tcp_hijack.c: rewrite header: SYN/SYN-ACK
616 } else {
617 /* Swap ports and offset etc */
618 bcopy(TCPHDR_OFF(th), swapb , sizeof(swapb));
619 bcopy(&th ->th_sport , TCPHDR_OFF(th), sizeof(swapb));
620 bcopy(swapb , &th->th_sport , sizeof(swapb));
621
622 /* Recalculate what offset should be */
623 /*
624 * NB! Uses length of *whole* mbuf chain , we assume
625 * there won’t be any data anyway when using the
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626 * magic offset
627 */
628 th->th_off = (m_length(m, NULL) - off) / 4;
629 }

635 return (* rewritten ? 8 : 0);
636 }

If this was a SYN or SYN-ACK, just swap the reordered fields back
around. Because we overwrite the real offset value with a special value
(4), we must infer what the offset really should be. As the comment
implies, we assume that the entire datagram is header information; when
we generate such segments, that is true. If someone else were to generate
them differently, any discrepancies will be caught be input validation code
in the main TCP input code path. Finally, let the caller know if this was a
setup or common segment.

Demultiplexing At this point, we have a partially reconstituted TCP
segment. The next big job is to consult the flow id. to port pair map in
order to insert the correct port numbers.

tcp_hijack.c: demultiplex flow id. to port pair
696 /* Fix IP total length field to reflect the removed UDP

header: */
697 /* old m might no longer be valid after decompression

*/
698 m = *mp;
699 ip_hdr = mtod(m, struct ip *);
700 ip_hdr ->ip_len = htons(ntohs(ip_hdr ->ip_len) - sizeof(

struct udphdr) + inflated);
701 ip_hdr ->ip_p = IPPROTO_TCP; /* Or else *_respond get

confused */
702
703 if (rewritten) {
704 /* Set ports based on flowid lookup */
705 TCP_TIUMAPINFO_RLOCK(V_tcp_tiumapinfo);
706 map = tcp_tiumap_lookup(ip_hdr ->ip_src , ip_hdr ->

ip_dst);
707 TCP_TIUMAPINFO_RUNLOCK(V_tcp_tiumapinfo);
708
709 if (map == NULL) {

712 m_freem(m);
713 *mp = NULL;
714 return IPPROTO_DONE; /* Is this right? */

716 }
717
718 th = (struct tcphdr *)(ip_hdr + 1);
719
720 TCP_TIUMAP_RLOCK(map);
721 if (map ->tum_flow[flowid ].fport == 0) {
722 TCP_TIUMAP_RUNLOCK(map);
723 m_freem(m);

76



724 *mp = NULL;

728 return IPPROTO_DONE;
729 }
730 th ->th_sport = map ->tum_flow[flowid ].fport;
731 th ->th_dport = map ->tum_flow[flowid ].lport;
732 if (map ->tum_flow[flowid ].tp != NULL)
733 inp = map ->tum_flow[flowid ].tp->t_inpcb;
734 TCP_TIUMAP_RUNLOCK(map);
735 }

First of all, the length and protocol type fields of the IP header are
adjusted. Then, if this is not a setup segment (recall that those actually
carry full port numbers), locate the correct mapping table for the given
pair of source and destination addresses. The directory of such maps is
protected by a “master lock” called mapinfo. Notice how we are using
reader/writer locks here; this locking mechanism allows several threads
to gain simultaneous read-only access to shared resources. If a mapping
table was located, it is consulted and if there is a match for the flow id. of
the segment, the corresponding port pair is written into the header. Each
per-host-pair map is protected by a separate lock, reducing lock contention
between threads servicing packets coming from different associations.

tcp_hijack.c: final adjustments
742 /*
743 * Use the hardware -offloaded checksumming flags to

convince
744 * TCP that the checksum was okay.
745 */
746 m->m_pkthdr.csum_flags |= (CSUM_DATA_VALID |

CSUM_PSEUDO_HDR);
747 m->m_pkthdr.csum_data = 0xffff; /* Magic value */
748
749 tag = (struct tcp_tiumtag *) m_tag_alloc(

TCP_TIUMTAG_COOKIE , TCP_TIUMTAG ,
750 sizeof(struct tcp_tiumtag) -
751 sizeof(struct m_tag), M_NOWAIT);
752 /*
753 * We need tags to work out states on conn.

establishment ,
754 * drop if we can’t tag
755 */

757 if (tag != NULL) {
758 tag ->tiu_map = map;
759 m_tag_prepend(m, (struct m_tag *)tag);
760 } else {

762 return IPPROTO_DONE;
763 }

Before passing the now reconstructed segment along to TCP, two things
need to be done: the checksum must be reset in such a manner that TCP
will accept it, and we need to append a so-called tag to the mbuf to be able
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to easily identify this segment as having been encapsulated, for reasons
explained above. It would be possible to simply recompute the checksum
of the packet after modifying it, but that would be wasteful – after all, UDP
(and IP) already verified checksums. The solution is to set a special value
that will always pass the checksum test, along with a flag used by hardware
checksum offloading to indicate the checksum already was checked.

tcp_hijack.c: hook SIFTR and pass up to TCP
765 if (! PFIL_HOOKED (& V_tiu_pfil_hook))
766 goto passup;
767
768 /* SIFTR needs a read lock: */
769 if (inp != NULL)
770 INP_RLOCK(inp);
771 if (pfil_run_hooks (& V_tiu_pfil_hook , &m, NULL , PFIL_IN ,

inp)) {

773 return IPPROTO_DONE;
774 }
775 if (inp != NULL)
776 INP_RUNLOCK(inp);
777
778 passup:
779 error = tcp_input(mp , &off , IPPROTO_TCP);
780
781 return (error);

783 }

The last action done by the decapsulation routine is to optionally send
the segment through SIFTR, if it is enabled. Note that in this case, we
acquire a lock on the Internet Protocol Control Block (which is a superset of
the TCB, containing state information for IP as well), which we already held
in the equivalent section of the encapsulation routine. SIFTR obviously
needs such a lock, since it will inspect internal connection state. Finally, the
segment is passed into the main TCP input processing function, tcp_input.

5.2.5 Connection teardown

The TIMEWAIT state

After a TCP connection closes, the connection is put into a special
TIMEWAIT state to make sure that the other end really has understood that
the connection is closed. In FreeBSD, connection state is actually modified
quite heavily during this state transition; the normal TCB is transferred
into a special structure for this state, which conserves memory. In order to
properly clean up after TiU connections, we must make sure TiU state is
included in that remnant data structure.

tcp_timewait.c: Save TiU state
316 tw->tw_flags = tp->t_hijackflags; /* TCPinUDP state */

In tcp_twstart, we save the TiU state.
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tcp_timewait.c: Divert responses in TW into the tunnel
608 if (tw->tw_flags & TCP_HIJACK_ENABLED)
609 error = tcp_hijack_output(m, inp ->inp_options , NULL

,
610 ((tw->tw_so_options & SO_DONTROUTE) ?
611 IP_ROUTETOIF : 0),
612 NULL , inp);
613 else

Sometimes the other end in fact did not get the message that we wanted
to close, and will send more messages that require a response. This piece
of code in tcp_twrespond makes sure that if the connection ran over TiU,
then those responses are sent through the TiU tunnel.

5.2.6 Housekeeping routines

The tcp_hijack.c file contains a few hundred source lines of code
of additional routines that perform various “housekeeping duties” like
maintaining the mapping tables and so on. We opt not to detail these
here, as doing so would not add much to the understanding of the
implementation.

There is also code that deals with setting and getting the TiU socket
option in tcp_usrreq.c.

5.2.7 Implementation particularities

Optimizations

We will detail a few important optimizations that we made in order to
ensure TiU performance is acceptable.

Checksum calculations Per-byte overheads have long been known to
dominate the total TCP processing overhead, as shown originally by Clark
et al. [20]. While memory copying operations make up the bulk of this
category, the data checksumming operation is a significant contributor to
overhead. In a more recent study, Chase et al. [18] reaffirm this by showing
that checksum offloading to hardware yields a significant performance
boost.

Therefore our implementation must take care to handle checksumming
efficiently and avoid redundancy, both with respect to computation and
header space occupied in the generated packets.

Only the TCP pseudo-header checksum will be calculated for segments
going out over the tunnel. This is because FreeBSD defers calculating the
full packet checksums until packets are about to be handed down from
the IP layer to the link layer. Indeed, if there is hardware checksumming
support, it is further deferred until it hits the NIC.

In our case, the actual checksumming will be done on the UDP
datagram, both on the send and receive paths. It will possibly be calculated
in hardware if the NIC supports UDP checksum offloading. Since our shim
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layer does not receive an incoming tunneled datagram if the checksum
does not match, we set flags usually employed by hardware TCP checksum
offload to signal to TCP that it does not need to verify the checksum any
further.

Buffer copying As noted in the previous section, the largest overhead in
TCP processing is caused by copying data between memory buffers. The
conventional BSD TCP implementation will perform at least three copying
operations: first, the data is copied from the application buffer in userland
to the socket buffer in kernel memory. This is mainly done to provide
isolation between userspace and kernel memory for memory protection
reasons. Later, TCP segments the data by copying it from the socket
buffer into a temporary mbufchain in which the segment, along with the
encapsulating IP packet and link layer frame, will be constructed within.
Finally, the NIC device driver copies the end result into the NIC’s on-board
hardware buffer.

In order not to introduce any unnecessary additional copying-related
overhead, TCP-in-UDP is carefully implemented to carry out as few copy
operations as possible.

On the sending path, we enforce our own header splitting by never
allowing payload data to be copied into the first mbuf, see section 5.2.4.

When rewriting the TCP header, the rearranging of field ordering can be
achieved by block copy instead of more expensive modifications to single
fields.

On the receive path it is harder to avoid copying operations. The
encapsulated TCP header will be treated as part of the payload by the lower
layers of the network stack, yet we must ensure it is located in its entirety
in the first mbuf before handing it on, as TCP expects this. Apart from this,
we use block copying and zeroing to rewrite much of the header back to its
normal form as efficiently as possible.

5.3 Coupled Congestion Control

5.3.1 Overview

The coupled congestion control implementation could be separated en-
tirely from the TCP-in-UDP encapsulation. It would work fine without the
tunneling, as long as no multi-path routing takes places. However, both
because multi-path routing has become so common in practice, and to sim-
ply the coupling decision logic, we have decided to directly tie our current
implementation with TiU.

Similarly to the implementation of TiU, we have sought to implement
the FSE as non-intrusively as possible. To that effect, we leveraged the
modular congestion control framework [40] introduced in FreeBSD 9.

In this prototype, the FSE is only available as a pluggable congestion
control module, which is a modified version of the “New Reno” module.
Again, this is in part due to the fact we were contemplating FSE designs
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that were tightly integrated with the internal workings of the congestion
controller, as we previously discussed in section 4.3. The passive FSE
design we opted for in the end could probably lend itself to generalization
to almost any congestion control algorithm, however.

5.3.2 Flow State Exchange

The actual Flow State Exchange itself is implemented in the file cc_fse.c.
We will now present the most important parts of that implementation.

Registering

The function cc_fse_register implements algorithm 1 on page 51.

cc_fse.c: register flow
268 struct fse_flow*
269 cc_fse_register(struct inpcb *inp)
270 {
271 struct fse_flow *flow;
272 struct tcpcb *tcb;
273
274 flow = malloc(sizeof(struct fse_flow), M_FSE , M_NOWAIT|

M_ZERO);
275
276 if (flow == NULL)
277 goto out;
278
279 tcb = intotcpcb(inp);
280
281 flow ->f_p = tcb ->t_fse_prio;
282 flow ->f_inp = inp;
283
284 FSE_STATE_WLOCK(V_cc_fse_state);
285 flow ->f_fi = V_cc_fse_state.fse_next_fid ++;
286
287 /* The rest of the flow data MUST be set BEFORE

grouping! */
288 cc_fse_group(flow);
289 CTR6(KTR_FSE , "cc_fse_register: new flow %u (%p), tcb=%

p, fg=%p (%u/%u flows)",
290 flow ->f_fi , flow , tcb , flow ->f_fg , flow ->f_fg ->

fg_num_coupled ,
291 flow ->f_fg ->fg_membercount);
292 FSE_STATE_UNLOCK(V_cc_fse_state);
293 out:
294 return flow;
295 }

First, storage is allocated to store flow-specific state information. State
information is copied from the TCB, before a call to cc_fse_group takes
care of joining the flow to the appropriate flow group:

cc_fse.c: find or create flow group
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223 static struct fse_fg*
224 cc_fse_group(struct fse_flow *f)
225 {
226 struct fse_fg *fg;
227 struct fse_fg_head *fgt_head;
228 struct tcpcb *tp;
229
230 FSE_STATE_WLOCK_ASSERT(V_cc_fse_state);
231
232 INP_LOCK_ASSERT(f->f_inp);
233 tp = intotcpcb(f->f_inp);
234 fg = cc_fse_lookup_addrs(f->f_inp ->inp_faddr , f->f_inp

->inp_laddr);
235 if (fg == NULL) {
236 fg = malloc(sizeof(struct fse_fg), M_FSE , M_NOWAIT|

M_ZERO);
237
238 if (fg == NULL) {

241 return NULL;
242 }
243
244 rw_init_flags (&fg->fg_memberslock , "FSE FG lock",

RW_RECURSE);
245 LIST_INIT (&fg->fg_members);
246
247 fgt_head = &V_cc_fse_state.fse_fgtable[ \
248 FSE_FG_ADDRHASH(f->f_inp ->inp_faddr.s_addr ,
249 f->f_inp ->inp_laddr.s_addr ,
250 V_cc_fse_state.fse_fgtable_mask)];
251 LIST_INSERT_HEAD(fgt_head , fg, fg_fgte);
252 }

A flow group (FG) is located by host-address-pair, and if none is found
a new one is instantiated.

cc_fse.c: join flow to flow group
254 FSE_FG_MBR_WLOCK(fg);
255 LIST_INSERT_HEAD (&fg ->fg_members , f, f_fge);
256 fg->fg_membercount += 1;
257 f->f_fg = fg;
258
259 if (tp->t_hijackflags & TCP_HIJACK_ENABLED)
260 cc_fse_couple(f);
261
262 getmicrouptime (&fg ->fg_lastupdate);
263 FSE_FG_MBR_UNLOCK(fg);
264
265 return fg;
266 }

The joining flow is added to the FG’s member list. We do not actually
add the flow’s congestion control state to the aggregate before making a
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coupling decision on line 259. This decision will be reconsidered at every
update the flow makes.

This is a slight deviation from the algorithm as we presented it in
algorithm 1 on page 51, but it makes management of FGs much simpler in
practice to always register flows with them for the entire lifetime of every
flow.

Deregistering

When a flow ends, it makes a call to cc_fse_deregister:

cc_fse.c: deregister flow
297 void
298 cc_fse_deregister(struct fse_flow *f)
299 {
300 struct fse_fg *fg;
301
302 fg = f->f_fg;
303
304 FSE_FG_MBR_WLOCK(fg);
305 LIST_REMOVE(f, f_fge);
306 fg ->fg_membercount -= 1;
307 cc_fse_decouple(f);
308 getmicrouptime (&fg ->fg_lastupdate);

314 FSE_FG_MBR_UNLOCK(fg);
315
316 free(f, M_FSE);
317 }

Flows always contain a pointer to their containing FG, so decoupling
and removing them is easy.

Coupling and decoupling

cc_fse.c: couple flow
131 static void
132 cc_fse_couple(struct fse_flow *f)
133 {
134 struct fse_fg *fg;
135 struct tcpcb *tcb;
136
137 tcb = intotcpcb(f->f_inp);
138
139 fg = f->f_fg;
140 FSE_FG_MBR_WLOCK_ASSERT(fg);
141
142 fg ->fg_s_p += f->f_p;
143 fg ->fg_num_coupled += 1;
144
145 if (fg->fg_num_coupled == 1) {
146 /*
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147 * FG inherits cwnd/ssthresh of first flow coupled to
148 * it.
149 * If an FG went stale , but is revived , we reuse the
150 * old params. This is temporal sharing.
151 */
152 if (fg->fg_s_cwnd == 0) {
153 fg->fg_s_cwnd = tcb ->snd_cwnd;
154 fg->fg_s_ssthresh = 0;
155 }
156 fg->fg_coco = f;
157 }

When the decision has been made to couple a flow with the ensemble,
its priority weight is added to the ensemble total. Before integrating the
congestion window and slow-start threshold, we must check if this is the
first ever flow to be coupled in this FG; in that case, the FG is bootstrapped
as specified in algorithm 1 on page 51. If the flow is becoming the only
coupled flow, but is not the first, it will actually have its state overridden by
what is stored in the FG – this is how we achieve temporal sharing. Either
way, a lone flow must flow become CoCo.

cc_fse.c: allocate cc state
159 f->f_cwnd = f->f_p * fg->fg_s_cwnd / fg->fg_s_p;
160 f->f_ssthresh = tcb ->snd_ssthresh;
161
162 if (fg->fg_s_ssthresh > 0)
163 f->f_ssthresh = f->f_p * fg ->fg_s_ssthresh / fg ->

fg_s_p;
164
165 cc_fse_writeback(f);
166 f->f_state = FSE_FLOW_COUPLED;

169 }

Now we can be sure that the FG contains valid congestion control state.
Calculate the flow’s appropriate share, and write it back to its TCB by
calling cc_fse_writeback.

Decoupling is mostly the same in reverse, the other big task here is to
elect a new CoCo if the current one is leaving:

cc_fse.c: decouple flow
171 static void
172 cc_fse_decouple(struct fse_flow *f)
173 {
174 struct fse_fg *fg;
175 struct fse_flow *fg_f , *candidate;
176 struct tcpcb *tp;
177
178 if (!(f->f_state & FSE_FLOW_COUPLED))
179 return;
180
181 fg = f->f_fg;
182 FSE_FG_MBR_WLOCK_ASSERT(fg);
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183
184 fg ->fg_s_p -= f->f_p;
185 fg ->fg_num_coupled -= 1;
186
187 if (fg->fg_coco == f) {
188 /*
189 * Select new CoCo:
190 * Pick the first flow in CA we find. If there are
191 * none , we prefer a flow in FR over one in SS.
192 */
193 candidate = NULL;
194 LIST_FOREACH(fg_f , &fg ->fg_members , f_fge) {
195 if (fg_f ->f_state & FSE_FLOW_UNCOUPLED)
196 continue;
197
198 tp = intotcpcb(fg_f ->f_inp);
199 if (candidate != NULL && (fg_f ->f_state &

FSE_FLOW_WANTED_SS)) {
200 /* Skip SS flows except if we have
201 * nothing better */
202 continue;
203 }
204
205 candidate = fg_f;
206
207 /* Flow in CA; it will do! */
208 if (!(fg_f ->f_state & FSE_FLOW_IN_FR))
209 break;
210 }
211
212 fg ->fg_coco = candidate;

215 }
216
217 f->f_state = FSE_FLOW_UNCOUPLED;

221 }

Congestion control state updates

Every time an individual flow’s congestion controller makes some kind
of update to the flow’s congestion control state, we make sure that the
cc_fse_update function gets hooked afterwards.

cc_fse.c: read state out of TCB and reconsider coupling
327 void
328 cc_fse_update(struct fse_flow *f, uint32_t flags)
329 {
330 struct tcpcb *tcb;
331 struct fse_fg *fg;
332 struct fse_flow *fg_f , *new_coco;
333 u_long cc_cwnd , cc_ssthresh;
334
335 KASSERT(f != NULL , ("updating a NULL flow"));
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336 INP_WLOCK_ASSERT(f->f_inp);
337
338 tcb = intotcpcb(f->f_inp);
339 fg = f->f_fg;
340 cc_cwnd = tcb ->snd_cwnd;
341 cc_ssthresh = tcb ->snd_ssthresh;

345 FSE_FG_MBR_WLOCK(fg);

348 if ((f->f_state & FSE_FLOW_UNCOUPLED) &&
349 tcb ->t_hijackflags & TCP_HIJACK_ENABLED) {
350 cc_fse_couple(f);

353 } else if ((f->f_state & FSE_FLOW_COUPLED) &&
354 !(tcb ->t_hijackflags & TCP_HIJACK_ENABLED)) {
355 cc_fse_decouple(f);

359 }

First, this function reads what state the native congestion controller set,
and checks if anything has changed which would require either coupling
or decoupling. In reality this will only happen during the handshake, since
the TiU implementation does not allow live migration between TiU and
regular TCP at other times.

cc_fse.c: check for special cc states
361 if (f->f_state & FSE_FLOW_COUPLED) {
362
363 /* Check if CC algo tried to go into SS */
364 if (cc_cwnd < cc_ssthresh)
365 f->f_state |= FSE_FLOW_WANTED_SS;
366 else
367 f->f_state &= ~FSE_FLOW_WANTED_SS;
368
369 /* Check if flow is currently in FR */
370 if (IN_RECOVERY(tcb ->t_flags))
371 f->f_state |= FSE_FLOW_IN_FR;
372 else
373 f->f_state &= ~FSE_FLOW_IN_FR;

The rest of routine implements algorithm 4 on page 55 and is only
executed for coupled flows. First, we check if the flow was in some special
state (i.e. slow-start or fast recovery).

cc_fse.c: non-CoCo updates
378 if (fg->fg_coco != f) {
379 if (IN_FASTRECOVERY(tcb ->t_flags)) {
380 /* Search for any other flows not in CA */
381 int non_ca = 0;
382 LIST_FOREACH(fg_f , &fg->fg_members , f_fge) {
383 if (fg_f ->f_state & FSE_FLOW_IN_FR) {
384 non_ca = 1;
385 break;
386 }
387 }
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388
389 /* Everyone else in CA, become CoCo */
390 if (! non_ca) {
391 fg ->fg_coco = f;

394 }
395 } else {

397 f->f_cwnd = f->f_p * fg->fg_s_cwnd / fg->fg_s_p;
398 if (fg->fg_s_ssthresh > 0)
399 f->f_ssthresh = f->f_p * fg ->fg_s_ssthresh / fg

->fg_s_p;
400
401 cc_fse_writeback(f);
402 goto out;
403 }
404 }

The first part of the algorithm deals with updates coming from flows
which are not currently CoCo. The implementation matches the design
closely.

cc_fse.c: CoCo update: CA or FR state
406 /* CoCo might have changed above */
407 if (fg->fg_coco == f) {

412 if (cc_cwnd > cc_ssthresh && !IN_RECOVERY(tcb ->
t_flags)) {

413 /* Normal CA update */
414 if (cc_cwnd >= f->f_cwnd) /* AI... */
415 fg ->fg_s_cwnd += cc_cwnd - f->f_cwnd;
416 else /* ..MD */
417 /* XXX Operand order significant! */
418 fg ->fg_s_cwnd = fg->fg_s_cwnd * cc_cwnd / f->

f_cwnd;
419
420 f->f_cwnd = f->f_p * fg->fg_s_cwnd / fg->fg_s_p;
421 f->f_ssthresh = cc_ssthresh;
422 if (fg->fg_s_ssthresh > 0)
423 f->f_ssthresh = f->f_p * fg ->fg_s_ssthresh / fg

->fg_s_p;
424
425 cc_fse_writeback(f);
426 } else if (IN_FASTRECOVERY(tcb ->t_flags)) {
427 fg ->fg_s_ssthresh = fg ->fg_s_cwnd / 2;

This part of the algorithm takes updates from a CoCo (which may have
been reassigned above). The formula for calculating the correct share of the
window is expressed differently than in the formal algorithm because we
only use integer arithmetic. It is technically possible to use floating point
operations within the kernel, but it is heavily discouraged as doing so is
complicated. It also hurts performance.

cc_fse.c: slow-start handling
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428 } else if (f->f_state & FSE_FLOW_WANTED_SS) {

430 /* Try to find a new CoCo not in SS */
431 new_coco = NULL;
432 LIST_FOREACH(fg_f , &fg->fg_members , f_fge) {
433 if (!(fg_f ->f_state & FSE_FLOW_WANTED_SS)) {
434 new_coco = fg_f;
435 break;
436 }
437 }

441 if (new_coco == NULL) {
442 /* Everyone in SS! */
443 fg->fg_s_ssthresh = fg ->fg_s_cwnd / 2;

447 fg->fg_s_cwnd = fg->fg_s_cwnd * cc_cwnd / f->
f_cwnd;

450 f->f_cwnd = f->f_p * fg->fg_s_cwnd / fg->fg_s_p
;

454 tcb ->snd_cwnd = max(f->f_cwnd , tcb ->t_maxseg);

457 } else {
458 fg->fg_coco = new_coco;

464 cc_fse_writeback(f);
465 }

471 }
472 }
473 }
474
475 out:
476 getmicrouptime (&fg ->fg_lastupdate);
477 FSE_FG_MBR_UNLOCK(fg);
478 }

The most complicated part of the algorithm is the appropriate response
to a CoCo that has been sent into slow-start. We must first walk the FG’s
flow list to check if all flows have been experiencing the same thing, then
either enact slow-start if that is the case, or elect a new coco if not.

Writing back congestion control state

When the FSE has computed new congestion control state values for a flow,
they are written back into the flow’s TCB by cc_fse_writeback.

cc_fse.c: write back values to TCB
116 static inline void
117 cc_fse_writeback(struct fse_flow *f)
118 {
119 struct tcpcb *tcb;
120
121 tcb = intotcpcb(f->f_inp);

127 tcb ->snd_cwnd = max(f->f_cwnd , tcb ->t_maxseg);
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128 tcb ->snd_ssthresh = max(f->f_ssthresh , tcb ->t_maxseg *
2);

129 }

Values are clamped so as not to risk stalling individual connections.

5.3.3 Setting the priority weight

The FSE priority weight can be set to some value other than the default
(which is the middle of the range) using a socket option. This is handled in
tcp_ctlinput.

tcp_ctlinput.c: set FSE priority weight
1584 case TCP_FSEPRIO:
1585 INP_WUNLOCK(inp);
1586
1587 error = sooptcopyin(sopt , &optval , sizeof optval ,
1588 sizeof optval);
1589 if (error)
1590 return (error);
1591
1592 /*
1593 * 8 bit value , for now restrict to multiples
1594 * of 2
1595 */
1596 if (optval < 1 || optval > 255 || optval % 2)
1597 return EINVAL;
1598
1599 INP_WLOCK_RECHECK(inp);
1600 tp ->t_fse_prio = optval;
1601 goto unlock_and_done;

The weight value is read, checked for validity and set. The range is
restricted to what can be stored in a single byte, and we also require it to be
a multiple of two. This leads to fewer rounding errors.

tcp_ctlinput.c: read FSE priority weight
1677 case TCP_FSEPRIO:
1678 optval = tp ->t_fse_prio;
1679 INP_WUNLOCK(inp);
1680 error = sooptcopyout(sopt , &optval , sizeof optval);
1681 break;

This snippet allows the current FSE priority weight value to be read in
userspace.

5.3.4 Implementation particularities

Hooks in “New Reno” module

Our modified version of the “New Reno” congestion control module hooks
cc_fse_update each time it has changed cwnd or ssthresh. The congestion
control module also takes care of registering and deregistering flows as
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they are created and ended. We will not detail the implementation here
because it consists of trivial changes to the original module.

Main congestion control framework changes

As the FSE needs to infer what each flow’s own congestion controller has
done, it is imperative that the call to cc_fse_update comes after all changes
have been made.

In order to satisfy this requirement, we were forced to reorder some
calls within the main congestion control framework functions (cc_*) in
tcp_input.c. We made sure this did not have other side-effects and
remained functionally equivalent.

Incremental updates

All calculations performed during updates are incremental, without the
need for costly looping in order to update the aggregate total state
variables.

Concurrency

The passive FSE designs allows us to keep relying on each TCB’s individual
locks in addition to a per-FG lock held when updating FG state. Compared
to attempts we made at updating state across TCBs directly, this makes for
a dramatically simpler implementation that is far less prone to deadlocking
bugs.
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Chapter 6

Evaluation

In this chapter, we present the experiments we carried out in order to
evaluate our TCP-in-UDP and Flow State Exchange implementations and
analyse the results thereof. Section 6.1 describes the testbed environment
we set up to perform measurements, including the synthetic cross-traffic
we generated and the tools we used. The following section detail the setup
and results of the different experiments we ran.

6.1 Testbed setup

In order to reliably evaluate the performance of the TCP-in-UDP encapsu-
lation and FSE, we ran tests on a small hardware testbed. All endpoints
running the modified code were separate physical machines. This way, we
can have confidence that the results are not influenced by timing issues
which one might expect from an entirely virtualised setup.

In order to emulate realistic network conditions, such as reasonable
transmission delay, we integrated the CORE [1] 1 network emulator into the
testbed network. Using CORE, we can easily manage a virtual network and
set various parameters. It would also be possible to emulate a much more
complex network than would be practical to set up in the lab, although this
was not necessary for our purposes. Using a traffic generator such as D-
ITG [16], we can also inject realistic background traffic into the network at
this point.

The physical machines are all identical desktop computers (Intel i7-
870 2.93GHz CPU, 8GB RAM) equipped with Gigabit Ethernet Network

1See http://www.nrl.navy.mil/itd/ncs/products/core.

Sender Router Receiver

1 Gbps 1 Gbps

Figure 6.1: Evaluation testbed physical setup
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Cross-traffic
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Figure 6.2: Emulated testbed topology

Interface Cards (NICs). These computers were arranged in a chain
topology, with the CORE emulator machine linking the two endpoints, see
figure 6.1. The endpoint machines are running our modified version of
FreeBSD, whilst the emulator machine (router) is running Ubuntu Linux2

15.04 and CORE 4.7.
All hardware acceleration features of all NICs were disabled save

for checksum offloading, since these can interfere with both network
emulation and measurements. Additionally, as discussed in section 4.4.3
our implementation is not compatible with such mechanisms anyway.

All tests were run on top of the hybrid virtual-physical dumbbell
network topology depicted in figure 6.2. Unless otherwise mentioned, the
RTT between end hosts was configured to be 100ms, the bottleneck link
was restricted to a capacity of 10Mbps and its queue was dimensioned
according to the bandwidth-delay product, yielding a queue size limit of
about 83 MTU-sized packets in this case. On Linux, CORE implements its
network emulation using a combination of the network namespaces and
traffic control (tc) kernel features. To avoid previously reported issues (see
e.g. [63]) concerning the combination of tc queueing disciplines related to
the netem network emulation subsystem responsible for emulating delays
and other disturbances, with those that provide traffic shaping (bandwidth
limitation), we made sure to apply these treatments on different virtual
links within the emulator.

6.1.1 Cross-traffic

To eliminate effects caused by synchronisation and obtain a more realistic
behaviour, we inject cross-traffic into our testbed that was generated using
the D-ITG [16] traffic generator.

To obtain cross-traffic with realistic Internet traffic behaviour, we have
made use of heavy-tailed traffic distributions. Such distributions have been
shown to model both Web [22] and more general wide-area network traffic
[34] well.

2CORE advertises support for FreeBSD, however this does not seem to be maintained
any longer - see also http://pf.itd.nrl.navy.mil/pipermail/core-users/2014-February/001472.
html. Recent versions do not run out of the box under FreeBSD and were not trivial to fix.
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The Hurst parameter of a Pareto distribution is given by

H =
3− α

2
(6.1)

where α is the shape parameter or tail index. Distributions with

0.5 < H < 1

are heavy-tailed, and
0.7 < H < 0.8

is usually recommended for traffic generation purposes [36, pp. 471–474].
In keeping with this, we configured D-ITG to generate a superpo-

sition of 11 bursty On/Off streams, with Pareto heavy-tailed on-time
distributions (H = 0.8), and exponentially distributed off-times (mean
ranging from 1 to 2 s). The packet sizes were normally distributed
(µ = 1000, σ = 200, in bytes), whilst the inter-departure times (i.e. dur-
ing on-periods) were exponentially distributed (mean ranging from 50 to
150 pps).

We chose parameters and number of superposed streams so that cross-
traffic occupied approximately half of the bottleneck link capacity, on
average. All of the cross-traffic is inelastic, i.e. it does not react to
congestion or loss in any way.

Because we had some difficulty in getting D-ITG to reliably generate
replicatable traffic sequences, we opted to prerecord packet traces instead,
which we split into 345s runs. These were played back across the bottleneck
link using the tcpreplay tool3 during measurement runs. Each run within
a measurement series saw a different trace, but the corresponding runs in
different configurations experienced the same trace.

6.1.2 Measurement methods

In order to measure the performance and behaviour of the flows in the
emulated testbed, we used a combination of tools.

On the sender machine, we used the Statistical Information For TCP
Research (SIFTR) FreeBSD kernel module [77] to observe the internal state
and dynamics of the TCP implementation. SIFTR outputs the current
values of an array of interesting TCP state variables every time a TCP
segment is received or transmitted. We slightly modified SIFTR to allow
it to place additional hooks in the appropriate places to pick up TiU-
encapsulated segments.

For analysing on-the-wire behaviour, we captured packet traces using
the tshark tool (the command-line version of the common Wireshark4

capture software), which we later analysed using a combination of the
captcp tool5 and a suite of custom Python scripts we created. We modified

3See http://tcpreplay.syn�n.net/.
4See http://www.wireshark.org.
5See http://research.protocollabs.com/captcp/.
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(a) Regular TCP (b) FSE

Figure 6.3: Congestion window size in bytes, 2 flows

(a) FSE: flow 1 (b) FSE: flow 2

(c) Regular TCP: flow 1 (d) Regular TCP: flow 2

Figure 6.4: Time sequence diagrams

captcp to add support for parsing TiU headers and fixed some bugs along
the way, see appendix A.

In order to observe the behaviour of the (virtual) bottleneck link,
we used the standard tc Linux utility to output statistics about queue
occupation and drop counts at regular intervals.

6.2 Experiments

6.2.1 Dynamic behaviour

We begin by taking a quick look the dynamic behaviour of both regular
“New Reno” TCP and our FSE-enhanced “New Reno”. Figure 6.3 graphs
the congestion window sizes of two concurrent flows that run for 300s, with
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and without the FSE, experiencing the same cross-traffic. We measure the
internal cwnd variable using SIFTR at the sender.

Unfortunately, these graphs are somewhat difficult to interpret due to
a quirk of the FreeBSD TCP implementation. To prevent bursting in fast
recovery, when changing the congestion window at the onset of that phase,
FreeBSD triggers a “mini” slow-start by temporarily moving the congestion
window lower than it is intended to be, rapidly (much faster than regular
slow-start due to the fact that the starting point is higher) ramping up to
the correct level by temporarily setting ssthresh to where cwnd should be.
This is the reason the congestion window appears to go down to 1MSS (as
after a timeout) repeatedly in figure 6.3. The authors of [5] also describe
this phenomenon.

In the interest of illustrating the actual on-the-wire behaviour, we also
plot time-sequence diagrams of the same flows in figure 6.4. These look
less interesting, but are easier to understand.

From this collection of graphs, it is clear that with the FSE, we get
smoother, more coordinated behaviour. The flows do not “fight” each
other, although the negative repercussions of such behaviour are not very
clear from this example of only two flows. The next experiment will give a
clearer picture of that.

6.2.2 Quantitative performance test
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Figure 6.5: Mean goodput in megabits per second

To quantify the performance of our implementation of “New Reno”
coupled using the FSE and compare it to that of standard TCP “New Reno”
as implemented in FreeBSD, we ran a variable number of TCP connections
in parallel and measured the following performance metrics:

95



2 3 4 5 6 7 8 9 10
Number of flows

130

140

150

160

170

180

190

M
ea

n
R

T
T

(m
s)

NewReno

TiU + FSE

Figure 6.6: Mean delay in milliseconds

• Goodput, i.e. throughput corrected for retransmissions. Measured
using the captcp tool, based on packet traces captured at the egress of
the bottleneck link.

• Delay as RTT experienced by the TCP sender. Measured using SIFTR.

• Queue filling degree at the bottleneck link, in packets. Measured by
periodic sampling at the bottleneck link.

• Loss ratio at the bottleneck link. Note that this includes cross-traffic
packets being dropped as well as TCP packets. Measured by periodic
sampling of drop count totals at the bottleneck link.

The number of flows was varied between 1 and 10 concurrent flows.
The testbed was configured as described in section 6.1 and cross-traffic
enabled. TCP flows were generated using the iperf benchmarking tool
and ran for 300s each. All flows were started within the first second of
the run. During analysis, data from this first second has been removed to
correct for different start times and to cut away the transient period. The
data plotted is based on measurement series of 10 runs each. We plot 95%
confidence intervals as error bars on all graphs.

Goodput

The mean goodput per flow is plotted in figure 6.5. We see that goodput
of flows part of the coupled ensemble only slightly trails that of the
independently congestion controlled flows, and that the gap closes with an
increasing number of concurrent flows. The fact that multiple TCP flows
are more aggressive in aggregate than a single one is well documented [23,
24], so this is an expected result.
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Figure 6.7: Mean queue length in packets

Delay and queue length

Figures 6.6 and 6.7 show the results for RTT and queue length, respectively.
We can observe that the graphs reflect the same trend, as we would expect
– aside from the 100ms propagation delay and quasi-negligible processing
delays, queueing delay constitutes the remainder of the RTT.

These graphs demonstrate the benefits of tempering the aggressiveness
of the ensemble of TCP flows. Delay is significantly reduced compared to
regular “New Reno”, and the difference grows with an increasing number
of flows. The fact that the pressure on the queue is diminished also leads to
fewer packet losses, which add a lot of delay to application layer delivery
time due to head of line blocking as well as lowering throughput.

Loss ratio

This last statement is confirmed by the plot in figure 6.8. When running
with standard TCP behaviour, the loss ratio increases nearly linearly with
the number of parallel flows, whilst it only increases very moderately when
enabling the FSE.

Overhead characterization

Runs with a single flow are not shown in the graphs because the behaviour
is identical for both standard and FSE “New Reno”. This largely validates
that our implementation is efficient. During development, profiling (on
an unoptimized binary) revealed that the processor only spent about 1%
longer in network stack when TiU was enabled, and most of that time was
spent in a “hot spot” which could be optimized further.
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Figure 6.8: Mean loss ratio at bottleneck link

6.2.3 Prioritization

In order to demonstrate the weighted prioritization mechanism we
built into the FSE, we ran streams at different prioritization ratios and
compared the effect on the throughput ratio.

The testbed was configured as in section 6.1, but cross-traffic was
disabled for this test.

We used iperf to generate two parallel 300s long flows, as in the
previously described quantitative test. Our version of iperf has been
modified to allow a configurable FSE priority weight to be assigned to each
flow. We ran the experiment 10 times for each configuration of priority
ratios.

Figure 6.9 shows the results. Please note that error bars are plotted
for all points, but only the last two are easily visible. We can see that the
measured throughput ratio nicely follows the ideal 1 : 1 relation between
ratio of priority weights to ratio of throughput achieved, except for the
lowest ratios. This increased variability at lower ratios can at least partially
be attributed to the fact that the least prioritized stream will be allocated a
very low share of the available bandwidth in those cases.

6.2.4 Transfer completion time

In this final test, we will demonstrate how the FSE could yield a clear user-
felt benefit in a common use case.

Web pages usually consist of a number of objects that need to be
requested separately from the Web server. Browsers usually do this in
parallel to reduce the time it takes to finish rendering the web page, i.e.
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Figure 6.9: Throughput ratio versus priority ratio

page load time. Shorter page load times obviously make for a better user
experience.

To simulate a situation somewhat similar to this, we will start two
file-size-limited flows in a staggered manner. First, a long flow starts,
downloading 2 megabytes of data. After 2 seconds, it is joined by a second
parallel request, this time downloading 200 kilobytes.

Figure 6.10 shows the time to complete for both flows, with varying
bottleneck link capacity and with the FSE both enabled and disabled.
Otherwise, the testbed is configured as previously described. The data
plotted is based on measurement series of 6 runs for each configuration.

When the FSE is enabled, we see that the short flow tends to complete
faster than the same request without the FSE. At the same time, the long
flow tends to take slightly longer to complete; this is expected, since it is
having to give away some of its share of the bandwidth.

The difference is not very large, however. Analysing the underlying
packet traces, we saw that the lack of pacing is causing some unfortunate
micro-bursts both when the short flow joins the ensemble, and when it
leaves again. This is in effect neutralizing much of the positive effect
the FSE could have provided, underpinning our argument that a TCP
congestion control coupling mechanism needs to be paired with a pacing
mechanism in order to fully unlock its potential.
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Chapter 7

Conclusion

We will now briefly sum up how we have answered the research questions,
explore some potential directions for further research, before finally
concluding.

7.1 Research Findings

Here is a summary of the findings we made in answering the research
questions posed in section 1.3.

Multi-path forwarding

In chapter 3 we presented the TCP-in-UDP encapsulation method,
which can successfully work around multi-path forwarding by
ensuring all packets carry the same header five-tuple.

TCP-in-UDP

This encapsulation method is designed in such a way as not to
reduce Maximum Segment Size at all, and is suited to an efficient
implementation.

TCP congestion control coupling

The TCP passive Flow State Exchange presented in chapter 4
is a highly practical and useful mechanism for performing TCP
congestion control coupling. We prove this by implementing it, as
detailed in section 5.3.

Interface

We deliver a flexible interface by simultaneously enabling our mech-
anism to be used without applications needing to have knowledge
about it, while at the same time providing extensions to the socket
options interface to meet the needs of applications which are actually
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aware of it. System administrators have full control of how the mech-
anism is applied through a series of sysctl configuration options,
with full support for FreeBSD virtualised network stacks.

Performance

The evaluation we have performed and presented in chapter 6 clearly
demonstrates that TCP-in-UDP combined with the TCP passive FSE
can deliver tangible benefits. We also show how the FSE prioritization
mechanism provides new QoS options to applications.

In answering these research questions, we have shown how TCP
congestion control coupling can be made deployable across the Internet,
entirely by making changes at the end hosts, and that there are performance
benefits to doing so.

7.2 Further work

7.2.1 Alternative encapsulation methods

While we have shown that our TCP-in-UDP encapsulation method works
in a satisfactory manner, it does have one problem: the receiver side must
be changed to be able to use it. Our solution remains gradually deployable,
in that we need no additional cooperation from other elements within the
network itself, but congestion control coupling is still restricted to being
used between hosts that have both adopted TiU.

Some alternative methods for working around the multi-path issue do
exist:

• The IPv6 flow label, which we described in section 2.2.1, can be set
at the sender side only and should ensure that all flows with the same
label are forwarded along the same path. Whether this really happens
is of today unknown, further research could uncover if this is a viable
option.

• There are many other kinds of tunneling approaches possible, and
in common use today. As long as there are no multi-path network
segments between the hosts and the tunnel endpoints, many kinds of
Virtual Private Network (VPN) tunnels ought to have the same effect
as TiU given that they operate over a single port-pair. The same can
be said about Generic UDP Encapsulation (GUE) [41]. Classifying
what existing tunneling protocols are suitable candidates for multi-
path avoidance could be an interesting topic for further investigation.

7.2.2 Improved FSE algorithm

The FSE algorithm presented and implemented in this thesis is only meant
as a proof of concept to demonstrate the potential that lies in applying
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coupled congestion control to TCP. Although we have addressed some of
the weaknesses we found (see section 2.4.4) in previous algorithms we have
studied, the algorithm could surely be improved and refined.

In particular, it would be highly beneficial to augment it with some kind
of pacing mechanism to smooth out the manner in which flows consume
large congestion window increases.

Another possible avenue for further research would be to make FSE
controlled flows more aggressive in the face of competition from other TCP
flows. The algorithm presented herein will be quite at a disadvantage if
there are a large number of regular, independently congestion controlled
TCP flows traversing the same bottleneck. In that case, it might be possible
to use an algorithm similar to MulTCP [23] or MulTFRC [24] to “gear up”
the ensemble behaviour to match that of some number of flows larger
than one, but lower than the actual number of member flows. In that
manner one could perhaps keep some of the advantages of a less aggressive
behaviour, while still competing on a more even footing with the other
regular TCP flows.

7.2.3 Pluggable TCP stacks

During the last months, the upstream FreeBSD TCP stack has seen
some interesting changes. In particular, there is a project underway to
modularize the TCP implementation [56] so that different implementations
can coexist and be selected on the fly, on a per-connection basis. It could
help a potential effort to drive adoption of the solutions we have developed
to refactor the implementation into this framework, allowing users to
sample them without having to accept an overhaul of their entire TCP
implementation.

7.3 Closing remarks

Benefits Disadvantages

Gradually deployable Requires receiver-side changes
No middlebox interference (access
to new TCP options, etc.)

No help from PEPs

Lower latency Slightly lower throughput
Support of priorities

Table 7.1: Highlighted benefits and disadvantages of TCP-in-UDP and FSE

In summing up, the TCP-in-UDP encapsulation proposed herein
overcomes the multi-path routing problem that has hindered TCP coupled
congestion control, allowing such mechanisms to practically be used across
the Internet. The main drawbacks are that this encapsulation requires
support on both ends of a connection, unlike most other TCP congestion
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control modifications, and that it introduces some (very) minor processing
overhead.

We have demonstrated how even a relatively simple, proof of concept
TCP congestion control coupling scheme based on a passive Flow State
Exchange architecture achieves improved performance based on several
metrics.

Using the TCP-in-UDP Happy Eyeballs probing and fallback mecha-
nism, we are able to deliver these advantages to unmodified applications
completely without manual intervention, and we also provided rich con-
figuration options both for applications and administrators.

The FSE weighted prioritization mechanism offers further added value
for applications, allowing them to tune the Quality of Service different
flows receive from the TCP transport layer.

In other words, we have achieved what we set out to do and created
a solution based on an efficient UDP encapsulation method, that enables
gradually deployable TCP coupled congestion control over the Internet.
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Appendix A

Source Code

The full source code of the modified FreeBSD kernel described in this
thesis can be obtained from https://bitbucket.org/kristahi/tcpinudp/src. The
relevant changes are located in the sys/netinet/ subdirectory.

All descriptions herein are made in reference to the code as it was at
revision da370ee (tagged as “thesis_final”).

Our modifications are published under the BSD license, see the source
files for full copyright and license statements.

Any inquiries about the source code or associated software may be
directed to the author by email at kristian.a.hiorth@ieee.org.

Kernel configuration

The kernel configuration files we used are located in the sys/amd64/conf/

subdirectory. In addition to the standard configurations supplied by the
upstream FreeBSD project, we defined the following:

TCPINUDP Development configuration with TCP-in-UDP, TCP CCC and
VIMAGE support. Many performance-impacting debugging features
are enabled in this configuration.

TCPINUDP-LPROF Release-like configuration with TCP-in-UDP, TCP
CCC, VIMAGE and lock profiling support.

TCPINUDP-NODEBUG Release-like configuration with TCP-in-UDP,
TCP CCC and VIMAGE support. Used to run the experiments pre-
sented in this thesis.

Utilities

In the process of developing and testing the solutions described in this
thesis, we extended the netcat and iperf utilities to interface with the
socket options we added.

netcat is part of the FreeBSD base system and the source code may be
found in the contrib/netcat subdirectory.
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A patch to the iperf FreeBSD port can be found at http://folk.uio.no/
kristahi/tcpinudp/.

In order to be able to analyse TCP-in-UDP traffic, we modified the
captcp tool and the dpkt library it depends on. In the process we
discovered and fixed defects in captcp (which were reported and accepted
upstream). For our modified source code, see https://github.com/kristahi/
captcp and https://github.com/kristahi/dpkt.
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