
Cost Efficient Batch
Processing in Amazon Cloud
Cost minimization on batch processing with deadline using
spot instances in Elastic MapReduce Cluster

Kabin Tamrakar
Master’s Thesis Spring 2016

Cost Efficient Batch Processing in Amazon
Cloud

Kabin Tamrakar

May 23, 2016

ii

Abstract

Cloud Computing provides computing and storage resources at econom-
ical price with flexibility, mobility and availability. These resources range
from small capacity to very high capacity computes. The cloud providers
also offer spare compute instances at significantly low price.

Amazon Cloud Service provider has a popular bidding scheme
on their spare computes called spot instances which can be requested with
bid price. The spot instances are vulnerable to termination at any time if
spot market price exceeds the bid price. Amazon also rents on-demand
instances which are persistent with fixed price. Spot instance price may
drop up to 90% compared to price of on-demand instance. In this project,
spot instances are resorted in task instances’ group of Amazon EMR cluster
to process batch jobs with deadline. Amazon EMR makes it convenient to
process big data by the aid of managed Hadoop framework. The processed
intermediate results in the task nodes of the cluster are lost if the spot
instances gets terminated that can cause processing delay.

The cost efficiency can be realized by exploiting non-real time
nature of batch computing for Big Data. Two algorithms are devised
for achieving cost efficient processing in Hadoop MapReduce. Both
algorithms process data in divisions such that abrupt termination of spot
instances affects that division only. Based on progress at some interval
and checkpoints, task group’s capacity is resized to complete processing
in time. Progress is completion of number of divisions of work. The first
algorithm begins with spot instances in estimated quantity. To complete
processing of all data in time, on-demand instances are employed after
threshold time. The second algorithm starts by using higher number
of spot instances than required to complete the work within deadline.
It has higher probability to utilize only spot instances because of faster
work progress. On-demand instances are deployed only in case of slow
progress. The experiments show that both algorithms minimize the cost of
processing. The second algorithm further minimizes the cost in most cases.

iii

iv

Acknowledgements

Cloud computing is one of the hotcakes of the modern information
technology. Working on this thesis, I learnt a lot about recent cloud services
and system automation. It has opened doors for me to research more in this
field during my professional life.

First of all, I would like to express my sincere gratitude to my
supervisors Hårek Haugerud and Anis Yazidi for the continuous guidance,
remarks, engagement through the learning process and close monitoring
of my master thesis. I would like to take this opportunity to thank them
and express how immensely important were their lecture, weekly meeting,
suggestion for completion of my master’s thesis. The positive spirit from
my supervisors has always encouraged me to thrive more, work hard and
realize my potential.

I would also like to mention my professor Kyrre Begnum’s con-
tribution for enhancing my research skills, knowledge about recent tech-
nologies in our field through his amazing lectures and notes. Information
Technology is the most dynamic industry. He has deeply influenced me to
be updated with the modern technology.

Big Thanks to my fellow classmates for the all the help, support,
important discussions, motivation. They have inspired me to work hard,
helped me when I was stuck in some technical problems. I want to
remember how were they available to help during my thesis, anytime
via social media. My sincere gratitude goes to University of Oslo (UiO)
and Oslo and Akerhus Universiy College (HiOA) for providing quality
education and infrastructures.

I would like to thank my wife Mamta Maharjan for all her
love, support and interest. She has always inspired me with insightful
discussions and constructive suggestions. Thanks for keeping up with my
busy schedule and taking care of my health. Last but not the least, my
unlimited gratitude goes to my mom, dad and sisters. I cannot thank them
enough for all the care, love, moral support, encouragement.

- Kabin Tamrakar

v

vi

Contents

1 Introduction 1

1.1 Problem Statement . 3

1.2 Structure of the Report . 3

2 Background 5

2.1 Cloud Computing . 5

2.1.1 Different models of Cloud 6

2.1.2 Different service categories 6

2.1.3 Cloud Service Providers 7

2.1.4 Amazon Web Services 8

2.1.4.1 Amazon Elastic Compute Cloud 8

2.1.4.2 Amazon EC2 Purchasing Options 9

2.1.4.3 Amazon Simple Storage Service 11

2.1.4.4 Boto - Amazon Web Services SDK 11

2.1.5 Google Preemptible Instances 11

2.1.6 Bidding spot instances 11

2.2 Clustering . 12

2.2.1 Hadoop . 13

2.2.2 Amazon Elastic MapReduce 13

2.2.2.1 Amazon EMR Metrics 15

vii

2.2.3 CloudWatch . 18

2.3 Relevant Theory/Literature Review 18

2.3.1 Cutting the Cost of Hosting Online Services Using
Cloud Spot Markets 18

2.3.2 Automated cloud bursting on a hybrid cloud platform 19

2.3.3 WOHA: Deadline-Aware Map-Reduce Workflow
Scheduling Framework over Hadoop Clusters 19

2.3.4 Towards a MapReduce Application Performance
Model . 19

2.3.5 How to Bid the Cloud 20

I The project 21

3 Approach 23

3.1 Objectives . 23

3.2 Design Stage . 23

3.3 Necessary Components and Tools to build the models 25

3.3.1 The Cluster . 25

3.3.2 MapReduce Data Processing Engine 25

3.3.3 Computing virtual machines 25

3.3.4 Persistent Storage . 26

3.3.5 Monitoring . 27

3.3.6 Script Development for Automation 27

3.3.7 FoxyProxy . 27

3.3.8 R-programming . 27

3.4 Project Steps . 28

3.4.1 Sample Data Generation 28

3.4.2 Cluster Setup and Configuration 29

viii

3.4.3 Map Reduce Engine 29

3.4.4 Estimation Phase . 29

3.4.5 Data Processing and Cluster Scaling 30

3.5 Challenges of using Spot instances in Cluster 31

3.6 Bidding Strategies . 32

II Results and Conclusion 35

4 Results I - Design 37

4.1 Deadline Aware Auto Bidding Scaling (DAAB) Algorithm . 38

4.1.1 Expected Results of DAAB Algorithm 39

4.2 Deadline Aware Progress Adaptive Burst Bidding (DPB)
Algorithm . 39

4.2.1 Expected Results of DPB Algorithm 42

5 Results II - Implementation and Experiments 45

5.1 The System Setup . 45

5.1.1 Setting up Boto3 with AWS configuration 45

5.1.2 Provisioning and running Amazon EMR Cluster . . . 46

5.1.3 Input Data Generating Script 49

5.1.4 Creating Custom JAR as MapReduce Application . . 50

5.1.5 Python Scripts for the implementation of algorithms 50

5.1.5.1 Getting Spot Market Price From Historical
Data . 51

5.1.5.2 Bidding function 52

5.1.5.3 Adding Task Nodes and resize task nodes . 52

5.1.5.4 Get Cluster Metrics 54

5.2 Initial Experiments . 54

5.2.1 Input Data Generattion 54

ix

5.2.2 Provision and run the EMR cluster with steps 55

5.2.3 Estimation Phase . 56

5.3 Setting up Base Experiment - EMR Cluster with all on-
demand instances . 57

5.3.1 Experiment OD-1 and OD-2 57

5.4 Experiments on the Algorithms DAAB and DPB 58

6 Results III - Analysis 61

6.1 Evaluation of base experiments OD-n 61

6.2 Evaluation of experiments DAAB-n 63

6.2.1 DAAB-1 Experiment 64

6.2.2 DAAB-2 Experiment 65

6.2.3 DAAB-3 Experiment 67

6.2.4 DPB-1 Experiment . 67

6.2.5 DPB-2 Experiment . 67

6.3 Cost Analysis . 70

7 Discussion 73

7.1 Project Evaluation . 73

7.2 Comparison of DAAB and DPB algorithms 74

7.3 Future works . 75

8 Conclusion 77

Appendices 83

A Developed Python scripts and AWS CLI Commands 85

A.1 Python Script to save spot price history of 90 days 85

A.2 Python Script to get EMR cluster metrics 86

A.3 Python Script to get Map and Reduce Info 87

x

A.4 Automation Script 1 . 88

A.5 Automation Script 2 . 95

A.6 Python Script to provision/run EMR cluster and adding steps 103

A.7 AWS CLI Command to provision/run EMR cluster and
adding steps . 106

xi

xii

List of Figures

2.1 Different Cloud service models. 7

2.2 Successful Spot Bidding and Termination 12

2.3 Typical Amazon Elastic MapReduce Cluster. 14

3.1 Map Reduce Data Flow . 26

3.2 Loading data into S3 bucket 30

3.3 System Block Diagram . 31

3.4 Work progress based on tasks completion 32

4.1 Perfect and worst case scenario in Algorithm 1 39

4.2 Baseline Progress and Checkpoints for Algorithm 2 41

4.3 Perfect and worst case scenario in Algorithm 2 42

5.1 EMR Software Info . 47

5.2 EMR Availability Zone and Hardware Info 47

5.3 Running task nodes in EMR cluster 48

5.4 "m1.medium" core nodes in EMR cluster 48

5.5 A completed application status in Hadoop GUI 49

5.6 Sample Files Processing Step for Estimation 51

5.7 Spot Requests and Status . 53

5.8 Uploading data to S3 bucket from Web GUI 55

6.1 Boxplot of data processing time in OD-1 and OD-2 62

xiii

6.2 Data processing progress vs time in Experiment OD-1 63

6.3 Data processing progress vs time in DAAB-1 64

6.4 Number of running MapReduce nodes in DAAB-1 65

6.5 Data processing progress vs time in DAAB-2 66

6.6 Number of running MapReduce nodes in DAAB-2 66

6.7 Data processing progress vs time in DAAB-2 67

6.8 Number of running MapReduce nodes in DAAB-3 68

6.9 Data processing progress vs time in DPB-1 68

6.10 Data processing progress vs time in DPB-2 69

6.11 Number of running MapReduce nodes in DPB-2 69

6.12 Screenshot of data processing progress in DPB-2 from EMR
GUI . 70

6.13 Total EMR Cluster price for different experiments 71

6.14 Task instances price for different experiments 72

xiv

List of Tables

2.1 EMR Metrics on status of Cluster 15

2.2 EMR Metrics for Hadoop 1 . 16

2.3 EMR Metrics for Hadoop 2 . 17

3.1 EC2 m1.medium specifications 26

6.1 Data Processing time in OD-n experiments in EMR Cluster . 62

6.2 EMR Cluster cost for OD-n experiment 63

6.3 EMR Cluster cost for all experiments 71

xv

xvi

Acronyms

The following acronyms are used in this report:

• AMI - Amazon Machine Image

• AWS - Amazon Web Services

• AWS CLI - Amazon Web Services Command Line Interface

• CW - Cloudwatch

• DAAB - Deadline Aware Auto Bidding Scaling Algorithm

• DPB - Deadline Aware Progress Adaptive Burst Bidding Algorithm

• EC2 - Elastic Compute Cloud

• EMR - Elastic MapReduce Cluster

• HDFS - Hadoop Distributed File System

• IaaS - Infrastructure as a service

• JAR - Java Archive

• MR - Map Reduce

• OD - On Demand

• PaaS - Platform as a Service

• S3 - Simple Storage Service

• SaaS - Software as a Service

• SLA - Service Level Agreements

• VM - Virtual Machine

• VPC - Virtual Private Cloud

• YARN - Yet Another Resource Negotiator

xvii

xviii

Chapter 1

Introduction

Cloud computing has become indispensable for both big and small
enterprises to perform numerous IT operations today. For dynamic
workloads, it is often economical to rent cloud servers than building
and configuring dedicated infrastructure [27]. Major advantages it offers
are reduced costs, automation, flexibility, mobility and consumerization
however it has security and confidentiality as major concerns. In
addition to bringing beneficial aspects to cloud users in terms of costs,
flexibility and availability, it brings unique challenges to cloud service
providers themselves. Cloud users may demand significant resources
during peak hours and peak computation. Service provider guarantees
that sufficient cloud resources are available to meet the service level
agreements (SLA) with cloud users. This means the cloud providers have
to arrange significantly large resource pool to serve the users’ demand
anytime but during off-peak hours there is a significant waste of cloud
infrastructure [43]. To cope with the unutilized resouces, cloud service
providers offer different pricing options so as to facilitate a wide variety
of applications depending on computing requirements [32, 45].

The common cloud pricing schemes for virtual machine compute
instances are namely reserved, on-demand and spot instances [32]. Re-
served instances provide users with a one-time payment and get instances
over a long period of 1-3 years and also receive hourly discounted pricing
based on usage [32]. While on-demand instances are offered as an hourly
instances without any long-term commitment. For spot instances, cloud
spot markets ask users to bid for spare resources without any guarantee
on termination. The cloud provider can revoke the spot resources once
the market price exceeds the bid price [32, 45]. With higher risks and un-
certainty of being revoked anytime, the spot resources are by as much as
10X cheaper than the equivalent on-demand resources which cannot be re-
voked by cloud providers for paid hours [45].

Any of the above compute instances can be used for a large

1

variety of workload use-cases like always-on Internet based services,
batch processing, transaction processing, analytics, high performance
computing, database computing, etc which can be performed in the cloud.
The cloud spot resources can be implemented to perform these use-cases
with large monetary benefits. However spot resources may not be always
available. There can be price fluctuation on the basis of supply-demand
paradigm which results into immediate termination by cloud provider
as soon as bidding price become lesser than spot market price. The
system should deploy an effective bidding algorithm along with fault-
tolerant mechanisms and switching to on-demand resources to maintain
its availability and reliability. He et al. [27] implemented two types of
bidding algorithm - reactive and proactive along with some migration
mechanisms. They concluded that proactive algorithm achieve goal of
acceptable unavailability of service because this algorithm aids in graceful
and planned migration.

This project will provide light into the batch processing with
deadline using amazon spot instances. Amazon Elastic MapReduce (EMR)
cluster will be implemented for processing the batch jobs. Amazon EMR’s
Hadoop Cluster is composed of Master Instance Group and Slave Instance
Groups - Core and Task. Master nodes and core slave nodes should be
running on consistent instances as master nodes constitutes the central part
of cluster and core slave nodes also runs YARN ResourceManager service
for application resources management and HDFS NameNode service. Task
nodes group can be resized anytime so that for shorter deadline needs, the
capacity can be increased and vice versa. Even core nodes group can be
resized but shrinking them may cause the risk of losing data as they store
data in HDFS.

A stable Amazon EMR cluster with a core group having at least
one consistent instance and other as spot instances and task group with
all spot instances can be devised. Therefore on the basis of availability
of spot instances within the bidding price, the jobs may be completed
earlier or late. However, it is complicated for batch workloads with
deadline. The system should be devised in such a way that for a
given deadline, it starts the processing with Task Instance Group of spot
instances. Depending on the status of completed percentage of work, task
capacity needs to be varied. It may even require on-demand instances
to complete processing tasks within deadline. Effective algorithms will
be devised for the provision of the required amount of instances. For
the deadline based batch workloads, an additional work on estimating
approximate processing time will be required.

2

1.1 Problem Statement

The following problem statement will be implemented to materialize the
vision of this thesis:

How can a cost efficient MapReduce cluster be designed and developed
in Amazon by resorting to spot instances for batch processing with deadline?

For answering this problem statement, several assumptions have
been made based on the background theory and technologies. The detail
answers to the problem statement is provided in Approach chapter by
breaking down the stated problem statement into multiple sub-questions
and each sub-questions are answered.

1.2 Structure of the Report

The report is divided into following chapters:

• Introduction: The problem domain and scopes are explained in this
chapter.

• Background: This chapter discusses background theoretical and
technological bases and related literature review.

• Approach: This chapter reflects the methodologies and general
approaches and technologies being followed to answer problem
statement along with challenges.

• Results I - Design: The two algorithms are explained with detail
algorithms and expected results.

• Results II - Implementation and Experiments: Number of experi-
ments were carried out after implementing the algorithms from pre-
vious chapter as tool. This chapter explains system implementation
details, experiments and their results.

• Results III - Analysis: The experiment results from previous chapters
are evaluated and analyzed in this chapter. Analyses on time and
costs are made with data and graphs.

• Results III - Discussion: This chapter discusses implementation
steps and challenges. It also light on future work.

• Results III - Conclusion: This chapter gives summary of the project.

• Appendix: Developed python scripts and AWS CLI commands are
presented.

3

• Acronyms: The acronyms used throughout this paper are mentioned
in this chapter for convenience to the reader. Acronym chapter is
placed before Table of Contents.

4

Chapter 2

Background

2.1 Cloud Computing

The phrase "Cloud Computing" is becoming the trending buzzwords in
information technology for past few years and appearing more than 173
million1 times in internet websites. There are lot of debates on when and
who coined the term "Cloud Computing" for the first time which went back
to the dates to the 1960s in context of network based computing, but it
is believed that first use of this term in its modern context took place in
2006 during an industry conference [25] by then Google CEO [37]. The
following year its scope started to widen with different sales efforts in cloud
introduced by companies Amazon, Microsoft and IBM.

Cloud Computing is an internet-based computing which provide
on-demand application, platform and infrastructure as resources. With
pay-as-use principle, huge investment on installation and maintenance of
IT infrastructure has dropped dramatically. The growth is significantly
leaping because of the availability of high-capacity networks, cheaper com-
puting machines and storage device along with advent of virtualization,
service-oriented architecture, autonomic computing and concepts of utility
computing [42, 29]. Businesses and end users enjoy elasticity of cloud as
they can scale up or down conveniently on the basis of their requirement
and demands.

Cloud Computing is often described in wrong way as Virtualiza-
tion. But there are distinctions between Cloud Computing and Virtualiza-
tion. Virtualization is a platform that enables to run multiple operating
systems on a single physical system with accessiblity to use the underly-
ing hardware on sharing [55]. The goal of virtualzation is the workload
management by adapting it to more scalable, efficient and economical via
transformation in traditional computing [31]. Virtualization is the founda-

1Google Search Engine statistics to search "Cloud Computing" as on 03/03/2016

5

tion of cloud computing because it is the enabling technology to deliver
cloud resources.

2.1.1 Different models of Cloud

It comes in three different models namely private, public and hybrid
clouds. A private cloud maintains services and infrastructure on a private
network with higher security level and control. On the other hand public
cloud is a cloud where services and infrastructure are rendered over
internet. Data is stored in the service providers’ data center and they are
responsible of operating and maintaining all the components. Security and
confidentiality is prime concern in public clouds. Finally, hybrid clouds
integrate both private and public clouds from multiple providers. The
benefit of using hybrid cloud minimises the trade-offs and also maximize
performance with the flexibility it offers.

2.1.2 Different service categories

Different cloud services are categorized as Infrastructure as a Service
(IaaS), Platform as a Service (PaaS) and Software as a Service (SaaS). IaaS
provides hardware, software, servers, storage and other infrastructure.
IaaS services are self-service models and allow users to access, monitor and
manage remote datacenter infrastructures conveniently and users can pay
for infrastructures based on consumption like utilitiy billing. Amazon Web
Services (AWS), Microsoft Azure and Google’s Compute Engine are some
examples of IaaS.

Platform as a Service (PaaS) provides computing platforms. Users
can use remote operating systems, environment for compiling and execut-
ing programming languages, web services and database services, etc. Win-
dows Azure, Google App Engine and Heroku are some examples of PaaS.
The benefits PaaS offers is reduced complexity, effective application de-
velopment, built-in infrastructure along with convenient maintenance and
enhancement of application. It can also be attributed by the fact that lot of
resources and time spent on environment setup before the actual software
development is no more concern.

Software as a Service (SaaS) provides cloud application services.
Users can access the web interfaces managed by third-party vendor and
use the services. The beauty of SaaS applications is that they can be run
directly from a browser without extra installations and downloads or just
need to have plugins. So enterprises can efficiently and smoothly provide
their maintenance and support. Google Apps, Cisco WebEx and Citrix
GoToMeeting are some examples of SaaS.

6

SaaS
Google Docs, Gmail,

Cisco WebEx,
Facebook

SaaS
Google Docs, Gmail,

Cisco WebEx,
Facebook End Users

Developers/
Testers

SysAdmins/
Network Admins

PaaS
Google App Engine,

Windows Azure,
Heroku

PaaS
Google App Engine,

Windows Azure,
Heroku

IaaS
Amazon AWS, Microsoft

Azure,
Google's Compute

Engine

IaaS
Amazon AWS, Microsoft

Azure,
Google's Compute

Engine

Figure 2.1: Different Cloud service models.

2.1.3 Cloud Service Providers

There are number of cloud service providers today providing different
cloud options. Out of different cloud services, Cloud Infrastructure
as a Service is the main concern in this thesis. The most popular
and leading vendors of IaaS cloud services are Amazon with Amazon
Web Services, Microsoft with Azure Infrastructure Services, Google with
Compute Engine, CenturyLink with their managed sevices, VMWare with
vCloud Air and Rackspace with their managed services. Choosing the
right vendor depends on customer’s use cases as different vendors are
specialized in different use cases.

Amazon Web Services has the biggest share in the IaaS market,
with the highest IaaS compute capacity in use than the other IaaS
vendors [46]. According to Gartner2 report published in October 2015,
Amazon Web Services receives a 4.81/5.0 for application development Use
Case, 4.81/5.0 for Batch Computing Use Case, 4.84/5.0 for Cloud-Native
Applications Use Case and 4.53/5.0 for General Business Application Use
Case. This was done by comparing 15 cloud IaaS services against eight

2Gartner - the world’s leading IT research and advisory company [54]

7

critical capabilities in four different use cases [39]. It is recommended by
Gartner to use Amazon Web Services for all use cases except for strictly
compliant applications.

Azure is recommended for general business applications and
development environments for Microsoft-centric organizations and also
suited for cloud-native applications and batch computing [46]. While
Google is recommended for cloud-native applications and batch com-
puting. Gartner recommends to use CenturyLink for self-service cloud
IaaS with managed services and applications excluding batch computing.
vCloud Air is to be used for development environments, business applica-
tions and to supplement VMware-virtualized environments.

2.1.4 Amazon Web Services

Amazon Web Services (AWS) is collection of cloud computing web services
to offer cloud-computing platform of Amazon.com. The AWS clouds are
available for operation in 33 availability zones at 12 geographic regions
around the world. It is in pipeline that 10 more availability zones and 5
more regions are coming online by the next year. Amazon Web Services is
continually improving their services with following practices [24]:

• High Availability through Multiple Availability Zones

• Improving Continuity with Replication between Regions

• Meeting Compliance and Data Residency Requirements

• Geographic Expansion

The list of different products AWS offers in categories Compute,
Networking, Storage and content delivery, Database, Deployment, Man-
agement, Application Services and Analytics. Elastic Compute Cloud
(EC2), Elastic MapReduce (EMR), Route 53, Virtual Private Cloud (VPC),
Elastic Load Balance (ELB), Elastic Block Storage (EBS), DynamoDB,
OpsWorks are some of the products Amazon offers in above different cate-
gories.

2.1.4.1 Amazon Elastic Compute Cloud

Amazon Elastic Compute Cloud (EC2) is a web service provided by
Amazon which enables customer to use re-sizable compute capacity in the
cloud. It forms a major part of Amazon’s cloud-computing platform. EC2’s
web interface allows user to deploy, configure and run virtual machine via
Amazon Machine Image [7] and it is called a compute instance. It also make

8

it easier for user to have complete control over their computing resources
which are run in Amazon’s proven environment [22]. The time needed
to get and boot new instances is within minutes, that enhances scaling
capacity, both up and down as required. With the pay as you go (PAYG)
model, EC2 charges only for capacity that is actually being used.

EC2 provides number of built-in security features. The created
instances are located in Amazon’s Virtual Private Cloud (VPC) [9] which is
logically isolated network. VPC takes care of security features like Network
Access Control Lists, AWS Identity and Access Management (IAM) Users
and Permissions and Security Groups. Amazon Elastic Block Storage (EBS)
can be used to provide persistent block storage to EC2 instances. EC2
also provides developers with the tools to build and run fault tolerant
applications.

The benefits of using EC2 are following [22]:

• Elastic Web-Scale Computing

• Complete Control of instances

• Flexible Cloud Hosting Services

• Convenient conjunction with other Amazon Web Services

• Reliability with Service Level Agreement of 99.95% availability

• Secure by conjunction with Amazon VPC

• Inexpensive compute instances with Pay as you go (PAYG) model

• Easy kickoff with preconfigured software on Amazon Machine
Images (AMI)

2.1.4.2 Amazon EC2 Purchasing Options

Amazon EC2 deploys Xen Virtualization. Each EC2 virtual machine is
called EC2 instance, which is virtual private server (VPS) [51]. There are
three purchasing options for Amazon EC2 instances namely On-Demand,
Reserved and Spot Instances. There is also one other option in which
dedicated EC2 instance capacity on physical servers is provided termed as
Dedicated Hosts [36]. Functionally all these instances perform identically.

For on-demand instances, there is a payment for a compute
capacity on hourly basis with no long-term commitments or upfront costs.
Compute capacity can be increased or decreased any time and payments
have to be made only for the used instances at specified hourly rate.
Amazon EC2 manages on-demand capacity to be available most often,
otherwise it is possible that specific on-demand instance types in specific

9

availability zones may not be available for short time. A dedicated host is
fully dedicated physical EC2 server instance. The dedicted hosts enable
in saving costs on server-bound software licenses, and compliance and
regulatory requirements. It can be purchased as hourly on-demand.

For reserved instances, amazon EC2 assure that it will always
be available for the Operating System and Availability Zone which is
purchased. It can be reserved for 1 or 3 years [3]. There is significant
discount in price of up to 75% in reserved instances as compared to on-
demand instance. It is recommended for applications with steady state
or predictable usage as it can leverage significant profits than using on-
demand instances. It is possible to move the reserved instance purchased
to other availability zone within the same region, to alter its network
platform, or modify instance type to another type of same family in
linux/unix without additional cost.

For spot instances, there is a process of bidding to purchase spare
EC2 compute capacity without upfront costs and hourly rates are usually
lower than the on-demand pricing schemes. Maximum hourly price has to
be specified by the bidder to run particular instance type. Amazon EC2 sets
a spot price for each type of instances in each Availability Zone for a given
period which is dynamically changing on the basis of supply and demand
for instances. The spot price can be as low as just 10% of on-demand price
[4]. AWS assesses availability of number of spot instances in each pool, and
at the same time monitors the bids from different bidders. On this basis,
AWS provisions the available spot instances to the bidders with maximum
bidding prices. In case the spot price becomes greater than the bidders’
maximum bid price, Amazon EC2 will terminate the instances.

List of following different types of use cases can be performed by
using spot instances [48]:

• Batch Processing - Generic background processing

• Hadoop - Hadoop processing type jobs

• Scientific Computing - Scientific trials, simulations and analysis

• Video and Image Processing/Rendering - Video transformation

• Testing - Software/websites testing

• Web/Data Crawling

• Financial - Trading analysis

• High Performance Computing - Utilize HPC to do parallel jobs

• Cheap Compute - Backend servers for web games

10

2.1.4.3 Amazon Simple Storage Service

Amazon Simple Storage Service also referred as Amazon S3 provides with
highly scalable cloud service [8]. It provides a simple web interface that can
be used to store and retrieve data from the internet. Tools like Amazon Web
Services Command Line Interface (AWS CLI) can be used for handling this
storage. The S3 service can be implemented as single service or integrated
together with other Amazon Web Services. It can be used as a persistent
data store for keeping input data and results of the cluster. The pricing
ranges from $0.0275/GB to $0.0300 per GB per month depending on the
amount of data in Oregon (us-west-2) region.

2.1.4.4 Boto - Amazon Web Services SDK

Boto is AWS SDK for python programming language. It provides platform
to integrate Python scripts and library with AWS services so that Python
developers can develop software to make use of AWS services like Amazon
EC2 and Amazon S3. There is latest release of next version of Boto as
Boto3 which is stable and recommended for use. Compatibility of Boto3
along with Boto in the same project makes it convenient to work in existing
project made in boto.

2.1.5 Google Preemptible Instances

Google provides a low priced instance option from their spare compute
resource. These instances also offers same machine types as other instances
Google rent out. Unlike spot instances are acquired by the method of
bidding, it has always a fixed low price which is 70% cheaper compared
to other regular instances. Hence they can be used for expanding the
computing capacity at low price. However similar to spot instances they
can be terminated any time by the cloud provider if demand for other
instances increases.

2.1.6 Bidding spot instances

There is provision to buy spare EC2 compute capacity with heavily reduced
price in Amazon Web Services. Market price is set for every available
spot instances of different sizes like "m1.medium", "m3.xlarge", "c4.xlarge",
etc [21]. The bidding procedure is discussed in "spot instances" portion
of subsection 2.1.4.2. Technically, with desired bid price spot instance is
requested to Amazon Web Services (AWS) [44]. On request submission, if
there are bad parameters it will terminate. Otherwise a unique spot request
ID is generated and its status changes to pending-evaluation. It can go to

11

closed state if conditions are capacity-not-available, price-too-low, az-group-
constraint, etc. If there is availability and the bid price is above market price,
the request is fulfilled and instances got launched. The running instances
may be terminated by user requests itself, or by price, capacity, etc. It may
also run persistently if any of these constraints does not arise.

The figure 2.2 shows market price over time and its effect on spot
instances. At time 0, bid was successful because the bid price was higher
than market price and at x time, the market price just exceeds bid price,
the instance got terminated. If the spot instance is terminated by Amazon
itself, only partial time x is charged.

Figure 2.2: Successful Spot Bidding and Termination

2.2 Clustering

A computer cluster is a group of computers and hardware connected to-
gether as parallel or distributed computing system in order to unleash a
single virtual and powerful hardware platform. The benefits it provides are
much faster processing speed, increase in storage capacity, improvement
in data integrity, better reliability and wider availability of resources [53].
Basically, it enables high availability, load balancing and parallel process-
ing. The motivation for cluster computing is the necessity and is facili-
tated by the advent of commodity processors with high performance, high-
bandwidth and low-latency networks and sophisticated software tools and
development infrastructures [15]. Flexibility is another characteristic as un-
like mainframe computers, computer clusters can be adapted easily to en-
hance or diminish the existing specs or add or remove the component/s
itself to the system.

On the basis of deadlines and price constraints, demand of
resources may get increased or decreased in this project. When there is
larger deadline, it is possible to wait for low priced spot instances if they
are not available outright otherwise to meet deadline, even high priced

12

instances will have to be provisioned to get processing done in time. With
static partitioning there is dedicated set of resources for particular task and
it cannot efficiently address the situation as it may not address deadline
constraint where the processing need to be addressed by additional virtual
machines either cheaper spot instances or on-demand instances. The
cluster is aimed for some peak traffic setup, then the resources granted
for peak timing would be over-provisioned for the condition when there
is very low traffic. Clustering gives the added layer of abstraction and thus
with the use of software it is possible to partition hardware dynamically.
Without degradation of performance caused by the underlying hardware
partitioning, services running on top of a cluster can efficiently scale and
dynamically move within the cluster [56].

2.2.1 Hadoop

Hadoop is an open source Java based programming framework that
enables processing of huge sets of data in distributed computation.
The basis of Hadoop is to scale from single servers to thousands of
local machines providing computation and storage locally. Distributed
computation refers to computer clusters built on the top of commodity
hardware. The hardware failures are automatically handled by the Hadoop
to provide fault tolerant system. It promises to deliver a highly available
service on top of a cluster of those individual servers which individually
are failure-prone. Hadoop implements MapReduce programming model.

The principle behind MapReduce model is to first divide data into
many small fragments of works and each of them would be performed on
any node in the cluster as map. And finally in second step is to organize
and reduce the results generated into an aggregate answer to a query. One
master called Job-tracker and many workers called Task-trackers constitute
the MapReduce architecture.

The large or complex sets of data can be referred to as Big Data
for which traditional data processing applications are not sufficient. Big
Data can be structured, semi-structured and unstructured data which can
be analyzed and mined for useful results and decisions [52]. In this project,
huge data of system logs is regarded as Big Data to be processed with
Hadoop. The focus is on deadline and scaling of servers rather than on
logic of data analysis.

2.2.2 Amazon Elastic MapReduce

Amazon Elastic MapReduce (EMR) functions as a web service which is
used for analyzing and processing a huge set of data. The computational
work is distibuted across a cluster of AWS virtual servers and the cluster is

13

managed by Apache Hadoop [49], an open source framework. EMR makes
it convenient to process big data by the aid of managed Hadoop framework
otherwise it is difficult to configure and tune Hadoop clusters. The Hadoop
project, that includes MapReduce, YARN (Yet Another Resorce Negotiator)
and HDFS (Hadoop Distributed File System) are installed and configured
programatically across the cluster nodes by EMR. This service enable to
process data-intensive tasks quickly. It is also posible to develop and
run sophisticated applications by the aid of scheduling, workflow and
monitoring facilities.

As discussed in last paragraph, Amazon EMR implements
Apache Hadoop as its distributed engine to process data. Hadoop is an
open source library and framework developed in java for distributed pro-
cessing of large sets of data across large clusters of commodity hardware.

Figure 2.3: Typical Amazon Elastic MapReduce Cluster.

In Amazon EMR cluster, there is conceptualization of instance
groups composed of groups of EC2 instances and they perform according
to the roles defined by the distributed applications installed on the
cluster [28]. The groups belong to master and slave groups. The instance
groups are of three types viz., master itself as Master Instance Group, and
slave groups divided into two groups namely Core Instance Group and
Task Instance Group.

14

The master Instance Group is used for managing the cluster and
also to run master components of the distributed applications installed
on the cluster. It starts the YARN (Yet Another Resource Negotiator) [10]
Resource Manager service and the HDFS (Hadoop Distributed File System)
NameNode service. Another job is to assess and track status of jobs
being processed in the cluster and keep track of health status of the
instance groups. For hadoop mapreduce jobs, elements on core and task
nodes perform the data processing, and generated output is transferred to
Amazon S3 or HDFS. Finally status metaback is sent to the master node.

The core instance group consists of the core nodes of a cluster and
each node runs the tasks. By running the DataNode daemon it stores data
as part of HDFS. The master node manages the core nodes. When there are
no YARN jobs or applications running, the "shrink" operation will attempt
to diminish the instances in the group after getting a resize request for that
instance group.

Task instance group consists of the task nodes of a cluster and they
are optional groups. Task groups can be added when cluster is started or
can be added into a running cluster. They do not store data in HDFS. They
can be used to handle peak loads by increasing its capacity.

2.2.2.1 Amazon EMR Metrics

Amazon EMR sends the number of metrics to Amazon CloudWatch [5]. It
pulls metrics from a cluster but no metrics are reported in case the cluster
becomes unreachable. The table provides Hadoop 1 metrics on Cluster
status.

There are more metrics on the basis of Nodes Status, IO Status and
HBase in Hadoop 1 and in Hadoop 2 Amazon Machine Images (AMIs). The
Hadoop 1 metrics are tabulated in table 2.2.

Hadoop 1 metrics on Cluster Status
Metric Description
IsIdle A cluster is not performing. It is still in on

state and charging rent
Use: Cluster Performance Monitoring
Units: Boolean

JobsRunning The number of running jobs in cluster
Use: Cluster Health Monitoring
Units: Count

JobsFailed The number of failed jobs in the cluster
Use: Cluster Health Monitoring
Units: Count

Table 2.1: EMR Metrics on status of Cluster

15

Hadoop 1 metrics
Metric Description
MapTasksRunning The number of map tasks running

for each job
Use: Cluster Progress Monitoring
Units: Count

MapTasksRemaining The number of map tasks remain-
ing for each job
Use: Cluster Progress Monitoring
Units: Count

MapSlotsOpen The remaining map task capacity. It
is difference of maximum number
of allocated map tasks for a given
cluster and current number of map
tasks running.
Use: Cluster Performance Analysis
Units: Count

ReduceTasksRunning The number of reduce tasks that are
running for each job
Use: Cluster Progress Monitoring
Units: Count

ReduceTasksRemaining The number of reduce tasks that are
remaining for each job
Use: Cluster Progress Monitoring
Units: Count

CoreNodesRunning The count of core nodes which are
running
Use: Cluster Health Monitoring
Units: Count

TaskNodesRunning The number of working task nodes
Use: Cluster Health Monitoring
Units: Count

S3BytesRead The size in bytes of data read from
Amazon Simple Storage Service
Use: Cluster Performance Analysis
and Health Monitoring
Units: Bytes

Table 2.2: EMR Metrics for Hadoop 1

Hadoop 2 AMI has different metrics than Hadoop 1. They can
be referred from table 2.3.There are more metrics than presented in the
tables. The EMR metrics tell about Cluster progress, Cluster performance
and Cluster Health. So tracking the cluster becomes convenient. Number
of decisions can be made on the basis of these metrics which are sent to
CloudWatch. The integration of CloudWatch with AWS CLI and Python
APK Boto eases developer to control and manage the cluster in the way it
is needed.

16

Hadoop 2 metrics
Metric Description
ContainerAllocated Resource containers allocated in

the cluster by ResourceManager
Use: Cluster Progress Monitoring
Units: Count

ContainerPending The containers which are in queue
to be allocated
Use: Cluster Progress Monitoring
Units: Count

AppsCompleted The completed tasks submitted to
YARN
Use: Cluster Progress Monitoring
Units: Count

CoreNodesRunning The count of core nodes which are
running
Use: Cluster Health Monitoring
Units: Count

MRTotalNodes The available number of map re-
duce nodes
Use: Cluster Progress Monitoring
Units: Count

MRActiveNodes The number of MapReduce nodes
running
Use: Cluster Progress Monitoring
Units: Count

MRDecommissionedNodes The MapReduce nodes that has
gone to DECOMMISSIONED state.
Use: Cluster Monitoring
Units: Count

HDFSBytesRead The size in bytes of data read from
HDFS
Use: Cluster Performance Analysis
and Health Monitoring
Units: Bytes

Table 2.3: EMR Metrics for Hadoop 2

17

2.2.3 CloudWatch

To track the progress and health of running EMR cluster, CloudWatch is
introduced Amazon Web Services which collect and track metrics, collect
and monitor log files and also set alarms for auto alerting against unwanted
changes in the resources. As it gives system-wide visibility on different
aspects like resource utilization, health and performance, it can be useful
for smooth operations of running applications. Amazon EMR records
metrics and sends them to the Amazon EMR console and also to the
CloudWatch console. Metrics updation takes place every five minutes
which is not configurable and the metrics are pushed to CloudWatch for
every Amazon EMR cluster.

2.3 Relevant Theory/Literature Review

There have been significant number of researches on efficient utilization of
spot market to cut down the operation costs in many applications. Spot
instances have fluctuating price based on supply demand concept and
irregular availability based on available spare cloud compute capacity. The
major setback could be its termination as discussed earlier. Thus to make a
stable system out of such instance is challenging, and many factors need to
be considered and studied. Following are some research which are relevant
and related.

2.3.1 Cutting the Cost of Hosting Online Services Using Cloud
Spot Markets

This research written by He et al. [27], focuses on minimizing the cost of
running always-on internet-based services by the use of spot markets. It
is to be noted that at least four nines i.e. 99.99% of availability is widely
accepted standard to tag the Internet-based service as always-on.

The cloud scheduler developed by them has less time to migrate
the service to on-demand resulting in more disruption to the service
when they use reactive bidding algorithm. In reactive bidding algorithm,
migration takes place after spot server is revoked. The authors therefore
designed their proposed proactive bidding algorithm which senses the
varying spot market beforehand for gracefully shutting down of spot
instances and migration to on-demand instances.

For both reactive and proactive algorithm , they uses three
migration steps namely Forced Migration, Planned Migration and Reverse
Migration on the conditional basis of current spot price, bidding price
and on-demand price. For the migration from spot to on-demand and

18

vice versa, OS mechanisms such as Nested vitrualization, Live migration,
Bounded Memory checkpointing and Lazy VM restore were used. Both
proactive and reactive bidding causes in significant cost reduction as cost
is just 17% to 33% of the cost if all on-demand instances were being used.
And unavailability of the service using the proactive algorithm is smaller
by a factor of 2.5 to 18 than using the reactive algorithm. So later they use
proactive algorithm to bid with multi-region strategy and the cost reduced
to 12% to 17% of the baseline cost using only on-demand virtual machines.

2.3.2 Automated cloud bursting on a hybrid cloud platform

This is Master’s thesis paper written by Xue [56]. In this paper,
the author emphasizes in building highly available cluster in hybrid
cloud. For handling additional compute for spikes during peak hours,
an automated cloud bursting solution in public cloud is developed which
uses amazon spot instances to leverage from its pricing model. Basically
the paper deals with setting up a hybrid cloud using Apache Mesos to
make a unified platform for private alto cloud and amazon public cloud
focusing on mazimizing availability. For acquiring spot instances to serve
additional compute, an automated script is written which implements a
simple bidding algorithm. There is no performance analysis though it is
mentioned in the report as future work.

2.3.3 WOHA: Deadline-Aware Map-Reduce Workflow Schedul-
ing Framework over Hadoop Clusters

Li et al. [30] developed WOHA, a framework that efficiently schedule
deadline-aware workflows in MapReduce. For simplification of submitting
workflows, workflow scheduler like Apache Oozie has emerged so that
Hadoop has to handle only resource allocation and Oozie workflow
topology but it still lengthen the workflow spans causing deadline misses.
They have presented a solution as WOHA which makes client nodes to
generate scheduling plans locally and sent to master node which will use
it for scheduling plans. They propose a scheduling algorithm which assign
priorities among workflows and for its evaluation they cover three job
prioritizing algorithms - namely Highest Level First (HLF), Longest Path
First (LPF) amd Maximum Parallelism First (MPF).

2.3.4 Towards a MapReduce Application Performance Model

This research carried out some benchmark performance testing on MapRe-
duce applications [26]. Even though MapReduce has emerged easier to
use for huge data analytics and characterized robust as fault tolerance be-

19

ing automatically handled by the runtime system, the performance can be
questioned with the presence of individual machine failures. These fail-
ures can cause significant delays in execution of jobs as they have to be
rescheduled into new nodes. They did a benchmark test with mrbench by
starting with a single, fixed-work trivial map or reduce task. Then in next
iteration with two and continued for some higher numbers. It came up
with the overhead on application performance. Another benchmarking
tool mrbench-waves which can cause each compute node to run only on
one non-trivial map or reduce task at a time. Using mrbench benchmark,
the map task over-head was found to be nearly 0.111 seconds and reduce
task overhead to be 0.105 seconds in an experimental setup of 34 compute
nodes. Since typical MapReduce clusters consists of hundreds of compute
nodes, these overheads can grow very significantly.

2.3.5 How to Bid the Cloud

In this research, the authors suggested that calculating effective bid price
depending on jobs’ interruption constraints can decrease cost of processing
significantly with spot instances and less job interruption [57]. For
determining the bid price, 2 months’ statistics of spot market price was
utilized. The authors employed one-time requests and persistent request
as bidding strategies for master and slave nodes in MapReduce jobs. One
time request was made for a single spot instance with high bid price. As
interruption is allowed in slave node, persistent request was made for each
slave node. The bid price for slave nodes was calculated on the basis of
master node since master nodes need to run more time than slave nodes.
From the results, they derived that their bidding strategies could adapt
to cluster based MapReduce jobs with significant low price. The bidding
strategies developed in this research assumed that single user’s bid price
would not affect the market price. However in case of multiple users’
bidding the market price would be affected. So it was suggested to use
the mathematical model developed to extract the effect of multiple bidding
on the market price.

20

Part I

The project

21

Chapter 3

Approach

This chapter will outline and explain the methodologies, processes and
general approaches being followed in order to answer the defined problem
statement: How can a cost efficient MapReduce cluster be designed and
developed in Amazon by resorting to spot instances for batch processing
with deadline?

3.1 Objectives

The problem statement can be addressed as a whole by breaking down the
question into several sub-questions and answering each of them. The sub-
questions can be following as specified in the introduction chapter:

• How can a computer cluster be built in Amazon?

• How can huge batch jobs be processed in the cluster?

• What metrics can be used to monitor progress and estimate total time
to process data?

• How can decision be made for varying processing capacity by
increasing and decreasing processing nodes to meet deadline?

• Is it possible to use spot instances only to meet deadline?

3.2 Design Stage

The system will be designed to achieve goal of the problem statement. Two
algorithms will be formulated and developed as automation tools. For the
experiments these tools will be deployed and on the basis of measured data

23

analysis will be made. The algorithms will answer last two and important
problem statements How can decision be made for varying processing
capacity by increasing and decreasing processing nodes to meet deadline?
and Is it possible to use only spot instances to meet deadline? The expected
components and tools are discussed in section 3.3 while first three problem
statements are answered individually at project phases in subsections 3.4.2,
3.4.3 and 3.4.4 in section 3.4.

Initially, an experiment will be done with a static cluster unaware
of any automation. For this a static cluster will be designed with desired
number of task nodes with on-demand instances only in order to carry
out processing job within deadline. Since on-demand node provides a
consistent cluster throughout its lifetime, this will also become benchmark
for analyzing the performance, benefits and shortcomings of the tools to be
implemented with the algorithms.

The first algorithm will be aware of deadline and will scale the
cluster at ten regular intervals. It will begin with estimated number of spot
instances (refer to 3.4.4) in the first interval. Afterwards from the second
interval, required new task nodes capacity will be calculated on the basis
of progress and elapsed time. The cluster will be rescaled with the same
bidding price as before. This will repeat in every interval till the second
last interval. Before the final interval, task capacity will be recalculated
and only on-demand instances will be used to guarantee the completion of
processing in time.

The second algorithm will also be aware of deadline with burst
bidding. Bidding more spot instances by some factor α will be done from
beginning in order to complete processing earlier with spot instances only.
However in the worst case, it will require on-demand instances as well.
Besides checkpoint will be used at 50% of elapsed time and 80% of elapsed
time. Hence depending upon the progress at these checkpoints different
strategies will be implemented. The first algorithm will have a static
bidding price calculated at the beginning while in the second algorithm,
there will be dynamic bid price calculated on the basis of latest price
summed with x percentage of difference between on-demand price and
latest price. At the checkpoints, progress is calculated as "Behind", "On-
track" and "Ahead". So for slow progress like "Behind" aggressive bidding
would be used i.e. higher value of x for spot instances along with on-
demand instances to catch up with deadline. Otherwise, bidding would be
done with smaller value of x. Bidding price B would be given by following
formula with L as latest spot market price and D as on-demand price:
B = L + (D− L) · x

24

3.3 Necessary Components and Tools to build the
models

The system will be designed and developed with different components and
tools and by following the distinct phases in order to process deadline
based batch jobs with huge processing needs. The first three questions
in problem statement are answered in project phases in subsection 3.4.2,
section 3.4.

3.3.1 The Cluster

Amazon Elastic MapReduce (EMR) is a managed hadoop framework
cluster provided by Amazon. The detail background about EMR is in
subsection 2.2.2. The application as Core Hadoop with Hadoop 2.7.2 and
EMR release emr-4.6.0 [6] is chosen for the thesis. This is the latest release
of Amazon EMR.

3.3.2 MapReduce Data Processing Engine

For data processing, some application is required. A log analysis
application will be deployed which takes log messages as a data set for
analytics in Amazon EMR. The MapReduce based processing engine will
be deployed which is made by developer other than author. A Custom
Java Archive (JAR) implemented in online book store named Safari Books
Online will be deployed for analyzing generated syslog like logs. Java
Mapper, Reducer and Driver classes are compiled into a Custom JAR
named log-analyzer which expects syslogs as input and output as number
of events per second in a text file. The source codes for the Mapper, Reducer
and Driver classes are available here [19]. The data flow from syslog file to
mapper to reducer to output will give number of events per second which
is depicted in figure 3.1 below.

3.3.3 Computing virtual machines

Amazon Elastic Compute Cloud (EC2) instance is chosen as computing
virtual machine as the EMR cluster only supports them. Detail background
about Amazon EC2 instances is in subsection 2.1.4.1 Instance type chosen
for this thesis is "m1.medium" as it is the instance with lowest possible
configurations for Hadoop 2 clusters [17]. Only "m1.medium" instance will
be used throughout the experiments for using it as master, core and task
instances in EMR cluster.

"m1.medium" instance type has following specifications [2]:

25

Figure 3.1: Map Reduce Data Flow

Instance Type Amazon EC2 m1.medium
Memory size 3.7 GB
Primary (OS) disk 9.0 GB
Secondary disk 393.0 GB
CPU speed 1.43 GHz
Core concurrency 1.00
Memory bandwidth 5.7 GB/s
Primary disk rate 62 MB/s
Secondary disk rate 114 MB/s
Primary disk seeks 97 ops/s
Secondary disk seeks 75 ops/s

Table 3.1: EC2 m1.medium specifications

"m1.medium" instance with Linux/Unix operating system has on-
demand price of $0.087 per our in Oregon Zone (us-west-2) and its all
availability regions. The price at different zones differs. The instance
pricing also differs on the basis of operating system chosen.

3.3.4 Persistent Storage

As the system compromises of the amazon EMR cluster and amazon EC2
instances, amazon S3 is preferred to use as persistent storage for storing
input data to feed into the EMR cluster and also to store processed data as
output from the cluster. It is compatible to be used with either Amazon Web
Services or alone. Its detail explanation can be read in subsection 2.1.4.3.

26

3.3.5 Monitoring

Monitoring needs to be done for checking cluster and its nodes’ health and
progress status. Different metrics will be considered for visualizing these
statuses as described in subsection 2.2.2.1. Amazon CloudWatch, referred
in subsection 2.2.3 is a convenient tool available to visualize these EMR
metrics.

Besides CloudWatch, fetching log files from master node can also
be done to realize the cluster progress like checking Maps and Reduce
progress, Hadoop Distributed File System (HDFS) read write status on-
the-fly unlike Cloudwatch which gets data every five minutes.

3.3.6 Script Development for Automation

For automation, Python Programming is preferred due to author’s famil-
iarity with this language and availability of AWS SDK for Python - Boto3
SDK (refer to subsection 2.1.4.4). For live logs analysis from master node,
Paramiko [50] API can be used which is python implementation of Secure
Shell 2 (SSH2). Basically Paramiko can be useful to connect to the remote
master node via SSH, execute commands in the master node and get the
result out from remote node to local machine.

3.3.7 FoxyProxy

Hadoop has its web user interfaces hosted on the master node. For security
reasons, it is required to configure proxy settings to view the web interface
on the master node [17]. First SSH tunnel has to be created to the master
node using dynamic port forwarding. Then FoxyProxy can be configured
in different browsers to reach these websites.

3.3.8 R-programming

Graphs and other visualization for analysis of results will be done using
R-programming. Microsoft Excel will also be used for data visualization.

27

3.4 Project Steps

3.4.1 Sample Data Generation

Sample data need to be generated for processing in the EMR cluster. Data
can be realized in the form of syslog and will simply be counting the
number of events per second. The objectives of this project is to process
huge data that require dynamic processing requirements to guarantee
timely job completion with less budget. Hence these generated data and
analyzed output are not major concern but they contribute as input data
for the EMR cluster being engaged in processing.
Each line of standard syslog has following format:

1 Month Day HH:MM: SS " Event with i t s i n f o "

Example:

1 Mar 25 1 1 : 2 8 : 2 4 kab−lappy d h c l i e n t : Sending on Socket/ f a l l b a c k
2 Mar 28 1 3 : 0 0 : 3 5 kab−lappy nt f s−3g [4 9 6 9] : Unmounting /dev/sda7 (Ent)
3 Mar 28 1 3 : 0 0 : 3 5 kab−lappy udisksd [2 5 2 5] : Unmounted /dev/sda7 on

beha l f uid 1000

In such syslog format, sample log will be generated which would be
processed by EMR cluster and the map reduce data flow has already been
mentioned in 3.1.

The sample syslogs can be compressed in gzip, bzip2 or LZO
format as these compression types are supported by Hadoop. It will
be very useful because uploading the compressed syslogs to Amazon S3
buckets incur low bandwidth and low cost for storing data persistently.
Besides, network bandwidth while transferring data from Amazon S3 to
HDFS in core nodes will also be significantly low. As Hadoop supports
mentioned compression formats, very huge file can be compressed to size
of 64 MB (default split size) for unsplittable compression like gzip while
even bigger sized compressed files in bzip2 can be used as input files which
will be splitted and assigned to individual mapper.

For experiment, huge data is expected to be fed into the processing
engine of the EMR cluster. Therefore replication of few of compressed
samples generated can be done to make huge number sample logs which
will need large computational power and time.

28

3.4.2 Cluster Setup and Configuration

The first question of problem statement How can a computer cluster be
built in Amazon? will be addressed here. There are many possible
ways to setup a cluster in amazon. For an instance, setting up hadoop
cluster by using Amazon EC2 instances as Namenodes and Datanodes
and manually configuring everything. Other distributed frameworks are
also available like Apache Spark [33] and Presto [35] which can be setup
and configured manually in Amazon EC2 instances and then process data
as per requirement with customized processing engine. Amazon also
has another solution which makes it convenient by providing managed
Hadoop framework and it is called Amazon EMR cluster which can be
referred in subsection 2.2.2. Even Apache Spark and Presto can be run in
Amazon EMR. For this thesis, Amazon EMR will be setup and configured
with Core Hadoop 2.7.2 on EMR release 4.6.0. [1].

3.4.3 Map Reduce Engine

To address second question of problem statement How can huge batch jobs
be processed in the cluster?, a processing engine has to be realized. Simple
log analysis from huge log data will be done. For the experiments sample
syslog like logs will be processed with Map Reduce Engine to get the results
in the form of number of events per second. The MapReduce engine to be
used is mentioned in subsection 3.3.2.

3.4.4 Estimation Phase

In this phase approximate size of cluster will be calculated based on desired
deadline. As "m1.medium" EC2 instance will be implemented for the
experiments, so estimation should be done accordingly. This phase also
answer the part of third question of problem statement What metrics can
be used to monitor progress and estimate total time to process data? The
following steps will be followed to estimate required number of nodes for
processing.

• Number of mappers running in parallel in an instance be Nm. Default
mappers capacity of "m1.medium" is 2. Similarly other instances
like "m1.xlarge" can run 8 mappers in parallel by default. If a
cluster consists of 1 master node and 1 core node, the total instance
mapper capacity would be Nm since only core and task instances are
involved in actual processing unlike master node which involves in
coordinating all the nodes.

• What is number of mappers the job requires?
As discussed in sub-section 3.4.1, large number of sample log files

29

x would be created and size can be about 64 MB but should not be
exceeded it if the file is unsplittable like compressed file format gzip.
This means number of splitters and hence mappers would be x.

Sm = x

• How long would it take to process sample files? It is assumed that it
would take tm time to process m sample files. The thing to be noted is
number of sample files to process is equal to number of mappers that
can run in parallel in that instance for number of instances calculating
formula mentioned in next point.

• Finally with desired deadline td, approximate estimated number of
nodes [14] would be Xn which is given as below:

Nx =
Sm · tm

Nm · td

This number Nx would be crucial and needs to be maintained during
processing. Any number of instances N > Nx running for given
period of deadline can make processing happen in time.

3.4.5 Data Processing and Cluster Scaling

Before beginning actual processing, the data should be made available to S3
bucket. Above log generating bash script can be run into an EC2 instance
in same region to bucket, compress data and transfer it to S3 bucket. It is
also possible to generate sample logs locally and then upload via internet
into S3 bucket as in figure 3.2. Data processing engine has to be ready. The
EMR cluster should be up and running. The cluster will be provisioned
with at least 1 master node and 2 core nodes. Later on the basis of value of
Nx which is required number of task instances to complete the job in time,
the cluster will be scaled up and down. The value of Nx will be adjusted
itself prior to deadline at defined checkpoints.

Figure 3.2: Loading data into S3 bucket

The overall system design of the cluster will be like the block
diagram depicted in figure 3.3 below.

Utilizing Python boto3 SDK, CloudWatch and log analysis all the
activities in the cluster will be monitored and decision for cluster resizing

30

Figure 3.3: System Block Diagram

will be initiated from the node which will be running automation script.
For improved performance of the job flows all nodes and S3 bucket for
the given cluster should be launched in the same Amazon EC2 Availability
zone to incur higher data access rate and to eliminate inter-zone data flow
charges.

3.5 Challenges of using Spot instances in Cluster

When a cluster starts processing the data, mappers and reducers are
assigned to the slave nodes (core and task instances). The output of the
mapper is buffered and later dumped into local disk of each individual
mapper nodes as the intermediate results when threshold of buffer is
reached. As described earlier, spot instances could terminate any time
market price exceeds the bid price or spot pool is empty. When using
spot instances as task nodes in the EMR cluster, mappers running on those
instances store the intermediate map outputs in those spot nodes itself and
the cluster always risk losing those intermediate results.

For instance, there is chance of losing spot instances after
processing 70% of data with spot task nodes so these data need to be
reprocessed which causes huge loss of both economy and time. Solution
to address this huge processing loss can be done by dividing the job into
more partial jobs like 10 partial jobs. After completion of one partial job

31

store the output and start next partial job and so on. This means maximum
of 10% processing would be lost as each step contributes 10% of total work.
For example if the current step be 4th after finishing 3 partial jobs then 30%
work has already been finished. In case spot instances get terminated, only
partial percent above 30% of work would be lost and this partial percent of
work could be recovered with new spot instances or on-demand instances
in time to avoid missing deadline.

Figure 3.4: Work progress based on tasks completion

As depicted in figure 3.4, each partial job is a task like Task1,
Task2, upto Task10. Total size of file to be processed will be divided into
10 parts and each part will be processed in subsequent steps. If 5th step
is running in some point of time and the spot instances got terminated for
some reason, only 5th step has to be reprocessed again but not step 1 to
step 4 and then can step forward from 6th step and ahead. So the progress
is in the rate of 10% for completing each step. This setup should even be
beneficial in case of failure in master node itself causing cluster to terminate
or core nodes too because the processed results are already in persistent
S3 storage. The extra time would be cluster setup and configuration time
which is about 5 to 10 minutes for EMR cluster with core Hadoop.

3.6 Bidding Strategies

When bidding for spot instances in Amazon Web Services, the lowest
granularity value allowed is G = 0.001. In the paper written by Voorsluys
and Buyya [47], five possible bidding strategies for spot instance at
Amazon Web Serveces EC2 are mentioned. They are minimum, mean, on-
demand, high and current price for bidding.

32

Two bidding strategies will be implemented in this project based
on median of prices of given duration and current or latest price. Formula
for both of these strategies are similar. The first one based on median of
prices will be formulated as below:

B = M + (D−M) · x
where B = bidding price, M = Median of prices in certain duration, D =
On-demand instance price, x is increment percent
The second one based on latest price will be formulated as below:

B = L + (D− L) · x
where B = bidding price, L = Latest spot market price, D = On-demand
instance price, x is increment percent

The lower value of x will be referred as Normal bidding while for
aggressive bidding, the higher value of x will be chosen.

33

34

Part II

Results and Conclusion

35

Chapter 4

Results I - Design

This chapter discusses algorithms developed to achieve the objectives.
Two algorithms were formulated to address the goal of designing and
developing the tools that will minimize the cost of batch jobs processing in
EMR cluster. Both of the algorithms focused in leveraging spot instances to
minimize the cost of the processing job in the cluster for timely completion
of job.

The first algorithm Deadline Aware Auto Bidding Scaling
Algorithm (DAAB) was based on adjusting task capacity in each time slots
using spot instances only until the threshold time. After the threshold time,
on-demand instances would be used in order to complete tasks within
deadline. The bidding strategy chosen for this algorithm is based on
median of prices from history. The formula can be referred from section
3.6.

While the second algorithm Deadline Aware Progress Adaptive
Burst Bidding Algorithm(DPB) followed the notion of burst bidding of
spot instances i.e. using more spot instances than required to finish
job before time which also decrease the probability of using on-demand
instances after threshold time because the processing would finish before
threshold time. The bidding strategy chosen is based on latest spot price.
Normal and aggressive bidding is also implemented in this algorithm
at defined checkpoints. When the progress at checkpoint is Behind, the
aggressive bidding will be employed. While if progress at checkpoint is
Ahead or In-pace, the bidding will be normal. The normal and aggressive
bidding differs only by increment percent x. Normal bidding strategy has
value of x = 0.02 while aggressive one has value x = 0.05.

37

4.1 Deadline Aware Auto Bidding Scaling (DAAB)
Algorithm

In this algorithm, bidding will be done with (Nx − β) on the basis of
estimated number of instances Nx for spot instances at the beginning. β
is number of core instances running in the cluster which also contributes
in task so it is subtracted. The bid price would be sum of median of last
10 hours price and 2 % increment in difference between on-demand price
and the median. Then at every 10% of time to deadline from beginning,
it will check progress (which will be between 1 and 10) and recalculate
new number of instances Zx required to complete the whole processing
in time so (Zx − β) instances will be bid. Bidding will be done with the
same bidding price calculated before so task instances will be resized with
(Zx − β). This will continue till 90% of time to deadline and at that point
new Zx is recalculated and new (Zx − β) will be count for all on-demand
instances only to guarantee the work completion in time.

Algorithm 1: Deadline Aware Auto Bidding Scaling (DAAB)
Data: Get ClusterID, Cluster-zone, estimated number of instances as

Nx , Deadlinetime td, β is number of core instances and get
median spot market price M from 10 hours history, B refers to
bid price and D is on-demand price;

1 Initialize t=0;
2 BidPrice B = M + (D−M) · 0.02;
3 Bid(Nx − β, B);
4 Resize task instances with Nx spot instances if bid accepted ;
5 while t < 0.9 · td do
6 foreach t = t + 0.1 · td do
7 Find Progress P;
8 RemainingTime tr = td − t ;
9 Zx = (((10− P) · Nx · td)/(10 · tr))− β;

10 Bid(Zx, B) ;
11 Resize taskinstances with Zx spot instances for bid price ;
12 end
13 end
14 Find Progress P;
15 Calculate Zx = ((10− P) · Nx)− β ;
16 Resize taskinstances with Zx ondemand instances ;

During every 10% of time, if processing get delayed either due
to spot instances unavailability or abrupt termination in between, then it
will compensate by resizing instances capacity at the start of next time slot.
Even if processing was faster than expected which is checked at start of
new time slot, it will decrease the size of instances capacity for next 10%
of time to keep in pace with expected line. If bid is successful at every
time slot and the allocated instances do not get terminated in any of these

38

time slots till 90% of time, then it is the best case which will be in pace
to base-line progress from start to end. The worst case could be no bid
successful till 90% of time and the cluster has to be provisioned with only
on-demand instances. It will need 10 times of required task instances
estimated beforehand. The other worst possibility could be successful
provision of spot instances but termination before every 10% progress or
unsuccessful bid till the end.

4.1.1 Expected Results of DAAB Algorithm

The illustration for expected perfect case and worst case is depicted in
figure 4.1. It is to be noted that the graph will be somehow different as there
will always be two core nodes running which also contribute in performing
tasks causing some progress all the time. The other cases between perfect
and worst case scenario would be performing total processing work with
lesser number of on-demand instances than in the worst case scenario and
higher number of spot instances.

Figure 4.1: Perfect and worst case scenario in Algorithm 1

4.2 Deadline Aware Progress Adaptive Burst Bidding
(DPB) Algorithm

In this algorithm, only spot instances will be used upto 50% of time. The
multiplication factor of α enables the cluster to process data as earlier as
possible with spot instances. There will be two checkpoints for evaluating
progress based on elapsed time and re-adjust number of spot instances

39

based on latest price and/or on-demand instances to meet deadline.

Algorithm 2: Deadline Aware Progress Adaptive Burst Bidding (DPB)
Data: α is multiplication factor, β is number of core instances

1 Set ClusterID, Cluster-zone, Instance-number Nx , Deadlinetime td;
2 Find latest spot market price L, t=0 ;
3 BidPrice B = L + (D− L) · 0.02 where D → ondemand_price;
4 Bid(α · Nx − β, B);
5 Resize task instances with (α · Nx − β) spot instances for bid price ;
6 while t < 0.5 · td do
7 foreach t = t + 0.1 · td do
8 if previous (α · Nx − β) spot instances still running then
9 Continue

10 else
11 Update BidPrice B = L + G;
12 Resize task instances with (α · Nx − β) spot instances for

new bid price B ;
13 end
14 end
15 end
16 if ProgressP <= 4 then
17 Bid for (α · Nx − β) spot instances with B = L + (D− L) · 0.05

and Nx on demand;
18 else
19 if P == 5 then
20 Bid for (α · Nx− β) spot instances with B = L + (D− L) · 0.05;
21 else
22 if P > 5 then
23 Bid for (α · Nx − β) spot instances with

B = L + (D− L) · 0.02 ;
24 else
25 Readjust all task instances size to zero and exit;
26 end
27 end
28 end
29 while t < 0.8 · td do

30 end
31 if P <= 7 then
32 Use ((((10− P)/2) · Nx)− β) ondemand instances + (Nx) spot

instances with B = L + (D− L) · 0.05
33 else
34 Use (Nx − β) ondemand + Nx spot instances with

B = L + (D− L) · 0.05
35 end

These checkpoints will be set at 50% of time elapsed to deadline

40

and 80% of time elapsed to deadline. Also till 50% of time to deadline, for
every 10% of time, status of (α · Nx− β) spot instances will be checked and
rebidding will be done if they are terminated for some reason otherwise
same spot instances will be running. The value Nx is estimated number
of task instances required from estimation phase and β is number of core
instances running.

At 50% of elapsed time i.e. Checkpoint 1, depending on progress
different strategies will be chosen for further processing and similar is the
case at 80% of elapsed time. As depicted in figure 3.4, total work will be
divided into 10 tasks by dividing equal number of files of same size for
each task. So progress bar can be measured in terms of 10% increment like
P0 refers to 0%, P1 refers to 10%, P2 means 20% and goes upto P10 as 100%
progress.

Figure 4.2: Baseline Progress and Checkpoints for Algorithm 2

On the basis of progress at these checkpoints, further strategies
will be applied. The diagram 4.2 depicts the status label at each checkpoint
as "Behind" points colored red, "On-track" points colored yellow and
"Ahead" points colored green. Strategies are set on the basis of these
statuses. There are two bidding strategies viz., Bid_A where bid price is
sum of latest price and 2% of difference between ondemand price and latest
price; and Bid_B where bid price is sum of latest price and 5% of difference
between on-demand price and latest price. The bidding strategies are
mentioned in section 3.6.

At Checkpoint 1, if progress status is Behind that means progress
is less than 50% then Bid_B will be applied for (α · Nx − β) spot instances
along with Nx on-demand instances in order to improve progress against

41

baseline progress. If it is on-track, (α · Nx − β) spot instances with Bid_B
will be employed in order to finish work ahead of time. While in case of
Ahead, Bid_A will be employed for (α · Nx − β) spot instances.

At 80% of time to deadline i.e. Checkpoint 2, if its Ahead or
on-track, (Nx − β) on-demand instances along with Nx spot instances
with BidB would be used. While in case of Behind, required number
of on-demand instances will be calculated as ((((10 − P)/2) · Nx) − β)
along with Nx spot instances to finish up ahead of deadline. On-demand
instances guarantees the completion of processing in time while adding
spot instances to them speed up processing if they are available till the end.

4.2.1 Expected Results of DPB Algorithm

As depicted in figure 4.3, perfect case could be getting spot instances for
all 50% of time to deadline when α = 2. The whole processing should be
finished at this point with (α · Nx − β) spot instances along with always
running β core instances. While worst case could be unavailability of spot
instances or termination of spot instances before every 10% completion of
work so the progress would be Behind at 50% of time and then deploy Nx
on-demand instances along with spot instances. However at this point and
beyond also spot instances would not be allocated so total processing will
be done by on-demand instances only.

Figure 4.3: Perfect and worst case scenario in Algorithm 2

This case can even be worse than using all on-demand instances.
It is possible that spot instances started processing but terminated and
contribute 0% to output. However these spot instances will contribute to
cost for their partial existence. The possibility for the worst case is very low
because this algorithm employ burst bidding and also bid price is based on

42

the latest spot market price for each bidding. The diagram could be little
different as some progress might have happened at 50% time to deadline
as there are always running two core instances which also contribute in
processing.

43

44

Chapter 5

Results II - Implementation
and Experiments

In this chapter, the data outcomes from the experiments based on proposed
solutions in Approach Chapter are summarized along with system details,
important code snippets and implementation. The first section of this
chapter presents the System Setup with developed scripts followed
by actual experiments in second and third section. The results from
implementing the algorithms DAAB - Algorithm 1 and DPB - Algorithm
2 are summarized in the third section 5.4 of this chapter.

5.1 The System Setup

5.1.1 Setting up Boto3 with AWS configuration

It is required to set up authentication credentials in the client machine
where python code code is run integrating Boto3. First a new user "kabeen"
was created in Identity and Access Management - IAM [40] console of
Amazon web service to deploy required IAM roles for Elastic MapRe-
duce [41]. AmazonElasticMapReduceFullAccess, AmazonS3FullAccess and
AmazonElasticMapReduceforEC2Role roles were attached to the user with
policies in order to get access to the resources required for automation
script in python driven by the user "kabeen". AmazonElasticMapReduce-
FullAccess allows the user to do action like cloudwatch:*, ec2:RunInstances,
ec2:RequestSpotInstances, elasticmapreduce:*, etc.

AWS Command Line Interface (CLI) was first installed in the local
machine. Then access key ID and secret access key was checked from web
IAM console. User "kabeen" was already created by clicking on button
Create Access Key in Security Credentials tab. After security credentials

45

had been downloaded securely, it was configured in default credential file
"~/.aws/credentials".

1 [d e f a u l t]
2 aws_access_key_id = XXXXXXXXXXXXXXXXXXXX
3 aws_secret_access_key = XXXXXXXXXXXXXXXXXXXX

Default region was set as "us-west-2" which is Oregon region and has three
availability zones namely us-west-2a, us-west-2b and us-west-2c in file
"~/.aws/config".

1 [d e f a u l t]
2 region = us−west−2
3 [p r o f i l e kabeen]
4 region = us−west−2

Boto3 was installed via pip [34]:

1 $ pip i n s t a l l boto3

5.1.2 Provisioning and running Amazon EMR Cluster

Amazon EMR Cluster is used for analytics. Amazon EMR served data
processing with the use of MapReduce log analyzing engine running in
Hadoop. For all the experiments, the grant amount from Amazon for
Amazon Web Services was utilized. It was applied in AWS programs for
Research and Education [13]. The latest release 4.6.0 was used for the
experiments with Core Hadoop 2.7.2 as application. The default hardware
configuration was 1 master node and 2 core nodes and all instances are of
type "m1.medium". The task nodes were adjusted as per computational
needs in experiments. The default zone chosen was "us-west-2" which
consists of availability zones "us-west-2a", "us-west-2b" and "us-west-2c".
For accessibility of the instances that constitute the cluster, a key pair
"EMR_test" was generated and used throughout all experiments.

For creating a new cluster each time following code was run for
creating a cluster with emr release 4.6.0 and core Hadoop 2.7.2:

Listing 5.1: Provisioning/running EMR with Hadoop - runEMRCluster.py
1 import boto3
2 from datetime import datetime
3

4 emrc l ient = boto3 . c l i e n t (’emr ’)
5 response = emrc l ient . run_job_flow (Name=" mycluster01 " ,
6 LogUri= ’ s3 ://aws−t e s t−kabin01/logs ’ ,
7 ReleaseLabel="emr−4.6 .0 " ,
8 I n s t a n c e s ={ ’ MasterInstanceType ’ : ’m1. medium ’ ,
9 ’ S laveInstanceType ’ : ’m1. medium ’ ,

10 ’ InstanceCount ’ : 3 ,
11 ’Ec2KeyName ’ : ’ EMR_test ’ ,

46

12 ’ KeepJobFlowAliveWhenNoSteps ’ : True
13 } ,
14 Conf igurat ions = [{ " C l a s s i f i c a t i o n " : " emrfs−s i t e " ,
15 " P r o p e r t i e s " : { " f s . s3 . c o n s i s t e n t " : " t rue " } }
16] ,
17 JobFlowRole=" EMR_EC2_DefaultRole " ,
18 ServiceRole=" EMR_DefaultRole "
19)

Figure 5.1: EMR Software Info

Figure 5.2: EMR Availability Zone and Hardware Info

By running python code as in listing 5.1, cluster got provisioned
and ran in Amazon Web Services with assigned Master public DNS,
ClusterID and configuration details as Release Label - emr4.6.0, Hadoop
distribution 2.7.2, availability zone as us-west-2b and provisioned and later
running master and core instances information. It can be referred from
figure 5.1 and figure 5.2 snipped from Amazon EMR Web GUI. The default
zone configured was us-west-2 (Oregon) so whenever a cluster was created
it starts and run in one of the three availability regions (us-west-2a, us-west-
2b and us-west-2c) [38] in that zone.

For viewing nodes status, cluster progress native Hadoop Web
GUI were also observed. For this, Foxyproxy was setup in Chrome browser
and foxyproxy-settings.xml file was created with content as mentioned in the
EMR official website [18]. Then by clicking "Use proxies based on their
pre-defined patterns and priorities" in foxyproxy symbol, it was activated.

From local machine the following command was fired:

ssh − i ./ EMR_test . pem −ND 8157 hadoop@ec2−54−191−137−97.us−west−2.
compute . amazonaws . com

Then in the browser, masters public dns address was used along with port
8088 for Hadoop Default Web Interface and port 50070 for Hadoop Datan-

47

odes status. Amazon EMR has Cloudwatch too which is very convenient
for programmers to use with Boto3 Python and thus cloudwatch metrics for
Amazon EMR were used in automation scripts. The following are screen-
shots from Hadoop Web Interface at port 8088 and also from port 50070
about namenodes when six task instances including two core nodes were
running in EMR cluster. An application was also tested.

Figure 5.3: Running task nodes in EMR cluster

Figure 5.4: "m1.medium" core nodes in EMR cluster

The figure 5.3 depicts the status of running nodes. It was captured
when there were two core nodes and four task nodes were running. In the
figure 5.4, the detailed information about core nodes were rendered and
these core nodes represent data nodes of the Hadoop Cluster. A completed
application’s status was observed in Hadoop GUI in figure 5.5.

48

Figure 5.5: A completed application status in Hadoop GUI

5.1.3 Input Data Generating Script

Following bash script named loggenerate.sh was developed which gener-
ated syslog alike data. Two positional arguments are number of iteration
and output file.

1 # !/ bin/bash
2 dt = ‘ date +"%b %d %T" ‘
3 hn= ‘ hostname ‘
4 num=0
5 while [$num − l t $1]
6 do
7 echo " $dt $hn " " pqrprocess [3 6 8 9] : " " In fo Msg2" >> $2
8 echo " $dt $hn " " abcprocess [7 1 2 5] : " " In fo Msg3" >> $2
9 echo " $dt $hn " " mnoprocess [8 1 2 3] : " " In fo Msg4" >> $2

10 echo " $dt $hn " " uvxprocess [7 1 2 5] : " " In fo Msg5" >> $2
11 num=$ [$num+1]
12 done

Running above bash as loggenerate.sh 1100000 samplesyslog01
give 1100000 lines of sample syslog which was about 100 MB in size and
was compressed with bzip2 and compressed file was about 385 KB in
size. The default split size in hadoop 2 is 64 MB and supports compressed
files like bzip2 and gzip. Compressed file could have been made as big
as 64MB even if the file is unsplittable like gzip. However it would
require significanly very large processing time for "m1.medium" instances
to process each split because of its huge size. Therefore, for the experiments
small files were created though it is not recommended for real world data
processing.
Few lines of output file are as below:

1 Apr 15 1 7 : 0 3 : 1 3 kabin−lappy xyzprocess [6 7 8 9] : In fo Msg 1
2 Apr 15 1 7 : 0 3 : 1 3 kabin−lappy pqrprocess [3 6 8 9] : In fo Msg 2
3 Apr 15 1 7 : 0 3 : 1 3 kabin−lappy abcprocess [7 1 2 5] : In fo Msg 3
4 Apr 15 1 7 : 0 3 : 1 3 kabin−lappy mnoprocess [8 1 2 3] : In fo Msg 4
5 Apr 15 1 7 : 0 3 : 1 3 kabin−lappy uvxprocess [7 1 2 5] : In fo Msg 5
6 Apr 15 1 7 : 0 3 : 1 3 kabin−lappy xyzprocess [6 7 8 9] : In fo Msg 1

49

5.1.4 Creating Custom JAR as MapReduce Application

The source codes for Mapper, Reducer and Driver which analyzed syslogs
and count number of events per second are used from this link [19].
These classes were archived as a Java Archive (JAR) file. Each classes
represent map, reduce and driver procedures. The main entry point is the
driver procedure that joins together the Job flow application and coordinate
with MapReduce to use map and reduce tasks programmed in Mapper
and Reducer classes respectively. The java files taken from here [19]
were LogMapper.java, LogReducer.java and LogAnalysisDriver.java. They were
compiled into java class files and later packaged those classes into JAR file.

1 $ j a v a c LogMapper . j ava LogReducer . j ava LogAnalysisDriver . j ava
2

3 $ j a r −cvf log−a n a l y s i s . j a r LogMapper . c l a s s LogReducer . c l a s s
LogAnalysisDriver . c l a s s

As log analyzer log-analysis.jar was ready, it could be used for
processing data in map reduce paradigm as figure 3.1. The log analyzer
was uploaded into script folder in "aws-test-kabin01" S3 bucket as below.
Refer subsection 2.1.4.3 for more about S3 bucket.

1 import boto3
2

3 s3 = boto3 . resource (’ s3 ’)
4

5 data = open (’ log−a n a l y s i s . j a r ’ , ’ rb ’)
6 s3 . Bucket (’aws−t e s t−kabin01 ’) . p u t _ o b j e c t (Key= ’ log−a n a l y s i s . j a r ’ ,

Body=data)

The loganalyzer log-analysis.jar was tested in Amazon EMR to
process some syslog type files generated and it was successfully processed
and output was saved in S3 storage. The testing was done with EMR Web
GUI by adding Step for execution with all required arguments Driver, input
location and output location after pointing location of log-analysis.jar. This
testing was for estimation itself presented with data in subsection 5.2.3,
the result of which would be used in automation script for doing actual
data processing. Adding steps can be done programatically or with AWS
Command Line Interface Command as well which was done for the main
experiments as the detailed command is published at A.7 in Appendix. The
GUI based steps addition is shown as GUI snippet in figure 5.6 below.

5.1.5 Python Scripts for the implementation of algorithms

On the basis of the two algorithms DAAB Algorithm and DPB Algorithm
in Approach chapter, two python scripts were created with functions for
specific tasks. Specific tasks were getting cluster metrics, getting latest spot
market price, bidding, adding on-demand or spot task nodes, resizing task

50

Figure 5.6: Sample Files Processing Step for Estimation

instance group. The main() function has the algorithmic logic which calls
these functions with parameters as per requirement. Boto3 python apk for
AWS was integreated with python for code development. The detailed
fully functional codes for both algorithms are published in listing A.4 and
A.5 in Appendix. Different functional modules are explained below.

5.1.5.1 Getting Spot Market Price From Historical Data

Amazon Web Services can be asked for historical data of spot market price
for previous 90 days from current time. Using boto3, python code were
developed for extracting 90 days data as well as for few of latest data. The
detail code for 90 days historical data is included in A.1 in Appendix. For
DPB algorithm proposed in Approach Chapter, the latest spot market price
was implemented in code. Median was calculated from data of latest hour
for Algorithm 1 while for Algorithm 2 the latest spot market price was used
as in function below.

Listing 5.2: Function for getting latest spot market price
1 def g e t s p o t p r i c e h i s t o r y f r o m (productdesc , a v a i l a b i l i t y z o n e ,

ins tancetypes , fromminutes) :
2 response = e c 2 c l i e n t . d e s c r i b e _ s p o t _ p r i c e _ h i s t o r y (
3 DryRun = False ,
4 StartTime = datetime . datetime . utcnow () − datetime . t imedel ta (

minutes=fromminutes) ,
5 EndTime = datetime . datetime . utcnow () ,
6 ProductDescr ipt ions = productdesc , # l i s t e . g . [’ Linux/UNIX ’]
7 Avai lab i l i tyZone = a v a i l a b i l i t y z o n e , #e . g . ’ us−west−2b ’
8 InstanceTypes = i n s t a n c e t y p e s # l i s t of i n s t a n c e types e . g . [’m1

. medium ’]
9)

10

51

11 re turn round (f l o a t (response [’ SpotPr iceHis tory ’] [0] [’ SpotPr ice ’])
, 4)]

5.1.5.2 Bidding function

Three types of bidding function were made. In DAAB algorithm, bid price
was to set as sum of median of latest hour’s prices and 2% of difference
between price of on-demand and median price. While in DPB algorithm,
for exactly same formula median would be replaced by latest price in
Bid_A strategy while 5% instead of 2% to add up with latest price in Bid_B
strategy. Bidding function for Bid_A is given in listing below.

Listing 5.3: Function for bidding with Bid_A for Algorithm 2
1 def applybidA (count , zone , ClusterID) :
2 l a t e s t p r i c e = g e t s p o t p r i c e h i s t o r y f r o m ([’ Linux/UNIX ’] , zone , [’m1

. medium ’] , 60)
3 b i d p r i c e = round (l a t e s t p r i c e + (0.087− l a t e s t p r i c e) * . 0 2 , 3) #

0 .087 i s on−demand m1. medium p r i c e
4 i f b i d p r i c e <= 0 . 6 * 0 . 0 8 7 :
5 addtasknodes (’ Task_spot ’ , ’ spot ’ , ’m1. medium ’ , count , s t r (

b i d p r i c e) , ClusterID)

Some bidding tests were done with random bidding price. At one point in
time when the spot market price reaches $0.0197, different spot status were
observed as in figure 5.7 below. Each spot request had one Request ID in
form "sir-XXXXXXXX" and the requested instance type was "m1.medium"
with AMI ID "ami-4c1c847c" for "Linux/Unix" Operating System. The
initial state and status when spot requested was "open" and "pending-
evaluation" respectively. Later on the basis of change of market price
different status were observed. Like for bidding price $0.017 in third row in
figure 5.7, the request was previously fulfilled and became active but when
price increased, it was terminated. The state "active" and "fulfilled" meant
the spot instance request accepted and the instance was spawn with active
instance ID too. The status "az-group-constraint" was observed when there
already had task group in Amazon EMR Cluster with spot bidding price
greater than the newly quoted price.

5.1.5.3 Adding Task Nodes and resize task nodes

As per our algorithms there could be need of either adding spot instances
or on-demand instances or even both as task nodes as per requirement at
different time slots and checkpoints assumed in the algorithms. Task node
named as Task_spot or Task_ondemand, market as "spot" or "ondemand",
instance type like "m1.medium", number of instances required as count,
bid price as spotprice and Cluster ID as ClusterID can be passed into
function as functional parameters below. It add task nodes into the running

52

Figure 5.7: Spot Requests and Status

cluster. Similarly there is need of task nodes resizing function when the task
node group was already created and running in cluster and required to be
resized based on condition.

Listing 5.4: Function for adding on-demand or spot instances as task nodes
1 import boto3
2

3 emrc l ient=boto3 . c l i e n t (’emr ’)
4

5 def addtasknodes (name , market , ins t type , count , spotpr ice ,
ClusterID) :

6 i f market == "ondemand" :
7 response = emrc l ient . add_instance_groups (
8 InstanceGroups =[
9 {

10 ’Name ’ : name ,
11 ’ Market ’ : ’ON_DEMAND’ ,
12 ’ Ins tanceRole ’ : ’TASK ’ , # ’MASTER ’| ’CORE ’| ’TASK ’
13 ’ InstanceType ’ : ins t type , #e . g . m1. medium
14 ’ InstanceCount ’ : count ,
15 }
16] ,
17 JobFlowId=ClusterID
18)
19 e l i f market == " spot " :
20 response = emrc l ient . add_instance_groups (
21 InstanceGroups =[
22 {
23 ’Name ’ : name ,
24 ’ Market ’ : ’SPOT ’ ,
25 ’ Ins tanceRole ’ : ’TASK ’ , # ’MASTER ’| ’CORE ’| ’TASK ’
26 ’ B idPr ice ’ : spotpr ice ,
27 ’ InstanceType ’ : ins t type ,
28 ’ InstanceCount ’ : count ,
29 }
30] ,
31 JobFlowId=ClusterID

53

32)

5.1.5.4 Get Cluster Metrics

To check the cluster health status, to analyze cluster performance and
cluster progress, EMR metrics can be observed using Amazon CloudWatch.
The metrics mentioned in subsection 2.2.2.1 were measured using the
function developed. One of the important metrics for making decisions
in DAAB algorithm and DPB algorithm is AppsCompleted. As mentioned
about progress, progress is in step of 10% as total job is divided into
ten steps. Completion of each step means there is increase by 1 in
AppsCompleted metrics. Ihe developed code was checked by executing
small jobs in steps. The metrics is updated once every five minutes as EMR
cluster sends these metrics every five minutes to the CloudWatch.

Listing 5.5: Function for getting latest metrics value
1 cwcl ien t = boto3 . c l i e n t (’ cloudwatch ’)
2

3 def g e t c l u s t e r m e t r i c s (ClusterID , metricsname , t imeinseconds) :
4 response = cwcl ient . g e t _ m e t r i c _ s t a t i s t i c s (Namespace = "AWS/

ElasticMapReduce " ,
5 MetricName=metricsname ,
6 StartTime = datetime . datetime . utcnow () − datetime . t imedel ta (

seconds=timeinseconds) ,
7 EndTime = datetime . datetime . utcnow () ,
8 Dimensions = [{ ’Name ’ : ’ JobFlowId ’ , ’ Value ’ : ClusterID } ,] ,
9 Period = 60 ,

10 S t a t i s t i c s =[’ Average ’]
11)
12 m e t r i c s v a l u e l i s t = sor ted (response [’ Datapoints ’] , key= i t e m g e t t e r

(’ Timestamp ’) , reverse=True)
13 i f m e t r i c s v a l u e l i s t :
14 re turn i n t (newl i s t [0] [’ Average ’])
15 e l s e :
16 re turn −1

5.2 Initial Experiments

5.2.1 Input Data Generattion

Using the bash script mentioned in subsection 5.1.3, input syslog like logs
were generated. 5100 sample files were created and each of 510 files were
saved in ten folders named 01, 02 and so on as 10 for the last folder. They
were uploaded into data folder in S3 bucket labelled "aws-test-kabin01"
using AWS S3 Web GUI as in figure 5.8 below. Each of 10 folders contains
10 percent share of total input data to be processed.

54

Figure 5.8: Uploading data to S3 bucket from Web GUI

5.2.2 Provision and run the EMR cluster with steps

During setup of EMR cluster at 5.1.2, the cluster was created, provisioned
and run with 1 master instance and 2 core instances. The detailed python
codes and Amazon Web Services CLI command are presented in listings
A.6 and A.7 respectively. When the cluster was created with AWS CLI
command as in listing A.7 in Appendix, the EMR cluster gets provisioned
and run with unique cluster ID.

" InstanceGroupType " : "CORE" , " InstanceType " : "m1. medium" , "Name" : " Core
Ins ta nce Group " } , { " InstanceCount " : 1 , " InstanceGroupType " : "MASTER" ,
" InstanceType " : "m1. medium" , "Name" : " Master Ins tan ce Group " }] ’
−−region us−west−2
{

" Clus ter Id " : " j−V6WWSMHYCRP7"
}

Besides creating, provisioning and running the cluster, the steps
were added. Each step would processe 10% of total data to be processed.
The files were already uploaded into ten folders equally divided in each
folder. In each folder, 510 files were uploaded out of total 5100 files.

55

The provisioning and running of new EMR cluster was done each time
considering it as "Transient Cluster" [16]. It took 7 minutes to provision,
configure and run the EMR cluster with 1 master "m1.medium" instance
and 2 core "m1.medium" instances. For all the experiments, it took between
7 minutes to 10 minutes for running the EMR cluster with fully configured
Core Hadoop 2.7.2.

5.2.3 Estimation Phase

Two sample files were uploaded into dataEstimation folder in aws-test-
kabin01 S3 bucket and were processed. The EMR cluster was run with 1
master and 1 core "m1.medium" instance. Using the formula mentioned
in subsection 3.4.4, number of instances required to process all data in
deadline was calculated. As discussed in subsection 5.1.3, files compressed
in bzip2, size less than 64MB, would be processed later. This would need
5100 mappers to process all the files. For all the experiments deadline time
would be taken as 10 hours. Refer to figure 5.6, the estimation step was
added to the cluster using EMR Web GUI.

The formula from subsection 3.4.4 is given by,

Nx =
Sm · tm

Nm · td

In this formula, the calculation was done for estimating number of
"m1.medium" instances and it has capacity to run "2" mappers in parallel.

Three experiments were carried out to process 8 sample files. It
took 322 seconds, 325 seconds and 332 seconds respectively. The average
of three 322.3 seconds was noted down. Deadline time was assumed to
be 10 hours i.e. 36000 for all experiments. Calculation was done with
Sm = 5100, tm = 327.6, Nm = 2, td = 36000. The calculated value should
be divided by "4" because according to the formula, the number of files to be
processed should be equal to number of parallel mappers in the instance.
8 files i.e. 4 times mapper capacity was processed in order to get better
average. Number of required instances was given by the formula as below.

Nx =
5100 · 322.3

2 · 36000
· 1

4
= 5.7

Rounding up to immediate higher integer gave 6 instances as requirement.
For all the experiments Nx = 6 was used as required number of task
instances. It is to be noted that as core instances also contribute as task
instances so depending on number of core instances running, the value
should be subtracted from it. The following log was generated while
running the estimation step. The last line gave the execution time of 348
seconds and initial setup time of 28 seconds was subtracted to get 320
seconds as one of obervations in above calculation. The execution time
could be observed from the last line of this controller log in listing below.

56

Listing 5.6: Controller log of Step Execution
2016−04−28T23 : 2 3 : 1 9 . 2 6 7Z INFO Ensure step 2 j a r f i l e s3 ://aws−t e s t

−kabin01/ s c r i p t /log−a n a l y s i s . j a r
2016−04−28T23 : 2 3 : 1 9 . 5 9 1Z INFO StepRunner : Created Runner f o r step2
INFO s t a r t E x e c ’ hadoop j a r /mnt/var/ l i b /hadoop/steps/s−11

Z7RSAEV8JF0/log−a n a l y s i s . j a r LogAnalysisDriver s3n ://aws−t e s t−
kabin01/dataEst imat ion/* s3n ://aws−t e s t−kabin01/runEstimation2
/run0 ’

INFO Environment :
TERM=l inux
.
.

INFO Working d i r /mnt/var/ l i b /hadoop/steps/s−11Z7RSAEV8JF0
INFO ProcessRunner s t a r t e d c h i l d process 13526 :
hadoop 13526 2295 0 23 :23 ? 0 0 : 0 0 : 0 0 bash /usr/ l i b /

hadoop/bin/hadoop j a r /mnt/var/ l i b /hadoop/steps/s−11
Z7RSAEV8JF0/log−a n a l y s i s . j a r LogAnalysisDriver s3n ://aws−t e s t−
kabin01/dataEst imat ion/* s3n ://aws−t e s t−kabin01/runEstimation2
/run0

2016−04−28T23 : 2 3 : 2 3 . 6 5 7Z INFO HadoopJarStepRunner . Runner : s tartRun
() c a l l e d f o r s−11Z7RSAEV8JF0 Child Pid : 13526

INFO Synchronously wait c h i l d process to complete : hadoop j a r /
mnt/var/ l i b /hadoop/steps/s−11Z7RSAE . . .

INFO waitProcessCompletion ended with e x i t code 0 : hadoop j a r /
mnt/var/ l i b /hadoop/steps/s−11Z7RSAE . . .

INFO t o t a l process run time : 362 seconds
2016−04−28T23 : 2 9 : 2 3 . 9 2 0Z INFO Step crea ted j o b s :

job_1463353543856_0001
2016−04−28T23 : 2 9 : 2 3 . 9 2 1Z INFO Step succeeded with exitCode 0 and

took 348 seconds

5.3 Setting up Base Experiment - EMR Cluster with all
on-demand instances

Before carrying out the experiments on the proposed algorithms DAAB
- Algorithm 1 and DPB - Algorithm 2, a benchmark was set by running
the cluster with on-demand instances only. This experiment resulted in
time and cost reference for the experiments implementing these algorithms.
These were the experiments on cluster with task nodes as on-demand
instances only and named as OD-n. Two experiments were carried out
for the base experiment. They were OD-1 and OD-2.

5.3.1 Experiment OD-1 and OD-2

Two experiments OD-1 and OD-2 were carried out in with same sets of
resources and processing needs. In fact the processing needs and deadline
for all the experiments including this one is same. The sample files were
created with 1100000 lines and compressed in bzip2 format. The size details

57

can ne referred in section 5.1.3.
Processing requirements for the experiments were as following:

Total number of files to process is 5100
Number of files to process per step is 510
Deadline = 10 hours

The required number of instance for this processing was estimated
as 5.7 ≈ 6. So the EMR cluster was provisioned and run with following
hardware configuration having on-demand instances only.

Instance Flavor was "m1.medium" for all instances.
Number of master instances was 1
Number of core instances was 2
Number of task instances was 4

Two core instances also contribute as task nodes so total task
capacity became 6 which is as per estimation. There were two clusters
with same configuration and the clusters started to process data. All the
experiments were done in Amazon’s Oregon Zone called "us-west-2" which
had three availability zones "us-west-2a", "us-west-2b" and "us-west-2c".

5.4 Experiments on the Algorithms DAAB and DPB

The two algorithms Deadline Aware Auto Bidding Scaling (DAAB) and
Deadline Aware Progress Adaptive Burst Bidding (DPB) were imple-
mented as developed python scripts. Number of experiments were made
on scripts based on DAAB and DPB algorithms. Number of experiments
were carried out for both algorithms. The experiments are represented in
the form of DAAB-n and DPB-n such that n = {1, 2, 3, ...}. The processing
requirement for these experiments is same as in base experiment in which
only on-demand instances were used. They were:

Total number of files to process = 5100
Number of files to process per step = 510
Deadline = 10 hours

On the basis of required number of instances estimated as 6,
with algorithm specific adjustment on it data got processed in the EMR
cluster. The hardware configuration of EMR cluster in task instances were
dynamic and could be only spot-instances or both spot instances and on-
demand instances or only on-demand instances in different time slots in
each experiment based on the algorithms. The hardware configuration
were as below:

Instance Flavor was "m1.medium" for all instances.
Number of master instances was 1 (on-demand instance)

58

Number of core instances was 2 (on-demand instances)
Number of task instances was dynamic (spot or both or on-demand)

All DAAB-n experiments ran for whole time till the deadline
while DPB-n experiments were shorter than deadline time. The analysis
would be made on next chapter on the basis of these experiments against
base experiments.

59

60

Chapter 6

Results III - Analysis

In the analysis chapter, the results from the experiments are presented
comprehensively. There were different experiments carried out as two
base experiments with on-demand instances only called OD-n, and each
of six emperiments as implementation of two algorithms DAAB and DPB
represented as DAAB-n and DPB-n. Three experiments on DAAB-n and
two experiments on DPB-n are presented with detail data and graphs.

As discussed in previous chapter, the instance flavor used was
"m1.medium" and details of it can be referred from table 3.1. Hadoop
2.7.2 was implemented with Amazon EMR release 4.6.0 and operating
system type was Linux/Unix with Amazon Machine Image (AMI) ID "ami-
44966224".

6.1 Evaluation of base experiments OD-n

The two experiments were carried out as base experiments using task
nodes as on-demand instances only. The detail of hardware setup and
input files processed is mentioned in subsection 5.3.1. The following table
6.1 gives individual time for processing each of 10 parts of total data in
10 subsequent steps. Each single part of data processing is represented by
Part− n where n = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}.

On the basis of estimated instance numbers as "6" rounded of from
value "5.7" in subsection 5.2.3, and deadline time was set as 10 hours so
each part the processing time was expected to be less than 1 hour i.e. 3600
seconds. The actual data from experiment OD-1 and OD-2 as in table
6.1 were plotted as boxplots in figure 6.1 to realize consistency of data
processing time against each other. Median of data processing time for OD-
1 and OD-2 were 3466.5 seconds and 3478 seconds respectively, difference
of which was 11.5 seconds which signifies almost equal processing time.

61

There were no outliers too in both boxplots, so drastic change in processing
time was not observed while employing same resources to process each
part. While analyzing about individual sets of data from OD-1 and OD-2
for processing parts of data, the standard deviation were 108.97 seconds
and 87.72 seconds i.e. 3.1% and 2.53% from their mean respectively. If 5%
more resources than the value from estimation phase were employed, the
data processing would be finished within deadline.

These experiments OD-1 and OD-2 were set as benchmark or base
experiments as the total data processing completed within deadline using
persistent on-demand instances in required numbers as estimated.

Data Processing time in OD-1 and OD-2 (seconds)
Part OD-1 OD-2
Part-1 3370 3425
Part-2 3395 3550
Part-3 3620 3385
Part-4 3553 3501
Part-5 3441 3585
Part-6 3690 3319
Part-7 3415 3507
Part-8 3492 3455
Part-9 3368 3541
Part-10 3495 3368
Total time 34839 34636

Table 6.1: Data Processing time in OD-n experiments in EMR Cluster

OD−1 OD−2

34
00

35
00

36
00

37
00

P
ro

ce
ss

in
g

tim
e

fo
r

P
ar

t−
n

da
ta

Figure 6.1: Boxplot of data processing time in OD-1 and OD-2

The total cost for each of these two experiments was same.
The following table 6.2 summarizes the total cost for running each OD-
n experiment with instance flavor "m1.medium" and instance operating

62

system "Linux/Unix".

EMR cluster cost for OD-n in US dollars
Instance
Type

Qty Hours EMR
Charge/hr

Ondemand
charge/hr

Amount

master 1 10 0.022 0.087 1.09
core 2 10 0.022 0.087 2.18
task 4 10 0.022 0.087 4.36

Total ($) 7.63

Table 6.2: EMR Cluster cost for OD-n experiment

The progress vs time graph for OD-1 is depicted in figure 6.2. Time
at every 10% progress were noted and plotted in this graph. The actual
processing in OD-1 seemed to be slightly faster than baseline progress
(100% processing in exact 10 hours i.e. 600 minutes). Cluster with
estimated task nodes as on-demand instances formed a benchmark or base
experiment.

0 100 200 300 400 500 600

0
20

40
60

80
10

0

Time in minutes

D
at

a
P

ro
ce

ss
in

g
P

ro
gr

es
s

%

Baseline progress
OD−1 progress

Figure 6.2: Data processing progress vs time in Experiment OD-1

6.2 Evaluation of experiments DAAB-n

Ten experiments were carried out for algorithm DAAB. Three experiments
are presented in details. Six experiments were not interrupted by spot
termination while other four had termination at some point of time.
DAAB-1 experiment is discussed below. There was no spot termination

63

once the spot instances were allocated in DAAB-1 and while there were
spot instances termination due to increased price named as DAAB-2 and
DAAB-3.

6.2.1 DAAB-1 Experiment

The progress vs time graph for DAAB-1 is depicted in figure 6.3

0 100 200 300 400 500 600

0
20

40
60

80
10

0

Time in minutes

D
at

a
P

ro
ce

ss
in

g
P

ro
gr

es
s

%

Baseline progress
DAAB−1 progress

Figure 6.3: Data processing progress vs time in DAAB-1

From figure 6.3, it was the case in which all the spot instances
did not terminate throughout cluster lifetime and the progress seemed to
be linear with baseline progress. It even finished little earlier than deadline
because most of 10% part of processing were processed in less than an hour.
As in figure 6.4, first 4 instances were bid and after bid being fulfilled,
number of active mapreduce nodes became 6 as always running 2 core
instances were present.

The first part of processing took more than an hour about 64
minutes and 15 seconds, so when task nodes were calculated for remaining
processing, it required 7 instances so task capacity was increased by 1. With
7 task nodes the processing of data from 10% to 20% was completed in just
52 minutes and 25 seconds so at second hour adjustment, the task nodes
capacity was resized back to 6 and it went on without termination. After
90% of time, only on-demand instances were used to complete remaining
processing. As before 90% of time, the last 10% of progress was already
started with 2 core instances the work completed before deadline. If the

64

0 100 200 300 400 500 600

2
3

4
5

6
7

Time in minutes

N
um

be
r

of
 a

ct
iv

e
m

ap
re

du
ce

 n
od

es

Figure 6.4: Number of running MapReduce nodes in DAAB-1

10th of processing started after on-demand instances were running, the
processing would have delayed because it takes 4-6 minutes for running
new on-demand instances. Better precaution would always be keeping
10% tolerance to deadline. Setting deadline as 90% of actual deadline in
automation tool would be an idea.

6.2.2 DAAB-2 Experiment

In this experiment, the spot instances were terminated after 2 hours 3
minutes. That caused to drop mapreduce nodes from 7 to 2 i.e. core
instances only and caused the part-3 processing time to 166 minutes and
12 seconds. As spot instances bidding were not successful at 3rd and 4th

hour bidding.

The bidding strategy of DAAB-2 was same when first bid
calculated from median of 10 hours history. The spot instances were
available on the start of sixth hour again. New task instances required
became 9 and at beginning of 8th hour it became 10 and ran for two
hours. After 9 hours, only on-demand instances were used for processing.
However it took 4 minutes 14 seconds more time because of initial setting
up of on-demand instances as task nodes to on-demand instances. As
talked about in DAAB-1 experiment, 10% tolerance to deadline would
make work completion in time.

65

0 100 200 300 400 500 600

0
20

40
60

80
10

0

Time in minutes

D
at

a
P

ro
ce

ss
in

g
P

ro
gr

es
s

%

Baseline progress
DAAB−2 progress

Figure 6.5: Data processing progress vs time in DAAB-2

Due to interruption of spot instances for around 3 hours, later
spot instances were adjusted to higher values to keep progress in pace with
baseline progress.

0 100 200 300 400 500 600

2
4

6
8

10

Time in minutes

N
um

be
r

of
 a

ct
iv

e
m

ap
re

du
ce

 n
od

es

Figure 6.6: Number of running MapReduce nodes in DAAB-2

66

6.2.3 DAAB-3 Experiment

In this experiment, upto 60% of progress, it went on pace with baseline
progress. But for the 7th part, it took a long time of 170 minutes because
of losing spot instances. At the end, it required 18 instances to complete
the processing. 16 on-demand instances as task nodes were deployed after
90% of time. It was noted that when provisioning new instances at 90% of
time, cosideration should be made for time the instances took to become
up and running. In this case also, it crossed deadline by 4 minutes.

0 100 200 300 400 500 600

0
20

40
60

80
10

0

Time in minutes

D
at

a
P

ro
ce

ss
in

g
P

ro
gr

es
s

%

Baseline progress
DAAB−3 progress

Figure 6.7: Data processing progress vs time in DAAB-2

6.2.4 DPB-1 Experiment

In this experiment, as α was set to 2 in automation script. Since bidding
did not terminate due to price, it went on smoothly and the total data
processing was finished in 290 minutes. DPB algorithm uses latest price
for bidding. If bid were terminated new bidding would be made with the
new calculated price at every 10% of time till 50% of total time. Due to
burst factor α, the processing were completed before half of the time.

6.2.5 DPB-2 Experiment

DPB-2 experiment had one time spot termination at time after 2 hours and
half hours so the processing was delayed for Part-6 i.e. 50% to 60% data

67

0 100 200 300 400 500 600

5
10

15

Time in minutes

N
um

be
r

of
 a

ct
iv

e
m

ap
re

du
ce

 n
od

es

Figure 6.8: Number of running MapReduce nodes in DAAB-3

0 100 200 300 400 500 600

0
20

40
60

80
10

0

Time in minutes

D
at

a
P

ro
ce

ss
in

g
P

ro
gr

es
s

%

Baseline progress
DPB−1 progress

Figure 6.9: Data processing progress vs time in DPB-1

which took 1 hour and 5 minutes to process. The number of mapreduce
nodes over time for DPB-2 is depicted in figure 6.11. New bidding made
on 4th hour after 3 hours of processing, the bid got successful with new
bidding and again 8 instances were resized as task instances to become

68

10 map reduce nodes including 2 core nodes. After 50% of time, as the
progress was already 90% so as per DPB the progress was "Ahead".

0 100 200 300 400 500 600

0
20

40
60

80
10

0

Time in minutes

D
at

a
P

ro
ce

ss
in

g
P

ro
gr

es
s

%

Baseline progress
DPB−2 progress

Figure 6.10: Data processing progress vs time in DPB-2

0 50 100 150 200 250 300

2
4

6
8

10

Time in minutes

N
um

be
r

of
 a

ct
iv

e
m

ap
re

du
ce

 n
od

es

Figure 6.11: Number of running MapReduce nodes in DPB-2

As discussed in Approach chapter, data processing would be done
in divisions. Figure 6.12 shows the actual data processing status in Amazon

69

EMR which was extracted from Amazon EMR Web GUI. The divisions part-
n are represented as steps Stepn and each step e.g. Step01 processed part-1,
Step02 processed part-2 of data and so on.

Figure 6.12: Screenshot of data processing progress in DPB-2 from EMR
GUI

6.3 Cost Analysis

The cost analysis were made for the experiments presented in this chapter.
The total EMR cluster cost and task instances implementation cost were
calculated. The total cost can be referred as OD-n experiment cost from
table 6.2. This OD-n experiment set benchmark for both performance and
cost. Cost of OD-n experiment would be the base price for processing batch
jobs in this work. On-demand instance charge per hour for "m1.medium"
instances is US $0.087. Also there is a charge called EMR charge which is
US $0.022 per hour for "m1.medium" instance [11]. Comparing costs on the
basis of total EMR cost and task instants’ total cost for each experiments
were done. The total cluster’s cost for each experiment and total task
instants’s cost for each experiment were recorded in table 6.3.

OD-n was referenced as the base experiment. From graphs in
figure 6.13 and 6.14, total emr cost prices and instant task prices can be
compared. The total EMR cost was US $7.63, the breakdown of cost can be
referred from table 6.2. This is the base price for the cluster to process the
amount of data mentioned in start of the experiment. As task nodes are also
on-demand instances, the cost for task nodes is high in OD-n experiments
and the price is fixed i.e. US $3.48 as on-demand instance has fixed price.
In experiment DAAB-n and DPB-n, the task instances were either spot
instances only or both or on-demand instances at different times. Total
EMR cluster price drops by 35%, 34% and 22% in experiments DAAB-1,
DAAB-2 and DAAB-3 respectively. In DAAB-1 and DAAB-2, only after

70

EMR cluster cost and task instants’ cost in US $
Experiment
Name

Total EMR Cost Task instants’
Cost

OD-n 7.63 3.48
DAAB-1 4.99 0.83
DAAB-2 5.07 0.87
DAAB-3 5.94 1.75
DPB-1 3.31 0.58
DPB-2 3.8 0.83

Table 6.3: EMR Cluster cost for all experiments

90% of time, 4 ondemand instances were used as task instances. While in
DAAB-3 due to spot instance termination in last few hours caused the need
of 16 ondemand instances for last hour processing. This increased the cost
considerably.

7.63

4.99

5.07

5.94

3.31

3.8

0 2 4 6 8 10

OD-1

DAAB-1

DAAB-2

DAAB-3

DPB-1

DPB-2

Cost in US $

Ex
p

er
im

en
t

N
am

e

Total EMR cost for different experiments

OD-1

DAAB-1

DAAB-2

DAAB-3

DPB-1

DPB-2

Figure 6.13: Total EMR Cluster price for different experiments

On the other hand, DPB-1 and DPB-2 decreases the cost by 56%
and 52% respectively. The huge drop in DPB-1 and DPB-2 is contributed
by fast processing also. By around 50% of time, the total processing were
completed so the cost for running 1 master and 2 core instances decreased
by almost half.

71

3.48

0.83

0.87

1.75

0.58

0.83

0 1 2 3 4

OD-1

DAAB-1

DAAB-2

DAAB-3

DPB-1

DPB-2

Cost in US $

Ex
p

er
im

en
t

N
am

e
Task instants' cost for different experiments

OD-1

DAAB-1

DAAB-2

DAAB-3

DPB-1

DPB-2

Figure 6.14: Task instances price for different experiments

It is interesting to compare task instances price only. As depicted
in figure 6.14, the base price for task instances is US $3.48. For DAAB-1 and
DAAB-2 in which only spot instances were used till 90% of time, the price
had dropped significantly by 76% and 75% respectively. However, cost for
DAAB-3 dropped by only 50% due to need of using large number of spot
instances at the end to meet deadline. DPB-1 and DPB-2 performed better
as the price was reduced by 83% and 76%. Many experiments were done
with DPB and they performed better as they ended up with use of spot
instances only and no on-demand instances. During the experiments, the
price ranged from US $0.009 to US $0.021 in Oregon (us-west-2) region in
Amazon.

The starting spot market price for DAAB-1, DAAB-2 and DAAB-
3 were US $0.0134, US $0.0121 and US $0.0132 respectively. While they
were US $0.0113 and US $0.0166 respectively for DPB-1 and DPB-2 which
changed over time on supply-demand principle of Amazon.

72

Chapter 7

Discussion

This chapter discusses the implementation steps, facts and challenges along
with suggestions for improvements of the developed prototypes as future
work of this project.

7.1 Project Evaluation

The huge batch processing can be done in the cluster of commodity hard-
ware. It gives processing power, fault tolerance and low cost. The develop-
ment of softwares like Apache Hadoop and Apache Spark are making the
large-scale data processing convenient. Since the main goal of this project
was to minimize the cost of cluster computing on batch jobs, focus was
shifted in scaling operations than building tuned clusters using Hadoop or
other distributed data processing framework. However, the idea behind
Hadoop and map reduce programming paradigm was required. Hadoop
installation, configuration and map reduce programming implementation
were carried out to process data. The main components, parameters and
requirements were known. The prototype implementation was done in
Amazon Elastic MapReduce (EMR) as it provides managed Hadoop frame-
work.

The phases in the project were data generation, time estimation
and actual data processing. Assumptions were made for deadline time
as 10 hours. Another assumption was to use more than 5 task instances
for processing total data in 10 hours so that effect on cost and time could
be visualized. With more than 5 "m1.medium" instances, it can process
huge amount of data. Around 1.9 GB of compressed data in bzip2 format
was created. Uncompressed volume was about 500 GB. To create this
much data, first Syslog like logs were generated with 1.1 million lines in
each file. As hadoop supports compression like bzip2, gzip and LZO, the
splittable file format bzip2 was chosen. Each comressed file was of size 380-

73

390 KB which originally was around 100 MB. 50 files were first generated,
compressed and later replicated to generate 5100 files that would processed
in EMR.

For better CPU time, smaller file should have been avoided. The
file size should be as big as normal hadoop split size of 64 MB if the
compressed file is not splittable. The smaller file increases total mapper
spawn times as each file will be assigned to individual mapper [20]. In
this project, small compressed files were chosen though. It was because
low capacity instance "m1.medium" were being used for the experiments.
Primary goal was to scale the cluster. Apparently, in this project hadoop
performance tuning was not focussed.

Time estimation was done on the basis of formula in subsection
5.2.3. From the results of data processing time in table 6.1, standard
deviations of 3.1% and 2.53% were observed in two sets of experiments OD-
1 and OD-2. Employing tolerance of 5%-10% on deadline time or number
of required instances could result in timely completion. When new spot
instances are requested at some point of time or new on-demand instances
are run, it takes 5-8 minutes to up and run. Hence tolerance is required.

For data processing, the two algorithms DAAB and DPB were
devised. Cost and performance comparision of algorithms DAAB and
DPB are discussed in section 7.2. Few points were considered while
designing both algorithms. Termination is not guaranteed in spot instances
and termination notice is very short. When running task instances in spot
instances, the intermediate mapper results in these nodes could be lost
due to abrupt termination. Hence, data to be processed were divided
into ten divisions and processing was done division by division as step
execution of mapreduce program. Each step saved the final output into
persistent Simple Storage Service (S3) after every division was completed.
This meant termination of spot instances could affect a single part at a
time. Maximum of 10% data could be affected in each termination. If
spot instances were terminated after 70% of data being processed by them
it would considerably increase both cost and processing time due to loss
of more than 70% of data when division of work was not implemented.
The alternative solution for it could be use of snapshot checkpoints which
means to create snapshot of instance at regular interval. If the instance gets
terminated, new instance will be created from that snapshot. However,
there would be need of coordination between Resource Manager and other
components in Hadoop.

7.2 Comparison of DAAB and DPB algorithms

The two alogorithms were developed and deployed in python codes. The
bidding price should be chosen in such a way that it would not be very high

74

but should not be smaller than market price. Higher bid price could get
better priority but would eventually contribute in increased spot market
price. In DAAB algorithm, bid price was set as (M+(D−M) · x) where M
stands for median price of 10 hours, D stands for on-demand instance price
and x is increment percent. This price would be used for bidding from start
to the end. The median price was used to avoid possible spikes however
it could be the case that bid price calculated at the beginning, would
always be lower than market price. Hence it could cause the need of more
on-demand instances at the end. In DPB algorithm, latest market price
was used. The bid price was (L + (D − L) · x) where L represents latest
price, D for on-demand instance price and x for increment percent. The
advantage of using latest price was observed in DPB-2 experiment, where
the instances were terminated due to price. Later the bid was successful
in next round of bidding after the instance was terminated. In DAAB-3
experiment, no bidding was successful in subsequent bidding once spot
instances were terminated at some point in time. Thus it required more
number of on-demand instances to complete processing in time.

From the cost analysis in Analysis Chapter, the EMR cluster with
all on-demand instances was referenced for other experiments. DPB-n
experiments seemed to be cheaper than DAAB-n experiments. It was
because of need of using on-demand instances at the end in DAAB-n
experiments. Even the case was worse in DAAB-3 experiment because of
need of using more on-demand instances at the end. The worst case for
DPB-n experiments could also be like worst case for DAAB-n. However
probability of need of on-demand instances after first checkpoint in DPB-n
experiments is low due to use of multiplier factor α for required number
of instances and implementation of latest price in each new bid. There is
high probability that DPB-n experiments use only spot instances for task
nodes due to use of α. There were around ten experiments for DPB-n and
all ended up using only spot instances. Two experiments on DPB-n were
presented with data in previous chapter.

Using these algorithms, the total EMR cost dropped by 22% to 35%
in DAAB-n experiments while by almost 50% in DPB-n. If only task nodes
were considered, the task capacity price was dropped heavily upto 83%.
The cost of all the experiments in this project was covered with Amazon
AWS Educate Credits [12].

7.3 Future works

There are many more facets that can be done in this work. In DAAB
algorithm, latest price can be employed so the probability of bidding to
get success in next round would be very high. For both algorithms, the
multiplier factor α could be implemented. Depending on the market price,
α can be increased or decreased i.e. higher value of α for low spot market

75

price and vice versa. As the current project saves output in consistent
datastore after processing every 10% of data, master and core instances can
also be deployed in spot instances. The bidding price for master and core
instances can be set higher enough to prevent from being terminated. It
can be employed with the concept of division of data and saving of output
for each division in persistent storage. Even if master and core instances
get terminated due to spot price, new cluster can be provisioned and run
in just 7 to 10 minutes with configured Hadoop. So remaining divisions of
data can be processed by planning new task capacity.

All the experiments were carried out in three availability zones
within Oregon region. Regions other than Oregon (us-west-2) may also be
studied and compared.

Besides, the hadoop tuning portion can also be considered. For
example, number of mappers can be increased by determining low CPU
usages in task nodes. File sizes can also be considered. As discussed
above, big file sizes significantly reduce total time in spawning mappers.
Few mappers need to be spawned for same amount of data. It is (x − y) ·
mapper_spawning_time time overhead for processing x number of smaller
files than y number of bigger files. Core nodes disk capacity should be
checked if it is required to process higher voulume of data than core nodes
capacity. Different options are available like adding extra volumes to the
core instances itself or adding more core nodes. In Amazon EMR, Apache
Spark can also be implemented for data processing which is said to be very
faster than MapReduce [23]. The same task capacity varying algorithms
DAAB and DPB can be used for Spark running in Amazon EMR. Study
on peak hours and off hours for spot instances can also be integrated and
would be beneficial. Configuring own Hadoop cluster in EC2 instances can
save per instance hour EMR charge though it would require extra works on
configuring Hadoop, creating custom metrics for monitoring cluster status.

76

Chapter 8

Conclusion

The objective of this project was to design and develop a tool which can
minimize the cost for processing deadline based batch jobs in Amazon
cluster leveraging spot instances. Two algorithms were desinged and
implemented using Python and boto3 AWS SDK.

First sample data were generated. For the distributed data
processing, Amazon EMR with managed Hadoop capability was used.
Mapreduce java codes were deployed as Custom Jar in the EMR cluster
to process the sample data. To meet the deadline, the algorithms DAAB
and DPB were implemented as automation tool for varying task capacity
of Amazon EMR.

DAAB algorithm focused on adapting number of task instances
in order to be in pace with baseline progress. After 90% of time, it
would vary task capacity with only on-demand instances. While DPB was
based on bidding α times required instances to complete processing earlier
and reducing probability of requiring on-demand nodes at later stages.
Another notable difference between DAAB and DPB was use of bidding
strategy. The DAAB used medium of last 10 hours for calculating bid price
and it was made static during entire data processing life. However in DPB,
latest market price was used to calcualte bid price and also on termination
new bid price was calculated using latest price for required numbe of spot
instances. Finally some future works were mentioned. Tuning Hadoop
in different ways were also suggested which could result in processing of
same amount of data for less time.

77

78

Bibliography

[1] About Amazon EMR Releases - Amazon Elastic MapReduce. URL: https:
//docs.aws.amazon.com/ElasticMapReduce/latest/ReleaseGuide/emr-
release-components.html (visited on 04/16/2016).

[2] Amazon EC2 m1.medium - Live Performance Benchmarks - cloudlook. URL:
http://www.cloudlook.com/amazon-ec2-m1-medium-instance#month
(visited on 04/11/2016).

[3] Amazon EC2 Reserved Instances. URL: https://aws.amazon.com/ec2/
purchasing-options/reserved-instances/ (visited on 02/20/2016).

[4] Amazon EC2 Spot Instances. URL: https://aws.amazon.com/ec2/spot/
(visited on 02/20/2016).

[5] Amazon Elastc MapReduce Dimensions and Metrics - Amazon Cloud-
Watch. URL: http://docs.aws.amazon.com/AmazonCloudWatch/latest/
DeveloperGuide/emr-metricscollected.html (visited on 03/11/2016).

[6] Amazon EMR Release 4.0.0 with New Versions of Apache Hadoop, Hive,
and Spark Now Available. URL: https://aws.amazon.com/about- aws/
whats-new/2015/07/amazon-emr-release-4-0-0-with-new-versions-of-
apache-hadoop-hive-and-spark-now-available/ (visited on 04/10/2016).

[7] Amazon Machine Images (AMI) - Amazon Elastic Compute Cloud. URL:
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AMIs.html
(visited on 03/02/2016).

[8] Amazon Simple Storage Service (S3) - Cloud Storage. URL: https://aws.
amazon.com/s3/ (visited on 03/15/2016).

[9] Amazon Virtual Private Cloud (VPC) - Amazon Web Services. URL: https:
//aws.amazon.com/vpc/ (visited on 03/02/2016).

[10] Apache Hadoop 2.7.2 - Apache Hadoop YARN. URL: http : / / hadoop .
apache.org/docs/current/hadoop-yarn/hadoop- yarn- site/YARN.html
(visited on 03/10/2016).

[11] AWS | Amazon Elastic MapReduce (EMR) | Pricing. URL: https://aws.
amazon.com/elasticmapreduce/pricing/ (visited on 03/15/2016).

[12] AWS Educate. URL: https://aws.amazon.com/education/awseducate/
(visited on 03/22/2016).

[13] AWS Programs for Research and Education. URL: https://aws.amazon.
com/grants/ (visited on 03/02/2016).

79

https://docs.aws.amazon.com/ElasticMapReduce/latest/ReleaseGuide/emr-release-components.html
https://docs.aws.amazon.com/ElasticMapReduce/latest/ReleaseGuide/emr-release-components.html
https://docs.aws.amazon.com/ElasticMapReduce/latest/ReleaseGuide/emr-release-components.html
http://www.cloudlook.com/amazon-ec2-m1-medium-instance#month
https://aws.amazon.com/ec2/purchasing-options/reserved-instances/
https://aws.amazon.com/ec2/purchasing-options/reserved-instances/
https://aws.amazon.com/ec2/spot/
http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/emr-metricscollected.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/emr-metricscollected.html
https://aws.amazon.com/about-aws/whats-new/2015/07/amazon-emr-release-4-0-0-with-new-versions-of-apache-hadoop-hive-and-spark-now-available/
https://aws.amazon.com/about-aws/whats-new/2015/07/amazon-emr-release-4-0-0-with-new-versions-of-apache-hadoop-hive-and-spark-now-available/
https://aws.amazon.com/about-aws/whats-new/2015/07/amazon-emr-release-4-0-0-with-new-versions-of-apache-hadoop-hive-and-spark-now-available/
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AMIs.html
https://aws.amazon.com/s3/
https://aws.amazon.com/s3/
https://aws.amazon.com/vpc/
https://aws.amazon.com/vpc/
http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html
http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html
https://aws.amazon.com/elasticmapreduce/pricing/
https://aws.amazon.com/elasticmapreduce/pricing/
https://aws.amazon.com/education/awseducate/
https://aws.amazon.com/grants/
https://aws.amazon.com/grants/

[14] AWS Webcast - Amazon Elastic Map Reduce Deep Dive and Best Practices.
URL: http://www.slideshare.net/AmazonWebServices/amazon-elastic-
map-reduce-deep-dive-and-best-practices#51 (visited on 03/16/2016).

[15] David Bader. “Cluster Computing: Applications.” In: vol. 15. 2. 2001,
pp. 181–185.

[16] Choose the Cluster Lifecycle: Long-Running or Transient - Amazon Elastic
MapReduce. URL: http : //docs . aws . amazon . com/ElasticMapReduce/
latest/DeveloperGuide/emr-plan-longrunning-transient.html (visited on
03/16/2016).

[17] Choose the number and type of instances - Amazon Elastic MapReduce.
URL: http : / / docs . aws . amazon . com / ElasticMapReduce / latest /
DeveloperGuide/emr-plan-instances.html (visited on 04/10/2016).

[18] Configure Proxy Settings to View Websites Hosted on the Master Node
- Amazon Elastic MapReduce. URL: https : / / docs . aws . amazon . com/
ElasticMapReduce/latest/ManagementGuide/emr-connect-master-node-
proxy.html (visited on 03/29/2016).

[19] Data Collection and Data Analysis with AWS - Programming Elastic
MapReduce. URL: https : / /www . safaribooksonline . com/ library / view/
programming-elastic-mapreduce/9781449364038/ch02.html (visited on
03/15/2016).

[20] Deep Dive - Amazon Elastic MapReduce (EMR). URL: http : / / www .
slideshare . net /AmazonWebServices / deep - dive - amazon - elastic - map -
reduce#29 (visited on 03/24/2016).

[21] EC2 Instance Types - Amazon Web Services (AWS). URL: https ://aws.
amazon.com/ec2/instance-types/ (visited on 03/10/2016).

[22] Elastic Computing Cloud (EC2) Cloud Server and Hosting - AWS. URL:
https://aws.amazon.com/ec2/ (visited on 03/01/2016).

[23] FAQ | Apache Spark. URL: http://spark.apache.org/faq.html (visited on
04/01/2016).

[24] Global Infrastructure of Amazon AWS. URL: https://aws.amazon.com/
about-aws/global-infrastructure/ (visited on 03/06/2016).

[25] Google. Search Engine Strategies Conference. 2006. URL: http://www.
google.com/press/podium/ses2006.html (visited on 02/02/2016).

[26] Jared Gray and Thomas C Bressoud. “Towards a MapReduce Appli-
cation Performance Model.” In: Midstates Conference. 2012.

[27] Xin He et al. “Cutting the cost of hosting online services using cloud
spot markets.” In: Proceedings of the 24th International Symposium
on High-Performance Parallel and Distributed Computing. ACM. 2015,
pp. 207–218.

[28] Instance Groups - Amazon Elastic MapReduce. URL: http ://docs .aws .
amazon.com/ElasticMapReduce/latest/DeveloperGuide/InstanceGroups.
html (visited on 03/05/2016).

80

http://www.slideshare.net/AmazonWebServices/amazon-elastic-map-reduce-deep-dive-and-best-practices#51
http://www.slideshare.net/AmazonWebServices/amazon-elastic-map-reduce-deep-dive-and-best-practices#51
http://docs.aws.amazon.com/ElasticMapReduce/latest/DeveloperGuide/emr-plan-longrunning-transient.html
http://docs.aws.amazon.com/ElasticMapReduce/latest/DeveloperGuide/emr-plan-longrunning-transient.html
http://docs.aws.amazon.com/ElasticMapReduce/latest/DeveloperGuide/emr-plan-instances.html
http://docs.aws.amazon.com/ElasticMapReduce/latest/DeveloperGuide/emr-plan-instances.html
https://docs.aws.amazon.com/ElasticMapReduce/latest/ManagementGuide/emr-connect-master-node-proxy.html
https://docs.aws.amazon.com/ElasticMapReduce/latest/ManagementGuide/emr-connect-master-node-proxy.html
https://docs.aws.amazon.com/ElasticMapReduce/latest/ManagementGuide/emr-connect-master-node-proxy.html
https://www.safaribooksonline.com/library/view/programming-elastic-mapreduce/9781449364038/ch02.html
https://www.safaribooksonline.com/library/view/programming-elastic-mapreduce/9781449364038/ch02.html
http://www.slideshare.net/AmazonWebServices/deep-dive-amazon-elastic-map-reduce#29
http://www.slideshare.net/AmazonWebServices/deep-dive-amazon-elastic-map-reduce#29
http://www.slideshare.net/AmazonWebServices/deep-dive-amazon-elastic-map-reduce#29
https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/
http://spark.apache.org/faq.html
https://aws.amazon.com/about-aws/global-infrastructure/
https://aws.amazon.com/about-aws/global-infrastructure/
http://www.google.com/press/podium/ses2006.html
http://www.google.com/press/podium/ses2006.html
http://docs.aws.amazon.com/ElasticMapReduce/latest/DeveloperGuide/InstanceGroups.html
http://docs.aws.amazon.com/ElasticMapReduce/latest/DeveloperGuide/InstanceGroups.html
http://docs.aws.amazon.com/ElasticMapReduce/latest/DeveloperGuide/InstanceGroups.html

[29] Eric Knorr. What cloud computing really means | Infoworld. 2008. URL:
http://www.infoworld.com/article/2683784/cloud- computing/what-
cloud-computing-really-means.html (visited on 02/03/2016).

[30] Shen Li et al. “WOHA: Deadline-aware Map-Reduce workflow
scheduling framework over Hadoop clusters.” In: Distributed Com-
puting Systems (ICDCS), 2014 IEEE 34th International Conference on.
IEEE. 2014, pp. 93–103.

[31] Lakshay Malhotra, Devyani Agarwal, and Arunima Jaiswal. “Vir-
tualization in Cloud Computing.” In: J Inform Tech Softw Eng 4.136
(2014), p. 2.

[32] Ishai Menache, Ohad Shamir, and Navendu Jain. “On-demand, spot,
or both: Dynamic resource allocation for executing batch jobs in
the cloud.” In: Proc. of USENIX International Conference on Autonomic
Computing. 2014.

[33] Overview - Spark 1.6.1 Documentation. URL: http://spark.apache.org/
docs/latest/ (visited on 04/14/2016).

[34] pip8.1.2 : Python Package Index. URL: https://pypi.python.org/pypi/pip
(visited on 04/10/2016).

[35] Presto Documentation - Presto 0.146 Documentation. URL: https : / /
prestodb.io/docs/current/ (visited on 04/14/2016).

[36] Purchasing Options - Amazon Web Services. URL: https://aws.amazon.
com/ec2/purchasing-options/ (visited on 03/02/2016).

[37] Antonio Regalado. Who coined the term "Cloud Computing". A Technol-
ogy Review. URL: http://www.thebusinesstechnologyforum.com/2011/
10/who-coined-the-term-cloud-computing (visited on 02/02/2016).

[38] Regions and Availability Zones - Amazon Elastic Compute Cloud. URL:
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-
availability-zones.html (visited on 03/04/2016).

[39] Reports on Critical Capabilities for Public Cloud Infrastructure as a Service
Worldwide. URL: http : / / www . gartner . com / doc / reprints ? id = 1 -
2QQX6UM&ct=151027&st=sb (visited on 03/06/2016).

[40] Required IAM Roles for Amazon EMR - Amazon Elastic MapReduce. URL:
http : //docs . aws . amazon . com/ IAM/ latest /UserGuide/console . html
(visited on 04/20/2016).

[41] Required IAM Roles for Amazon EMR - Amazon Elastic MapReduce.
URL: http : / / docs . aws . amazon . com / ElasticMapReduce / latest /
DeveloperGuide/emr-iam-roles-req.html (visited on 04/20/2016).

[42] Margaret Rouse. What is cloud computing - Definition from Whatis.com.
URL: http : // searchcloudcomputing . techtarget . com/definition/ cloud -
computing (visited on 02/03/2016).

[43] Yang Song, Murtaza Zafer, and Kang-Won Lee. “Optimal bidding in
spot instance market.” In: INFOCOM, 2012 Proceedings IEEE. IEEE.
2012, pp. 190–198.

81

http://www.infoworld.com/article/2683784/cloud-computing/what-cloud-computing-really-means.html
http://www.infoworld.com/article/2683784/cloud-computing/what-cloud-computing-really-means.html
http://spark.apache.org/docs/latest/
http://spark.apache.org/docs/latest/
https://pypi.python.org/pypi/pip
https://prestodb.io/docs/current/
https://prestodb.io/docs/current/
https://aws.amazon.com/ec2/purchasing-options/
https://aws.amazon.com/ec2/purchasing-options/
http://www.thebusinesstechnologyforum.com/2011/10/who-coined-the-term-cloud-computing
http://www.thebusinesstechnologyforum.com/2011/10/who-coined-the-term-cloud-computing
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html
http://www.gartner.com/doc/reprints?id=1-2QQX6UM&ct=151027&st=sb
http://www.gartner.com/doc/reprints?id=1-2QQX6UM&ct=151027&st=sb
http://docs.aws.amazon.com/IAM/latest/UserGuide/console.html
http://docs.aws.amazon.com/ElasticMapReduce/latest/DeveloperGuide/emr-iam-roles-req.html
http://docs.aws.amazon.com/ElasticMapReduce/latest/DeveloperGuide/emr-iam-roles-req.html
http://searchcloudcomputing.techtarget.com/definition/cloud-computing
http://searchcloudcomputing.techtarget.com/definition/cloud-computing

[44] Spot Bid Status - Amazon Elastic Compute Cloud. URL: http://docs.aws.
amazon.com/AWSEC2/latest/UserGuide/spot-bid-status.html (visited
on 03/10/2016).

[45] Supreeth Subramanya et al. “SpotOn: a batch computing service for
the spot market.” In: Proceedings of the Sixth ACM Symposium on Cloud
Computing. ACM. 2015, pp. 329–341.

[46] Top cloud infrastructure-as-a-service vendors. URL: http://www.cio.com/
article /2947282/cloud - infrastructure/ top - cloud - infrastructure - as - a -
service-vendors.html (visited on 02/24/2016).

[47] William Voorsluys and Rajkumar Buyya. “Reliable provisioning of
spot instances for compute-intensive applications.” In: Advanced in-
formation networking and applications (aina), 2012 ieee 26th international
conference on. IEEE. 2012, pp. 542–549.

[48] Miles Ward. Optimizing for Cost in the Cloud. AWS Summit 2012, NYC.
URL: http://www.slideshare.net/AmazonWebServices/optimizing-your-
infrastructure-costs-on-aws/22 (visited on 01/31/2016).

[49] Welcome to Apache Hadoop! URL: http://hadoop.apache.org/ (visited on
02/05/2016).

[50] Welcome to Paramiko’s documentation - Paramiko Documentation. URL:
http://docs.paramiko.org/en/1.16/ (visited on 04/11/2016).

[51] What is a Virtual Private Server (VPS)? - Definition from Techopedia. URL:
https://www.techopedia.com/definition/4800/virtual-private-server-vps
(visited on 03/10/2016).

[52] What is big data ? - Definition from Whatis.com. URL: http : / /
searchcloudcomputing . techtarget . com/definition / big - data - Big - Data
(visited on 02/22/2016).

[53] What is Computer Cluster? URL: https : / / www . techopedia . com /
definition/6581/computer-cluster (visited on 02/20/2016).

[54] Why Gartner is Critical to Your Business. URL: http://www.gartner.com/
technology/why_gartner.jsp (visited on 02/24/2016).

[55] Norman Wilde and Thomas Huber. “Virtualization and Cloud
Computing.” In: University Of West Florida (2009).

[56] Noha Xue. “Automated cloud bursting on a hybrid cloud platform.”
In: (2015).

[57] Liang Zheng et al. “How to Bid the Cloud.” In: Proceedings of the
2015 ACM Conference on Special Interest Group on Data Communication.
ACM. 2015, pp. 71–84.

82

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/spot-bid-status.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/spot-bid-status.html
http://www.cio.com/article/2947282/cloud-infrastructure/top-cloud-infrastructure-as-a-service-vendors.html
http://www.cio.com/article/2947282/cloud-infrastructure/top-cloud-infrastructure-as-a-service-vendors.html
http://www.cio.com/article/2947282/cloud-infrastructure/top-cloud-infrastructure-as-a-service-vendors.html
http://www.slideshare.net/AmazonWebServices/optimizing-your-infrastructure-costs-on-aws/22
http://www.slideshare.net/AmazonWebServices/optimizing-your-infrastructure-costs-on-aws/22
http://hadoop.apache.org/
http://docs.paramiko.org/en/1.16/
https://www.techopedia.com/definition/4800/virtual-private-server-vps
http://searchcloudcomputing.techtarget.com/definition/big-data-Big-Data
http://searchcloudcomputing.techtarget.com/definition/big-data-Big-Data
https://www.techopedia.com/definition/6581/computer-cluster
https://www.techopedia.com/definition/6581/computer-cluster
http://www.gartner.com/technology/why_gartner.jsp
http://www.gartner.com/technology/why_gartner.jsp

Appendices

83

Appendix A

Developed Python scripts and
AWS CLI Commands

Different python scripts developed for the experiments of this thesis are
included here. There is also an Amazon Web Service Command Line
Interface (CLI) commands for creating EMR cluster and adding steps.

A.1 Python Script to save spot price history of 90 days

This code gets the spot price for last 90 days. Days can be adjusted but
Amazon provides maximum 3 months history of spot instance market
price.

Listing A.1: Saving Spot market price for 90 days in file
1 __author__ = ’ kabin ’
2 # !/ usr/bin/python
3

4 import boto3
5 import datetime
6

7 e c 2 c l i e n t = boto3 . c l i e n t (’ ec2 ’)
8

9 def g e t p r i c e l i s t (l s txyz , nxttoken , numdays) :
10 response = e c 2 c l i e n t . d e s c r i b e _ s p o t _ p r i c e _ h i s t o r y (
11 DryRun=False ,
12 StartTime=datetime . datetime . utcnow () − datetime . t imedel ta (days=

numdays) ,
13 EndTime=datetime . datetime . utcnow () ,
14 ProductDescr ipt ions =[’ Linux/UNIX ’] ,
15 Avai lab i l i tyZone= ’ us−west−2b ’ ,
16 InstanceTypes =[’m1. medium ’] ,
17 NextToken=nxttoken
18)
19 nxttoken = response [’ NextToken ’]
20 p r i n t len (response [’ SpotPr iceHis tory ’])

85

21 f o r i in range (0 , len (response [’ SpotPr iceHis tory ’])) :
22 l s t x y z . append (response [’ SpotPr iceHis tory ’] [i] [’ SpotPr ice ’])
23 i f (response [’ NextToken ’] ! = ’ ’) :
24 g e t p r i c e l i s t (l s txyz , nxttoken , numdays)
25 re turn l s t x y z
26

27 def main () :
28 a = g e t p r i c e l i s t ([] , ’ ’ , 90)
29 f o r i in range (len (a)−1, 0 , −1) :
30 with open (’ s p o t h i s t o r y . t x t ’ , ’ a+w’) as t e s t _ f i l e :
31 t e s t _ f i l e . wri te (s t r (a [i]) +"\n")
32

33 i f __name__ == ’ __main__ ’ :
34 main ()

A.2 Python Script to get EMR cluster metrics

This script generates all the metrics of Amazon EMR for time period
provided in specified file location.

Listing A.2: Getting EMR Cluster metrics using CloudWatch in Boto3
1 __author__ = ’ kabin ’
2 # !/ usr/bin/python
3

4 import os
5

6 c l i e n t = boto3 . c l i e n t (’ cloudwatch ’)
7

8 def s a v e c l u s t e r m e t r i c s i n f i l e (ClusterID , metricsname , timeinseconds
, f i l e p a t h) :

9 response = c l i e n t . g e t _ m e t r i c _ s t a t i s t i c s (Namespace = "AWS/
ElasticMapReduce " ,

10 MetricName=metricsname ,
11 StartTime = datetime . datetime . utcnow () − datetime . t imedel ta (

seconds=timeinseconds) ,
12 EndTime = datetime . datetime . utcnow () ,
13 Dimensions = [{ ’Name ’ : ’ JobFlowId ’ , ’ Value ’ : ClusterID } ,] ,
14 Period = 60 ,
15 S t a t i s t i c s =[’ Average ’]
16)
17 newl is t = sor ted (response [’ Datapoints ’] , key= i t e m g e t t e r (’

Timestamp ’) , reverse=True)
18

19 f o r i in range (len (newl is t)−1, 0 , −1) :
20 with open (f i l e p a t h +"/"+metricsname , ’ a+w’) as f i l e l o c :
21 f i l e l o c . wri te (s t r (newl i s t [i] [’ Average ’]) + " " + s t r (newl i s t

[i] [’ Timestamp ’]) [1 1 : 1 6] + "\n")
22

23

24 def main () :
25 m e t r i c s l i s t = [’ I s I d l e ’ , ’ ContainerAl located ’ , ’ ContainerReserved ’

, ’ ContainerPending ’ , ’ AppsCompleted ’ , ’ AppsFailed ’ , ’ AppsKilled ’ ,
’ AppsPending ’ , ’ AppsRunning ’ , ’ AppsSubmitted ’ , ’ CoreNodesRunning ’
, ’ CoreNodesPending ’ , ’ LiveDataNodes ’ , ’ MRTotalNodes ’ , ’

86

MRActiveNodes ’ , ’MRLostNodes ’ , ’ MRUnhealthyNodes ’ , ’
MRDecommissionedNodes ’ , ’MRRebootedNodes ’ , ’ S3BytesWritten ’ , ’
S3BytesRead ’ , ’ HDFSUtil ization ’ , ’ HDFSBytesRead ’ , ’
HDFSBytesWritten ’ , ’ MissingBlocks ’ , ’ TotalLoad ’ , ’MemoryTotalMB ’ ,
’MemoryReservedMB ’ , ’ MemoryAvailableMB ’ , ’ MemoryAllocatedMB ’ , ’
PendingDeletionBlocks ’ , ’ UnderReplicatedBlocks ’ , ’
DfsPendingRepl icat ionBlocks ’ , ’ CapacityRemainingGB ’]

26 ClusterID = ’ j−W5ZY30E9E16C ’
27 directoryname = ’ metr ics− ’+ClusterID+ ’/metr ics ’
28

29 f o r metr i cs in m e t r i c s l i s t :
30 i f not os . path . e x i s t s (directoryname) :
31 os . makedirs (directoryname)
32 s a v e c l u s t e r m e t r i c s i n f i l e (ClusterID , metrics , 54000 ,

directoryname)
33

34 i f __name__ == ’ __main__ ’ :
35 main ()

A.3 Python Script to get Map and Reduce Info

This code bundled with Paramiko is used to get Map and Reduce
information from EMR master node to the local machine.

Listing A.3: Getting Map and Reduce Info
1 __author__ = ’ kabin ’
2 # !/ usr/bin/python
3

4 import paramiko
5 import Str ingIO
6

7 key_f = open (’ ./ EMR_test . pem ’ , ’ r ’)
8 s = key_f . read ()
9 k e y f i l e = Str ingIO . Str ingIO (s)

10 mykey = paramiko . RSAKey . from_private_key (k e y f i l e)
11 ssh = paramiko . SSHClient ()
12 ssh . se t_miss ing_host_key_pol icy (paramiko . AutoAddPolicy ())
13 ssh . connect (’ ec2−54−186−207−237.us−west−2.compute . amazonaws . com ’ ,

username= ’ hadoop ’ , pkey=mykey)
14 stdin , stdout , s t d e r r = ssh . exec_command (’ mapred job −s t a t u s

job_1462298928419_0001 ’)
15

16 l i s t o u t = stdout . r e a d l i n e s ()
17

18 I n f o D i c t = { }
19

20 I n f o D i c t [’NumberofMaps ’] = l i s t o u t [5]
21 I n f o D i c t [’ NumberofReduces ’] = l i s t o u t [6]
22 I n f o D i c t [’ MapCompletion ’] = l i s t o u t [7]
23 I n f o D i c t [’ ReduceCompletion ’] = l i s t o u t [8]
24 I n f o D i c t [’ J o b S t a t e ’] = l i s t o u t [9]
25 I n f o D i c t [’ Fai lureReason ’] = l i s t o u t [1 1]
26

27 p r i n t I n f o D i c t

87

A.4 Automation Script 1

This script is implementation of DAAB algorithm.

Listing A.4: Automation of DAAB Algorithm
1 __author__ = ’ kabin ’
2 # !/ usr/bin/python
3

4 import boto3
5 import datetime
6 import paramiko
7 import Str ingIO
8 import time
9 import math

10 import sys
11 from operator import i t e m g e t t e r
12

13

14 emrc l ient=boto3 . c l i e n t (’emr ’)
15 e c 2 c l i e n t = boto3 . c l i e n t (’ ec2 ’)
16 cwcl ien t = boto3 . c l i e n t (’ cloudwatch ’)
17

18 # #### addtasknode d e f i n i t i o n #####
19 def addtasknodes (name , market , ins t type , count , spotpr ice ,

ClusterID) :
20 # emrc l ient = boto3 . c l i e n t (’ emr ’)
21 i f market == "ondemand" :
22 response = emrc l ient . add_instance_groups (
23 InstanceGroups =[
24 {
25 ’Name ’ : name ,
26 ’ Market ’ : ’ON_DEMAND’ ,
27 ’ Ins tanceRole ’ : ’TASK ’ , # ’MASTER ’| ’CORE ’| ’TASK

’
28 ’ InstanceType ’ : ins t type , #e . g . m1. medium
29 ’ InstanceCount ’ : count ,
30 }
31] ,
32 JobFlowId=ClusterID
33)
34 e l i f market == " spot " :
35 response = emrc l ient . add_instance_groups (
36 InstanceGroups =[
37 {
38 ’Name ’ : name ,
39 ’ Market ’ : ’SPOT ’ ,
40 ’ Ins tanceRole ’ : ’TASK ’ , # ’MASTER ’| ’CORE ’| ’TASK

’
41 ’ B idPr ice ’ : spotpr ice ,
42 ’ InstanceType ’ : ins t type , #e . g . m1. medium
43 ’ InstanceCount ’ : count ,
44 }
45] ,
46 JobFlowId=ClusterID
47)
48 #end of # addtasknodes (name , market , ins t type , count ,

spotpr ice , ClusterID) :

88

49 # #### addtasknode d e f i n i t i o n #####
50 #To add tasknodes do fol lowing
51 # addtasknodes (’ t e s t 1 ’ , ’ spot ’ , ’m1. medium ’ , 10 , ’ 0 . 0 2 ’ , ’ j −10

TZJU39JUNCC ’)
52

53

54 # #### g e t s p o t p r i c e h i s t o r y #####
55 def g e t s p o t p r i c e h i s t o r y f r o m (productdesc , a v a i l a b i l i t y z o n e ,

ins tancetypes , fromminutes) : # re turn l i s t of max , min , mean ,
median and l a t e s t values in durat ion

56 response = e c 2 c l i e n t . d e s c r i b e _ s p o t _ p r i c e _ h i s t o r y (
57 DryRun = False ,
58 StartTime = datetime . datetime . utcnow () − datetime .

t imedel ta (minutes=fromminutes) ,
59 EndTime = datetime . datetime . utcnow () ,
60 ProductDescr ipt ions = productdesc , # l i s t e . g . [’ Linux/UNIX

’]
61 Avai lab i l i tyZone = a v a i l a b i l i t y z o n e , #e . g . ’ us−west−2b ’
62 InstanceTypes = i n s t a n c e t y p e s # l i s t of i n s t a n c e types e . g

. [’m1. medium ’]
63)
64

65 maxprice = max(response [’ SpotPr iceHis tory ’]) [’ SpotPr ice ’]
66 minprice = min (response [’ SpotPr iceHis tory ’]) [’ SpotPr ice ’]
67

68 # f o r mean c a l c u l a t i o n
69 t o t a l = 0 . 0
70 numdata = len (response [’ SpotPr iceHis tory ’])
71 f o r i in range (0 , numdata) :
72 t o t a l += f l o a t (response [’ SpotPr iceHis tory ’] [i] [’ SpotPr ice ’

])
73 # p r i n t f l o a t (response [’ SpotPr iceHis tory ’] [i] [’ SpotPr ice ’])
74 mean = t o t a l /numdata
75

76 # f o r median c a l c u l a t i o n
77 i f numdata%2 ==0:
78 mid1 = numdata/2
79 mid2 = mid1 + 1
80 summid1mid2 = f l o a t (sor ted (response [’ SpotPr iceHis tory ’]) [

mid1] [’ SpotPr ice ’]) + f l o a t (sor ted (response [’ SpotPr iceHis tory ’
]) [mid2] [’ SpotPr ice ’])

81 median = summid1mid2/2
82 e l s e :
83 mid = (numdata+1)/2
84 median = sorted (response [’ SpotPr iceHis tory ’]) [mid] [’

SpotPr ice ’]
85

86 # p r i n t [f l o a t (maxprice) , f l o a t (minprice) , mean , median]
87 re turn [round (f l o a t (maxprice) , 4) , round (f l o a t (minprice) , 4) ,

round (f l o a t (mean) , 4) , round (f l o a t (median) , 4) , round (f l o a t (
response [’ SpotPr iceHis tory ’] [0] [’ SpotPr ice ’]) , 4)]

88 #end of g e t s p o t p r i c e h i s t o r y (timefrom , timeto , productdesc ,
a v a i l a b i l i t y z o n e , i n s t a n c e t y p e s)

89 # #### g e t s p o t p r i c e h i s t o r y #####
90

91

92 def g e t c l u s t e r p r o g r e s s () : # re turns d i c t i o n a r y with keys as
Mappercent , reduceperceent , JobCounter , Important EMR Metr ics

93 pass

89

94

95

96 def g e t c l u s t e r m e t r i c s (ClusterID , metricsname , t imeinseconds) :
97 response = cwcl ient . g e t _ m e t r i c _ s t a t i s t i c s (Namespace = "AWS/

ElasticMapReduce " ,
98 MetricName=metricsname ,
99 StartTime = datetime . datetime . utcnow () − datetime .

t imedel ta (seconds=timeinseconds) ,
100 EndTime = datetime . datetime . utcnow () ,
101 Dimensions = [{ ’Name ’ : ’ JobFlowId ’ , ’ Value ’ : ClusterID } ,] ,
102 Period = 60 ,
103 S t a t i s t i c s =[’ Average ’]
104)
105 newl i s t = sor ted (response [’ Datapoints ’] , key= i t e m g e t t e r (’

Timestamp ’) , reverse=True)
106 i f newl i s t :
107 re turn i n t (newl i s t [0] [’ Average ’])
108 e l s e :
109 re turn −1
110

111

112 def s p o t i n s t a n c e s S t a t u s (ClusterID) : # re turn number of a c t i v e and
f u l f i l l e d spot i n s t a n c e s

113 response = e c 2 c l i e n t . d e s c r i b e _ s p o t _ i n s t a n c e _ r e q u e s t s (
114 DryRun=False ,
115 F i l t e r s = [
116 {
117 ’Name ’ : ’ a v a i l a b i l i t y−zone−group ’ ,
118 ’ Values ’ : [ClusterID] ,
119 }
120]
121)
122 count = 0
123 f o r i in range (0 , len (response [’ SpotInstanceRequests ’])) :
124 i f response [’ SpotInstanceRequests ’] [i] [’ S t a t e ’] == ’ a c t i v e

’ and response [’ SpotInstanceRequests ’] [i] [’ S t a t u s ’] [’Code ’] ==
’ f u l f i l l e d ’ :

125 count += 1
126 re turn count
127

128

129 def applybid (count , zone , ClusterID) :
130 ondemandprice = 0 .087 # f o r us−west−2 region on−demand m1.

medium p r i c e
131 medianprice = g e t s p o t p r i c e h i s t o r y f r o m ([’ Linux/UNIX ’] , zone , [’

m1. medium ’] , 600) [3] #3rd index i s f o r median p r i c e f o r 10
hours

132 b i d p r i c e = round (medianprice + (ondemandprice−medianprice) *
. 0 2 , 3) # 0 .087 i s on−demand m1. medium p r i c e and bid p r i c e
allowed should be having 3 d i g i t s a f t e r decimal

133 i f b i d p r i c e <= 0 . 6 * 0 . 0 8 7 :
134 addtasknodes (’ Task_spot ’ , ’ spot ’ , ’m1. medium ’ , count , s t r (

b i d p r i c e) , ClusterID)
135

136

137 def checkmastercores ta tus (ClusterID) :
138 response = emrc l ient . l i s t _ i n s t a n c e _ g r o u p s (
139 Cluster Id=ClusterID
140)

90

141 runningcore ins tances = 0
142 runningmaster instances = 0
143

144 f o r i in range (0 , len (response [’ InstanceGroups ’])) :
145 i f response [’ InstanceGroups ’] [i] [’Name ’] == ’ Core I ns tance

Group ’ : # t h i s i s a l i s t
146 runningcore ins tances = i n t (response [’ InstanceGroups ’] [

i] [’ RunningInstanceCount ’])
147 i f response [’ InstanceGroups ’] [i] [’Name ’] == ’ Master

Ins ta nce Group ’ : # t h i s i s a l i s t
148 runningmaster instances = i n t (response [’ InstanceGroups ’

] [i] [’ RunningInstanceCount ’])
149

150 i f runningmaster instances == 1 and runningcore ins tances == 2 :
re turn True i f 1 master and 2 cores are running

151 re turn True
152 e l s e :
153 re turn Fa l se
154

155

156 def getnumberofrunningnodes (ClusterID , InstanceGroupName) :
157 response = emrc l ient . l i s t _ i n s t a n c e _ g r o u p s (
158 Cluster Id = ClusterID
159)
160

161 runninginstancesingroup = 0
162

163 f o r i in range (0 , len (response [’ InstanceGroups ’])) :
164 i f response [’ InstanceGroups ’] [i] [’Name ’] ==

InstanceGroupName :
165 runninginstancesingroup = i n t (response [’ InstanceGroups

’] [i] [’ RunningInstanceCount ’])
166

167 re turn runninginstancesingroup
168

169

170 def res i ze ins ta ncegro up (ClusterID , InstanceGroupName , s i z e) :
171 response = emrc l ient . l i s t _ i n s t a n c e _ g r o u p s (
172 Cluster Id=ClusterID
173)
174 # runninginstancesingroup = 0
175 I d L i s t = []
176

177 f o r i in range (0 , len (response [’ InstanceGroups ’])) :
178 # p r i n t response [’ InstanceGroups ’] [i]
179 i f response [’ InstanceGroups ’] [i] [’Name ’] ==

InstanceGroupName : # t h i s i s a l i s t
180 # runninginstancesingroup = i n t (response [’

InstanceGroups ’] [i] [’ RunningInstanceCount ’])
181 I d L i s t . append (response [’ InstanceGroups ’] [i] [’ Id ’])
182

183 f o r Ids in I d L i s t :
184 response1 = emrc l ient . modify_instance_groups (
185 InstanceGroups = [
186 {
187 ’ InstanceGroupId ’ : Ids ,
188 ’ InstanceCount ’ : s i z e
189 }
190]

91

191)
192

193

194 def main () :
195

196 StartTime = datetime . datetime . now () . r e p l a c e (microsecond =0)
197 requestedNx = []
198

199 #INITIAL VALUES AFTER CLUSTER IS RUN AND ESTIMATION IS DONE
200 td = 10 # deadline i s 10 hours
201 k = 2 #number of core nodes
202 Nx = 6 # get from est imat ion
203 ClusterID = ’ j−2K7D20FPFZAA0 ’ # get a f t e r c l u s t e r i s s t a r t e d
204 a v a i l a b i l i t y z o n e = ’ us−west−2a ’ # get a f t e r c l u s t e r i s run in

us−west−2
205

206 appscompletednow = 0
207

208 #At 0% time elapsed − STAGE 1
209 p r i n t "STAGE 1 "
210 applybid (Nx−k , a v a i l a b i l i t y z o n e , ClusterID) # bid p r i c e i s

median of 10 hours p r i c e + G
211 requestedNx . append (s t r (Nx−k))
212 time . s leep (1 8 0)
213

214 Timenow = datetime . datetime . now () . r e p l a c e (microsecond =0)
215

216 while (i n t ((Timenow−StartTime) . seconds) < i n t (td * 60 * 60 * 0 . 1)) :
t imeelapsed as 0 . 1 of td in seconds

217 p r i n t "WAITING IN LOOP TILL 10% TIME ELAPSED"
218 time . s leep (6 0)
219 Timenow = datetime . datetime . now () . r e p l a c e (microsecond =0)
220

221 appscompletednow = g e t c l u s t e r m e t r i c s (ClusterID , ’ AppsCompleted
’ , i n t ((Timenow−StartTime) . seconds))

222 remainingapps = 10 − appscompletednow
223 remainingtime = 0 . 9 * td
224

225 p r i n t "STAGE 2 "
226 NewNx = (i n t (math . c e i l ((f l o a t (remainingapps) /9) *Nx))) − k
227 res i ze ins t ancegr oup (ClusterID , ’ Task_spot ’ , NewNx)
228 requestedNx . append (s t r (NewNx))
229 time . s leep (1 8 0)
230

231 Timenow = datetime . datetime . now () . r e p l a c e (microsecond =0)
232

233 while (i n t ((Timenow−StartTime) . seconds) < i n t (td * 60 * 60 * 0 . 2)) :
t imeelapsed as 0 . 1 of td in seconds

234 p r i n t "WAITING IN LOOP TILL 20% TIME ELAPSED"
235 time . s leep (6 0)
236 Timenow = datetime . datetime . now () . r e p l a c e (microsecond =0)
237

238 appscompletednow = g e t c l u s t e r m e t r i c s (ClusterID , ’ AppsCompleted
’ , i n t ((Timenow−StartTime) . seconds))

239 remainingapps = 10 − appscompletednow
240 remainingtime = 0 . 8 * td
241

242 p r i n t "STAGE 3 "
243 NewNx = (i n t (math . c e i l ((f l o a t (remainingapps) /8) *Nx))) − k

92

244 res i ze ins ta ncegro up (ClusterID , ’ Task_spot ’ , NewNx)
245 requestedNx . append (s t r (NewNx))
246 time . s leep (1 8 0)
247

248 Timenow = datetime . datetime . now () . r e p l a c e (microsecond =0)
249

250 while (i n t ((Timenow−StartTime) . seconds) < i n t (td * 60 * 60 * 0 . 3)) :
t imeelapsed as 0 . 1 of td in seconds

251 p r i n t "WAITING IN LOOP TILL 30% TIME ELAPSED"
252 time . s leep (6 0)
253 Timenow = datetime . datetime . now () . r e p l a c e (microsecond =0)
254

255 appscompletednow = g e t c l u s t e r m e t r i c s (ClusterID , ’ AppsCompleted
’ , i n t ((Timenow−StartTime) . seconds))

256 remainingapps = 10 − appscompletednow
257 remainingtime = 0 . 7 * td
258

259 p r i n t "STAGE 4 "
260 NewNx = (i n t (math . c e i l ((f l o a t (remainingapps) /7) *Nx))) − k
261 res i ze ins ta ncegro up (ClusterID , ’ Task_spot ’ , NewNx)
262 requestedNx . append (s t r (NewNx))
263 time . s leep (1 8 0)
264

265 Timenow = datetime . datetime . now () . r e p l a c e (microsecond =0)
266

267 while (i n t ((Timenow−StartTime) . seconds) < i n t (td * 60 * 60 * 0 . 4)) :
t imeelapsed as 0 . 1 of td in seconds

268 p r i n t "WAITING IN LOOP TILL 40% TIME ELAPSED"
269 time . s leep (6 0)
270 Timenow = datetime . datetime . now () . r e p l a c e (microsecond =0)
271

272 appscompletednow = g e t c l u s t e r m e t r i c s (ClusterID , ’ AppsCompleted
’ , i n t ((Timenow−StartTime) . seconds))

273 remainingapps = 10 − appscompletednow
274 remainingtime = 0 . 6 * td
275

276 p r i n t "STAGE 5 "
277 NewNx = (i n t (math . c e i l ((f l o a t (remainingapps) /6) *Nx))) − k
278 res i ze ins ta ncegro up (ClusterID , ’ Task_spot ’ , NewNx)
279 requestedNx . append (s t r (NewNx))
280 time . s leep (1 8 0)
281

282 Timenow = datetime . datetime . now () . r e p l a c e (microsecond =0)
283

284 while (i n t ((Timenow−StartTime) . seconds) < i n t (td * 60 * 60 * 0 . 5)) :
t imeelapsed as 0 . 1 of td in seconds

285 p r i n t "WAITING IN LOOP TILL 50% TIME ELAPSED"
286 time . s leep (6 0)
287 Timenow = datetime . datetime . now () . r e p l a c e (microsecond =0)
288

289 appscompletednow = g e t c l u s t e r m e t r i c s (ClusterID , ’ AppsCompleted
’ , i n t ((Timenow−StartTime) . seconds))

290 remainingapps = 10 − appscompletednow
291 remainingtime = 0 . 5 * td
292

293 p r i n t "STAGE 6 "
294 NewNx = (i n t (math . c e i l ((f l o a t (remainingapps) /5) *Nx))) − k
295 res i ze ins ta ncegro up (ClusterID , ’ Task_spot ’ , NewNx)
296 requestedNx . append (s t r (NewNx))

93

297 time . s leep (1 8 0)
298

299 Timenow = datetime . datetime . now () . r e p l a c e (microsecond =0)
300

301 while (i n t ((Timenow−StartTime) . seconds) < i n t (td * 60 * 60 * 0 . 6)) :
t imeelapsed as 0 . 1 of td in seconds

302 p r i n t "WAITING IN LOOP TILL 60% TIME ELAPSED"
303 time . s leep (6 0)
304 Timenow = datetime . datetime . now () . r e p l a c e (microsecond =0)
305

306 appscompletednow = g e t c l u s t e r m e t r i c s (ClusterID , ’ AppsCompleted
’ , i n t ((Timenow−StartTime) . seconds))

307 remainingapps = 10 − appscompletednow
308 remainingtime = 0 . 4 * td
309

310 p r i n t "STAGE 7 "
311 NewNx = (i n t (math . c e i l ((f l o a t (remainingapps) /4) *Nx))) − k
312 res i ze ins t ancegr oup (ClusterID , ’ Task_spot ’ , NewNx)
313 requestedNx . append (s t r (NewNx))
314 time . s leep (1 8 0)
315

316 Timenow = datetime . datetime . now () . r e p l a c e (microsecond =0)
317

318 while (i n t ((Timenow−StartTime) . seconds) < i n t (td * 60 * 60 * 0 . 7)) :
t imeelapsed as 0 . 1 of td in seconds

319 p r i n t "WAITING IN LOOP TILL 70% TIME ELAPSED"
320 time . s leep (6 0)
321 Timenow = datetime . datetime . now () . r e p l a c e (microsecond =0)
322

323 appscompletednow = g e t c l u s t e r m e t r i c s (ClusterID , ’ AppsCompleted
’ , i n t ((Timenow−StartTime) . seconds))

324 remainingapps = 10 − appscompletednow
325 remainingtime = 0 . 3 * td
326

327 p r i n t "STAGE 8 "
328 NewNx = (i n t (math . c e i l ((f l o a t (remainingapps) /3) *Nx))) − k
329 res i ze ins t ancegr oup (ClusterID , ’ Task_spot ’ , NewNx)
330 requestedNx . append (s t r (NewNx))
331 time . s leep (1 8 0)
332

333 Timenow = datetime . datetime . now () . r e p l a c e (microsecond =0)
334

335 while (i n t ((Timenow−StartTime) . seconds) < i n t (td * 60 * 60 * 0 . 8)) :
t imeelapsed as 0 . 1 of td in seconds

336 p r i n t "WAITING IN LOOP TILL 80% TIME ELAPSED"
337 time . s leep (6 0)
338 Timenow = datetime . datetime . now () . r e p l a c e (microsecond =0)
339

340 appscompletednow = g e t c l u s t e r m e t r i c s (ClusterID , ’ AppsCompleted
’ , i n t ((Timenow−StartTime) . seconds))

341 remainingapps = 10 − appscompletednow
342 remainingtime = 0 . 2 * td
343

344 p r i n t "STAGE 9 "
345 NewNx = (i n t (math . c e i l ((f l o a t (remainingapps) /2) *Nx))) − k
346 res i ze ins t ancegr oup (ClusterID , ’ Task_spot ’ , NewNx)
347 requestedNx . append (s t r (NewNx))
348 time . s leep (1 8 0)
349

94

350 Timenow = datetime . datetime . now () . r e p l a c e (microsecond =0)
351

352 while (i n t ((Timenow−StartTime) . seconds) < i n t (td * 60 * 60 * 0 . 9)) :
t imeelapsed as 0 . 1 of td in seconds

353 p r i n t "WAITING IN LOOP TILL 90% TIME ELAPSED"
354 time . s leep (6 0)
355 Timenow = datetime . datetime . now () . r e p l a c e (microsecond =0)
356

357 appscompletednow = g e t c l u s t e r m e t r i c s (ClusterID , ’ AppsCompleted
’ , i n t ((Timenow−StartTime) . seconds))

358 remainingapps = 10 − appscompletednow
359 remainingtime = 0 . 1 * td
360

361 p r i n t "STAGE 10 "
362 NewNx = i n t (remainingapps *Nx) − k
363 addtasknodes (’ Task_ondemand ’ , ’ondemand ’ , ’m1. medium ’ , NewNx,

’ 0 . 0 ’ , ClusterID)
364 res i ze ins ta ncegro up (ClusterID , ’ Task_spot ’ , 0)
365 requestedNx . append (s t r (NewNx))
366 time . s leep (1 8 0)
367

368 appscompletednow = g e t c l u s t e r m e t r i c s (ClusterID , ’ AppsCompleted
’ , i n t ((Timenow−StartTime) . seconds))

369 while (appscompletednow < 10) :
370 time . s leep (6 0)
371 appscompletednow = g e t c l u s t e r m e t r i c s (ClusterID , ’

AppsCompleted ’ , i n t ((Timenow−StartTime) . seconds))
372

373 res i ze ins ta ncegro up (ClusterID , ’ Task_ondemand ’ , 0)
374 res i ze ins ta ncegro up (ClusterID , ’ Task_spot ’ , 0)
375

376 p r i n t requestedNx
377

378 sys . e x i t (0)
379 #end of main () d e f i n i t i o n
380

381 i f __name__ == ’ __main__ ’ :
382 main ()

A.5 Automation Script 2

This script is implementation of DPB algorithm.

Listing A.5: Automation of DPB Algorithm
1 __author__ = ’ kabin ’
2 # !/ usr/bin/python
3

4 import boto3
5 import datetime
6 import paramiko
7 import Str ingIO
8 import time
9 import math

10 import sys

95

11 from operator import i t e m g e t t e r
12

13

14 emrc l ient=boto3 . c l i e n t (’emr ’)
15 e c 2 c l i e n t = boto3 . c l i e n t (’ ec2 ’)
16 cwcl ien t = boto3 . c l i e n t (’ cloudwatch ’)
17

18 # #### addtasknode d e f i n i t i o n #####
19 def addtasknodes (name , market , ins t type , count , spotpr ice ,

ClusterID) :
20 # emrc l ient = boto3 . c l i e n t (’ emr ’)
21 i f market == "ondemand" :
22 response = emrc l ient . add_instance_groups (
23 InstanceGroups =[
24 {
25 ’Name ’ : name ,
26 ’ Market ’ : ’ON_DEMAND’ ,
27 ’ Ins tanceRole ’ : ’TASK ’ , # ’MASTER ’| ’CORE ’| ’TASK

’
28 ’ InstanceType ’ : ins t type , #e . g . m1. medium
29 ’ InstanceCount ’ : count ,
30 }
31] ,
32 JobFlowId=ClusterID
33)
34 e l i f market == " spot " :
35 response = emrc l ient . add_instance_groups (
36 InstanceGroups =[
37 {
38 ’Name ’ : name ,
39 ’ Market ’ : ’SPOT ’ ,
40 ’ Ins tanceRole ’ : ’TASK ’ , # ’MASTER ’| ’CORE ’| ’TASK

’
41 ’ B idPr ice ’ : spotpr ice ,
42 ’ InstanceType ’ : ins t type , #e . g . m1. medium
43 ’ InstanceCount ’ : count ,
44 }
45] ,
46 JobFlowId=ClusterID
47)
48 #end of # addtasknodes (name , market , ins t type , count ,

spotpr ice , ClusterID) :
49 # #### addtasknode d e f i n i t i o n #####
50 #To add tasknodes do fol lowing
51 # addtasknodes (’ t e s t 1 ’ , ’ spot ’ , ’m1. medium ’ , 10 , ’ 0 . 0 2 ’ , ’ j −10

TZJU39JUNCC ’)
52

53

54 # #### g e t s p o t p r i c e h i s t o r y #####
55 def g e t s p o t p r i c e h i s t o r y f r o m (productdesc , a v a i l a b i l i t y z o n e ,

ins tancetypes , fromminutes) : # re turn l i s t of max , min , mean ,
median and l a t e s t values in durat ion

56 response = e c 2 c l i e n t . d e s c r i b e _ s p o t _ p r i c e _ h i s t o r y (
57 DryRun = False ,
58 StartTime = datetime . datetime . utcnow () − datetime .

t imedel ta (minutes=fromminutes) ,
59 EndTime = datetime . datetime . utcnow () ,
60 ProductDescr ipt ions = productdesc , # l i s t e . g . [’ Linux/UNIX

’]

96

61 Avai lab i l i tyZone = a v a i l a b i l i t y z o n e , #e . g . ’ us−west−2b ’
62 InstanceTypes = i n s t a n c e t y p e s # l i s t of i n s t a n c e types e . g

. [’m1. medium ’]
63)
64

65 maxprice = max(response [’ SpotPr iceHis tory ’]) [’ SpotPr ice ’]
66 minprice = min (response [’ SpotPr iceHis tory ’]) [’ SpotPr ice ’]
67

68 # f o r mean c a l c u l a t i o n
69 t o t a l = 0 . 0
70 numdata = len (response [’ SpotPr iceHis tory ’])
71 f o r i in range (0 , numdata) :
72 t o t a l += f l o a t (response [’ SpotPr iceHis tory ’] [i] [’ SpotPr ice ’

])
73 # p r i n t f l o a t (response [’ SpotPr iceHis tory ’] [i] [’ SpotPr ice ’])
74 mean = t o t a l /numdata
75

76 # f o r median c a l c u l a t i o n
77 i f numdata%2 ==0:
78 mid1 = numdata/2
79 mid2 = mid1 + 1
80 summid1mid2 = f l o a t (sor ted (response [’ SpotPr iceHis tory ’]) [

mid1] [’ SpotPr ice ’]) + f l o a t (sor ted (response [’ SpotPr iceHis tory ’
]) [mid2] [’ SpotPr ice ’])

81 median = summid1mid2/2
82 e l s e :
83 mid = (numdata+1)/2
84 median = sorted (response [’ SpotPr iceHis tory ’]) [mid] [’

SpotPr ice ’]
85

86 # p r i n t [f l o a t (maxprice) , f l o a t (minprice) , mean , median]
87 re turn [round (f l o a t (maxprice) , 4) , round (f l o a t (minprice) , 4) ,

round (f l o a t (mean) , 4) , round (f l o a t (median) , 4) , round (f l o a t (
response [’ SpotPr iceHis tory ’] [0] [’ SpotPr ice ’]) , 4)]

88 #end of g e t s p o t p r i c e h i s t o r y (timefrom , timeto , productdesc ,
a v a i l a b i l i t y z o n e , i n s t a n c e t y p e s)

89 # #### g e t s p o t p r i c e h i s t o r y #####
90

91

92 def g e t c l u s t e r p r o g r e s s () : # re turns d i c t i o n a r y with keys as
Mappercent , reduceperceent , JobCounter , Important EMR Metr ics

93 pass
94

95

96 def g e t c l u s t e r m e t r i c s (ClusterID , metricsname , t imeinseconds) :
97 response = cwcl ient . g e t _ m e t r i c _ s t a t i s t i c s (Namespace = "AWS/

ElasticMapReduce " ,
98 MetricName=metricsname ,
99 StartTime = datetime . datetime . utcnow () − datetime .

t imedel ta (seconds=timeinseconds) ,
100 EndTime = datetime . datetime . utcnow () ,
101 Dimensions = [{ ’Name ’ : ’ JobFlowId ’ , ’ Value ’ : ClusterID } ,] ,
102 Period = 60 ,
103 S t a t i s t i c s =[’ Average ’]
104)
105 newl is t = sor ted (response [’ Datapoints ’] , key= i t e m g e t t e r (’

Timestamp ’) , reverse=True)
106 i f newl i s t :
107 re turn i n t (newl i s t [0] [’ Average ’])

97

108 e l s e :
109 re turn −1
110

111

112 def s p o t i n s t a n c e s S t a t u s (ClusterID) : # re turn number of a c t i v e and
f u l f i l l e d spot i n s t a n c e s

113 response = e c 2 c l i e n t . d e s c r i b e _ s p o t _ i n s t a n c e _ r e q u e s t s (
114 DryRun=False ,
115 F i l t e r s = [
116 {
117 ’Name ’ : ’ a v a i l a b i l i t y−zone−group ’ ,
118 ’ Values ’ : [ClusterID] ,
119 }
120]
121)
122 count = 0
123 f o r i in range (0 , len (response [’ SpotInstanceRequests ’])) :
124 i f response [’ SpotInstanceRequests ’] [i] [’ S t a t e ’] == ’ a c t i v e

’ and response [’ SpotInstanceRequests ’] [i] [’ S t a t u s ’] [’Code ’] ==
’ f u l f i l l e d ’ :

125 count += 1
126 re turn count
127

128

129 def applybidA (count , zone , ClusterID) :
130 ondemandprice = 0 .087 # f o r us−west−2 region on−demand m1.

medium p r i c e
131 l a t e s t p r i c e = g e t s p o t p r i c e h i s t o r y f r o m ([’ Linux/UNIX ’] , zone , [’

m1. medium ’] , 600) [4] #4 th index i s f o r l a t e s t p r i c e
132 b i d p r i c e = round (l a t e s t p r i c e + (ondemandprice−l a t e s t p r i c e) *

. 0 2 , 3) # 0 .087 i s on−demand m1. medium p r i c e and bid p r i c e
allowed should be having 3 d i g i t s a f t e r decimal

133 i f b i d p r i c e <= 0 . 6 * 0 . 0 8 7 :
134 addtasknodes (’ Task_spot ’ , ’ spot ’ , ’m1. medium ’ , count , s t r (

b i d p r i c e) , ClusterID)
135

136

137 def applybidB (count , zone , ClusterID) :
138 ondemandprice = 0 .087 # f o r us−west−2 region on−demand m1.

medium p r i c e
139 l a t e s t p r i c e = g e t s p o t p r i c e h i s t o r y f r o m ([’ Linux/UNIX ’] , zone , [’

m1. medium ’] , 600) [4] #4 th index i s f o r l a t e s t p r i c e
140 b i d p r i c e = round (l a t e s t p r i c e + (ondemandprice−l a t e s t p r i c e) *

. 0 5 , 3) # 0 .087 i s on−demand m1. medium p r i c e and bid p r i c e
allowed should be having 3 d i g i t s a f t e r decimal

141 i f b i d p r i c e <= 0 . 6 * 0 . 0 8 7 :
142 addtasknodes (’ Task_spot ’ , ’ spot ’ , ’m1. medium ’ , count , s t r (

b i d p r i c e) , ClusterID)
143

144

145 def checkmastercores ta tus (ClusterID) :
146 response = emrc l ient . l i s t _ i n s t a n c e _ g r o u p s (
147 Cluster Id=ClusterID
148)
149 runningcore ins tances = 0
150 runningmaster instances = 0
151

152 f o r i in range (0 , len (response [’ InstanceGroups ’])) :
153 i f response [’ InstanceGroups ’] [i] [’Name ’] == ’ Core I ns tance

98

Group ’ : # t h i s i s a l i s t
154 runningcore ins tances = i n t (response [’ InstanceGroups ’] [

i] [’ RunningInstanceCount ’])
155 i f response [’ InstanceGroups ’] [i] [’Name ’] == ’ Master

Ins ta nce Group ’ : # t h i s i s a l i s t
156 runningmaster instances = i n t (response [’ InstanceGroups ’

] [i] [’ RunningInstanceCount ’])
157

158 i f runningmaster instances == 1 and runningcore ins tances == 2 :
re turn True i f 1 master and 2 cores are running

159 re turn True
160 e l s e :
161 re turn Fa l se
162

163

164 def getnumberofrunningnodes (ClusterID , InstanceGroupName) :
165 response = emrc l ient . l i s t _ i n s t a n c e _ g r o u p s (
166 Cluster Id = ClusterID
167)
168

169 runninginstancesingroup = 0
170

171 f o r i in range (0 , len (response [’ InstanceGroups ’])) :
172 i f response [’ InstanceGroups ’] [i] [’Name ’] ==

InstanceGroupName :
173 runninginstancesingroup = i n t (response [’ InstanceGroups

’] [i] [’ RunningInstanceCount ’])
174

175 re turn runninginstancesingroup
176

177

178 def res i ze ins ta ncegro up (ClusterID , InstanceGroupName , s i z e) :
179 response = emrc l ient . l i s t _ i n s t a n c e _ g r o u p s (
180 Cluster Id=ClusterID
181)
182 # runninginstancesingroup = 0
183 I d L i s t = []
184

185 f o r i in range (0 , len (response [’ InstanceGroups ’])) :
186 # p r i n t response [’ InstanceGroups ’] [i]
187 i f response [’ InstanceGroups ’] [i] [’Name ’] ==

InstanceGroupName : # t h i s i s a l i s t
188 # runninginstancesingroup = i n t (response [’

InstanceGroups ’] [i] [’ RunningInstanceCount ’])
189 I d L i s t . append (response [’ InstanceGroups ’] [i] [’ Id ’])
190

191 f o r Ids in I d L i s t :
192 response1 = emrc l ient . modify_instance_groups (
193 InstanceGroups = [
194 {
195 ’ InstanceGroupId ’ : Ids ,
196 ’ InstanceCount ’ : s i z e
197 }
198]
199)
200

201

202 def main () :
203

99

204 StartTime = datetime . datetime . now () . r e p l a c e (microsecond =0)
205 #requestedNx = []
206 ondemandstatus = 0
207

208 #INITIAL VALUES AFTER CLUSTER IS RUN AND ESTIMATION IS DONE
209 td = 10 # deadline i s 10 hours
210 k = 2 #number of core i n s t a n c e e s
211 Nx = 6 # get from est imat ion
212 ClusterID = ’ j−ZWX9OQJY49R9 ’ # get a f t e r c l u s t e r i s s t a r t e d
213 a v a i l a b i l i t y z o n e = ’ us−west−2c ’ # get a f t e r c l u s t e r i s run in

us−west−2
214

215 appscompletednow = 0
216

217 #At 0% time elapsed − STAGE 1
218 p r i n t "STAGE 1 "
219 applybidA (i n t (2 *Nx−k) , a v a i l a b i l i t y z o n e , ClusterID) # bid p r i c e

i s median of 10 hours p r i c e + G
220 time . s leep (1 8 0)
221

222 Timenow = datetime . datetime . now () . r e p l a c e (microsecond =0)
223 while (i n t ((Timenow−StartTime) . seconds) < i n t (td * 60 * 60 * 0 . 1)) :

t imeelapsed as 0 . 1 of td in seconds
224 p r i n t "WAITING IN LOOP TILL 10% TIME ELAPSED"
225 time . s leep (6 0)
226 Timenow = datetime . datetime . now () . r e p l a c e (microsecond =0)
227

228 i f (i n t (s p o t i n s t a n c e s S t a t u s (ClusterID)) == i n t (2 *Nx−k)) :
229 pass
230 e l s e :
231 res i ze ins t ancegro up (ClusterID , " Task_spot " , 0)
232 time . s leep (1 2 0)
233 applybidA (i n t (2 *Nx−k) , a v a i l a b i l i t y z o n e , ClusterID) # bid

p r i c e i s median of 10 hours p r i c e + G
234

235

236 p r i n t "STAGE 2 "
237 Timenow = datetime . datetime . now () . r e p l a c e (microsecond =0)
238 while (i n t ((Timenow−StartTime) . seconds) < i n t (td * 60 * 60 * 0 . 2)) :

t imeelapsed as 0 . 1 of td in seconds
239 p r i n t "WAITING IN LOOP TILL 20% TIME ELAPSED"
240 time . s leep (6 0)
241 Timenow = datetime . datetime . now () . r e p l a c e (microsecond =0)
242

243 i f (i n t (s p o t i n s t a n c e s S t a t u s (ClusterID)) == i n t (2 *Nx−k)) :
244 pass
245 e l s e :
246 res i ze ins t ancegro up (ClusterID , " Task_spot " , 0)
247 time . s leep (1 2 0)
248 applybidA (i n t (2 *Nx−k) , a v a i l a b i l i t y z o n e , ClusterID) # bid

p r i c e i s median of 10 hours p r i c e + G
249

250 p r i n t "STAGE 3 "
251 Timenow = datetime . datetime . now () . r e p l a c e (microsecond =0)
252 while (i n t ((Timenow−StartTime) . seconds) < i n t (td * 60 * 60 * 0 . 3)) :

t imeelapsed as 0 . 1 of td in seconds
253 p r i n t "WAITING IN LOOP TILL 30% TIME ELAPSED"
254 time . s leep (6 0)
255 Timenow = datetime . datetime . now () . r e p l a c e (microsecond =0)

100

256

257 i f (i n t (s p o t i n s t a n c e s S t a t u s (ClusterID)) == i n t (2 *Nx−k)) :
258 pass
259 e l s e :
260 res i ze ins t ancegro up (ClusterID , " Task_spot " , 0)
261 time . s leep (1 2 0)
262 applybidA (i n t (2 *Nx−k) , a v a i l a b i l i t y z o n e , ClusterID) # bid

p r i c e i s median of 10 hours p r i c e + G
263

264

265 p r i n t "STAGE 4 "
266 Timenow = datetime . datetime . now () . r e p l a c e (microsecond =0)
267 while (i n t ((Timenow−StartTime) . seconds) < i n t (td * 60 * 60 * 0 . 4)) :

t imeelapsed as 0 . 1 of td in seconds
268 p r i n t "WAITING IN LOOP TILL 40% TIME ELAPSED"
269 time . s leep (6 0)
270 Timenow = datetime . datetime . now () . r e p l a c e (microsecond =0)
271

272 i f (i n t (s p o t i n s t a n c e s S t a t u s (ClusterID)) == i n t (2 *Nx−k)) :
273 pass
274 e l s e :
275 res i ze ins t ancegro up (ClusterID , " Task_spot " , 0)
276 time . s leep (1 2 0)
277 applybidA (i n t (2 *Nx−k) , a v a i l a b i l i t y z o n e , ClusterID) # bid

p r i c e i s median of 10 hours p r i c e + G
278

279

280 p r i n t "STAGE 5 "
281

282 Timenow = datetime . datetime . now () . r e p l a c e (microsecond =0)
283 while (i n t ((Timenow−StartTime) . seconds) < i n t (td * 60 * 60 * 0 . 5)) :

t imeelapsed as 0 . 1 of td in seconds
284 p r i n t "WAITING IN LOOP TILL 50% TIME ELAPSED"
285 time . s leep (6 0)
286 Timenow = datetime . datetime . now () . r e p l a c e (microsecond =0)
287

288

289 p r i n t " Checkpoint 1 "
290

291 appscompletednow = g e t c l u s t e r m e t r i c s (ClusterID , ’ AppsCompleted
’ , i n t ((Timenow−StartTime) . seconds))

292

293 i f appscompletednow <=4:
294 res i ze ins t ancegro up (ClusterID , " Task_spot " , 0)
295 addtasknodes (’ Task_ondemand ’ , ’ondemand ’ , ’m1. medium ’ , Nx,

’ 0 . 0 ’ , ClusterID)
296 time . s leep (1 2 0)
297 applybidB (i n t (2 *Nx−k) , a v a i l a b i l i t y z o n e , ClusterID)
298 ondemandstatus = 1
299

300 e l i f appscompletednow ==5:
301 res i ze ins t ancegro up (ClusterID , " Task_spot " , 0)
302 time . s leep (1 2 0)
303 applybidB (i n t (2 *Nx−k) , a v a i l a b i l i t y z o n e , ClusterID)
304

305 e l i f appscompletednow >5 and appscompletednow <=9:
306 i f (i n t (s p o t i n s t a n c e s S t a t u s (ClusterID)) == i n t (2 *Nx−k)) :
307 pass
308 e l s e :

101

309 res i ze ins t ancegr oup (ClusterID , " Task_spot " , 0)
310 time . s leep (1 2 0)
311 applybidA (i n t (2 *Nx−k) , a v a i l a b i l i t y z o n e , ClusterID)
312

313 e l i f appscompletednow == 1 0 :
314 res i ze ins t ancegro up (ClusterID , ’ Task_spot ’ , 0)
315 i f ondemandstatus == 1 :
316 res i ze ins t ancegr oup (ClusterID , ’ Task_ondemand ’ , 0)
317 sys . e x i t (0)
318

319

320 p r i n t " Checkpoint 2 "
321 Timenow = datetime . datetime . now () . r e p l a c e (microsecond =0)
322 while (i n t ((Timenow−StartTime) . seconds) < i n t (td * 60 * 60 * 0 . 8)) :

t imeelapsed as 0 . 1 of td in seconds
323 p r i n t "WAITING IN LOOP TILL 60%−80% TIME ELAPSED"
324 time . s leep (6 0)
325 Timenow = datetime . datetime . now () . r e p l a c e (microsecond =0)
326 appscompletednow = g e t c l u s t e r m e t r i c s (ClusterID , ’

AppsCompleted ’ , i n t ((Timenow−StartTime) . seconds))
327 i f appscompletednow == 1 0 :
328 i f ondemandstatus ==1:
329 res i ze ins t ancegro up (ClusterID , ’ Task_ondemand ’ , 0)
330 res i ze ins t ancegr oup (ClusterID , ’ Task_spot ’ , 0)
331 sys . e x i t (0)
332

333

334 appscompletednow = g e t c l u s t e r m e t r i c s (ClusterID , ’ AppsCompleted
’ , i n t ((Timenow−StartTime) . seconds))

335

336 i f appscompletednow <= 7 :
337 NewNx = i n t (math . c e i l ((f l o a t (10−appscompletednow) /2) *Nx))

− k
338 i f ondemandstatus == 1 :
339 res i ze ins t ancegr oup (ClusterID , ’ Task_ondemand ’ , NewNx)
340 res i ze ins t ancegr oup (ClusterID , ’ Task_spot ’ , 0)
341 time . s leep (1 2 0)
342 applybidB (Nx, a v a i l a b i l i t y z o n e , ClusterID)
343 e l i f ondemandstatus ==0:
344 addtasknodes (’ Task_ondemand ’ , ’ondemand ’ , ’m1. medium ’ ,

NewNx, ’ 0 . 0 ’ , ClusterID)
345 res i ze ins t ancegr oup (ClusterID , ’ Task_spot ’ , 0)
346 time . s leep (1 2 0)
347 applybidB (Nx, a v a i l a b i l i t y z o n e , ClusterID)
348

349 e l i f appscompletednow >7 and appscompletednow <10:
350 i f ondemandstatus == 1 :
351 res i ze ins t ancegr oup (ClusterID , ’ Task_ondemand ’ , Nx−k)
352 res i ze ins t ancegr oup (ClusterID , ’ Task_spot ’ , 0)
353 time . s leep (1 2 0)
354 applybidB (Nx, a v a i l a b i l i t y z o n e , ClusterID)
355 e l i f ondemandstatus == 0 :
356 addtasknodes (’ Task_ondemand ’ , ’ondemand ’ , ’m1. medium ’ ,

Nx−k , ’ 0 . 0 ’ , ClusterID)
357 res i ze ins t ancegr oup (ClusterID , ’ Task_spot ’ , 0)
358 time . s leep (1 2 0)
359 applybidB (Nx, a v a i l a b i l i t y z o n e , ClusterID)
360

361 Timenow = datetime . datetime . now () . r e p l a c e (microsecond =0)

102

362 while (i n t ((Timenow−StartTime) . seconds) < i n t (td * 60 * 60)) : #
t imeelapsed as 0 . 1 of td in seconds

363 p r i n t "WAITING IN LOOP TILL 80%−100% TIME ELAPSED"
364 time . s leep (6 0)
365 Timenow = datetime . datetime . now () . r e p l a c e (microsecond =0)
366 appscompletednow = g e t c l u s t e r m e t r i c s (ClusterID , ’

AppsCompleted ’ , i n t ((Timenow−StartTime) . seconds))
367 i f appscompletednow == 1 0 :
368 i f ondemandstatus ==1:
369 res i ze ins t ancegro up (ClusterID , ’ Task_ondemand ’ , 0)
370 res i ze ins t ancegro up (ClusterID , ’ Task_spot ’ , 0)
371 sys . e x i t (0)
372

373 sys . e x i t (0)
374 #end of main () d e f i n i t i o n
375

376 i f __name__ == ’ __main__ ’ :
377 main ()

A.6 Python Script to provision/run EMR cluster and
adding steps

The following codes provision and run Amazon EMR cluster and also adds
ten steps that points to equally divided files in ten folders for processing.

Listing A.6: Provisioning/running EMR cluster with Hadoop and adding
steps

1 __author__ = ’ kabin ’
2 # !/ usr/bin/python
3

4 import boto3
5 from datetime import datetime
6

7 emrc l ient = boto3 . c l i e n t (’emr ’)
8 response = emrc l ient . run_job_flow (Name=" mycluster01 " ,
9 LogUri= ’ s3 ://aws−t e s t−kabin01/logs ’ ,

10 ReleaseLabel="emr−4.6 .0 " ,
11 I n s t a n c e s ={ ’ MasterInstanceType ’ : ’m1. medium ’ ,
12 ’ S laveInstanceType ’ : ’m1. medium ’ ,
13 ’ InstanceCount ’ : 3 ,
14 ’Ec2KeyName ’ : ’ EMR_test ’ ,
15 ’ KeepJobFlowAliveWhenNoSteps ’ : True
16 } ,
17 Conf igurat ions = [{ " C l a s s i f i c a t i o n " : " emrfs−s i t e " ,
18 " P r o p e r t i e s " : { " f s . s3 . c o n s i s t e n t " : " t rue " } }
19] ,
20 JobFlowRole=" EMR_EC2_DefaultRole " ,
21 ServiceRole=" EMR_DefaultRole "
22)
23

24 ClusterID = response [’ JobFlowId ’]
25

26 responseaddsteps = emrc l ient . add_job_flow_steps (

103

27 JobFlowId=ClusterID ,
28 Steps =[
29 {
30 ’Name ’ : ’ Step01 ’ ,
31 ’ ActionOnFailure ’ : ’CONTINUE ’ ,
32 ’ HadoopJarStep ’ : {
33 ’ J a r ’ : ’ s3 ://aws−t e s t−kabin01/ s c r i p t /log−a n a l y s i s . j a r ’ ,
34 ’ MainClass ’ : ’None ’ ,
35 ’ Args ’ : [
36 ’ LogAnalysisDriver ’ ,
37 ’ s3n ://aws−t e s t−kabin01/data /01/ * ’ ,
38 ’ s3n ://aws−t e s t−kabin01/run01 ’ ,
39]
40 }
41 } ,
42 {
43 ’Name ’ : ’ Step02 ’ ,
44 ’ ActionOnFailure ’ : ’CONTINUE ’ ,
45 ’ HadoopJarStep ’ : {
46 ’ J a r ’ : ’ s3 ://aws−t e s t−kabin01/ s c r i p t /log−a n a l y s i s . j a r ’ ,
47 ’ MainClass ’ : ’None ’ ,
48 ’ Args ’ : [
49 ’ LogAnalysisDriver ’ ,
50 ’ s3n ://aws−t e s t−kabin01/data /02/ * ’ ,
51 ’ s3n ://aws−t e s t−kabin01/run02 ’ ,
52]
53 }
54 } ,
55 {
56 ’Name ’ : ’ Step03 ’ ,
57 ’ ActionOnFailure ’ : ’CONTINUE ’ ,
58 ’ HadoopJarStep ’ : {
59 ’ J a r ’ : ’ s3 ://aws−t e s t−kabin01/ s c r i p t /log−a n a l y s i s . j a r ’ ,
60 ’ MainClass ’ : ’None ’ ,
61 ’ Args ’ : [
62 ’ LogAnalysisDriver ’ ,
63 ’ s3n ://aws−t e s t−kabin01/data /03/ * ’ ,
64 ’ s3n ://aws−t e s t−kabin01/run03 ’ ,
65]
66 }
67 } ,
68 {
69 ’Name ’ : ’ Step04 ’ ,
70 ’ ActionOnFailure ’ : ’CONTINUE ’ ,
71 ’ HadoopJarStep ’ : {
72 ’ J a r ’ : ’ s3 ://aws−t e s t−kabin01/ s c r i p t /log−a n a l y s i s . j a r ’ ,
73 ’ MainClass ’ : ’None ’ ,
74 ’ Args ’ : [
75 ’ LogAnalysisDriver ’ ,
76 ’ s3n ://aws−t e s t−kabin01/data /04/ * ’ ,
77 ’ s3n ://aws−t e s t−kabin01/run04 ’ ,
78]
79 }
80 } ,
81 {
82 ’Name ’ : ’ Step05 ’ ,
83 ’ ActionOnFailure ’ : ’CONTINUE ’ ,
84 ’ HadoopJarStep ’ : {
85 ’ J a r ’ : ’ s3 ://aws−t e s t−kabin01/ s c r i p t /log−a n a l y s i s . j a r ’ ,

104

86 ’ MainClass ’ : ’None ’ ,
87 ’ Args ’ : [
88 ’ LogAnalysisDriver ’ ,
89 ’ s3n ://aws−t e s t−kabin01/data /05/ * ’ ,
90 ’ s3n ://aws−t e s t−kabin01/run05 ’ ,
91]
92 }
93 } ,
94 {
95 ’Name ’ : ’ Step06 ’ ,
96 ’ ActionOnFailure ’ : ’CONTINUE ’ ,
97 ’ HadoopJarStep ’ : {
98 ’ J a r ’ : ’ s3 ://aws−t e s t−kabin01/ s c r i p t /log−a n a l y s i s . j a r ’ ,
99 ’ MainClass ’ : ’None ’ ,

100 ’ Args ’ : [
101 ’ LogAnalysisDriver ’ ,
102 ’ s3n ://aws−t e s t−kabin01/data /06/ * ’ ,
103 ’ s3n ://aws−t e s t−kabin01/run06 ’ ,
104]
105 }
106 } ,
107 {
108 ’Name ’ : ’ Step07 ’ ,
109 ’ ActionOnFailure ’ : ’CONTINUE ’ ,
110 ’ HadoopJarStep ’ : {
111 ’ J a r ’ : ’ s3 ://aws−t e s t−kabin01/ s c r i p t /log−a n a l y s i s . j a r ’ ,
112 ’ MainClass ’ : ’None ’ ,
113 ’ Args ’ : [
114 ’ LogAnalysisDriver ’ ,
115 ’ s3n ://aws−t e s t−kabin01/data /07/ * ’ ,
116 ’ s3n ://aws−t e s t−kabin01/run07 ’ ,
117]
118 }
119 } ,
120 {
121 ’Name ’ : ’ Step08 ’ ,
122 ’ ActionOnFailure ’ : ’CONTINUE ’ ,
123 ’ HadoopJarStep ’ : {
124 ’ J a r ’ : ’ s3 ://aws−t e s t−kabin01/ s c r i p t /log−a n a l y s i s . j a r ’ ,
125 ’ MainClass ’ : ’None ’ ,
126 ’ Args ’ : [
127 ’ LogAnalysisDriver ’ ,
128 ’ s3n ://aws−t e s t−kabin01/data /08/ * ’ ,
129 ’ s3n ://aws−t e s t−kabin01/run08 ’ ,
130]
131 }
132 } ,
133 {
134 ’Name ’ : ’ Step09 ’ ,
135 ’ ActionOnFailure ’ : ’CONTINUE ’ ,
136 ’ HadoopJarStep ’ : {
137 ’ J a r ’ : ’ s3 ://aws−t e s t−kabin01/ s c r i p t /log−a n a l y s i s . j a r ’ ,
138 ’ MainClass ’ : ’None ’ ,
139 ’ Args ’ : [
140 ’ LogAnalysisDriver ’ ,
141 ’ s3n ://aws−t e s t−kabin01/data /09/ * ’ ,
142 ’ s3n ://aws−t e s t−kabin01/run09 ’ ,
143]
144 }

105

145 } ,
146 {
147 ’Name ’ : ’ Step10 ’ ,
148 ’ ActionOnFailure ’ : ’CONTINUE ’ ,
149 ’ HadoopJarStep ’ : {
150 ’ J a r ’ : ’ s3 ://aws−t e s t−kabin01/ s c r i p t /log−a n a l y s i s . j a r ’ ,
151 ’ MainClass ’ : ’None ’ ,
152 ’ Args ’ : [
153 ’ LogAnalysisDriver ’ ,
154 ’ s3n ://aws−t e s t−kabin01/data /10/ * ’ ,
155 ’ s3n ://aws−t e s t−kabin01/run10 ’ ,
156]
157 }
158 }
159]
160)

A.7 AWS CLI Command to provision/run EMR clus-
ter and adding steps

The following AWS Command Line Interface command provision and run
Amazon EMR cluster and and also adds ten steps that points to equally
divided files in ten folders for processing.

Listing A.7: Provisioning/running EMR cluster with Hadoop and adding
steps

1 aws emr crea te−c l u s t e r −−a p p l i c a t i o n s Name=Hadoop −−ec2−a t t r i b u t e s
2 ’ { " KeyName " : " EMR_test " , " I n s t a n c e P r o f i l e " : " EMR_EC2_DefaultRole " ,
3 " SubnetId " : " subnet−5e736c3b " ,
4 " EmrManagedSlaveSecurityGroup " : " sg−66bfce01 " ,
5 " EmrManagedMasterSecurityGroup " : " sg−67bfce00 " } ’
6 −−serv ice−r o l e EMR_DefaultRole −−enable−debugging
7 −−r e l e a s e−l a b e l emr−4.6 .0
8 −−log−u r i ’ s3n ://aws−t e s t−kabin01/logs/ ’
9 −−s teps ’ [{ " Args " : [" LogAnalysisDriver " , " s3n ://aws−t e s t−kabin01/

data03 /10/ * " ,
10 " s3n ://aws−t e s t−kabin01/ r u n c l u s t e r 2 c /run10 "] ,
11 " Type " : " CUSTOM_JAR" , " ActionOnFailure " : "CONTINUE" ,
12 " J a r " : " s3 ://aws−t e s t−kabin01/ s c r i p t /log−a n a l y s i s . j a r " ,
13 " P r o p e r t i e s " : " " , " Name " : " Step10 " } ,
14 { " Args " : [" LogAnalysisDriver " , " s3n ://aws−t e s t−kabin01/data03 /09/ * " ,
15 " s3n ://aws−t e s t−kabin01/ r u n c l u s t e r 2 c /run9 "] ,
16 " Type " : " CUSTOM_JAR" , " ActionOnFailure " : "CONTINUE" ,
17 " J a r " : " s3 ://aws−t e s t−kabin01/ s c r i p t /log−a n a l y s i s . j a r " ,
18 " P r o p e r t i e s " : " " , " Name " : " Step09 " } ,
19 { " Args " : [" LogAnalysisDriver " , " s3n ://aws−t e s t−kabin01/data03 /08/ * " ,
20 " s3n ://aws−t e s t−kabin01/ r u n c l u s t e r 2 c /run8 "] ,
21 " Type " : " CUSTOM_JAR" , " ActionOnFailure " : "CONTINUE" ,
22 " J a r " : " s3 ://aws−t e s t−kabin01/ s c r i p t /log−a n a l y s i s . j a r " ,
23 " P r o p e r t i e s " : " " , " Name " : " Step08 " } ,
24 { " Args " : [" LogAnalysisDriver " , " s3n ://aws−t e s t−kabin01/data03 /07/ * " ,
25 " s3n ://aws−t e s t−kabin01/ r u n c l u s t e r 2 c /run7 "] ,
26 " Type " : " CUSTOM_JAR" , " ActionOnFailure " : "CONTINUE" ,

106

27 " J a r " : " s3 ://aws−t e s t−kabin01/ s c r i p t /log−a n a l y s i s . j a r " ,
28 " P r o p e r t i e s " : " " , " Name " : " Step07 " } ,
29 { " Args " : [" LogAnalysisDriver " , " s3n ://aws−t e s t−kabin01/data03 /06/ * " ,
30 " s3n ://aws−t e s t−kabin01/ r u n c l u s t e r 2 c /run6 "] ,
31 " Type " : " CUSTOM_JAR" , " ActionOnFailure " : "CONTINUE" ,
32 " J a r " : " s3 ://aws−t e s t−kabin01/ s c r i p t /log−a n a l y s i s . j a r " ,
33 " P r o p e r t i e s " : " " , " Name " : " Step06 " } ,
34 { " Args " : [" LogAnalysisDriver " , " s3n ://aws−t e s t−kabin01/data03 /05/ * " ,
35 " s3n ://aws−t e s t−kabin01/ r u n c l u s t e r 2 c /run5 "] ,
36 " Type " : " CUSTOM_JAR" , " ActionOnFailure " : "CONTINUE" ,
37 " J a r " : " s3 ://aws−t e s t−kabin01/ s c r i p t /log−a n a l y s i s . j a r " ,
38 " P r o p e r t i e s " : " " , " Name " : " Step05 " } ,
39 { " Args " : [" LogAnalysisDriver " , " s3n ://aws−t e s t−kabin01/data03 /04/ * " ,
40 " s3n ://aws−t e s t−kabin01/ r u n c l u s t e r 2 c /run4 "] ,
41 " Type " : " CUSTOM_JAR" , " ActionOnFailure " : "CONTINUE" ,
42 " J a r " : " s3 ://aws−t e s t−kabin01/ s c r i p t /log−a n a l y s i s . j a r " ,
43 " P r o p e r t i e s " : " " , " Name " : " Step04 " } ,
44 { " Args " : [" LogAnalysisDriver " , " s3n ://aws−t e s t−kabin01/data03 /03/ * " ,
45 " s3n ://aws−t e s t−kabin01/ r u n c l u s t e r 2 c /run3 "] ,
46 " Type " : " CUSTOM_JAR" , " ActionOnFailure " : "CONTINUE" ,
47 " J a r " : " s3 ://aws−t e s t−kabin01/ s c r i p t /log−a n a l y s i s . j a r " ,
48 " P r o p e r t i e s " : " " , " Name " : " Step03 " } ,
49 { " Args " : [" LogAnalysisDriver " , " s3n ://aws−t e s t−kabin01/data03 /02/ * " ,
50 " s3n ://aws−t e s t−kabin01/ r u n c l u s t e r 2 c /run2 "] ,
51 " Type " : " CUSTOM_JAR" , " ActionOnFailure " : "CONTINUE" ,
52 " J a r " : " s3 ://aws−t e s t−kabin01/ s c r i p t /log−a n a l y s i s . j a r " ,
53 " P r o p e r t i e s " : " " , " Name " : " Step02 " } ,
54 { " Args " : [" LogAnalysisDriver " , " s3n ://aws−t e s t−kabin01/data03 /01/ * " ,
55 " s3n ://aws−t e s t−kabin01/ r u n c l u s t e r 2 c /run1 "] ,
56 " Type " : " CUSTOM_JAR" , " ActionOnFailure " : "CONTINUE" ,
57 " J a r " : " s3 ://aws−t e s t−kabin01/ s c r i p t /log−a n a l y s i s . j a r " ,
58 " P r o p e r t i e s " : " " , " Name " : " Step01 " }] ’
59 −−name ’ Clus ter_2c ’ −−ins tance−groups ’ [{ " InstanceCount " : 2 ,
60 " InstanceGroupType " : " CORE" ,
61 " InstanceType " : " m1. medium " , "Name " : " Core Ins tan ce Group " } ,
62 { " InstanceCount " : 1 , " InstanceGroupType " : "MASTER" ,
63 " InstanceType " : " m1. medium " , "Name " : " Master Ins ta nce Group " }] ’
64 −−region us−west−2

107

	Introduction
	Problem Statement
	Structure of the Report

	Background
	Cloud Computing
	Different models of Cloud
	Different service categories
	Cloud Service Providers
	Amazon Web Services
	Amazon Elastic Compute Cloud
	Amazon EC2 Purchasing Options
	Amazon Simple Storage Service
	Boto - Amazon Web Services SDK

	Google Preemptible Instances
	Bidding spot instances

	Clustering
	Hadoop
	Amazon Elastic MapReduce
	Amazon EMR Metrics

	CloudWatch

	Relevant Theory/Literature Review
	Cutting the Cost of Hosting Online Services Using Cloud Spot Markets
	Automated cloud bursting on a hybrid cloud platform
	WOHA: Deadline-Aware Map-Reduce Workflow Scheduling Framework over Hadoop Clusters
	Towards a MapReduce Application Performance Model
	How to Bid the Cloud

	I The project
	Approach
	Objectives
	Design Stage
	Necessary Components and Tools to build the models
	The Cluster
	MapReduce Data Processing Engine
	Computing virtual machines
	Persistent Storage
	Monitoring
	Script Development for Automation
	FoxyProxy
	R-programming

	Project Steps
	Sample Data Generation
	Cluster Setup and Configuration
	Map Reduce Engine
	Estimation Phase
	Data Processing and Cluster Scaling

	Challenges of using Spot instances in Cluster
	Bidding Strategies

	II Results and Conclusion
	Results I - Design
	Deadline Aware Auto Bidding Scaling (DAAB) Algorithm
	Expected Results of DAAB Algorithm

	Deadline Aware Progress Adaptive Burst Bidding (DPB) Algorithm
	Expected Results of DPB Algorithm

	Results II - Implementation and Experiments
	The System Setup
	Setting up Boto3 with AWS configuration
	Provisioning and running Amazon EMR Cluster
	Input Data Generating Script
	Creating Custom JAR as MapReduce Application
	Python Scripts for the implementation of algorithms
	Getting Spot Market Price From Historical Data
	Bidding function
	Adding Task Nodes and resize task nodes
	Get Cluster Metrics

	Initial Experiments
	Input Data Generattion
	Provision and run the EMR cluster with steps
	Estimation Phase

	Setting up Base Experiment - EMR Cluster with all on-demand instances
	Experiment OD-1 and OD-2

	Experiments on the Algorithms DAAB and DPB

	Results III - Analysis
	Evaluation of base experiments OD-n
	Evaluation of experiments DAAB-n
	DAAB-1 Experiment
	DAAB-2 Experiment
	DAAB-3 Experiment
	DPB-1 Experiment
	DPB-2 Experiment

	Cost Analysis

	Discussion
	Project Evaluation
	Comparison of DAAB and DPB algorithms
	Future works

	Conclusion
	Appendices
	Developed Python scripts and AWS CLI Commands
	Python Script to save spot price history of 90 days
	Python Script to get EMR cluster metrics
	Python Script to get Map and Reduce Info
	Automation Script 1
	Automation Script 2
	Python Script to provision/run EMR cluster and adding steps
	AWS CLI Command to provision/run EMR cluster and adding steps

