
A performance comparison of
KVM, Docker and the
IncludeOS Unikernel
A comparative study

Tamas Czipri
Master’s Thesis Spring 2016

A performance comparison of KVM, Docker
and the IncludeOS Unikernel

Tamas Czipri

May 23, 2016

ii

Abstract

Unikernels are trending and becomming more popular in the current
paradigm of cloud computing, there is a need to make systems smaller.
Hosts of cloud platforms charge users by resources consumed and a small
unikernel which is tailored for a specific purpose will save many resources.
Big servers running clouds consume much power which can be saved by
reducing the resources taken up on them.

A general purpose operating system will be its very nature be large and
bloated. Containers are a solution to this, but unikernels are an alternative
approach which offers more security as well. This thesis aims to test
different systems and compare them to each other through experiments
aiming to test their performance in scenarios related to networking.

Three experiments was developed in order to test the different systems
which are IncludeOS, a unikernel operating system developed at Oslo
University College, a Docker container and an Ubuntu server installation
running in a virtual machine in terms of a web-service which can
commonly be found in clouds and to test their network performance.
The tests collect stats on the systems while giving them load in order
to see how they perform. The experiments revealed that currently the
container technology that is Docker has an edge over IncludeOS which
is still under development while both have an advantage over a general
purpose operating system running in a virtual machine.

iii

iv

Contents

I Introduction 1

1 Introduction 3
1.1 Problem statement . 4
1.2 Thesis outline . 5

2 Background 7
2.1 Unikernels . 7

2.1.1 Architecture . 7
2.1.2 Security . 7
2.1.3 In cloud . 8
2.1.4 IncludeOS . 8

2.2 Virtualization . 9
2.2.1 Hypervisor and virtual machines 10
2.2.2 QEMU/KVM . 10

2.3 Containers . 11
2.3.1 Docker . 11

2.4 General purpose operating systems 12
2.4.1 Security . 12
2.4.2 Ubuntu . 13

2.5 Related Works . 13

II The project 15

3 Planning the project 17
3.1 Approach . 17

3.1.1 Objectives . 18
3.2 Design . 18

3.2.1 Metrics . 18
3.2.1.1 Underlying infrastructure 18
3.2.1.2 Virtual web-servers 20

3.2.2 Script to run the experiments 21
3.2.3 Underlying Infrastructure 22

3.3 Mimicing IncludeOS . 23
3.4 Implementation and Testing 23

3.4.1 Tools for implementation 23
3.4.2 Setting up the environment 24

v

3.4.2.1 Hypervisors 24
3.4.2.2 Virtual web-servers 25

3.4.3 TCP server program 25
3.4.4 UDP server/client programs 26
3.4.5 Testing the environment 26
3.4.6 Experimental setup . 27
3.4.7 Expected results . 28

3.5 Measurements, analysis and comparison 28
3.5.1 Data extraction and script 28
3.5.2 Experiments . 29
3.5.3 Analysis and comparison 31

III Conclusion 33

4 Results I - Desgin 35
4.1 Mimicing IncludeOS . 35
4.2 Modification of the IncludeOS service 36
4.3 Scripts . 37

4.3.1 QEMU . 38
4.3.2 Docker . 39

4.4 TCP & UDP programs . 40

5 Results II - Implementation and Experiments 43
5.1 Setting up . 43

5.1.1 Hypervisors . 43
5.1.2 IncludeOS . 44
5.1.3 Docker . 44
5.1.4 Ubuntu . 45
5.1.5 Numactl . 46

5.2 Experiments . 46

6 Results III - Data & Analysis 49
6.1 AMD . 49

6.1.1 IncludeOS . 49
6.1.1.1 Scenario 1 - TCP 500 req/s 49
6.1.1.2 Scenario 2 - TCP 1000 req/s 51
6.1.1.3 UDP . 52

6.1.2 Docker . 54
6.1.2.1 Scenario 1 - TCP 500 req/s 54
6.1.2.2 Scenario 2 - TCP 1000 req/s 56
6.1.2.3 UDP . 57

6.1.3 Ubuntu VM . 59
6.1.3.1 Scenario 1 - TCP 500 req/s 59
6.1.3.2 Scenario 2 - TCP 1000 req/s 60
6.1.3.3 UDP . 61

6.2 Intel . 62
6.2.1 IncludeOS . 62

vi

6.2.1.1 Scenario: TCP 500 req/s 62
6.2.1.2 Scenario: TCP 1000 req/s 64
6.2.1.3 Scenario: UDP 65

6.2.2 Docker . 66
6.2.2.1 Scenario: TCP 500 req/s 66
6.2.2.2 Scenario: TCP 1000 req/s 67
6.2.2.3 Scenario: UDP 68

6.2.3 Ubuntu . 70
6.2.3.1 Scenario: TCP 500 req/s 70
6.2.3.2 Scenario: TCP 1000 req/s 71
6.2.3.3 Scenario: UDP 72

6.3 Comparison . 74

7 Discussion 75
7.1 Throughout the project . 75
7.2 Proposed improvements . 76
7.3 Alternative approaches . 76

8 Conclusion 77

Appendices 81

A Scripts and programs 83

vii

viii

List of Figures

2.1 Two Unikernels running DNS and a web-server on a bare-
metal hypervisor . 8

2.2 An overview of IncludeOS’ build system 9
2.3 An illustration of a type 1 hypervisor 11
2.4 An illustration of a type 2 hypervisor 12
2.5 An illustration of containers running on a host OS 13

3.1 Illustration of physical CPU utilized by virtual hosts. 19
3.2 Illustration of physical RAM utilized by virtual hosts. 20
3.3 TCP packet . 21
3.4 UDP packet . 21
3.5 TCP scenario 1 illustration . 30
3.6 TCP scenario 2 illustration . 31

4.1 High level illustration of collectors functions. 38
4.2 A high level illustration of dockerCollectors functions. . . . 39

6.1 Average CPU utilization of IncludeOS 50
6.2 CPU time of IncludeOS . 50
6.3 Showcasing the memory leak in the TCP service 51
6.4 Average CPU utilization of IncludeOS 51
6.5 CPU time of IncludeOS . 52
6.6 Response-time for UDP . 53
6.7 Average CPU utilization over the experiments 53
6.8 CPU time for UDP . 54
6.9 Average CPU usage . 55
6.10 CPU time for Docker . 55
6.11 CPU usage for Docker . 56
6.12 CPU time for Docker . 57
6.13 Response-time for UDP . 57
6.14 CPU usage for Docker . 58
6.15 CPU time for Docker . 58
6.16 CPU usage Ubuntu VM . 59
6.17 CPU time Ubuntu VM . 60
6.18 CPU usage Ubuntu VM . 60
6.19 CPU time Ubuntu VM . 61
6.20 Response-time for UDP . 61
6.21 CPU usage Ubuntu VM . 62

ix

6.22 CPU time Ubuntu VM . 62
6.23 CPU usage IncludeOS . 63
6.24 CPU time IncludeOS . 63
6.25 CPU usage IncludeOS . 64
6.26 CPU time IncludeOS . 65
6.27 Response-time IncludeOS . 65
6.28 CPU usage IncludeOS . 66
6.29 CPU time IncludeOS . 66
6.30 CPU usage Docker . 67
6.31 CPU time Docker . 67
6.32 CPU usage Docker . 68
6.33 CPU time Docker . 68
6.34 Response-time Docker . 69
6.35 CPU usage Docker . 69
6.36 CPU time Docker . 70
6.37 CPU usage Ubuntu VM . 70
6.38 CPU time Ubuntu VM . 71
6.39 CPU usage Ubuntu VM . 72
6.40 CPU time Ubuntu VM . 72
6.41 Response-time Ubuntu VM 73
6.42 CPU usage Ubuntu VM . 73
6.43 CPU time Ubuntu VM . 74

x

List of Tables

5.1 Trident hypervisor . 43
5.2 Intel hypervisor . 43

xi

xii

Acknowledgements

I would love to thank the following people of the support that they have
given me:

• My parents, Zoltan and Imola Czipri - For being an awesome mother
and father who kept pushing me to continiue my education even
though at times it was tempting to quit. Thank you for all your
support and love.

• My sister and her significant other, Nora Czipri and Svein
Langeteig - For letting me be their roommate and for being awesome
people in general.

• Hårek Haugerud - For being my supervisor. Thank you for the
guidance, support and helpful advice you have provided me with
during the project work. A truly great person.

• My teachers - To all my teachers; Kyrre Begnum, Anis Yazidi, Paal
Engelstad, thank you for the knowledge you all have provided us
with.

• To my classmates and my friends - Thank you all for the time
spent together, for the support and motivation you all have given
me and for making these 2 years a fun and an overall great learning
experience. My friends for all the support provided throughout my
time in pursuing higher education.

xiii

xiv

Part I

Introduction

1

Chapter 1

Introduction

Virtualization is a technology that had its first inception in the 1970s, but
has taken hold over the last decade where many services now are hosted
in a cloud environment. The service is hosted on a virtual machine run-
ning on a hypervisor that has some operating system running said service.
Before virtualization, running a service entailed one physical server having
the service running alongside other services or functions. With the addition
of virtualization a new abstraction of the hypervisor(server) hardware be-
came available allowing virtual machines to run the desired services mak-
ing it easier to modify, replace, migrate or repair a service.

A phenomenon that can be observed is that that more power is accumu-
lated in smaller objects, this is especially true in terms of computer hard-
ware. CPU chips are shrinking while outputting more performance, but
for software it seems to go the opposite way. A modern operating system
is rich in features which directly influence its size, in terms of commercial
hosting in a platform as a service environment this can be a drawback as the
metric for pricing is based on resources used. Furthermore, in the current
paradigm where online services are in huge demand, specially in regards
to uptime. Uptime is an important metric which directly affects the users,
therefore having a system which efficiently can quickly take down and put
up virtual machines is an important factor to maintain the services.

Using containers to deploy services is a solution that has gained significant
momentum lately as they offer a simplistic way to create and host services
for customers, for instance hosting a web server. As opposed to employing
a full operating system which is very resource consuming, especially when
considering that for instance a virtual machine instance running Ubuntu
consumes an abundance of resources as each virtual machine runs a full op-
erating system. This is important as there are many functions and drivers
that are not necessarily needed to host a specific service. For reference an
instantiation of an Ubuntu server instance requires at least one gigabyte
of storage space [5]. Containers on the other hand virtualize the operat-
ing system which in turn only requires one instance of it, each container
instance shares that kernel which results in being able to run multiple con-

3

tainers on one single operating system. As a result a container instance is in
the megabytes spectrum (in comparison a virtual machine is often multiple
gigabyte), inherently affecting performance and resource consumption on
the underlying host.

Unikernerls which work as single purpose operating systems in a very
stripped down form. Unikernels have not been as considered for deploy-
ment as there were support issues for an array of hardware that were used
in real-world scenarios [11]. However, modern hypervisors solve this prob-
lem as the unikernel can use the device drivers that the hypervisor has
while only needing to implement actual drivers for the virtual devices [10].
They are currently on the rise (specially after Docker acquired Unikernel
Systems) in this service driven paradigm due to how lightweight they are
and the popularity of both offering and using IaaS (infrastructure as a ser-
vice). When considering Amazon’s EC2 cloud (and possibly other IaaS ser-
vices) where the price is relative to the resources consumed, unikernels can
function with minimal resource requirements as they run inside a virtual
machine. In an experiment with MirageOS where it was used as a DNS
server, it outperformed BIND9 by 45% while being 200kB in size compared
to BIND being larger than 400MB [11]. Taking into consideration that this
experiment was performed almost three years ago there is reason to believe
that improvements have been made since then, possibly on both sides. In
addtion to small images an important feature present on unikernels is the
security it offers [4].

In addition to prices for the user of an IaaS service, power consumption
should also be considered as one of the main consumers of electricity is
computers, with giant data centers consuming the most. The CEO of Digi-
tal Power Group estimated that the ICT ecosystem consumed about 10% of
the worlds electricity in 2013 [14], which translated to the total electricity
generated the same year by Germany and Japan combined [14]. This data
indicates that employing an approach where resources that are not neces-
sarily needed would decrease the electrical usage for both servers and the
cooling of them [8].

1.1 Problem statement

As IncludeOS is still undergoing development as of writing this thesis,
there will be need to implement an environment that guarantees fairness
between the tests so that the same tests can be performed on all test sub-
jects, IncludeOS being the limiting factor as it is not yet fully developed. As
such the main focus will be to create a fair environment.

On both an Intel and an AMD based Ubuntu server compare the perfor-
mance and resource utilization of IncludeOS, Ubuntu VM and Docker

• when providing a TCP based web-service.

4

• in terms of network throughput performance with UDP.

1.2 Thesis outline

This thesis is composed of 5 chapters:

Chapter 1 - Introduction - Defines the motivation for this thesis in addi-
tion to the problem statement.

Chapter 2 - Background - Defines the technologies, what they are and how
they work which will be used in this thesis.

Chapter 3 - Approach - Defines what experiments will take place and how
they are designed in addition to the purpose of the experiments.

Chapter 4 - Results I - Design - Displays the results of what was done
in terms of design from the approach.

Chapter 5 - Results II - Implementation & Experiments - Displays how
the project was implemented and how the experiments was conducted.

Chapter 6 - Data & Analysis - Shows the data that was gathered during
the experiments and presents them through an analytical approach

Chapter 7 - Discussion - Discusses the progression of the project in terms
of what was done, what could have been, constraints and such.

Chapter 8 - Conclusion - Through data gathered and analyzed, in accor-
dance to the problem statement gives a conclusion to the problems defined.

5

6

Chapter 2

Background

2.1 Unikernels

Unikernels, also referred to as libraryOS/libOS or modular operating system
have been in a major spotlight lately as support for the increase, earlier
they have not been as considered for deployment as there were support
issues for an array of hardware that were used in real-world scenarios [11].
A unikernel is a specialized operating systems written in high level
code, like C++(IncludeOS) or OCAML(MirageOS) that are compiled from
the application code. The drivers and operating system functions that
are included in the compilation are only the ones needed to run the
application, making them extremely lightweight and very fast as there are
no context switches. This gives unikernels a significant edge in terms of
size, scalability, migration and deployment. In addition, as they are only
designed to run the one service which often is hard coded into the image
that runs the operating system, which results in a small code base, in
addition to limited possibilities as to what one can do if one were to be
able to get in as it runs in read-only mode making unikernels very hard to
compromise for an attacker. Furthermore this also accomplishes isolation
at an application level due to the ability to simply creating and booting
another virtual machine instance for each application.

2.1.1 Architecture

The way which unikernel operating systems are built is that they run in the
systems memory space which leave a very small resource footprint on the
system. They are in their very essence a small code base running directly
on a hypervisor in a virtual machine instance as illustrated by figure 2.1.
The unikernel itself are libraries and the operating system objects that are
linked with a linker which creates the image file that will be used by the
spawning virtual machine.

2.1.2 Security

In terms of security the unikernels stand very strong due to the miniscule
attack surface they have as a result of being stripped of functionality that

7

Figure 2.1: Two Unikernels running DNS and a web-server on a bare-metal
hypervisor

is not needed or used [10]. Furthermore, when an unikernel is launched
in a virtual machine instance it serves one purpose and one purpose
alone; meaning that once the desired service is compiled and ran there is
nothing more to it. Should a scenario arise where an attacker manages to
compromise the virtual machine, the attacker’s scope of disruption would
be immensely limited.

2.1.3 In cloud

With cloud or IaaS being the current paradigm in hosting online services,
unikernels are absolutely relevant as they are designed for cloud envi-
ronments. Considering hosting services like Amazon’s Elastic Compute
Cloud(EC2), Google Compute Engine, Windows Azure, that is just to name
a few [16] where a customer pays for the allocated resources that are con-
sumed. That means having a small resource footprint; mainly in the kilo-
bytes spectrum is a colossal advantage over an operating system spanning
multiple gigabyte where only a fraction of what is installed is needed on a
case to case basis(as they are general purpose). Specially when considering
that unikernels are specialized for the task which they are to perform.

2.1.4 IncludeOS

IncludeOS is a unikernel operating system currently being developed at
Oslo & Akershus university college and is written in C++ for the pur-
pose of operating in a cloud environment. The operating system is com-
piled so that when writing a service that it will host, the user starts with;
#<include> os. This will then wrap the operating system around the code
for the service and run it in a virtual machine, IncludeOS does not have a
main function, there is however a Service class in which the user will im-
plement the desired service. Service::start will be called when the op-
erating system finishes initialization [3]. When it builds the build system
will link the service with only the required operating system objects which
creates a binary file after which a boot-loader is attached and then it gets re-
compiled into an image which will run [1] as explained on their wiki page
and illustrated1 by figure 2.2.

As this operating system is currently still under development, as of today

1The illustration is made based on the figure found on https://github.com/hioa-
cs/IncludeOS/wiki

8

14.03.16 it is in version 0.7.0 - which dictates that new functionality is being
developed and added over time and as such also means that it is not yet
fully complete.

Figure 2.2: An overview of IncludeOS’ build system

2.2 Virtualization

Virtualization provides the ability to split up resources on a physical ma-
chine and reallocate them in virtual machines which can be used for a
plethora of tasks as they are each a functional machine. Furthermore, virtu-
alization simplifies logistical tasks with little to no downtime [9]. In terms
of infrastructure virtualization can reduce costs as one powerful hypervi-
sor is able to run multiple instances of machines, centralize and simplify
large scale management and also help the environment [9].

There are three techniques for virtualization;

• Paravirtualization
An API is provided by the hypervisor for the guest operating system
to use when operating system calls are made. This method does
require a modified version of the guest operating system to be able
to make the API calls.

• Full virtualization
When operating system calls are made from the guest operating

9

system these calls will get trapped and emulated in the case where
the calls are not virtualizable, the technique for catching the un-
virtualizable instructions is called binary traslation which incurs a
large performance overhead.

• Hardware-assisted virtualization
Arrived with Intel VT and AMD V CPUs, this type allows the
guest operating system to function as it normally would while the
hypervisor virtualizes its hardware which then the virtual machine
can access and use in an isolated fashion.

2.2.1 Hypervisor and virtual machines

A hypervisor or virtual machine monitor allows running one or more
virtual machine on a single host, while each operating system governing
the virtual machines sees the hardware on the hypervisor as solely used
by them. Virtualization takes place at the hardware level. Hypervisors are
either hosted or bare metal:

• Type 1 - Bare metal/native
In a type 1 hyperisor the hypervisor itself runs directly on top of the
hosts hardware with no operating system it. The hypervisor then
allows the running and management of virtual machines which it
hosts. A type 1 hypervisor is managed by console as there is no native
operating system present on the host system. Figure 2.3 illustrates
how a type 1 hypervisor works.

• Type 2 - Hosted
A type 2 hypervisor runs within an operating system with the
hypervisor being a layer in the operating system which runs directly
on the hardware. This is achieved by the hypervisor managing and
timing calls for hardware and IO (CPU, RAM, disks and network).
Figure 2.4 illustrates how a type 2 hypervisor works.

2.2.2 QEMU/KVM

QEMU is a software solution in terms of virtualization which gives a host
the ability to emulate and virtualize hardware (not the same as hardware-
assisted virtualization). QEMU has different modes in which it can work,
together with the way QEMU emulates a CPU, which is through dynamic
binary-translation it allows QEMU to host a variety of guest operating
system that does not need to be modified. In addition, QEMU is able to
emulate a plethora of hardware, such as network cards, cd-roms and hard
drives to mention some and comes with built-in features for SMP, SMB and
VNC.

KVM is a version of QEMU which means Kernel Virtual Machine, in
relation to QEMU when enabled it allows guests to run on the hypervisor
as processes. When KVM is enabled the guest machines effectively run on

10

Figure 2.3: An illustration of a type 1 hypervisor

bare-metal which provides a performance gain, as such the guests run at
near-native speeds, should that not work it will emulate software-only as a
fallback.

2.3 Containers

Container-based virtualization is an approach where the host kernel
is shared between then software-containers and is used to run them.
The main difference is how they do the virtualization [12], hypversiors
virtualize at hardware level where as containers at operating system level.
They act like sand-boxed operating systems, a host operating system runs
in the bottom layer from which the containers share the kernel as shown
on figure 2.5. The shared parts operate in read-only mode. The container
engine runs on top of the host operating system where it manages the
containers themselves. A big advantage with containers is that they a
capable of running platform independently(assuming that the platform can
run it) due to the fact that they share the host kernel which makes tasks like
migration from one server to another.

2.3.1 Docker

Written in a language developed by Google with a syntax based on C [13],
Docker is an operating system virtualization tool based on LXC that acts as
a wrapper around applications with a complete filesystem. The filesystem
has all the required dependencies [7] for the application to run platform in-
dependently, if Docker can run on the platform, then so can the application
packaged in Docker. The way Docker achieves this is through a unified
API that manages kernel-level technologies [15], the filesystem that Docker
uses is called Advanced Multi-Layered Unification Filesystem (AuFS). An ad-
vantage that AuFS comes with the ability to save storage and memory con-
sumption as there is only one base image required which then can be used

11

Figure 2.4: An illustration of a type 2 hypervisor

as a basis to build multiple Docker containers.

The security within Docker resembles that of LXC containers, whenever
a Docker container is started there will be created a set of namespaces and
control groups which is relevant for that container. The namespaces hide
anything that runs outside of the specific container for the process running
inside it. The control groups allow for controlling resource allocation and
limitations for the container, the way control groups work is they make
sure that the container has all the CPU power, RAM allocation and disk
I/O it needs, however they implement an additional feature; they prevent
the possiblity of a container exhausting either of those resources on the host
system and acts as a defense for denial-of-service attacks.

2.4 General purpose operating systems

A general purpose operating is a regular operating system like Windows
or Linux, these operating systems are full of features to serve a general
purpose, i.e jack of all trades. As such an installation of either consumes a
substantial amount of space in return for features one does not necessarily
need. In addition, these services are running alongside the kernel leaving
a larger resource footprint in terms of CPU and RAM utilization.

2.4.1 Security

Most general purpose operating systems come with built-in features for
security. The security implementations in an operating system is based
on a concept called CIA; Confidentiality, integrity and availability and
means that unauthorized entities should not be able to do anything an
administrator of a system does not want such entities to do. As a result this

12

Figure 2.5: An illustration of containers running on a host OS

is implemented in the operating system itself, adding to size and resource
consumption.

2.4.2 Ubuntu

The general purpose operating system which will be used in the exper-
iments is the Ubuntu distribution of Linux, version 14.04 (Trusty Tahr)
server edition. The justification for selecting this particular operating sys-
tem over others is that it is widely used as server host operating system
and is free.

2.5 Related Works

1. An Updated Performance Comparison of Virtual Machines and
Linux Containers by Wes Felter, Alexandre Ferreira, Ram Rajamony,
Juan Rubio IBM Research, Austin, TX
Here the authors test the performance of virtual machines against
Linux containers, this paper was published by the research division
of IBM.

13

14

Part II

The project

15

Chapter 3

Planning the project

3.1 Approach

This chapter will focus on the methodology and the required actions in
order to ensure that there is an answer to the problem statement. In order
to develop a testing framework which can be implemented to mimic the
IncludeOS web-service and ensure a fair test between the different software
solutions, it is important to look at the underlying technology of the system
in order to determine limiting factor. The approach will consist of multiple
sub-sections which discuss the key features of the development of such
a framework. Furthermore this chapter will describe what technologies
are selected, how the technologies are combined with design and utilized
throughout the experiments.

The problem statement which was defined in section 1.1:
On both an Intel and an AMD based Ubuntu server compare the
performance and resource utilization of IncludeOS, Ubuntu VM and
Docker

• when providing a TCP based web-service.

• in terms of network throughput performance with UDP.

As such the following outline is an overview of what this chapter will
look at in detail:

• Look at the objectives which need to be done to achieve an answer in
relation to the problem statement.

• Looking at how IncludeOS implements its web-server service.

• The design of the models which IncludeOS will be tested against.

• Implementation and experiments.

• Analysis and comparison.

17

3.1.1 Objectives

As described in the problem statement and the introduction chapter,
this thesis will attempt to compare how the IncludeOS operating system
performs in relation to other, more traditional software solutions for web
hosting in terms of performance. The experiment framework will be
based on what IncludeOS implements, which is a socket-server written
in C++, the framework itself will be built in manner which will achieve
simplicity in terms of performing the experiments. As such, this thesis will
focus on the quantitative data which is gathered through the experiments.
The experiments require multiple software solutions, in addition an
infrastructure on which they can run. One of the goals of this thesis
is to acquire, look at and analyze data for IncludeOS to determine its
efficiency as a web-server in terms of hardware and resource consumption
to determine how it would perform in for instance a cloud environment.
Furthermore, how consuming, or the lack thereof as it is directly related to
green computing along with costs and efficiency as mentioned in chapter
1.

To find an answer to the questions proposed by the problem statement
the work will be split into three phases which are the following:

1. Design.

2. Implementation and testing.

3. Analysis and comparison of the results.

3.2 Design

The design phase is the first part of what must be accomplished in this
project and will be divided into the tasks outlined below:

1. Define which metrics will be monitored in order to acquire the data.

2. Actions needed to be performed by an automated script for data
collection.

3. The underlying infrastructure.

4. Mimicing IncludeOS’ web-server in Ubuntu and Docker.

3.2.1 Metrics

3.2.1.1 Underlying infrastructure

The first objective is to consider what hardware in the hosting hypervisor
will be under load when a virtual machine functioning as a web-server is
hosted on it. Further, the time which all three of the web-server use in order

18

to answer a requesting client. When hosting a virtual machine there is a lot
of abstraction added to hardware so that virtual machines can utilize them
without having kernel mode access.

As such, there is additional load on the CPU which gets abstracted into
virtual cores that enables the virtual hosts to utilize them as if they had
their own dedicated CPU. Therefore, utilization of CPU is highly relevant
in this case. In addition to the CPU, RAM also has an additional abstraction
layer for the virtual machines to be able to utilize them illustrated in
figure 3.1 and 3.2. This abstraction, like the CPU allows the virtual
machine to believe it has its own memory space and this is done through
additional layers of paging, called shadow-pages. RAM utilization of the
underlying hypervisor therefore is a good metric to help determine the
overall performance cost of the hosted system. Further, deploying the
implemented experiments from an outside host would in addition require
NAT rules of some kind to reroute traffic to the virtual machine being tested
which would add additional consumption of the mentioned hardware
resources.

Figure 3.1: Illustration of physical CPU utilized by virtual hosts.

It should however be mentioned that during the experiments these
additional overheads will not have any drastic impact on the system as
a whole and it can be assumed with certainty that this overhead will not
interfere with the experiments intended to run on the hypervisors as they
are both very powerful. As such, the additional usage of the hardware
on the hypervisor should not affect virtual machine performance as there
will not be an instance of the load necessary to saturate the power which
the hardware provides. However, the values regarding real-time usage

19

Figure 3.2: Illustration of physical RAM utilized by virtual hosts.

during the experiments will be monitored to give a vizualization of the
actual resource footprint each of the operating systems set.

3.2.1.2 Virtual web-servers

There are two important metrics that most users are concerned with when
it comes to web-servers, those are how fast it takes something to happen
when a request is made and the other being that there are no random
interruptions when using a web-service. Therefore, on a web-server in a
virtual machine running on a hypervisor there are mainly three metrics in
this thesis that are relevant; that is the response time of the web-server.
In each of the three web-servers the goal is to see which of them performs
better in this regard. The second metric is stability; how IncludeOS, Ubuntu
and Docker performs under heavier loads for extended periods of time
while still maintaining the ability to serve a request within a reasonable
time frame. The third metric which is for UDP, the speed at which the
packets are received and returned to the sending client.

In addition to exploring the performance of the web-servers in TCP,
UDP performance will also be looked at to give an idea on pure
performance in terms of throughput without the overhead that the TCP
protocol brings. This overhead is caused by the architecture of the TCP
frame and how the protocol works, TCP is sequenced and acknowledged
meaning that there is a particular order to how packets should be
transmitted and received. Then each of these packets are acknowledged
by the receiving system in order for the transmitting server to know when

20

it can send the next packet. In short, this process of maintaining order and
assurance incurs a cost in terms of time/overhead. The UDP protocol has
no such mechanisms and as a result should be faster. Figures 3.3 and 3.4
illustrates the differences in the two packets, and shows how much more
information a TCP packet contains which has to be processed upon arrival.

Figure 3.3: TCP packet

Figure 3.4: UDP packet

3.2.2 Script to run the experiments

To achieve the most efficient way of executing the experiments, the
experiments themselves need to be automated. As such, the script will
need to:

• Initialize the virtual machine.

• Make sure the virtual machine is running and responsive.

• Run the experiments.

• Log data.

This will outline the basics which needs to be in a script such as this, and
section 3.4 will further explain in depth how it works. The list above this
paragraph already explains the sequence of which the actions performed
by the script needs to happen.

First, a virtual machine needs to be initialized. This can be either
IncludeOS, Docker or Ubuntu, an argument will be taken in the form
of ./script.sh includeos which would launch IncludeOS in QEMU. In

21

addition, a second argument will be supplied which can be either tcp or
udp to determine what benchmark should be executed. The second step
after bringing up the virtual machine is to ensure that it is connected to
the virtual network and can communicate with the hypervisor. This will
be achieved by transmitting ICMP requests to the virtual machine until it
responds to the request. Taking into account a scenario where the virtual
machine should not be able to connect or something goes awry during boot
there needs to be a constraint that acts as a safeguard so that the program
does not get stuck trying to ping infinitely, which will be based on time.

The third step will be to execute the actual experiments which will,
based on an argument decide the correct test to run. For the Ubuntu
virtual machine, it will also need to ssh into to the host in order to start
the socket server program. In the case of testing TCP, it would run for
example httperf a defined amount of iterations and then collect the results
from the benchmark along with CPU and RAM data from the hypervisor in
a human-readable text-file which then can be used to generate visualized
data.

3.2.3 Underlying Infrastructure

The physical hardware where the virtual machines and the experiments
take place, this is two hypervisors with different CPU platforms to see if
that has any bearing on the performance results of IncludeOS. The two
hypervisors are running AMD and Intel platforms. The experiments will
be conducted on both of the hypervisors, the deployment of the virtual
machines will be executed using the same images to ensure that they run
the exact same instance of the virtual machines.

Both the AMD and the Intel hypervisors are research servers at Oslo &
Akershus University College and are mainly employed for the purpose of
research projects, the Intel hypervisor is newer than the AMD meaning that
the hardware on-board it has more power which will be looked at more in-
depth in section 3.4, however it should again be noted that the experiments
will not be able to saturate the servers of resources which means that the
main difference shown, if any, is due to different platforms.

In order to get the least amount of noise, the experiments will be
executed on the same hypervisor that hosts the virtual machines and not
from a third outside system. This decision is due to doing it that way
would not add any meaningful data for this thesis as it would only incur
additional overhead for the responses, as most of the time spent receiving
a resposone would be consumed by waiting for it to travel the ethernet
link while only a fraction of the time would be representative for the actual
guest systems on the hypervisor.

22

3.3 Mimicing IncludeOS

The first step is to find out how IncludeOS implements its web-server
service. As mentioned earlier, IncludeOS comes with a file called
services.cpp, this is a C++ file which is the service that will be compiled
into the operating system at run time. The web-server being one of the
first services ever written for IncludeOS and then later restructured and
updated implements a C++ socket server which listens to requests at port
80 and serves the default HTML page that comes with it.

For the experiments regarding network throughput, the UDP experi-
ments. In the samme manner as TCP, IncludeOS has a UDP service which
makes the virtual machine act as a UDP server. This functionality also ex-
ists as a standalone C program which will be deployed and run on Ubuntu
and Docker when the experiments are run.

As IncludeOS’ transfer currently is limited to 1 ethernet frame (about
1.5KB) it will be rewritten to produce 1000 copies of the character ’A’. 1
character is equivalent to 1 byte therefore 1000 copies of ’A’ equates to 1KB
worth of data along with the HTTP header which accounts for the last 512
bytes. To be able to make a fair comparison, such a web-server will have to
be implemented to run on Ubuntu and Docker as well. The implementation
will be done in C++ and serve exactly the same as IncludeOS, including the
same HTTP header used in it.

3.4 Implementation and Testing

The implementation and experimentation phase is the second and the
practical part of the tasks which need to be completed as defined by the
design in section 3.2. This phase consist of a few main objectives which are
outlined, but not limited to:

1. Selection of tools to implement the design.

2. Setting up the environment on the infrastructure.

3. Ensuring that the setup functions on both hypervisors.

4. Experimental setup.

3.4.1 Tools for implementation

In order to achieve the environment which is explained in the design and
implementation sections and the goal of this thesis which is answering the
problem statement, a multitude of tools has to be used and combined. It is
important to review the options of different tools to select the appropriate
software and technologies based on their functionality and limitations.

First, what needs to be looked at is exactly what needs to be
accomplished. Looking at section 3.2 and chapter 2 which showcases

23

the possible tools and technologies in detail, what will be needed is a
virtualization technology to host the virtual machines in order to run the
different operating systems which will be compared. A program language
that will allow mimicing IncludeOS’ TCP and UDP services as closely as
possible, a program to be able which will allow the tracking of the real-time
performance and resource utilization of the virtual machines and container
in terms of CPU and RAM. A scripting language which will serve two
purposes, both of which will enable automation. The first script will be
used to set up and run the virtual machines, after which it will execute
a benchmark to test the ability of the operating systems TCP in terms of
average reply rate under load and then save the data extracted from the
experiment to a file. The second script will be tasked with gathering data
from the experiments, i.e extract the relevant data from the files the first
script creates and collect them in order to easily use them. Lastly, a tool for
benchmarking the web-servers ability to serve data.

For that purpose the following tools has been chosen:

• KVM/QEMU - As a virtualization platform.

• C/C++ - As the language for implementing IncludeOS’ web-server
on other machines and to test UDP performance.

• Bash - As the scripting language for automating experiments and
extracting data.

• Pidstat - As monitoring tool for CPU and RAM on the hypervisors.

• Httperf/Autobench - As a tool for benchmarking TCP performance.

3.4.2 Setting up the environment

3.4.2.1 Hypervisors

This part will explain the set up and configuration the environment to
run the experiments. As there are three systems that are to be tested
against each other it is important to ensure that each of them can be tested
separately in a fashion which guarantees that neither system interferes with
the other. In order to achieve this isolation, how the systems work and run
is important to understand. The IncludeOS and Ubuntu virtual hosts will
be hosted through QEMU/KVM and will not interfere with each other as
they are run due to the process no longer existing upon closing the virtual
machine. Docker uses a daemon to run and manage the containers which
inherently also consumes some resources and will have to be stopped
manually after finishing the experiments with Docker.

As mentioned the experiments will take place on two hypervisors,
where one system runs on the Intel platform and the other on AMD.
In order to ensure that the systems being tested are equivalent on both
hypervisors, they will first be set up on one of them and each system will be

24

configured according to specifications in terms of hardware provisioning,
services and programs. When the systems are tested and proven to work as
expected they will then be copied and moved over to the other hypervisor,
and will be rerun there as both hypervisors have the close to the same
services and programs installed, services unnecessary for the experiments
that are running will be stopped prior to running the experiments. Both
hypervisors are running equivalent operating systems, while being close
to each other in terms of performance.

3.4.2.2 Virtual web-servers

Once the hypervisors are ready to run the virtual machines, which is when
the environment on them is set up for that, the point where nothing that
does not need to run is stopped. When completed, the virtual machines
can be set up and installed in order to ensure that they run as they are
supposed to, it is important to see that all systems function as expected in
order to perform consistent experiments.

The first step for IncludeOS is having to clone it from Git and then
installing the operating system on the hypervisor. When installed, a service
file will be modified according to the specifications of this thesis to act like
the web-server explained in section 3.2 and illustrated more in-depth in
sections 4 and 5. The service then needs to be compiled to an image which
can be booted by using QEMU.

The Ubuntu virtual host requires fetching a bootable image for the 14.04
LTS server version. The hardware available to the virtual machine will be
restricted through QEMU in order for Ubuntu to have the same hardware
specifications as the IncludeOS virtual machine. When the host is running
the scripts that emulate the servers will need to be copied over to it, which
will be compiled and ran on the host.

The installation and setup of Docker are done by the Linux command
line through APT, when Docker is installed on the host system there are
some approaches that can be taken in terms of setting up the OS images.
For many operating systems Docker has a repository to chose from, also
here it will run 14.04 LTS server edition. When building the images from
which Docker launches its containers a Dockerfile will be utilized to define
what the container will contain in terms of what comes installed on it, and
what local files (being the server applications here) are copied over to it and
compiled when it launches.

3.4.3 TCP server program

Two of the three virtual hosts, Docker and Ubuntu will be deployed using
an identical solution in terms of handling TCP. In order to ensure that
there is a fair comparison between IncludeOS, Docker and Ubuntu at a
virtualization and operating system level as mentioned in section 3.2, a
program that based on and mimics the way IncludeOS is set up to handle

25

TCP. To achieve this, a C++ program will be developed which will work as
a TCP socket-server that replies to requests received while running.

3.4.4 UDP server/client programs

In addition to testing the difference in how the operating systems and
virtualizations perform when TCP is tested in terms of reply rate and
underlying hardware utilization, UDP performance will be tested as
well. As UDP is a faster protocol than TCP in the sense that it has no
overhead for initializing a connection, sorting packets, and waiting for
acknowledgements of received packets and in case of loss retransmitting
them it will be a much better test for determining pure throughput of the
network which will help determine the performance of the network.

There will be a program to act as a UDP server on Docker and Ubuntu,
IncludeOS has a UDP service already written which will be utilized which
are close in terms of equivalence. In addition, there will also be C programs
that will be used which will test the UDP performance of the hosts,
the program will send a specific amount of UDP packets to the server
which iterate through the packets and send a new packet containing 1000
instances of the character ’A’ which is about 1KB back to the client which
will stop when the last packet is received, this will be timed.

3.4.5 Testing the environment

After setting up the environment in which the experiments will take place
it is important that everything works as expected. The communication
between the hypervisor and the guests, the programs running on the guests
and the benchmarking tools against them.

A simplistic way to test that everything works as expected is by
running a few initial experiments so that any issues that might occur can
be preemptively caught and fixed. As such for each of the three guest
operating systems a simple run, alive and benchmark is executed. First
run, booting up the virtual machine on the hypervisor and monitoring that
it does run, in addition, that the process exists. To ensure that the virtual
machine is able to communicate is to check if it responds to ping, if it does
then the virtual bridge works as expected.

The tests that will be run to ensure functionality can be split into:

• Test 1 - The deploying of the virtual instances
Testing to see that everything deploys and runs as expected by
booting each individual guest host and confirming that it boots and
runs.

• Test 2 - Alive status of the virtual instances
Testing to see that everything communicates as expected by issuing
ICMP requests to the guest hosts on the corresponding virtual bridge
and confirming a response from the system. Then issuing a cURL

26

to confirm the web-server functionality and that the virtual bridges
work.

• Test 3 - Experiment test on the virtual instances
Setting up the TCP and UDP server applications on Docker and
Ubuntu and running a short benchmark on them to ensure that it
works as expected. For IncludeOS the equivalent is to run the OS and
perform the same benchmark towards its service that is running.

3.4.6 Experimental setup

The experiments in this project regarding TCP will be split into two
scenarios:

• Continuous load over time.

• Increasing load over time.

This will attempt to measure how all systems respond to different traffic
patterns, a pattern that creates an equal amount of load over time will
establish the stability of the system as the load in this case will end up
being lower on average than the peak of the increasing pattern.

For the continuous load pattern httperf will be used as it can generate
a steady flow of traffic over time to the virtual client, while it will be
measured how the hardware is utilized during the time the load is active
on the virtual clients.

For the increasing load pattern autobench will be used in place of just
httperf alone as it can generate traffic that increases over time which should
put a different amount of resource requirements on the virtual clients until
the point where they can no longer reliably and in a stable manner respond
to the the requests being sent.

In regards to UDP, IncludeOS has a UDP service which will be utilized
after which there are an as-close-as-possible replica coded in C that will be
running on Docker and Ubuntu. The tests towards the UDP servers will
be conducted with programs that will send a specified amount of packets,
which at the server for each packet received will send a 1KB packet back to
the client together with the time it took before the last packet arrived back
at the client as it is mainly speed that UDP offers in comparison to TCP. For
the program that is sending packets to the UDP server there needs to be
specified the amount of packets that will be sent. The amount of packets
that will be sent and received is 100000 or in other words, 100MB in total
from the server to the client. Listing 3.1 shows how the the program will
be executed and what the response looks like.

Listing 3.1: Input UDP send
1 $ time ./sendUDP.sh HOSTNAME AMOUNT_OF_PACKETS

27

Listing 3.2: Output UDP send
1 $ Received LAST, AMOUNT_OF_PACKETS packets received
2
3 real XmY.Zs
4 user Xm,Y.Zs
5 sys Xm,Y.Zs

3.4.7 Expected results

When comparing the results after each experiment on both the AMD and
the Intel platforms, considering previous work done on the research of
container efficiency [6] the expectation is that Docker most likely will come
out ahead in terms of raw performance as its speeds are near native.
Further, virtualized Ubuntu is expected to perform the least efficient in
comparison as it is large in terms of what is on it and what runs in order
to maintain it. Docker also runs Ubuntu, however it is not installed and
running as a standalone operating system, merely a virtualized kernel.
IncludeOS is expected to fall between Docker and virtualized Ubuntu as
it is a virtualized operating system, however stripped of all unnecessary
functionality, e.g. the only driver installed on the operating system is virtio.

For the responses in terms TCP and UDP the same performance is
expected, both Docker and Ubuntu have an advantage over IncludeOS.
That is how long they have existed, the developers have had more time to
perfect how the networking within the kernel works. However, research
does suggest [2] that IncludeOS will be the middleground here as well at
least in terms of UDP.

3.5 Measurements, analysis and comparison

The last stage of the project, the data that has been gathered throughout
the project will be looked at in depth, analyzed and compared between
the virtual hosts. The data that has been gathered in realtime during
the experiments will be extracted and plotted into charts/graphs for an
illustrated comparison and analysis. The tasks that will be done in this
phase of the project are described below:

• Building the script for data extraction.

• Executing the experiments.

• Analyzing the the extracted data.

• Compare the data from the three systems and two platforms.

3.5.1 Data extraction and script

The output recorded by the script which runs the experiments that are
saved in text files will need to extracted and arranged in a logical fashion as

28

the measurement script saves the raw output of the programs that track the
metrics. This will make the data easier to read and input into programs that
will be used to plot the data as opposed to doing it manually. It is important
to have a good overview of the gathered data in order to be able to properly
analyze it, specially when there are multiple data-sets. Achieving a solid
basis which analysis and conclusion is built upon relies on having logically
structured and easily read data.

The intention is that the script will take a file as a parameter which is
created by pidstat while it is monitoring the CPU and RAM of the virtual
machines during the experiments and in essence just rearrange the data in
them as they are not logically structured.

Listing 3.3: Proposed input
1 $./extract.sh includeos22_cpu_ram.txt

Listing 3.4: Proposed output
1 CPU RAM USED/MAX USER SYSTEM
2 17% 4% 51M/1024 X sec Y sec
3 24% 9% 92M/1024 X sec Y sec
4 33% 16% 153M/1024 X sec Y sec

The timing in pidstat can be set manually and will be set to a low
interval to get a precise measurement of the utilization. Considering the
proposed output 3.4 it is easy to see the amount of usage in terms of both
CPU and RAM, furthermore how much time the CPU spent execution
instructions in user mode on the hypervisor for the virtual machine, how
much time was spent on executing instructions in kernel mode and how
much time was spent executing instructions inside the virtual machine.

Httperf also generates data about the virtual machines in terms of
length, connections, requests sent, replies recevied, reply rate and errors in
addition to more statistics. Httperf does however generate reports for each
run that is recorded which is important to look at to get a good overview
of the performance of the actual web-servers in terms of TCP performance.

When the UDP experiments are ran they will be monitored with the
systems time command which when run before a command or script will
record statistics of the program when it finishes executing. The most
important feature of the time command is that it returns the time it took for
the program to finish which will identify how long the UDP experiments
took until the last packet of the response is received in order to show how
efficient the web-server are in terms of pure network throughput.

3.5.2 Experiments

The experiments in this project will be done in a sequential manner, the
first experiments will be executed on IncludeOS to confirm that they work

29

as expected since as mentioned earlier it is the limiting factor in this thesis
being under development still. Docker and the Ubuntu VM instance will
then be tested, both will be running 14.04 as stated. All the virtual machines
are able to run on platforms where QEMU and Docker is supported in the
event of some research being done that would redo these experiments.

As described the experiments entail that the virtual machines are tested
in terms of TCP performance, UDP performance and resource footprint on
the underlying host. For TCP there will be two scenarios produced where
there are different types of load applied to the systems. In the first scenario
of TCP, httperf will generate a steady load of requests to the virtual hosts’
web-servers over time illustrated in figure 3.5 to establish how each of the
systems perform under a steady stream of requests. The second scenario
will test the systems while the load, or amount of requests will increase
with each iteration which will demonstrate their performance at different
levels of load illustrated by 3.6 until the virtual machines encounter a stop
in the response, at which point the experimental run will end. This is done
by using autobench to generate load, which is httperf with a wrapper to
add some additional options to manipulate the load pattern. To ensure
consistency between the two scenarios it will be calculated how long the
increasing load pattern will run on the systems and the same amount of
time constraint will be applied to the continuous load. The experiments
will be repeated multiple times over the systems on both hypervisors in
order to achieve as precise and complete results as possible.

Figure 3.5: TCP scenario 1 illustration

30

Figure 3.6: TCP scenario 2 illustration

A short time before the experiments are initiated pidstat will start
to record the processes utilization of CPU and RAM in order to see the
development in usage over the time the experiments use to finish. After
the experiments finish running and the data is properly extracted and
aggregated, the analysis of the data will be the next step.

3.5.3 Analysis and comparison

The last objective in the project consists of looking at the data in the data-
sets which was extracted during the experiments in-depth. The data will be
analyzed in the attempt to find an answer regarding the problem statement
which is comparing the efficiency of the different systems with focus on
IncludeOS and how it performed in comparison to Docker and Ubuntu.
The factors which will be looked in order to determine an answer are:

• Average response-rate of the systems.

• How far the systems can go before they start to saturate.

• The time it takes to receive and return 100000 UDP packets, where
the returning packets are 1KB each.

• Utilization of CPU and RAM of the systems during the experiments.

Average response-rate is the first factor to be considered, this will
determine the overall speed of the systems and how the kernel in the
different systems handle the types of load in terms of performance of the
web-servers on them. For UDP the factor which will be considered is the
amount of packets that are transmitted to the virtual hosts and sent back in
regards to the time it takes for this action to be completed.

31

The second factor is the systems ability to sustain the loads over time,
in addition to how far the system can be pushed with increasing loads
over time before the system no longer is stable in regards to response-
rates and/or replies to requests made within a reasonable time-frame. The
longer the test goes on successfully the better the result for the serving
virtual machine as the traffic will increase linearly with each iteration of
the benchmark.

The final factor is the CPU and RAM utilization of the systems during
the the different experiments, the utilization will show what resource
footprint they put on the underlying host while they are executing and
replying to the requests made. This factor is not to be considered alone,
rather in relation to the two above-mentioned factors as this is measured
while the data concerning the two factors are tested.

32

Part III

Conclusion

33

Chapter 4

Results I - Desgin

This chapter contains and displays the results of the tasks which were
defined in the approach chapter, how they were implemented and if
something was changed, anything from design to implementation will be
explained further in-depth after which an analysis will follow.

4.1 Mimicing IncludeOS

IncludeOS implements its services with C++ code which is located in the
/seed directory, there is a file, service.cpp which is the actual service which
the virtual machine will execute when running. As there is a TCP-server
implemented, which by default serves an IncludeOS HTTP web-page to
demonstrate TCP functionality in the OS through the use of C++ sockets.
This service has been modified in order to increase the size of the page
being served, as mentioned IncludeOS can currently handle sending one
ethernet frame in terms of data, that is 1.5KB which is the size of a packet.
In this implementation, the modification to the service entails replacing
the current HTML which exist in the service.cpp file to instead output 1000
instances of the character ’A’ in order to have a web-page being served at a
kilobyte with the HTTP header included.

The decision to employ a character string of 1000 characters to be
served was taken as at the time there was no filesystem implemented
within IncludeOS making it unable to serve anything other than text.
Furthermore, in order to serve other types of web-programming languages
than HTML (e.g. PHP) there needs to be pre-requisites installed which
at the current time is not supported by IncludeOS as is. Further, as the
service needs to be reproduced on other systems in order to achieve a fair
comparison a simple solution is required. Therefore, a character string
allowed the author to define the size of the web-page which was served. In
addition, using a character string allowed for an easier job in consideration
to implementing a mimic of the service.

In terms of what was modified inside the service before compilation
in addition to manipulating the output, it was stripped of everything

35

that was deemed unnecessary for it to provide the function of a web-
server. Every command which directs output to the screen, meaning
printf commands as they are costly in terms of resource usage when
executed for every request throughout the benchmarks as they require
kernel instructions to perform I/O meaning that the virtual machine would
need to perform. Kernel calls within a guest operating system gets handled
by the virtual machine manager which analyses the trap instruction and
simulates behaviour accordingly. In addition, all HTML and CSS was
removed as they were not used.

When considering what was done to mimic the service, a program in
C++ was written in order to achieve the creation of a TCP socket server as
close as possible to do what IncludeOS’ service does. The program opens
and starts listening to a socket on port 5000 in a loop, until a request is
received at which point the program will serve the page containing the
characters string. The HTTP header was copied from IncludeOS to ensure
that they serve equal content.

For UDP, IncludeOS has a service that was developed in the start of
IncludeOS’ life-cycle. The service works in the same sense as the TCP
server, except it does not explicitly serve own data. When the UDP service
hosted on IncludeOS receives packets, it iterates through them in a loop
and then starts sending the packets back to the client with the contents
untouched. The service was modified in order to implement a way to be
able to tell when the last packet of a packet-stream was received, this is
done by the sender/client program sending the last packet by injecting the
string "LAST" into the packet which the server checks for and if received it
returns it to the client.

4.2 Modification of the IncludeOS service

The service file of IncludeOS was modified as mentioned in terms of
output, listing 4.1 shows the modified service. As mentioned, all printf
commands have been removed as they are costly to run in the frequency
that the benchmarks issue requests at. In addition, the example below also
displays the original output which was removed.

Listing 4.1: Modified IncludeOS TCP service excrept
1 //ADDED
2 std::string outputString = "";
3 outputString.append(1000u, ’A’);
4 stream << outputString;
5 std::string html = stream.str();
6
7 //REMOVED
8 // ALL printf //
9 /* HTML Fonts */

10 std::string ubuntu_medium = "font-family: \’Ubuntu\’, sans-serif;
font-weight: 500; ";

36

11 std::string ubuntu_normal = "font-family: \’Ubuntu\’, sans-serif;
font-weight: 400; ";

12 std::string ubuntu_light = "font-family: \’Ubuntu\’, sans-serif;
font-weight: 300; ";

13 /* HTML */
14 stream << "<html><head>"
15 << "<link href=’https://fonts.googleapis.com/css?family=Ubuntu

:500,300’ rel=’stylesheet’ type=’text/css’>"
16 << "</head><body>"
17 << "<h1 style= \"color: " << "#" << std::hex << (color >> 8) << "\">

"
18 << "Include<span style=\""

+ubuntu_light+"\">OS </h1>"
19 << "<h2>Now speaks TCP!</h2>"
20 // generate more dynamic content
21 << "<p> ...and can improvise http. With limitations of course, but

it’s been easier than expected so far </p>"
22 << "<footer><hr /> © 2015, Oslo and Akershus University College

of Applied Sciences </footer>"
23 << "</body></html>\n";

As can be seen, the change in the service file is not significant, however
important for optimum performance during the experiments. The UDP
service was also modified in accordance to the experiments, which is
noted in chapter 3.1, mainly the socket read function within the service was
changed, the modified function is displayed in listing 4.2.

Listing 4.2: Modified IncludeOS UDP service excerpt
1 sock.onRead([] (UDP::Socket& conn, UDP::addr_t addr, UDP::port_t

port, const char* data, int len) -> int
2 {
3 std::string payload = "";
4 payload.append(1000u, ’A’);
5 const char* loadpay = payload.c_str();
6 std::string str(data);
7 if(str.find("LAST") != std::string::npos)
8 {
9 conn.sendto(addr, port, data, len);

10 return 0;
11 }
12 conn.sendto(addr, port, loadpay, strlen(loadpay));
13 return 0;
14 });

4.3 Scripts

As mentioned in section 3.2, scripts which allows for automation has been
developed. There are two scripts in total that was created:

• Benchmark TCP and collect stats.

37

• Benchmark UDP and collect stats.

Both scripts essentially execute the same benchmark and collect
statistics on the systems while the benchmarks are active. The scripts take a
snapshot of the current ticks of the CPU before executing the benchmarks,
then start the pidstat/docker stats process which collects percentage usage
of the CPU and RAM on the running guest, for Docker the script also
watches the daemon that manages Docker.

4.3.1 QEMU

The first script, referred to as collector.sh takes three parameters as input.
These parameters are duration, rate and an extension to the name of the
file it outputs when it completes a run. The duration defines how long the
benchmark will run in seconds by taking the inputted rate and multiplying
it with the inputted duration which is the maximum connections value,
e.g. 60 500 1 would execute a httperf benchmark which runs for 60 seconds
(60x500=30000, which at 500 connections per sec takes 60 seconds). Figure
4.1 shows an overview how the script functions.

Figure 4.1: High level illustration of collectors functions.

While running the script calls pidstat a second before executing the
benchmark to follow the resource footprint of QEMU while generating a
report every second and putting it into a file and exiting a couple of seconds
after the benchmark finishes. The data from the runs of httperf gets stored
in a separate text-file in order to display data from the TCP performance
itself. In addition, ticks of the CPU is recorded, an initial value is extracted
a moment before the benchmarks executes and a new value as soon as
it finishes running, subtracting the difference from end to start giving
the ticks throughout the experiment. When the script finishes its run, it
generates three text-files for that run, one which holds the httperf statistics
after the run, the second text-file contains the data of the utilization of CPU
and RAM throughout the run, while the last one contains the CPU ticks for
user, kernel and guest during the run. Listing 4.3 shows pseudo-code for
the script, the actual code can be viewed in the appendix chapter.

38

Listing 4.3: Collector.sh pseudo-code
1 #!/bin/bash
2
3 PID=QEMU_PID
4 start pidstat on QEMU and keep writing output to file
5 record user,kernel ticks from /proc
6 start httperf towards the QEMU guest OS >> to file
7 stop pidstat
8 record user,kernel ticks from /proc
9 totalTicks=endTicks-startTicks

10 write tick data to text-files

4.3.2 Docker

Docker, as mentioned is different from most applications in terms of
measuring utilization. To the authors best knowledge, this could only be
achieved by employing a tool which comes with docker, docker stats.
When this command is executed a live stream of the containers usage of
CPU and RAM is displayed, meaning that measuring with pidstat would
not give accurate results, in addition, according to the authors research
neither built-in commands in Linux (top and ps) would give the correct
usage as they utilize. As such, a modified version of the script was
implemented for Docker.

The script dockerCollector.sh executes the same benchmark towards
the Docker containers as collector.sh does towards QEMU and is
executed in the same fashion; ./dockerCollector.sh 60 500 1. One of
the main differences lie in measuring the resource footprint of the Docker-
daemon as well which manages the Docker containers as it is a process
that is required to be able to host containers it is natural to add its usage
together with the containers. Figure 4.2 gives an overview of how this
script functions and listing 4.4 shows pseudo-code for the script, the actual
code can be viewed in the appendix chapter.

Figure 4.2: A high level illustration of dockerCollectors functions.

39

Listing 4.4: dockerCollector.sh pseudo-code
1 #!/bin/bash
2
3 PID=DOCKER_DAEMON
4 start pidstat on DOCKER_DAEMON
5 start docker stats and keep writing output to file
6 record user,kernel ticks from /proc
7 start httperf towards the Docker container >> output to file
8 stop pidstat
9 stop docker stats

10 record user,kernel ticks from /proc
11 totalTicks=endTicks-startTicks
12 write tick data to text-files

Initially, as mentioned the script functions in much of the same manner
as the one that gathers statistics for QEMU. It starts by getting the ID for
the running container which is used to extract a snapshot of the ticks for the
CPU on the server. Moving on, the script calls the docker stats command
and runs it as a background process while its PID is recorded in order to kill
the process after the benchmark is done executing. When the benchmark
finishes running another snapshot is taken of the ticks on the server in order
to acquire information about the ticks spent by both. All the information is
stored in text-files that contain CPU, RAM, ticks and httperf data.

For UDP the same scripts were used as they already act as a skeleton
for benchmarks, the difference is that the httperf command was replaced by
{ time ./udpSend IP PORT PCKT_AMOUNT MICRO_SLEEP; } 2> outputFile
to record the time it takes for the UDP send program to send 100000 pack-
ets to the guest and receive 100000 packets of 1KB back from the server
running on the guest.

4.4 TCP & UDP programs

The implementation of the server programs for TCP and UDP was not
necessary as there existed programs from earlier experiments conducted on
the hypervisors which employed these programs to run them. However,
the programs had to be modified in order to fit the purpose of the
experiments for this project. For both of the server programs, in the same
manner as IncludeOS’ services (TCP and UDP) the modification entailed
the configuration of the output when serving a request on the socket.

As with IncludeOS, these programs were also configured to return a
string of characters of 1000 instances which corresponds to about 1.3KB
with the HTTP header included for the TCP service, in the case of UDP
which does not transmit a HTTP header it is roughly equivalent to 1KB
in order to stay under the size of an ethernet frame, which as mentioned
IncludeOS needed during the initial tests in order to be able to send all the
data for a single request. In addition, the UDP server also iterates through

40

the packets content, if the string "LAST" is in one packet it will return it to
the client. Listings 4.5 and 4.6 illustrates the part of the programs where
modification was made. The setup for initializing the socket server has
been omitted as the part for handling the sending is what is important and
the initialization can be recreated in multiple ways.

Listing 4.5: Modified TCP server C-program excerpt
1 sendBuff=1000 instances of A;
2 http=INCLUDEOS_HTTP_HEADER;
3 http += sendBuff;
4 size_t http_size = http.size();
5 write(connfd, http.data(), http_size);

Listing 4.6: Modified UDP server C-program excerpt
1 for (;;)
2 {
3 len = sizeof(cliaddr);
4 n = recvfrom(sockfd,mesg,10,0,(struct sockaddr *)&cliaddr,&len);
5 if(strcmp(mesg, "LAST") == 0)
6 {
7 sendto(sockfd,mesg,n,0,(struct sockaddr *)\
8 &cliaddr,sizeof(cliaddr));
9 }

10 else
11 {
12 sendto(sockfd,sendArray,sizeof(sendArray),0,(struct sockaddr

*)\
13 &cliaddr,sizeof(cliaddr));
14 }
15 }

In addition to the server programs, there also exists a UDP send
program which was used, the program starts a loop which forks the
process. The main process sends the packets to the specified server where
the child-process listens to replies for each packet and when the last packet
is received, the program terminates. This is done by checking the contents
of each received packet and comparing the content towards a pre-specified
string, in this case the string "LAST", however it could be anything from
a letter or word to a specific number assuming it is modified in the server
as well. Listing 4.7 shows an excerpt of the fundamental function of the
program.

Listing 4.7: Send and receive loop of udpSend
1 if(!fork())
2 {
3 for(i=0;i<max;i++)
4 {

41

5 sprintf(buf,"%d",i);
6 usleep(microSeconds);
7 n = sendto(sockfd, buf, strlen(buf)+1, 0,\
8 (struct sockaddr *)&serveraddr, serverlen);
9 }

10 sprintf(buf,"LAST");
11 usleep(microSeconds);
12 n = sendto(sockfd, buf, strlen(buf)+1, 0,\
13 (struct sockaddr *)&serveraddr, serverlen);
14 }
15 else
16 {
17 while(recvfrom(sockfd, reply, 150, 0, (struct sockaddr *)\
18 &serveraddr, &serverlen))
19 {
20 if(strcmp(reply,"LAST") == 0)
21 {
22 printf("Received LAST, %d packets received\n",packets);
23 return 0;
24 }
25 packets++;
26 }
27 }

42

Chapter 5

Results II - Implementation
and Experiments

This chapter will explain the implementation of the the work that done
through this project in terms of the set-up of the infrastructure and the
experiments in order for other researchers to replicate what has been done
in the event of wanting to build upon it or testing it themselves.

5.1 Setting up

This section explains how the hypervisors were set up and how the
different technologies were installed and configured.

5.1.1 Hypervisors

The hypervisors that are used during this project will both run a 64-bit
version of Ubuntu 14.04. The main difference between them is that one
of them is an AMD platform while the other one is Intel. The hardware
specifications for the hypervisors is shown in table 5.1 and 5.2 below.

Table 5.1: Trident hypervisor

Hardware specificatons
Hardware Name/Type Spec
CPU AMD Opteron 6234 48 cores @ 2.4GHz
RAM DDR3 DIMM 135.2GB @ 1.6GHz

Table 5.2: Intel hypervisor

Hardware specificatons
Hardware Name/Type Spec
CPU Intel(R) Xeon(R) E5-2699 v3 36 Hyperthreaded cores @ 2.3GHz
RAM DDR3 DIMM 135.1GB @ 2.1GHz

43

Before continuing with the operating system virtualizations there are
some prerequisites1.

5.1.2 IncludeOS

The first step is downloading IncludeOS through git which can be cloned
from their repository2. Then cd into the cloned directory and run
./etc/install_from_bundle.sh. The background chapter mentioned that
at the time of writing the version of IncludeOS was 0.7.0, however due
to constraints in that version (further explained in chapter 7) the version
which the experiments were conducted on is the 0.8.0 release candidate.

Once the script finishes installing there should be a directory named
/home/user/includeos_install/ where the specifications for the QEMU
instance is located. In these experiments the RAM is set to 1024MB (default
is 128MB) to handle the amount of requests.

The installation can be tested by running ./test.sh, IncludeOS can
then be booted after compiling the service.cpp file in the seed/ directory
and running ./run.sh IncludeOS_service.img.

5.1.3 Docker

To install and set up a Docker environment first the host on which it is
installed requires some actions to be taken to ensure that Docker is installed
correctly which can be found on Dockers installation page3.

The next step is building an image from which Docker can launch its
containers, for this a Dockerfile is created. This file is an user specified
commands for what Docker will do once the container is booted. Listing
5.1 illustrates the contents of the Dockerfile used in this thesis, what this
Dockerfile does is:

• Copy the file server.cpp illustrated in listing from the same directory
as the Dockerfile unto to the containers root directory.

• Install the software-properties-common package.

• Update the APT-list.

• Install the build-essential and gcc packages.

• Compile the C and C++ files server.cpp and udpserver.c.

• Run the compiled program.

1The hypervisor has: A) git, B) pidstat, httperf +autobench, D) numactl and E) QEMU
installed.

2https://github.com/hioa-cs/IncludeOS.git
3https://docs.docker.com/engine/installation/linux/ubuntulinux/

44

Listing 5.1: Dockerfile contents
1 FROM ubuntu:14.04
2 ADD server.cpp /server.cpp
3 ADD udpserver.c /udpserver.c
4 RUN apt-get -y install software-properties-common
5 RUN apt-get update
6 RUN apt-get install -y build-essential gcc
7 RUN apt-get install -y g++
8 RUN g++ server.cpp -o tcpServer
9 RUN gcc udpserver.c -o srv

Building a docker image from this Dockerfile is done by running
docker build -f /path/to/Dockerfile which starts the process of build-
ing the image, a name can be specified as well. After the image is
built, its name or ID can be utilized to run a container from the image:
docker run -i -t ID/IMAGE_NAME which results in shell on a container
that acts like an Ubuntu 14.04 VM with the commands specified in the
Dockerfile already executed. By default Docker creates a virtual bridge in-
terface on the address 172.17.0.1 and the first container takes 172.17.0.2.

For measuring the hardware utilization of a Docker container un-
der load, Docker has has a built-in system which live streams a con-
tainers runtime metrics and can be used by executing the command
docker stats CONTAINER. The output of the command lists the utilization
of among many metrics, CPU and RAM, to acquire the data it uses the
/sys/fs/cgroup system as opposed to pidstat which uses /proc.

5.1.4 Ubuntu

The virtual machine that runs Ubuntu is set up through a server image that
is run by QEMU. The network is set to connect to a virtual network bridge
that the guest system and the hypervisor communicate through.

The specifications of the virtual machine is defined in the run command
of QEMU, the guest is set to utilize 1 CPU core and have 1024MB of RAM
with KVM enabled. This is done by adding the flags; cores=1, -m 1024
and -enable-kvm. Listing 5.2 shows the full command to start the virtual
machine. The version of Ubuntu here is 14.044 as that was the latest long
term support version at the start of this thesis. As with Docker, the C/C++
socket server application server.cpp and udpserver.c is used to emulate
IncludeOS’ web-server by compiling and then running the program.

Listing 5.2: QEMU run commnad
1 qemu-system-x86_64 -enable-kvm -name server3 -m 1024 -realtime \
2 mlock=off -smp 1,sockets=1,cores=1,threads=1 \
3 -hda /root/ubuntu14.04.amd64.3G3.img \

4http://releases.ubuntu.com/14.04/ubuntu-14.04.4-server-amd64.iso

45

4 -netdev tap,script=/root/qemu-ifup,id=hostnet0 \
5 -device rtl8139,netdev=hostnet0,id=net0 -vga none -curses&

5.1.5 Numactl

Numactl is an application that allows its users to bind processes to specific
CPUs and RAM chips. On systems with multiple CPU sockets there is
bound to be some discrepancy in terms of performance when it comes
to CPU and RAM as one bus for a specific RAM chip can be congested.
NUMA allows a CPU to access its local memory faster than memory that is
not local, it displays the system in what is called NUMA nodes which is a
representation as to which CPU has local memory on which node. Listing
5.3 shows an example of how this looks, this list has been shortened.

Listing 5.3: Numactl displaying the nodes (excerpt)
1 available: 8 nodes (0-7)
2 node 0 cpus: 0 4 8 12 16 20
3 node 0 size: 16039 MB
4 node 0 free: 15413 MB
5 node 1 cpus: 24 28 32 36 40 44
6 node 1 size: 16126 MB
7 node 1 free: 15450 MB
8 node 2 cpus: 2 6 10 14 18 22
9 node 2 size: 16126 MB

10 node 2 free: 15245 MB
11 node n cpus: 26 30 34 38 42 46
12 node n size: 16126 MB
13 node n free: 15326 MB

During the experiments on both trident and intel NUMA has been
employed to bind the virtual machines as processes move between the
different CPUs on a system depending on the scheduler. The scheduler
can not guarantee that the process ends up on a CPU in the same
node as the memory it uses meaning that there will be some small
inconsistencies in terms of overall performance between different runs of
the experiments. Docker has this built in on NUMA enabled systems and
can be utilized by specifying two options in its run, --cpuset-cpus="" and
--cpuset-mems="".

5.2 Experiments

This sections will explain the experiments in-depth and the programs
which are used to run them. Each experiment was executed 30 times on
each guest host in order to acquire a data-set which has adequate amount
of entries in order to analyze.

Following the set-up for installing the different guest operating systems
on the servers the next step was to run the experiments towards the

46

virtual hosts and container. There were two metrics chosen for the
persistent connection experiments, the first was to run httperf for 60
seconds towards the serving guest with a rate of issuing requests at
500 requests each second for the index page of the web-service, which
in this case is the 1000 instances of ’A’ getting returned to the client.
Running the script for this experiment is done by ./collector.sh 60 500
where the output file-extension has been omitted. The result is a httperf
command being run by the script which is equivalent to running httperf
with: httperf --server GUEST_HOST_IP --rate 500 --num-conn 30000,
the timeout value for httperf is set to 2 seconds meaning that if a request
does not get a response for 2 seconds after being issued, it will be regarded
as an error. The rate of 500 was selected as it indicates that the web-service
is being used by a medium amount of users as the author did not consider
to test it with any lower rates in order to be able to extract data under load.

The second experiment for TCP was repeating the first one, with the
exception of doubling the amount of requests per second towards the
serving virtual hosts and container. In the same manner as the first
experiment this also entails 60 second runs of httperf with the rate set
to 1000 in order to to test the guests performance under what can be
considered heavy load as there is only one server which only uses one
CPU core meaning that there is no load-balancer to even out heavy load
across multiple guests. Both of the scenarios for httperf is conducted with
the option num-call set to the default value of 1, this options dictates the
amount of requests for each connection made to the serving guest.

The UDP experiments were conducted in a similar fashion to TCP,
as shown earlier the sendUDP program was utilized to send the packets
to the listening udpServer program on the Ubuntu VM and Docker, and
IncludeOS used its own modified service which is shown in chapter 4. The
experiments executed towards the guest hosts was as previously explained,
done by sending a packet-stream of 100000 packets towards the guest host
running a UDP web-service. Each packet sent to the server contained the
number which represented the current iteration of the sending progression
from the client. The UDP server on the guest hosts receive the packets
after which it returns a 1KB packet to the client. In order to ensure that
all 100000 packets arrive back at the sending client there is a microsleep
function added in order to have some delay between the packets that
are sent, for IncludeOS and Docker it was adequate to set this timer
equal to 2 microseconds, whereas on the Ubuntu VM this timer had to be
increased to 45 microseconds otherwise there would be some packets lost
in transmission. Inherently this timer does have an effect on the overall
time it takes for the guests to finish a run of the experiment, however this
is needed in order for consistent tests.

Each experiment conducted on the systems will be split the scenarios
when the data from the finished experiments is presented, which is the
next step.

47

48

Chapter 6

Results III - Data & Analysis

This chapter is split into two parts, data presentation and analysis. The
presentation will look at the general data which was acquired through the
experiments described in chapters 3.1 and 4. The analytical part will look
at the data through statistical methods, in the case of this project. Each
experiment was conducted 30 times on each guest operating system of
which the results have been recorded and plotted into graphs.

The first scenario, as described was executing httperf towards the guest
operating system with a demanded request-rate of 500 requests per second
over 1 minute, the second scenario was executing httperf towards the
guest operating systems with a demanded request-rate of 1000 requests
per second over 1 minute. Finally, the was scenario was to send a stream of
100000 UDP packets towards the guest operating system which was replied
to with 100000 packets at 1KB each. The CPU time for all scenarios were
recorded by taking a snapshot of the current CPU ticks on the system before
the experiment and a new snapshot after the experiment, then subracting
the start value from the end value to obtain the ticks used.

6.1 AMD

6.1.1 IncludeOS

6.1.1.1 Scenario 1 - TCP 500 req/s

For this scenario, in terms of reply rate IncludeOS averages at 0.22 ms.
There were two cases where the reply time deviated from 0.2 ms where
the reply times were 0.7 ms, no evidence was found to indicate why there
were a spike of which is almost 250% higher than the average was. Over
the course of the experiments for each run 300003 packets was transferred
between the server and the client.

The total average CPU utilization of IncludeOS during the experiments
were at 32.7% CPU usage, the figure 6.1 shows the average CPU per run of
the experiments. Also here there was a case where the usage deviated from

49

0

5

10

15

20

25

30

35

40

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61

C
P

U
 %

Time in seconds

IncludeOS - CPU usage [AVG]

Figure 6.1: Average CPU utilization of IncludeOS

the average at which point the CPU climbed to 75% usage from the start of
the experiment, this spike is for the same run as where the response time
also experienced a major deviation.

In terms of CPU time, figure 6.2 shows the average time IncludeOS
spent inside the CPU (arbitrary time unit measured in ticks/jiffies) for the
experiments, the total average CPU time for IncludeOS was 2026.7 ticks.
The deviation from the earlier graphs is evident here as well where for the
run it happened, IncludeOS used about 50% more CPU compared to the
the other runs.

0

500

1000

1500

2000

2500

3000

3500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

To
ta

l C
P

U
 t

im
e

Experiment number

IncludeOS total ticks - 500 req/s

Figure 6.2: CPU time of IncludeOS

In terms of RAM utilization, it should be mentioned that in the TCP
service of IncludeOS there exists a memory leak as evidenced by figure
6.3. This memory leak is constant throughout all the experiments involving
TCP for both platforms which invalidates the data on RAM utilization in
comparison to the other technologies. The leak is further evidenced by
pidstat displaying a steady increase in resident set size and virtual memory

50

over time which should be constant. However, it will be mentioned as in
comparison to the 1000 req/s experiments it is still relevant. The average
usage of memory during the runs is equivalent for all the experiments, and
the average consumption for all the runs is 0.086% of total memory which
equates to 117.3 MB with the lowest and highest being 27.04 MB and 202.8
MB respectively.

0

50

100

150

200

250

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63

R
A

M
 in

 M
B

Time in seconds

IncludeOS - RAM [Memory leak]

Figure 6.3: Showcasing the memory leak in the TCP service

6.1.1.2 Scenario 2 - TCP 1000 req/s

For this scenario, the average reply rate were close to that of the 500 req/s
experiments. It was observed at a total average of 0.23 ms with the highest
point being 0.4 ms and the lowest at 0.2 ms. Here almost double the amount
of packets were transferred between the server and the client at 600002
packets for each run.

The total average CPU utilization during the experiments at 1000
requests per second can be seen in figure 6.4

0

10

20

30

40

50

60

70

80

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61

C
P

U
 %

Time in seconds

IncludeOS - CPU usage [AVG]

Figure 6.4: Average CPU utilization of IncludeOS

51

As can be seen the amount of CPU utilization is almost doubled, the
total average being at 65.7%. Also throughout the runs of this experiment
there are cases where CPU activity has a spike in usage where the CPU
climbs to 100% multiple times during one of the runs and once for another
run.

The total average CPU time during the experiments for this scenario is
3950.6 which is a little less than the double of the 500 req/s runs. Figure 6.5
shows the average CPU time for IncludeOS in this scenario.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

To
ta

l C
P

U
 t

im
e

Experiment number

IncludeOS - ticks

Figure 6.5: CPU time of IncludeOS

The spikes and the increasage towards the end of the experiments is
consistent with the amount of CPU usage as there is 4 runs where the
average CPU usage for those runs exceed 70% usage. For those runs the
amount of CPU time spent is also about 700 larger than the average. In
terms of memory IncludeOS averages out at 0.15% of total for almost all of
the runs, this equates to 204.2 MB of total. There were some cases where
memory usage were higher, although no more than 0.004% at the highest.

6.1.1.3 UDP

For the case of UDP, the average time for the runs came out at 6.61 seconds
when receiving 100000 packets and sending 100000 packets back (100MB
total of return packets). The figure 6.6 shows the time it took for IncludeOS
to successfully respond to the packets over the course of the experiments.
As observed the variation is not significant and at the most 150 ms.

In terms of CPU usage during the experiments IncludeOS averages at
94.4% usage over 30 runs. The average start to end usage is shown in figure
6.7, it can be seen that during the experiments the CPU was close to 100%
at the time the sending and receiving started.

52

6,45

6,5

6,55

6,6

6,65

6,7

6,75

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Ti
m

e
in

 s
ec

o
n

d
s

Experiment number

IncludeOS - Req/Resp time

Figure 6.6: Response-time for UDP

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8

C
P

U
 %

Time in seconds

IncludeOS - CPU usage [AVG]

Figure 6.7: Average CPU utilization over the experiments

The UDP-service for IncludeOS does not contain the memory leak
which is found in the TCP-service. For the case of the experiments, in all
instances the memory footprint on the server were steady at 0.02%, or 27
MB.

In terms of CPU time, the total average over all the experiments is 767.4.
Figure 6.8 shows the total CPU time over all the experiments. As can be
seen, the variance is not significant.

53

730

740

750

760

770

780

790

800

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

To
ta

l C
P

U
 t

im
e

Experiment number

IncludeOS - Ticks

Figure 6.8: CPU time for UDP

6.1.2 Docker

6.1.2.1 Scenario 1 - TCP 500 req/s

In terms of response-time, for all the runs Docker is stable at 0.2 ms, there
were no deviations in either of the runs. Over all the runs, the packets
which were transferred between server and host are an average of 329942
packets, the variance between the lowest and the highest amount is less
than 80 packets.

In terms of CPU usage, Docker averages out at 4.9% CPU usage over
the experiments with the highest for one run at 5.5% and lowest at 4.6%.
Figure 6.9 shows the total average CPU usage over all the runs. In terms of
RAM usage, Docker used an average over the course of the runs of 0.087%
which is 117.4 MB. During the experiments this usage was very stable and
only deviated by 1 MB towards the lowest point and 2.3 MB towards the
highest. It should also be mentioned that when calculating the memory
footprint of Docker, both the containers and the daemons usage is added
together.

54

0

1

2

3

4

5

6

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60

C
P

U
 %

Time in seconds

Docker - CPU usage [AVG]

Figure 6.9: Average CPU usage

In terms of CPU time, Docker spent an average of 430 CPU ticks under
the experiments, figure 6.10 shows the total ticks spent for each run of the
experiment.

380

390

400

410

420

430

440

450

460

470

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

To
ta

l C
P

U
 t

im
e

Experiment number

Docker - ticks

Figure 6.10: CPU time for Docker

As seen, the variance is not significant, and in contrast to the other
technologies Docker spent a lot less CPU time being nearly equivalent with
bare-metal.

55

6.1.2.2 Scenario 2 - TCP 1000 req/s

In terms of response-time, the average came out a bit lower than the 500
connection experiments at an average of 0.16 ms response-time. There
was however some variance between the runs ranging from 0.1 ms to
0.2 ms below and above the average respectively. The amount of packets
transferred between host and client 659534 which is as expected almost the
double of that transferred on the 500 req/s experiments.

The CPU usage during the runs for Docker were 10.25% where there
were one run at which it used 21.5% and otherwise were stably around the
10% mark. Figure 6.11 shows the average CPU usage over each run.

0

2

4

6

8

10

12

14

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60

C
P

U
 %

Axis Title

Docker - CPU usage [AVG]

Figure 6.11: CPU usage for Docker

The RAM utilization of Docker over the course of the experiments
averaged at 0.15% which equates to an average of 204.2 MB. The variance
between the runs is not significant and is in the range of 0.002% at the most.

Over the course of the 1000 req/s experiments Docker used an average
of 666 ticks in the CPU, with consideration to the 500 req/s experiments it is
about a 50% increase. The total CPU time used per run of the experiments
is shown in figure 6.12.

56

560

580

600

620

640

660

680

700

720

740

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

To
ta

l C
P

U
 t

im
e

Experiment number

Docker - ticks

Figure 6.12: CPU time for Docker

6.1.2.3 UDP

For UDP the average total time between receiving packets and responding
to them Docker used 7.2 seconds. Figure 6.13 shows the time it took for
each experiment to finish.

6,8

6,9

7

7,1

7,2

7,3

7,4

7,5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Ti
m

e
in

 s
ec

o
n

d
s

Experiment number

Docker - Req/Resp time

Figure 6.13: Response-time for UDP

As observed, the variance in times for the experiment to complete is
close to 0.4 seconds over the course of the runs. The RAM utilization for
Docker during the experiments contains no variance, and is stable at 0.44%
usage of the total RAM which is equal to 59.6 MB.

The average CPU usage during the experiments was 29.5%, there were
some variance during the experiments, there was observed a 2% drop in
usage for some of the runs and an increase at about 2.5% in other runs.
However most of the runs stayed at around 27%. Figure 6.14 shows the
average usage of the CPU over the course of the experiments.

57

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

C
P

U
 %

Time in seconds

Docker - CPU usage [AVG]

Figure 6.14: CPU usage for Docker

In terms of CPU time during the experiments Docker used an average
of 365 total ticks on the CPU. Figure 6.15 shows the total ticks used for each
run of the experiment.

0

50

100

150

200

250

300

350

400

450

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

To
ta

l C
P

U
 t

im
e

Experiment number

Docker -Ticks

Figure 6.15: CPU time for Docker

As observed, the time spent in the CPU for Docker was mostly around
340 and 350 ticks with some variance going up to 360 and even as high as
400 for two of the runs.

58

6.1.3 Ubuntu VM

6.1.3.1 Scenario 1 - TCP 500 req/s

In terms of response-time, the Ubuntu VM requried 0.3 ms to answer the
requests on each of the runs. The average amount of packets transferred
between the host and the server for each run was 300012 packets.

The average CPU usage over the course of the runs were 40.1% with
very little variance, the lowest run showed an average usage of 39.9%
where as the highest being 40.7%. The average CPU usage for each
experiment can be seen in figure 6.16. The RAM usage of the Ubuntu VM
over the course of the experiments stayed at 0.18% or 243.5 MB where there
were one run at which it used 0.19% or 257 MB. This averaged the memory
usage out at 0.183% which is 244 MB.

0

5

10

15

20

25

30

35

40

45

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61

C
P

U
 %

Time in seconds

Ubuntu - CPU usage [AVG]

Figure 6.16: CPU usage Ubuntu VM

In terms of CPU time spent by the Ubuntu VM during the experiments,
it was a total average of 2487 ticks. The total time spent for each run can be
seen in figure 6.17, it can be seen that the variance here was about 30 ticks
towards each way of the spectrum.

59

615

620

625

630

635

640

645

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

To
ta

l C
P

U
 t

im
e

Experiment number

Ubuntu - ticks

Figure 6.17: CPU time Ubuntu VM

6.1.3.2 Scenario 2 - TCP 1000 req/s

For the experiments at 1000 requests per second the average response-time
for the Ubuntu VM was also 0.3 ms as with the previous scenario. The
amount of packets transferred between the server and the client averaged
out at 600024 packets per run.

The average CPU usage during the experiments was 71.7% with no
significant deviation from the average, the highest difference in usage was
2% higher usage in a few of the runs. Figure 6.18 shows the average CPU
usage through the experiments. In terms of RAM usage 50% of the runs
utilized 0.18% memory and the other 50% utilized 0.19%, or 243.3 MB and
257 MB respectively. A total average of the RAM usage was recorded at
0.185% which is equivalent to 250 MB.

0

10

20

30

40

50

60

70

80

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61

C
P

U
 %

Time in seconds

Ubuntu - CPU usage [AVG]

Figure 6.18: CPU usage Ubuntu VM

The CPU time spent by the Ubuntu VM during the experiments was an
total average of 4248 ticks on the CPU during the runs of the experiments.
Figure 6.19 shows the total CPU time spent for each run of the experiment.

60

3600

3700

3800

3900

4000

4100

4200

4300

4400

4500

4600

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

To
ta

l C
P

U
 t

im
e

Experiment number

Ubuntu - ticks

Figure 6.19: CPU time Ubuntu VM

It can be observed that the amount of ticks had a higher level of variance
than earlier experiments. When considering the CPU usage it can be seen
that this is to be expected, also here half of the runs were in 4500 ticks range
where as the other half in the 3970.

6.1.3.3 UDP

The average time used for the Ubuntu VM to receive and send an answer
back to the client was 17.7 seconds. The time it took for each run of the
experiment can be seen in figure 6.20. As observed, the variance here is at
about 100 ms betwenn the runs.

17,4

17,5

17,6

17,7

17,8

17,9

18

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Ti
m

e
in

 s
ec

o
n

d
s

Experiment number

Ubuntu - Req/Resp time

Figure 6.20: Response-time for UDP

The average CPU usage throughout the experiments was 93.3% of the
CPU where in some instances it uses 92.7% and 94.3%. Figure 6.21 shows
the average CPU usage for all the runs. In terms of RAM usage during the

61

experiments, the Ubuntu VM used 0.14% during each of the runs which is
189 MB.

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

C
P

JU
 %

Time in seconds

Ubuntu - CPU usage [AVG]

Figure 6.21: CPU usage Ubuntu VM

The CPU time spent by the Ubuntu VM during the experiments was
1900 ticks. with a variance of about 30 ticks in both lower and higher end
of the spectrum. Figure 6.22 shows the CPU time spent during each run of
the experiment.

1820

1840

1860

1880

1900

1920

1940

1960

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

To
ta

l C
P

U
 t

im
e

Experiment number

Ubuntu - Ticks

Figure 6.22: CPU time Ubuntu VM

6.2 Intel

6.2.1 IncludeOS

6.2.1.1 Scenario: TCP 500 req/s

In terms of response-time, IncludeOS over the course of each experiment
used 0.2 ms to respond to each request. The amount of packets transferred
between the server and the client was an average of 300002 packets.

62

For CPU usage IncludeOS used an average of 30.8% CPU for the
experiment runs. Figure 6.23 shows the average CPU usage for all the
experiments. For each experiment the CPU stayed mostly around 30%
usage where it varied at most 1%. The average RAM utilization on the
server where 0.91% which translates to 124 MB on average. However, as
mentioned earlier, the TCP service of IncludeOS has a memory leak and the
memory consumption keeps steadily increasing from an average of 0.022%
to 0.15% or 29.7 MB to 204.5 MB

0

5

10

15

20

25

30

35

40

45

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61

C
P

U
 %

Time in seconds

IncludeOS - CPU usage [AVG]

Figure 6.23: CPU usage IncludeOS

The CPU time spent by IncludeOS was 1910 ticks for all experiments,
figure 6.24 shows the total amount of ticks spent for each experiment.

0

500

1000

1500

2000

2500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

To
ta

l C
P

U
 t

im
e

Experiment number

IncludeOS - ticks

Figure 6.24: CPU time IncludeOS

Here it can be observed that the variance between the least and most
amount of ticks is close to a 100 ticks of CPU time and is consistent with
the usage of CPU.

63

6.2.1.2 Scenario: TCP 1000 req/s

The average response-time for the experiments were 0.23 ms, where there
are two instances where the response-time was 400% and a little higher, at
0.6 ms and 0.7 ms. The average amount of packets sent between the server
and the client during the experiments was 600002.

In terms of CPU usage was 60% over the course of the experiments.
there was however some variance where two of the experiments used
as much as 75% average CPU during the run. The RAM usage for the
experiments was an average of 0.15% or 212 MB, staying consistent for each
run and leaking. Starting from an average of 0.023% up to 0.28% or 31.5 MB
to 380MB when the experiments completed. Figure 6.25 shows the average
usage of the CPU throughout the experiments.

0

10

20

30

40

50

60

70

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61

C
P

U
 %

Time in seconds

IncludeOS - CPU usage [AVG]

Figure 6.25: CPU usage IncludeOS

The average total amount of CPU time used by IncludeOS over the
experiments was 3346 ticks. Figure 6.26 shows the CPU time spent during
each run of the experiment, as seen there is some variance consisten with
the CPU usage.

64

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

To
ta

l C
P

U
 t

im
e

Experiment number

IncludeOS - ticks

Figure 6.26: CPU time IncludeOS

6.2.1.3 Scenario: UDP

The average time used to receive and send the packets over the experiments
was recorded at 6.4 seconds, the time for each experiment is shown by
figure 6.27.

5,9

6

6,1

6,2

6,3

6,4

6,5

6,6

6,7

6,8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Ti
m

e
in

 s
ec

o
n

d
s

Experiment number

IncludeOS - Req/Resp time

Figure 6.27: Response-time IncludeOS

The average usage of the CPU over the experiments was recorded at
68.5% where there are cases when the CPU usage is as high as 75%, the
lowest recorded CPU usage was 63.75%. Figure 6.28 shows the average
CPU usage for each run of the experiment. The average RAM usage over
the experiments was recorded at 0.023% which is 31 MB.

The average total CPU time spent by IncludeOS over the experiments
was recorded at 610 CPU ticks. The variance here is around 30 ticks
between the experiments, figure 6.29 shows the total CPU time used for
each of the runs of the experiment.

65

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8

C
P

U
 %

Time in seconds

IncludeOS - CPU usage [AVG]

Figure 6.28: CPU usage IncludeOS

520

540

560

580

600

620

640

660

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

To
ta

l C
P

U
 t

im
e

Experiment number

IncludeOS - Ticks

Figure 6.29: CPU time IncludeOS

6.2.2 Docker

6.2.2.1 Scenario: TCP 500 req/s

The average response-time of Docker for every run of the experiment was
recorded at 0.1 ms. The average amount of packets that were transferred
between the host and the client was 301613 packets.

In terms of CPU usage, Dockers consumption over the course of the
experiments was recorded at 6.2% with a variance of up to 0.6%. Figure
6.30 shows the average CPU usage for all the experiments. The average
amount of RAM used for the experiments was recorded at 0.050% or 60
MB, there were two cases where the RAM usage went as low as 0.04% or
55 MB and as high as 0.053% which is 68 MB.

66

0

1

2

3

4

5

6

7

8

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60

C
P

U
 %

Time in seconds

Docker - CPU usage [AVG]

Figure 6.30: CPU usage Docker

The amount of CPU time spent by Docker over the experiments is an
average of 382 ticks. There is some variance here as indicated by the CPU
usage as well, where it was 100 more than the recorded average, there was
also a run where it was almsot 100 less that the average as well. Figure 6.31
shows the total amount of ticks for each experiment.

0

100

200

300

400

500

600

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

To
ta

l C
P

U
 t

im
e

Experiment number

Docker - ticks

Figure 6.31: CPU time Docker

6.2.2.2 Scenario: TCP 1000 req/s

The average response-time for Docker was recorded at 0.1 ms with no
variance. The amount of packets transferred between the server and the
client was an average of 606976 packets.

In terms of CPU usage, the average for Docker was recorded at 11.8%,
the variance is at most 1.3%. Figure 6.32 shows the average CPU usage
for the experiments conducted. The RAM usage average was recorded
at 0.044% which translates to 59 MB. There were some variance in the

67

experiments where the usage was between 0.04% and 0.05% or between
54 MB and 68 MB at the lowest and highest respectively.

0

2

4

6

8

10

12

14

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60

C
P

U
 %

Time in seconds

Docker - CPU usage [AVG]

Figure 6.32: CPU usage Docker

The average total amount of CPU time spent by Docker through the
experiments was recorded at 647 CPU ticks. The variance between the runs
is about 100 ticks, the total amount of ticks for each run is showed in figure
6.33.

0

100

200

300

400

500

600

700

800

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

To
ta

l C
P

U
 t

im
e

Experiment number

Docker - ticks

Figure 6.33: CPU time Docker

6.2.2.3 Scenario: UDP

The average time it took for Docker to send and receive the packets was 6.7
seconds. there is a variance of about 1 ms between the runs. Figure 6.34
shows the time spent on each run of the experiment by Docker.

68

6,4

6,45

6,5

6,55

6,6

6,65

6,7

6,75

6,8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Ti
m

e
in

 s
ec

o
n

d
s

Experiment number

Docker - Req/Resp time

Figure 6.34: Response-time Docker

The amount of average CPU usage by Docker during the experiments
was recorded at 21.4% with a variance of about 1.5% towards both
ends of the spectrum. Figure 6.35 shows the CPU usage for each run
of the experiment. The amount of average RAM utilization of Docker
was recorded at 0.035% which is equal to 48 MB, this stayed constant
throughout all the runs.

0

5

10

15

20

25

1 2 3 4 5 6 7 8 9 10 11 12 13 14

C
P

U
 %

Time in seconds

Docker - CPU usage [AVG]

Figure 6.35: CPU usage Docker

In terms of CPU time, Docker spent an average of 212 CPU ticks
through the experiments, with a variance of about 20 ticks towards each
end with the exception of one run where the difference from the average
was 43 ticks. Figure 6.36 shows the amount of CPU time Docker used for
each run of the experiment.

69

0

50

100

150

200

250

300

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

To
ta

l C
P

U
 t

im
e

Experiment number

Docker - Ticks

Figure 6.36: CPU time Docker

6.2.3 Ubuntu

6.2.3.1 Scenario: TCP 500 req/s

The average response-time of the Ubuntu VM through the experiments was
at a stable 0.3 ms. The amount of packets transferred between the host and
the client was recorded at an average of 300024 packets.

The average CPU usage of the Ubuntu VM through the experiments
were recorded at 37,8% where it varies by around 1% between the runs.
Figure 6.37 shows the average amount of CPU used for the experiments.
The average RAM usage for the Ubuntu VM was recorded at 0.33% for all
the runs, this translates to 446 MB.

0

5

10

15

20

25

30

35

40

45

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61

C
P

U
 %

Time in seconds

Ubuntu - CPU usage [AVG]

Figure 6.37: CPU usage Ubuntu VM

The amount of CPU time spent by the Ubuntu VM was recorded at a
total average of 2344 ticks for the experiments. The variance here is small,

70

which is about 50 ticks at the highest. Figure 6.38 shows the CPU time spent
for each run of the experiment.

2050

2100

2150

2200

2250

2300

2350

2400

2450

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

To
ta

l C
P

U
 t

im
e

Experiment number

Ubuntu - ticks

Figure 6.38: CPU time Ubuntu VM

6.2.3.2 Scenario: TCP 1000 req/s

The average response-time for the Ubuntu-VM was recorded at 0.2 ms
for the experiments with no variance. The amount of packets transferred
between the host and the client for all the experiments was recorded at an
average of 600025 packets.

In terms of CPU usage, the Ubuntu VM used an average of 64% CPU
during the experiments, the variance between the runs was recorded at
about 1.5% both higher and lower than the average. Figure 6.39 shows
the average CPU usage for the experiments. The amount of RAM used by
the Ubuntu VM was recorded at an average of 0.22% which is 297 MB, the
RAM usage for half of the runs is 0.19% and the other half 0.25% or 256.6
MB and 337.75 MB.

71

0

10

20

30

40

50

60

70

80

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61

C
P

U
 %

Time in seconds

Ubuntu - CPU usage [AVG]

Figure 6.39: CPU usage Ubuntu VM

The amount of CPU time spent by the Ubuntu VM was recorded at
an average of 3958 ticks for the experiments, the ticks have a variance
at around 50 ticks. Figure 6.40 shows the amount of CPU time for the
experiments.

3800

3850

3900

3950

4000

4050

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

To
ta

l C
P

U
 t

im
e

Experiment number

Ubuntu - ticks

Figure 6.40: CPU time Ubuntu VM

6.2.3.3 Scenario: UDP

The time it took for the Ubuntu VM to repond to all the packets sent was
an average of 10.6 seconds. Figure 6.41 shows the time for each of the
experiments ran.

72

10,2

10,3

10,4

10,5

10,6

10,7

10,8

10,9

11

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Ti
m

e
in

 s
ec

o
n

d
s

Experiment number

Ubuntu - Req/Resp time

Figure 6.41: Response-time Ubuntu VM

The CPU usage of the Ubuntu VM was recorded with an average of
67.6% for the experiments. There is a variance of the CPU usage was
recorded at 2% towards the lower end and 5% towards the higher end,
figure 6.42. The RAM usage stayed constant at 0.15% which is equal to 202
MB, this was constant for all the experiments.

0

10

20

30

40

50

60

70

80

90

1 2 3 4 5 6 7 8 9 10 11 12

C
P

U
 %

Time in seconds

Ubuntu - CPU usage [AVG]

Figure 6.42: CPU usage Ubuntu VM

The average CPU time recorded for the Ubuntu VM was recorded at
857 ticks for the experiments, figure 6.43 shows the CPU time spent by the
Ubuntu VM for the experiments.

73

740

760

780

800

820

840

860

880

900

920

940

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

To
ta

l C
P

U
 t

im
e

Number of experiments

Ubuntu - Ticks

Figure 6.43: CPU time Ubuntu VM

6.3 Comparison

Here the different systems will be compared with regards to the criterion
stated in the problem statement.

Looking at the data gathered the IncludeOS leaves a smaller resource
footprint on the server than the Ubuntu VM by being 30% slower in terms
of response time on the AMD server and by 50% in the first scenario and
a fraction slower in the second scenario. In the third scenario, IncludeOS
performs significantly better on the AMD server by 60% faster in terms
of response. On the Intel server IncludeOS outperforms the Ubuntu VM in
response-time for the third scenario by almost 36%. For Memory IncludeOS
outperforms the Ubuntu VM by using 170 MB less memory performing the
same task while on AMD 162 MB less for the same.

In terms of CPU cycles the Ubuntu VM and IncludeOS are almost on
par with only a couple of 100 ticks being the difference between them.
Docker however is superior to both systems by performing the same tasks
in terms of CPU cycles with a difference in the thousands. The only metric
where IncludeOS came out stronger than Docker is RAM performance for
the third scenario.

When considering CPU usage in all cases for both servers Docker uses
about almost 6 times less CPU in the first scenario and 6 times less CPU for
the second scenario on AMD and. On Intel Docker consumes 30% of what
IncludeOS uses for the first scenario and the 30% as well for the second
scenario.

74

Chapter 7

Discussion

This chapter will look the evolution of the project, reflect on the approach,
results and analysis and the project itself.

7.1 Throughout the project

The project was initially picked up as IncludeOS sounded like an interest-
ing operating system designed for the cloud environment. Early through-
out the project it was very hard to test the operating system for TCP as
the drivers were not completely functional. It would not be able to han-
dle more than 10 requests per second, and sometimes not even that. As
there was no real point in testing the other systems before IncludeOS since
it had to be ensured that the tests could be executed on it as well. The
experiments were originally tested on multiple servers in order to locate
what was wrong as IncludeOS did not function as mentioned. It was in the
middle of April when the TCP service started working properly in terms
of being able to handle load, not regarding the memory leak. It is then the
experiments first started. There were another test which also were planned
to be executed, namely the increasing load for TCP but was taken out as a
result of short time. There were also no need to develop a data-extraction
script either as the results were taken out of the files through UNIX string
manipulation.

The results show that Docker performed the experiments which were
defined in the approach being the testing of TCP and UDP better than
IncludeOS on most points, and IncludeOS outperformed the Ubuntu VM
for the same experiments. In retrospect there could have been additional
or different tests and experiments developed in order to test more parts of
the operating system. It is worth noting that security was not tested and
is a major part of what unikernels are, e.g an IncludeOS instance designed
to run a web-service will only run that web-service, an attacker could not
change that.

In addition, without a filesystem (it is however in development, for
maximum security one can run a version without it or not use it) makes
for a host which even when compromised is very limited in terms of an

75

attacker as it cannot perform any other tasks than the service on it. Also, the
amount of storage required to run IncludeOS is minuscule when compared
to the other systems. Docker can save storage by being able to run multiple
instances from the same image, however a base image is still required
which already exceeds the size of IncludeOS and unikernels in general.
General purpose operating systems will always consume a large amount
of storage in comparison as they are built for multiple purposes.

The approach itself could possibly have been changed to include
different types of tests which the author did not consider, however looking
back it should have been done as the time it took for the proper testing
with the current approach to begin constrained the quality of the end of
this report which is the next point, analysis.

The analysis of the results in this project is not the authors best work,
but was rather rushed as the remaining time set for this project was not
adequate for an analysis that would be more in-depth and a discussion
which went more into depth in regards to the entirety of the project.

7.2 Proposed improvements

The experiments were quite similar in nature, specially the two considering
the first and the second scenario. What could have been done instead is
implementing tests which instead would have tested the different parts
of IncludeOS. E.g one experiment which was CPU intensive, another
experiment which was RAM intensive, an experiment which would have
solely tested NET I/O and possibly other features which is not mentioned
here.

7.3 Alternative approaches

The author of this paper did not actually consider any alternative
approaches due to attempting to make the current one work, however it
should have been done due to the time it took for this approach to be set
into action which was defined by both IncludeOS and the authors lack of
proficiency in terms of C-programming.

76

Chapter 8

Conclusion

This chapter will attempt to conclude based on the results gathered through
the experiments which was analyzed.

The problem statement as defined is:

On both an Intel and an AMD based Ubuntu server compare the
performance and resource utilization of IncludeOS, Ubuntu VM and
Docker

• when providing a TCP based web-service.

• in terms of network throughput performance with UDP.

The goal of this project was to find an answer to how the different systems
perform in comparison to each other with a stronger focus on IncludeOS.

The experiments were designed to test how IncludeOS performed in
comparison to container and VM. Being under development still during
the project added a limitation as to what could be tested. There were
developed three different experiments which were to test different systems
performance while the web-service they where hosting were put under
load, the first two experiments were the same in nature with different
loads. The third experiment tested network throughput and performance
during the experiment, in addition an experiment was created in place of
the first experiment, it was however taken out as time did not allow for the
experiment to gather adequate results.

Based on the results gathered currently in terms of raw performance
on the server, Docker performs better than IncludeOS, while IncludeOS
performs better than an Ubuntu VM. Docker is able to run at near bare-
metal speeds in terms of using the CPU, while KVM should enable the
same. However even with that Docker ended up consuming less CPU, less
RAM and responded in an almost equal manner to IncludeOS. IncludeOS
was less resource demaning than the Ubuntu VM. However IncludeOS
currently was the most unstable while conducting the experiments (but not
yet completely developed).

77

78

Bibliography

[1] Alfred Bratterud. Home - IncludeOS Wiki. Nov. 2015. URL: https : / /
github.com/hioa-cs/IncludeOS/wiki (visited on 03/14/2016).

[2] Alfred Bratterud et al. “IncludeOS: A minimal, resource efficient
unikernel for cloud services.” In: 2015 IEEE 7th International Con-
ference on Cloud Computing Technology and Science (CloudCom). IEEE.
2015, pp. 250–257.

[3] A. Bratterud et al. “IncludeOS: A Minimal, Resource Efficient Uniker-
nel for Cloud Services.” In: 2015 IEEE 7th International Conference
on Cloud Computing Technology and Science (CloudCom). Nov. 2015,
pp. 250–257. DOI: 10.1109/CloudCom.2015.89.

[4] Sarah Conway. Why Unikernels Can Improve Internet Security. Apr.
2015. URL: https://blog.xenproject.org/2015/04/23/why-unikernels-
can-improve-internet-security/ (visited on 02/03/2016).

[5] C. Dekker. Installation/SystemRequirements. Oct. 2014. URL: https ://
help.ubuntu.com/community/Installation/SystemRequirements (visited
on 02/03/2016).

[6] Wes Felter et al. “An Updated Performance Comparison of Virtual
Machines and Linux Containers.” In: technology 25 (July 2014), p. 12.
URL: http ://domino . research . ibm.com/library/cyberdig .nsf/papers/
0929052195dd819c85257d2300681e7b/%5C$file/rc25482.pdf.

[7] Solomon Hykes et al. What is Docker? URL: https://www.docker.com/
what-docker (visited on 03/14/2016).

[8] J. Fredrik Karlsson and Bahram Moshfegh. “Investigation of indoor
climate and power usage in a data center.” In: Energy and Buildings
37.10 (2005), pp. 1075–1083. ISSN: 0378-7788. DOI: http://dx.doi.org/
10.1016/j.enbuild.2004.12.014. URL: http://www.sciencedirect.com/
science/article/pii/S0378778805000150.

[9] Evangelos Kotsovinos. “Virtualization: Blessing or Curse?” In: Com-
mun. ACM 54.1 (Jan. 2011), pp. 61–65. ISSN: 0001-0782. DOI: 10.1145/
1866739.1866754. URL: http://doi.acm.org/10.1145/1866739.1866754.

[10] Anil Madhavapeddy and David J. Scott. “Unikernels: Rise of the
Virtual Library Operating System.” In: Queue 11.11 (Dec. 2013),
30:30–30:44. ISSN: 1542-7730. DOI: 10 . 1145 / 2557963 . 2566628. URL:
http://doi.acm.org/10.1145/2557963.2566628.

79

https://github.com/hioa-cs/IncludeOS/wiki
https://github.com/hioa-cs/IncludeOS/wiki
http://dx.doi.org/10.1109/CloudCom.2015.89
https://blog.xenproject.org/2015/04/23/why-unikernels-can-improve-internet-security/
https://blog.xenproject.org/2015/04/23/why-unikernels-can-improve-internet-security/
https://help.ubuntu.com/community/Installation/SystemRequirements
https://help.ubuntu.com/community/Installation/SystemRequirements
http://domino.research.ibm.com/library/cyberdig.nsf/papers/0929052195dd819c85257d2300681e7b/%5C$file/rc25482.pdf
http://domino.research.ibm.com/library/cyberdig.nsf/papers/0929052195dd819c85257d2300681e7b/%5C$file/rc25482.pdf
https://www.docker.com/what-docker
https://www.docker.com/what-docker
http://dx.doi.org/http://dx.doi.org/10.1016/j.enbuild.2004.12.014
http://dx.doi.org/http://dx.doi.org/10.1016/j.enbuild.2004.12.014
http://www.sciencedirect.com/science/article/pii/S0378778805000150
http://www.sciencedirect.com/science/article/pii/S0378778805000150
http://dx.doi.org/10.1145/1866739.1866754
http://dx.doi.org/10.1145/1866739.1866754
http://doi.acm.org/10.1145/1866739.1866754
http://dx.doi.org/10.1145/2557963.2566628
http://doi.acm.org/10.1145/2557963.2566628

[11] Anil Madhavapeddy et al. “Unikernels: Library Operating Systems
for the Cloud.” In: SIGPLAN Not. 48.4 (Mar. 2013), pp. 461–472. ISSN:
0362-1340. DOI: 10.1145/2499368.2451167. URL: http://doi.acm.org/
10.1145/2499368.2451167 (visited on 02/16/2016).

[12] Dirk Merkel. “Docker: Lightweight Linux Containers for Consistent
Development and Deployment.” In: Linux J. 2014.239 (Mar. 2014).
ISSN: 1075-3583. URL: http://dl .acm.org/citation.cfm?id=2600239.
2600241.

[13] Dirk Merkel. “Docker: Lightweight Linux Containers for Consistent
Development and Deployment.” In: Linux J. 2014.239 (Mar. 2014).
ISSN: 1075-3583. URL: http://dl .acm.org/citation.cfm?id=2600239.
2600241.

[14] Mark P Mills. “The cloud begins with coal.” In: Digital Power Group.
Online at: http://www. tech-pundit. com/wp-content/uploads/2013/07/Cloud_Begins_With_Coal.
pdf (2013).

[15] Mathijs Jeroen Scheepers. “Virtualization and containerization of
application infrastructure: A comparison.” In: 21st Twente Student
Conference on IT. 2014, pp. 1–7.

[16] Dan Sullivan. IaaS Providers List: Comparison And Guide. Feb. 2014.
URL: http://www.tomsitpro.com/articles/iaas- providers, 1- 1560.html
(visited on 04/03/2016).

80

http://dx.doi.org/10.1145/2499368.2451167
http://doi.acm.org/10.1145/2499368.2451167
http://doi.acm.org/10.1145/2499368.2451167
http://dl.acm.org/citation.cfm?id=2600239.2600241
http://dl.acm.org/citation.cfm?id=2600239.2600241
http://dl.acm.org/citation.cfm?id=2600239.2600241
http://dl.acm.org/citation.cfm?id=2600239.2600241
http://www.tomsitpro.com/articles/iaas-providers,1-1560.html

Appendices

81

Appendix A

Scripts and programs

Retrieved from an internal server server at Oslo University College1

Listing A.1: udpclientSendFastFork.c
1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <string.h>
4 #include <unistd.h>
5 #include <sys/types.h>
6 #include <sys/socket.h>
7 #include <netinet/in.h>
8 #include <netdb.h>
9 #include <unistd.h>

10
11 #define BUFSIZE 1024
12 #define SENDSIZE 20
13
14 /*
15 * * error - wrapper for perror
16 * */
17 void error(char *msg)
18 {
19 perror(msg);
20 exit(0);
21 }
22
23
24 int main(int argc, char **argv)
25 {
26
27 int sockfd, portno, n,i,max,microSeconds,packets;
28 int serverlen;
29 struct sockaddr_in serveraddr;
30 struct hostent *server;
31 char *hostname;
32 char buf[SENDSIZE];
33 char reply[BUFSIZE];
34

1Made by Hårek Haugerud

83

35 /* check command line arguments */
36 if (argc != 5)
37 {
38
39 fprintf(stderr,"usage: %s <hostname> <port> <max> <

microSeconds>\n", argv[0]);
40 exit(0);
41 }
42
43 hostname = argv[1];
44 portno = atoi(argv[2]);
45 max = atoi(argv[3]);
46 microSeconds = atoi(argv[4]);
47 packets = 0;
48
49 /* socket: create the socket */
50 sockfd = socket(AF_INET, SOCK_DGRAM, 0);
51 if (sockfd < 0)
52 error("ERROR opening socket");
53
54 /* gethostbyname: get the server’s DNS entry */
55 server = gethostbyname(hostname);
56 if (server == NULL)
57 {
58 fprintf(stderr,"ERROR, no such host as %s\n", hostname);
59 exit(0);
60 }
61
62 /* build the server’s Internet address */
63 bzero((char *) &serveraddr, sizeof(serveraddr));
64 serveraddr.sin_family = AF_INET;
65 bcopy((char *)server->h_addr,
66 (char *)&serveraddr.sin_addr.s_addr, server->h_length);
67 serveraddr.sin_port = htons(portno);
68
69 /* send the message to the server */
70 serverlen = sizeof(serveraddr);
71
72 if(!fork())
73 {
74 for(i=0;i<max;i++)
75 {
76 sprintf(buf,"%d",i);
77 usleep(microSeconds);
78 n = sendto(sockfd, buf, strlen(buf)+1, 0, (struct

sockaddr *)&serveraddr, serverlen);
79 }
80 sprintf(buf,"LAST");
81 usleep(microSeconds);
82 n = sendto(sockfd, buf, strlen(buf)+1, 0, (struct sockaddr *)

&serveraddr, serverlen);
83 }
84 else
85 {

84

86 while(recvfrom(sockfd, reply, BUFSIZE, 0, (struct sockaddr *)
&serveraddr, &serverlen))

87 {
88 //printf("Received ’%s’\n",reply);
89 if(strcmp(reply,"LAST") == 0)
90 {
91 printf("Received LAST, %d packets received\n",

packets);
92 return 0;
93 }
94 packets++;
95 }
96 }
97 return 0;
98 }

Retrieved from an internal server at Oslo University College2

Listing A.2: udpserver.c
1 #include <sys/socket.h>
2 #include <netinet/in.h>
3 #include <stdio.h>
4 #include <strings.h>
5 #define PORT 8081
6
7 int main(int argc, char**argv)
8 {
9 int sockfd,n;

10 struct sockaddr_in servaddr,cliaddr;
11 socklen_t len;
12 char mesg[1400];
13
14 sockfd=socket(AF_INET,SOCK_DGRAM,0);
15
16 bzero(&servaddr,sizeof(servaddr));
17 servaddr.sin_family = AF_INET;
18 servaddr.sin_addr.s_addr=htonl(INADDR_ANY);
19 servaddr.sin_port=htons(PORT);
20 bind(sockfd,(struct sockaddr *)&servaddr,sizeof(servaddr));
21
22 for (;;)
23 {
24 len = sizeof(cliaddr);
25 n = recvfrom(sockfd,mesg,1400,0,(struct sockaddr *)&cliaddr,&

len);
26 sendto(sockfd,mesg,n,0,(struct sockaddr *)&cliaddr,sizeof(

cliaddr));
27 /**
28 mesg[n] = 0;
29 printf("%s",mesg);
30 */

2Made by Hårek Haugerud

85

31 }
32 }

Retrieved and modified from thegeekstuff3

Listing A.3: server.cpp
1 #include <sstream>
2 #include <stdlib.h>
3 #include <sys/socket.h>
4 #include <netinet/in.h>
5 #include <stdio.h>
6 #include <string.h>
7 #include <sys/types.h>
8 #include <string>
9 #include <unistd.h>

10 #include <stdio.h>
11
12 int getNumberOfA(std::string request) {
13 std::string function;
14 for(int i = 5;;i++) {
15 if (isspace(request.at(i))) {
16 break;
17 }
18 function += request.at(i);
19 }
20 return atoi(function.c_str());
21 }
22
23 int main(int argc, char *argv[])
24 {
25 int serverPort = 5000;
26 int listenfd = 0, connfd = 0;
27 struct sockaddr_in serv_addr;
28
29 //char sendBuff[1000000];
30 std::string sendBuff;
31 char receiveBuff[1025];
32 std::string http;
33
34 listenfd = socket(AF_INET, SOCK_STREAM, 0);
35
36 serv_addr.sin_family = AF_INET;
37 serv_addr.sin_addr.s_addr = htonl(INADDR_ANY);
38 serv_addr.sin_port = htons(serverPort);
39
40 bind(listenfd, (struct sockaddr*)&serv_addr, sizeof(serv_addr));
41
42 listen(listenfd, 10);
43
44 sendBuff.append(1000u, ’A’);

3http://www.thegeekstuff.com/2011/12/c-socket-programming/ Modified to accor-
dance by Hårek Haugerud

86

45
46 while(1)
47 {
48 int i,nr;
49 connfd = accept(listenfd, (struct sockaddr*)NULL, NULL);
50 recv(connfd,receiveBuff,sizeof(receiveBuff),0);
51 //nr = getNumberOfA(receiveBuff);
52
53 //for(i=0; i<nr; i++)
54 //{
55 //sendBuff.append(1000u, ’A’);// = ’A’;
56 //}
57 //sendBuff[nr] = ’\0’; /* Sets end of buffer */
58 //sendBuff.append(1u, ’\0’);
59 size_t buff = sendBuff.size();
60 std::ostringstream ostr;
61 ostr << buff;
62 std::string sbuff = ostr.str();
63
64 http = "HTTP/1.1 200 OK \n " \
65 "Date: Mon, 01 Jan 1970 00:00:01 GMT \n" \
66 "Server: IncludeOS prototype 4.0 \n" \
67 "Last-Modified: Wed, 08 Jan 2003 23:11:55 GMT \n" \
68 "Content-Type: text/html; charset=UTF-8 \n" \
69 "Content-Length: 1000 \n" \
70 "Accept-Ranges: bytes\n" \
71 "Connection: close\n\n";
72
73 http += sendBuff;
74 size_t http_size = http.size();
75 write(connfd, http.data(), http_size);
76 //printf("Length sent: %zu\n",buff);
77 // sendBuff = "";
78 close(connfd);
79 // usleep(1000000);
80 }
81
82 }

Listing A.4: dockerCollector.sh
1 #!/bin/bash
2
3 if ["$#" != 3]
4 then
5 echo -e "Usage: $0 DURATION RATE FILE-EXTENSION"
6 exit 1
7 else
8 DURATION=$1
9 RATE=$2

10 MAX_CONN=$(($RATE*$DURATION))
11 EXTEN=$3
12 fi
13

87

14 DOCKER="172.17.0.2"
15
16 #CONT_NAME=$(docker ps -a | sed -n 3p | awk ’{print $12}’)
17 CID=$(docker inspect --format="{{.Id}}" romantic_lamarr)
18 DAEMON_PID=$(cat /var/run/docker.pid)
19
20 uCPU_start=$(head -n 1 /sys/fs/cgroup/cpuacct/docker/$CID/cpuacct.

stat | awk ’{print $2}’)
21 kCPU_start=$(tail -n 1 /sys/fs/cgroup/cpuacct/docker/$CID/cpuacct.

stat | awk ’{print $2}’)
22 DAEMON_uCPU_start=$(cat /proc/$DAEMON_PID/stat | awk ’{print $14}’)
23 DAEMON_kCPU_start=$(cat /proc/$DAEMON_PID/stat | awk ’{print $15}’)
24
25 $(date | awk ’{print $4}’ > docker_cpu_ram$EXTEN.txt)
26 echo -e "CONTAINER\t CPU%\t\tMEM USAGE / LIMIT MEM%\t\tNET I/O\t\t\

tBLOCK I/O" >> docker_cpu_ram$EXTEN.txt
27 (docker stats romantic_lamarr >> tmpDockerCPURAM.txt &)
28 (pidstat -h -r -u -v -p $DAEMON_PID 1 64 >> daemon_cpu_ram$EXTEN.

txt &)
29 STAT_PID=$(ps aux | grep ’docker stats’ | grep -v grep | awk ’{print

$2}’)
30
31 sleep 1
32
33 (httperf --server $DOCKER --rate $RATE --port 5000 --num-conn

$MAX_CONN --timeout 2 --verbose >> docker_perf$EXTEN.txt)
34
35 uCPU_end=$(head -n 1 /sys/fs/cgroup/cpuacct/docker/$CID/cpuacct.stat

| awk ’{print $2}’)
36 kCPU_end=$(tail -n 1 /sys/fs/cgroup/cpuacct/docker/$CID/cpuacct.stat

| awk ’{print $2}’)
37
38 DAEMON_uCPU_end=$(cat /proc/$DAEMON_PID/stat | awk ’{print $14}’)
39 DAEMON_kCPU_end=$(cat /proc/$DAEMON_PID/stat | awk ’{print $15}’)
40
41 sleep 1
42 kill -9 $STAT_PID
43 endTIME=$(date | awk ’{print $4}’)
44
45 uCPU_TOTAL=$(($uCPU_end-$uCPU_start))
46 kCPU_TOTAL=$(($kCPU_end-$kCPU_start))
47
48 DAEMON_uCPU_TOTAL=$(($DAEMON_uCPU_end-$DAEMON_uCPU_start))
49 DAEMON_kCPU_TOTAL=$(($DAEMON_kCPU_end-$DAEMON_kCPU_start))
50
51 echo -e "USER TIME\t\tKERNEL TIME" > daemon_ticks$EXTEN.txt
52 rm tmpDockerCPURAM.txt

Listing A.5: collector.sh
1 #!/bin/bash
2
3 if ["$#" != 3]
4 then

88

5 echo -e "Usage: $0 DURATION RATE FILE-EXTENSION"
6 exit 1
7 else
8 DURATION=$1
9 RATE=$2

10 MAX_CONN=$(($RATE*$DURATION))
11 EXTEN=$3
12 fi
13
14 INCLUDEOS="10.0.0.42"
15 DOCKER="172.17.0.2"
16 UBUNTU="192.168.122.3"
17
18 PID=$(pgrep qemu)
19
20 uCPU_start=$(cat /proc/$PID/stat | awk ’{print $14}’)
21 kCPU_start=$(cat /proc/$PID/stat | awk ’{print $15}’)
22 gCPU_start=$(cat /proc/$PID/stat | awk ’{print $43}’)
23
24 (pidstat -h -r -u -v -p $PID 1 64 >> include_cpu_ram$EXTEN.txt &)
25
26 sleep 1
27
28 (httperf --server $UBUNTU --port 5000 --rate $RATE --num-conn

$MAX_CONN --timeout 2 --verbose >> include_perf$EXTEN.txt)
29
30 uCPU_end=$(cat /proc/$PID/stat | awk ’{print $14}’)
31 kCPU_end=$(cat /proc/$PID/stat | awk ’{print $15}’)
32 gCPU_end=$(cat /proc/$PID/stat | awk ’{print $43}’)
33
34 uCPU_TOTAL=$(($uCPU_end-$uCPU_start))
35 kCPU_TOTAL=$(($kCPU_end-$kCPU_start))
36 gCPU_TOTAL=$(($gCPU_end-$gCPU_start))
37
38 echo -e "USER TIME\t\tKERNEL TIME\t\tGUEST TIME" >

include_ticks$EXTEN.txt
39 echo -e "$uCPU_TOTAL\t\t\t$kCPU_TOTAL\t\t\t$gCPU_TOTAL" >>

include_ticks$EXTEN.txt

89

	I Introduction
	Introduction
	Problem statement
	Thesis outline

	Background
	Unikernels
	Architecture
	Security
	In cloud
	IncludeOS

	Virtualization
	Hypervisor and virtual machines
	QEMU/KVM

	Containers
	Docker

	General purpose operating systems
	Security
	Ubuntu

	Related Works

	II The project
	Planning the project
	Approach
	Objectives

	Design
	Metrics
	Underlying infrastructure
	Virtual web-servers

	Script to run the experiments
	Underlying Infrastructure

	Mimicing IncludeOS
	Implementation and Testing
	Tools for implementation
	Setting up the environment
	Hypervisors
	Virtual web-servers

	TCP server program
	UDP server/client programs
	Testing the environment
	Experimental setup
	Expected results

	Measurements, analysis and comparison
	Data extraction and script
	Experiments
	Analysis and comparison

	III Conclusion
	Results I - Desgin
	Mimicing IncludeOS
	Modification of the IncludeOS service
	Scripts
	QEMU
	Docker

	TCP & UDP programs

	Results II - Implementation and Experiments
	Setting up
	Hypervisors
	IncludeOS
	Docker
	Ubuntu
	Numactl

	Experiments

	Results III - Data & Analysis
	AMD
	IncludeOS
	Scenario 1 - TCP 500 req/s
	Scenario 2 - TCP 1000 req/s
	UDP

	Docker
	Scenario 1 - TCP 500 req/s
	Scenario 2 - TCP 1000 req/s
	UDP

	Ubuntu VM
	Scenario 1 - TCP 500 req/s
	Scenario 2 - TCP 1000 req/s
	UDP

	Intel
	IncludeOS
	Scenario: TCP 500 req/s
	Scenario: TCP 1000 req/s
	Scenario: UDP

	Docker
	Scenario: TCP 500 req/s
	Scenario: TCP 1000 req/s
	Scenario: UDP

	Ubuntu
	Scenario: TCP 500 req/s
	Scenario: TCP 1000 req/s
	Scenario: UDP

	Comparison

	Discussion
	Throughout the project
	Proposed improvements
	Alternative approaches

	Conclusion
	Appendices
	Scripts and programs

