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Abstract

This thesis is about modeling of the longitudinal dynamics of an unmanned ground vehicle.
This includes development of a longitudinal dynamics model for the vehicle under consid-
eration as well as estimation of unknown parameters in the model. The parameters are
estimated from measurements provided by the vehicle’s instrumentation. The proposed use
of the model is to improve the vehicle’s control system.

The unmanned ground vehicle is based a Polaris Ranger utility vehicle, which has a con-
tinuously variable transmission (CVT). The CVT consist of a rubber belt and two variable
radius pulleys, which allows the speed ratio of the transmission to be continuously varied.
A mechanical control system regulates the speed ratio of the transmission based on the en-
gine speed and torque load. A good model of the CVT and its mechanical control system is
assumed to be vital for an accurate model of the vehicle.

A mathematical model describing the engine, CVT, drive line, tires, brakes, body, and
terrain dynamics is proposed. The proposed CVT model is a new model, but its accuracy
is not yet well proven. Simulations of the model show the expected behavior.

The proposed parameter estimation is based on maximum likelihood estimation. A state
estimator based on the unscented Kalman filter (UKF) is used to calculate the likelihood
of the observed measurements. The model parameters are optimized using the likelihood
calculated by the UKF as criterion. To decrease the computation time, the parameter
estimation uses a two stage approach where parameters unrelated to the drive line dynamics
are estimated first using a separate set of observations and a lower order filter model.

Estimation of parameters from simulated measurements gave reasonable results, but with
non-negligible bias for some of the parameters. Simulations of the model with estimated
parameters did not give results good enough to be useful for control system development
directly. The simulations followed the general shape of the response of the experimental ob-
servations, but generally with a different magnitude. The model with estimated parameters
is accurate enough for use as a filter model for state estimation.

As the parameter estimation gave slightly biased results even for simulated data, it is hard
to quantify how much of the inaccuracy is caused by the bias in the parameter estimation
algorithm and how much is caused by errors in the model. It is nevertheless believed that at
least some of the inaccuracy is caused by errors in the model. Suggestions for improvements
to the both the model and the parameter estimation algorithm are given, but due to lack of
time they could not be implemented.

It is concluded that the proposed model and parameter estimation approach have good
potential to give satisfactory results, but that it will require additional work.
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Chapter 1

Introduction

1.1 Motivation

The Norwegian Defence Research Establishment (FFI) have for many years conducted re-
search on unmanned vehicles. The most prominent of these research efforts has been on
autonomous underwater vehicle (AUV) by being part of the development and operation of
the HUGIN AUV. During the later years there has been a push to make unmanned vehicles
truly autonomous. FFI has therefore started a number of projects focusing on autonomous
vehicles, both aerial, surface, underwater and ground vehicles. On of these projects is the
development of the experimental unmanned ground vehicle (UGV) platform OLAV, short
for off-road light autonomous vehicle (OLAV).

Off-road light autonomous vehicle (OLAV) is based on a Polaris Ranger terrain utility
vehicle outfitted with necessary actuators and instrumentation for autonomous operation.
The actuators control the steering, throttle, brakes and gear selection. As of writing this
the instrumentation includes a state of the art inertial and global navigation satellite system
(GNSS) aided navigation system similar to the system found on HUGIN, measurements
of the engine speed and the speed of the rear differential. The instrumentation will also
include a computer vision system, but it is not yet implemented. The vehicles control
system is implemented on a conventional x86 computer running Ubuntu Linux with the
Robotic Operating System (ROS) framework.

Currently only a simple empirically tuned proportional-integral-controller for longitu-
dinal velocity regulation is implemented. To develop a more sophisticated control system
the dynamics of the vehicle has to be investigated. This entails developing a mathematical
model of the vehicle and estimating its unknown parameters. The model can then either
be used to develop a new control system or used directly for some variations of optimal or
predictive model control. Such a model could also prove useful for more than just the low
level control of the vehicle. It could also be used by the path planner for validating and
choosing the best path, used to improve the navigation system, and for fault detection of
the vehicle.

The Polaris Ranger has a rubber belt continuously variable transmission (CVT). A CVT
is a transmission which can vary its speed ratio continuously between a lower and upper
bound without disconnecting the engine from the transmission. This is unlike a transmission
found in a typical car which has a set of discrete gears providing a discrete set of speed
ratios and has to interrupt engine power by a clutch to change gears. A rubber belt CVT
accomplishes this by using a rubber V-belt and two variable radius V-belt pulleys. As
implemented in the Polaris Ranger the belt and pulleys also provides the initial engagement
of the engine. The CVT in the Polaris Ranger uses a mechanically control system to regulate
the CVTs speed ratio based on the engine speed and the applied torque load. The CVT is
assumed to significantly influence the vehicles behaviour and is therefore an important part
of a model of the vehicle.

1



2 CHAPTER 1. INTRODUCTION

1.2 Purpose and goals
The goal of this master thesis is to develop a mathematical model describing the longitudinal
dynamics of OLAV. It should take into account engine and brake system dynamics, tire
and ground interaction, the inclination of the vehicle and terrain, and other factors found
to significantly impact the vehicles behaviour. This will require some form of parameter
estimation as there are likely to be a number of unknown parameters.

The general goals of the thesis can be summed up by the following points:

A. Investigate and develop a model of the longitudinal dynamics of the vehicle.

B. Identify and estimate unknown parameters in the model.

C. Develop a state estimator based on the model.

D. Verify the model and the state estimators performance.

Some of these goals overlap, for example goal B and C, as the parameter estimation approach
used, maximum likelihood, already requires a state estimator.

1.3 Contribution
Modeling of vehicle dynamics is hardly a new field of research, although most of the literature
describes development of complex models. These complex models are more appropriate for
design studies, than directly appropriate for state estimation filter models or models used
in control systems. The least researched part of the vehicle is the transmission, which is a
rubber belt CVT. Few low order CVT models appropriate for the scope of the model are
described in the literature.

Literature describing parameter estimation applied to vehicle dynamics are usually con-
cerned with a single part of the system, for example the friction characteristics of the during
braking [22], steering dynamics with known speeds of wheels [19], the shifting dynamics of a
rubber belt CVT using a specialized test rig [12] etc. Because specialized equipment neces-
sary to isolate the different subsystems of the vehicle are not available, the proposed problem
for this thesis requires that the engine, CVT, tires, and overall longitudinal dynamics of the
vehicle are investigated simultaneously. The limited measurements of the state of the drive
line, only the speed of the engine and the rear wheels, makes this challenging.

The main contribution of this thesis is the new model for the rubber belt CVT as well
as testing the feasibility of estimating the parameters in a complete stochastic model of the
longitudinal dynamics. The model includes the engine, CVT, tires, and body dynamics, as
well as a stochastic model of the inclination of the terrain. The unknown parameters in the
model are estimated by using a state estimator to calculate the likelihood of the observed
measurements and optimizing the parameters based on the likelihood.

1.4 Outline
Chapter 2: Background Presentation of the theoretical background used: System identi-

fication, state estimation, optimization, general dynamic system modelling, and vehicle
dynamics modelling.

Chapter 3: Unmanned vehicle platform OLAV Description of the unmanned ground
vehicle, OLAV. The general specifications of the vehicle as well as instrumentation and
control systems.

Chapter 4: Vehicle model Presentation of the mathematical model of the longitudinal
dynamics of the vehicle, how it was developed, and simulations of the model.

Chapter 5: Parameter estimation algorithm Presentation of the state estimator, fil-
ter models, criterion and optimization strategy used to estimate the parameters in the
model.



1.4. OUTLINE 3

Chapter 6: Parameter estimation Description of the more practical aspects of the pa-
rameter estimation: determining which parameters are known a priori and which pa-
rameters has to be estimated, test of the parameter estimation on simulated measure-
ments, and description off the experiments performed to gather the observations used
for the parameter estimation.

Chapter 7: Estimation results and model performance Comparison of the observed
vehicle behaviour and simulation of the model with the estimated parameters.

Chapter 8: Discussion Discussion on the performance of the model and parameter esti-
mation, and recommendations for further work.

Chapter 9: Conclusion Summary of the goals achieved, the most significant findings,
and the final conclusion.

Appendix A: MATLAB code Appendix with the MATLAB code implementing the ve-
hicle model, filter models, unscented Kalman filter (UKF) and parameter estimation
algorithm.

Appendix B: Derivation of the drive line equations Appendix containing the deriva-
tion of the equations for the drive line model from the bond graph model of the drive
line presented in section 4.3.4.
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Chapter 2

Background

This chapter presents some of the theoretical background used to develop the model, state
estimator, and parameter estimation presented in this thesis. First a general overview of
system identification and different parameter estimation techniques is given, then state es-
timation and Kalman filtering with emphasis on the UKF, solving of differential equations
using Runge Kutta numerical integration, a very brief overview of optimization theory and
the particle swarm optimization algorithm, bond graph modeling, and finally some vehicle
dynamics modeling theory. The presented material is generally introductory and deeper un-
derstanding have to be be found in the provided references.

2.1 System identification
System identification is to create mathematical models of physical systems using observations
and statistics. Generally, such models can be placed into three categories: white-, black -, and
grey-box-models. The difference between these categories is how much the model I based
on knowledge about the physical laws governing the system and how much it is based on
observation of the system. White-box models are models that are completely defined by
prior knowledge about the system, while black-box are completely based on observations of
the systems and no model structure is assumed. Grey-box models are somewhere in between
the two others; both based on prior knowledges to build a general model structure as well
as observations to determine the unknown quantities in the model.

System identification can be summed up by finding the transformation, g, that transform
some set of known inputs U (U may be an empty set) to a set of observation Z:

g : U → Z (2.1)

If a gray-box model for the system is assumed, the general structure of the transformation
g is assumed known, but dependent on a set of parameters, here represented by a vector of
parameters γ:

g(γ) : U → Z (2.2)

This is usually referred to as parameter estimation.
This section is based on [14], but using a different notion.

2.1.1 Deterministic and stochastic state space models
One possible structure for the transformation g is a state space model. The internal state
of the system, represented by the state vector x, is modelled by a state transition function
f . The observations of the system is modelled by a measurement function, h, which relates
the internal system state to the observations. Both f and h can be dependant on the
current state, input, time, the parameters, and possible some unknown disturbance v and
w. Depending on the particular system, state transition can either be modeled by a difference
equation:

xk+1 = f(k, xk, uk, vk, γ) (2.3)

5
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or a differential equation:

ẋ(t) = f(t, x(t), u(t), v(t), γ) (2.4)

Although the measurement function can be continuous, most systems have measurements
sampled in discrete time.

zk = h(k, xk, uk, wk, γ) (2.5)

If the state is modelled as a continuous system, xk and uk are the state and input sampled
at the time tk.

If the random disturbances v and w are zero, the system is said to be deterministic and
a given set of inputs U will always give the same observations Z. If the disturbances v and
w are not zero, but random processes, the system model is stochastic and will not give the
same observations given the same set of inputs.

2.1.2 Parameter estimation

Parameter estimation is generally carried out by defining a criterion function J which is a
function of the set of observations, Z, the set of known inputs, U , and the parameters, γ.
J (Z,U , γ) should monotonically decrease as the observations predicted by the model gets
closer to the observations and the true model parameters, γ̂, should be the global minimum
of the criterion. Finding the true parameters can then be found by minimizing the criterion.

γ̂ = min
γ

J (Z,U , γ) (2.6)

Minimum mean squared error

A common criterion function is the mean-squared-error. It is defined as:

JMSE =
1

N

N∑
k=1

(
z̄k(Uk, γ)− zk

)T (
z̄k(Uk, γ)− zk

)
(2.7)

where zk is a vector of the observation at time k, z̄(Uk, γ) is a vector with the observation
predicted by the model at time k from the set of inputs up to time k and the parameter
vector γ, and N is the total number of observations. The predicted observation is calculated
by simulating the state with

xk+1 = f(k, xk, uk, γ) (2.8)

or

ẋ(t) = f(t, x(t), u(t), v(t), γ) (2.9)

and sampling the predicted observations using the measurement function

zk(Uk, γ) = h(k, xk, uk, γ) (2.10)

This mean square error criterion can only be used for systems where the process equation
of the state space model is deterministic.

The mean squared error is a popular criterion as it is easy to implement, has low compu-
tational complexity and works well for deterministic systems. Mean square error can also be
made to work reasonably well for systems with stochastic measurements by adding a weight
matrix, W , and giving smaller weight to the observations with larger uncertainties.

JWMSE =
1

N

N∑
k=1

(
z̄k(Uk, γ)− zk

)T
W

(
z̄k(Uk, γ)− zk

)
(2.11)
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Maximum likelihood

For stochastic systems, another approach has to be used as the system state is unknown, and
comparing the predicted and observed measurements directly is therefore meaningless. The
criterion function therefore has to incorporate both the statistics of the observation model
and the process model. The likelihood, p(Zk : Uk, γ), increases with how likely it is that
the observations Zk are of the model with parameters γ given inputs Uk. The most likely
candidate for the true parameters γ̂ is thereby the parameters that maximizes the likelihood
function. The negative likelihood is therefore a possible candidate as criterion function
for stochastic systems. In practice it can be easier to calculate the natural logarithm of
the likelihood, abbreviated log likelihood or ξ(Zk, γ), giving the maximum log likelihood
criterion:

JMLL = −ξ(Zk, γ) (2.12)

Section 2.2.3 describes how the log likelihood can be calculated with an UKF.

2.2 The Unscented Kalman filter

The Kalman filter is an optimal state estimator for linear stochastic systems with additive
zero mean Gaussian noise developed by Rudolf Emil Kálmán, which is extensively described
in the literature, for example in [2]. These systems are generally written in the form of a
process and measurement model:

xk+1 = Fkxk + Lkuk + vk (2.13)
zk = Hkxk +Bkuk + wk (2.14)

where Fk, Lk, Hk, and Bk are are matrices and v and w are uncorrelated zero mean Gaussian
noise processes with covariance Qk and Rk. Assuming that the model of the system is
correct, the Kalman filter gives an minimum mean square error estimate of the system
state, with mean x̂k and covariance P̂k, from the measurements Zk = z1, . . . , zk, and the a
priori state estimate given by x̄0 and P̄0.

The Kalman filter is a recursive estimation algorithm. Between each measurement the
previous best estimate of the system state, x̂k−1 and P̂k−1, is predicted to the next time
step using the process model(eq. (2.13)). The predicted state, x̄k and P̄k, describes the most
likely system state before any information from the measurements are incorporated. This
is called the time update. The covariance of the prediction, P̄k, as well as the measurement
model(eq. (2.14)) is then used to compute an optimum gain, called the Kalman gain, Kk,
which is used to combine the information from the prediction and the measurements to an
optimum state estimate, x̂k and P̂k. This is called the measurement update. The time
update and measurement update is repeated recursively from the initial state estimate, x̂0

and P̂0, until all measurements, ZN are used.
The Kalman filter can not be used for nonlinear systems or systems with non additive

noise. Such systems can generally be written as:

xk+1 = f (k, xk, uk, vk) (2.15)

zk = h (k, xk, uk, wk) (2.16)

where f and h are arbitrary functions of the state, input, time, and the disturbance processes.
For these systems one of the many extensions of the Kalman filter for nonlinear systems
must be used. The most popular of these extensions has been the extended Kalman filter
(EKF) which uses a Taylor expansion to predict the covariance of the state estimate. The
UKF is another extension of the Kalman filter which is regarded to have better performance
than the EKF. The EKF is generally only implemented using a first order Taylor expansion,
while the UKF approximates the mean and covariance of the state with the same accuracy
as as a third order Taylor expansion with similar computational complexity to a first order
EKF[11, 25]. The UKF was originally proposed by Julier, Uhlmann, and Durrant-Whyte in
[11]. The variant used in this thesis was presented by Wan and Merwe in [25].
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2.2.1 The unscented transformation

The UKF is based the concept of the unscented transformation which is a method used
to approximate the statistics of a random variable, with x̄, and covariance P undergoing
a nonlinear transformation y = g(x). This can be done by propagating a large number of
realizations of x through g(x) and approximating the statistics, but this is computationally
expensive. The unscented transformation instead uses a small number of carefully chosen
samples called sigma points, to represent the distribution instead of a large number of
realizations of x. The statistics can then be approximated by a weighted sum and covariance
calculation.

In [25] the following method for choosing the sigma points and estimating the statistics
of the transformation g of the stochastic vector variable x with Nx elements, mean x̄, and
covariance P̂x, is presented:

λ = α2(Nx + κ)−Nx (2.17)
X0 = x̂ (2.18)

Xi = x̂+

(√
(Nx + λ)P̂x

)
i

, i = 1. . . . , Nx (2.19)

Xi = x̂−
(√

(Nx + λ)P̂x

)
i

, i = L+ 1. . . . , 2Nx (2.20)

X =
[
X0 X1 . . . X2Nx

]
(2.21)

W
(m)
0 =

λ

Nx + λ
(2.22)

W
(c)
0 =

λ

Nx + λ
+ (1− α2 + β) (2.23)

W
(m)
i = W

(c)
i =

1

2(Nx + λ)
, i = 1, . . . , 2Nx (2.24)

Yi = g (Xi) (2.25)

ȳ =

2Nx∑
i=0

W
(m)
i Xi (2.26)

P̄y =

2Nx∑
i=0

W
(c)
i

(
Yi − ȳ

) (
Yi − ȳ

)T (2.27)

where ȳ and P̄y are the mean and covariance of the transformed variable.
α, β, and κ are the tuning parameters that decides the positioning of the sigma points

and the weights. α determines the spread of the sigma points around the mean and is set
somewhere between 0 and 1. Typically a small value of about 1e−3. β is dependent on
the shape of the distribution. β = 2 is optimal for Gaussian distributions. κ is a secondary
scaling parameters and is typically set to zero.

2.2.2 UKF algorithm

The UKF algorithm is a straight forward application of the unscented transformation to
the original Kalman filter equations. The variant presented here is based on the version
presented by Wan and Merwe in [25].

The algorithm is started from the initial a priori state estimate:

x̂0 = E{x0} (2.28)

P̂0 = E
{
(x0 − x̂0)(x0 − x̂0)

T
}

(2.29)

The mean and covariance is augmented with the mean and covariance of the disturbance



2.2. THE UNSCENTED KALMAN FILTER 9

processes:

x̂a
0 =

[
x̂T
0 0 0

]T
(2.30)

P̂ a
0 =

P̂0 0 0
0 Q 0
0 0 R

 (2.31)

This augmentation is strictly only necessary when the disturbances are non additive, which
they are in the general case. The number of elements in the augmented state is Nxa =
Nx +Nv +Nw. Nx is the number of system state, Nv the number of process disturbances,
and Nw the number of measurement disturbances.

The following steps are then done recursively for k ∈ {1, . . . , N}, where N is the number
of available measurements:

1. Calculate Ni = 2Nxa + 1 sigma points from the augmented mean and covariance:

X a
k−1 =

[
x̂a
k−1 x̂a

k−1 ±
√

(Nxa + λ)P̂ a
k−1

]
=

X x
k−1

X v
k−1

Xw
k−1

 (2.32)

The notation X x, X v, and Xw will be used to refer to the rows containing the state,
process noise and measurement noise sigma points.

2. Propagate the sigma points through the system equations, f (x, u, v) and h (x, u, w)
(Time update):

X̄ x
i,k = f

(
X x

i,k−1, uk,X v
i,k−1

)
, i = 0, . . . , 2Nxa (2.33)

Z̄i,k = h
(
X̄ x

k , uk,Xw
i,k−1

)
, i = 0, . . . , 2Nxa (2.34)

i is used to index the columns in the sigma point matrix, which contains the individual
sigma points.

3. Calculate the mean and covariance of the predicted state, x̂k and P̂k, and measurement,
z̄k and Pz̄z̄,k, as well as their cross covariance, Px̄z̄,k, from the sigma points:

x̄k =

Ni∑
i=0

W
(m)
i X̄ x

i,k (2.35)

P̄k =

Ni∑
i=0

W
(m)
i

(
X̄ x

i,k − x̄k

) (
X̄ x

i,k − x̄k

)T (2.36)

z̄k =

Ni∑
i=0

W
(m)
i Z̄x

i,k (2.37)

Pz̄z̄,k =

Ni∑
i=0

W
(m)
i

(
Z̄i,k − z̄k

) (
Z̄i,k − z̄k

)T (2.38)

Px̄z̄,k =

Ni∑
i=0

W
(m)
i

(
X̄ x

i,k − x̄k

) (
Z̄i,k − z̄k

)T (2.39)

4. Update the estimated state, expressed by x̄k and P̄k with measurement at time k, zk
to the a posteriori state estimate (measurement update):

Kk = Px̄z̄,kP
−1
z̄z̄,k (2.40)

δzk = zk − z̄k (2.41)
x̂k = x̂k +Kkδzk (2.42)

P̂k = P̄k +KkPz̄z̄,kKT
k (2.43)
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2.2.3 Computing the log likelihood from UKF state estimate
As noted in section 2.1.2 one possible criterion used to optimize the parameters is the
likelihood of the measruments Zk given the model with parameter vector γ. This is written
as p(Zk : γ) and is a relative measure of the likelihood that measurements Zk = z1, z2, . . . , zk
could be produced by the model with parameters γ. The measurements are independent
observations, meaning that the likelihood of the set of all observations up to time k, p(Zk : γ),
can be written as the likelihood of the observation zk and all prior observations, Zk−1,
p(zk,Zk−1 : γ). By using Bayes formula:

p(a, b) = p(a|b)p(b) (2.44)

the likelihood at time k can then be expressed by a product of conditional likelihoods at the
prior time steps:

p(Zk : γ) = p(zk,Zk−1 : γ)

= p(zk|Zk−1 : γ)p(Zk−1 : γ)

=

k∏
i=1

p(zi|Zi−1 : γ)

(2.45)

As the first observation is at k = 1, Z0 is an empty set ant p(z1|Z0 : γ) = p(z1 : γ).
As the UKF produces a Gaussian estimate of the system state with mean x̂k and co-

variance P̂k containing all information from Zk given a model with parameter vector γ, the
likelihood can be expressed by the state estimate produced by the UKF:

p(zk|Zk−1 : γ) = p(zk|x̂k−1, P̂k−1 : γ) (2.46)

As the measurement noise is assumed to be Gaussian, the likelihood for zk can be expressed
by a normal distribution with mean and covariance equal the predicted measurement mean
z̄k and covariance Pz̄z̄,k which both are functions of the parameter vector:

p(zk|x̂k−1, P̂k−1 : γ) = N
(
zk; z̄k(γ), Pz̄z̄,k(γ)

)
=

1

(2π)Nz/2|Pz̄z̄,k(γ)|1/2
e
− 1

2

((
zk−z̄k(γ)

)T
P−1

z̄z̄,k(γ)
(
zk−z̄k(γ)

))
(2.47)

The likelihood can then be expressed by a product of normal distribution:

p(Zk : γ) =

k∏
i=1

N
(
zi; z̄i(γ), Pz̄z̄,i(γ)

)
(2.48)

Because the natural logarithm is a monotonic function, maximising the logarithm of the
likelihood is equivalent to maximising the likelihood. Exploiting the properties of the normal
distribution, the logarithm of the likelihood ln p(Zk : γ) = ξ(Zk : γ) can be written as en
easier computable sum:

ξ(Zk : γ) = −1

2

k∑
i=1

[
Nz ln 2π + ln|Pz̄z̄,i(γ)|+ δzTi (γ)P

−1
z̄z̄,i(γ)δzi(γ)

]
(2.49)

where δzi(γ) is the innovation at time i given the parameters γ:

δzk(γ) = zk − z̄k(γ) (2.50)

Both the innovation δzi(γ) and Pz̄z̄,i(γ) are calculated by the UKF from the measurements
Zi and filter model with the parameters γ. ξ(Zk : γ) can thereby be computed recursively
as part of the UKF algorithm.

This derivation is derivation is shown many places in the literature [5, 14] and generally
the same for all state estimators which provides an Gaussian state estimate.



2.3. NUMERICAL SOLUTIONS TO ORDINARY DIFFERENTIAL EQUATIONS 11

2.3 Numerical solutions to ordinary differential equa-
tions

In addition to MATLABs numerical solvers, the fourth order Runge Kutta method is used
where the overhead of the MATLAB solvers is to large. It is used to approximate a contin-
uous differential equation, ẋ = f (x), as a discrete time difference equation, xk+1 = f(xx).
The integration of ẋ from xk = x(tk) to xk+1 = x(tk+1) with time step dt = tk+1 − tk is
estimated by the fourth order Runge Kutta as:

k1 = xk + dtf (xk) (2.51)

k2 = xk + dtf

(
xk +

dt

2
k1

)
(2.52)

k3 = xk + dtf

(
xk +

dt

2
k2

)
(2.53)

k4 = xk + dtf (xk + dtk3) (2.54)

xk+1 = xk +
dt

6
(k1 + 2k2 + 2k3 + k4) (2.55)

2.4 Optimization
Optimization is finding the optimum input values, γ, to a function a criterion function, J ,
that depending on the requirements, either maximizes or minimizes the criterion. As all
optimization problems can be regarded as minimization problems by adding a minus sign to
the maximization problem, only the minimization problem will be considered from here:

γ̂ = min
γ

J (γ) (2.56)

The most common approach is gradient based approaches. From an initial point in
the parameter space, γ

0
, the input parameters are moved in the negative direction of the

gradient of criterion. One way to look at this is that the criterion defines a terrain above the
parameter space with height equal to the criterion value. The parameter vector is allowed
glide down to one of the possibly many valleys in this terrain until it reaches the bottom
following the steepest slope.

There exists numerous implementations of algorithms that solves optimization problems
using this approach. An example of such an algorithm is MATLAB’s fmincon. fmincon
also allows the boundaries of the parameter space to be defined with linear and nonlinear
boundaries.

There can possibly be many local minimums of the criterion, i.e. valleys in the criterion
terrain that does not reach down to the absolute lowest value of the criterion. The minimum
with the lowest criterion of all minimums is called the global minimum, and it is often desired
to find the global minimum. Gradient based optimization algorithms can for many criteria
functions have problems with finding the global minimum because the criteria are filled with
local minimums. One possible solution is to optimize the criterion from a large amount of
initial parameters and hope that one of the initial set of parameter is close enough to the
global minimum to find them, but this can, depending on dimensionality of the problem be
very time consuming.

2.4.1 Particle swarm optimization
One of the many algorithm that tries to solve the global optimization problem is the par-
ticle swarm algorithm. The version described here is the one found in MATLAB’s Global
Optimization Toolbox based on the deception given by [8, 9]. Particle swarm optimization is
an biologically inspired optimization algorithm, inspired by the flocking of birds and insects
. The algorithm starts with an initial set of particles in the parameter space. The particles
are either drawn randomly from the set of allowable parameters or to values assumed to be
close to the optimal values. The particles are initially assigned a random velocity. For each
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iteration of the algorithm, the criterion is evaluated at all the particles. The particles veloc-
ities are then modified by a weighted sum of their current velocity, the position of with the
lowest criterion, and the position with the lowest criterion in the particles immediate neigh-
borhood. This makes the particles attracted to positions in the parameter space with known
good criterion values, but retains some inertia, so they will not necessarily pass through the
exact location of the minimum as they fly around.

Initially the particles will fly around in the parameter space more or less randomly. As
good criterion values are found, particles will start to gather in swarms around the minima.
As better criterion values are discovered the swarm will gradually migrate to the currently
best known solution. As the algorithm does not know if any of the particles actually are
at a minimum of the criterion, algorithm must use some other stopping criteria. This is
either a maximum number of iterations, number of iterations with no improvement in best
criterion, a time limit, or if a criterion value better than some set threshold is found. Even
tough the aim of the algorithm is to improve the chances of finding a global minimum it is
not guaranteed to be found.

According to the article describing the original version of the Particle Swarm Optimiza-
tion algorithm [15] it is particularly well suited for nonlinear and discontinuous problems
and consistently found the global minimum of the Schaffer f6 function which is a popular
benchmark for genetic optimization algorithms. Though it has to be noted that the algo-
rithm described in [15] differs slightly from the one described by [8, 9], but the general idea
is the same.

2.5 Bond graph modeling

Bond graph modeling is a technique for modeling systems that involves power interactions.
It can be applied to both collections of subsystems and the power interactions internally in
the subsystems. The general idea is to connect together different elements by power bonds
consisting of an oppositely directed flow and effort. A flow can be velocity, current and so
on, while efforts are voltages, torques, forces etc. Elements can have one or more ports the
accepts a bond.

This section is based on [13] by Karnop, Margolis, and Rosenberg and the appendix
about bond graph modeling in [20] by Mashadi and Crolla. This is only a small overview of
bond graph modeling, sufficient for understanding the bond graphs presented in this thesis.

2.5.1 Ports and bonds

A port is a power connection of a system. It contains either a effort input and a flow output
or and effort output and a flow input. An element with more than one port is called a
multiport. Connection between ports are called bonds. Figure 2.1 shows the symbol used
to represent the bond. The arrow points in the direction of the power flow.

f

e

Figure 2.1: Bond graph symbol for a bond.

2.5.2 Standard elements

Sources

There are two different elementary sources in bond graph modeling: sources of effort, Se,
and sources of flow, Sf . These are used as inputs to the models as well as energy sources in
the model. Figure 2.2 shows the symbols used to represent the sources.
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Se

(a) Source of effort

Sf

(b) Source of flow

Figure 2.2: Bond graph symbols for sources of effort and sources of flow.

Junctions

Junctions are multi port elements connecting two or more bonds. Junctions are energy
conserving and therefore consumes no power. There are two different kinds of junctions:
0-junctions and 1-junctions. In a 0-junction effort is preserved. This means that all efforts
are equal, and because it does not consume any power the flows must sums to zero:

ei = ej ,
∑
i

fi = 0 (2.57)

A 1-junction preserves flow, and therefore has the complete opposite behaviour:

fi = fj ,
∑
i

ei = 0 (2.58)

Figure 2.3 shows the symbols for 0 and 1 junctions.

0

(a) 0-junction

1

(b) 1-junction

Figure 2.3: Bond graph symbols for 0-junctions and 1-junctions.

Resistive elements

Resistive elements, R, are consumers of energy. They are one port elements representing loss
of energy in the system. Examples of resistive elements are electrical resistors, mechanical
dampers and friction. The general equation governing a resistive elements is:

e = ΦR (f) (2.59)

where ΦR is some function relating the flow to the effort. When ΦR is linear the relationship
is simply:

e = bf (2.60)

Unsurprisingly this is directly equivalent to Ohm’s of resistance. Figure 2.4 shows the bond
graph symbol for a resistive element.

R
b

f

e

Figure 2.4: Bond graph symbol for a resistive element.

Capacitive elements

Capacitive elements, C, serves as energy storage elements in the form of displacement or
charge. They can for example represent capacitors and springs. The displacement is defined
as the integral of flow:

q =

∫
f dt (2.61)
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The resulting effort is governed by the nonlinear capacitance function ΦC :

e = Φ−1
C (q) (2.62)

or in the linear case:
e =

q

c
(2.63)

C is directly equivalent to the capacitance of a capacitor or the inverse of the spring constant,
k, if used to model a spring. For a spring the charge, q, is equivalent with the displacement:

e = kq ↔ F = kx (2.64)

Figure 2.5 shows the bond graph symbol for a capacitive element.

C
c

f

e

Figure 2.5: Bond graph symbol for a capacitive element.

Inertial elements

Inertial elements, I, stores energy as momentum. Inertial elements can be used represent
masses, moments of inertias or inductive coils. The momentum, p, is defined as the integral
of the effort:

p =

∫
e dt (2.65)

and in the general case the resulting flow is governed by the nonlinear function ΦI :

f = Φ−1
I (2.66)

ans in the linear case the inertia parameter i:

f =
p

i
(2.67)

i can be looked at as mass, moment inertia or inductance depending on the system that is
being modelled. Figure 2.6 shows the bond graph symbol for an inertia element.

I
i

f

e

Figure 2.6: Bond graph symbol for a inertial element.

Transformers

Transformers, TF , are two port elements with a proportional relationship between incoming
effort, ei, and outgoing effort, eo:

eo = mei (2.68)

As only R-elements dissipate energy the reverse relation must apply to the flow:

fi = mfo (2.69)

Transformers are used to model levers, speed ratios and electrical transformers. Figure 2.7
shows the bond graph symbol for a transformer.
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TF
m

fi

ei

fo

eo

Figure 2.7: Bond graph symbol foe a transformer element.

Gyrators

In addition to the transformer there is another two port element, the gyrator, GY . Gyrators
has a relationship between the outgoing flow and the ingoing effort:

fo = rei (2.70)

and to keep the power through the gyrator constant:

fi = reo (2.71)

where r is called the gyrator ratio. A typical example of a gyrator is an electric motor. The
torque (effort) of the output shaft is equal to the current (flow) and the speed (flow) of the
output shaft is equal to the voltage (effort). Figure 2.8 shoes the bond graph symbol for a
gyrator.

GY
r

fi

ei

fo

eo

Figure 2.8: Bond graph symbol foe a gyrator element.

2.5.3 Modulated elements
The elements in the previous section can also come in varieties with modulated relationships.
This means that the function or parameter which influences the relationship the efforts and
flows can be changed according to one or more modulation parameters. This can for example
be a variable resistance, a transform representing a variable gearing ratio, a variable source
of effort or flow etc. A modulated element is marked by putting and M in front of the usual
symbol.

2.5.4 Deriving the equations of motion from a bond graph model
Typically the goal of a bond graph model is to derive a set of equations describing dynamics
of the system that is being modeled. This usually ends up as a state space model, where
the states are defined by the I- and C-elements. The first step in the process of finding this
state space model is to assign causality to the bonds in the model, by determining weather
it is effort or flow which is the cause and effect.

Causality strokes are used to mark the causality of the bonds. For the element at the
same end of bond as the stroke the effort is defined as the cause, and the flow as the effect.
Figure 2.9 may show this more clearly.

Bonds from sources have uniquely defined causality. Effort from a source of effort is
always the cause while the flow is always the effect and inversely for a source of flow.
Resistive elements are indifferent to the causality and can therefore be assigned either way.
Bonds to transformers must have opposite causality strokes meaning that the flow is the

Se P

(a) Effort acting on P is the cause and
flow from P is the effect

Sf P

(b) Flow going to P is the cause and
effort from P is the effect

Figure 2.9: Causality strokes for sources acting on a general one port element P.
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cause on one side and effect on the other, while for gyrators causality must be equal for
both bonds.

The causality for C- and I-elements can in principle be placed either way, but it is strongly
advised to place it in such a way that it results in an integral relation. For C-elements this
means that the flow is the cause and for I-elements that effort is the cause which means the
effect of either can be described by an integral. Or more conveniently the derivative of the
momentum, p, of an I-element is the effort, e, of the bond:

ṗ = e (2.72)

and derivative of the momentum, q, of a C-element is the flow, f , of the bond:

q̇ = f (2.73)

Due too how the junctions are defined, the preserved quantity, which is equal for all
the connected bonds, can only be the cause of one of the bonds and the effect of all the
others. The bond with the cause causality is called the strong bond. For a 0-junction this
means that that the strong bond has the causality stroke pointed at the junction and for a
1-junction that the strong bond has the causality stroke pointed away. Figure 2.10 shows
two very simple bond graphs with correct causality for the junctions and C- and I-elements
with integral causality.

0Sf

C c

R b
f0

e0

f 1e 1

f2

e2

(a)

1Se

I i

R b
f0

e0

f 1e 1
f2

e2

(b)

Figure 2.10: 0-junctions and 1-junctions with valid causality configuration and C- and I-
elements with.

The bond graph shown in fig. 2.10a has one active element, a capacitance. The capac-
itance has integral causality meaning that the derivative of charge is equal to the flow of
the bond: q̇1 = f1, causing the effort e1 to be e1 = q/c. As it is connected to a 0- or equal
effort junction, the sum of flows must be zero: f0 − f1 − f2 = 0, meaning that f1 = f0 − f2.
f0 comes from comes from a source of effort and is thereby defined to be: f0 := Sf . f2 is
caused by the effort applied to the resistance which is defined as: f2 = e2/b. As the resis-
tance and connected to a 0-junction the effort, e2, is equal to the other efforts, but as the
C-element is given the strong bond its effort is assumed to be the cause of the others. f2 is
therefore f2 = e1/b = q/(bc) and the differential equation for the system can be written as:

q̇ = Sf − q

bc
(2.74)

Similarly the equation for the bond graph in fig. 2.10b can be shown to be:

ṗ = Se− b
p

i
(2.75)

because the I element has integral causality, e1 = e0 − e2, e0 = Se, e2 = bf2, f0 = f1 = f2,
and f1 = p/i. The methods for finding the equations for larger bond graphs folows the same
procedure: identify elements with integral causality, define the input or flow or effort in
terms of sources and the outputs of other elemens using the rules for the 0- and 1-junctions.
Finding the equations for bond graph models with derivative causality can be substantially
harder and is not covered here.

These two examples also demonstrate the typical numbering conventions used when
working with bond graphs: sources are number 0 and 00 and so on if there are more than
one. The numbering starts at one with all elements with integral causality, then derivative
causality, then passive elements, and finally the remaining bonds unnumbered bonds.
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Figure 2.11: Typical curve generated by the magic formula for dry asphalt.

2.6 Ground vehicle modeling
For most parts of the vehicle model developed in this thesis is derived using simple Newtonian
Physics has been sufficient. For the tires and engine, existing models from the literature
where used. Although a new model for the rubber belt CVT is developed, a description
of the working principle as well as some modeling efforts described in the literature will be
presented.

2.6.1 Tire modeling
A good tire model is of vital importance when developing a vehicle model, as all force that
influence the vehicle dynamics, excluding air resistance, are transfered through the tires.
As only longitudinal dynamics are under consideration, it is only necessary to model the
longitudinal traction force and the rolling resistance.

Longitudinal traction force

A well regarded tire model is the magic tire formula, originally developed by Hans B. Pacejka
[6, 10, 24]. It is an empirical model relating the tire slip (a ratio or percentage describing how
much the tire is sliding) to a friction coefficient which in combination with the tire normal
force is used to calculated the tractive force of the tire. The friction coefficient is calculated
by the following formula:

µmf (s) = D sin (C arctan (Bs− E (Bs− arctan(Bs)))) (2.76)

where B, C, D, and E are tuning parameters. fig. 2.11 shows a typical curve generated by
the magic tire formula. The parameters can be derived from a larger set of tire physical tire
parameters, but are usually determined experimentally to give the best fit. The resulting
traction force is a product of the coefficient of friction calculated by the magic formula and
the normal force:

Fx(s, Fz) = µmf (s)Fz (2.77)

This linear relationship is generally only valid close to the normal force the tire is designed
for as excessive tire load actually reduces the coefficient friction by compressing the rubber
and thereby making it stiffer an less able to conform to irregularities in the ground surface.

There are a few different formulations of the tire slip which is a relative measure of how
much the tire is slipping. A free rolling tire has zero slip. A tire which is sliding and not
rotating has, depending on formulation 1, 100% or ∞ slip. In this thesis the formulation
that gives slip as ratio in the range −1 to 1 and uses the same equation for slip during
acceleration and braking is used:

s =
ωwreff − v

max(|ωw|, |v|, vmin)
(2.78)

v is the linear velocity of the wheel center, ωw is the angular velocity of the wheel, and the
product ωwreff gives the linear velocity of the tire surface. The effective tire radius, reff, is
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Figure 2.12: Tire forces, torques and velocities.

calculated from the effective circumference, which is the distance the wheel center travels
with one full rotation of the wheels with no slipping. reff is not equal to the dynamic tire
radius, rdyn, which is the distance from the wheel center to the tire ground contact when
the tire is loaded. Neither is it necessary equal to the static tire radius, rstat, which is the
unloaded tire radius. The vmin is added to the denominator in the slip calculation to avoid
the singularity that occurs when both v and ωw are zero. fig. 2.12 summarizes some of the
tire forces and velocities.

The magic formula is a description of stationary tire forces. For slow changes it is still
sufficient, but for situations where the slip changes rapidly, like during hard acceleration the
dynamic tire behaviour must be take into account. A crude approximation to dynamic tire
behaviour is the introduction of a first order time delay as proposed in [24]:

Ḟx =
1

τ
(Fx,stat − Fx) (2.79)

where Fx,stat is the static friction force calculated by the magic tire formula.

Rolling resistance

The rolling resistance is primarily caused by deformation of the tire as it is rolling. Other
factors can be the ground surface irregularities and deformation of the ground. It is therefore
reasonable to assume that the rolling resistance torque is a function of the normal force,
tire pressure, tire construction, and the angular velocity of the wheel. According to [24] the
following is a good approximation:

µrr = µ0 + µ1v
2 (2.80)

Frr = µrrFz (2.81)

where µ0 and µ1 has to be found experimentally, and µ0 = 0.015 and µ1 = 7e−6 s2 m−2

are typical values for a normal car. The low speed rolling resistance is therefore primarily
dominated by the static component of µr, µ0.

2.6.2 Engine modeling
The most common method for simulating an internal combustion engine in a vehicle dynamic
model, is to model the torque as a nonlinear function of throttle position, α, and angular
velocity of the crankshaft, ωe. Friction in the engine may or may not already be taken into
account by the torque function. The engine torque, Te and the torque load connected to
the engine, Tl, acts on an inertia, Ie, representing the engine’s crankshaft, cylinders, and
flywheel. This model can be summed up with the following differential equation:

ω̇e =
1

Ie
(Te (α, ωe)− Tl) (2.82)
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Te (α, ωe) can be represented by a lookup table derived from experimental data or as a
function of some of the engine parameters. The parameters are typically maximum torque
or power, the angular velocity producing the maximum, the angular velocity at idle, fuel
type, and other known quantities of the engine. An example of such a torque function is the
Magic Torque Formula presented in [20]:

Te (α, ωe) = [1 + exp (A−Bα)]
−CωD

e Te,wot (ωe) (2.83)

Here Te,wot (ωe) is the torque curve with the throttle fully open, and A, B, C, and D are
coefficients that scales the torque at different throttle settings and angular velocities. In [10]

Te,wot = P1 + P2ωe + P3ω
2
e (2.84)

where the coefficients, P1, P2, and P3 are defined by the peak engine power, Pe,max, and the
angular velocity of the peak, ωe,Pe,max :

P1 =
Pe,max

ωe,Pe,max

P2 =
Pe,max

ω2
e,Pe,max

P3 = − Pe,max

ω3
e,Pe,max

(2.85)

An internal combustion engine will also have some time delays associated with it. There
is a delay in opening the throttle valve, air travelling through the intake manifold, and a
delay caused by the fact that no positive torque is produced unless one of the cylinders
are firing. For many applications it is sufficient to model this as a time delay between the
throttle and throttle valve, but depending on the on the model they may be so small that
they can be ignored.

2.6.3 Rubber Belt Continuously Variable Transmission
CVTs are transmissions that can vary their speed ratio continuously between a lower and
upper bound. The benefit of a CVT is that the engine can kept at its optimum operating
speed for a larger range of vehicle speeds than with a conventional transmission with a
discrete set of gears. The CVT variant presented here is the rubber bely CVT. The primary
source for the section has been the Service Manual for the Polaris Ranger [7] which contains
a brief overview of the working principle of Polaris’s Polaris Variable Transmission (PVT)
system as well as multiple diagrams of the different parts. Even though Polaris calls it a
PVT and not CVT the studies [12, 23] of other CVT systems describes identical working
principle.

A rubber belt CVT accomplishes the continuous speed ratio variation with two V-pulleys
and a rubber V-belt. A V-belts and V-pulleys have V shaped cross sections and only
the sides of the belt should be in contact with the pulley. The pulley connected to the
engine is called the primary pulley and the pulley connected to the output shaft is called
the secondary pulley. The pulleys consists of two conical sheaves with variable distance
between them. When the sheaves of one of the pulleys are pressed together with greater
force than the sheaves of the other pulley, the belt gets forced outward in the pulley grove
of the pulley experiencing the greater force and pulled inwards in the other. The effective
radius of the two pulleys have thereby changed. As the speed ratio is dependant on the radii
of the pulleys it has also changed. The speed ratio is obtained by:

Rcvt =
rs
rp

(2.86)

where rp is the radius of the primary pulley and rs is the radius of the secondary. Increasing
the radius of the primary pulley while increasing the radius of the secondary reduces the
speed ratio of the CVT and is generally referred to as up-shifting. The opposite action
decreases the speed ratio and is called down-shifting. A diagram of the working principle of
a rubber belt CVT is shown in fig. 2.13 on the next page.

The actuators that produces the clamping force on the primary pulley, Fp, and secondary
pulley, Fs, and the control system used can vary. The actuators and control system used in
the CVT in the Polaris Ranger are completely mechanical. On the primary side a system
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ωpωs

Fs Fp

Figure 2.13: Simplified diagram of a rubber belt CVT. Shows the two pulleys consisting
of two conical sheaves each from a above and straight on the rational axes. The actuators
that produces the primary and secondary clamping forces, Fp and Fs, are not included.

Te

Fixed sheave

Belt

Input shaft

Fp

Shift weight

ωp

Shift weight ramp

Figure 2.14: Simplified diagram of primary pulley speed sensing device. The clamping
force on the primary pulley, Fp, is produced by weights, called shift weights.

of centrifugal weights, called shift weights, is used. Making the primary pulley clamping
force primary dependant on the engine speed. The device fitted to the secondary pulley is
compressed with a spring and compresses the pulley more when torque is applied.

fig. 2.14 shows a simplified digram of the primary pulley and the shift weight system.
The assembly consists of a fixed pulley sheave connected to the input shaft and moveable
pulley sheave. A spring forces the pulley to be open. A set of shift weights are used to make
the compression of the pulley speed dependant. As the speed of the primary pulley the shift
weights are forced outward. Due to the pivot point of the shift weights and the ramp they
push against this compresses the pulley. The spring, pivot point, weight and shape of the
shift weights, and the curve of the shift weight ramp, influences the force which compresses
the primary pulley and are tuned to give the desired response.

When the engine is at idle the tension in the spring is sufficient to to contract the force
exerted by the shift weights and the belt is not in contact with the sides of the primary
pulley. Initial engagement of the transmission is thereby also controlled by the primary
pulley.

Figure 2.15 on the next page shows a simplified diagram of the secondary pulley. While
the primary pulley is sensitive to the engine speed, secondary pulley is sensitive to the torque
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Figure 2.15: Diagram of secondary pulley torque sensing device. Ts is the torque applied
to the secondary pulley, and Tl is the load connected to the CVT. The fixed pulley sheave is
connected to the output shaft. The moveable pulley sheave can rotate about and move axi-
ally along the output shaft restricted by the roller and torque ramp as well as the secondary
pulley spring. The roller is fixed to the output shaft.

experienced by the secondary pulley, Ts. The secondary pulley also consists of a fixed and
movable pulley sheave. The fixed sheave is connected to the output shaft. The movable and
fixed pulley sheaves are pressed together by a spring. The movable pulley sheave can rotate
a small amount in relation to the fixed sheave, but this rotation is coupled to the distance
between two sheaves by a ramp and a roller. Torque applied to the secondary pulley will
therefore add to the force compressing it.

Most of the rubber belt CVT models found in the literature are models are meant to aid
in the design of these transmissions, they are therefore highly complex, high order models,
taking into account all the dimensions and physical interactions [3, 4, 12]. They are therefore
not found suitable for use in the model developed in this thesis.

One of the simplest CVT model in the literature is the following model[16]:

˙icvt = m (icvt)ωpFs

(
kpks− Fp

Fs

)
(2.87)

icvt is the speed ratio of the CVT. ωp is the angular velocity of the primary pulley, Fp and
Fs are the actuating forces acting on the primary and the secondary pulleys, kpks is the
force ratio required to hold a steady speed ratio and m (icvt) is a factor relating the change
of speed ratio to the current speed. kpks and m (iCV T ) has to be found experimentally.
Although this is not a complete model as the primary and secondary pulley actuators are
not included.
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Chapter 3

Unmanned vehicle platform
OLAV

OLAV is an experimental autonomous vehicle under development by FFI. It is based on a
Polaris Ranger XP 900 EPS light off-road utility vehicle. The ranger has been outfitted with
actuators and instrumentation necessary for the vehicle to be controlled by a computer.

3.1 Polaris Ranger XP 900 EPS
The Ranger XP 900 EPS is light off-road utility vehicle produced by Polaris Inc. A picture
of this specific model is shown in fig. 3.1 on the following page. Polaris is primarily known
for their snowmobiles, but have diversified to all terrain, recreational and utility vehicles.
The Ranger therefore incorporates some technologies that are more common in snowmobiles,
motorcycles and quad-bikes than traditional cars. An example of this is the rubber belt CVT.

The XP 900, signifies that this is the "Xtreme Performance" version of the Ranger with
an gasoline engine with around 900 cm3 cylinder volume (actual volume is 875 cm3). EPS
means that this is a version with electric power steering. A very useful feature in a car
that will be electronically controlled as no additional steering actuator is required. The
vehicle has three seats and a cargo box. The Ranger has selectable rear- or four-wheel drive
and lockable differentials, two forward gears, reverse, neutral and park in addition to the
gearing ratio provided by the CVT. An general overview of the specifications of the vehicle
is provided in table table 3.1 on the next page.

The Ranger XP 900 is equipped with a CVT, marketed by Polaris as a PVT. The PVT
is a rubber belt CVT. Polaris claims that the PVT should keep engine speed constant for
a given throttle setting regardless off the load and that full throttle should keep the engine
at the peak of the power curve [7]. The mechanics of the CVT is presented in greater detail
in section 2.6.3. In addition to the PVT the Ranger also have a conventional transmission
between the CVT and the wheels. It provides the High and low gear ranges, reveres, neutral
and park.

3.2 Modifications
The conversion of the ranger to an unmanned vehicle has required a large number of mod-
ification in the form of additional instrumentation, computers, and actuators, as well as
additional batteries and power delivery system. Figure 3.2 shows a picture of OLAV in its
current state. The modifications has added about 500 kg to the mass of the vehicle, which
can be seen by comparing the ground clearance of the vehicle in the two pictures.

3.2.1 Actuators

Actuation of the steering uses the existing power steering system of the ranger. This is done
by fooling the sensor that measures the torque on the steering column. To precisely set the

23



24 CHAPTER 3. UNMANNED VEHICLE PLATFORM OLAV

Figure 3.1: Picture of a standard Polaris Ranger XP 900 EPS

Source: Polaris Industries Inc.

Dry weight 617 kg
Wheelbase 2.057m
Track width 1.473m
Engine 4-stroke DOHC twin Cylinder
Displacement 875 cm3

Fuel system Electronic fuel injection
Engine idle speed 1250 ±50 RPM
Engine max operating speed 7250 RPM
Driving system type PVT, selectable 4-wheel drive, lockable

differential
Transmission speed ratio high range 10.4:1
Transmission speed ratio low range 25.59:1
Transmission speed ratio reverse 22.92:1
Tire diameter front 0.66m
Tire diameter rear 0.66m
Tire Pressure front 65 kPa
Tire pressure rear 83 kPa
Brake system 4 wheel hydraulic disc brakes (two piston front

calipers and one piston rear calipers)

Table 3.1: General specifications for Polaris Ranger XP 900 EPS.[7]
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Figure 3.2: Picture of OLAV.

Source: FFI

Actuator Range

Steering angle −30◦ to 30◦

Throttle 0% to 100%
Brake pedal travel 0% to 100%
Gear selection Low/High/Neutral/Reverse/Park

Table 3.2: Actuators fitted to OLAV and their control range.

steering angle it is also outfitted with a sensor that measures the steering angle. This
measurement is then used for control of the steering angle. As the vehicle has drive-by-
wire throttle it can also be controlled directly. For safety reasons the brakes are actuated
by an electric actuator that depresses the brake pedal. This insures that the brakes can
be operated by any occupants in the vehicle in case of an emergency. The original gear
selector is removed an replaced by an electric actuator. All the actuators are connected to a
programmable logic controller (PLC) that can be accessed by the rest of the control system
through Ethernet using the Modbus TCP/IP protocol. The actuators and the PLC that
controls them where installed by Maritime Robotics.

3.2.2 Instrumentation

The speed of the rear wheels is measured at the differential by using a sensor measures that
detects teeth of the final drive gear. This gives a reasonably accurate but noisy reading
and no information about the direction. Engine speed is read from the engine management
system.

The navigation system is provided by the navigation research group at FFI. It consists
of high precision inertial measurement unit (IMU) unit and GNSS as well as the filters
required for a precise position estimate. It provides precise measurements of the vehicles
speed, orientation and position.

The software on OLAV runs on a Intel NUC computer. This is a standard commercial of
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the shelf computer with an x86 processor. The operating system is Ubuntu Linux with the
addition of the ROS framework. Communication with senors or actuators are done through
either USB or Ethernet.



Chapter 4

Vehicle model

In this chapter the developed mathematical model for the longitudinal dynamics of OLAV is
presented, how it was derived and the assumptions which were made. The approach taken
was to first brake the vehicle down to a set of subsystems, deciding models for the individual
subsystems and finally combining the models into a complete model of the longitudinal
dynamics of the vehicle. At the end of the chapter a summary of the parameters in the
model is given and simulations of the model presented.

4.1 The intended use of the model and limitations
When designing a model of physical systems it is important to take into consideration what
the model will be used for and what information is available about the system. Figure 4.1 on
the following page shows a fairly complete bond graph model of the subsystems of the Polaris
Ranger. The front differential, drive shafts, and transfer case are removed for simplicity
as the four-wheel drive system is usually disabled. Even with this slight simplification, the
vehicle is obviously a complex system.

Figure 4.2 on page 29 shows a further simplified model. In this simplified model, only the
longitudinal dynamics are taken into account. The steering system can therefore be removed.
As the vehicle is assumed to not be turning, the left and right wheels can be assumed to be
turning at the same rate. The left and right tires on the front and rear axles can therefore
be combined and the differentials can be removed. This simplified bond graph model will
be used to develop the vehicle model. In the following sections the different subsystems will
be examined and combined to a complete model.

4.2 Engine model
The engine is modeled as an rotational inertia element, Ie, a drive torque, Te, that is a
function of the angular velocity of the engine and the throttle setting, and the torque load
applied to the engine, Tl.

ω̇e =
1

Ie
[Te (α, ωe)− Tl] (4.1)

The engine torque is modeled by a linear combination of an approximation of the torque
curve at full throttle, and viscous friction with coefficient be at zero throttle:

Te (α, ωe) = αTwot (ωe)− (1− α)beωe (4.2)

As should be apparent the throttle is assumed to be in the range 0 to 1. The torque curve
approximation used is from [10] and is defined by the peak power of the engine, PM , and
the angular velocity producing the peak power ωM .

Twot(ωe) =

3∑
i=1

Piω
i−1
e = P1 + P2ωe + P3ω

2
e (4.3)

27



28 CHAPTER 4. VEHICLE MODEL
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Figure 4.1: Bond graph model of Polaris Ranger subsystems. Transfer case and front
differential and drive shafts are removed for simplicity.
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Figure 4.2: Reduced bond graph model of vehicle subsystem.

P1 =
PM

ωM
, P2 =

PM

ω2
M

, P3 = −PM

ω3
M

(4.4)

As the engine has to be able to idle, the throttle has to be partially open at idle. This
controlled by the engine management system. The engine management also restricts the
maximum engine speed to ωe,max by cutting the throttle when it is reached. The vehicle
also has an optional speed limiter that works by cutting the throttle. To accommodate these
constraints a simple engine controller has to be part of the engine model.

The idle controller is modeled by calculating the throttle needed to keep the engine at
ωe,idle by solving eq. (4.2) for ωe,idle with Te = 0. Additional throttle proportional to the
error is added when falling bellow ωe,idle:

αidle =
beωe,idle

Twot(ωe,idle) + beωe,idle
+ pidle (ωe,idle − ωe) (4.5)

pidle is a tuning parameter for the proportional part of the idle controller. As both the rev
limiter and speed limiter cuts the throttle when either the engine or vehicle speed reaches set
limits they are simply modeled by setting the throttle to zero when the limits are exceeded.
These rules for the throttle setting applied by the engine controller, αc, can be summarized
with the following piecewise equation:

αc (α, ωe, vw) =


0 if ωe ≥ ωe,rl

0 if vw ≥ vsl

αidle if αidle ≥ α

α otherwise

(4.6)

Figure 4.3 shows a plot of the torque produced by the complete engine model including the
engine controller with sane values for the different parameters.

4.3 Engine, CVT, and transmission
The drive line consist of the engine, CVT, transmission, differential, and the rear wheels.
A model for the engine was already presented in section 4.2. As the drive line is a series
of power transferees, bond graph modelling was chosen as a framework to derive the initial
model structure. Figure 4.10 on page 33 shows the developed bond graph model of drive
train.
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Figure 4.3: Plot of the torque of the engine produced by the engine model with PM =
60 kW, ωM = 816 rad s−1 (7800 RPM), be = 5e−2Nms rad−1i, ωe,idle = 131 rad s−1 (1250
RPM), and pidle = 1e−3.

4.3.1 Engine bond graph model

As described in section 4.2, the engine is modeled as a rotating mass with moment of
inertia Ie influenced by the engine torque modeled by the nonlinear function Te(α, ωe),
and the torque applied to engine output shaft, Tl. As the engine is directly connected to
the primary pulley of the CVT, the load torque, Tl, is the torque produced at the CVT’s
primary pulley, Tp. The engine can be described by the bond graph in fig. 4.5 consisting
of a modulated source of effort representing Te, a source of effort representing Tl, and an
inertia element representing Ie, all connected to a common flow node.

4.3.2 Transmission and differential bond graph model

As the model only describe the longitudinal dynamics of the vehicle, the two rear wheels
are assumed to always rotate at the same rate, and the differential is therefore only mod-
eled as the speed ratio between its input and output shafts, called the final drive ratio. The
selectable speed ratio of the transmission is combined with the final drive ratio. This com-
bined ratio can be described by a modulated transformer, MTF, with ratio Rt(g), which is
a function of the selected gear. At each end of the modulated transformer there is a com-
mon flow node modelling the transmission input and output shafts. The transmission input
shaft is connected to the secondary pulley of the CVT. The torque from the secondary pul-
ley is modeled by a source of effort. The inertia of the input shaft, including the secondary
pulley, is modeled by an inertia, It, and the friction of the transmission with a resistance,
with coefficient bt. The output shaft of the differential is connected to the rear axle and the
wheels. The rear axle and wheels are modeled by an inertia, Irw, with angular speed ωrw.
In addition to the torque from the transmission the rear axle the torque from the brakes,
Tbk, and from the traction and rolling resistance of the rear wheels, Trw. Tbk and Trw are
modeled in sections 4.4 and 4.5 and are here only input variables modeled by sources of ef-
fort. The bond graph model for the transmission and rear axle is shown in fig. 4.6.

This bond graph model is not very useful as it is because one of the inertia elements has
to be given a derivative causality. It is therefore rearranged as shown in fig. 4.7 with the
inertias combined using the speed ratio of the transmission. The resistance is also moved to
the other common flow bond to eliminate the common flow bond on the input side of the
transmission.
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Figure 4.4: Simplified diagram of drive line components.
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Figure 4.9: Bond graph model of the axial displacement of the pulleys.

4.3.3 CVT bond graph model

There are two different paths for the power to flow through the CVT: along the belt and
through the speed sensing device on the primary pulley and the torque sensing device on
the secondary pulley resulting in the axial displacement of the pulleys. Power flow along the
belt is considered first.

The contact between the belt and the primary is modeled by a common effort node and
a resistance governed by the nonlinear modulated resistance Φr,b. Φr,b will be decided later.
The primary pulley is modeled as a source of flow connected to the common effort node
representing the belt pulley contact. The speed ratio caused by the different radii of the
pulleys is modeled by a modulated transformer, with ratio Rcvt(φp), which is a function of
the unit less displacement state variable φp. φp describes how much the primary pulley is
compressed and thereby, assuming the belt does not stretch, the radii of the two pulleys. It
is assumed that the belt never slips at the secondary pulley, and it is therefore modeled by
a source of flow directly connected to the modulated transformer. This results in the bond
graph shown in fig. 4.8

The axial displacement of the two pulleys is assumed to be completely coupled by the
belt, they are therefore modeled by a common flow node with connected to a inertia mp,
which is the mass of the movable pulley sheaves. The friction in the system is modeled by a
resistance, bcvt. Both the torque sensing device on the primary pulley and the torque sensing
device on the secondary pulley are fitted with springs. The springs are directed the same
way and can therefore be combined an modeled by a common capacitance element with the
nonlinear capacitance Φ−1

k,cvt. It is represented by the inverse because it represents a spring.
The speed sensing device converts the speed of the primary pulley into a force pushing

on the movable pulley sheave. This means that it can be modeled by a gyrator. It is
therefore modeled by a modulated gyrator, with a gyration relationship gsw(φp, ωe), which
is a function of the pulley displacement, φp, and engine speed, ωe. The engine speed, ωe, is
modeled by a source of flow.

The torque sensing device converts the torque experienced by the secondary pulley, Ts,
into a force which compresses the secondary pulley sheaves. It is modeled by a transformer
with transformation relationship, ctr, and Ts by a source of effort.

The bond graph for the axial displacement is shown in fig. 4.9.

4.3.4 Complete drive line model

The bond graphs for the individual drive line components, shown in figs. 4.5 and 4.7 to 4.9
can be combined to a complete bond graph model of the drive line, as shown in fig. 4.10.
This is done by connecting together their source of efforts and flows with common flow and
effort nodes. The resulting model has two input variables, throttle settings, α, and gear,
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Figure 4.10: Bond graph model of the drive line.

g. It also has two ports: the sources of effort of the brake torque, and rear wheel torque.
Alternately sources of efforts can be looked at as two inputs: Trw and Tbk, and an output:
ωrw.

The inertia and capacitive elements in the model dictates its state variables. All the
inertia elements in the model have integral causality, and the flow of the common flow nodes
they are connected to therefore becomes state variables: ωe, φ̇p, and ωrw. The capacitive
element also has integral causality, causing φp to also become a state variable. By following
the causalities and summing together the efforts integrated by the inertias the following set
of differential equations can be derived from the bond graph model in fig. 4.10:

Ieω̇e = Te(α, ωe)− gsw(ωe)φ̇p − Tb (4.7)

mpφ̈p = gsw(ωe)ωe − rcvtφ̇p − Φk,cvt(φp)− ctrRcvt(φp)Tb (4.8)(
Irw +Rt(G)2It

)
ω̇w = Rt(g)RcvtTb − (Rt(G))2btωw − Tbk − Trw (4.9)

Tb = Φr,b

(
ωe, Rcvt

(
Rt(G)ωw − ctrφ̇p

))
(4.10)

The derivation of these equations from the bond graph model are shown in appendix B.
A general structure for the model is now found. To complete the model the different

functions and values in the differential equations has to be found.
The axial force on the primary pulley produced by the shift weights is governed by the

mass of the shift weights, msw, the pulley displacement dependant radius of the shift weights,
rsw(φp), the derivative of the radius in relation to the displacement, dφp

drsw
, defined by the

profile the shift weights pushes against, which dictates the ratio between the centripetal
force acting on the shift weights and the axial force compressing the pulley, and the square
of the angular velocity, ω2

e :

Fsw =
dφp

drsw

∣∣∣∣
φp

mswrsw(φp)ω
2
e (4.11)

The gyrator relationship can therefore be expressed as:

Fsw =

[
dφp

drsw

∣∣∣∣
φp

mswrsw(φp)ωe

]
ωe = g(ωe, φp)ωe (4.12)

By using some of the knowledge of the tuning goals of the mechanism the expression can be
simplified. As the torque produced by the engine is nearly constant for all engine speeds, the
produced power will therefore be close linear in respect to the engine speed. A clamping force
proportional to the square of the engine speed pushing against linear spring would therefore
be undesirable as it results in a very narrow usable shifting band. It would therefore seems
likely that the shift weight radius to pulley displacement ratio and its derivative is designed
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in such a that the force to engine speed ratio is close to linear. The ratio is therefore assumed
to be linear and can therefore be expressed by one parameter:

Fsw = cswωe (4.13)

As the primary pulley also has to reach a minimum angular velocity before it contacts
the belt a minimum value for the engine speed for belt engagement, ωbe, is introduced.
Below this speed, no forces or torques are transfered via the shift weight system. The final
expression for the shift weight gyrator relationship, gsw(ωe) is:

gsw(ωe) =

{
csw if ωe > ωbe

0 otherwise
(4.14)

The springs in the speed and torque sensing devices is modeled by the nonlinear capac-
itance Φk,cvt. It is assumed linear for φp in the range [0, 1] with the spring coefficient kcvt.
Outside this range the spring constant is multiplied by 10 to model end of travel of the mov-
able pulley sheaves. The produced effort by the spring is:

Φk,cvt(φp) =


kcvtφp if 0 ≤ φp ≤ 1

kcvtφp + 10kcvt(φp − 1) if 1 < φp

10kcvtφp if φp < 0

(4.15)

The torque transfered from the primary pulley to the belt, Tb, is modeled by the nonlinear
resistance Φr,b. Following traditional laws of friction it is proportional to the normal force
acting on the belt surface (clamping force of primary pulley), the relative speed between
the belt and the pulley as well as other factor such as material properties of the belt and
the pulley. The friction model used to model the contact is a slip based model. The slip is
calculated from the angular velocity of the engine, ωe, and the angular velocity of the belt
at the primary pulley, ωb, ωb is found from angular velocity of the wheels, ωw, the speed
contributed by the torque sensing device at the secondary pulley, and the speed ratio of the
transmission, Rt(g) and the CVT, Rcvt(φp):

ωb = Rcvt(φp)
(
Rt(g)ωw − ctrφ̇p

)
(4.16)

The slip is defined as:

sb =
ωe − ωb

max (|ωe|, |ωb|)
(4.17)

The clamping force of the primary pulley was already decided to be proportional to the
engine speed, but the same expression for the magnitude is not used. Instead it is included
in the coefficient of friction of the belt. The model for the produced torque as a function
slip and engine speed is a very simplified three parameter model defined by the maximum
coefficient of friction, µb,max, the slip producing maximum friction sb,max, and the minimum
engagement speed for the belt, ωbe:

Tb(sb, ωe) =

{
µb(ωe − ωbe) tanh

(
2 sb
sb,max

)
if ωe > ωbe

0 otherwise
(4.18)

The speed ratio of the CVT is proportional with the axial displacement of the pulleys,
φp, as the displacement of the pulleys changes the radii of the pulleys. The relationship is
assumed to be linear. The speed ratio is constrained between a upper and a lower bound,
the highest possible speed ratio at full down-shift, Rcvt,D, and the lowest at full up-shift,
Rcvt,U . As the pulley displacement is constrained between 0 and 1 the speed ratio of the
CVT, Rcvt(φp), can be expressed as

Rcvt(φp) = Rcvt,D − (Rcvt,D −Rcvt,U )φp (4.19)
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The transmission is modeled as a simple modulated transformer with a fixed gearing
ratio for each gear:

Rt(G) =


RH , G = H

RL, G = L

RR, G = R

0, G = N

(4.20)

The gearing ratios includes the ratio provided by the final drive gearing of the differential.
Trw is the sum of torque applied to the rear axle by the rear wheels. Tbk is the torque

applied to the rear axle by the rear brakes. These will be discussed later in sections 4.4
and 4.5 and are only assumed to inputs here inputs here.

The feedback torque on the primary and speed on the secondary pulley from the shifting
mechanism is assumed to be small in comparison to the rest of the torques and speeds that
they can be ignored and removed from the model. This makes csw, ctr, kcvt, rcvt, and mp

unit less. mp thereby becomes meaningless as it only scales the acceleration of the pulley
displacement and is therefore removed. To make the parameters less sensitive to changes in
other parameters, csw and ctr are replaced by kcvt divided by two new parameters, ucvt and
dcvt.

csw =
kcvt

ucvt
(4.21)

ctr =
kcvt

dcvt
(4.22)

The result of this is that ucvt controls the engine speed required to overcome the spring
tension, dcvt controls the sensitivity of the torque sensing in comparison to the spring, and
kcvt only controls the rate of change of the speed and not the speed ratio itself.

In addition to eqs. (4.15) and (4.18) to (4.20) the model of the engine, CVT and trans-
mission can be summarized with the following set of differential equations:

ω̇e

φ̈p

φ̇p

˙ωrw

 =


1
Ie

[Te(α, ωe)− Tb]
kcvt
ucvt

ωe − kcvt
dcvt

Rcvt(φp)Tb − Φk,cvt(φp)− bcvtφ̇p

φ̇p
1

Irw+Rt(g)2It
[Rt(G) (RcvtTb − btRt(G)ωw)− Tw]

 (4.23)

4.4 Brake system
The brake system is modeled as a torque proportional to a unitless brake "pressure", ρbk,
with the opposite sign of the axle the brakes are applied to.

Tbk(ω, ρbk) = − sign(ω)Tbk,maxρbk (4.24)

Due to the magnitude of the brake torque the sign function, is approximated with tanh as
this gives better numerical stability near zero angular velocity.

Tbk(ω, ρbk) = − tanh(ω)Tbk,maxρbk (4.25)

ρbk is produced by delaying the brake input, β, with a time constant, τbk.

˙ρbk =
1

τbk
[β − ρbk] (4.26)

The delay takes into account both the slow electrical actuator that actuates the brake pedal
as well as any delay in the actual system.

The brake torque is distributed to the front and rear axle according to the brake balance
parameter, Bbk:

Tfw,bk = BbkTbk(ωfw, ρbk) (4.27)
Trw,bk = (1−Bbk)Tbk(ωrw, ρbk) (4.28)

(4.29)
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4.5 Tire model
As discussed in section 2.6.1 there are numerous tire models described in the literature.
The most common is Pacejka’s magic formula tire model and variations of it, which is an
empirical model which relate the coefficient of friction of the tire to the slip. The simplest
formulation contains four parameters that has to be determined experimentally. The magic
formula model is deemed unsuitable because it contain too many parameters to be estimated
directly without a proper tire testing rig. Other alternatives are more physically based
models such as LuGre brush model, but these also require a large amount of parameters.

One possible simplified model that tries to parametrize a typical slip to friction coefficient
curve is presented Rudd in [22], where it was used to estimate the tire properties for an anti
skid system for aircrafts during braking. The friction produced by the tire ground contact
is only described with two parameters, the maximum coefficient of friction, µt,max, and the
normalized slip producing the maximum friction, st,max.

µ(s) = 2µt,max
s

st,max

(
1 + s

st,max

2
) (4.30)

Another possible two parameter model is the "tanh" model proposed in [10]:

µ(s) = µt,max tanh

(
2

s

st,max

)
(4.31)

fig. 4.11 shows a plot comparing these two simplified models to a curve produced by Paice-
jka’s magic tire formula for a tire on fry asphalt. Both models of diverge from the typical
curves produced by mode complex models at higher slip values. Rudd’s model produces a
unrealistically low friction coefficient at high slip, while the tanh model has the same friction
for all slip values over the peak. As high slip values only occurs during extreme maneuvers:
when locking the wheels during braking, spinning the driving wheels during acceleration, or
on surfaces with very little friction and these conditions are to avoided anyway, these sim-
plified models should be sufficient. As the both produce similar result in the typical slip
region either could be used for normal driving conditions, but tanh model is chosen for its
simpler structure.

Pacejka
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slip

µ
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1

Figure 4.11: Comparison of simplifications of magic formula tire model for the tire dy-
namics with µmax = 1 and smax = 0.1 and a curve generated by Pacejka’s magic formula
for a tire on dry asphalt.

The relative slip used in the tire force calculation is defined as:

sw =
ωwrw − vx

max(|ωwrw|, |vx|)
(4.32)

Where vx is the speed of the vehicle along the longitudinal direction and vw is the speed of
surface of the tire relative to the vehicle. vw is calculated using the effective radius, reff:

vw = ωwreff (4.33)
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The effective radius is the radius observed by rolling the tire and measuring the distance
covered. The directly measured radius of the wheel is generally not the same as the effective
radius.

The calculated slip should always be in the range 〈−1, 1〉. A slip value of 0 means that
there is no sliding between the tire and the ground and a slip value of ±1 means that the
tire is slipping in either direction. As the velocity of the vehicle and tire approaches zero
the definition no longer holds as the delimiter becomes zero. This is not a problem when
studying a vehicle that always is in motion, but creates problems when investigating stopping
and starting. To correct this a minimum value for the delimiter, vmin, is added to avoid
that the slip becomes singular. In addition to this eq. (4.32) gives slip values with absolute
values larger than one when the two velocities have different signs. As this can happen, for
example when accelerating when rolling backwards, the slip is constrained to ±1 by setting
the slip equal to the sign of the speed of the wheels when the signs differ. This addition
results in the following equation for the slip:

sw =

{
sign(vw) if sign(vw) 6= sign(vx)

ωwrw−vx
max(|ωwrw|,|vx|,vmin)

otherwise
(4.34)

There exists methods for determining a value for vmin that gives the most accurate re-
sponse of the system, like the method discussed by Lee and Yoo in [17], but this approach
introduce additional parameters and computational complexity. A constant value of vmin = 1
has shown to give good results and was therefore chosen. This makes the model underesti-
mate the slip when both the speed of the tire contact point and the vehicle is below 1m s−1.
This is not regarded as a problem as this gives starts and stops with less oscillations, which
is a problem with these kinds of slip based friction models.

The front and rear tires are assumed to have equal coefficient of friction. Including this
factor and the normal force acting on the axles the complete expression for the tractive force
produced by the tires during static condition is

Fw,x,stat = µ(sw)Fw,z = µt,max tanh(2
sw

st,max
)Fw,z (4.35)

To account for the dynamic behaviour of the tire, a first order time delay is introduced with
time constant τt, is introduced:

Fw,x =
1

τt
(Fw,x,stat − Fw,x] (4.36)

The torque, Tt, applied to the wheel due to the traction force is

Tt = rdynFw,x (4.37)

where rdyn is the dynamic tire radius which is the radius of the tires under load, from axle
center to the ground. rdyn generally changes during different load conditions, but this is not
modeled, and the dynamic radius is assumed constant.

The rolling resistance is assumed to only have a static component proportional to the
normal force applied to the tire and one parameter, brr. As the rolling resistance is due to
deformation of the tire it is inversely proportional to the tire pressure and the width of the
tire. As F = ρa, a lower pressure tire has to deflect more to increase the contact patch to
the size required to support the applied load. A wider tire has to deform less as the contact
patch is wider to begin with. As the tires fitted to the vehicle are wider in the rear but run
higher pressure in the front, it is assumed that these effects cancels each other out and that
the rolling resistance for a given normal force is equal for the front and the rear tires. The
torque produced by the rolling resistance for a given normal load is therefore modeled as:

Trr = − sign(ωw)brrFw,z (4.38)

The sign function is again approximated with the tanh function.
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Figure 4.12: Diagram of the frames use to describe the vehicle dynamics and forces acting
on the vehicle.

The tire model for a single axle can be summarized with the following set of equations:[
ω̇w

Ḟw,x

]
=

[ 1
Iw

[rdynFw,x − tanh(ωw)brrFw,z + Ta]
1
τt
[Fw,x,stat − Fw,x]

]
(4.39)

sw =
ωwreff − vx

max(|ωwreff|, |vx|, vmin)
(4.40)

Fw,x,stat = µt,max tanh(2
sw

st,max
)Fw,z (4.41)

Tire normal force, Fw,z, the vehicle longitudinal velocity, vx, and the torque applied to the
axle, Ta, are input variables. For the front axle Ta is only the brake torque, while for the
rear axle it is also the torque applied from the drive line.

4.6 Vehicle dynamic model

The forces acting on the vehicle is gravity, ~Fg, drag, ~Fd, and the tire forces, ~Ffw and ~Frw.
These forces as well as the reference frames used to describe the model is shown in fig. 4.12.
As only the longitudinal dynamics are under consideration OLAV is assumed to only move
in two dimensions horizontal and vertical. The axes are labeled x, for horizontal, and z, for
vertical. Three frames are used for the model are the inertia frame, F i, the ground fixed
frame, Fg, with x axis parallel to the ground surface as experienced by the wheels and z
axis pointing up, and the body frame, Fb, centered in the vehicles center of mass with x
pointing forward and z up and intersecting the origin of the ground frame. The wheels are
assumed fixed in the ground frame while the rest of the vehicle is assumed fixed in the body
frame. The vehicle suspension is assumed fixed vertically, but free to move around the pitch
axis. The pivot point of the suspension is assumed to be the origin of the ground frame.
This assumed location of the roll center may not coincide with the vehicles true roll center,
but simplifies the calculations greatly.



4.6. VEHICLE DYNAMIC MODEL 39

The equations for the linear motion of the body frame in the inertia frame is

mv ~̇vb = ~Fg + ~Fd + ~Frw + ~Frw (4.42)

Which can be decomposed in the axes of the ground frame:

mv
˙

(vigb,x) = F g
g,x + F g

w,x + F g
d (4.43)

mv
˙

(vigb,z) = F g
g,z + F g

fw,z + F g
rw,z ≈ 0 (4.44)

As the ground frame is fixed to the ground the vertical forces in Fg must sum to zero:∑
z

F g = F g
g,z + F g

fw,z + F g
rw,z = 0 (4.45)

and the horizontal forces sum to the tire tractive forces:∑
x

F g = F g
fw,x + F g

rw,x = 0 (4.46)

The equation of motion of the body frame around the pitch axis is:

Iv,θ
˙(ωi
b) = Ts + rbbg ×

∑
~F g (4.47)

where Ts is the torque produced by the suspension between the ground frame and the body
frame and θib is the orientation of the Body frame in the inertia frame, ωb is the angular
velocity, ~rbbg is the position of the ground frame in the body frame, and

∑ ~F g are the forces
acting on the ground frame. The cross products in eq. (4.47) can be written as

Iv,θ
˙(ωi
b) = Ts + rbbg,x

∑
z

~F g + rbbg,z
∑
x

~F g (4.48)

As the angle between the ground plane is small, rbbg,x << rbbg,z and ||rbbg,z|| ≈ ||~rbgz||, the
equation can be simplified to:

Iv,θ
˙(ωi
b) = Ts +

(
F g
fw,x + F g

fw,x

)
||~rbbg|| (4.49)

The suspension is modeled as an rotational spring and damper between the ground and
the body frame. This can be expressed as:

Ts = ks

(
θig + θgb,0 − θib

)
+ bs

(
ωi
g − ωi

b

)
(4.50)

where ks and bs are the spring and damper coefficients, and θgb,0 is the orientation of the
body frame in the ground frame when no torque is imparted by the spring.

To calculate the traction force from the wheels, Ffw,x and Frw,x, the normal forces of
the front and rear wheels, Ffw,z and Frw,z are required. As the wheels are assumed fixed in
the ground frame the torque balance around the ground frame must be approximately zero:

~F g
fw × ~rgfc +

~F g
rw × ~rgrc − Ts ≈ 0 (4.51)

where ~rgfc and ~rgfc are the positions of the front and rear tire contact points in the ground
frame. Due to the geometry the cross products can be written as:

Ts = F g
fw,zr

g
fc,x − F g

rw,zr
g
rc,x (4.52)

Using the assumption of zero vertical motion in the ground frame, eq. (4.44) can be rear-
ranged to:

F g
rw,z = −F g

g,z − F g
fw,z (4.53)

which then can be used to eliminate F g
rw,z from eq. (4.52):

Ts = Ffw,zr
g
fc,x − (−F g

g,z − F g
fw,z)r

g
rc,x (4.54)
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By rearranging this equation, F g
fw,z can be found:

F g
fw,z =

Ts − F g
g,zr

g
rc,x

rgfc,x + rgrc,x
(4.55)

Equation (4.53) can then be used to find F g
rw,z.

The normal forces applied to the tires can obviously never be negative and the sum
of the normal forces can never be larger than the component of gravity parallel to the
ground frames z-axis. There therefore has to be set a maximum and minimum value for the
suspension torque. This implies that the following two inequalities must be satisfied:

F g
fw,z =

Ts − F g
g,zr

g
rc,x

rgfc,x + rgrc,x
≥ 0 (4.56)

F g
rw,z = −F g

g,z − F g
fw,z ≥ 0 (4.57)

Solving the inequalities in relation to Ts gives the following constraint for Ts:

F g
g,zr

g
rc,x ≤ Ts ≤ −F g

g,zr
g
rc,x+ (4.58)

The drag force Fd is assumed oppositely directed and proportional to the squared of the
velocity of the body frame in the inertia frame:

~F i
d = −bar

~vib

||~vib||
||~vib||

2 (4.59)

As the velocity of the body frame is parallel with the x axis of the ground frame the drag
force only has a component along the ground frames x-axis:

F g
d,x = −bar sign(v

ig
b,x)(v

ig
b,x)

2 (4.60)

As the speed of the body frame is assumed zero along the ground frames z-axis, the position
of the vehicle in the inertia frame is described by:

~̇rib = Ri
g
~
vigb (4.61)

where Ri
g is the rotation matrix defining the orientation of the ground frame in the inertia

frame. Decomposed in the two axes of the inertia frame the position is defined by:

ṙib,x = cos(θg)v
ig
b,x (4.62)

ṙib,z = sin(θg)v
ig
b,x (4.63)

The vehicle mass is described with two parameters: mv,e, which is the mass of the vehicle
including all equipment permanently fixed to the vehicle, and mv,p, which is the weight of
the payload, generally any occupants in the cabin.

mv = mv,e +mv,p (4.64)

mv,p is assumed to be added at the vehicles center of mass as it is roughly centered in the
cabin. Variation in mass due to fuel load is not taken into account, as the fuel capacity of
37.8 l is small in comparison to the vehicle’s mass which is higher than 1000 kg.

The terrain is parametrized by the orientation of ground frame, θg(rx), and its derivative
in relation to the horizontal displacement, dθg

drx
(rx). The angular velocity of the ground

frame, ωg, is then dependant on the position in the terrain and the horizontal speed of the
vehicle:

ωg = θ̇g =
dθg
dt

=
dθg
drx

drx
dt

=
dθg
drx

cos(θg)vx (4.65)

When driving in relatively smooth terrain ωg will be very small and may possibly be ignored.
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The model for the vehicle dynamics can be summed up with the following vector differ-
ential equation with simplified notation:

ω̇b

θ̇b
v̇x
ṙx
ṙz

 =


1

Iv,θ
[Ts(θb, ωb, θg, ωg) + Ffw,x(sfw, Ffw.z) + Frw,x(srw, Frw.z)]

ωb
1

mv
[(Ffw,x(sfw, Ffw.z) + Frw,x(srw, Frw,z)) rcg + Fg,x + Fd]

cos(θg)vx
sin(θg)vx

 (4.66)

mv = mv,e +mv,p (4.67)
Fg,x = − sin(θg)mvg (4.68)
Fg,z = − cos(θg)mvg (4.69)

Fd = −bar sign(vx)(vx)
2 (4.70)

Ts = ks (θg + θv,0 − θv) + bs (ωg − ωb) (4.71)
Ts ∈ [Fg,zrr,−Fg,zrf ] (4.72)

Ffw,z =
Ts − Fg,zrr
rf + rr

(4.73)

Frw,z = −Fg,z − Ffw,z (4.74)

The frame postscript is dropped from forces, the position, and velocity. As only the length
of radius vector matter, rgfc,x, r

g
rc,x, and rbbg are simplified to rf , rr and rcg. The orientation

of the body frame, θb, is changed to θv, where "v" is short for vehicle. The static offset
between ground and vehicle orientation is changed to θv,0. The wheel traction forces Ffw,x

and Frw,x are calculated by the tire model presented in section 4.5.

4.7 Complete vehicle model
The complete vehicle model has the following state vector

x =
[
ωe φ̇p φp ρb ωfw ωrw Ffw,x Frw,x ωv θv vx rx rz

]T
(4.75)

The states are summarized in table 4.1. The inputs of the model is throttle, α, brake, β,
gear, G, the inclination of the terrain, θg, and its derivative in relation to the horizontal
position dθg

drx
.

u =
[
α β G θg

dθg
drx

]
(4.76)

The models presented in sections 4.2 to 4.6 can be combined to a complete state space model
of the vehicles longitudinal dynamics:

ẋ(t) = f(x(t), u(t), γ)

=



1
Ie

[Te (α, ωe)− Tb]
kcvt
ucvt

ωe − kcvt
dcvt

(RcvtTb)− bcvtφ̇p − Φk,cvt(φp)

φ̇p
1
τb

[β − ρb]
1

Ifw
[BbkTbk(ωfw, ρbk) + Trr(ωfw, Ffw,z)− rdynFfw,x]

1
Ira

[RcvtRt(G)Tb + (1−Bbk)Tbk(ωrw, ρbk) + Trr(ωrw, Frw,z)− rdynFrw,x]
1
τt
[Ffw,x,stat − Frw,x]

1
τt
[Frw,x,stat − Ffw,x]

1
Iv,θ

[(Ffw,x + Frw,z)rcg + ks (θg + θv,0 − θv) + bs (ωg − ωv)]

ωv
1

mv
[FG,x + Fd + Ffw,x + Frw,x]

vx cos(θ)
vx sin(θ)



(4.77)



42 CHAPTER 4. VEHICLE MODEL

Symbol Description unit

ωe Angular velocity of engine. rad s−1

φ̇p Displacement speed of CVT pulleys.
φp Displacement of CVT pulleys. Proportional to the speed ratio of

the CVT.
ρb Delayed brake input.
ωfw Angular velocity of front wheels. rad s−1

ωrw Angular velocity of rear wheels. rad s−1

Ffw,x Tractive force of front wheels. N
Frw,x Tractive force of rear wheels. N
ωv Angular velocity of vehicle body around pitch axis. rad s−1

θv Pitch angle of vehicle in the inertia frame. rad
vx Speed of the vehicle along the ground. ms−1

rx Horizontal position of the vehicle in the inertia frame. m
rz Vertical position of the vehicle in the inertia frame. m

Table 4.1: The model states and their units.

The complete vehicle model contains 42 parameters. The parameters are summarized in
table 4.2. Some of these are known, while others can be estimate with reasonable accuracy
from the vehicle specifications, while others have to be estimated experimentally.

4.8 Measurement model

The measured states of the model is the engine speed, ωe, the speed of the rear wheels, ωrw,
the speed in the body frame, vx, the altitude, rz, and the pitch of the vehicle body, θv:

z =
[
ωw ωrw vx rz θv

]T (4.78)

These measurements are provided by the OLAVs instrumentation and navigation system.
The sensors are sampled in discrete time and are assumed to have additive noise. This
results in the following measurement model:

zk = h(x(tk)) + wk =


ωe(tk)
ωrw(tk)
vx(tk)
rz(tk)
θv(tk)

+ wk (4.79)

The measurement model may possibly be an over simplification, particularly for the
altitude measured by the navigation system, as it has a bias which drifts slightly over
time and the noise is therefore not truly zero mean Gaussian noise. This is compensated for
by increasing the covariance of the noise slightly. The measurement noise covariance this
consideration as well as the approximate magnitude observed in the measured data, as well
as the standard deviation reported by the navigation system:

R = diag
{
50 5e−2 1e−3 1e−1 1e−5

}
(4.80)

The horizontal distance travelled is not included in the measurements model. This is
partly because it would complicate the measurement model greatly as the true path of the
vehicle is not a straight line like assumed in the model. The position estimate from the
navigation system also has the same problem as the altitude, it drifts. Considering the time
span of the measurement series and the assumed accuracy of the velocity estimate provided
by the navigation system the integration of the velocity should be sufficient.
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Parameter Description

mv,e Total mass of vehicle without any occupants or additional equipment.
mv,p Payload mass. Includes personnel and none standard equipment.
Iv,θ Moment of inertia of the vehicle around the pitch axis
ks Spring coefficient of suspension.
bs Damper coefficient of suspension.
θv,0 Pitch of vehicle relative to ground at steady state.
rf Distance along longitudinal axis from center of gravity to rear wheel

contact patch.
rr Distance along longitudinal axis from center of gravity to front wheel

contact patch.
rcg Vertical distance from ground to center of gravity.
bar Drag coefficient.
Ie Moment of inertia of engine including the primary cvt pulley.
Pe,max Peak power of engine at full throttle.
be Viscous friction coefficient of engine.
ωPe,max Angular velocity of engine at peak power.
ωe,idle Engine idle speed.
ωe,max Angular velocity for rev limiter.
pe,idle Proportional gain of idle controller.
vmax Speed limiter set point.
ωbe Engine speed needed to engage belt.
ucvt Coefficient controlling the relationship between primary pulley angular

velocity and shifting speed.
dcvt Coefficient controlling the relationship between torque on the secondary

pulley and shifting speed.
kcvt Shifting spring coefficient.
bcvt Viscous friction coefficient of shifting.
Rcvt,U Speed ratio of CVT at full up-shift.
Rcvt,D Speed ratio of CVT at full down-shift.
µb,max Maximum friction between belt and the primary pulley.
sb,max Slip between belt and primary pulley at maximum friction.
It Moment of inertia of the gear box including secondary pulley.
bt Transmission friction.
RH Speed ratio of transmission in high range.
RL Speed ratio of transmission in low range.
RR Speed ratio of transmission in reverse.
Ifw Moment of inertia of front wheels, drive shafts, brake disks, and

differential.
Irw Moment of inertia of rear wheels, drive shafts, brake disks, and differential.
brr rolling resistance coefficient.
µt,max Maximum friction produced by the tires.
sµt,max Tire slip producing maximum friction.
τt Time constant for dynamic tire forces.
reff Effective tire radius.
rdyn Static tire radius.
Tbk,max Maximum braking torque.
τbk Time constant for brake system.
Bbk Front to rear brake torque distribution.

Table 4.2: List of parameters in the complete vehicle model.
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4.9 Simulation of the model
Figures 4.13 and 4.14 on the facing page and on page 46 shows simulations of two scenarios:
coasting down an incline in neutral and driving up an incline with varying throttle and
brake setting. The model was simulated using MATLAB’s ODE45 differential equation
solver. The parameters used for the simulation are shown in table 4.3. Both scenarios
gives behaviour that fits well with the observed and expected vehicle behaviour. The chosen
brake torque, Tbk = 5000Nm, is probably set too high as front wheels lock up immediately
during heavy braking.

The inclination for the coast down simulation was:

θg(rx) = −0.15e
−rx
200 (4.81)

giving the following expressions for rz(rx) and dθg(rx)
drx

:

rz(rx) =

∫
sin

(
−0.15e

−rx
200

)
drx

= 200 sinint
(
0.15e

−rx
200

) (4.82)

dθg(rx)

drx
= −0.15

200
e

−rx
200 (4.83)

The inclination for the driving up hill simulation was:

θg(rx) = 0.15e
rx−200

200 (4.84)

giving the following expressions for rz and dθg
drx

:

rz(rx) =

∫
sin

(
−0.15e

rx−200
200

)
drx

= 200 sinint
(
0.15e

rx−200
200

) (4.85)

dθg(rx)

drx
=

0.15

200
e

rx−200
200 (4.86)

Figures 4.15 and 4.16 on page 47 and on page 48 shows the simulations shown in figs. 4.13
and 4.14 on the facing page and on page 46 sampled with the measurement model including
additive Gaussian noise.
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Figure 4.13: Simulation of vehicle coasting down an incline in neutral. First subplot shows
the terrain. Model parameters are shown in table 4.3 on page 47 and the deterministic
terrain model in eq. (4.81) on page 44. States not relevant when coasting in neutral are
omitted.
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Figure 4.14: Simulation of vehicle driving up an incline with different throttle and brake
inputs with transmission in high range. First subplot shows the terrain. Model parameters
are shown in table 4.3 on the facing page and the deterministic terrain model in eq. (4.84)
on page 44. The delayed brake signal, ρbk is omitted from the plot.
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Parameter Value Unit Parameter Value Unit

mv,e 1040 kg bcvt 50
mv,p 160 kg Rcvt,U 0.76
Iv,θ 1093 kgm2 Rcvt,D 3.83
ks 50 kN rad−1 µb,max 0.50
bs 10 kN s rad−1 sb,max 0.20
θv,0 −0.05 rad It 0.025
rf 1.26 m bt 0
rr 0.79 m RL 24.59
rcg 0.60 m RH 10.4
bar 2.0 N s2 m−1 RR −22.92
Ie 0.2 kgm2 Ifw 4.2 kgm2

Pe,max 33.6 kW Irw 4.7 kgm2

ωPe,max 733 rad s−1 brr 0.02
be 0.01 Nms rad−1 µt,max 0.7
ωe,max 759 rad s−1 sµt,max

0.15
ωe,idle 132 rad s−1 τt 0.2 s
pe,idle 0.001 reff 0.35 m
vmax 11.2 m s−1 rdyn 0.33 m
ωengagement 209 rad s−1 Tbk,max 5 kNm
ucvt 300 rad s−1 τbk 0.5 s
dcvt 200 Nm Bbk 0.6
kcvt 100

Table 4.3: Model parameters used for simulation.
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Figure 4.15: Simulated measurements from simulation of vehicle coasting down an incline
in neutral.
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Figure 4.16: Simulated measurements from simulation of vehicle driving up an incline with
different throttle and brake inputs with transmission in high range.



Chapter 5

Parameter estimation algorithm

In this chapter the parameter estimation algorithm is presented. This includes the filter
models used for state estimation, the criterion function, and the optimization strategy. The
MATLAB is not presented in detail, but the source code is presented in appendix: A.

Due to the fact that the inclination of the ground is neither known a priori or measured
it is necessary to use a likelihood and state estimation based parameter estimation scheme.
Due to the number of parameters in the model, a two stage parameter estimation algorithm
using measurements from two different experiments is proposed. It is assumed that some
of the parameters can be estimated accurately from observations of the vehicle while it is
coasting in neutral down a hill. While the rest can be estimated by driving the vehicle using
the throttle and brake actuators.

5.1 Coast down experiment filter model

As coasting in neutral removes any influence from the engine, drive line, and brakes, the
states modeling theses are removed from the model. As the only forces on the tires are the
tractive forces and the rolling resistance the produced slip is assumed to be negligible and
the wheel speed and vehicle velocity is directly coupled through the effective tire radius and
the tractive force is assumed equal to the force generated by the rolling resistance torque.
This entails a significant reduction in tractive force which significantly reduces the dynamics
experienced by the suspension. The suspension model is therefore reduced to only the static
offset between the ground and vehicle pitch. As the terrain profile, parametrized by the
ground inclination, θg and its derivative is unknown, it is added as an additional state to
the model. The inclination of the ground is modeled as integrated zero mean Gaussian noise
scaled by the absolute value of the vehicles velocity. This results in the following expression
for the inclination model:

ωg = θ̇g = (|vx|+ 0.1)vθg (5.1)

where vθg is the zero mean Gaussian noise process. 0.1 is added to the absolute value of the
vehicle velocity so that there is still some uncertainty when the vehicle is not moving. This
results in the following state vector:

x =
[
vx rx rz θg

]T (5.2)

49
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and state space model:

ẋ = f
cd
(x(t), v(t), γ

cd
) =


1/m [Fg,x + Fd + Frr] + v1

vx cos(θg) + v2
vx sin(θg) + v3
(|vx|+ 0.1)v4

 (5.3)

m = mv +
1

(reff)2
Iw (5.4)

Fg,x = −mvg cos(θg) (5.5)
Fg,z = −mvg sin(θg) (5.6)

Fd = sign(vx)barv
2
x (5.7)

Frr = rdyn sign(vx)brrFg,z (5.8)

vcd =
[
v1 . . . v4

]T (5.9)

The continuous model is discretized by integrating from tk to tk+1 using fourth order Runge
Kutta with a time step dt = 1/120 s. The noise is assumed to have a constant value during
the prediction step, given the following discrete model:

xk+1 = f ′
cd
(xk, vk, γcd

) = RK4x(tk+1)
x(tk)

(
f
cd
(x(t), vk, γcd

)
)
, xk = x(tk) (5.10)

The measured states is the vehicle speed, both through the navigation system as well as
the wheel speed sensor, the altitude, and the vehicle pitch, giving the following measurement
vector:

z =
[
ωw vx rz θv

]T (5.11)

and measurement model:

zk = hcd(x(tk), wk, γcd
) =


vx/reff
vx
rz

θv + θv,0


∣∣∣∣∣∣∣∣
t=tk

+ wcd,k (5.12)

The parameters included in the coast down model is the effective tire radius, reff, rolling
resistance coefficient, brr, drag coefficient, bar, moment of inertia of the wheels, Ifw and
Irw, the mass of the vehicle and payload, and the static offset between the ground and
the vehicle pitch, θv,0. reff, brr, bar, and θv,0 are the parameters which are assumed to be
possible to estimate with good accuracy with this model. These parameters are organized
in the parameter vector γ

cd
:

γ =
[
reff brr bar θv,0

]T (5.13)

The process noise, vcd, and measurement, wcd, vectors are assumed to be zero mean
Gaussian noise, with covariance matrix Qcd and Rcd respectively. Qcd is set to:

Qcd = diag
{
1e−3 1e−3 1e−3 1e−5

}
(5.14)

As the only state which is actually assumed to be stochastic is the ground inclinations, θg,
the covariance of the other states are set rather arbitrarily. The covariance of the θg was set
to provide good tracking of a moderately uneven terrain.

As the suspension dynamics are ignore, the noise of the pitch measurement is increased
by two orders of magnitude over the original measurement model to compensate for the
inaccuracy of the model. This results in the following measurement noise covariance matrix:

Rcd = diag
{
5e−2 1e−3 1e−1 1e−3

}
(5.15)
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5.2 Full model filter model

The filter model for the complete vehicle longitudinal dynamics uses the complete model
from chapter 4, but extended with the same terrain model from the coast down filter model.
This gives the following state vector:

x =

[
ωe φ̇p φp ρb ωfw ωrw Ffw,x . . .

. . . Frw,x ωv θv vx rx rz θg

]T
(5.16)

The terrain inputs are removed from the input vector as they are now model by the stochastic
inclination model. This reduces the input vector to:

u =
[
α β g

]
(5.17)

The model has the structure:

ẋ = ffm(x(t), u(t), v(t), γ, γ̂
cd
) =

fm(xm(t), um(t), γ, γ̂
cd
) +

v1(t)
...

v13(t)
(|vx|+ 0.1)v14(t)

 (5.18)

where fm is the vehicle model, xm is the unextended state, and um is the original input
vector including the terrain from the filter model. The filter model is a function of both the
parameters found by the coast down model,γ

cd
, as well as the other model parameters, γ.

This continuous model is discretized by integrating from tk to tk+1 using fourth order
Runge Kutta with time step dt = 1/200 s. The time step is a compromise between accuracy
and reasonable computation time. The noise and the input variables is assumed to have
a constant value during the prediction step. This results in the following structure for the
discretized model:

xk+1 = f ′
fm

(xk, uk, vk, γ, γcd
)

= RK4x(tk+1)
x(tk)

(
f
fm

(x(t), uk, vk, γ, γcd
)
)
, xk = x(tk) (5.19)

The measurement vector is the same as the originally proposed model:

z =
[
ωe ωrw vx rz θv

]T (5.20)

and with the same measurement model:

zk = h(x(tk)) =


ωe

ωw

vx
rz
θv


∣∣∣∣∣∣∣∣∣∣
t=tk

+ wk (5.21)

Process noise covariance matrix was set to:

Qfm = diag

{
1e2 1 1e−2 1e−2 1e−2 1e−2 1e2 . . .
. . . 1e2 1e−2 1e−4 1 1e−5 1e−5 1e−4

}
(5.22)

The covariance was chosen in an effort to account for the assumed inaccuracy of the model,
where the engine speed and traction force are assumed to be the most inaccurate. Measure-
ment noise was set to the same as for the original model in chapter 4:

Rfm = diag
{
5e1 5e−2 1e−3 1e−1 1e−5

}
(5.23)

As the full model contains all the model parameter theoretically all of the parameters
can be estimated. The exact parameters that will be estimated will be decided later.
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5.3 Negative log likelihood criterion
As both of the filter models are nonlinear, a UKF will be used for state estimation and
for calculating the log likelihood from measurements of the vehicle. The UKF was chosen
over the EKF both because it generally performs better and because it does not require the
computation of the models Jacobian, which for the full model would be a fairly difficult.
As described the continues time models are integrated using fourth order Runge Kutta
integration so that the regular formulation of the UKF with discrete time models can be
used. The implementation of the UKF is based on the algorithm presented in section 2.2
although the state is not augmented with the measurement noise as it is additive for both
of the filter models.

As it is possible for some parameter combinations to cause the UKF to diverge, resulting
in a non positive definite covariance, which again causes MATLAB to throw an error when
trying to take the matrix square root, the criterion function is set up too catch the error
and set the likelihood to −∞ instead of crashing the program. As it may be desirable to
use a couple of different measurement series instead of one long measurement series for the
parameter estimation, the criterion function is set up to take multiple measurement series
and sum the log likelihood from these together. This results in the following criterion:

J (γ) =


∞ if UKF throws an error
Nds∑
i=1

−ξUKF(Zi
N , γ) otherwise

(5.24)

5.4 Optimization strategy
The parameter optimization starts by estimating the parameters in the coast down filter
model. The estimation is done by optimizing the negative log likelihood, calculated by
the UKF using the coast down filter model, using MATLAB’s fmincon algorithm, which
is a gradient based algorithm. The parameter space is bounded to reasonable limits. To
improve the chance of finding a global minimum the optimization is started from 20 staring
points uniformly drawn from the space of allowable parameters. The default parameters are
used for fmincon.

When the parameter estimation using the coast down model is finished the full filter
model is used to estimate a subset of the remaining parameters. Due to the number of
parameters in the full model experiment a gradient based algorithm is assumed to be to
slow and unlikely to find a global minimum. Especially since the gradient of the criterion
has to bes estimated numerically. MATLAB’s Particle swarm optimization was therefore
instead used as it allows to search through a larger portion of the parameters space with
fewer criterion function evaluations. The default number of particles, 10 times the number
of parameters is used, and the optimization is allowed to continue until there has been either
20 iteration without improvement or for a total of 100 iterations.

After the particle swarm optimization has ended and hopefully found a value close to
the global maximum the resulting parameters are further optimized using fmincon. Where
available the computations are run in parallel.



Chapter 6

Parameter estimation

In this chapter some of the more practical aspects of the parameter estimation are presented.
First the parameters that are known a priori will be determined and then reasonable ranges
for the parameters that will be estimated are set. The parameter estimation algorithm will
be tested on simulated measurements to give an indication of the expected performance of
the estimator and to uncover any obvious flaws

6.1 Choosing parameters to be estimated
The model developed in chapter 4 has 42 parameters. Some of these are known parameters
from the vehicles specifications and other can be measured easily. The remaining parameters
must either be estimated if an accurate value is assumed to necessary or can alternatively
be approximated using educated guesses if they are assumed to be less important for the
accuracy of the model.

6.1.1 Known and approximated parameters

The mass of OLAV was measured with a vehicle scale that had a claimed accuracy of 20 kg.
The total mass was measured by placing the whole vehicle without any occupants on the
scale. In addition to this the weight of the vehicle on each axle and individual wheel was
measured, as well as the total mass with two occupants manning the vehicle during the while
obtaining the measurements used for parameter estimation. These measurements weight
measurements are summarized in table 6.1. From these measurements it can be be deduced
that mv,e = 1040 kg and mv,p = 160 kg. The position of the center off mass in the relation
to the axles was estimated as follow:

rfw =

mfront center
mmiddle center

+
(
1− mrear center

mmiddle center

)
2

wheelbase (6.1)

rrw = wheelbase − rfw (6.2)

The vehicle specification specifies the wheelbase to 2.05m, which results in rfw = 1.26m
and rrw = 0.79m, which seams reasonable given the rear mounted engine and all the instru-
mentation and batteries placed at the rear of the vehicle. The height of the center of mass
is set to rz = 0.60m. This is just an educated guess based on the vehicle geometry and
not based on any measurements. The occupants are not assumed to affect this as they are
place more or less exactly in the estimated center of mass. The moment of inertia around
the pitch axis, Iv,θ, was approximated by:

Iv,θ = (mv,e)

(
wheelbase

2

)2

(6.3)

which gives Iv,θ = 1093 kgm2.
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Left side Center Right side

Front axle 180 kg 400 kg 200 kg
Both axles 500 kg 1040 kg 520 kg
Rear axle 300 kg 640 kg 320 kg
With two occupants 1200 kg

Table 6.1: Measurements of axle weights and total vehicle wight with and without occu-
pants.

t[s]

R
c
v
t

0 100 200 300
0

2

4

6

8

10

Figure 6.1: Measured speed ratio of the CVT. Dashed lines shows the assumed endpoints
for the speed ratio of the CVT, 0.76 and 3.83. Measurement does not take into account belt
slip.

Very little information exist about the torque and power characteristics of the engine.
There exists no information about the position of the power peak. It is assumed to at
7000RPM or733 rad s−1, right before the rev limiter engages, as this gives a relatively flat
torque curve which is what the service manual for the vehicle describes [7]. The engine
idle speed is specified to be 1250RPM, or 131 rad s−1, and the rev limiter is specified to
be 7250RPM or 759 rad s−1. The moment of inertia of the engine is estimated by assuming
a 10 kg flywheel with 0.20m radius. This gives Ie = 10 kg(0.15m)2/2 = 0.11 kgm2. The
optional speed limiter activates at 25 miles per hour or 11.2m s−1 according to the service
manual [7], vmax = 11.2m s−1ătherefore chosen. The idle controller gain was set to pe,idle =
1e−3, but is assumed to not be very critical.

sb,max = 0.2 was chosen for the slip between the belt and the pulley producing maximum
friction in the CVT. The CVT seems to engage the belt at approximately ωbe = 209 rad s−1

(2000RPM). The speed ratios of the CVT at maximum up-shift and down-shift are not
specified in the service manual, neither where any other public specifications for this found.
There does exist public specifications for the Polaris P90 CVT on the frequently asked
questions page of the Polaris SAE sponsorship program webpage [21]: 3.82 : 1 maximum
down-shift and 0.76 : 1 up-shift. It is possible that these ratios are shared between many of
Polaris’s CVT-s and adapted to the specific vehicle by tuning the shifting mechanism’s and
transmission ratios. The CVT speed ratio can be roughly estimated with:

Rcvt =
ωe

RHωw
(6.4)

although this not take into account belt slip. A plot comparing the estimated speed ratio and
the specifications of the P90 is shown fig. 6.1. It shows that Rcvt,U = 0.76 and Rcvt,D = 3.83
are very likely candidates when taking the belt slip into consideration as the belt will slip
significantly at lower engine speeds and thereby making the estimated speed ratio larger.

The speed ratios of the gears in the transmission are specified in the service manual [7].
They are 10.4, 25.59, and −22.92 for high range, low range, and reveres respectively. These
speed ratios include the speed ratio provided by the final drive gearing of the rear differential.
The inertia of the transmission is approximated by a 5 kg disc with 0.10m radius giving
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It = 5kg(0.10m2/2 = 0.025 kgm2. The friction in the transmission governed by bt is
assumed to be zero. This does not reflect reality, but it is assumed that the model can
compensate for this with a lower engine power estimate.

The dynamic tire radius is assumed to be equal to the specified static radius of the tires,
0.330m. Due to the aggressive tire pattern on the off-road tires fitted to the vehicle the
true static radius is larger than the specifications. The critical slip for tires on dry asphalt
is typically 0.1 to 0.2. The critical slip is therefore assumed to be st,max = 0.15. The time
constant for the tires was set to τt = 0.2 s which gave well behaved simulations. Higher values
gave very unrealistic overshots in the traction force due to the slow build up in forces, while
lower values caused a lot of high frequency oscillations, particularly at low speeds where the
slip can change rapidly. The combined moment of inertia of the front wheels is assumed
to be Ifw = 20 kg ∗ (0.33m)2 + 2kgm2 = 4.2 kgm2, i.e. as two disks with mass 20 kg and
radius 0.33m plus an additional 2 kgm2 to account for the rest of the rotating mass of the
front axle. The rear is approximated similarly: Irw = 25 kg∗(0.33m)2+2kgm2 = 4.8 kgm2.

As the spring and friction parameters of the CVT, kcvt and bcvt, only govern the speed of
the shifting, they are set to values which gave reasonable results during simulation: kcvt =
100 and bcvt = 50.

The brake balance, Bbk, is usually biased towards the front wheels on most cars. As the
Polaris Ranger has brakes with two pistons on the front brakes and one on the rear brakes
this seems to apply to OLAV as well. The brake balance was therefore set to Bbk = 0.6, i.e
60% to the front. The time constant for the brake system was set to τbk = 0.5 s

Summary of the 30 parameters which was presented here and are assumed known in the
model is shown in table 6.2.

6.1.2 Parameters to be estimated

Excluding the 30 parameters set in section 6.1.1 there are 12 parameters that has to be
estimated. Reasonable bounds has to be set to make it feasible to estimate these parameters.
The bounds chosen for the parameters are summarized in table 7.1.

The effective tire radius ,reff, should be somewhere between the static and the dynamic
radius. The tire specification specifies the tires as 26 inches in diameter, or 0.33m in radius,
although it is not specified if this includes the fairly aggressive tire pattern, so it may actually
be higher. 0.40m was therefore chosen as the upper bound. The lower bound was set to
0.30m.

The rolling resistance coefficient brr could potentially be zero, but never higher than one
divided by the dynamic tire radius as the resulting force would be higher than the normal
force experienced by the tire. A more realistic estimate would probably be that the torque
would result in no more than 10% of the normal load or brr = 0.1/0.33 ≈ 1 where 0.33 is
the assumed dynamic tire radius, rdyn. The bound for brr is therefore set to 0Nmrad−1 s
to 0.3Nmrad−1 s. The drag coefficient, bar, can also be zero and a reasonable upper bound
of ten results in 1000N of drag force at 10m s−1.

The maximum power is claimed by a Polaris sales brochure for the Ranger XP 900 [18]
to be 60hp or approximately 45 kW. It is not specified if this is the horsepower as measured
at the flywheel or the wheels, but as it is not specified it is most likely measured at the
flywheel as it is always higher. The vehicle registration paper on the other hand specifies it
to 17 kW, although this is probably the maximum nominal power and not the peak power.
The range for Pe,max was therefore set to 17 kW to 55 kW. The engine friction parameter,
be, is assumed to be in the range 1e−4Nms rad−1 to 0.2Nms rad−1, giving friction torque
between 0.05Nm to 200Nm when the engine is at 500 rad s−1 and zero throttle.

The engine speed dependant shifting parameter of the CVT, ucvt, is the engine speed
minus the CVT engagement speed necessary to completely overcome the pre-load spring
and reach maximum up-shift assuming no torque load. ucvt therefore has to be less than
ωe,max −ωengagement = 550 as it is possible to reach maximum up-shift, but larger than zero
due to the structure of the model. The range for ucvt is set to 1 to 550. Torque dependant
down-shift parameter dcvt also has to be larger than zero due to the model structure. 1000
was chosen as a reasonable upper limit, resulting in the range 1 to 1000 for dcvt.

The possible range for the tire coefficient of friction, µt, is between 0 assuming that the
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Parameter Value Source

mv,e 1040 kg Measured with vehicle scale.
mp,e 160 kg Measured with vehicle scale.
Iv,θ 1092 kgm2 Estimated from measured mass and vehicle dimensions.
rfw 1.26m Estimated from measurements of axle weights.
rrw 0.79m Estimated from measurements of axle weights.
rcg 0.60m Guess based on vehicle geometry.
bs 50 kNms rad−1 Gave reasonable results during simulation.
Ie 0.2 kgm2 Guess based on engine size.
ωPe,max 733 rad s−1 Guess based on engine size and engine speed limit.
ωe,max 759 rad s−1 Vehicle specification.
ωe,idle 131 rad s−1 Vehicle specification.
pe,idle 1e− 3 Gave reasonable results during simulation.
vmax 11.2m s−1 Vehicle specification.
ωbe 209 rad s−1 Based of observation.
sb,max 0.2 Guess.
Rcvt,D 3.83 Specification for similar a CVT.
Rcvt,U 0.76 Specification for similar a CVT.
kcvt 100 Gave reasonable response during simulation.
bcvt 50 Gave reasonable response during simulation.
It 0.075 kgm2 Approximation based on transmission size.
bt 0Nms rad−1 Friction in transmission modelled by less engine power.
RL 25.69 Vehicle specification.
RH 10.4 Vehicle specification.
RR 22.92 Vehicle specification.
Ifw 4.2 kgm2 Approximated from wheel weight and radius.
Irw 4.8 kgm2 Approximated from wheel weight and radius.
sµt,max

0.15 Typical value for tire on dry asphalt.
τt 0.2 s Gave reasonable response during simulations.
rdyn 0.33m Guess based on tire geometry.
τbk 0.5 s Gave reasonable response during simulations.
Bbk 0.6 Typical value of brake torque applied to the front wheels.

Table 6.2: List of assumed known parameters.



6.2. TESTING THE PARAMETER ESTIMATION ALGORITHM WITH SIMULATED DATA57

Parameter Lower bound Upper bound

reff 0.300m 0.400m
brr 0Nms rad−1 1Nms rad−1

bar 0Nm−2 s2 10Nm−2 s2

θv,0 −0.2 rad 0.2 rad
Pe,max 17 kW 55 kW
be 1e−4Nms rad−1 0.2Nms rad−1

ucvt 1 550
dcvt 1 1000
µb,max 0.01 10
µt,max 0.5 1.0
Tbk,max 1 kNm 5kNm
ks 20 kNmrad−1 120 kNmrad−1

Table 6.3: List of parameters that will be estimated and plausible bounds for the parameter
values.

tire is really bad to about 2 assuming it is the best racing slick in the world, although both
0 and 2 are extremely unlikely. The range was therefore set to a more reasonable range of
0.5 to 1.

The friction coefficient of the CVT belt is not actually a friction coefficient as it also
influences the normal force produced given the engine speed. The range 0.01 i to 10 is
assumed to cover the possible value for µb,max.

The range for maximum brake torque, Tbk,max was set to 1 kNm to 5 kNm. The resulting
brake force is calculated by Fbk = Tbk,max/rdyn. This causes between 3 kN to 15 kN of
braking force assuming the tires can provide the needed traction.

Assuming a maximum traction force of 5 kN the resulting torque applied to the vehicle
body is approximately rcgFw,x = 0.60 × 10 kNm = 3000Nm. If this results in pitching of
the vehicle body in the range 0.05 rad to 0.3 rad the suspension spring constant, ks, must
be between 20 kNmrad−1 to 120 kNmrad−1.

6.2 Testing the parameter estimation algorithm with
simulated data

The verify that the parameter estimation algorithm converges to a optimal result it was
tested on simulated data. The simulations used are the same as the ones presented in
section 4.9, which contains no measurement noise except for the deterministically generated
inclination.

6.2.1 Tuning the unscented Kalman filters

The α tuning parameter for the UKF was determined by testing the filters on the simulated
data with different values of α between 1e − 3 and 1. The criterion used for deciding the
optimum α was the weighted mean squared error between the estimated state and the true
simulated stated.

JWMSE(α) =
1

N

N∑
k=1

(x̂k(α)− xk)
T
W (x̂k(α)− xk) (6.5)

The weight matrix for finding alpha for the coast down filter was set to:

Wcd = diag
{
2 1 2 4

}
(6.6)

placing special emphasis on correct estimation of the inclination of the ground, θg, and less
emphasis on correct estimation of the horizontal position. The optimum optimum α decided
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for the coast down filter model was 1e−3. For the full model the following weight matrix
was used:

Wcd = diag
{
1e−1 1 2 1 1 1 1e−3 1e−3 1 1 1 1 1 2

}
(6.7)

Again, a little extra emphasis is put on correct inclination estimation. Both engine speed
and the tire traction forces are weighted much lower than the other states because they
can have much higher values than the other states. Both of the weight matrices where
normalized so that the sum of their diagonal elements are one. The weight matrices where
normalized, so that the sum of all elements are equal to one. The weighted mean square
error was calculated for 100 evenly spaced values between 1e−3 to 1. The result is shown
in fig. 6.2.

αfm

W
M

S
E

αcd

W
M

S
E

0 0.5 10 0.5 1

0

5

10

0.01055

0.0106

0.01065

0.0107

0.01075

Figure 6.2: Weighted mean square error of estimated and true system state as a function
of α for the coast down and full model filters applied to simulated data without process
noise. The WMSE for the full model filter continuous to raise to 7.5e9 for α = 1e−3. The
plot is cut off at WMSE = 10 as the higher values clearly are sub optimal choices for α.

As the datasets used to tune the filters do not contain any process noise except for the
generated terrain, the only state that will deviate significantly from the filter prediction is the
ground inclination, θg, which is modeled as a random walk by the filters. As the inclination
changes slowly, one would expect to see fairly similar values for the mean squared error for
all values of α as the spread of the sigma points should not significantly change the ability
of the filter to track the state. The major exception to this is filter models becomes unstable
due to the spread of the sigma points.

The weighted mean square error of the state estimate produced by the coast down filter
is more or less constant for all values of α. This is the expected result. α for the coast down
filter was chosen to be 0.1.

The weighted mean square error of the state estimate produced by the full model on
the other hand varies significantly with different values of α. For values ≈ 0.25 and smaller
the weighted mean square error raises sharply to a maximum value of 7.5e9 at α = 1e−3.
A possible explanation for this is that the response of the model becomes to fast for the
numerical solver used to discretize the model when the sigma points are placed far from the
mean value. This results in an unstable solution for some of the sigma points. Particularly
the tire model is assumed to cause problems as the slip, and with it the generated traction
forces, can change rapidly, especially at low vehicle speeds where small changes in tire speeds
creates large changes in slip.

One possible way to rectify this other than to raise the α is to improve the discretization
of the model used for the state prediction making it better suited to handle the stiffness of
the system. This can either be done by decreasing the time step, by using a variable time
step solver, or by using a implicit solver better suited to the stiff problem. There was not
time to implement variable step length or a implicit in the time frame of this thesis, and
the solvers provided by MATLAB are to slow for the order of problem: solving a 14 state
space equation for 2 ∗ (14 + 14) + 1 sigma points. Decreasing the time step of the fixed
time step Runge Kutta integration routine is not desirable either as the UKF already uses
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−50% −10% −1% 1% 10% 50%

reff −5.5e5 −1.2e4 −2.1e2 2.5e1 −6.6e3 −1.1e5
brr −2.2e3 −8.5e1 −8.0e−1 −9.2e−1 −8.7e1 −2.1e3
bar −7.9e1 −2.9 4.7e−3 −6.9e−2 −3.6 −8.3e1
θv,0 −9.5e1 −9.5 −7.4e−1 6.9e−1 4.8 −2.3e1

Table 6.4: Parameter sensitivity for coast down filter with Runge Kutta based discretiza-
tion of model. Relative change of log likelihood in percent when changing one parameters
from known correct values by ±1%, ±10%, and ±50% from the true parameter value used
to generate the dataset. Filter tuning parameter α = 0.1.

approximately 1 s to estimate the state from 3 s of measurements, already resulting in fairly
long processing time for the parameter estimation.

It was therefore decided to set α sufficiently high to avoid the problem. The α for the
full model filter was therefore set to 0.4, giving a bit of margin over the point where the
filter model appears to become unstable.

6.2.2 Parameter sensitivity

To find out if the parameter estimation is likely to give good results a rudimentary sensi-
tivity analysis was performed. The filters were tested on the simulated data with the same
parameters used during the simulation to give a baseline for the log likelihood. Each of the
model parameters was then changed one by one ±1%, ±10%, and ±50% from their known
correct values and the log likelihood reevaluated. This is a test to see if changing the pa-
rameters to known wrong values decreases the log likelihood as it should. It can also be
used to decide which parameters to estimate based on the relative change of likelihood and
estimating the parameters that changes it the most.

The results for the two filter models are shown in tables 6.4 and 6.5. Parameters that did
not change the value of the log likelihood are excluded (speed ratios of the gears not used
etc.) As should be apparent the estimator is unlikely to find the exact parameters used for
the simulation. Many of the parameters gives a higher log likelihood for the changed values
than the known correct ones. Small variations when changing the parameters with ±1% or
for some parameters even ±10%, are probably to be expected as the simulated dataset is
only 60 s long and has a fairly limited dynamic range. A longer measurement series with
more varied inputs would likely provide better accuracy.

The coast down model has good results for reff, brr, and bar, with lower log likelihood
when changed ±10% and ±50%. θv,0 on the other hand shows a 4.8% higher log likelihood
when being increased by 10%. This could mean that the assumption that the suspension
dynamics can be ignored does not hold true.

The full filter model shows reasonable result for most of the parameters, but some devi-
ates significantly. A possible reason for the inaccuracy is the stiffness of the system and the
sub optimal numerical solver used which was discussed in section 6.2.1. Particularly the pa-
rameters which influences the acceleration of the wheels hints at this. Increasing the wheel
and transmission inertia, Ifw, Irw, and It, all results in a higher log likelihood, even at a
50% increase. Although the log likelihood also increases then the values for Irw and It are
lowered. These parameters are already assumed to be known a priori and are not part of
the parameters that will be estimated.

Because the simulated dataset spends no time at idle, the parameters controlling the idle
speed, ωe,idle, and gain of the idle controller, pidle, does not change the likelihood. The same
is true for the max engine speed, ωe,max, which only influences the likelihood when reduced
significantly.

6.2.3 Parameters estimated from simulated data

The complete parameter estimation algorithm was tested on the two simulated dataset.
The estimation took 9 h and 45min running on a 4 core 2.93GHz Intel Xenon X5570. The
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−50% −10% −1% 1% 10% 50%

mv,e −1.6e2 −1.4 5.0e−2 −1.8e−1 −1.8 −3.9e1
mv,p −3.1e−1 1.0e−1 1.2e−1 9.4e−3 −5.5e−2 −9.0e−1
rf −5.4e1 −1.1 −2.0e−2 1.5e−1 9.7e−1 −4.3
rr −9.0 1.0 1.6e−1 −1.4e−2 −1.0 −1.7e1
rcg −6.2e1 −2.2 7.6e−1 9.8e−1 −6.4e−1 −2.9e1
Iv,θ −1.2 −1.4e−1 5.8e−2 1.1e−2 9.4e−2 −6.4e−1
ks −5.9e1 −7.7e−1 1.1 8.7e−1 −1.8 −3.0e1
bs −3.9 −1.9e−1 −1.7e−2 4.9e−2 8.0e−1 −1.2
Ie −4.9e1 −1.2 −3.4e−2 1.0 2.0e−1 −2.1e1
Pe,max −4.3e2 −1.7e1 5.9e−1 2.1e−1 −1.3e1 −3.8e2
be −6.0e−1 9.4e−1 6.5e−2 1.1e−1 7.2e−1 −2.9e−1
ωe,idle 0.0 0.0 0.0 0.0 0.0 0.0
ωPe,max −3.8e2 −1.1e1 9.5e−1 7.7e−1 −1.1e1 −1.8e2
ωe,max −1.2e3 0.0 0.0 0.0 0.0 0.0
vmax −7.5e2 −3.9e1 −3.2e−1 −2.5e−1 −1.6 −1.6
pe,idle 0.0 0.0 0.0 0.0 0.0 0.0
ωbe −1.2e3 −5.0e1 4.0e−1 5.2e−1 −4.3e1 −9.6e2
Rcvt,U −2.4e3 −4.0e1 6.6e−1 −2.1e−1 −2.5e1 −3.0e2
Rcvt,D −1.2e1 −7.5e−1 −1.1e−2 1.6e−1 −3.1e−1 −1.7e1
RH −2.1e3 −2.7e1 7.0e−1 −5.3e−2 −1.4e1 −1.8e2
ucvt −2.0e3 −3.5e1 −4.0e−1 −1.5e−1 −2.4e1 −3.7e2
dcvt −4.9e2 −7.0 8.2e−2 −1.3e−1 −6.0 −8.2e1
kcvt −4.8 −1.5e−1 3.1e−2 4.9e−2 −6.4e−2 −1.2
bcvt −4.7 −1.5e−1 9.0e−2 3.4e−2 −1.1e−2 −1.8
µb,max −7.4e1 −9.5e−2 −1.7e−1 7.1e−2 −1.4 −1.8e1
sb,max −2.8 −8.6e−2 1.4e−1 6.9e−2 5.0e−2 −1.3
It 8.0e−1 1.0e−1 1.7e−2 5.8e−2 8.3e−2 2.3e−1
rdyn −1.8e2 −1.0 7.0e−2 8.3e−1 −2.8 −5.5e1
Ifw −5.2 −1.2 9.1e−2 1.1e−1 1.2 1.9
Irw 4.6e−1 3.7e−2 6.0e−2 4.3e−2 1.5e−1 1.3e−1
µt,max −2.7e2 −2.6 2.9e−2 6.6e−2 −1.7 −3.5e1
sµt,max −3.8e1 −1.1 −4.0e−2 1.1e−1 −1.5e−1 −2.9e1
τt −2.3 6.7e−1 1.1e−1 9.7e−2 2.9e−2 −2.1
Tbk,max −4.4e1 −2.9e−1 9.7e−1 5.0e−2 −1.4 −1.9e1
τbk −1.0e1 −4.6e−1 1.1e−1 1.0 9.0e−1 −2.0
Bbk −2.2e1 −1.4 5.0e−2 −1.8e−2 −3.3 −8.3e1

Table 6.5: Parameter sensitivity for full model filter with Runge Kutta based discretization
of model. Relative change of log likelihood in percent when changing one parameters from
known correct values by ±1%, ±10%, and ±50% from the true parameter value used to
generate the dataset. Filter tuning parameter α = 0.4.
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Estimated True Difference/%

reff 3.52e−1 3.50e−1 6.42e−1
brr 1.98e−2 2.00e−2 −1.08
bar 2.05 2.00 2.56
θv,0 −5.80e−2 −5.00e−2 1.59e1
Pe,max 3.41e4 3.36e4 1.50
be 7.04e−3 1.00e−2 −2.96e1
ucvt 3.00e2 3.00e2 4.87e−2
dcvt 2.04e2 2.00e2 2.04
µb,max 5.09e−1 5.00e−1 1.85
µt,max 6.39e−1 7.00e−1 −8.69
Tbk 4.73e3 5.00e3 −5.32
ks 4.07e4 5.00e4 −1.87e1

Table 6.6: Parameters estimated from simulated data, their known true values, and the
estimation error in percent.

estimated parameters as well as their known true values are shown in table 6.6.
Most values are reasonably close to their true values considering the small datasets and

the already discussed problems with the full model filter. The largest errors are the engine
friction parameter, be, which is estimated 30% to low and the suspension spring parameters,
ks, which is estimated 19% to low. As these parameters are estimated with the full model
filter with the parameters estimated by the coast down filter, it is possible that these errors
are sequential errors caused by the error in the estimate of the steady state vehicle pitch
offset, thetav,0, which was estimated 16% from the true value.

6.2.4 State estimation and simulation using estimated parameters
The model was tested with the parameters estimated with the simulated data both for
simulation and state estimation. The result of the state simulation and estimation in addition
to originally simulated state are shown in fig. 6.3 on the following page. The reference
state simulation used is the same used to generate the measurements used to estimate the
parameters originally presented in section 4.9.

Even with the slightly wrong parameters, the UKF tracks the known true state perfectly,
although the rejection of the measurement noise is not perfect. The simulation using the
estimated parameters also follows the state closely. As the original simulation was generate
without process noise and the same data as used for the parameter estimation was used, this
is the most ideal scenario imaginable, and can therefore only be used as an upper bound for
the performance that can be expected.

6.3 Experimental data used for parameter estimation
The cost down model is given two 60 s long measurement series of the vehicle coasting down
a hill. The measurement series are shown in fig. 6.4. Both series are from the same hill. The
hill has three speed bumps as well as some other irregularities which can be clearly seen by
the measurement of the vehicle pitch, θv.

Due to the time required to estimate the parameters the full filter model was also only
given two 60 s measurement series. These measurement series are shown in fig. 6.5. One
series consists of driving up the hill, and the other down the hill, both with relatively varied
throttle and brake inputs.
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Figure 6.3: State simulation and estimation using model with estimated parameters from
simulated data. The whole lines is the simulation using the estimated parameters, the dashed
is the estimated state, and the dotted is the original simulated state used to generate the
measurements for parameter and state estimation.
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Figure 6.4: Datasets used for estimating parameters using the coast down filter model.
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Chapter 7

Estimation results and model
performance

In this chapter the parameters estimated from measurements of the vehicle will be presented.
The performance of the model will be test by comparing simulations of the model and
observations of the vehicle as well as showing and example of the estimated state when used
for state estimation.

7.1 Estimated parameters

Estimating the parameters from the datasets presented in section 6.3 took 16 h and 30min.
The estimated parameters are shown in table 7.1. As the parameter estimation algorithm
estimated biased parameters when tested on simulated data these parameters are likely also
biased.

The parameters, generally looks reasonably close to what was expected. The major
exception is the peak engine power, Pe,max, which was estimated to 54.8 kW which is very
close to the upper bound set for it. It is unlikely that it truly is this high, which hints at
that the engine model is probably inaccurate. The estimated coefficient of friction for the
tires, µt,max, estimated to 0.678 seams reasonable give that they are off-road tire and thereby
not optimized for asphalt. It is hard to say anything about the remaining parameters, but
they seem reasonable given that they are placed well inside their respective upper and lower
bounds.

reff 3.56e−1
brr 1.56e−2
bar 2.55
θv,0 −4.69e−2
Pe,max 5.48e4
be 1.15e−1
ucvt 2.76e2
dcvt 1.97e2
µb,max 2.79e−1
µt,max 6.78e−1
Tbk 3.40e3
ks 6.43e4

Table 7.1: Parameters estimated from measurements of the vehicle.
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7.2 Simulations using the estimated parameters

To evaluate how well the model represents the dynamics of the vehicle, simulated measure-
ments generated by the model are compared with recorded measurements of the vehicle.
The ground inclination, θg, and terrain altitude, rz, used for the simulation is estimated
using the UKF, with the full filter model using the estimated parameters, from the dataset
the simulation is compared to. The estimated θg and rz are placed in a look-up table index
by the estimated rx.

dθg
drx

is set to zero.
As the terrain is estimated using the model, the results will likely be better than what

can be achieved if the terrain was measured using some other method, as the estimated
terrain may compensate for inaccuracies in the model. The initial conditions used for the
simulations is the state estimated by the UKF after five seconds. The throttle and brake
inputs from the simulation is the same as the recorded in the dataset and are applied at
the same time in the simulation. The model will be tested on data recorded from the same
scenarios as used for the parameter estimation: coasting down a hill in neutral as well as
regular driving.

7.2.1 Coasting down hill

The comparison between the measurements simulated by the model with estimated param-
eters and measurements recorded from the vehicle when coasting down a hill is shown in
fig. 7.1 on the next page. The simulation does not correspond particularly well with the
observations from the vehicle: the model accelerates much slower than the recorded mea-
surements, although the maximum speed achieved is relatively similar. As the parameter
estimation algorithm is know to produce a biased estimate of the static input between ve-
hicle pitch and ground inclination, θv,0, the comparison was repeated with θv,0 adjusted by
16%, to θv,0 = −3.94e−2, in both the filter model used to estimate the terrain and the
simulation model. The results of this comparison is shown in fig. 7.2 on page 68. This
drastically improved the results almost matching the observations perfectly.

7.2.2 Driving

The simulation of normal driving of the vehicle was first tested against the best case scenario,
i.e one of the datasets used for estimating the parameters. The comparison is shown in
fig. 7.3 on page 69. The simulated follows the general trend of the measurements from
the dataset quite well, but there is generally a quite large difference between the simulated
and measured behaviour. Particularly the response during deceleration, both when using
the brakes and when just using engine braking, is exaggerated. The engine speed on the
other hand is relatively equal in both the simulation and measurements. The acceleration
also seem to be to high, particularly at low throttle settings. This could be caused by errors
in the engine, CVT and or the brake model.

Comparing the model to a new set of measurements is shown in fig. 7.4 on page 70. It
shows more of the same behaviour: acceleration is too high at low and medium throttle as
well as too high deceleration when braking. The model with the current set of assumed and
estimated parameters generally does not correspond well to the observed vehicle behaviour.

7.3 State estimation

Figure 7.5 on page 72 shows state estimation with the UKF using the model with estimated
parameters as filter model. The state is estimated from the observed measurements shown
in fig. 7.4 on page 70. The estimated state looks reasonable, with no obvious discrepancies,
like the front wheels suddenly stopping or turning at a speed very different than that of
the front wheels. The brake pressure, ρbk, are estimated as always being slightly active.
Although this is reasonable, as the brake pads are likely to always be slightly in contact
with the brake discs, this was not the intended behaviour of the model. The covariance of
the state estimate, represented by ±1 standard deviation, is estimated unreasonably low.
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Figure 7.1: Comparison of simulations of model with estimated parameters and observa-
tions of the vehicle coasting down a hill. First subplot shows the inclination estimated by
the UKF and the remaining subplots compares simulated and observed measurements. Dot-
ted lines are observations from the vehicle.
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Figure 7.2: Comparison of simulations of model with θv,0 adjusted for estimation bias and
observations of the vehicle coasting down a hill. First subplot shows the inclination estimated
by the UKF and the remaining subplots compares simulated and observed measurements.
Dotted lines are observations from the vehicle.
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Figure 7.3: Comparison of simulations of model with estimation parameters and obser-
vations of the vehicle driving. First subplot shows the inclination estimated by the UKF,
the second subplot the throttle and brake inputs, and the remaining subplots compares
simulated and observed measurements. Dotted lines are observations from the vehicle. The
observation of the vehicle is one of the datasets used while estimating the parameters.
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Figure 7.4: Comparison of simulations of model with estimation parameters and observa-
tions of the vehicle driving. First subplot shows the inclination estimated by the UKF, the
second subplot the throttle and brake inputs, and the remaining subplots compares simu-
lated and observed measurements. Dotted lines are observations from the vehicle.
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This is partly explained by the low covariance of the measured states, but likely also caused
by too low process noise in the filter model.
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Figure 7.5: State estimate of the dataset in fig. 7.4 using the full model with estimated
parameters as filter model. Whole lines are the estimated means and the dashed lines are
the estimated covariance represented by the mean ±1 standard deviation calculated from
the diagonal of the estimated covariance matrix.



Chapter 8

Discussion

As the simulation results shown in chapter 7 show, the model and estimated parameters does
not conform well with the observed vehicle behaviour. When comparing the modeled and
observed behaviour when coasting in neutral, there was a quite substantial difference in the
speed, but in this scenario it was shown that the inaccuracy was primarily caused by biased
estimation of the static offset between vehicle pitch and ground inclination. By correcting
this parameter with the estimation offset found when testing the parameter estimation on
simulated data, the resulting simulation was improved dramatically. For regular driving
using the throttle and brake the overall shape of the simulated response was consistent
with the observations, but both acceleration and deceleration is exaggerated. The error
was too large to be described by inaccurate parameter estimation alone and is believed to
also be caused by modeling errors. Using the model as a filter model for state estimation,
even with slightly wrong parameters, worked well on simulated data. State estimation with
measurements from the vehicle gives reasonable results, even with the moderately large
model errors, although these results are hard to verify.

Unfortunately, as a lot of time was spent on developing and implementing the model,
state estimator and parameter estimation algorithm, the presented results where found close
to the deadline for the thesis, leaving no time to improve upon them. A lot of attention
was spent on the development of the presented model, and presented model is only the final
iteration of many incremental attempts. The resulting model is more complex than initially
expected, but it is believed that a model of this order is necessary to accurately represent
the dynamics of the vehicle. The complexity of the model resulted in slow state estimation
and parameter estimation. Early attempts at the parameter estimation took many days
to complete and the final parameter estimation algorithm presented in the this thesis is
the result of reducing the number of parameters to the absolute minimum number that is
assumed to be sufficient to give good results. Despite this, estimation of the parameters still
takes about 16 h to complete. This meant that iterative improvements where slow, which is
why attempts to improve the final results further have not been made.

8.1 Vehicle dynamics model
One of the problems encountered with the vehicle model was the stiffness of the equations, i.e
sudden and rapid changes significantly faster the overall dynamics. Particularly this applies
to the speed of the wheels, as the tire traction forces can build up very quickly, especially at
low speeds, as small changes in wheel speed results in large changes in the calculated slip.
This leads to numerical instability of the model with the fixed step Runge Kutta method
used for discretization of the model. This was part of the motivation for adding a time
delay to the developed traction forces at the cost of adding two extra states, as it made the
stiffness manageable.

One of the assumed inaccuracies in the model is the engine torque model. The model was
an attempt at describing the engine torque with as few parameters as possible, which lead
to some large assumptions. The full throttle power and torque is similar to what marketing
material from Polaris describe, but nothing is known about shape at other throttle settings.
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This lead to a rather rash assumption about its shape: that it can be described by a linear
combination of the full throttle curve and viscous friction. This is likely why the both the
maximum torque provided by the engine and the friction seems to be overestimated by the
parameter estimation, as the vehicle spends most of the time at around half throttle where
the model is least accurate.

A new model was developed for the CVT. This was done because the models described
in the literature either was overly complex or did not describe the mechanical control system,
which meant that they required large alterations to be used in the vehicle model anyway. The
overall structure of the model is assumed to describe the CVT reasonably well, although
this is not well proven and it is not known if it is the main contributor to the model error.
Some of the assumptions made about the speed and torque sensing devices of the CVT are
likely wrong. Particularly the speed to up-shift relationship is probably not linear as it is
assumed to be.

The terrain is modeled in the filter models as a stochastic process, in the from of in-
tegrated zero mean Gaussian noise scaled by the vehicle velocity. As shown by fig. 6.3 on
page 62 this works well when the filter model is relatively accurate and the terrain is smooth
and changing slowly. The inclination estimated from measurements from the vehicle seems
reasonable enough, although the true terrain is unknown so little can be concluded from
this. A more thorough investigation using more realistic simulated data therefore has to be
performed before anything can be concluded.

8.2 Parameter estimation algorithm and filter models
The maximum likelihood based parameter estimation approach, using a state estimator to
calculate the likelihood, is an approach well described in the literature. The UKF was chosen
as a state estimator both because it has good estimation performance and because it does
not need to evaluate the Jacobian of the state transition model. Two distinct experiments
and filter models where used to reduce the time needed to perform the optimization. This
reduced the processing time considerably as four of the parameters could be estimated by a
much simpler filter model which does not include the drive line model.

The reduced model is used to estimate the effective wheel radius, rolling resistance,
drag and the static offset between the ground and sensors measuring the orientation of the
vehicle. The tire traction forces are assumed to be so small that no wheel slip is present.
This assumption seems to be right as both the effective wheel and rolling resistance was
estimated to 0.6% and 1.1% of their true values when tested using simulated data. The
other assumption which was made was that there is no movement in the suspension. This
seems to have been a bad assumption, as the static suspension offset between vehicle and
ground is estimated 16% from its true value suing the same simulated data. As shown in
fig. 7.1 and fig. 7.2 in section 7.2.1, where the model with parameters estimated from observed
measurement is compared to observed measurements, this seems to influence the model
performance quite significantly. With the estimated static suspension offset, the simulated
and observed behaviour do not correspond well, but when the suspension offset is reduced
by 16%, the same amount it was estimated wrong by during simulations, it matches almost
perfectly.

Estimation of the remaining parameters using the full vehicle filter model also gave non-
negligible errors for some of the estimated parameters when tested on simulated data. A
rudimentary sensitivity analysis was performed, and showed that many of the parameters
gave better results when moved from their known true values. Particularly when moving
parameters which dampens the system response when moved the calculated likelihood in-
creased. It is therefore believed that the errors are partially related to the already mentioned
stiffness of the vehicle model. As the length of the simulated dataset was only 60 s, it may
also be possible that the results would improve with a longer measurement series with more
varied dynamics.

The α tuning parameter for the UKF was tuned by plotting the weighted mean squared
error between the estimated state and the known state of the estimation and choosing the
lowest value which did not significantly increase the weighted mean square error. The coast
down filter had almost the same error for all values α, with smallest value at α = 0.1. The



8.3. FURTHER WORK 75

error for the full filter model exploded for small α values. This is again assumed to be
caused by the model stiffness leading to numerical instability when integrated by the fixed
step Runge Kutta method. As the sigma points are placed further from the mean when α
is decreased, this results in the sigma points experiencing more aggressive dynamics. For
example: if one of the sigma points places the angular velocity of one of the wheels a large
distance away from the vehicle speed, large traction force will be calculated, and the model
will potentially be numerically unstable for prediction of the sigma point leading to a bad
approximation of the mean and covariance of the state.

The particle swarm optimization was chosen for optimizing the parameters in the full
filter model. This is not assumed to contribute to the estimation error because the estimation
error was consistent with the performed sensitivity analysis, meaning that the optimization
algorithm did its job and found the local minimum.

The computation time required to perform the parameter estimation is problematic, as
it makes design iterations takes an unreasonable amount of time. For the 8 parameters 100
iterations of the particle swarm optimization algorithm was determined to be sufficient to
find the minimum of the negative log likelihood criterion with 10 particles per parameter.
Including the initial iterations this is 8080 evaluations of the criterion. For estimating larger
sets of parameters, this increases dramatically. Gradient based optimization techniques
were not tested extensively, but when tested, required criterion evaluations in the order
of thousands to find a local minimum, as the gradient has to be estimated numerically.
As many gradient based optimization has to be performed to confirm a global minimum,
particle swarm optimization was found to be significantly quicker.

The decision of which parameters should be estimated was primarily based of which
parameters could be easily decided to a reasonable amount of accuracy from the vehicle
specifications and empirical observations of the vehicle behaviour. To make the parameter
estimation take a reasonable amount of time, more of the parameters had to be assumed to
be fixed. This resulted in a lot of guesswork related to the parameters. This has without a
doubt also impacted the performance of the final model. Even though a parameter sensitivity
analysis was performed, it was done late in the process, and therefore not used to chose
which parameters should be estimated. Although it did conform reasonably well to the final
set of parameters which was chosen to be estimated.

8.3 Further work

As the speed of the parameter estimation has been a hindrance, it is recommended to start
further work with the problem by trying to improve the performance of the parameter estima-
tion algorithm. The discretization of the model is a good place to start. It is currently based
on fixed step Runge Kutta. A variable time step solver would probably be better suited, as
mean time step needed would be decreased. This would also make the discretization handle
the slight stiffness of the model better. As steps sizes longer than the time period between
the measurements will likely be possible with a variable step solver. It should therefore be
considered if the measurement frequency can be reduced from the current 40Hz to reduce
the computation time.

A better approximation of the suspension in the reduced coast down filter model has to
be implemented to remove its estimation bias. As the engine and CVT are believed to be the
largest sources of error in the vehicle, these have to be investigated further. If an improved
discretization scheme does not improve the numerical stability of the model a different tire
model has to be considered.

Which parameter should be estimated and which can be set to fixed values should also
be investigated further. A more rigorous sensitivity analysis would likely be a good place to
start. Potentially also a second order sensitivity analysis to determine any interdependence
of the parameters.

It also has to be considered whether some of the parameters in the model should be found
using a different method than the proposed parameter estimation. It would for example be
beneficial to have accurate measurements of the torque or power produced by the engine at
different throttle setting and engine speeds, which can be made by dynamometer. The fixed
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suspension offset may also possibly be estimated more accurately by placing the vehicle on
a known level surface and measuring the reported pitch of the vehicle.

As the model with the currently estimated parameters is inaccurate when used for sim-
ulation, it is therefore likely not very useful for control system development as is. Used for
state estimation on the other hand, it seems to work reasonably well. Possible uses are on-
line estimation of some of the parameters that are likely to change, by augmenting the state
with the parameters. Potential candidates are the coefficient of friction of the tires, rolling
resistance and dynamic tire radius. The tire friction can be used to decide how aggressive
the vehicle can be driven, while changes in rolling resistance and dynamic radius of the tires
can be used to determine if one or more of the tires have been punctured.



Chapter 9

Conclusion

All the goals presented in the introduction are achieved, although to varying degrees of
success:

A. A model of the longitudinal dynamics of the vehicle is developed and presented. The
model is based on classical mechanics as well approximations of proven vehicle dynamics
modeling techniques. The drive line was modeled using bond graph modeling resulting
in a new type of CVT model. Without direct comparison to measurements of the vehicle,
it seems to give a realistic representation of the vehicles dynamics.

B. A parameter estimation algorithm is proposed and implemented. The algorithm is based
on maximum likelihood estimation, using optimization of the model parameters with
the likelihood of the observations as calculated by a UKF based state estimator. Two
different filter models and experiments are used to reduce the number of parameters that
has to be estimated simultaneously.

C. A UKF based state estimator was developed as part of the parameter estimation algo-
rithm. It manages to observe all states when applied to simulated data, but this was
during ideal conditions with the ground inclination being the only process nnoise, and
its performance have to be investigated further. It also gave what appears to be a good
estimate of the vehicle state when tested on measurements from the vehicle.

D. The parameter estimation algorithm was verified to work on simulated data, although
it did not manage to find the exact parameters. The simulations of the model with
estimated parameters was compared to measurements of the vehicle. The model was
not found to be satisfactory in its current state, but state estimation using the model
appears to work well.

Unfortunately the resulting model with the estimated parameters did not give satisfac-
tory results. This is partially believed to be caused by the parameter estimation algorithm,
as it failed to give optimal results even for simulated data. The biased parameter estimate
is believed to be caused by inaccuracies in the reduced model used to estimate parameters
decoupled from the drive line, as well as numerical instability during discretization of the
model. Estimations from longer data series is also believed to improve the results, but this
was not investigated because of computation time of current implementation of the param-
eter estimation algorithm. The estimation bias is not believed to be caused by the particle
swarm optimization algorithm used to optimize the parameters, as the estimation bias was
consistent with the performed sensitivity analysis. It is also a possibility that it is caused
by implementation errors.

The sub optimal result is also believed to be caused by errors in the developed model. Due
to the time it took to derive and implement the presented model and parameter estimation
scheme, the errors in the model is not throughly investigated. The largest sources of error in
the model is assumed to be the engine torque model and the CVT model, and these therefore
has to investigated further. Due to the stiffness of the used tire model, an alternative model
may be beneficial.
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The choice of fixed and estimated parameters can not be ruled out as a possible source
of the model inaccuracy. Due to the long processing time the parameter estimation algorithm
required, the number of estimated parameters is smaller than what was desired. This lead to
a lot of guesswork when deciding values for the fixed parameters. A thorougher parameter
sensitivity analysis should be performed to decide which parameters should be estimated.
A second order sensitivity analysis could be of benefit to investigate the interdependence of
the parameters.

The long computation time for both the state estimator and the parameter estimation
algorithm has been a problem as it considerably slowed down the development of the model
and parameter estimation algorithm. Faster and more efficient implementations of these are
therefore highly desirable as it would allow for quicker design iterations.

In its current form, the vehicle model with the estimated parameters does not match the
observed vehicle dynamics sufficiently to be useful for developing a better control system.
The overall model structure and parameter estimation algorithm is nevertheless believed to
be a good approach and have potential to give good results if worked on further.
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Appendix A

MATLAB code

This appendix presents the MATLAB implementations of the vehicle model, filter models,
the UKF, a script for testing the UKF, and the parameter estimation algorithm. Scrips used
to plot figures and doing simple calculations, like weighted mean square error for tuning α
and the sensitivity analysis, are not included as their implementation are straightforward.
These scripts can be provided by the author on request if they should be of interest.

A.1 MATLAB implementation of the filter and simula-
tion models

The MATLAB implementation of the state space model of OLAV, described in chapter 4,
is shown in listing A.1. The state transition function and the measurement functions are
implemented as nested functions, in a function that sets up all parameters and generates a
structure containing handles to f and h as well as other properties needed to use the model.
The function implements both the simulation and filter model for the full vehicle model.
The models are returned as two separate structures. Listing A.2 on page 85 shows the
implementation of the reduced filter model used for the coast down experiment.

Listing A.3 on page 86 contains the assumed true parameters and returns a structure
containing them. The function shown in listing A.4 on page 87 is used to modify the
parameter structure using an array of parameter names and an array of parameter values.
The function shown in listing A.5 on page 87 implements the fourth order Runge Kutta
integration used for discretization of the model. The models and Runge Kutta function are
implemented to work on vectorized inputs. This means that the UKF can evaluate all the
sigma points with using one function call.

Listing A.1: MATLAB implementation of the full mathematical state space model of the
vehicle dynamics.

1 function [ stochast ic_model , determinist i c_model ] = Model ( parameter_names ,
parameter_values )

2 % Model dimensions
3 determin ist ic_model .Nx = 12 ;
4 determin ist ic_model .Nu = 5 ;
5 determin ist ic_model . Nz = 4 ;
6 stochast ic_model .Nx = determinis t ic_model .Nx + 2 ;
7 stochast ic_model .Nu = determinist ic_model .Nu − 2 ;
8 stochast ic_model . Nz = 5 ;
9

10 % Names
11 determin ist ic_model . state_names = { ’ $\omega_e$ ’ , ’ $\ f r a c {d\phi_p}{dt}$ ’

, ’ $\phi_p$ ’ , ’ $\rho_{bk}$ ’ , ’ $\omega_{fw}$ ’ , ’ $\omega_{rw}$ ’ , ’$F_{fwx}$ ’ ,
’$F_{rwx}$ ’ , ’ $\omega_v$ ’ , ’ $\ theta_v$ ’ , ’ $v_x$ ’ , ’ $r_x$ ’ } ;

12 determin ist ic_model . input_names = { ’ Throt t l e ’ , ’ Brake ’ , ’ Gear ’ , ’ $\
theta_g$ ’ , ’ $\ f r a c {d\theta_g}{dt}$ ’ } ;

13 determin ist ic_model . measurement_names = { ’ $\omega_e$ ’ , ’ $\omega_rw$ ’ , ’ $v_x$
’ , ’ $\ theta_v$ ’ } ;

14 stochast ic_model . state_names = [ determinist i c_model . state_names , ’
$r_z$ ’ , ’ $\ theta_g$ ’ ] ;
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15 stochast ic_model . measurement_names = { ’ $\omega_e$ ’ , ’ $\omega_{rw}$ ’ , ’ $v_x$ ’
, ’ $r_z$ ’ , ’ $\ theta_v$ ’ } ;

16 stochast ic_model . input_names = determin ist ic_model . input_names ( 1 : 3 ) ;
17
18 % Noise covar iances
19 stochast ic_model .Q = diag ( [ 1 e+2, 1 , 1e−2, 1e−2, 1e−2, 1e−2, 1e+2, 1e+2, 1e

−3, 1e−4, 1 , 1e−3, 1e−3, 1e−4]) ;
20 stochast ic_model .R = diag ( [ 5 e+1, 5e−2, 1e−3, 1e−1, 1e−5]) ;
21
22 determin ist ic_model .R = diag ( [ 5 e+1, 5e−2, 1e−3, 1e−5]) ;
23
24 % Load cons tant s
25 p = Parameters ( parameter_names , parameter_values ) ;
26 stochast ic_model . p = p ;
27 determin ist ic_model . p = p ;
28
29 % Calcu la t e constant va lue s
30 power_coe f f i c i en t s = p .P_e_max. ∗ [ 1 / p . omega_e_P_max, 1/p . omega_e_P_max^2 ,

−1/p . omega_e_P_max^3 ] ;
31 T_e_idle = power_coe f f i c i en t s ∗ [ 1 ; p . omega_e_idle ; p .

omega_e_idle . ^ 2 ] ;
32 t ran smi s s i on_ra t i o s = [ 0 , p .R_R, 0 , p .R_L, p .R_H] ;
33 c_sw = p . k_cvt/p . u_cvt ;
34 c_tr = p . k_cvt/p . d_cvt ;
35 m_v = p .m_ve + p .m_vp;
36 F_g = m_v∗9 . 8 1 ;
37
38 % Stocha s t i c process model
39 function dxdt = f (x , u , v , type )
40 M = s ize (x , 2 ) ;
41
42 i f strcmp ( type , ’ f i l t e r ’ )
43 f i l t e r = true ;
44 else
45 f i l t e r = f a l s e ;
46 end
47
48 omega_e = x ( 1 , : ) ;
49 pul ley_speed = x ( 2 , : ) ;
50 pul ley_disp lacement = x ( 3 , : ) ;
51 brake_pressure = x ( 4 , : ) ;
52 omega_fw = x ( 5 , : ) ;
53 omega_rw = x ( 6 , : ) ;
54 F_fwx = x ( 7 , : ) ;
55 F_rwx = x ( 8 , : ) ;
56 pitch_speed = x ( 9 , : ) ;
57 p i t ch = x ( 1 0 , : ) ;
58 v_x = x ( 1 1 , : ) ;
59 r_x = x ( 1 2 , : ) ;
60
61 i f f i l t e r == true
62 r_z = x ( 1 3 , : ) ;
63 i n c l i n a t i o n = x ( 1 4 , : ) ;
64 inc l i na t i on_speed = (abs (v_x) + 1e−1) .∗ v ( 1 4 , : ) ;
65 dxdt = zeros (14 ,M) ;
66 dxdt ( 1 3 : 1 4 , : ) = [ v_x .∗ sin ( i n c l i n a t i o n ) + v ( 1 3 , : ) ; . . .
67 inc l i na t i on_speed ] ;
68 else
69 i n c l i n a t i o n = u (4) ;
70 inc l i na t i on_speed = u (5) ∗v_x .∗ cos ( i n c l i n a t i o n ) ;
71 end
72
73 t h r o t t l e = u (1) ;
74 brake = u (2) ;
75 gear = u (3) ;
76
77 % Speed as measured by wheel sensor
78 v_fw = p . r_e f f .∗ omega_fw ;
79 v_rw = p . r_e f f .∗ omega_rw ;
80 s l ip_fw = (v_fw − v_x) . /max(max(abs (v_fw) ,abs (v_x) ) ,1 ) ;
81 sl ip_rw = (v_rw − v_x) . /max(max(abs (v_rw) ,abs (v_x) ) ,1 ) ;
82
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83 % Id l e c on t r o l l e r , engine speed l im i t e r , and v e h i c l e speed l im i t e r
84 t h r o t t l e_ i d l e = (omega_e<p . omega_e_idle ) . ∗ ( p . b_e∗p . omega_e_idle /(

T_e_idle + p . b_e∗p . omega_e_idle ) + p . p_idle . ∗ ( p . omega_e_idle −
omega_e) ) ;

85 t h r o t t l e = (omega_e<p . omega_e_max) . ∗ ( v_x < p .v_max) .∗ t h r o t t l e + (
t h r o t t l e − v_x + p .v_max) . ∗ ( v_x >= p .v_max) ;

86 t h r o t t l e = t h r o t t l e . ∗ ( t h r o t t l e >th r o t t l e_ i d l e ) + th r o t t l e_ i d l e . ∗ (
t h r o t t l e<=th r o t t l e_ i d l e ) ;

87 t h r o t t l e = min(max( t h r o t t l e , 0) , 1) ;
88
89 % Engine torque
90 T_engine = t h r o t t l e . ∗ ( powe r_coe f f i c i en t s (1 ) + power_coe f f i c i en t s (2 ) .∗

omega_e + power_coe f f i c i en t s (3 ) .∗ omega_e .^2) − p . b_e.∗(1− t h r o t t l e )
.∗ omega_e ;

91
92 % Transmission
93 R_t = transmi s s i on_ra t i o s (round( gear ) ) ;
94 I_dl = p . I_rw + R_t.^2 .∗p . I_t ; % Combined i n e r t i a o f f r on t wheels ,

rear wheels , and transmiss ion .
95
96 % CVT:
97 R_cvt = p .R_cvt_D − (p .R_cvt_D − p .R_cvt_U) . ∗ ( pul ley_disp lacement ) ;
98 R_cvt = min(max(R_cvt , p .R_cvt_U) ,p .R_cvt_D) ;
99 sw = (omega_e>p . omega_engagement ) . ∗ ( omega_e − p . omega_engagement

) ;
100 omega_b = R_cvt .∗R_t.∗ omega_rw ;
101 sl ip_b = (omega_e − omega_b) . /max(abs (omega_e) ,abs (omega_b) ) ;
102 T_belt = p .mu_bm.∗ sw .∗ tanh ( s l ip_b . / ( p . s_bm/2) ) ;
103 F_spring = −(p . k_cvt .∗ ( 0 <= pul ley_disp lacement ) + p . k_cvt ∗10 .∗ (

pul ley_disp lacement < 0) ) .∗ pul ley_disp lacement . . .
104 − p . k_cvt ∗10 .∗ (1 < pul ley_disp lacement ) . ∗ (

pul ley_disp lacement − 1) ;
105 F_sw = c_sw .∗ sw ;
106 F_tr = − c_tr .∗R_cvt .∗T_belt ;
107
108 % Calcu la t e f o r c e s from g ra v i t y
109 F_gx = −sin ( i n c l i n a t i o n ) .∗F_g;
110 F_gz = −cos ( i n c l i n a t i o n ) .∗F_g;
111
112 % Suspension p i t c h torque and t i r e normal f o r c e s
113 T_s_max = − F_gz .∗p . r_r ;
114 T_s_min = F_gz .∗p . r_f ;
115 T_s = p . k_s . ∗ ( i n c l i n a t i o n + p . theta_v0 − p i t ch ) + p . b_s . ∗ (

i n c l i na t i on_speed − pitch_speed ) ;
116 T_s = max( min( T_s , T_s_max) , T_s_min ) ;
117
118 % Tire f o r c e s
119 F_fwz = (T_s − F_gz .∗p . r_r ) . / ( p . r_f + p . r_r ) ;
120 F_rwz = − (F_gz + F_fwz) ;
121 F_fwx_static = p .mu_tm.∗ tanh ( (2/p . s_tm) .∗ s l ip_fw ) .∗F_fwz ;
122 F_rwx_static = p .mu_tm.∗ tanh ( (2/p . s_tm) .∗ sl ip_rw ) .∗F_rwz ;
123
124 % Force from a i r r e s i s t an c e
125 F_d = −p . b_ar∗sign (v_x) .∗v_x .^2 ;
126
127 % Axle torques
128 sign_omega_fw = tanh (omega_fw) ;
129 sign_omega_rw = tanh (omega_rw) ;
130 T_fw = − p . b_rr .∗ sign_omega_fw .∗F_fwz . . .
131 − p .T_bk.∗p .B_bk.∗ sign_omega_fw .∗ brake_pressure . ∗ (

brake_pressure > 0) ;
132 T_rw = + R_t . ∗ ( R_cvt .∗T_belt − p . b_t .∗R_t.∗ omega_rw) . . .
133 − p . b_rr .∗ sign_omega_rw .∗F_rwz . . .
134 − p .T_bk.∗(1−p .B_bk) .∗ sign_omega_rw .∗ brake_pressure . ∗ (

brake_pressure > 0) ;
135
136 % Calcu la t e d e r i v a t i v e o f x
137 dxdt ( 1 : 1 2 , : ) = . . .
138 [ ( 1 / p . I_e ) . ∗ ( T_engine − T_belt ) ; . . .
139 ( F_sw − p . b_cvt .∗ pul ley_speed + F_spring + F_tr ) ; . . .
140 pul ley_speed ; . . .
141 (1/p . tau_bk ) . ∗ ( brake − brake_pressure ) ; . . .
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142 (1/p . I_fw ) . ∗ ( T_fw − p . r_dyn . ∗ ( F_fwx) ) ; . . .
143 ( 1 . / I_dl ) . ∗ ( T_rw − p . r_dyn . ∗ (F_rwx) ) ; . . .
144 (1/p . tau_t ) . ∗ ( F_fwx_static − F_fwx) ; . . .
145 (1/p . tau_t ) . ∗ ( F_rwx_static − F_rwx) ; . . .
146 (1/p . I_v_pitch ) . ∗ ( (F_fwx + F_rwx) .∗p . r_z + T_s ) ; . . .
147 pitch_speed ; . . .
148 (1/m_v) . ∗ ( F_fwx + F_rwx + F_d + F_gx ) ; . . .
149 cos ( i n c l i n a t i o n ) .∗v_x ] ;
150
151 % Add noise
152 i f f i l t e r == true
153 dxdt ( 1 : 1 2 , : ) = dxdt ( 1 : 1 2 , : ) + v ( 1 : 1 2 , : ) ;
154 end
155 end
156
157 % Measurement equat ion
158 function z = h(x )
159 omega_e = x ( 1 , : ) ;
160 omega_rw = x ( 6 , : ) ;
161 p i t ch = x ( 1 0 , : ) ;
162 v_x = x ( 1 1 , : ) ;
163 r_z = x ( 1 3 , : ) ;
164
165 z = [ omega_e ; abs (omega_rw) ; v_x ; r_z ; p i t ch ] ;
166 end
167
168 % I n i t i a l cond i t i on func t i on
169 function x0 = x0_fun ( z0 , u0 )
170 omega_e = z0 (1 ) ;
171 omega_rw = z0 (2 ) ;
172 v_x = z0 (3) ;
173 r_z = z0 (4) ;
174 p i t ch = z0 (5 ) ;
175
176 brake = u0 (2) ;
177
178 x0 = [ omega_e ; 0 ; 0 ; brake ; omega_rw ; omega_rw ; 0 ; 0 ; 0 ; p i t ch ; v_x ;

0 ; r_z ; p i t ch − p . theta_v0 ] ;
179 end
180
181 % Add func t ion handles to model s t r u c t u r e
182 determinist ic_model . f = @(x , u) f (x , u , [ ] , ’ s imu la t i on ’ ) ;
183 determinist ic_model . h = @(x , u) x ( [ 1 , 6 , 1 1 , 1 0 ] , : ) ;
184
185 stochast ic_model . f = @(x , u , v ) f (x , u , v , ’ f i l t e r ’ ) ;
186 stochast ic_model . fd = @(x , u , v , dt ) RK4(@(x ) f (x , u , v , ’ f i l t e r ’ ) , x , dt ,

ce i l ( dt ∗200) ) ;
187 stochast ic_model . h = @h;
188 stochast ic_model . x0_fun = @x0_fun ;
189
190 % Generate a con s i s t en t co l o r scheme fo r p l o t t i n g
191 Nxc = max( stochast ic_model .Nx , determin ist ic_model .Nx) ;
192 Nuc = max( stochast ic_model .Nu, determinist ic_model .Nu) ;
193 Nzc = stochast ic_model . Nz ;
194 i f exist ( ’ d i s t i n gu i s h ab l e_co l o r s ’ , ’ f i l e ’ )
195 % Use d i s t i n gu i s h a b l e_co l o r s i f a v a i l a b l e
196 s t a t e_co l o r s = d i s t i n gu i s h ab l e_co l o r s (Nxc) ;
197 input_co lors = d i s t i n gu i s h ab l e_co l o r s (Nuc) ;
198 measurement_colors = d i s t i n gu i s h ab l e_co l o r s (Nzc ) ;
199 else
200 s t a t e_co l o r s = hsv (Nxc) ;
201 input_co lors = hsv (Nuc) ;
202 measurement_colors = hsv (Nzc ) ;
203 end
204
205 % Store co l o r s in s t r u c t u r e
206 determinist ic_model . s t a t e_co l o r s = s ta t e_co l o r s ( [ ( 1 : 7 ) , ( 9 : 1 0 ) ] , : ) ;
207 determinist ic_model . input_co lor s = input_co lor s ( ( 1 : determinist ic_model .

Nu) , : ) ;
208 stochast ic_model . s t a t e_co l o r s = s ta t e_co l o r s ( ( 1 : stochast ic_model .Nx)

, : ) ;
209 stochast ic_model . input_co lors = input_co lors ( ( 1 : stochast ic_model .Nu)
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, : ) ;
210 stochast ic_model . measurement_colors = measurement_colors ( ( 1 :

stochast ic_model . Nz) , : ) ;
211 end

Listing A.2: MATLAB implementation of the reduced coast down filter model.
1 function ms = ModelCD( parameter_names , parameter_values )
2 % Model dimensions
3 ms .Nx = 4 ;
4 ms .Nu = 0 ;
5 ms .Nz = 4 ;
6
7 % Names
8 ms . state_names = { ’$v_x$ ’ , ’ $r_x$ ’ , ’ $r_z$ ’ , ’ $\ theta$ ’ } ;
9 ms . measurment_names = { ’ $\omega_w$ ’ , ’ $v_x$ ’ , ’ $r_z$ ’ , ’ $\ theta_v$ ’ } ;

10 ms . input_names = {} ;
11
12 ms . dt_max = 1/200 ;
13
14 % Noise covar iance
15 ms .Q = diag ( [ 1 e−3, 1e−3, 1e−3, 1e−4]) ;
16 ms .R = diag ( [ 3 e−2, 1e−3, 1e−2, 1e−3]) ;
17
18 % Load cons tant s
19 p = Parameters ( parameter_names , parameter_values ) ;
20 ms . p = p ;
21
22 % Calcu la t e constant va lue s
23 m_v = p .m_ve + p .m_vp;
24 I_w = p . I_fw + p . I_rw ;
25 F_g = m_v. ∗ 9 . 8 1 ;
26 combined_inert ia = m_v + I_w/p . r_e f f ^2;
27
28 % Process d i f f e r e n t i a l equat ion
29 function dxdt = f (x , u , v )
30 v_x = x ( 1 , : ) ;
31 r_x = x ( 2 , : ) ;
32
33 i f isempty ( v )
34 i n c l i n a t i o n = u ( 1 , : ) ;
35 else
36 i n c l i n a t i o n = x ( 4 , : ) ;
37 end
38
39 % Gravity
40 F_gx = −sin ( i n c l i n a t i o n ) .∗F_g;
41 F_gz = −cos ( i n c l i n a t i o n ) .∗F_g;
42
43 % Air r e s i s t an c e
44 F_D = −p . b_ar .∗ sign (v_x) .∗v_x .^2 ;
45
46 % Rol l i ng r e s i s t an c e
47 omega_w = v_x./ p . r_e f f ;
48 F_rr = (−sign (omega_w) ) .∗p . b_rr . ∗ ( −F_gz ) . / p . r_dyn ;
49
50 % D i f f e r e n t i a l
51 i f isempty ( v )
52 dxdt = [ 1 / ( combined_inert ia ) . ∗ (F_gx + F_D + F_rr ) ; . . .
53 v_x .∗ cos ( i n c l i n a t i o n ) ] ;
54 else
55 dxdt = [ 1 / ( combined_inert ia ) . ∗ (F_gx + F_D + F_rr ) + v ( 1 , : ) ; . . .
56 v_x .∗ cos ( i n c l i n a t i o n ) + v ( 2 , : ) ; . . .
57 v_x .∗ sin ( i n c l i n a t i o n ) + v ( 3 , : ) ; . . .
58 (abs (v_x) + 0 . 1 ) .∗ v ( 4 , : ) ] ;
59 end
60 end
61
62 % Measurement equat ion
63 function z = h(x )
64
65 v_x = x ( 1 , : ) ;
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66 r_z = x ( 3 , : ) ;
67 i n c l i n a t i o n = x ( 4 , : ) ;
68 omega_w = v_x./ p . r_e f f ;
69
70
71 p i t ch = i n c l i n a t i o n + p . theta_v0 ;
72
73 z = [ omega_w ; v_x ; r_z ; p i t ch ] ;
74 end
75
76 % I n i t i a l cond i t i on func t i on
77 function x0 = x0_fun ( z0 , u0 ) ;
78 omega_w = z0 (1) ;
79 v_x = z0 (2 ) ;
80 r_z = z0 (3 ) ;
81 p i t ch = z0 (4 ) ;
82
83 x0 = [ ( v_x + omega_w./ p . r_e f f ) . / 2 ; 0 ; r_z ; p i t ch − p . theta_v0 ] ;
84 end
85
86 % Add func t ion handles to model s t r u c t u r e
87 ms . f = @f ;
88 ms . fd = @(x , u , v , dt ) RK4( @(x ) f (x , u , v ) , x , dt , ce i l ( dt ∗200) ) ;
89 ms . h = @h;
90 ms . x0_fun = @x0_fun ;
91 ms . f_de t e rm in i s t i c = @(x , u) f (x , u , [ ] ) ;
92
93 % Generate a con s i s t en t co l o r scheme fo r p l o t t i n g
94 i f exist ( ’ d i s t i n gu i s h ab l e_co l o r s ’ , ’ f i l e ’ )
95 ms . s t a t e_co l o r s = d i s t i n gu i s h ab l e_co l o r s (ms .Nx) ;
96 ms . measurement_colors = d i s t i n gu i s h ab l e_co l o r s (ms .Nz) ;
97 ms . input_co lors = d i s t i n gu i s h ab l e_co l o r s (ms .Nu) ;
98 else
99 ms . s t a t e_co l o r s = hsv (ms .Nx) ;

100 ms . measurement_colors = hsv (ms .Nz) ;
101 ms . input_co lors = hsv (ms .Nu) ;
102 end
103 end

Listing A.3: MATLAB function that returns a structure with the default model parame-
ters.

1 function d = OlavDefaultParameters ( )
2 % Conversion func t i ons
3 rpm_to_radps = @(rpm) rpm/60∗2∗pi ;
4 mph_to_mps = @(mph) mph/(60∗60) ∗1609 . 34 ;
5 kmph_to_mps = @(kmh) kmh/3 . 6 ;
6 inch_to_m = @( inch ) inch . ∗ 0 . 0 2 5 4 ;
7 hp_to_kw = @(hp) hp ∗745 . 7 ;
8
9 % Calcu la t e weight d i s t r i b u t i o n

10 wheelbase = 2 . 0 5 ;
11 m_middle = 1040 ;
12 m_front_axle = 400 ;
13 m_rear_axle = 640 ;
14 m_unsprung = 150 ;
15 CG_to_rear_axle = (m_front_axle/m_middle + (1−m_rear_axle/m_middle ) ) /2∗

wheelbase ;
16 CG_above_ground = 0 . 6 0 ;
17
18 % Vehic le mass and geometry
19 d .m_ve = m_middle ;
20 d .m_vp = 160 ;
21 d . r_f = wheelbase − CG_to_rear_axle ;
22 d . r_r = CG_to_rear_axle ;
23 d . r_z = CG_above_ground ;
24 d . I_v_pitch = (d .m_ve) ∗( wheelbase /2) ^2;
25 d . k_s = 5 .0 e+4;
26 d . b_s = 1 .0 e+4;
27 d . theta_v0 = −5.0e−2;
28 d . b_ar = 2 . 0 ;
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29
30 % Engine parameters
31 d . I_e = 10∗0 .20^2/2 ;
32 d .P_e_max = hp_to_kw(45) ;
33 d . b_e = 1 .0 e−2;
34 d . omega_e_idle = rpm_to_radps (1250) ;
35 d . omega_e_P_max = rpm_to_radps (7000) ;
36 d . omega_e_max = rpm_to_radps (7250) ;
37 d .v_max = mph_to_mps(25) ;
38 d . p_idle = 1e−3;
39
40 % CVT and transmiss ion parameters
41 d . omega_engagement = rpm_to_radps (2000) ;
42 d .R_cvt_D = 3 . 8 3 ;
43 d .R_cvt_U = 0 . 7 6 ;
44 d .R_R = −22.92;
45 d .R_L = 25 . 5 9 ;
46 d .R_H = 10 . 4 0 ;
47 d . u_cvt = 300 ;
48 d . d_cvt = 200 ;
49 d . k_cvt = 1 .0 e+2;
50 d . b_cvt = 5 .0 e+1;
51 d .mu_bm = 0 . 5 ;
52 d . s_bm = 0 . 2 0 ;
53 d . I_t = (5∗0 .10^2) /2 ;
54 d . b_t = 0 ;
55
56 % Wheel and t i r e
57 d . r_dyn = 0 . 3 3 ;
58 d . r_e f f = 0 . 3 5 ;
59 d . I_fw = 2∗20∗0.33^2/2 + 2 ;
60 d . I_rw = 2∗25∗0.33^2/2 + 2 ;
61 d .mu_tm = 0 . 7 ;
62 d . s_tm = 0 . 1 5 ;
63 d . tau_t = 0 . 2 0 ;
64 d . b_rr = 2 .0 e−2;
65
66 % Brakes
67 d .T_bk = 5 .0 e+3;
68 d . tau_bk = 0 . 5 0 ;
69 d .B_bk = 0 . 6 ;
70 end

Listing A.4: MATLAB function for changing the model parameter structure using name
and value pairs.

1 function p = parameters ( names , va lue s )
2 % Set d e f a u l t va lue s
3 p = OlavDefaultParameters ( ) ;
4
5 % Update va lue s
6 i f not ( isempty ( names ) )
7 for i = 1 : numel ( names )
8 p = s e t f i e l d (p , names{ i } , va lue s ( i ) ) ;
9 end

10 end
11 end

Listing A.5: MATLAB function for Runge Kutta integration.
1 function x = RK4( f , x , dt , i t e r a t i o n s )
2 dt = dt/ i t e r a t i o n s ;
3 for k = 1 : i t e r a t i o n s
4 k1 = f (x ) ;
5 k2 = f (x + k1 . ∗ ( dt /2) ) ;
6 k3 = f (x + k2 . ∗ ( dt /2) ) ;
7 k4 = f (x + k3 .∗ dt ) ;
8 x = x + ( k1 + 2 .∗ k2 + 2 .∗ k3 + k4 ) . ∗ ( dt /6) ;
9 end

10 end



88 APPENDIX A. MATLAB CODE

A.2 Batch processing UKF

The implemented UKF is for discrete time non-linear time invariant state space model with
non additive process noise and additive measurement noise. Noise is assumed Gaussian and
time invariant. The filter performs batch processing and calculates the log likelihood of
the estimate in addition to the state estimate. The filter model get passed to the UKF as
a structure with field containing, f , h, Q, and R, as well as the dimensions of the state,
input, and measurement vectors. The f and h function are assumed to handle vectorized
arguments meaning that all sigma points can be evaluated in one function call of f and h.

Listing A.6: MATLAB function for batch processing UKF with recursive log likelihood
calculation.

1 function [ t , x_apost , P_apost , l og_ l i k e l i hood ,MSE] = ukf ( t , z , u , x0 , P0 , model , alpha ,
beta , kappa )

2 % Dimensions .
3 M = length ( t ) ;
4 Nx = model .Nx ;
5 Nz = model . Nz ;
6 Nu = model .Nu ;
7 Nxa = Nx+Nx;
8 Ni = 2∗Nxa+1;
9

10 % Sigma poin t we igh t s
11 lambda = alpha ^2∗(Nxa + kappa ) − Nxa ;
12 Wm = [ lambda /(Nxa + lambda ) ; 1/(2∗ (Nxa + lambda ) ) .∗ ones (Ni−1 ,1) ] ;
13 Wc = [ lambda /(Nxa + lambda ) + (1 − alpha^2 + beta ) ; 1/(2∗ (Nxa + lambda ) ) .∗

ones (Ni−1 ,1) ] ;
14 c = sqrt (Nxa + lambda ) ;
15
16 % Resu l t matr ices
17 x_apost = zeros (Nx,M) ;
18 P_apost = zeros (Nx,Nx,M) ;
19 z_apri = zeros (Nz ,M) ;
20
21 % I n i t i a l i z e l o g l i k e l i h o o d with the constant par t
22 l o g_ l i k e l i h ood = −M∗Nz∗ log (2∗pi ) ;
23
24 % I n i t i a l augmented s t a t e vec to r and covar iance matrix
25 Xa = [ x0 ; zeros (Nx, 1 ) ] ;
26 Pa = blkd iag (P0 , model .Q) ;
27 dt = 0 ;
28
29 % Form i n i t i a l sigma po in t s
30 U = chol (Pa) ’ ;
31 Xi = repmat (Xa , [ 1 , Ni ] ) + c ∗ [ zeros (Nxa , 1 ) , U, −U] ;
32
33 % Run M i t e r a t i o n s o f UKF.
34 for k = 1 :M
35 % Update sigma po in t s with a p o s t e r i o r i s t a t e and covar iance es t imate
36 % from prev ious time s t ep .
37 i f k > 1
38 dt = t (k ) − t (k−1) ;
39 Xa( 1 :Nx) = x_apost ( : , k−1) ;
40 U( 1 :Nx , 1 :Nx) = chol (P_apost ( : , : , k−1) ) ’ ;
41 Xi = repmat (Xa , [ 1 , Ni ] ) + c ∗ [ zeros (Nxa , 1 ) , U, −U] ;
42 end
43
44 % Predic t sigma po in t s through process and measurement model .
45 i f dt ~= 0
46 % Fetch input f o r current time s t ep i f model i n c l ude s inpu t s
47 i f model .Nu == 0
48 uk = [ ] ;
49 else
50 uk = u ( : , k ) ;
51 end
52 % Predic t us ing the d i s c r e t e func t i on prov ided by the model
53 Xi ( 1 :Nx , : ) = model . fd ( Xi ( 1 :Nx , : ) , uk , Xi ( (Nx+1) : (Nx+Nx) , : ) , dt ) ;
54 end
55 Zi = model . h (Xi ( 1 :Nx , : ) ) ;
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56
57 % Sum sigma po in t s to a p r i o r i e s t imate s o f s t a t e and measurement

vec to r .
58 x_apri = Xi ( 1 :Nx , 1 : Ni ) ∗Wm;
59 z_apri ( : , k ) = Zi ∗Wm;
60
61 % Calcu la t e covar iances from sigma po in t s and pred i c t ed s t a t e and
62 % measurement v e c t o r s .
63 P_apri = zeros (Nx,Nx) ;
64 Pzz = model .R;
65 Pxz = zeros (Nx,Nz) ;
66
67 for i = 1 : Ni
68 P_apri = P_apri + Wc( i ) ∗( ( Xi ( 1 :Nx, i ) − x_apri ) ∗( Xi ( 1 :Nx, i

) − x_apri ) ’ ) ;
69 Pzz = Pzz + Wc( i ) ∗( ( Zi ( 1 :Nz , i ) − z_apri ( : , k ) ) ∗( Zi ( 1 :Nz , i

) − z_apri ( : , k ) ) ’ ) ;
70 Pxz = Pxz + Wc( i ) ∗( ( Xi ( 1 :Nx, i ) − x_apri ) ∗( Zi ( 1 :Nz , i

) − z_apri ( : , k ) ) ’ ) ;
71 end
72
73 % Calcu la t e Kalman gain .
74 K_k = Pxz/Pzz ;
75
76 % Innovat ion
77 dz = z ( : , k ) − z_apri ( : , k ) ;
78
79 % Update s t a t e and covar iance es t imate s .
80 x_apost ( : , k ) = x_apri + K_k∗dz ;
81 P_apost ( : , : , k ) = P_apri − K_k∗Pzz∗K_k’ ;
82
83 % Update log− l i k e l i h o o d
84 l o g_ l i k e l i h ood = log_ l i k e l i h ood − log (det ( Pzz ) ) − dz ’∗ inv ( Pzz ) ∗dz ;
85 end
86
87 % Divide l o g l i k e l i h o o d by two
88 l o g_ l i k e l i h ood = log_ l i k e l i h ood /2 ;
89 end

A.3 Script for testing the UKF and full vehicle filter
model

The script shown in listing A.7 runs a Monte Carlo simulation of the UKF using the full
filter model. The result of the simulation was used to see if the UKF was well behaved.
The simulated system response is generated with the same noise as assumed in the filter
model and with a couple of randomly placed throttle and brake input steps. The script does
not create plots that are well suited for inclusion in this report, but examples are shown in
fig. A.1 on page 92 and fig. A.2 on page 93. The generated plots are only from 10 realizations.

Listing A.7: MATLAB script for testing the UKF and the model.
1 % Generate func t i ons from symbol ic model
2 tota l_t imer = t ic ;
3
4
5 % True parameters
6 param = [ 3 .0 e+4; 2 .00 e−2; 4 .00 e+2; 3 .00 e+2; 0 .50 e+0; 0 . 8 e+0; 4 .09 e

+3; 1 .50 e +0] ;
7 param_names = { ’P_e_max ’ , ’b_e ’ , ’ u_cvt ’ , ’ d_cvt ’ , ’mu_bm’ , ’mu_tm ’ , ’T_bk

’ , ’ tau_bk ’ } ;
8 param_cd = [ 0 . 3 5 6 ; 1 .58 e−2; 2 . 3 ; −4.47e−2] ;
9 param_cd_names = { ’ r_e f f ’ , ’ b_rr ’ , ’ b_ar ’ , ’ theta_v0 ’ } ;

10
11 alpha = 5e−2;
12 beta = 2 ;
13 k = 0 ;
14
15 fpr intf ( ’ Generating ␣model . . . \ n ’ )
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16 t ic
17 model = Model ( [ param_names , param_cd_names ] , [ param ; param_cd ] ) ;
18 toc
19
20 % I n i t i a l Condit ion
21 inc l i na t i on_0 = −0.05;
22 x0 = [ model . p . omega_e_idle ; 0 ; 0 ; 0 . 5 ; 0 ; 0 ; 0 ; 0 ;

0 ; i n c l i na t i on_0 + model . p . theta_v0 ; 0 ; 0 ; 0 ; i n c l i na t i on_0 ]
23 P0 = diag ( [ 1e+1, 1e−2, 1e−2, 1e−2, 1e−2, 1e−2, 1e−2, 1e−2, 1e

−2, 1e−2, 1e−3, 1e−3, 1e−3, 1e−3]) ;
24
25 % Simulat ion time parameters
26 f s = 500 ; % Sta te s imu la t ion frequency
27 fm = 40 ; % Measurement frequency
28 t0 = 0 ; % Star t time
29 t1 = 60 ; % Final time
30
31
32 Mz = ( t1−t0 ) ∗fm+1;
33 Mmc = 10 ;
34
35 t = linspace ( t0 , t1 ,Mz) ;
36
37 e = zeros (model .Nx ,Mz,Mmc) ;
38 P = zeros (model .Nx , model .Nx ,Mz) ;
39
40 Q = diag ( [ 1 e+2, 1e−1, 1e−2, 1e−2, 1e−3, 1e−3, 1e+2, 1e+2, 1e−3, 1e−9, 1e−3, 1e

−9, 1e−9, 1e−4])
41 R = diag ( [ 1 e+1, 1e−1, 1e−3, 1e−1, 1e−4]) ;
42
43 fpr intf ( ’ Running␣Monte␣Carlo ␣ s imu la t i on ␣(%d␣ i t e r a t i o n s ) . . . \ n ’ ,Mmc) ;
44 t ic ( )
45 ukf_time = 0 ;
46 l o g l i k e l i h o o d = zeros (Mmc, 1 ) ;
47 for i = 1 :Mmc
48 % Time dependant f o r c in g func t i on
49 tu = sort ( t0 + ( t1−t0 ) .∗ rand ( 8 , 1 ) ) ;
50 t h r o t t l e = 0 .2 + 0.8∗rand ( 2 , 1 ) ;
51 brake = 0 .2 + 0.8∗rand ( 2 , 1 ) ;
52 gear = 4 + round(rand (1 ) ) ;
53 u = @( t ) [ t h r o t t l e (1 ) ∗( t>tu (1 ) ) . ∗ ( tu (2 )>t ) + t h r o t t l e (2 ) ∗( t>tu (5 ) ) . ∗ ( tu

(6 )>t ) ; 0 . 5 . ∗ ( t<max( tu (1 ) −2 ,0) ) + brake (1 ) ∗( t>tu (3 ) ) . ∗ ( tu (4 )>t ) +
brake (2 ) ∗( t>tu (7 ) ) . ∗ ( tu (8 )>t ) ; gear ∗ ones (1 , numel ( t ) ) ] ;

54 uk = u( t ) ;
55
56 % Pre a l l o c a t e
57 x_sim = zeros (model .Nx ,Mz) ;
58 z_sim = zeros (model . Nz ,Mz) ;
59
60 % Generate noise f o r s imu la t ion
61 V = chol (model .Q) ∗randn(model .Nx ,Mz) ;
62 W = chol (model .R) ∗randn(model . Nz ,Mz) ;
63
64 % Draw i n i t i a l s t a t e
65 x_sim ( : , 1 ) = x0 + chol (P0 , ’ lower ’ ) ∗randn(model .Nx, 1 ) ;
66
67 for k = 2 :Mz
68 x_sim ( : , k ) = model . fd (x_sim ( : , k−1) , uk ( : , k ) , V( : , k ) , 1/fm) ;
69 end
70 z_sim = model . h (x_sim) + W;
71
72 t ic ( )
73 [~ , x_est , P_est , l o g l i k e l i h o o d ( i ) ] = ukf ( t , z_sim , uk , x0 , P0 , model , alpha , beta , k

) ;
74 ukf_time = ukf_time + toc ( ) ;
75
76 i f i == 1
77 figure (1 )
78 c l f
79 spax (1 ) = subplot ( 4 , 1 , 1 ) ;
80 spax (2 ) = subplot ( 4 , 1 , 2 ) ;
81 spax (3 ) = subplot ( 4 , 1 , 3 : 4 ) ;
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82 spax (1 ) . ColorOrder = model . input_co lor s ;
83 spax (1 ) . NextPlot = ’ r e p l a c e c h i l d r e n ’ ;
84 input_plot = plot ( spax (1 ) , t , uk ) ;
85 grid on
86 spax (1 ) . T i t l e . S t r ing = ’ Input ’ ;
87 legend ( spax (1 ) ,model . input_names )
88 spax (2 ) . ColorOrder = model . measurement_colors ;
89 spax (2 ) . NextPlot = ’ r e p l a c e c h i l d r e n ’ ;
90 measurement_plot = plot ( spax (2 ) , t , z_sim ) ;
91 grid on
92 spax (2 ) . T i t l e . S t r ing = ’Measurements ’ ;
93 legend ( spax (2 ) ,model . measurement_names ) ;
94 spax (3 ) . ColorOrder = model . s t a t e_co l o r s ;
95 spax (3 ) . NextPlot = ’ r e p l a c e c h i l d r e n ’ ;
96 state_sim_plot = plot ( spax (3 ) , t , x_sim , ’ : ’ ) ;
97 hold on ;
98 state_est_plot = plot ( spax (3 ) , t , x_est ) ;
99 grid on

100 spax (3 ) . T i t l e . S t r ing = ’ State ␣ s imu la t i on ␣and␣ es t imate ’ ;
101 legend ( spax (3 ) , [ model . state_names , model . state_names ] ) ;
102 hold o f f ;
103 l i nkax e s ( spax , ’ x ’ ) ;
104 else
105 set ( input_plot , { ’YData ’ } , num2cel l (uk , 2 ) ) ;
106 set (measurement_plot , { ’YData ’ } , num2cel l ( z_sim , 2 ) ) ;
107 set ( state_sim_plot , { ’YData ’ } , num2cel l (x_sim , 2 ) ) ;
108 set ( state_est_plot , { ’YData ’ } , num2cel l ( x_est , 2 ) ) ;
109 end
110 drawnow ;
111
112 e ( : , : , i ) = x_est − x_sim ;
113 P = P + P_est/Mmc;
114 end
115 toc ( )
116
117 ukf_faster_than_RT_percent = ( ( t1−t0 ) ) /( ukf_time/Mmc) ∗100 ;
118 mean_log l ike l ihood = mean( l o g l i k e l i h o o d ) ;
119 fpr intf ( ’UKF␣ f i l t e r ␣ runs ␣%.1 f ␣%%␣ f a s t e r ␣ than␣ r e a l ␣ time\n ’ ,

ukf_faster_than_RT_percent ) ;
120 fpr intf ( ’Mean␣ log ␣ l i k e l i h o o d ␣ est imated ␣ to : ␣%.2e\n ’ , mean_log l ike l ihood ) ;
121
122 fpr intf ( ’ Ca l cu l a t ing ␣mean␣and␣ covar iance ␣ o f ␣ e s t imat i on ␣ e r r o r . . . \ n ’ )
123 t ic ( )
124 mean_mc = zeros (model .Nx ,Mz) ;
125 cov_mc = zeros (model .Nx , model .Nx ,Mz) ;
126 Smc = zeros (model .Nx ,Mz) ;
127 S = zeros (model .Nx ,Mz) ;
128
129 for k = 1 :Mz
130 mean_mc( : , k ) = mean( e ( : , k , 1 : 2 ) ,3 ) ;
131 cov_mc ( : , : , k ) = ( e ( : , k , 1 ) − mean_mc( : , k ) ) ∗( e ( : , k , 1 ) − mean_mc( : , k ) ) ’ + ( e

( : , k , 2 ) − mean_mc( : , k ) ) ∗( e ( : , k , 2 ) − mean_mc( : , k ) ) ’ ;
132 mean_mc( : , k ) = mean( e ( : , k , : ) , 3 ) ;
133
134 for i = 3 :Mmc
135 cov_mc ( : , : , k ) = cov_mc ( : , : , k ) + 1/(Mmc−1)∗( e ( : , k , i ) − mean_mc( : , k ) ) ∗( e

( : , k , i ) − mean_mc( : , k ) ) ’ ;
136 end
137 Smc ( : , k ) = abs ( sqrt (diag (cov_mc ( : , : , k ) ) ) ) ;
138 S ( : , k ) = abs ( sqrt (diag (P ( : , : , k ) ) ) ) ;
139 end
140 toc ( )
141
142 fpr intf ( ’ P l o t t i ng ␣ r e s u l t . . . \ n ’ ) ;
143 figure (2 )
144 c l f
145 for i = 1 : model .Nx
146 spax ( i ) = subplot ( ce i l (model .Nx/3) ,3 , i ) ;
147 plot ( spax ( i ) , t ,mean_mc( i , : ) , t , Smc( i , : ) , ’ r : ’ , t , S ( i , : ) , ’ r−− ’ , t ,−Smc( i , : ) , ’ r :

’ , t ,−S( i , : ) , ’ r−− ’ ) ;
148 ylabel (model . state_names ( i ) ) ;
149 xlabel ( ’ $t$ / s ’ )
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Figure A.1: Plot of a single stochastic simulation and state estimation suing the UKF.
Simulated state is dotted lines and the estimated whole lines.

150 end
151 l i nkax e s ( spax , ’ x ’ )
152
153
154 total_time = toc ( tota l_t imer ) ;
155 hours = f loor ( tota l_time /(60∗60) ) ;
156 minutes = f loor ( tota l_time /60 − hours ∗60) ;
157 seconds = round( tota l_time − minutes ∗60 − hours ∗60∗60) ;
158 fpr intf ( ’ Total ␣ runtime : ␣%d:%02d:%02d\n ’ , hours , minutes , seconds ) ;

A.4 Matlab code for parameter estimation
The two stages of the parameter estimation algorithm is implemented as two scripts. The
script in listing A.8 on page 94 does the initial parameter estimation using the coast down
filter model by optimising the parameters from 20 uniformly drawn starting points in the
chosen parameter space using fmincon. The script choses the parameter estimate with the
highest log likelihood, but it should be confirmed that all of the estimates are reasonably
close.

Listing A.9 on page 95 shows the script that performs the estimation of the remaining
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Figure A.2: Plot of estimation error as well as true covariance and covariance computed
by the UKF from 10 simulations. The dotted line is one standard deviation and the dashed
lines the mean of the standard deviation calculated by the UKF.
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parameters using the full filter model. The parameters are optimized using particleswarm
with a bounded parameter space. After either 100 total iterations or 20 iterations without
improvement particleswarm is stopped and the optimization is continued by fmincon.

The function LogLikelihood, shown in listing A.10 on page 96, wraps the previously
presented UKF function allowing multiple datasets to be processed. The UKF function
is wrapped in a "try catch" block to detect parameters that makes the UKF fail without
aborting the parameter estimation. The datasets are represented as data structures with
fields containing the time, measurement, and input vectors. The datasets structures are
constructed by the function PrepareDS, shown in listing A.11 on page 96, from the datasets
provided directly by OLAVs instrumentation. PrepareDS also re-samples all the measure-
ments to a common time vector.

Listing A.8: MATLAB script for performing the parameter estimation using the coast
down filter model.

1 fm = 40 ;
2
3 % UKF tuning parameter bounds
4 alpha = 0 . 1 ;
5 beta = 2 ;
6 kappa = 0 ;
7
8 disp ( ’ Loading␣data . . . ’ )
9 t ic ( )

10 ds_cd (1 ) = PrepareDS ( ’ . . / Datasett /2016−04−04−14−05−47.mat ’ , ( 2 : 5 ) , ( 3 ) ,
[ 5 , 6 5 ] , fm , [ ] ) ; % Neutra l coas t ing down h i l l .

11 ds_cd (2 ) = PrepareDS ( ’ . . / Datasett /2016−04−04−14−08−53.mat ’ , ( 2 : 5 ) , ( 3 ) ,
[ 1 0 , 7 0 ] , fm , [ ] ) ; % Neutra l coas t ing down h i l l .

12 toc ( )
13
14 % Star t poo l and d i s a b l e warnings on workers
15 poo l ob j e c t = gcp ( ) ;
16 pctRunOnAll warning ( ’ o f f ’ , ’ a l l ’ ) ;
17
18 % Star t t imer f o r coas t down experiment :
19 coast_down_timer = t ic ( ) ;
20
21 % Parameter bounds
22 param_cd_ub = [ 0 . 4 0 0 ; 2 . 0 e−1; 1 . 0 e+1; 2 . 0 e−1] ;
23 param_cd_lb = [ 0 . 3 0 0 ; 0 . 0 e+0; 0 .0 e+0; −2.0e−1] ;
24 param_cd_names = { ’ r_e f f ’ , ’ b_rr ’ , ’ b_ar ’ , ’ theta_v0 ’ } ;
25 Np = numel (param_cd_names) ;
26
27 P0_cd = diag ( [ 1 e−1,1e−1,1e−1,1e−2]) ;
28
29 Mcd = 5∗Np;
30 param_cd_0 = zeros (Np, Mcd) ;
31 param_cd_est = zeros (Np, Mcd) ;
32 objective_cd_0 = i n f (Mcd, 1 ) ;
33 object ive_cd_est = i n f (Mcd, 1 ) ;
34
35 % Problem statement f o r minimization us ing fmincon
36 problem_cd . s o l v e r = ’ fmincon ’ ;
37 problem_cd . ob j e c t i v e = @( param_values ) −LogLike l ihood (param_cd_names ,

param_values , @ModelCD, P0_cd , ds_cd , alpha , beta , kappa ) ;
38 problem_cd . ub = param_cd_ub ;
39 problem_cd . lb = param_cd_lb ;
40 problem_cd . nvars = Np;
41 problem_cd . opt ions = opt imopt ions ( problem_cd . s o l v e r ) ;
42 problem_cd . opt ions . Display = ’ none ’ ;
43
44 % Find Mcd p o s s i b l e v a l i d parameter vec to r f o r coas t down model
45 fpr intf ( ’ Search ing ␣ f o r ␣%d␣ s t a r t i n g ␣ po in t s ␣ f o r ␣ coas t ␣down␣ experiment : \ n ’ , Mcd) ;
46 pa r f o r k = 1 :Mcd
47 while ( objective_cd_0 (k ) == i n f )
48 param_cd_0 ( : , k ) = problem_cd . lb + ( problem_cd . ub − problem_cd . lb ) .∗

rand ( problem_cd . nvars , 1 ) ;
49 objective_cd_0 (k ) = problem_cd . ob j e c t i v e (param_cd_0 ( : , k ) ) ;
50 end
51 disp ( s t r c a t ( sprintf ( ’ Log␣ l i k e l i h o o d ␣=␣%.3e , ␣ ’ ,−objective_cd_0 (k ) ) ,
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PrintParameters (param_cd_0 ( : , k ) ,param_cd_names) ) ) ;
52 end
53
54 % Estimate parameter from be s t s t a r i n g po in t s
55 disp ( ’ Est imating ␣parameters ␣with␣ fmincon␣ from␣ s t a r i n g ␣ po in t s . . . ’ ) ;
56 disp ( ’ Best ␣ e s t imate s ␣ f o r ␣ parameters ␣ in ␣ coas t ␣down␣model : ’ ) ;
57 pa r f o r k = 1 :Mcd ;
58 problem_k = problem_cd ;
59 problem_k . x0 = param_cd_0 ( : , k ) ;
60 [ param_cd_est ( : , k ) , object ive_cd_est ( k ) ] = fmincon ( problem_k ) ;
61 disp ( s t r c a t ( sprintf ( ’ Log␣ l i k e l i h o o d ␣=␣%.3e , ␣ ’ ,−object ive_cd_est ( k ) ) ,

PrintParameters ( param_cd_est ( : , k ) , param_cd_names) ) ) ;
62 end
63
64 % Find b e s t es t imate
65 [ object ive_cd_est , i_sor t ] = sort ( object ive_cd_est ) ;
66 param_cd_est = param_cd_est ( : , i_sor t ) ;
67 param_cd_best_est = param_cd_est ( : , 1 ) ;
68
69 % Stop timer fo r coas t down experiment
70 coast_down_time = toc ( coast_down_timer ) ;
71
72 % Print r e s u l t
73 disp ( ’ Best ␣ es t imate ␣ f o r ␣ parameters ␣ in ␣ coas t ␣down␣model : ’ )
74 disp ( s t r c a t ( sprintf ( ’ Log␣ l i k e l i h o o d ␣=␣%.3e , ␣ ’ ,−object ive_cd_est (1 ) ) ,

PrintParameters ( param_cd_best_est , param_cd_names) ) ) ;
75 fpr intf ( ’ Elapsed␣ time : ␣%s\n ’ , PrintHHMMSS( coast_down_time ) ) ;

Listing A.9: MATLAB script for performing the parameter estimation using the full filter
model using the particle swarm optimization algorithm.

1 % Globa l v a r i a b l e s f o r s t o r i n g p a r t i c e l swarm progres s
2 global bestx ;
3 global b e s t f ;
4
5 % Measurment sampling frequency
6 fm = 40 ;
7
8 % UKF tuning parameters
9 alpha_fm = 0 . 4 ;

10 beta = 2 ;
11 kappa = 0 ;
12
13 disp ( ’ Loading␣data . . . ’ )
14 t ic ( )
15 ds_fm(1) = PrepareDS ( ’ . . / Datasett /2016−04−04−13−30−23 ’ , [ ] , [ ] , [ 2 4 0 300 ] , fm , 1 ) ;
16 ds_fm(2) = PrepareDS ( ’ . . / Datasett /2016−04−04−13−30−23 ’ , [ ] , [ ] , [ 3 7 0 430 ] , fm , 3 ) ;
17 toc ( )
18
19 % Star t poo l and d i s a b l e warnings on workers
20 poo l ob j e c t = gcp ( ) ;
21 pctRunOnAll warning ( ’ o f f ’ , ’ a l l ’ ) ;
22
23 % Star t t imer f o r f u l l model parameter es t imat ion
24 ful l_model_timer = t ic ( ) ;
25
26 % Parameter range and i n i t i a l e s t imate .
27 param_ub = [ 5 . 5 e+4; 3 . 0 e−1; 5 . 5 e+2; 1 . 0 e+3; 1 . 0 e+1; 1 . 0 e+0; 5 . 0 e+3; 1 .2 e

+5] ;
28 param_lb = [ 1 . 7 e+4; 1 . 0 e−3; 1 . 0 e+0; 1 . 0 e+1; 1 . 0 e−2; 2 . 0 e−1; 1 . 0 e+3; 2 . 0 e

+4] ;
29 param_0 = [ 4 . 0 e+4; 2 . 0 e−2; 5 . 0 e+2; 5 .00 e+2; 8 . 0 e+0; 0 . 8 e+0; 2 .00 e+3; 5 . 0 e

+4] ;
30 param_names = { ’P_e_max ’ , ’b_e ’ , ’ u_cvt ’ , ’ d_cvt ’ , ’mu_bm’ , ’mu_tm ’ , ’T_bk ’ , ’ k_s ’ } ;
31 Np = numel (param_names ) ;
32
33 P0_fm = diag ( [ 5 e+1, 1e−2, 1e−2, 1e−2, 1e−2, 1e−2, 1e3 , 1e3 , 1e−2, 1e−2, 1e−3,

1e−3, 1e−3, 1e−3]) ;
34
35 % Problem statement f o r minimization us ing p a r t i c l e swarm
36 problem . s o l v e r = ’ part i c l e swarm ’ ;
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37 problem . ob j e c t i v e = @(param) −LogLike l ihood ( [ param_names , param_cd_names ] , [
param ( : ) ; param_cd_best_est ( : ) ] , @Model , P0_fm, ds_fm , alpha_fm , beta ,
kappa ) ;

38 problem . ub = param_ub ;
39 problem . lb = param_lb ;
40 problem . nvars = Np;
41 problem . opt ions = opt imopt ions ( problem . s o l v e r ) ;
42 problem . opt ions . Display = ’ i t e r ’ ;
43 problem . opt ions . Us ePara l l e l = true ;
44 problem . opt ions . SwarmSize = 10∗problem . nvars ;
45 problem . opt ions . S t a l l I t e r L im i t = 20 ;
46 problem . opt ions . MaxIter = 100 ;
47 problem . opt ions . In i t ia lSwarm = param_0 ’ ;
48 problem . opt ions . OutputFcns = {@( optimValues , s t a t e )

ParameterEstimationOutputFunction ( optimValues , s ta te , param_names ) } ;
49
50 [ param_best_est_psw , objective_best_psw ] = part i c l e swarm ( problem ) ;
51
52 % Print r e s u l t
53 full_model_time = toc ( ful l_model_timer ) ;
54 disp ( ’ Parameters ␣ f o r ␣ f u l l ␣model␣ est imated ␣with␣ p a r t i c l e ␣swarm : ’ )
55 disp ( s t r c a t ( sprintf ( ’ Log␣ l i k e l i h o o d ␣=␣%.3e , ␣ ’ ,−objective_best_psw ) ,

PrintParameters ( [ param_best_est_psw ] , param_names ) ) ) ;
56 fpr intf ( ’ Elapsed␣ time : ␣%s\n ’ , PrintHHMMSS( full_model_time ) ) ;
57
58 disp ( ’Try␣ to ␣ f u r t h e r ␣ opt imize ␣ the ␣parameters ␣ us ing ␣ fmincon ’ ) ;
59 ful l_model_timer = t ic ( ) ;
60 problem_loc . s o l v e r = ’ fmincon ’ ;
61 problem_loc . o b j e c t i v e = @(param) −LogLike l ihood ( [ param_names , param_cd_names ] , [

param ( : ) ; param_cd_best_est ( : ) ] , @Model , P0_fm, ds_fm , alpha_fm , beta ,
kappa ) ;

62 problem_loc . x0 = param_best_est_psw ;
63 problem_loc . ub = param_ub ;
64 problem_loc . lb = param_lb ;
65 problem_loc . nvars = Np;
66 problem_loc . opt ions = opt imopt ions ( problem_loc . s o l v e r ) ;
67 problem_loc . opt ions . Display = ’ i t e r ’ ;
68 problem_loc . opt ions . Us ePa ra l l e l = true ;
69
70 [ param_best_est , ob j e c t ive_bes t ] = fmincon ( problem_loc ) ;
71 param_est = param_best_est ;
72
73 % Print r e s u l t
74 full_model_time = toc ( ful l_model_timer ) ;
75 disp ( ’ Parameters ␣ f o r ␣ f u l l ␣model␣ est imated ␣with␣ p a r t i c l e ␣swarm : ’ )
76 disp ( s t r c a t ( sprintf ( ’ Log␣ l i k e l i h o o d ␣=␣%.3e , ␣ ’ ,− ob j ec t ive_bes t ) , PrintParameters

( param_best_est , param_names ) ) ) ;
77 fpr intf ( ’ Elapsed␣ time : ␣%s\n ’ , PrintHHMMSS( full_model_time ) ) ;

Listing A.10: MATLAB function for computing the log likelihood of an arbitrary number
of measurement series using a UKF.

1 function l o g_ l i k e l i h ood = LogLike l ihood (param_names , param_values , model_fun ,
P0 , dataset s , alpha , beta , kappa )

2 t ry
3 l o g_ l i k e l i h ood = 0 ;
4 model = model_fun (param_names , param_values ) ;
5 for ds = data s e t s
6 x0 = model . x0_fun ( ds . z ( : , 1 ) , ds . u ( : , 1 ) ) ;
7 [~ ,~ ,~ , log_l ike l ihood_ds ] = ukf ( ds . t , ds . z , ds . u , x0 , P0 , model ,

alpha , beta , kappa ) ;
8 l o g_ l i k e l i h ood = log_ l i k e l i h ood + log_l ike l ihood_ds ;
9 end

10 catch
11 l o g_ l i k e l i h ood = − i n f ;
12 end
13 end

Listing A.11: MATLAB function extracting the relevant measurements from the datasets
provided by OLAV.
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1 function ds = PrepareDS ( f i l ename , z_mask , u_mask , t_span , fm , h)
2 % Load complete da ta s e t from f i l e .
3 load ( f i l ename ) ;
4
5 % Construct time s e r i e s from re l e v an t data .
6 z_nav = t ime s e r i e s ( [ navdata . x_veloc ity , navdata . he ight , navdata . p i t ch ] ’ ,

navdata . time ) ;
7 z_vs = t ime s e r i e s ( [ 2∗ pi /60∗ v eh i c l e S t a tu s . engine_rpm , v eh i c l e S t a tu s .

axleRadPrSec ] ’ , v eh i c l e S t a tu s . time ) ;
8 u = t ime s e r i e s ( [ v eh i c l e S t a tu s . current_throttle_command /100 ,

v eh i c l e S t a tu s . current_break_command/100 , v eh i c l e S t a tu s . urrent_gear ] ’ ,
v eh i c l e S t a tu s . time ) ;

9 t = navdata . time ( navdata . time <= veh i c l e S t a tu s . time (end) ) ;
10
11 % Cut time to prov ided time span .
12 i f ( not ( isempty ( t_span ) ) )
13 i f ( t_span (2 ) < t_span (1 ) )
14 error ( ’ S ta r t ␣ time␣ l a r g e r ␣ than␣end␣ time . ’ ) ;
15 e l s e i f ( t (1 ) >= t_span (1 ) )
16 error ( ’ S ta r t ␣ time␣ out s id e ␣ datase t ’ ) ;
17 e l s e i f ( t (end) <= t_span (2) )
18 error ( ’End␣ time␣ out s id e ␣ datase t ’ ) ;
19 end
20 t = t ( ( t_span (1 ) <= t ) & ( t <= t_span (2) ) ) ;
21 end
22
23 i f isempty ( fm)
24 % Use navdata ’ s time vec tor as common time vec tor .
25 ds . t = t ;
26 else
27 % Use prov ided frequency to cons t ruc t time vec tor .
28 M = f loor ( ( t (end)−t (1 ) ) ∗fm) ;
29 ds . t = t (1 ) : 1/ fm : t (1 ) + M/fm ;
30 end
31
32 % Re−sample ans concatenate measurements
33 ds . z = [ z_vs . resample ( ds . t ) . data ( : , : ) ; z_nav . resample ( ds . t ) . data ( : , : ) ] ;
34 ds . u = u . resample ( ds . t ) . data ( : , : ) ;
35
36
37 % Store data names
38 ds . measurement_names = { ’ $\omega_e$ ’ , ’ $\omega_{rw}$ ’ , ’ $v_x$ ’ , ’ $r_z$ ’ , ’ $\

theta_v$ ’ } ;
39 ds . input_names = { ’ $\ alpha$ ’ , ’ $\ beta$ ’ , ’G’ } ;
40
41 % Set brake to zero when v e h i c l e i s in neu t ra l as t h i s can only be done in
42 % manual mode which does not repor t brake ac tua tor po s i t i on accura t e l y .
43 % Also chop o f any par t s where the v e h i c l e was not in neu t ra l .
44 i f ds . u (3 , 1 ) == 3
45 mask = ds . u ( 3 , : ) == 3 ;
46 ds . t = ds . t (mask ) ;
47 ds . z = ds . z ( : , mask ) ;
48 ds . u = ds . u ( : , mask ) ;
49 ds . u ( 2 , : ) = zeros (1 , numel ( ds . u ( 2 , : ) ) ) ;
50 end
51
52 % Remove unwanted measurements
53 i f not ( isempty (z_mask) )
54 ds . z = ds . z (z_mask , : ) ;
55 ds . measurement_names = ds . measurement_names (z_mask) ;
56 end
57
58 % Remove unwanted inpu t s
59 i f not ( isempty (u_mask) )
60 ds . u = ds . u(u_mask , : ) ;
61 ds . input_names = ds . input_names (u_mask) ;
62 end
63
64 % Store number
65 ds .Nz = numel ( ds . measurement_names ) ;
66 ds .M = numel ( ds . t ) ;
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67 ds .Nu = s ize ( ds . u , 2 ) ;
68
69 % Plot to prov ided ax i s
70 i f not ( isempty (h) )
71 figure (h) ;
72 PlotDS ( ds )
73 end
74 end



Appendix B

Derivation of the drive line
equations

This appendix presents the derivation of the equation of motion for the drive line from the
bond graph model of the drive line presented in section 4.3.4. The bond graph is shown in
fig. 4.10 on page 33. Figure B.1 shows the same bond graph model, but simpler notation
and numbered bonds, making the derivation of the equations of motion easier to follow. All
elements are assumed to not be modulated, as modulation does not change to structure of
the equations. The sources of effort representing the tire and brake torques are represented
as a single source.

The bond graph model has four state variables: the momentums p1, p2, and p4, caused
by the inertia elements connected to bond 1, 2, and 4, and the displacement q3 caused by
the capacitive element connected to bond 3. Starting with p1 its derivative is the sum of
the efforts going to the common flow node it is connected to:

ṗ1 = e0 − e8 − e9 (B.1)

Following the causality of the efforts gives the following:

e0 = Se0 (B.2)
e8 = e6 (B.3)

e9 = r9f9 = r9f2 = r9
p2
i2

(B.4)
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Figure B.1: Numbered version with simplified notation of the drive line bond graph orig-
inally presented in fig. 4.10 on page 33.
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Resulting in the following expression for ṗ1:

ṗ1 = Se0 − e6 − r9
p2
i2

(B.5)

Although e6 is still not completely determined. This is because it will be reused later and
it is therefore easier to consider it separately. e6 is caused by the non linear resistance Φb,6,
with f6 as input. Because of the structure of the non linear in the drive line model, the
resistance is defined1:

e6 = ΦR,6(f6) := ΦR,6(f8, f14) (B.6)

The two flows f8 and f14 are:

f8 = f1 =
p1
i1

(B.7)

f14 = m14f15 = m14(f13 − f16) = m14

(
m12

p2
i2

−m16
p4
i4

)
(B.8)

The same procedure is performed for p2 and p4 resulting in:

ṗ2 = e10 − e5 − e3 − e12 = r9
p1
i2

− b2
p2
i2

− ΦC,3(q3)−m12m14e6 (B.9)

ṗ4 = e00 − e7 + e17 = Se00 − b7
p4
i4

+m16m14e6 (B.10)

q̇3 is found similarly, but by summing the flows instead of efforts. As it is connected to a
common flow node this is simply:

q̇3 = f3 = f2 =
p2
i2

(B.11)

Rewriting the equations in therms of the flows instead of the momentums gives:

i1ḟ1 = Se0 − e6 − r9f2 (B.12)

i2ḟ2 = r9f1 − b2f2 − Φ−1
C,3(q3)−m12m14e6 (B.13)

q̇3 = f2 (B.14)

i4ḟ4 = m16m14e6 − b7f4 − Se00 (B.15)
e6 = ΦR,6(f1,m14 (m12f2 −m16f4)) (B.16)

To arrive at the equations presented in section 4.3.4 the appropriate values for the different
elements, as presented in the original bond graph model shown in fig. 4.10 on page 33, are
simply substituted into the equations derived here.

1This breaks the rules of the bond graph as it should have been a function of the sum: f8 − f14, and in
hindsight it may have been more correct to represent the belt pulley contact with a more specialized two
port element than a common effort junction and a resistive element.



Glossary

AUV autonomous underwater vehicle. 1

CVT continuously variable transmission. ix, 1, 2, 17, 19–21, 23, 29, 30, 32, 34, 35, 42, 43,
54–57, 66, 74, 75, 77

EKF extended Kalman filter. 7, 52

FFI the Norwegian Defence Research Establishment. v, 1, 23, 25

GNSS global navigation satellite system. 1, 25

IMU inertial measurement unit. 25

OLAV off-road light autonomous vehicle. ix, xiii, 1, 2, 23, 25, 27, 38, 42, 53, 55, 81, 94, 96

PLC programmable logic controller. 25

PVT Polaris Variable Transmission. 19, 23

ROS the Robotic Operating System is a framework for writing software for robots and
robot like systems. It provides facilities for creating software that spans multiple
executables and computers by providing a flexible message, configuration, initialization
and monitoring services. It also includes an extensive repository of easy to interface
programs that completes common tasks, like interfacing senors, actuators, simulation,
indoor navigation etc. The standard distribution of ROS includes C++ libraries and
Python modules for integrating software with ROS.[1] . 1, 26

UGV unmanned ground vehicle. v, 1

UKF unscented Kalman filter. x, xiii, 3, 5, 7, 8, 10, 52, 57, 58, 61, 66–70, 74, 77, 81, 88,
89, 92–94, 96
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