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Abstract

In machine learning there are many algorithms. This thesis will focus on
the K-nearest-neighbour algorithm with focus on how different portions of
training data and the value of k affects the predictions in three different
datasets. The main focus is on discovering different types of attacks in the
KDD cup dataset from 99, but the algorithm will also be tested on the built
in IRIS dataset. The findings in the thesis were that the KNN algorithm
proved to be quite accurate in predicting attacks.
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Chapter 1

Introduction

Today Intrusion Detection Systems (IDS) are used to warn against sus-
picious activity against a system. IDS do have some issues though. In
IDS there are alerts which send messages that something may be going
on. False statements are alerts which send us a message which is not true.
These represent a threat in all systems. So how can these be filtered out?
System administrators use a lot of time to look into these statements. One
technique is for instance to use machine learning. One can implement dif-
ferent machine learning algorithms to make sure that one can extract the
right kind of attack data from a dataset.

Machine learning techniques are used widely today. We see this for in-
stance in spam filters where the email provider or client filters out spam
messages. Machine learning is also widely used in search engines for pat-
tern recognition. IDS is also a domain for pattern recognition. However,
machine learning is not widely used in IDS commercially, despite the the
fact that area is heavily researched.

1.1 Problem statement

The main aim of this thesis is to look at the question: "How does the
value of K and different training data affect the KNN algorithm in different
training sets?" The thesis will also take a closer look at different concepts in
intrusion detection and some other machine learning algorithms.

1.1.1 Scope

The scope of this thesis is to apply machine learning algorithms on the
KDD Cup dataset from 99. To do this the programming language R will
be used. The advantages of using this dataset are that the dataset is
already sorted and labelled and therefore one does not need to spend much
time generating a new dataset. In addition to the already widely known
machine learning algorithms, this thesis will also research some algorithms
not widely known in the area of machine learning. That may provide some
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new information about other algorithms which may be appropriate for
machine learning in instrusion detection. This thesis will also take a closer
look at SNORT, which is a widely used IDS, and also use another built in
dataset to compare the performance relative to the KDD dataset.
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Chapter 2

Background

In this chapter the situation regarding IDS now will be described and then
introduce concepts when it comes to machine learning. Research already
done in the area will also be covered.

2.1 IDS

Wikipedia defines IDS as "an intrusion detection system (IDS) is a device
or software application that monitors network or system activities for
malicious activities or policy violations and produces electronic reports to a
management station" [6]. There are many types of IDS systems. I will now
take a closer look at the different types and go into some of the advantages
and disadvantages of them.

2.1.1 Types of IDS

The two main types of IDS systems are active and passive. [5]. The main
difference between them is that an active system is configured to intervene
when suspicious activity is detected, whereas a passive system only gives
us alert messages and it is more up to the sysadmin to take action on the
messages. The advantage of an active IDS is, of course, that a sysadmin can
"relax" in the sense that he or she can, in most cases, rely on the IDS taking
action on suspicious activity in the network. However, the biggest advant-
age of an active IDS may also be its biggest disadvantage. If a sysadmin does
not check theIDS regularly (e.g. for updates) we can end up with an IDS
which does not work as intended. Attackers always look for new ways to
bypass the IDS and one can imagine the possibly disastrous consequences
if your IDS does not work.

The main advantage of a passive IDS is that a sysadmin has to stay on
the alert all the time all and has to take the proper action according to the
alerts. You will always be sure that something will be done. The main dis-
advantage is that a sysadmin may not have enough knowledge to take the
proper action. It may even result taking the wrong action with some some
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really serious consequences.

IDS can be subdivided into more types. There are host-based IDS and
network-based IDS. A host-based IDS runs on each individual host (for
instance our own laptop with a firewall software). Network based IDS,
on the other hand, run in the boundary of the network (think of a server
running ). Most companies run a combination of both (since virtually
all versions of Windows nowadays come with a security kit included).
Network-based IDS clearly have an advantage over host-based IDS. With a
host-based IDS we can’t in an easy way discover attacks on multiple nodes.
Network-based IDS, however, monitor traffic on the whole network and
can easily discover attacks bound for multiple nodes.

One can also divide IDS into the methods they use to discover attacks.
There are both signature-based IDS and behaviour-based IDS. Signature-
based IDS discover attacks using data from a huge database of known at-
tacks. These databases must of course be maintained by someone and they
might be behind when there are new types of attacks which is not yet ad-
ded to the database. SNORT is probably the most well known signature-
based IDS available. Behaviour based IDS on the other hand have patterns
they regconize in the network to distinguish normal traffic from suspicious
traffic.

As an example of a behaviour-based IDS, let us say you one day deal
with a huge amount of data to upgrade some sort of software on many
clients. This may trigger a false alarm on the IDS. The IDS’ learnt behaviour
may be 100 megabytes of data pr day - but on the next day it is 5 gigabytes.
This is of course a huge deviation and may trigger an alarm. In a smaller
company the sysadmin more probably knows what is going on, but if the
company is larger with many people working in the IT department, one
sysadmin may not know. That person may then take some sort of action.
Now this scenarios is pretty unrealistic but it illustrates an example of what
may happen in these settings.

2.2 Machine learning

One can fnd the following defintion of machine learning on Wikipedia "Ma-
chine learning is a subfield of computer science that evolved from the study
of pattern recognition and computational learning theory in artificial intel-
ligence." [7] As mentioned in the introduction one of the most common uses
of machine learning are spamfilters on your email. When you log into your
Gmail account you will notice you have a folder called spam (or in Norwe-
gian søppelpost). In the early days of email spamfilters were not there so
you could end up spending a lot of time deleting all the spam.
Gmail is a particular interesting case to analyse. They even have folders for
advertisements (e.g. campaigns for cheap airline tickets), social media (e.g.
email notifications from Facebook, Twitter etc) and of course your primary
folder where all important email (or what Gmail thinks is important to be
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clear) are located. All these folders are in addition to the spam folder, where
all the real junk go (e.g. letters from Nigeria).

So how does Gmail knows all this? One could imagine a situation
where Gmail had to employ people to go through each individual email
sent into the Gmail servers and place them in the right folder. If they had to
do this there would be work for every single individual on the planet. The
idea is good, but not practical. The way Gmail knows this is of course by
different machine learning algorithms. By using these algorithms Gmail can
look for patterns in each email and direct the email to the relevant folder.

2.2.1 Usage of machine learning

I have already provided an example of how machine learning is used in
email. I will in this section take a closer look of usage of machine learning
today. Machine Learning Mastery [2] has a list of 10 examples of machine
learning problems. One interesting example which is in that list is medical
diagnostics. Medical professionals can by inserting a list of different symp-
toms into a software, get a prediction on whether the patient is ill or not.
However, if a patient obtains access to these systems we may have a lot of
self diagnosis of illnesses. There are already many websites which do this
with lists of symptoms.

Another usage according to Machine Learning Mastery is speech
understanding. One example is the iPhone Siri. [8]. Siri can help you to
find your way or just find the nearest restaurant from the location you are
at. Siri was not, however, Apple’s original idea. It was first released in the
appstore of Apple by another company before it was bought by Apple. The
funny thing though is that Google’s own voice search for iPhone was found
to work better than Siri. Speech understanding can pose some problems.
Siri has been widely criticized for not understanding certain accents.

2.2.2 Machine learning usage in IDS

Machine learning is not widely used in IDS today, despite the fact that
the area is heavily researched. According to Sabhani and Serphen [4], the
algorithms were not that effective to discover user to root and remote to
local attacks. A user to root attack is an attack where a user has some
access to a system and then tries to gain root access (e.g. by exploiting
flaws in an OS or by social engineering). A remote to local attack is of
course when somebody outside the network tries to attack your system.
These are two major flaws in the machine learning algorithms that were
tested in the paper above. This reason alone may be one big reason for
why machine learning is not widely used. The algorithms must be able
to discover such basic attack types. A good example of a remote to local
attack is when an attacker takes control of your system to use it in a botnet.
Now we have to take in account that the paper mentioned is from 2003,
so normally the algorithms should be improved by now. The dataset used
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(KDD CUP 1999)) though is still heavily used in research, however, there
are some criticism of it that it does not resemble real network traffic. I will
use the KDD Cup dataset later on to the thesis.
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Chapter 3

Approach

The experiments will be performed on the Alto cloud provided by HiOA
and on my own computer. The main advantage of doing experiments on
virtual machines in the cloud, is that we can test in different environments
(e.g. we can check performance with different amount of memory).
One can also do experiments without having to worry too much about
destroying anything. For collection of statistics I will use the programming
language R [3] . The advantage of using R is that we can easily read
data from large files and analyse them. With these two tools one can
easily compare the performance between different algorithms and the more
traditional IDS.

3.0.1 Types of machine learning algorithms

According to Machine Learning mastery there are two main categories of
machine learning algorithms. The two categories are grouping by learning
style and grouping by similarites (e.g. grouping similar animals). Learning
style algorithms typically have some "learnt" interaction with the data we
would like to interact with. This can for instance be that the algorithm has
learnt to distinguish spam from not spam. Algorithms grouped by similar-
ity, however, are grouped by how they work. In this category we find tree
based algorithms and bayesian based algorithms. I will now go through
some types in the different categories.

I will start with the algorithms grouped by learning style. One al-
gorithm in this category is supervised learning. In this algorithm we have
a known label (e.g. spam or not spam), and the model is then "trained" to
learn what kind of data the label contains. Another model in this category
is unsupervised learning. In this model input data is not labelled and we
do not have a known result. Mathematical rules are used to organize and
recognize the data. A third algorithm in this category is semi supervised
learning. In this algorithm we have a combination of the two already men-
tioned (e.g. both labelled and unlabelled data). This algorithm is more
flexible in terms that it has to handle both.
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In the algorithms grouped by similarity we have more algorithms than
the ones grouped by learning style so I will only cover the most important
ones. One example here are the decision tree algorithms. These algorithms
are one of the most popular ones when it comes to machine learning. It is
quite simple to understand. The decision tree has a set of decisions based
on the data attributions. For instance a packet can arrive with a label (e.g.
ICMP) and then the algorithm will take a decision of what kind of action to
do. These actions can for instance be to drop the packet, to let the packet
pass or investigate the packet closer. In a decision tree this moves the packet
down the tree based on the instructions the algorithm have.

There are also instance based algorithms. In this group we find for in-
stance K-nearest neighbour. This is a distance based algorithm. The simplest
way to describe this algorithm is to start of by describing a distance (e.g.
k=5). This will now direct us to the five nearest neighbours. Since the
nearest neighbour algorithm is determined by a "majority vote" we can say
that if there are 2 apples and 3 pears (remember k=5) - the pears will be
the outcome of our "search", simply because pears have more "votes" than
apples in this example. Nearest neighbour algorithm is one of the most
commonly used algorithms in machine learning. When using R ties are
broken randomly (e.g. if apples and pears get the same amount of "votes").
This is of course a very simple description of this algorithm. There are of
course different methods to measure the distance k. We can for instance
give each neighbour a weight which counts more than a vote.

Another algorithm type which is more advanced than the clustering
and the classification algorithms are the artificial neural network algorithms.
This family of algorithms is in fact inspired by the central nervous system
in humans. Real life applications of these algorithms include robotics,
game-playing (for instance chess) and vehicle control. An artificial neural
network has different nodes which are connected to each other.

3.0.2 Traditional IDS/IPS implementation

How is IDS/IPS implemented today? In most cases these are implemented
on a server or in large corporations many servers to make sure every single
part of the network is covered. As mentioned above SNORT is one of the
most famous IDS. To set up SNORT one just needs a Linux host and then
you can just start to look for intrusions if it set up properly with a set of
rules. One can also set up your own rules in SNORT which is quite easy.
Below is a sample rule in SNORT.

alert tcp any any <> 10.5.70.91 any (msg:"All traffic yoho"; sid:1; rev:3;)

This rule is very simple and actually not very useful as it does generate
alerts for ALL TCP traffic in and out out of the IP address 10.5.70.91. The
rule is, however, very useful for testing purposes to make sure SNORT
works properly. One also has other options than alert. One can for in-
stance replace alert with the log parameter. That means that we actually log
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the traffic specified. SNORT can of course run as a standalone installation
(console mode), but one usually has some sort of web interface to make
managing SNORT much easier (and also easier to read alerts and logs).

As mentioned earlier SNORT needs a set of rules or signatures to make
sure we are aware of the newest attacks. SNORT rules come in different
sets. The free of charge community rules and the paid subscription rules. The
paid subscription rules are newer than the community rules, but usually the
SNORT developers release the subscription rules to the community rules
after a while. The subscription rules are also updated on a daily basis
more or less, making these rules safer to use. For a business the cost of
a subscription is 399 USD pr sensor/pr year. For personal use the price
becomes much cheaper, but this is almost always the model in licensing
costs.

SNORT ruleset

Luckily the SNORT developers have released information about what you
get in the subscription rule set. There are quite many of them, but with
the number of vulnerabilities in a network, this is of course essential. One
interesting aspect with SNORT is that rules are not deleted permanently,
just moved to the category called deleted. The reason for this may be that
if there is an issue with a new rule, the old rule can easily replace the
newer one if needed. As mentioned above there is a lot of rule sets ranging
from rules about web browsers to rules about operating systems. The
SNORT developers have sorted the rule set quite logically which makes
it easy to know what to look for. All rules regarding a web browser
begins with browser-XXX and for operating systems os-XXX. There are even
rules regarding different protocols (for instance IMAP - which is an email
protocol). The subscription rules do actually have the community rules
included in them.

3.0.3 Technical part

As mentioned earlier on in this thesis, the technical part will be done
on ALTO cloud and also my own computer. R studio runs easier on
Windows computers than in the cloud where I only have a command line
interface. My computer has an Intel I7 processor, 8 gigabytes of ram and
a 244 gigabytes of disk space. In the ALTO cloud we can choose from
different configurations. In this thesis the experiments will run on the large
configuration. This configuration has 4 virtual CPUs, 8 gigabytes of ram
and 80 gigabytes of disk space. The producer of the virtual CPUs, however,
is not mentioned, but the configuration should be more than enough for
our use.
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KDD cup dataset

The KDD cup dataset is a dataset which was used in a conference back in
1999. To generate this dataset they used a prgram called TCPdump. TCP-
dump is a program which captures traffic on the network. This thesis will
use the full dataset which is 743 megabytes uncompressed. The dataset has
over 4 million entries which gives unlimited amount of opportunities to
apply different machine learning algorithms and then analyse the results.
As mentioned earlier the data is already labelled which means that we do
not need to do much before we run different algorithms on the set. Since
it is labelled we know if a packet is "normal" or if there is an attack going on.

One can now take a closer look at the attack types described in the
KDD cup dataset. There are four main categories in the dataset. These
are DOS (Denial of Service), U2R (User to Root), R2L (Remote to Local) and
PROBE(probe attack). A DOS attack is when an attacker makes the ma-
chine too busy to handle any legitimate requests. This type of attack is very
common, but it is also easy to prevent. Many attackers who perform this at-
tack use several machines in a botnet to make the attack more powerful than
it would otherwise be. The KDD cup dataset contains six different DOS at-
tacks. These are SMURF, NEPTUNE, POD, TEARDROP, LAND and BACK.
A U2R attack is when an attacker has a normal user account and then uses
some exploits to gain root access to the system. The dataset contains four
attacks of this type. These are buffer-overflow, loadmodule, rootkit and perl.
A R2L attack is when an attacker tries to gain access via the network on a
machine the attacker does not have an account on. The dataset contains 8
attacks of this type. These attacks are warezclient, multihop, ftp-write, imap,
guess-passwd, warezmaster, spy and phf. A PROBE attack is when an attacker
gathers information for the purpose of finding exploits. The dataset con-
tains four attacks of this type. These are nmap, satan, portsweep and ipsweep.
The attacks mentioned here are all subtypes of the main category, and it
is probably enough to know the main categories. Of these categories DOS
and PROBE attacks are the most common ones, the two others are in fact
much rarer. DOS is, however, much more common than PROBE again. It
is, however, not difficult to understand that nmap typically involves using
the program NMAP to scan for information.

The KDD cup dataset also of course shows the protocols in the dataset.
These are TCP, UDP and ICMP. The TCP protocol is probably the most im-
portant one. With TCP we do get reliable transfer, and hence this protocol is
used in for instance SMTP(email) and HTTP.(websites) The UDP does not
have reliable transfer and this protocol is then used for instance in transfer
of SKYPE phone calls. The reason for this is that the UDP protocol is much
faster. TCP will then require much more time to make sure the packet has
arrived. The last protocol in the dataset ICMP is mostly used to send mes-
sages over a network.

The contents of the KDD cup dataset is quite interesting. The training
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set (which is 10% extracted from the original dataset) has about 80%
connections related to an attack and just about 20% normal connections.
With these numbers in mind it should be quite easy to get an idea of how
good different algorithms are to discover attacks. One can assume that the
same numbers roughly correspond to the full set of data.

Performance of algorithms

Before one can perform the technical part one needs to have a process so
that a plan can be laid out for all the experiments. In this way it will be
easier to perform the experiments. So now to the very basic question -
how good are the machine learning algorithms to discover attacks in the
KDD CUP dataset? There are numerous papers on this. One paper is the
Sabhani and Serpen. [4] That paper is from 2003 with less powerful hard-
ware that is available today. The hardware they tested on was 400 mhz
on the processor and 512 megabytes of RAM. The conclusion of this paper
is that actually none of the algorithms they tested could discover U2R or
R2L attacks in a significant way. Actually they were not able with any al-
gorithms to discover any more than 30 % of the U2R attacks and any more
than 10 % of L2R attacks. Also there were some algorithms that were better
than discovering some types of attacks than others. This makes it of course
more challenging to determine if there is one algorithm which is the best
algorithm.

Now while algorithms themselves do not change over time, the power
of hardware does. This might be something to consider when doing tests.
Are the algorithms more powerful with more power than the original cod-
ing of the algorithms? Or do you only use less time to analyse something?
As a CPU only provides power to perform tasks faster, the algorithm itself is
still programmed the same way. A plausible answer to the question should
be no. As a conclusion, a fast CPU does not affect the way an algorithm
is programmed, but rather gives us better performance. In my case I may
not need to wait several days to obtain a result from the 4 million entries of
data. This is of course an huge advantage of CPU power.

There are of course many algorithms out there to test. R has
built in many machine learning algorithms in a way so one does not
need to program them in another programming language. With this
the results are generated quickly and there is no need of program-
ming these algorithms. Importing a dataset in R is also quite straight-
forward. In the screenshot below the interface of R-studio is seen.

In this screen-
shot one can see how large the dataset actually is.
So how does one perform a K-nearest neighbour algorithm in R? In fact R has
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this implemented if you download some packages. Here is a closer look at
the code required for this.

1 knn ( t r a i n , t e s t , c l , k = 1 , l = 0 , prob = FALSE , use . a l l = TRUE)

This is the syntax R uses to apply the KNN algorithm. Now a little bit
about the parameters. The parameter train is a matrix or data frames of
training set cases. The test parameter is a matrix or frame of testing set
cases. The cl is a factor of true classifications of the training set. The k=1
parameter is the value of k, which is how many neighbours which will be
considered. The l parameter defines the minimum number of votes for
a definite decision which in this case is 0. The probe is a parameter which
returns the proportion of the votes required as the winning vote if it is set to
true. In this example the parameter is false. The use.all parameter controls
the handling of ties.

R studio

Now a little bit closer look on R studio with the KDD dataset actually
imported. Here we can see the imported dataset.

As one can see here the dataset has nearly 5 million entries. The dataset
has 42 variables, which in machine learning can translate into features.
However, it has to be said that most of the variables are integers and may
therefore be of less interest to analyse. Now one can take a look at how
many packages there are of each type in the dataset.

1 t a b l e ( kddcup . data $V2 )
2

3 icmp tcp udp
4 2833545 1870598 194288

By using the table function in R makes this easy. The $V2 parameter is the
second variable of the dataset. Some examples are here:

$ V1 : int 0 0 0 0 0 0 0 0 0 0 ...
$ V2 : Factor w/ 3 levels "icmp","tcp","udp": 2 2 2 2 2 2 2 2 2 2 ...
$ V3 : Factor w/ 70 levels "aol","auth","bgp",..: 22 22 22 22 22 22 22 22 22 22 ...
$ V4 : Factor w/ 11 levels "OTH","REJ","RSTO",..: 10 10 10 10 10 10 10 10 10 10 ...

The reason for why we use the table function on the $V2 variable is that this
variable contains icmp, TCP and UDP. So what does this observation tell
us? As one can see the protocol with most entries in the dataset is ICMP. A
wild guess may imply that most attacks in the dataset are of the type DOS.
One can also take a look at the V3 variable. From the code above this may
imply that the types of connections are stored in this variable. One can take
a closer look at some of the connection types.
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1 http
2 623091
3

4 p r i v a t e
5 1100831

From this one can see there are 623091 http connections in the dataset
and 1100831 private connections. There are of course many more connection
types in the document, but due to space constraints in the document, it is
impossible to view all of them. There is absolutely no suprise that there are
many http connections in the dataset. Every time a website is loaded many
http packets are sent back and forth. There were even some http packets on
port 443, which is the port used for https traffic.

There is also one more important variable here. The $V42 variable
contains the name of the attacks.

1 t a b l e ( kddcup . data $V42 )
2 ( . . )
3 smurf 2807886

Again due to space constraints it is not possible to view the whole output,
but smurf is the one attack with more numbers than anything else. This
is no suprise at all. As mentioned earlier smurf is a DOS attack and there
were clearly most ICMP connections in the dataset. On the other hand there
were quite few normal connections compared to the number of attacks.
There were just 972781 normal entries in the dataset. With knowledge of
these numbers we know what to look for when applying machine learning
algorithms to the dataset. R has of course many more features than this,
this is just a brief introduction of R with an imported dataset.

Algorithms to be tested

The KNN algorithm has been mentioned several times, and is of course
a central algorithm in machine learning. There are, however, many more
algorithms to test. A good starting point is to test at least three algorithms,
with KNN to be one of them. Serpen and Sabhnani [4] tested 9 algorithms.
However, the KNN algorithm was not one of them. Instead they focused
more on clustering algorithms. It is very important to know that the KNN
algorithm uses a completely different method than the K-means algorithm
and that the letter k in both algorithms is just a coincidence, Clustering
algorithms organize the data into clusters of where the data has the most
in common where as KNN is more of a classification algorithm. In learning
style - the KNN is supervised where as K-means is unsupervised. So to begin
with it makes sense to test them both on this dataset. This will clearly give
some results that may be quite different to each other.
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Chapter 4

Experiments

In this chapter all the experiments will be presented. As mentioned in
chapter 3 at least three algorithms will be tested on the KDD cup dataset.
Then an experiment with one of the algorithms using SNORT will be
presented. An analysis and a detailed discussion of the experiments will
follow in chapter 5.

4.0.1 Experiment 1

Task: To analyse the KDD cup dataset using the KNN algorithm. Tools to
be used are the dataset and R-studio. The goal is to see how well the KNN
algorithm can discover attacks in the KDD cup dataset. The background
information of the dataset is given in chapter 3.

Steps

To perform this experiment we need to follow some steps. The first step
is of course to load the data into R-studio. Training of the algorithm is
also needed so one has to define labels so the algorithm can be properly
trained to recognize the attack. Then after the training part one can use the
algorithm on the whole dataset.

Preparing R

To make the KNN algorithm to work we need a package called class. To use
this package we need to type 1

library(class)
Warning message:
package ‘class’ was built under R version 3.2.4

This function tells us that the package is installed, but that the package may
be a bit old. Note - this package is not installed by default in R, but it was
installed before performing this experiment. So the next step is to prepare

1Note: The source code in this experiment is taken from
https://www.datacamp.com/community/tutorials/machine-learning-in-r
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the data. If this data was not labelled there This means that one feature
will not be overemphazised compared to another and the projections will
be more accurate. To normalize a custom function has to be created. The
source code for this can be seen below

1 normalize <− func t ion ( x ) {
2 + num <− x − min ( x )
3 + denom <− max( x ) − min ( x )
4 + return (num/denom)

However, since our dataset is already labelled there is no need to normalize
the dataset. The algorithm can then be applied to the dataset, but before
that can be done a sample from the dataset needs to be randomly chosen
(2/3 of the dataset will act as the training dataset).

1 s e t . seed ( 1 2 3 4 )
2 nd <− sample ( 2 , nrow ( kddcup . data ) , r e p l a c e=TRUE, prob=c ( 0 . 6 7 ,

0 . 3 3 ) )

The set.seed() function is the random number generator in R. The sample()
function in R gives us a sample of the data. In this case the number 2 is to
assign either 1 or 2 to all elements in our dataset, replace=true means that
that after assigning 1 or 2 to a vector, the next vector will be reset Now after
preparing this, it is very important that the data is categorized between
the test data and the training data. However, since the KDD cup data
fails this experiment will instead use the IRIS dataset which is built into
R. The reason for this failure is that somewhere in the dataset something is
divided by zero. The steps are about the same as demonstrated above, but
with fewer entries. The results, however, should be about the same. The
IRIS dataset covers the SEPAL species of flowers. This dataset has only 150
entries, so the predictions may of course be more accurate than predictions
on the KDD dataset. Now a closer look at how the IRIS dataset looks like.

1 i r i s
2 Sepal . Length Sepal . Width P e t a l . Length P e t a l . Width Spec ies
3 1 5 . 1 3 . 5 1 . 4 0 . 2 s e t o s a
4 2 4 . 9 3 . 0 1 . 4 0 . 2 s e t o s a
5 3 4 . 7 3 . 2 1 . 3 0 . 2 s e t o s a
6 4 4 . 6 3 . 1 1 . 5 0 . 2 s e t o s a
7 5 5 . 0 3 . 6 1 . 4 0 . 2 s e t o s a
8 6 5 . 4 3 . 9 1 . 7 0 . 4 s e t o s a

These are the 6 first entries in the dataset, the dataset is sorted so the other
species do not come before well into the dataset, so here is a sample from
the other species.

1 51 7 . 0 3 . 2 4 . 7 1 . 4 v e r s i c o l o r
2 52 6 . 4 3 . 2 4 . 5 1 . 5 v e r s i c o l o r
3 53 6 . 9 3 . 1 4 . 9 1 . 5 v e r s i c o l o r
4 54 5 . 5 2 . 3 4 . 0 1 . 3 v e r s i c o l o r
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5 108 7 . 3 2 . 9 6 . 3 1 . 8 v i r g i n i c a
6 109 6 . 7 2 . 5 5 . 8 1 . 8 v i r g i n i c a
7 110 7 . 2 3 . 6 6 . 1 2 . 5 v i r g i n i c a
8 111 6 . 5 3 . 2 5 . 1 2 . 0 v i r g i n i c a

To make this dataset suitable to run the KNN algorithm on, the entries
have to be sorted randomly. There are 50 of each type of species, so the
predictions of the species may be less accurate that what have would have
been the case of the whole KDD cup dataset. All source code for the
experiments are in the appendix chapter except for the results. Then the
trainingset, testset and labels are defined

1 > i r i s . t r a i n i n g <− i r i s [ i r i s _sample == 1 ,1 :4 ]
2 > i r i s . t e s t <− i r i s [ i r i s _sample == 2 ,1 :4 ]
3 > i r i s . t r a i n l a b e l<− i r i s [ i r i s _sample ==1 ,5]
4 > i r i s . t e s t l a b e l<− i r i s [ i r i s _sample ==2 ,5]
5 >

The task in this experiment is to predict the species in the dataset so the
training labels and the test labels are set from row 5 in the dataset. The
data is now prepared and the algorithm can be run with k=3 for the first
part.

1 > i r i s _knn
2 [ 1 ] s e t o s a s e t o s a s e t o s a s e t o s a s e t o s a s e t o s a

s e t o s a s e t o s a s e t o s a s e t o s a s e t o s a
v e r s i c o l o r

3 [ 1 3 ] v e r s i c o l o r v e r s i c o l o r v e r s i c o l o r v e r s i c o l o r v e r s i c o l o r
v i r g i n i c a v e r s i c o l o r v e r s i c o l o r v e r s i c o l o r v e r s i c o l o r
v e r s i c o l o r v i r g i n i c a

4 [ 2 5 ] v e r s i c o l o r v e r s i c o l o r v e r s i c o l o r v e r s i c o l o r v e r s i c o l o r
v e r s i c o l o r v e r s i c o l o r v e r s i c o l o r v i r g i n i c a v i r g i n i c a
v e r s i c o l o r v i r g i n i c a

5 [ 3 7 ] v i r g i n i c a v i r g i n i c a v i r g i n i c a v i r g i n i c a v i r g i n i c a
v i r g i n i c a v i r g i n i c a v i r g i n i c a v i r g i n i c a v i r g i n i c a
v i r g i n i c a v i r g i n i c a

These are all the predictions of each species in each row in the IRIS dataset.
So how well did the algorithm perform in this case?

1 > t a b l e ( i r i s _knn )
2 i r i s _knn
3 s e t o s a v e r s i c o l o r v i r g i n i c a
4 11 20 17
5

6 > t a b l e ( i r i s . t e s t l a b e l )
7 i r i s . t e s t l a b e l
8 s e t o s a v e r s i c o l o r v i r g i n i c a
9 11 21 16
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The two tables displayed compare the predictions versus the actual dataset.
The predictions clearly show that there is one error by predicting one
virginica too much. The algorithm should if it was perfect predict the
species in the iris.testlabel variable.

Short analysis

As mentioned above there was one error in this prediction, so the model
is actually quite accurate when it comes to predicting. The sample size,
however, of this dataset is quite small compared to for instance the KDD
dataset. Still it was one error. A guess could be that the error margin when
running this algorithm on KDD dataset is very huge. Even if predicting
70% of the attacks and the normal traffic correctly in numbers that is still
1,2 million errors. One interesting thing with this algorithm is to see if there
are more or less errors with a different size of the training and test set. That
is covered in the next experiment.

4.0.2 Experiment 2

So what happens if the training data is reduced to 50% of the data? Will the
KNN model be more accurate or less? A hypothesis of this may be that the
model becomes less accurate, simply due to less data. The source code for
this experiment is shown in the appendix chapter.

One can now look at the results:

1 > t a b l e ( knn50 )
2 knn50
3 s e t o s a v e r s i c o l o r v i r g i n i c a
4 25 27 28
5 > t a b l e ( i r i s . t e s t l a b e l 5 0 )
6 i r i s . t e s t l a b e l 5 0
7 s e t o s a v e r s i c o l o r v i r g i n i c a
8 25 30 25

This clearly has some of the same results from experiment number 1 were
2
3 of the data was used as the training data.

Short analysis

The algorithm’s performance of predicting the species is actually quite ok.
The prediction of the Setosa species was 100% correct, but the predictions of
Versicolor and Virginica species were both slightly incorrect. Compared to
experiment 1, the deviations from the original data set is bigger, but still not
significant enough to tell much about the algorithm’s performance when
you reduce the training dataset. A further reduction is required, and will
be done in experiment number 3.
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4.0.3 Experiment 3

In this experiment an even further reduction of the training set will be done.
A slight worsening of the correct predictions were found in experiment 2
so the guess here is that the predictions will be much worse. A test with
only 20 % of the original dataset should show some clearer indications.
The source code is in the appendix chapter, but it is of course just some
adjustments of some parameters. Now a closer look at the results.

1 > t a b l e ( knn_ 20)
2 knn_20
3 s e t o s a v e r s i c o l o r v i r g i n i c a
4 38 40 47
5 > t a b l e ( i r i s . t e s t L a b e l 2 0 )
6 i r i s . t e s t L a b e l 2 0
7 s e t o s a v e r s i c o l o r v i r g i n i c a
8 38 42 45

The results are about the same as in the two other experiments performed
here.

Short analysis

Three experiments have now been done with different training sets, and the
results here clearly show that there is no evidence of a weaker prediction
from the KNN algorithm when the training sample is reduced from 2/3 of
the dataset, then to 50 % and then finally to 20%. This makes the algorithm
quite robust in terms of predicting the correct results no matter the sample
of the training data. One could of course have run one last experiment with
by reducing the training data to 10%, but since the algorithm has proved
to be quite robust, this is not needed. Instead it would have been more
interesting to see if you adjust the value of k in the algorithm.

4.0.4 Experiment 4

The purpose of this experiment is to see how the value of k affects
the results of the KNN algorithm. A valid hypothesis here is that the
algorithm’s performance in a significant way will be affected. The reason
for this hypothesis is that different values of k will affect the neighbours
the algorithm picks and this may yield completely different results than
just adjusting the training data. If the value k=1 is selected that means that
only the closest neighbour will be considered. The value of K is usually an
odd number so that the chance of having the same amount of votes when
running the algorithm is eliminated.

1

2 > t a b l e ( knn_k )
3 knn_k
4 s e t o s a v e r s i c o l o r v i r g i n i c a
5 38 40 47
6 > t a b l e ( i r i s . t e s t L a b e l 2 0 )
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7 i r i s . t e s t L a b e l 2 0
8 s e t o s a v e r s i c o l o r v i r g i n i c a
9 38 42 45

Here the value of k is set to 5.

Short analysis

The result is exactly the same as in experiment 3. By increasing k more
neighbours are covered in the testing scope. The predictions may then
become more accurate. The result is as mentioned above the same as in
experiment 3 and hence increasing k may until a certain point have more
accurate predictions.This experiment can be tweaked. In this experiment
only 20% of the data was used as the training set, but what happens if you
increase k and use 2/3 set as the training set?

4.0.5 Experiment 5

This experiment will be mostly the same as in experiment 4, but with a
different training sample (2/3) of the dataset. This will give a better idea
how much the value of k matters to predict the right species. First the
results from experiment 4.

1 > t a b l e ( knn_k )
2 knn_k
3 s e t o s a v e r s i c o l o r v i r g i n i c a
4 38 40 47
5 > t a b l e ( i r i s . t e s t L a b e l 2 0 )
6 i r i s . t e s t L a b e l 2 0
7 s e t o s a v e r s i c o l o r v i r g i n i c a
8 38 42 45
9 >

The prediction here was two too many of the virginica species.

1

2 > t a b l e ( knn_k_2_ 3)
3 knn_k_2_3
4 s e t o s a v e r s i c o l o r v i r g i n i c a
5 11 21 16
6 > t a b l e ( i r i s . t e s t l a b e l )
7 i r i s . t e s t l a b e l
8 s e t o s a v e r s i c o l o r v i r g i n i c a
9 11 21 16

10 >

As one can see the prediction was 100% correct.
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Short analysis

The prediction in this case was 100% correct. Now this is interesting. It
seems that increasing the value of k actually increases this algorithm’s
accuracy. Still it must be a point where the value of k becomes too large
(or too small) to make any sense when it comes to accurate predictions.

4.0.6 Experiment 6

From experiment 5 the conclusion was that the larger the number of k the
more accurate the KNN algorithm’s prediction was. The value of k was 5.
What happens if the value of k is set to 20? The results from experiment 4
is in the appendix section so it is easy to compare. A hypothesis here is that
the results should be exactly the same as in experiment 4.

1

2 > t a b l e ( knn_k_ 20)
3 knn_k_20
4 s e t o s a v e r s i c o l o r v i r g i n i c a
5 11 24 13
6 1
7 > t a b l e ( i r i s . t e s t l a b e l )
8 i r i s . t e s t l a b e l
9 s e t o s a v e r s i c o l o r v i r g i n i c a

10 11 21 16

The prediction here had more errors than experiment 5 which predicted
everything 100% correct.

Short analysis

With k=20 the prediction was wrong. The hypothesis was wrong and the
result of this experiment has a significant error in it. One can therefore
conclude that a unusually large value of k does not make the algorithm
better to predict the correct results. Now, 20 is a much larger integer than
5 so taking an integer in between these two numbers should give a better
idea.

4.0.7 KNN with KDD cup

6 experiments using the IRIS dataset have now been done and this gives
an idea how the KNN algorithm works. However, the most important
part of this thesis is to measure the performance of some machine learning
algorithms to detect attacks As mentioned earlier the data set which is
going to be used is the KDD cup dataset. The dataset used is a little
bit modified from the original dataset. The main difference between this
modified version and the original version is that some rows of the dataset
are converted into integers rather than the original text. The reason for this
is that non numeric values yields some errors in R studio. This should,
however, not have any effects on the results. As there are quite many

21



entries (nearly 5 million), a random sample of 100.000 will be used in the
experiments. A sample of 100.000 should be large enough to give an idea
of how good the KNN algorithm is to detect attacks.

Preparing KDD cup

The source code to extract a random sample of a dataset in R is shown
below.

1 kdd_sample<−kddcup . data [ sample ( nrow ( kddcup . data ) , 100000) , ]

The sample function in R is used to sample data from any dataset. This
line takes 100.000 random lines from the number of rows in the dataset.
It is very important to use the sample function correctly to receive the
right sample as just small adjustments in the function gives a completely
different sample. The experiments will be mostly the same as with the Iris
set.

4.0.8 Experiment 7

First a recap on what to test. The tests are going to be on how well the KNN
algorithm is to discover attacks. Different values of k will be used and also
different samples of training data will be used as in experiment 1-6. In this
experiment 2/3 of the data set will be used as training data, and 1/3 as the
testing data.

Now as one can see here there are too many ties, which means the the
KNN algorithm cannot choose between the ties. To get rid of this problem
the dataset has to be normalized.

1 > kdd_norm <− as . data . frame ( lapply ( kdd_sample [ 1 : 4 1 ] , normalize ) )
2 func t ion ( x ) {
3 num <− x − min ( x )
4 denom <− max( x ) − min ( x )
5 re turn (num/denom)
6 }

The function normalize normalizes the data. With a normalized dataset
the data should have less noise. However, after normalizing the data,
there are still too many ties. The way to make this work properly is to
have a sample small enough. Setting k=1 should in theory eliminate the
problem. However, another way to eliminate the problem is to just take
a small sample of the data. With less data the risk of the KNN algorithm
of yielding too many ties is greatly reduced. Since 100.000 is not a small
enough number to eliminate this problem a much smaller sample with
10000 is used.
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KDD with a smaller set

First a closer look at the sample being used. 2

1 > t a b l e ( small1 $V42 )
2

3 b u f f e r _ overflow . normal .
4 2 9998

This is not a representative sample of the whole KDD dataset, but this
works in R..With an overweight of normal traffic and underweight of
attacks it should be easy to have an idea of how well the KNN algorithm
works to predict the correct results. This experiment is the same as in
experiment 1, just with another dataset and much more data. Now a closer
look at the results

1 > t a b l e ( data _pred )
2 data _pred
3 b u f f e r _ overflow . normal .
4 0 3279
5 > t a b l e ( data . t e s t L a b e l s )
6 data . t e s t L a b e l s
7 b u f f e r _ overflow . normal .
8 1 3278

The algorithm predicted 0 buffer-overflow attacks, but there was one of
them in the testing set.

Short analysis

As predicted this algorithm was quite accurate in predicting attacks and
the normal traffic. The error was in predicting no attacks, but at the same
time there was just one attack in the test data. Actually as mentioned above
there were few attacks in this sample from the KDD set, but predicting just
one error in 3279 samples is quite good.

4.0.9 Experiment 8

The task here is to see what happens when the training set is reduced from
2/3 to 50%. In experiment 2 there were more errors which is of course no
suprise since the training set is reduced. Now with a larger sample than
the IRIS set, there should be more errors.

1

2 > t a b l e ( data _pred )
3 data _pred
4 b u f f e r _ overflow . normal .
5 0 4990
6 > t a b l e ( data . t e s t L a b e l s )
7 data . t e s t L a b e l s

2This is a highly modified sample made by Anis Yazidi
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8 b u f f e r _ overflow . normal .
9 1 4989

Short analysis

The training data is here decreased to 50% of the original dataset. In
experiment 1 and 7 the training data was 2/3 of the original dataset. This
time the prediction yielded just 1 wrong prediction. 50% is probably a high
enough portion of training data to yield few errors. This is about the same
results that was in experiment 2.

4.0.10 Experiment 9

This experiment will be similar to experiment 3 with 20% of the dataset
as training and 80% of the data as testing. In experiment 3 this did not
yield many errors at all, even though in theory it should be more difficult
to predict the correct data.

1

2 > t a b l e ( data _pred )
3 data _pred
4 b u f f e r _ overflow . normal .
5 0 8014
6 > t a b l e ( data . t e s t L a b e l s )
7 data . t e s t L a b e l s
8 b u f f e r _ overflow . normal .
9 2 8012

Short analysis

The algorithm predicted that everything was normal, but the fact showed
that there were two attacks that the algorithm did not notice. The results,
however, were quite similar to the results in experiment 3. The conclusion
here is the need for more observations of attacks.

4.0.11 General observations

The results are quite similar with both the IRIS dataset and the reduced
KDD cup dataset. Not all labels in the KDD dataset are used making the
sample quite biased.There is a clear overweight of normal traffic whereas in
the full dataset the normal traffic is just around 20%. A sample with all the
labels should be used, but since the sample with 100.000 yields too many
ties in KNN a smaller sample has to be used. In the following experiments
a sample with 1000 will be used and it will be representative for the full
dataset.
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4.0.12 Experiment 10

Similar to experiment 1, just with 1000 samples from the full KDD cup
dataset.

1 > t a b l e ( data _pred )
2 data _pred
3 back . b u f f e r _ overflow . f t p _ wri te . guess _passwd

. imap . ipsweep . land

. loadmodule .
4 0 0 0

0 0 0
0 0

5 multihop . neptune . nmap . normal
. p e r l . phf . pod .

portsweep .
6 0 75 0

71 0 0
0 0

7 r o o t k i t . satan . smurf . spy
. teardrop . warezc l i ent . warezmaster .

8 0 0 180
0 0 0

0

The results are not that clear, so an explanation is needed. The model
predicted 180 SMURF attacks, 75 Neptune attacks, 71 normal traffic and no
other attacks. Now a closer look at the facts.

1 > t a b l e ( data . t e s t L a b e l s )
2 data . t e s t L a b e l s
3 back . b u f f e r _ overflow . f t p _ wri te . guess _passwd

. imap . ipsweep . land

. loadmodule .
4 2 0 0

0 0 0
0 0

5 multihop . neptune . nmap . normal
. p e r l . phf . pod .

portsweep .
6 0 72 0

68 0 0
0 3

7 r o o t k i t . satan . smurf . spy
. teardrop . warezc l i ent . warezmaster .

8 0 0 181
0 0 0

0

Again it is difficult to see, but in R studio it is quite easy to see. Anyway
an explanation is of course needed here too. The correct facts are 181
SMURF attacks, 68 normal traffic, 72 neptune attacks, 2 loadmodule attacks
and 3 portsweep attacks.
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Short analysis

With 180 predicted SMURF attacks, 75 predicted neptune attacks and 71
predicted normal traffic compared to 181 SMURF attacks, 68 normal traffic,
72 neptune attacks, 2 loadmodule and 3 portsweep attacks one can see that
the algorithm clearly considered some of the attacks as normal traffic. The
algorithm even classified some attacks as wrong attacks. The critical part
here is not that the algorithm classified some attacks as another type of
attack, but that the algorithm considered some attacks as normal traffic.
The error percentage is, however, not very high so the threat should not
be significant.

4.0.13 Experiment 11

As 1000 entries of the KDD gives a representative idea one can now see
what happens with 50% of the set acts as the training set and 50 % as the
testing set. This experiment is similar to experiment 2 and 8.

The results:

1 > t a b l e ( data _pred )
2 data _pred
3 back . b u f f e r _ overflow . f t p _ wri te . guess _passwd

. imap . ipsweep . land

. loadmodule .
4 0 0 0

0 0 0
0 0

5 multihop . neptune . nmap . normal
. p e r l . phf . pod .

portsweep .
6 0 101 0

94 0 0
0 0

7 r o o t k i t . satan . smurf . spy
. teardrop . warezc l i ent . warezmaster .

8 0 1 279
0 0 0

0

Again the predictions are difficult to see due to space constraints so they
will be explained. The number of predicted SMURF attacks were 279, the
number of predicted neptune attacks were 101, the number of predicted
normal were 94, the number of predicted warezmaster attacks were 1. Now
a closer look at the actual case.

1 > t a b l e ( data . t e s t L a b e l s )
2 data . t e s t L a b e l s
3 back . b u f f e r _ overflow . f t p _ wri te . guess _passwd

. imap . ipsweep . land

. loadmodule .
4 0 0 0

0 0 2
0 0
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5 multihop . neptune . nmap . normal
. p e r l . phf . pod .

portsweep .
6 0 99 0

92 0 0
0 2

7 r o o t k i t . satan . smurf . spy
. teardrop . warezc l i ent . warezmaster .

8 0 1 279
0 0 0

0
9 >

The number of SMURF attacks is 279, the number of neptune attacks is 99,
the number of normal traffic is 92, the number of portsweep attacks is 2, the
number of satan attacks is 1.

Short analysis

Once more the KNN algorithm predicted just a little bit too much normal
traffic. This is actually not something a company wants. The question here
after these two experiments are what kind of attacks the KNN algorithm
predicts as normal traffic. A table function in R actually shows this.

1 > CrossTable ( x = data . t e s t L a b e l s , y = data _pred , prop . chisq=FALSE)
2

3

4 C e l l Contents
5 |−−−−−−−−−−−−−−−−−−−−−−−−−|
6 | N |
7 | N / Row Tota l |
8 | N / Col Tota l |
9 | N / Table Tota l |

10 |−−−−−−−−−−−−−−−−−−−−−−−−−|
11

12

13 Tota l Observations in Table : 475
14

15

16 | data _pred
17 data . t e s t L a b e l s | neptune . | normal . | satan . | smurf . |

Row Tota l |
18 −−−−−−−−−−−−−−−−|−−−−−−−−−−−|−−−−−−−−−−−|−−−−−−−−−−−|−−−−−−−−−−−|−−−−−−−−−−−|

19 ipsweep . | 0 | 2 | 0 | 0 |
2 |

20 | 0 .000 | 1 .000 | 0 .000 | 0 .000 |
0 .004 |

21 | 0 .000 | 0 .021 | 0 .000 | 0 .000 |
|

22 | 0 .000 | 0 .004 | 0 .000 | 0 .000 |
|

23 −−−−−−−−−−−−−−−−|−−−−−−−−−−−|−−−−−−−−−−−|−−−−−−−−−−−|−−−−−−−−−−−|−−−−−−−−−−−|

24 neptune . | 99 | 0 | 0 | 0 |
99 |
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25 | 1 .000 | 0 .000 | 0 .000 | 0 .000 |
0 .208 |

26 | 0 .980 | 0 .000 | 0 .000 | 0 .000 |
|

27 | 0 .208 | 0 .000 | 0 .000 | 0 .000 |
|

28 −−−−−−−−−−−−−−−−|−−−−−−−−−−−|−−−−−−−−−−−|−−−−−−−−−−−|−−−−−−−−−−−|−−−−−−−−−−−|

29 normal . | 0 | 92 | 0 | 0 |
92 |

30 | 0 .000 | 1 .000 | 0 .000 | 0 .000 |
0 .194 |

31 | 0 .000 | 0 .979 | 0 .000 | 0 .000 |
|

32 | 0 .000 | 0 .194 | 0 .000 | 0 .000 |
|

33 −−−−−−−−−−−−−−−−|−−−−−−−−−−−|−−−−−−−−−−−|−−−−−−−−−−−|−−−−−−−−−−−|−−−−−−−−−−−|

34 portsweep . | 2 | 0 | 0 | 0 |
2 |

35 | 1 .000 | 0 .000 | 0 .000 | 0 .000 |
0 .004 |

36 | 0 .020 | 0 .000 | 0 .000 | 0 .000 |
|

37 | 0 .004 | 0 .000 | 0 .000 | 0 .000 |
|

38 −−−−−−−−−−−−−−−−|−−−−−−−−−−−|−−−−−−−−−−−|−−−−−−−−−−−|−−−−−−−−−−−|−−−−−−−−−−−|

39 satan . | 0 | 0 | 1 | 0 |
1 |

40 | 0 .000 | 0 .000 | 1 .000 | 0 .000 |
0 .002 |

41 | 0 .000 | 0 .000 | 1 .000 | 0 .000 |
|

42 | 0 .000 | 0 .000 | 0 .002 | 0 .000 |
|

43 −−−−−−−−−−−−−−−−|−−−−−−−−−−−|−−−−−−−−−−−|−−−−−−−−−−−|−−−−−−−−−−−|−−−−−−−−−−−|

44 smurf . | 0 | 0 | 0 | 279 |
279 |

45 | 0 .000 | 0 .000 | 0 .000 | 1 .000 |
0 .587 |

46 | 0 .000 | 0 .000 | 0 .000 | 1 .000 |
|

47 | 0 .000 | 0 .000 | 0 .000 | 0 .587 |
|

48 −−−−−−−−−−−−−−−−|−−−−−−−−−−−|−−−−−−−−−−−|−−−−−−−−−−−|−−−−−−−−−−−|−−−−−−−−−−−|

49 Column Tota l | 101 | 94 | 1 | 279 |
475 |

50 | 0 .213 | 0 .198 | 0 .002 | 0 .587 |
|

51 −−−−−−−−−−−−−−−−|−−−−−−−−−−−|−−−−−−−−−−−|−−−−−−−−−−−|−−−−−−−−−−−|−−−−−−−−−−−|

Now this table is quite huge, but it tells something interesting. It tells
that there are two packets of predicted normal traffic instead of the ipsweep
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attack. An ipsweep attack is where a host sends icmp packets to various hosts
just hoping for a reply. Not a serious mistake as an icmp packet isolated is
something anybody can send to check for instance internet connectivity.
The most important result is that the error rate for actual attacks is low, for
instance the prediction of smurf was 100% correct which is a ddos attack.

4.0.14 Experiment 12

Now one can reduce the training data down to 20% and take a closer look
at the errors in the predictions.

The results:

1 > t a b l e ( data _pred )
2 data _pred
3 back . b u f f e r _ overflow . f t p _ wri te . guess _passwd

. imap . ipsweep . land

. loadmodule .
4 0 0 0

0 0 0
0 0

5 multihop . neptune . nmap . normal
. p e r l . phf . pod .

portsweep .
6 0 198 0

155 0 0
0 0

7 r o o t k i t . satan . smurf . spy
. teardrop . warezc l i ent . warezmaster .

8 0 0 456
0 0 0

0

The predictions here are 456 SMURF attacks, 198 NEPTUNE attacks and
155 normal traffic. How good was this prediction?

1 > t a b l e ( data . t e s t L a b e l s )
2 data . t e s t L a b e l s
3 back . b u f f e r _ overflow . f t p _ wri te . guess _passwd

. imap . ipsweep . land

. loadmodule .
4 2 0 0

0 0 1
0 0

5 multihop . neptune . nmap . normal
. p e r l . phf . pod .

portsweep .
6 0 182 0

163 0 0
0 2

7 r o o t k i t . satan . smurf . spy
. teardrop . warezc l i ent . warezmaster .

8 0 3 456
0 0 0

0
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The prediction was correct in regards to the number of SMURF attacks with
456. Other than it was 182 Neptune attacks, 163 normal traffic, 3 SATAN
attacks, 2 loadmodule attacks, 2 portsweep attacks and 1 ipsweep attack.

Short analysis

The prediction here was correctly predicting the SMURF attacks, but failed
on the others. In fact the prediction actually predicted too few normal traffic
which is in this case would lead to false positives. It also predicted too
many Neptune attacks. One can take a closer look at the table to see where
the predictions were wrong.

1 data . t e s t L a b e l s | neptune . | normal . | smurf . | Row Tota l |
2 −−−−−−−−−−−−−−−−|−−−−−−−−−−−|−−−−−−−−−−−|−−−−−−−−−−−|−−−−−−−−−−−|
3 back . | 0 | 2 | 0 | 2 |
4 | 0 .000 | 1 .000 | 0 .000 | 0 .002 |
5 | 0 .000 | 0 .013 | 0 .000 | |
6 | 0 .000 | 0 .002 | 0 .000 | |
7 −−−−−−−−−−−−−−−−|−−−−−−−−−−−|−−−−−−−−−−−|−−−−−−−−−−−|−−−−−−−−−−−|
8 ipsweep . | 0 | 1 | 0 | 1 |
9 | 0 .000 | 1 .000 | 0 .000 | 0 .001 |

10 | 0 .000 | 0 .006 | 0 .000 | |
11 | 0 .000 | 0 .001 | 0 .000 | |
12 −−−−−−−−−−−−−−−−|−−−−−−−−−−−|−−−−−−−−−−−|−−−−−−−−−−−|−−−−−−−−−−−|
13 neptune . | 182 | 0 | 0 | 182 |
14 | 1 .000 | 0 .000 | 0 .000 | 0 .225 |
15 | 0 .919 | 0 .000 | 0 .000 | |
16 | 0 .225 | 0 .000 | 0 .000 | |
17 −−−−−−−−−−−−−−−−|−−−−−−−−−−−|−−−−−−−−−−−|−−−−−−−−−−−|−−−−−−−−−−−|
18 normal . | 11 | 152 | 0 | 163 |
19 | 0 .067 | 0 .933 | 0 .000 | 0 .201 |
20 | 0 .056 | 0 .981 | 0 .000 | |
21 | 0 .014 | 0 .188 | 0 .000 | |
22 −−−−−−−−−−−−−−−−|−−−−−−−−−−−|−−−−−−−−−−−|−−−−−−−−−−−|−−−−−−−−−−−|
23 portsweep . | 2 | 0 | 0 | 2 |
24 | 1 .000 | 0 .000 | 0 .000 | 0 .002 |
25 | 0 .010 | 0 .000 | 0 .000 | |
26 | 0 .002 | 0 .000 | 0 .000 | |
27 −−−−−−−−−−−−−−−−|−−−−−−−−−−−|−−−−−−−−−−−|−−−−−−−−−−−|−−−−−−−−−−−|
28 satan . | 3 | 0 | 0 | 3 |
29 | 1 .000 | 0 .000 | 0 .000 | 0 .004 |
30 | 0 .015 | 0 .000 | 0 .000 | |
31 | 0 .004 | 0 .000 | 0 .000 | |
32 −−−−−−−−−−−−−−−−|−−−−−−−−−−−|−−−−−−−−−−−|−−−−−−−−−−−|−−−−−−−−−−−|
33 smurf . | 0 | 0 | 456 | 456 |
34 | 0 .000 | 0 .000 | 1 .000 | 0 .564 |
35 | 0 .000 | 0 .000 | 1 .000 | |
36 | 0 .000 | 0 .000 | 0 .564 | |
37 −−−−−−−−−−−−−−−−|−−−−−−−−−−−|−−−−−−−−−−−|−−−−−−−−−−−|−−−−−−−−−−−|
38 Column Tota l | 198 | 155 | 456 | 809 |
39 | 0 .245 | 0 .192 | 0 .564 | |
40 −−−−−−−−−−−−−−−−|−−−−−−−−−−−|−−−−−−−−−−−|−−−−−−−−−−−|−−−−−−−−−−−

11 normal traffic packets were incorrectly defined as Neptune attacks, and
also 2 portsweep and 3 satan were also incorrectly defined as the same. Also
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1 ipsweep and 1 back attack were incorrectly defined as normal traffic. How
serious is this? A NEPTUNE attack is the same as SYN-Flood attack which
in turn is a type of DoS attack. [1] This attack leaves many connections
half-open so no valid connections can be established. As the predictions
were that some normal were incorrectly defined as a kind of DoS attack this
clearly gives the sysadmin wrong alerts.

4.0.15 Experiment 13

The last few experiments have focused on reducing the training data. What
happens if one increases the training data instead? A hypothesis here is that
the algorithm’s accuracy is increased, due to more data to train on. In this
experiment the training data is increased to 80 % of the original data set.

Until now the results have been listed with both the table function in R
and the crosstable function.

1 Tota l Observations in Table : 208
2

3

4 | data _pred
5 data . t e s t L a b e l s | neptune . | normal . | portsweep . | smurf

. | Row Tota l |
6 −−−−−−−−−−−−−−−−|−−−−−−−−−−−−|−−−−−−−−−−−−|−−−−−−−−−−−−|−−−−−−−−−−−−|−−−−−−−−−−−−|

7 back . | 0 | 2 | 0 |
0 | 2 |

8 | 0 .000 | 1 .000 | 0 .000 |
0 .000 | 0 .010 |

9 | 0 .000 | 0 .043 | 0 .000 |
0 .000 | |

10 | 0 .000 | 0 .010 | 0 .000 |
0 .000 | |

11 −−−−−−−−−−−−−−−−|−−−−−−−−−−−−|−−−−−−−−−−−−|−−−−−−−−−−−−|−−−−−−−−−−−−|−−−−−−−−−−−−|

12 neptune . | 47 | 0 | 0 |
0 | 47 |

13 | 1 .000 | 0 .000 | 0 .000 |
0 .000 | 0 .226 |

14 | 1 .000 | 0 .000 | 0 .000 |
0 .000 | |

15 | 0 .226 | 0 .000 | 0 .000 |
0 .000 | |

16 −−−−−−−−−−−−−−−−|−−−−−−−−−−−−|−−−−−−−−−−−−|−−−−−−−−−−−−|−−−−−−−−−−−−|−−−−−−−−−−−−|

17 normal . | 0 | 43 | 0 |
0 | 43 |

18 | 0 .000 | 1 .000 | 0 .000 |
0 .000 | 0 .207 |

19 | 0 .000 | 0 .935 | 0 .000 |
0 .000 | |

20 | 0 .000 | 0 .207 | 0 .000 |
0 .000 | |

21 −−−−−−−−−−−−−−−−|−−−−−−−−−−−−|−−−−−−−−−−−−|−−−−−−−−−−−−|−−−−−−−−−−−−|−−−−−−−−−−−−|

22 portsweep . | 0 | 0 | 1 |
0 | 1 |
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23 | 0 .000 | 0 .000 | 1 .000 |
0 .000 | 0 .005 |

24 | 0 .000 | 0 .000 | 1 .000 |
0 .000 | |

25 | 0 .000 | 0 .000 | 0 .005 |
0 .000 | |

26 −−−−−−−−−−−−−−−−|−−−−−−−−−−−−|−−−−−−−−−−−−|−−−−−−−−−−−−|−−−−−−−−−−−−|−−−−−−−−−−−−|

27 smurf . | 0 | 1 | 0 |
114 | 115 |

28 | 0 .000 | 0 .009 | 0 .000 |
0 .991 | 0 .553 |

29 | 0 .000 | 0 .022 | 0 .000 |
1 .000 | |

30 | 0 .000 | 0 .005 | 0 .000 |
0 .548 | |

31 −−−−−−−−−−−−−−−−|−−−−−−−−−−−−|−−−−−−−−−−−−|−−−−−−−−−−−−|−−−−−−−−−−−−|−−−−−−−−−−−−|

32 Column Tota l | 47 | 46 | 1 |
114 | 208 |

33 | 0 .226 | 0 .221 | 0 .005 |
0 .548 | |

34 −−−−−−−−−−−−−−−−|−−−−−−−−−−−−|−−−−−−−−−−−−|−−−−−−−−−−−−|−−−−−−−−−−−−|−−−−−−−−−−−−

Short analysis

The prediction here was a bit too much normal traffic than actually was the
case. One SMURF attack was falsely predicted as normal traffic. Also one
back attack was also falsely predicted as normal traffic. False negatives are
something one does not want when dealing with IDS.

4.0.16 Experiment 14

The previous experiments focused on reducing and increasing the training
data to different levels of the original dataset. Now what happens if one
increases the value of k? The optimal value of k is discussed in the next
chapter, but this experiment may give a hint. It will be performed with 2/3
of the dataset as the training data as was the case in the first experiment.
Increasing k just a number or two should not have any impact, so in this
experiment the k will be 13. There is a possibility that R might crash, due
to the algorithm becoming more expensive when increasing k

Then the results.

1 > CrossTable ( x = data . t e s t L a b e l s , y = data _pred , prop . chisq=FALSE)
2

3

4 C e l l Contents
5 |−−−−−−−−−−−−−−−−−−−−−−−−−|
6 | N |
7 | N / Row Tota l |
8 | N / Col Tota l |
9 | N / Table Tota l |
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10 |−−−−−−−−−−−−−−−−−−−−−−−−−|
11

12

13 Tota l Observations in Table : 326
14

15

16 | data _pred
17 data . t e s t L a b e l s | neptune . | normal . | smurf . | Row Tota l |
18 −−−−−−−−−−−−−−−−|−−−−−−−−−−−|−−−−−−−−−−−|−−−−−−−−−−−|−−−−−−−−−−−|
19 back . | 0 | 0 | 2 | 2 |
20 | 0 .000 | 0 .000 | 1 .000 | 0 .006 |
21 | 0 .000 | 0 .000 | 0 .011 | |
22 | 0 .000 | 0 .000 | 0 .006 | |
23 −−−−−−−−−−−−−−−−|−−−−−−−−−−−|−−−−−−−−−−−|−−−−−−−−−−−|−−−−−−−−−−−|
24 neptune . | 72 | 0 | 0 | 72 |
25 | 1 .000 | 0 .000 | 0 .000 | 0 .221 |
26 | 0 .878 | 0 .000 | 0 .000 | |
27 | 0 .221 | 0 .000 | 0 .000 | |
28 −−−−−−−−−−−−−−−−|−−−−−−−−−−−|−−−−−−−−−−−|−−−−−−−−−−−|−−−−−−−−−−−|
29 normal . | 7 | 61 | 0 | 68 |
30 | 0 .103 | 0 .897 | 0 .000 | 0 .209 |
31 | 0 .085 | 1 .000 | 0 .000 | |
32 | 0 .021 | 0 .187 | 0 .000 | |
33 −−−−−−−−−−−−−−−−|−−−−−−−−−−−|−−−−−−−−−−−|−−−−−−−−−−−|−−−−−−−−−−−|
34 portsweep . | 3 | 0 | 0 | 3 |
35 | 1 .000 | 0 .000 | 0 .000 | 0 .009 |
36 | 0 .037 | 0 .000 | 0 .000 | |
37 | 0 .009 | 0 .000 | 0 .000 | |
38 −−−−−−−−−−−−−−−−|−−−−−−−−−−−|−−−−−−−−−−−|−−−−−−−−−−−|−−−−−−−−−−−|
39 smurf . | 0 | 0 | 181 | 181 |
40 | 0 .000 | 0 .000 | 1 .000 | 0 .555 |
41 | 0 .000 | 0 .000 | 0 .989 | |
42 | 0 .000 | 0 .000 | 0 .555 | |
43 −−−−−−−−−−−−−−−−|−−−−−−−−−−−|−−−−−−−−−−−|−−−−−−−−−−−|−−−−−−−−−−−|
44 Column Tota l | 82 | 61 | 183 | 326 |
45 | 0 .252 | 0 .187 | 0 .561 | |
46 −−−−−−−−−−−−−−−−|−−−−−−−−−−−|−−−−−−−−−−−|−−−−−−−−−−−|−−−−−−−−−−−|

Short analysis

As one can see the most significant errors in this prediction are too many
neptune attacks and too few normal traffic.
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Chapter 5

Discussion

In this chapter a more in depth discussion of the experiments in chapter 4
will be done. Also some mathematical predictions of how the IRIS dataset
can be used to make a prediction of how well the algorithms tested on the
IRIS dataset will perform on the KDD dataset.

5.0.1 KNN algorithm

So what does the KNN algorithm really do? Mathematically implemented
in R the algorithm uses Euclidan distance to determine the nearest
neighbour.

d(p, q) =
√
(q1− p1)2 + (q2− p2)2 (5.1)

The formula above describes the Euclidan distance between two points in a
two dimensional plane. The equation is based on the Pytaghorian theorem.
The equation above be rewritten into:

d(p, q) =

√√√√ k

∑
i=1

(xi − yi)2 (5.2)

The value of k is of particular importance. The less the value of k the less
neighbours are used. It is therefore very important to find the optimal
value of k in the algorithm. So what is the optimal value of k in the KNN
algorithm? The larger the value of k makes the algorithm costly to run.
With a smaller value there will be more noise in the results. Running KNN
with a k value of 100 made R studio crash. The predictions would have
been quite accurate though, but at a huge cost. A rule of thumb seems to
be k =

√
n is the best value of k. N is here the number of features in the

dataset. A feature in machine learning is a property or a value that is being
observed. An example of a feature in the datasets used are the species in the
IRIS dataset and attack type in the KDD dataset. In the IRIS dataset there
were three species.

√
3 = 1, 73 so a value of either 1 or 2 should be optimal.

However, the value of 2 is an even value and 1 may not give the optimal
result. So the value in most of the experiments involving the IRIS dataset
was 3. The number 3 is small enough to predict nearly correct result, but it
is not high enough to make the cost of the algorithm so high that running
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the algorithm takes a lot of resources in terms of hardware. The number
of features in the modified KDD dataset is 2.

√
2 = 1 , so according to the

formula 1 would have been the optimal value of k in this case. However,
again due to the reasons mentioned above the value of k in most of the
experiments were 3. In the full KDD dataset there are 23 features so the
optimal value of k would have been

√
23 = 4, 79 or rounded up to 5 to

avoid ties.

5.0.2 Discussions of the experiments

Many experiments have been done with more or less three different
datasets. The first experiments were with the built in IRIS dataset and
the other ones were with a modified KDD-cup 99 and a sample of 1000
lines from the full KDD-cup 99 dataset. To know the exact accuracy and
performance it is important to calculate the error rate in each scenario. The
KNN algorithm does not make any assumptions of the data beforehand,
hence making the algorithm quite powerful in terms of predictions.

Experiment 1

A quick recap of the results from experiment 1

1 > t a b l e ( i r i s _knn )
2 i r i s _knn
3 s e t o s a v e r s i c o l o r v i r g i n i c a
4 11 20 17
5

6 > t a b l e ( i r i s . t e s t l a b e l )
7 i r i s . t e s t l a b e l
8 s e t o s a v e r s i c o l o r v i r g i n i c a
9 11 21 16

The prediction was correct in predicting setosa, but not the two others. The
total number of observations was 48. The prediction was 17 on the virginica
species, but the actual number was 16. Likewise the prediction was 20 of
versicolor, but the actual number was 21. This makes the prediction wrong
in 2/48 of the observations in this experiment or in 4,2% of the cases. In
other terms the algorithm predicted correctly in about 96% of the cases. In
this case 2/3 of the dataset was used as a training data and it was also a
very small dataset. The question here if this margin of error scales to a
larger dataset. This requires to take a closer look at the similar experiment
with the 1000 samples from the KDD dataset.

Experiment 10

So what happens when the dataset is bigger? Experiment 1 proved that
the predictions were right in about 96% of the cases. If this scales to bigger
datasets, the KNN algorithm is a viable option when choosing a machine-
learning algorithm to work with intrusion-detection-systems. As the table
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of experiment 10 is too large to fit into for formatting reasons, the results
will be just be written out in plain text. The prediction was 180 SMURF
attacks, 75 Neptune attacks, 71 normal traffic and no other attacks. This
is a total of 326 observations. The correct observations were 181 SMURF
attacks, 68 normal traffic, 72 neptune attacks, 2 loadmodule attacks and 3
portsweep attacks. This means there was an error in 7 of the 326 packets
in the prediction. In other terms this means that the algorithm predicted
only 2,14% wrong or around 98% correctly. If this is the case in the other
experiments as well using the KNN algorithm in regards to IDS will be
quite powerful.

Experiment 2

In this experiment the training data of the IRIS dataset was reduced from
2/3 of the original dataset to 50%. The results were as following.

1 > t a b l e ( knn50 )
2 knn50
3 s e t o s a v e r s i c o l o r v i r g i n i c a
4 25 27 28
5 > t a b l e ( i r i s . t e s t l a b e l 5 0 )
6 i r i s . t e s t l a b e l 5 0
7 s e t o s a v e r s i c o l o r v i r g i n i c a
8 25 30 25

The total number of observations in total was 80. The number of wrong
predictions was 6. The algorithm predicted incorrectly in 7,5% of the cases.
This is probably due to the reduced amount of training data. Does the
margin of error scale to a larger dataset? A closer look at experiment 11
should tell that.

Experiment 11

Experiment 11 narrowed the training data of the KDD dataset down to
50% of the original dataset. The number of predicted SMURF attacks
were 279, the number of predicted neptune attacks were 101, the number
of predicted normal were 94, the number of predicted satan attacks were
1. In total the number of observations were 475. The facts here were the
number of SMURF attacks were 279, the number of neptune attacks were
99, the number of normal traffic were 92, the number of portsweep attacks
were 2, the number of satan attacks were 1 and the number of ipsweep
were 2. This means that there were 4 wrong predictions in total or 0,84%.
This is interesting. In experiment 2 the error rate was 7,5%. What is the
explanation of this? With reduced amount of training data the logical
hypothesis should be that the error rate should be larger not smaller. To be
certain that this is the case, the experiment should be rerun. The full source
code is shown, just to document every step in case it was some errors in
experiment 11.
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1 > data _ normalized=data
2 > s e t . seed ( 1 2 3 4 )
3 > ind <− sample ( 2 , nrow ( data _ normalized ) , r e p l a c e=TRUE, prob=c

( 0 . 5 0 , 0 . 5 0 ) )
4 > data . t r a i n i n g <− data _ normalized [ ind ==1 , 1 : 4 1 ]
5 > data . t e s t <− data _ normalized [ ind ==2 , 1 : 4 1 ]
6 > data . t r a i n L a b e l s <− data [ ind ==1 , 42]
7 > data . t e s t L a b e l s <− data [ ind ==2 , 42]
8 > data _pred <− knn ( t r a i n = data . t r a i n i n g , t e s t = data . t e s t , c l =

data . t r a i n L a b e l s , k=3)

The predictions:

1 > t a b l e ( data _pred )
2 data _pred
3 back . b u f f e r _ overflow . f t p _ wri te . guess _passwd

. imap . ipsweep . land

. loadmodule .
4 0 0 0

0 0 0
0 0

5 multihop . neptune . nmap . normal
. p e r l . phf . pod .

portsweep .
6 0 118 0

95 0 0
0 0

7 r o o t k i t . satan . smurf . spy
. teardrop . warezc l i ent . warezmaster .

8 0 1 301
0 0 0

0

The facts:

1 > t a b l e ( data . t e s t L a b e l s )
2 data . t e s t L a b e l s
3 back . b u f f e r _ overflow . f t p _ wri te . guess _passwd

. imap . ipsweep . land

. loadmodule .
4 2 0 0

0 0 1
0 0

5 multihop . neptune . nmap . normal
. p e r l . phf . pod .

portsweep .
6 0 116 0

91 0 0
0 2

7 r o o t k i t . satan . smurf . spy
. teardrop . warezc l i ent . warezmaster .

8 0 1 302
0 0 0

0
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Now as one can see here there were 7 wrong predictions out of 515
observations making the error rate 1,3%. Now this is interesting. Why
was the error rate much less here than in the similar experiment using the
IRIS dataset? A theory is that the features of the IRIS dataset is evenly
distributed (50 of each species), whereas in the KDD has much more of the
SMURF attack than anything else. One can in a way say that the features
in the KDD dataset is somehowskewed. The SMURF attack is represented
in 2.807.886 observations in a dataset of 4.8 million. Discovering most of
the SMURF attacks will be much easier. However, it is more likely that
since the IRIS dataset is much smaller, three or four errors will of course
have much more impact on the results than in a larger dataset. If there are
10 observations and 2 of them are wrong, then the error is 20%. A further
discussion of some experiments are needed to draw this conclusion, but if
this small error margin proves to be the case throughout, there is no doubt
that the KNN algorithm is powerful on even bigger datasets.

Experiment 7, 8 and 9

These experiments were just done with two features of the KDD dataset, so
the error margin is very small. Here are the predictions and the results of
experiment 7, 8 and 9.

1 > t a b l e ( data _pred )
2 data _pred
3 b u f f e r _ overflow . normal .
4 0 3279
5 > t a b l e ( data . t e s t L a b e l s )
6 data . t e s t L a b e l s
7 b u f f e r _ overflow . normal .
8 1 3278
9

10 > t a b l e ( data _pred )
11 data _pred
12 b u f f e r _ overflow . normal .
13 0 4990
14 > t a b l e ( data . t e s t L a b e l s )
15 data . t e s t L a b e l s
16 b u f f e r _ overflow . normal .
17 1 4989
18 > t a b l e ( data _pred )
19 data _pred
20 b u f f e r _ overflow . normal .
21 0 8014
22 > t a b l e ( data . t e s t L a b e l s )
23 data . t e s t L a b e l s
24 b u f f e r _ overflow . normal .
25 2 8012

The margin of error here is less than 1% in all cases, but as the sample of
that dataset contains only two of the features these three experiments can
be disregarded. The other reason for disregarding these three experiments
is that one feature is very overrepresented compared to the other feature
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in the whole dataset. The margin of error then becomes very small. It is,
however, important to mention from these three experiments that skewing
the data may not give any idea how well the predictions are. 1

Experiment 3

In this experiment the training data in the IRIS dataset was further reduced
to 20%. The results are below.

1 > t a b l e ( knn_ 20)
2 knn_20
3 s e t o s a v e r s i c o l o r v i r g i n i c a
4 38 40 47
5 > t a b l e ( i r i s . t e s t L a b e l 2 0 )
6 i r i s . t e s t L a b e l 2 0
7 s e t o s a v e r s i c o l o r v i r g i n i c a
8 38 42 45

The total number of observations here was 125 and with 4 wrong
predictions gives a margin of error of 3,2%. Now this is interesting. In
the experiment 2 the margin of error was 7,5%. This does not need to mean
anything special. In theory the margin of error should have been larger
with less training data to train the algorithm on. Does this margin of error
scale with the KDD dataset? Now in the other experiments the margin of
error were less than in the IRIS dataset. This is due to the number of entries
in the dataset which is 150 in the IRIS set and a sample of 1000 in the KDD
dataset. A further look at the similar experiment with the KDD dataset
is needed. If the margin of error is less than in the experiment with 50%,
the hypothesis that the accuracy of the algorithm becomes less with less
training data to work on might be invalid.

Experiment 12

In the IRIS the margin of error was less with 20% of the dataset as training
data than with 50% of the training data. It is interesting to see if this is
the case with the KDD dataset as well. If this is the case these experiments
might have to be done again. The predictions in experiment 12 were 456
SMURF attacks, 198 NEPTUNE attacks and 155 normal traffic. The facts
were 456 SMURF attacks, 182 Neptune attacks, 163 normal traffic, 3 SATAN
attacks, 2 loadmodule attacks, 2 portsweep attacks and 1 ipsweep attack. In
total there were 809 observations. In total the number of wrong predictions
here are 24. That gives a margin of error of 2,97%. Compared to experiment
11 which had a margin of error of under 1%, this means that the hypothesis
is more or less correct in this case. In the experiment with the IRIS dataset
the error margin was much less with 20% training data than with the 50%.
The reason for that might just be a "noisy" experiment, but there may also
be other reasons for that. Now it is time to take a closer look at the value of
K.
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Experiment 4, 5 and 6

These are the tree experiments which focused on the value of k when using
the IRIS dataset. The results of these are listed below. Experiment 4:

1 > knn_k<−knn ( t r a i n = i r i s _ t r a i n _ 20 , t e s t = i r i s _ t e s t _ 20 , c l = i r i s .
t ra inLabe l20 , k=5)

2 > t a b l e ( knn_k )
3 knn_k
4 s e t o s a v e r s i c o l o r v i r g i n i c a
5 38 40 47
6 > t a b l e ( i r i s . t e s t L a b e l 2 0 )
7 i r i s . t e s t L a b e l 2 0
8 s e t o s a v e r s i c o l o r v i r g i n i c a
9 38 42 45

Experiment 5:

1 knn_k_2_3<−knn ( t r a i n = i r i s . t r a i n i n g , t e s t = i r i s . t e s t , c l = i r i s .
t r a i n l a b e l , k=5)

2 > t a b l e ( knn_k_2_ 3)
3 knn_k_2_3
4 s e t o s a v e r s i c o l o r v i r g i n i c a
5 11 21 16
6 > t a b l e ( i r i s . t e s t l a b e l )
7 i r i s . t e s t l a b e l
8 s e t o s a v e r s i c o l o r v i r g i n i c a
9 11 21 16

10 >

Experiment 6:

1 > knn_k_20<−knn ( t r a i n = i r i s . t r a i n i n g , t e s t = i r i s . t e s t , c l = i r i s .
t r a i n l a b e l , k=20)

2 > t a b l e ( knn_k_ 20)
3 knn_k_20
4 s e t o s a v e r s i c o l o r v i r g i n i c a
5 11 24 13
6 1
7 > t a b l e ( i r i s . t e s t l a b e l )
8 i r i s . t e s t l a b e l
9 s e t o s a v e r s i c o l o r v i r g i n i c a

10 11 21 16

In experiment 4 there were 4 errors, in experiment 5 there predictions were
100% correct while in experiment 6 there were 6 errors. This means that
in experiment 4 the error margin was 3,2% and in experiment 6 was 12,5%
which is the highest in the experiment encountered. In experiment 4, the
training data used was 20% of the original dataset, in experiment 5 the
training data was 2/3 of the original dataset, whereas in experiment 6,
the training data was back to 20% of the original dataset. With 2/3 of the
original dataset used for training and the value of k=5, the predictions were
100% accurate. It is a quite interesting observation that with a value of
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k = 20 the predictions were the most inaccurate in all of the experiments.
The predictions should in theory at least become more accurate when
increasing the value of k. This may have something to do with the way the
KNN algorithm determines the nearest neighbour. The KNN determines
a classification by a majority vote. With a k value of 20, there are many
neighbours to classify and this may give noise in the predictions. As
mentioned earlier in this chapter it is very important to find the optimal
value of k to make the algorithm both cost efficient and to make as good
predictions as possible.

Experiment 14

In this experiment k was increased to 13 on the KDD dataset, but with
2/3 used as training data. The predictions here ended up with 82 Neptune
attacks, 61 normal traffic and 183 SMURF attacks, in total 326 observations.
However, the facts were 72 Neptune attacks, 68 Normal traffic, 181 SMURF
attacks, 2 back attacks and 3 portsweep attacks. This gives us a margin
of error 12/326 or around 3,68%. This is close to the margin of error
encountered in the other experiments with the KDD dataset.

General observations

The KNN algorithm applied on the KDD dataset generally had a low
number of errors whereas on the IRIS dataset the margin of error greatly
varied. This is of course due to the number of entries in each dataset.
The IRIS dataset had 150 observations whereas the two modified datasets
from KDD had 10000 and 1000 observations. The reason for why only
1000 entries from the entire KDD dataset was that having too many entries
resulted the algorithm yielding too many ties when predicting. Without
drawing any final conclusion on this, this may make the KNN algorithm
unusable on very large datasets. Still there are many examples out there
that researches have used machine-learning algorithms on this particular
dataset without any problem, so the problems encountered here may be
solved if the dataset was tuned correctly to fit into the R function.

5.0.3 Other algorithms

There are other algorithms which could have been used on the datasets.
The KNN algorithm is quite simple. What other algorithms could have
been used on the three datasets used? All data in the three datasets are
labelled meaning that the datasets have certain properties to apply the
algorithm on. The case in the IRIS dataset was the flowers and the case
in the KDD dataset was the attack types. If the data was unllabeled,
the KNN algorithm would be unsuitable. In this case a unsupervised
learning algorithm would be more suitable instead. The main difference
between supervised and unsupervised learning is that in supervised learning
the input labels are known, whereas in unsupervised learning they are not.
In these cases other supervised learning algorithms are the most suitable
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ones. However, the KDD dataset can be downloaded as a completely
unlabeled dataset, so it is possible to use unsupervised algorithms as well. R
has support for the K-means algorithm for instance which is a unsupervised
learning algorithm. However, since the details are discussed in chapter 3
there is not much need to go into too much detail here. It is difficult to tell
how good a prediction from one of the algorithms will be without actually
performing experiments with them. Sabhanhi and Serpen [4] did apply
more algorithms to the KDD dataset with both supervised and unsupervised
learning. As shown in the paper there is not much difference between the
types of algorithms when it comes to the margin of error.

5.0.4 Training data

So far in this thesis the phrase training data has been mentioned many times,
but has not been discussed properly. It is important to understand what
the training data means when using the KNN algorithm and what impact
the training data has on the results. The training data in machine learning
is used to train the algorithm and to build a model. In the experiments
done, the amount of training data was 66%, 50% and 20%. It is very
important that the training data used contains all features in the dataset,
otherwise the algorithm will predict something completely else. The R code
for choosing the training and test samples does this and is even resembled
in experiments 7, 8 and 9 where the sample was completely different than
in the original dataset.
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Chapter 6

Conclusion and future work

This thesis has focused on using the KNN algorithm on three different
datasets with emphasis on discovering attacks in a dataset extracted from
Tcpdump. A background of how IDS are used today was also provided.
From the experiments the KNN algorithm has proved to be a quite
powerful algorithm for predicting observations in a dataset. In this thesis
three different datasets have been used. These were IRIS and two versions
of the KDD cup dataset. A total number of 14 experiments were performed
with the KNN algorithm. The KNN algorithm proved to be quite powerful
on both small and larger datasets with a low average margin of error. Even
with reducing the training data to 20%, the margin of error proved to stay
quite low. Also the value of k did not have significant impact other than
in experiment 6, which had a margin of error of over 12%. Overall one can
quite safely assume that the KNN algorithm can be applied to detect attacks
without much of a concern. As mentioned in the introduction, machine
learning is not widely used in IDS today, but as the results showed, the
algorithms used in both research papers in the area and in this thesis
proved to be quite powerful. It is, however, unlikely that machine learning
will replace the tradition IDS implementation any time soon.

6.0.1 Future work

This thesis applied one of the simplest machine learning algorithms to
three different datasets with the primary focus on the KDD dataset. To
cover more algorithms it is essential to get a complete overview in the field
of machine learning and IDS. Further work in this field could be actual
implementation of machine learning algorithms in the traditional IDS. This
can for instance be SNORT or some other system. This does require a
considerable effort, even though machine learning algorithms are widely
used in nearly similar scenarios, for instance email SPAM filtering.
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Appendix

Experiment 1

1 s e t . seed ( 1 2 3 4 )
2 i r i s _sample <− sample ( 2 , nrow ( i r i s ) , r e p l a c e=TRUE, prob=c ( 0 . 6 7 ,

0 . 3 3 ) )

Experiment 2

1 > s e t . seed ( 1 2 3 4 )
2 > i r i s _sample_50<−sample ( 2 , nrow ( i r i s ) , r e p l a c e=TRUE, prob=c ( 0 . 5 0 ,

0 . 5 0 ) )
3 > i r i s . t r a i n 5 0<− i r i s [ i r i s _sample_ 50==1 , 1 : 4 ]
4 > i r i s . t e s t 5 0<− i r i s [ i r i s _sample_ 50==2 , 1 : 4 ]
5 > i r i s . t r a i n l a b e l 5 0<− i r i s [ i r i s _sample_ 50==1 ,5]
6 > i r i s . t e s t l a b e l 5 0<− i r i s [ i r i s _sample_ 50==2 ,5]
7 >knn50<−knn ( t r a i n = i r i s . t ra in50 , t e s t = i r i s . t e s t 5 0 , c l = i r i s .

t r a i n l a b e l 5 0 , k=3)

Experiment 3

1 > s e t . seed ( 1 2 3 4 )
2 > i r i s _20 <− sample ( 2 , nrow ( i r i s ) , r e p l a c e=TRUE, prob=c ( 0 . 2 0 ,

0 . 8 0 ) )
3 > i r i s _ t r a i n _20<− i r i s [ i r i s _ 20==1 , 1 : 4 ]
4 > i r i s _ t e s t _20<− i r i s [ i r i s _ 20==2 , 1 : 4 ]
5 > i r i s . t r a i n L a b e l 2 0 <− i r i s [ i r i s _ 20==1 , 5 ]
6 > i r i s . t e s t L a b e l 2 0 <− i r i s [ i r i s _ 20==2 , 5 ]
7 > knn_20<−knn ( t r a i n = i r i s _ t r a i n _ 20 , t e s t = i r i s _ t e s t _ 20 , c l = i r i s .

t ra inLabe l20 , k=3)

Experiment 4

1 > knn_k<−knn ( t r a i n = i r i s _ t r a i n _ 20 , t e s t = i r i s _ t e s t _ 20 , c l = i r i s .
t ra inLabe l20 , k=5)
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Experiment 5

1 knn_k_2_3<−knn ( t r a i n = i r i s . t r a i n i n g , t e s t = i r i s . t e s t , c l = i r i s .
t r a i n l a b e l , k=5)

Experiment 6

1 knn_k_2_3<−knn ( t r a i n = i r i s . t r a i n i n g , t e s t = i r i s . t e s t , c l = i r i s .
t r a i n l a b e l , k=5)

2 > t a b l e ( knn_k_2_ 3)
3 knn_k_2_3
4 s e t o s a v e r s i c o l o r v i r g i n i c a
5 11 21 16
6 > t a b l e ( i r i s . t e s t l a b e l )
7 i r i s . t e s t l a b e l
8 s e t o s a v e r s i c o l o r v i r g i n i c a
9 11 21 16

10 >

1 > knn_k_20<−knn ( t r a i n = i r i s . t r a i n i n g , t e s t = i r i s . t e s t , c l = i r i s .
t r a i n l a b e l , k=20)

Experiment 7

1 > ind <− sample ( 2 , nrow ( kdd_sample ) , r e p l a c e=TRUE, prob=c ( 0 . 6 7 ,
0 . 3 3 ) )

2 > kdd . t r a i n i n g <− kdd_sample [ ind ==1 , 1 : 4 1 ]
3 > kdd . t e s t i n g <− kdd_sample [ ind ==2 , 1 : 4 1 ]
4 > kdd . t r a i n l a b e l s <− kdd_sample [ ind ==1 , 42]
5 > kdd . t e s t l a b e l s <− kdd_sample [ ind ==2 , 42]
6 > kdd_knn <− knn ( t r a i n = kdd . t r a i n i n g , t e s t = kdd . t e s t i n g , c l =

kdd . t r a i n l a b e l s , k=3)
7 Error in knn ( t r a i n = kdd . t r a i n i n g , t e s t = kdd . t e s t i n g , c l = kdd .

t r a i n l a b e l s , :
8 too many t i e s in knn

1 > data = small1
2 > data _ normalized=data
3 > s e t . seed ( 1 2 3 4 )
4 > ind <− sample ( 2 , nrow ( data _ normalized ) , r e p l a c e=TRUE, prob=c

( 0 . 6 7 , 0 . 3 3 ) )
5 > data . t r a i n i n g <− data _ normalized [ ind ==1 , 1 : 4 1 ]
6 > data . t r a i n i n g <− data _ normalized [ ind ==1 , 1 : 4 1 ]
7 > data . t r a i n L a b e l s <− data [ ind ==1 , 42]
8 > data . t e s t L a b e l s <− data [ ind ==2 , 42]
9 > data _pred <− knn ( t r a i n = data . t r a i n i n g , t e s t = data . t e s t , c l =

data . t r a i n L a b e l s , k=3)
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Experiment 8

1 > s e t . seed ( 1 2 3 4 )
2 > ind <− sample ( 2 , nrow ( data _ normalized ) , r e p l a c e=TRUE, prob=c

( 0 . 5 0 , 0 . 5 0 ) )
3 > data . t r a i n i n g <− data _ normalized [ ind ==1 , 1 : 4 1 ]
4 > data . t e s t <− data _ normalized [ ind ==2 , 1 : 4 1 ]
5 > data . t r a i n L a b e l s <− data [ ind ==1 , 42]
6 > data . t e s t L a b e l s <− data [ ind ==2 , 42]
7 > data _pred <− knn ( t r a i n = data . t r a i n i n g , t e s t = data . t e s t , c l =

data . t r a i n L a b e l s , k=3)
8 > data _pred <− knn ( t r a i n = data . t r a i n i n g , t e s t = data . t e s t , c l =

data . t r a i n L a b e l s , k=3)

Experiment 9

1 > ind <− sample ( 2 , nrow ( data _ normalized ) , r e p l a c e=TRUE, prob=c
( 0 . 2 0 , 0 . 8 0 ) )

2 > data . t r a i n i n g <− data _ normalized [ ind ==1 , 1 : 4 1 ]
3 > data . t e s t <− data _ normalized [ ind ==2 , 1 : 4 1 ]
4 > data . t r a i n L a b e l s <− data [ ind ==1 , 42]
5 > data . t e s t L a b e l s <− data [ ind ==2 , 42]
6 > data _pred <− knn ( t r a i n = data . t r a i n i n g , t e s t = data . t e s t , c l =

data . t r a i n L a b e l s , k=3)

Experiment 10

1 >data = kddcup . data [ sample ( nrow ( kddcup . data ) , 1000) , ]
2 > s e t . seed ( 1 2 3 4 )
3 > data _ normalized=data
4 > ind <− sample ( 2 , nrow ( data _ normalized ) , r e p l a c e=TRUE, prob=c

( 0 . 6 7 , 0 . 3 3 ) )
5 > data . t r a i n i n g <− data _ normalized [ ind ==1 , 1 : 4 1 ]
6 > data . t e s t <− data _ normalized [ ind ==2 , 1 : 4 1 ]
7 > data . t r a i n L a b e l s <− data [ ind ==1 , 42]
8 > data . t e s t L a b e l s <− data [ ind ==2 , 42]
9 > data _pred <− knn ( t r a i n = data . t r a i n i n g , t e s t = data . t e s t , c l =

data . t r a i n L a b e l s , k=3)

Experiment 11
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1 > ind <− sample ( 2 , nrow ( data _ normalized ) , r e p l a c e=TRUE, prob=c
( 0 . 5 0 , 0 . 5 0 ) )

2 >
3 > data . t r a i n i n g <− data _ normalized [ ind ==1 , 1 : 4 1 ]
4 > s e t . seed ( 1 2 3 4 )
5 > data . t r a i n i n g <− data _ normalized [ ind ==1 , 1 : 4 1 ]
6 > data . t e s t <− data _ normalized [ ind ==2 , 1 : 4 1 ]
7 >
8 > data . t r a i n L a b e l s <− data [ ind ==1 , 42]
9 > data . t e s t L a b e l s <− data [ ind ==2 , 42]

10 > data _pred <− knn ( t r a i n = data . t r a i n i n g , t e s t = data . t e s t , c l =
data . t r a i n L a b e l s , k=3)

Experiment 12

1 > ind <− sample ( 2 , nrow ( data _ normalized ) , r e p l a c e=TRUE, prob=c
( 0 . 2 0 , 0 . 8 0 ) )

2 > data . t r a i n i n g <− data _ normalized [ ind ==1 , 1 : 4 1 ]
3 > data . t e s t <− data _ normalized [ ind ==2 , 1 : 4 1 ]
4 > data . t r a i n L a b e l s <− data [ ind ==1 , 42]
5 > data . t e s t L a b e l s <− data [ ind ==2 , 42]
6 > data _pred <− knn ( t r a i n = data . t r a i n i n g , t e s t = data . t e s t , 1 c l =

data . t r a i n L a b e l s , k=3)

Experiment 13

1 > s e t . seed ( 1 2 3 4 )
2 > ind <− sample ( 2 , nrow ( data _ normalized ) , r e p l a c e=TRUE, prob=c

( 0 . 8 0 , 0 . 2 0 ) )
3 > data . t r a i n i n g <− data _ normalized [ ind ==1 , 1 : 4 1 ]
4 > data . t e s t <− data _ normalized [ ind ==2 , 1 : 4 1 ]
5 > data . t r a i n L a b e l s <− data [ ind ==1 , 42]
6 > data . t e s t L a b e l s <− data [ ind ==2 , 42]

Experiment 14

1 > s e t . seed ( 1 2 3 4 )
2 > ind <− sample ( 2 , nrow ( data _ normalized ) , r e p l a c e=TRUE, prob=c

( 0 . 6 7 , 0 . 3 3 ) )
3 > data . t r a i n i n g <− data _ normalized [ ind ==1 , 1 : 4 1 ]
4 > data . t e s t <− data _ normalized [ ind ==2 , 1 : 4 1 ]
5 > data . t r a i n L a b e l s <− data [ ind ==1 , 42]
6 > data . t e s t L a b e l s <− data [ ind ==2 , 42]
7 > data _pred <− knn ( t r a i n = data . t r a i n i n g , t e s t = data . t e s t , c l =

data . t r a i n L a b e l s , k=13)
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