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Abstract

In the past 10 years, ZnO as a semiconductor has attracted considerable attention due to its
unique properties; such as high electron mobility, wide and direct bandgap, high oscillator
strength, and a large exciton binding energy. The increasing interest in ZnO-based electronics
can largely be attributed to new promising applications offered by alloying and nanostructuring.
Among such novelties are band engineered Zn(Mg,Cd)O compounds with a tunable optical gap
from 1.8 eV to 4.8 eV.

The present work investigates the importance of alloy composition, the structuring of Zn(Mg,Cd)O
heterostructures, and the related polarization fields and quantum confinement effects, including
the quantum confined Stark effect. Optical characterization by photoluminescence spectroscopy
and quantum mechanical modelling utilizing & - p perturbation theory is used to provide a better
understanding of the underlying mechanisms of said quantum confinement effects and charge
carrier dynamics.

To aid heterostructure design and nanostructure modelling, essential material parameters such as
band parameters and deformation potentials are required. Following from the lack of available
experimental data for wurtzite MgO and CdO, essential material parameters of these, required
in k - p perturbation theory treatment of Zn(Mg,Cd)O heterostructures, are found to be poorly
defined. Implications and possible solutions to this are discussed in the context of quantum
mechanical modelling.

Increased coupling between wells with decreasing barrier height and width in the case of
Zn0O/Zn;_,Mg,O multiple quantum well structure is shown. Further evidence is presented
showing the dependence of quantum well width in our Zn(Mg,Cd)O heterostructures with re-
gards to quantum confinement effects. It is shown under which conditions the quantum confined
Stark effects are expected to take place, and a detailed description of carrier recombination as
a function of temperature is presented. En masse, these studies may facilitate the correlation
of the performance of ZnO-based heterostructures to their processing, a matter of fundamen-
tal interest as Zn(Mg,Cd)O heterostructures and multiple quantum well structures show several
promising applications in practical device implementation.
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Nomenclature

In alphabetical order
* 2DEG - Two-Dimensional Electron Gas
* BE - Bound Exciton
* CdO - Cadmium Oxide
* DFT - Density Functional Theory
* DOS - Density of States
* EHP - Electron-Hole Pair
* FE - Free Exciton
* hh - heavy hole
* LA - Longitudinal Acoustic
* LDA - Local Density Approximation
e lh - light hole
* LO - Longitudinal Optical
* MgO - Magnesium Oxide
* MQW - Multiple Quantum Well
* NBE - Near Band Emission
* PL - Photoluminescence
* PLE - Photoluminescence Excitation
¢ QC - Quantum Confinement
* QW - Quantum Well
¢ QCSE - Quantum Confined Stark Effect
* SL - Superlattice
* SQW - Single Quantum Well
* TA - Transverse Acoustic
* TO - Transverse Optical
* wz - Wurtzite
* zb - Zincblende
* 7ZnO - Zinc Oxide
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Chapter 1

Introduction

We rely on fossil fuels for more than 80% of our current energy needs, a situation which is
not sustainable in the long-term. On top of this, the energy demand is expected to grow by
almost half over the next two decades.[1] The amount of energy the earth’s surface receives
from the sun in one hour is more than the entire world’s energy consumption in one year, and
it comes without any emission of greenhouse gases; ZnO structures poses as candidates for
highly efficient and affordable solar cells. Furthermore will transitioning to a more efficient
light source, such as readily available light emitting diodes, noticeably lower the global energy
demand. In fact did the Nobel Prize in Physics 2014 go to Isamu Akasaki, Hiroshi Amano, and
Shuji Nakamura for their efforts in the invention of efficient blue light-emitting diodes which
has enabled bright and energy-saving white light sources; a feat based on the wide bandgap
material GaN, which is very similar in many respects to ZnO.

ZnO-based electronics have recieved an increased amount of interest in recent years, only in
2009 there were more than 5000 publications containing ZnO in the title, a number that in-
creases every year. As a direct wide bandgap semiconductor, with £, ~3.37 eV at room
temperature, and a high exciton binding energy compared to GaN(60 meV as opposed to 20
meV), ZnO is a superior candidate for minority-carrier-based devices, such as light emitting
diodes, laser diodes, and transparent p-n junctions. Furthermore it offers significant advantages
over group III-Nitride materials, which include an availability of large area lattice-mismatched
substrates and a lower material cost. [2, 3, 4, 5]

Following from this, new promising applications are offered by alloying and nanostructuring.
Nanostructured ZnO materials show remarkable performance in electronics and optics. With
reduction in size, novel electrical, mechanical, and optical properties are introduced, which are
understood to be the result of surface and quantum confinement effects.[6] Among such nov-
elties are band engineered Zn(Cd,Mg)O compounds with a tunable optical gap from 1.8 eV
to 4.8 eV for the use as solar-blind detectors or advanced absorbers of solar radiation in pho-
toelectrochemical and photovoltaic applications. Indeed, the efficiency of sunlight absorption
can be increased, e.g by stacking several compositionally graded ZnCdO layers into a mul-
tilayer heterostructure, which readily provides broader coverage of solar spectrum and more
efficient charge separation due to the built-in field; an equally promising strategy in this re-
spect is to employ Zn(Cd,Mg)O multiple quantum well structures. In spite of certain maturity
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of bandgap engineering and significant progress reached in realization of novel functionali-
ties in ZnO-based heterostructures, including LENS’ own efforts in fabricating multiple quan-
tum wells, some critical topics in material properties, such as charge carrier transport and its
correlation with alloy composition, remain scarcely studied. The particular importance of a
systematic knowledge of carrier lifetimes for variable composition compounds arises from the
fact that binary constituents have different thermodynamically stable crystalline structures, e,g
wurtzite for ZnO and rock-salt for CdO/MgO), while also exhibiting low thermodynamic sol-
ubility. Both factors point towards likely deterioration of crystallinity and phase separation for
higher (Cd,Mg)-content compounds. Closely related is the polarity issue typical to crystals
lacking inversion symmetry, implying non-vanishing spontaneous and piezoelectric polariza-
tion fields and electrostatic charge densities in strained Zn(Cd,Mg)O compounds that influence
opto-electrical properties and hence device behaviour.



Chapter 2

Background

2.1 Theoretical Background

This section aims to provide and explain the theoretical concepts necessary to fully appreciate
the study. It starts out explaining relevant crystal structures and defects, before introducing
the idea of the reciprocal lattice. Then a quick introduction to the basic quantum mechanics
behind is made, before moving to concepts such as bandstructure, effective mass approximation,
heterostructures and confinement, and recombination.

2.1.1 Crystal Structure

A crystalline structure is distinguished by the fact that there is some form of basic arrangement
of atoms throughout the solid. This periodicity is defined in terms of a symmetric array of
points in space called the lattice. As a consequence of this, the crystal will appear exactly the
same at one point as it will at a series of other equivalent points, the distance between which
we define as the lattice period. In every case the lattice contains a volume that can be used to
represent the entire lattice, we refer to this volume as the unit cell. A useful choice of primitive
unit cell is the Wigner-Seitz cell, which is defined as the region of space that is closer to one
given lattice point than to any other. The possible types of point lattices in three dimensions are
limited. By following an arrangement that doesn’t restrict the symmetry of our cell, called the
basis, we can add atoms to lattice points to form 14 different point lattices. We call these the
Bravais lattices.|7]

The lattice symmetry operations are given as

Rn = n1a; + Ngdg + Nzas (21)

Where n; are integers and a; are the primitive vectors that span the lattice. The set of all R,
form the point lattice of the crystal.



The three types of crystal structures that are of most importance to semiconductors are wurtzite,
zincblende and the diamond structure. In the case of ZnO, it can take on two out of these three
crystal structures. Under normal conditions the thermodynamically stable phase is wurtzite
symmetry, while zincblende structure can be stabilized by growth on cubic substrates. Under
strong enough pressures ZnO can also be found in the rocksalt structure.

'\\a\- ‘\a‘\.

Zincblende Diamond

Wurtzite

Figure 2.1: [Illustration of the three most common semiconductor crystal structures.
Zincblende(e.g GaAs), Diamond(e.g Si) and Wurtzite(e.g ZnO). Original figure from [8]

The wurtzite structure has a hexagonal unit cell with two lattice parameters a and c; the ratio
of these are typically given as ¢/a = /8/3. This leads to a lack of inversion symmetry. Such

structures are termed non-centrosymmetric, and can give rise to piezo- and pyroelectric effects.
(2,8, 9]



2.1.2 Crystal Defects

By convention we use the ideal crystal structures based on the lattice symmetry operations as
the reference point. Any deviation from these ideal crystal structures is defined as a defect.
Defects are present at any temperature and occur naturally in all crystalline compounds.

We separate different types of structural defects by dimensionality. If the defect is limited to
one structural or lattice site and its immediate vicinity, it’s called a zero-dimensional defect, or
more commonly a point defect. Examples of point defects are substitutional atoms or empty
sites termed vacancies. One-dimensional defects include line defects, e.g a row of vacancies
inducing a dislocation. Two-dimensional defects include stacking faults and grain boundaries.
Interfaces and surfaces may also be viewed as two-dimensional defects. Some typical defects
are presented in Fig. 2.2.

Intarsfitial
Substitulional fareign atam
Haigign aham
Vacancy——» Raw of
WOGancies
Coharent
prec|pilafion

disiocation

Figure 2.2: Overview of some defects in a crystalline solid. Original figure can be found in[10]

Intentionally introducing defects into our semiconductors to alter their electronic properties can
be a very useful tool. One example of this would be to add impurity atoms to our otherwise
intrinsic semiconductor, changing the charge carrier concentration. A slightly doped semicon-
ductor is termed extrinsic. Semiconductors that have been doped to such extents that they begin
to take on metallic properties are called degenerate. We separate between n and p doping, the
effects of n-doping of an intrinsic semiconductor can be seen in Fig. 2.3. Dopant atoms that
give rise to free electrons in the conduction band are called donors, and those that give rise to
free holes in the valence band are called acceptors. The binding energy for these carriers can
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be viewed as similar to that of the hydrogen atom. In the case of n doping of this system, it

follows

me - e*

8e2 - h? - n?’
The state i=1 is the most tightly bound state and corresponds to the ionization energy of the
impurity. A binding energy equal to zero corresponds to an electron moving freely in the con-
duction band. When dealing with semiconductors we have to replace the electron mass with the
effective electron mass and the dielectric constant corresponding to €ge;..

E;, = (2.2)

Er

Intrinsic Extrinsic (n-doped) Degenerate (n-doped)

Figure 2.3: Position of the Fermi level in the bandgap with increasing n-doping concentrations

Another way defects are introduced is during growth. We separate between two ways of grow-
ing layers on a substrate, termed homoepitaxy and heteroepitaxy. Growing layers on a substrate
with matching lattice constants is called homoepitaxy, while the opposite case, growing layers
with different lattice constants with respect to the substrate, is called heteroepitaxy. By growing
thin enough layers, of the order of 10 nm, the heteroepitaxial layers can be grown with a lattice
constant in compliance with that of the substrate, but at the same time it induces strain to the
structure. This type of growth is termed pseudomorphic. In the case where the epitaxial layer
exceeds some critical layer thickness t., the strain energy leads to the formation of defects in
the crystal structure. Strain has some very important effects on semiconductors with respect
to the electronic structure and polarization charges, both of which will be discussed in later
chapters.



€ xx<0 € XX=0 € xx>0
(compressive) (tensile)

Figure 2.4: Illustration of the effect of varying from compressive strain to tensile strain on the
bandstructure of a direct bandgap material

In the case of highly mismatched substrates in ZnO, there is usually a certain amount of
zincblende phase of ZnO separated by crystallographic defects from the wurtzite phase.[2, 7, 9,
10, 11]

2.1.3 The Reciprocal Lattice and The First Brillouin Zone

The concept of the reciprocal lattice is fundamental to semiconductor physics as it simplifies
the description of periodic structures. We recall that for a given Bravais lattice

R, = nja; + noas + nsas.

We then define the reciprocal lattice as the set of vectors G for which

R-G=2r-1, (2.3)
where 1 is an integer. This can be rewritten on the form

R (2.4)



G may be written as the sum of three vectors

G = nllbl + n2/b2 + 7’L3/b3, (25)

where n1/,ny/, ng/ are integers, and the vectors by, by, bg span the reciprocal lattice and are
given as

X X X
by=2r— 2788} _gp BWIA _p gy XA (2.6)
ajg - (a2 X a3) a - (32 X a3) a - (3.2 X 8.3>
This gives us the relation
aj - bj = 27T5ij, (27)
1, ifi=j,
Where § = .
0, ift#y

In one dimension this gives us a reciprocal lattice vector £ = 27”, which corresponds to the size
of the first Brillouin zone. This can be generalized into the three dimensional case of a cubic
crystal with lattice spacing a in all directions. In this case k turns into a real wave vector k

21 (g, ny, M) 27 (Mg, My, M2)
aN N L

k = (kg ky, k) = (2.8)

Where N is the number of atoms, L is the macroscopic side length of our cubic crystal, and
Ng, Ny, N, being integers.

The definition of the first Brillouin zone is the region of reciprocal space, also denoted k-
space, that is closer to a given reciprocal lattice point than any other. As such we note that
it corresponds to the Wigner-Seitz cell in real space. In the first Brillouin zone, including its
boundaries, we denote points of high symmetries with capital letters. I' corresponds to the
center of the Brillouin zone where k = (0,0, 0), while L and X corresponds to the boundaries.

[9]

2.1.4 Probability and The Uncertainty Principle

When dealing with particles on the atomic scale it is impossible to describe, with precision,
events including position, momentum and energy. Therefore we speak instead of expectation
values. The uncertainty ingrained in quantum theory describes the probabilistic nature of events
involving these particles. The magnitude of this uncertainty is given by the Heisenberg uncer-
tainty principle

dxdp > h/2 (2.9)

As we can see it is impossible to simultaneously measure precisely position and momentum of
the particle; these are called incompatible observables, and are identified by a non-complete set
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of shared eigenfunctions. A collapse of the wavefunction upon measurement of one will thus
change the properties of the other. A similar relation can be found for energy and time:

SESt > h/2 (2.10)

We also have compatible observables where a collapse of the wavefunction will not create
any changes, such as position in different directions, x y z, and direction based momentum,

Dz, Py-

The implication of incompatible observables is that we end up speaking of probabilities. One of
the important results of quantum mechanics is that we can obtain a probability density function
for a particle in a given environment. This function can in turn be used to give us the expec-
tation value of important properties, such as the energy and position of the particle. Given a a
probability density function P(z), the probability for finding the particle in a range from z to
x + dx can be written as

/OO P(z)dz =1 (2.11)

[7,12]

2.1.5 The Schrodinger Wave Equation

Each particle in a physical system is described by a wavefunction W(r, ¢) This function and its
space derivative are continuous, finite and single valued. Once the wavefunction is found for a
particle, it is possible to calculate its average position, momentum, and energy within the limits
of the uncertainty principle.

The expectation value <M> for any variable M is calculated from the wavefunction by

(M) = /Oo UM, V. (2.12)

o0

The Sherddinger equation in three dimensions is given as

h h OV
—— VA4V = ————. 2.13
2m + j ot @.13)
It is normal to separate this further into a time-independent equation(2.14), and solve them
separately
HU = EV. (2.14)



2.1.6 Particle in a Box - Density of States

Distinctive features of semiconductor structures can be illustrated by application of the effective
mass approximation. Take the quasi-particle wavefunction in the form of a plane wave

P(r) = Kelkr), (2.15)

The product of a wavefunction with its complex conjugate

»(r)Y*(r) = w(r)dV, (2.16)

yields the probability of finding a particle inside a volume dV = dxdydz At the position de-
scribed by vector r.

Integrating the probability density of the whole system with a volume V,; gives us a normal-
ization condition that allows us to find the value of K in the wavefunction

, A 1
1= / w(r)dV = K? / e*Temkrqy = K2V, = K = :
sYs sYs AV ‘/sys
For an infinite system V,; — oo and K — 0. For 3D, 2D and 1D systems with finite volumes,
L?, L? and L respectively, K is equal to L=3/2, L=* and L~/2.

If we restrict the motion of the quasi-particle along any axis in a box of length L, and set infinite
barrier potentials at the walls of the box, the probability of finding the particle outside the box
is 0. It follows from this boundary condition that the wavefunction has to be zero at the walls.
These conditions are satisfied by standing waves, which are formed by a superposition of waves
with inverse wavevectors k and —k. This means that |k| = n(7/L), where n = 1,2, 3....

This condition holds true for any dimension in which the particle’s motion is restricted.
Viewing this from k-space, the allowed states are distributed along k., k,, and k. with a pe-
riod of 7/ L. One state thus has to occupy a volume corresponding to (7/L)%, where d stands
for the dimension in space.

It is now possible to calculate the density of states in k-space as the number of available states
whose wavevector modulus |k| = £ falls within the interval (k + dk). Thus it is necessary to
count the number of states within the segments (k, k+dk) and (—k, —(k+dk)), and the density
of states is given as:

1
k)dk = g,dVi—=—— 2.17
Where g, is the degeneracy factor, equal to 2 for fermions, and gV, is the volume in k-space in
which k,, k,, and k, are positive whilst their amplitude k lies within the range of (k, k + dk).
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For d = 2 the density of states reads
2

L
plk)dk = 9edVi 7y k. (2.18)

It is now also possible to write out the density of states in energy space, p(F) This gives us the
number of states per unit volume and per unit energy.

dk

p(E)dE = p(k(E))—dEdE (2.19)
For the isotropic case, and
4q
EYdE = p(k(F))—————dF, 2.20
pENE = p((B) s (220)

which is the general expression valid for all cases. In the simple case of an electron in a
parabolic shape conduction band

h2k2
Ek,)=F =
( ) g + ch
giving us
2m, dk 2m. 1
k= WE—-FE, — = . ) 2.21
I 9 4E 2h FE—-F ( )

Substituting 2.20 and 2.18 into 2.19 we find for d = 2

m

p(E) = 957 (2.22)

The plot of density of states versus energy space for different dimensions can be found in figure
2.5.[12, 13, 14]
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Figure 2.5: Density of states in the conduction band in the case of 3, 2 and 1 dimensional
structures

2.1.7 Tunnelling

In the classical problem of a particle in a well, when dealing with infinite barriers, the wave-
function goes to 0 at the boundaries. If however these barriers are non-infinite, the wavefunction
is no longer forced to go to O at the barrier boundary, and may also be non-zero beyond it. We
note that since 1) has a value beyond the barrier there is a chance of finding our quantum par-
ticle outside of the well, i.e the particle has penetrated the barrier. This mechanism is called
tunnelling, and is closely related to the uncertainty principle, meaning that if the barrier is thin
enough it is impossible to say with certainty that the particle exists on only one side of it. The
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probability density decreases rapidly inside the barrier, so by increasing the barrier width it is
possible to decrease tunnelling to a negligible amount. [12, 7]

Mg Barrier

[ # o

X

Figure 2.6: Tunneling of a quantum particle through a barrier of width W. The wavefunction
drops exponentially inside barrier, but is still non-zero on the other side.

It is possible to show that tunnelling is also dependent on barrier height. The idea of quantum
tunnelling is closely related to the uncertainty principle, and we may view this in the context of
position-momentum uncertainty. We recall from section 2.4

dzop > h/2.

The probability of finding a particle tunneling through the barrier in our figure, corresponding
to xg + b, is proportional to
2

zo+b
x emp[—ﬁ / V2m(V (x) — E)dz]. (2.23)

o

For a non-negligible probability, it is further required

2v/2m(V,, — E)b ~ B, (2.24)

where V,, is the maximum height of the barrier potential. Measuring the particle coordinate
with accuracy dx < b yields
R’ h?
6p® = = —.
4(6x)?  4b?

(2.25)



Combining 2.24 and 2.25, we get
5 2
v vy —E (2.26)
2m
Meaning the kinetic energy of the particle, %, must be greater than the difference between the

height of the barrier, V,,,, and the total energy £/, for it to tunnel through the barrier.[15]

2.1.8 Bandstructure

There are two main approaches to the problem of band structure calculations. In one case we
start with free electrons, which have the parabolic energy dispersion

2 21,2
E(k):p__hk

2m0 n 2m0 ’

(2.27)

The potential energy of an electron in a crystal is periodic in space. As a consequence of this,
the energy spectrum consists of allowed and forbidden energy bands. The electron states can be
characterized by its quasimomentum, also known as crystal momentum, p. The quasimomen-
tum is relatable to the more commonly used quasi wavevector by k = p/h. We shall henceforth
be using k when talking about the bandstructure of semiconductors. The energy in an allowed
band is a periodic function of k, so we only have to consider it in the first Brillouin zone. The
electron eigenstates of a periodic potential are so-called Bloch waves:

Dri(r) = €™y (r), (2.28)

where
ug,i(r) = upi(r + R). (2.29)

The ¢y, ;(r) is a product of a plane wave and a lattice periodic term wy; where k is the wave
vector and ¢ the index of the band. The eigenenergies in the bands depend on both k and 7 and
are periodic in the reciprocal space

Ei(k) = E;(k + G). (2.30)

Which once again allows the dispersion relation to be reduced to the first Brillouin zone. The
allowed number of states is twice the number of elementary cells in the crystal, the doubling is
due to spin. And so the energy spectrum for all the allowed bands is given by the dependence
of energy on k, F/(k). In intrinsic semiconductors at OK temperature, a certain number of the
lowest allowed bands are filled up with electrons according to the Pauli exclusion principle,
while the higher bands are empty. In general, the upper filled and the lowest empty bands,
valence and conduction band respectively, are of interest to us. These bands are separated by a
forbidden energy gap denoted E,.[14, 16]
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2.1.9 Spin Interactions

If we construct the wave function for a system of identical particles so that it reflects the re-
quirement that particles are indistinguishable from each other. This means that interchanging
particles occupying any pair of states do not change the probability density (] ¥|?) of the system.
This divides all particles in nature into two classes, bosons and fermions.

An example for two non-interacting identical particles will illustrate the point. The probability
density of the the two particle wave function W(ry, ro) must be identical to that of the the wave
function ¥(rs, r1) where the particles have been interchanged.

|\If(r1,r2)]2 = ]\If(rg,rl)]2 (231)
This is achievable in two cases, the symmetric and anti-symmetric:

Symmetric case :  W(ry,ry) = ¥(ry, 1y)

Anti-symmetric case :  W(ry,re) = —W(ry, 1)

Particles with symmetric wavefunctions under the said particle interchange have integer or zero
spin, 0, 1, 2..., and are termed bosons. Particles with anti-symmetric wave functions under the
particle interchange have half-integral intrinsic spin 1/2,3/2... and are called fermions.

Electrons have a spin part, s = 1/2, and an associated magnetic moment of the electron p =
eh/2me. Electron spins can be either parallel or anti-parallel. The existence of this spin, and
the associated magnetic moment, has several consequences when dealing with semiconductor
systems, some of which are discussed below. [12]

Pauli Exclusion Principle

The Pauli Principle tells us that no two fermions, particles with spin s = 1/2, can occupy the
same quantum state at the same time. This principle has an effect on the atomic structure, as
well as the chemical and physical properties of semiconductor physics.

Exchange Interaction

As previously noted, electron spins can be either parallel or anti-parallel. If the electron spins
are parallel, the coordinate part of the wave function should be antisymmetric: ¢ 11 (rg,r1) =
—1 11 (r1,72) which tells us that the probability of two electrons being very close to each
other is small compared to the opposite case, when the spins are anti-parallel; accordingly their
coordinate wave function is symmetric: ¢ 1| (r9,71) = 1 T (r1,72). Electrons with parallel
spins are better separated in space, so that their mutual repulsion is less, and consequently the
energy of the electrostatic interaction for parallel spins is lower.
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Exchange interaction is in fact the result of the electrostatic Coulomb interaction between
electrons, which becomes spin-dependent due to the wave function requirement of fermions.
The exchange interaction is responsible for ferromagnetism. This is generally only of impor-
tance for magnetic semiconductors, and for cases where we have semiconductor-ferromagnet
interfaces.[12, 16]

Spin-Orbit Interaction

If an observer moves with a velocity v in an external electric field £, he will see a magnetic
field B = (1/c¢)E x v, where c is the velocity of light. This magnetic field acts on the electron
magnetic moment ;. = efi/2mc, and is the physical origin of the spin—orbit interaction. Due
to the spin—orbit interaction, any electric field will act on the spin of a moving electron. It is
also responsible for spin relaxation, this can generally be understood as a result of fluctuations
in time magnetic fields. In most cases these are effective magnetic fields originating from the
spin—orbit or exchange interactions. The spin-orbit interaction essentially changes the valence
band energy spectra.[16]

Energy Bands, Light and Heavy Holes

The allowed energy bands in crystals may be thought of as originating from discrete atomic
energy levels. These levels are split to form a band when isolated atoms come close enough
to each other. Atomic energy levels are generally degenerate, i.e there are several states of the
same energy. The degeneracy of these levels can be of consequence to the band energy spectrum
of a crystal.

When including spin-orbit interaction, the total orbital and spin angular momenta coupling
(L — S) is broken due to an additional energy proportional to LS, and only the total angular
momentum J = L+ is conserved. The eigenvalues of J? are h(j+1) with |l —s| > j > [+,
where 1 is the atomic orbital angular momentum, and s is the spin. Thus the state with [ = 0,
from which the conduction band is built, is not affected with (j = s = 1/2), while the state
with [ = 1, from which the valence band is built, is split into two states with j = 3/2 and

j=1/2.

The symmetry properties of band states at & = 0 are completely similar to those of the cor-
responding atomic states. Thus for & = 0 we must have a four-fold degenerate state (j =
3/2,J, = £3/2,£1/2 which is separated by an energy distance A, the spin—orbit splitting,
from a doubly degenerate state j = 1/2,J, = +1/2). The conduction band remains doubly
degenerate. The value of A is small for materials with light atoms, and may be comparable to
the bandgap in semiconductors composed of heavy atoms.

The terms "heavy" and "light" originate from the distinct curvatures of the energy dispersions
for these bands. For non-zero values of k, the states can no longer be classified as heavy, light
and split-off holes.
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In the valence band, the spin of light and heavy holes is tightly bound to their momentum,
and thus we remember the relation k = p/h. This leads to some interesting consequences.
If there are external forces present, the light and heavy hole states generally become mixed.
This could be due to the reflection from an interface, or the introduction of a quantum well
structure.[16]

2.1.10 Effective Mass

One important property of semiconductors is that the number of free carriers is relatively small
compared to the total number of atoms. Carriers can be produced in our structure either by
excitation or by doping. The carrier concentration never exceeds 10*° /cm3, while the number
of states/cm? in a given energy band is of the order 10?2, This means that carriers only occupy
a small fraction of the band extrema. As a consequence of this we are mostly interested in the
properties of the energy spectrum in the near vicinity of the minimum of the function F(k) for
the conduction band, and its maximum for the valence band.

If these extrema correspond to the center of the Brillouin zone, k = 0, which is often referred
to as the I point, as is the case for ZnO and other materials of interest, then the function F(k)
should be parabolic for values close to the I" point.

2

E =2 (2.32)
2me,
_p2

E, = (2.33)
2m,

Where m.. is the effective mass of electrons and m,, is the effective mass of holes. The extrema
of £ (k) do not necessarily occur at the center of the Brillouin zone. It is also possible that the
effective mass is anisotropic, i.e it varies with different directions in the crystal.

The effective masses do more than describe the curvature of the £(k) parabolic dependence
in the vicinity of its maximum or minimum. It can also help tell us what happens to carriers
under external forces. This can be the case because of e.g crystal deformation, built-in fields
etc.

If we have small carrier energies compared to F,, and slow spatial variation of the external
forces compared to the periodic crystal potential, we can consider our carriers as free particles
moving in the external field. The only difference being that they now have an effective mass,
and not the free electron mass. This means that the classical motion of a conduction electron in
an electric field E and magnetic field B is described by Newton’s law:

d*r e
mcw = —cbk — E -vxB (234)
alternatively
F=QE+v xB) (2.35)
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Likewise, if quantum treatment is needed, one may use the Schrodinger equation for an electron
in the external field with its effective mass. Once again neglecting the existence of the crystal
periodic potential.[16]

2.1.11 Quantum Confinement

Low-dimensional semiconductors separate themselves from bulk structures in more ways than
one. Bulk structures can be viewed as homogeneous materials substantially larger than the
exciton Bohr radius in all directions. As a result of this the physical effects and electronic states
are said to be determined by their chemical composition.

The de Broglie wavelength is the wavelength \ associated with a particle and its momentum p
through the Planck constant 2, A\ = h/p. In general the de Broglie wavelengths for electrons and
holes, A\, and )\, and the Wannier exciton Bohr radius, a,, are larger than the lattice constant.
This means that it is possible to decrease the crystal size so that it is equal to or less than a,.
If this is the case, the electron states are no longer chemically determined, but rather dependent
on crystal size. This gives rise to quantum confinement effects.

The principle of quantum confinement lies in the quantization of the kinetic energy, £}, of
a quasi-particle whose motion is restricted to a region comparable to its de Broglie wave-
length.

As a result of electronic states being dependent on size rather than just chemical composition,
low-dimensional semiconductor structures can be fabricated with properties tailored to specific
applications. This is known as band engineering. [13]

Quantum well

Since quantum wells are the focus of this thesis, we will further delve into the quantum con-
finement effects for these structures.

As previously mentioned, a quantum well can introduce splitting of light and heavy hole bands,
blue shifting the absorption band with decreasing well width. In bulk structures the light and
heavy holes are often degenerate at the I' point. In quantum wells the confinement potential lifts
this degeneracy as a result of symmetry breaking, and thus the heavy and the light hole bands
split. This is illustrated in Fig. 2.7(b).

The quantum confinement effects stemming from the reduction of size in one dimesion can often
be viewed in the light of photoluminescence spectroscopy. In the case of quantum wells we
often only observe a single emission band, corresponding to the lowest transition. This is a result
of the efficient relaxation of higher excited states into the lowest state, from which the radiative
recombination takes place. The photoluminescence peak generally undergoes a Stokes shift,
i.e it is redshifted compared to the absorption spectra. This is mainly due to energy relaxation
within an inhomogeneously broadened band, often due to interface roughness. Another reason
for the Stokes shift can be phonon interaction, which will be discussed in section 2.1.15. The
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Figure 2.7: The different bandstructures of a bulk and QW GaAs semiconductor

width of a quantum well is, in practice, not perfectly constant, but it rather has a distribution.
The local quantum confinement effects vary accordingly, and gives a smearing of the energy
levels. This smearing increases with the number of quantum wells in our heterostructure. The

width of photoluminescence bands can be used as a tool for characterizing the quality of our
heterostructure.

19



The most important luminescence properties of free exction recombination in a quantum well
can be summarized

* Wavelength(\) depends on Ly, A of excitonic luminescence depends on the width of the
quantum well. Emission shifts to shorter wavelengths (higher energies) with decreasing
well size.

* Luminescence peak from free exciton is expected to be narrower than that of bulk struc-
tures, as a result of the difference in the density of states.

» Excitonic binding energies generally increase with decreasing well width, making exci-
tonic phenomena observable at higher temperatures than for bulk structures.

* Nonlinear optical phenomena takes place for lower excitation power densities. Confine-
ment makes it so that excited electron-hole pairs (EHP) cannot travel freely in the crystal,
as a result the effective population density can reach high values.

There is always some form of localization of excitons in quantum well structures, so the already
mentioned free excitons(Wannier excitons), are never completely delocalized. Local fluctua-
tions in well width and chemical composition variation in our heterostructures does inevitably
exist, especially with ternary and quaternary alloys. The wells might also have impurity atoms
serving as localization traps for excitons. Due to the smaller amount of material in quantum
wells compared to bulk structure, localization centres play a far more important role for optical
properties in quantum wells. The observed excitonic emission band should be considered as
inhomogeneously broadened due to the superposition of the radiative recombination of free and
localized excitons.[13]

2.1.12 Heterostructures and Low-Dimensional Semiconductors
Low-dimensional semiconductor device applications often combine several types of materials,
as in the case of the Zn(Mg,Cd)O compounds. There are several reasons for doing this:

* Passivation and protection of nanostructured surface by another material, e.g barrier.

* Embedding of nanostructure into macrostructure, making it easier to manipulate.

» Necessity to fabricate certain energy structures.

These compound structures are called heterostructures. The layered variable bandgap semicon-
ductor heterostructure is formed when a well of lower F is surrounded by a higher £/, material
serving as a potential barrier.

When we construct heterostructures from materials with different crystal structures, strain is
introduced into our sample. This can, as previously discussed, in turn be used to change the
bandstructure of our semiconductor.

If one introduce several quantum wells into the heterostructure, and the barrier potential or width
is low enough, wavefunctions from other wells can start overlapping, and tunneling between
wells become possible. Given that the wavefunction overlap is big enough to form subbands,
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we get what is known as a superlattice. A superlattice introduces a new bandstructure and
transport properties to the semiconductor.

It is normal to differentiate between different types of quantum wells. These all depend on the
band offset, which can be defined by Anderson’s rule.[13]

SE. = x4 — P

E, =0E, — 0F,
Q = 0E./SE,

It should be noted that this is the ideal case, and that it often is more complicated in actual
heterostructures.

* Type I QW: E.(min) and E,(maz) in the same layer.

* Type II QW: Extrema found in neighbouring layers. These are misaligned in real space
and not in k-space, electrons and holes are spatially separated. Can resemble indirect
bandgap material.

* Type III QW: Extremes overlap between neighbouring layers. These layers may freely
exchange carriers until equilibrium is reached due to local fields. Resembles a p-n junc-
tion.

Low-dimensional semiconductors can be divided into groups according to the number of dimen-
sions in which the structure is restricted to a size small enough to fit the quantum confinement
regime. Structures that are not confined in any direction are known as bulk structures. Those
that are restricted in one, two or three directions are, respectively, known as quantum wells,
quantum wires, and quantum dots.

2.1.13 Multiple Quantum Wells and Superlattices

When dealing with a type I quantum well, the band discontinuities of the conduction and the
valence band are such that electrons and holes are confined to the same material. By introducing
several quantum wells into a heterostructure, and the barriers between them are sufficiently
thick, so that the first quantized electron states of adjacent wells do not overlap, we speak of a
multiple quantum well. The density of states increases with the number of identical quantum
wells in the structure.

If the barriers in the type I quantum well starts getting thinner and thinner, we enter a regime
where the tails of the wavefunctions in the barriers start to overlap. When only dealing with
a couple of quantum wells, e.g two, we say that the quantum wells are coupled. If they are
identical, the ground state splits into a symmetric and an anti-symmetric part.

By coupling multiple quantum wells along the z-direction, a new periodicity d = [, + [, occurs
and we obtain a structure known as a one dimensional superlattice.

21



We recall from section 2.1.3 that we along one dimension have a first Brillouin zone of period-
icity 27 /a, as such we can obtain the &, direction of a Brillouin zone extending from

™

T
—— <k, <= 2.
g Sk (2.36)

which is much smaller than the extension in the k, and the %, directions. We find a series of
minibands in the &, direction. The difference between a multiple quantum well and a super-

lattice can be shown in their density of states distribution as a function of energy, as in Fig.
2.8.[14, 13]
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(a) Quantum well in a multiple quantum well structure (b) Quantum well in a superlattice

Figure 2.8: Density of states as a function of energy of a quantum well in (a) multiple quantum
well structure, and (b) superlattice.

2.1.14 Exciton

An exciton in a semiconductor is a bound state of an electron and a hole. It can be viewed as a
hydrogen-like system with properties much like that of an electron bound to a donor impurity.
An important distinction is that excitons can move inside the crystal. They are also unlikely to
exist in an equilibrium state, but are often created by optical excitation and have a lifetime with
respect to recombination. In an ideal semiconductor the primary electronic excitation would be
that of a free electron-hole pair with a required energy £/ > E,. Electrons and holes are however
attracted to each other by Coulomb forces, and an exciton’s internal energy is therefore lower
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than F,. The Exciton now represents the lowest electronic excitation in a semiconductor, and it
can be observed as an absorption/PL line slightly below the bandgap.

We generally divide excitons into three basic types:
* Frenkel exciton, a small-radius exciton. They occur in molecular crystals.
* Charge transfer exciton. Occurs primarily in ionic crystals.
* Wannier exciton, a large-radius exciton. They occur mainly in semiconductors.

As we can see Wannier excitons are what we are dealing with when it comes to semiconductors.
In the case of these, the electron and hole is separated over several lattice constants, and as a
result the exciton wave function is strongly delocalized and the exciton can, as previously noted,
move freely inside the crystal. [13, 16]

2.1.15 Recombination

Recombination processes between electrons and holes in semiconductor devices can be of both
a radiative and a non-radiative nature. As a carrier is excited, it leaves the semiconductor in
a non-equilibrium thermodynamic state. After a certain relaxation time it loses its energy and
goes back into the ground state. This transition can happen in a number of ways: If the excitation
energy is radiated away in the form of a photon we say that the recombination was radiative.
Another way is for the excess energy to be transmitted in the form of heat to the lattice, it might
induce a photochemical change to the crystal matrix or even generate a lattice defect. These
transitions are of the type non-radiative recombination. [13]

Direct Bandgap

Semiconductors mainly fall into two groups: Those with direct bandgap behaviour and those
with indirect bandgap behaviour. Some materials, like Ge and CdO, show both. The minimum
energy state in the conduction band and the maximum energy state in the valence band are
both characterized by the wavevector, k. If the k-vectors, are the same for both extremes, then
the respective holes and electrons share the same wavevector and we have a direct bandgap.[7,
13]

A direct bandgap can best be illustrated, in Fig. 2.9, as the ideal case of recombination of a free
electron-hole pair, often referred to as band-to-band emission.
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Figure 2.9: Simplified illustration of band to band emission in a direct bandgap

Indirect Bandgap

Now if the wavevectors are not the same for both extremes, we are dealing with an indirect
bandgap. The fundamental difference between recombination in the direct and the indirect
bandgap lies as noted in the wavevector, k, of the holes and the electrons. In a direct bandgap
semiconductor we remember that the recombination takes place between holes and electrons
of the same wavevector, whereas in an indirect bandgap semiconductor an excited electron of
energy Fs can recombine with any hole of energy F; and varying k. That is as long as the
conservation rule Fy, — Fy = hv + hw is fulfilled. The energy hw denotes the phonon energy,
which takes part in conserving the quasimomentum, here in the case of the quasi wavevector,
krw = |k(E2) — k(E)].[13] A simplified illustration of recombination in an indirect bandgap
is shown in Fig. 2.10.
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Figure 2.10: Simplified illustration of recombination of electron and hole in the indirect
bandgap. The recombination is photon assisted

Radiative Recombination
In our semiconductor system, there are several radiative recombination processes that may occur
at the same time[13]:
* Exciton recombination which includes
— Radiative recombination of free exciton (FE)
— Radiative recombination of FE with simultaneous emission of LO phonon (FE-LO)
— Radiative recombination of bound exciton(BE)
% Exciton bound to neutral/ionized donor
% Exciton bound to neutral/ionized acceptor
» Radiative recombination of donor-acceptor pairs

¢ Radiative recombination of free hole with neutral donor or free electron with neutral
acceptor

* Radiative recombination with free electron-hole pairs (band-to-band emission)

In the present study we mainly focus on excitonic radiative recombination processes.
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Non-Radiative Recombination

The quantum efficiency(QE) is the ratio of photons absorbed to photons emitted through lumi-
nescence. This efficiency almost never reaches n = 1. Furthermore, Stokes law states that the
energy of the luminescence photons is less than the energy of the photons of the exciting light,
meaning that a portion of the excitation energy is not transformed into luminescence radiation,
but rather changed into other types of energy during relaxation to the system ground state.

Depending on the final form of the dissipated excitation energy, one recognize three different
types of non-radiative recombination processes in semiconductors:

* Recombination when the energy transforms into heat via lattice vibrations (phonons)
* Recombination leading to the creation of new point defects in the lattice

* Recombination transforming the excitation energy into photochemical changes of the ma-
terial

The most common non-radiative recombination process is the transformation of excitation en-
ergy into lattice heat. The creation of new point defects due to supplied excitation energy is a
rare happenstance. Photochemical changes to the material is limited to a few compounds, and
not of concern to the case of ii-vi semiconductors.

There are two cases of non-radiative recombination that also should be mentioned, Auger and
bimolecular recombination.

Auger and bimolecular recombination

When an incident high-energy electron ejects another electron from an atomic core level, and
some electron from an outer shell then falls into the created vacancy, a photon may be emitted or
the excitation energy can be handed over to another electron from the same outer shell, ejecting
it out from the atom. This ejection of particle is called non-radiative Auger recombination, and
even though the ultimate result is a transfer of the kinetic energy into lattice heat, it is sometimes
classified as an independent category of non-radiative transitions.

Bimolecular recombination is highly dependent on carrier concentrations, the probability of
non-radiative bimolecular recombination in a pure ideal semiconductor is in fact 0. An example
of this recombination mechanism could be non-radiative recombination via a trap site in the
bandgap, which accepts both electrons and holes. [13]

2.1.16 Oscillator Strength

The optical properties of matter are determined by the coupling of various types of oscillators
in matter to the electromagnetic radiation field, i.e an incident electromagnetic field will cause
said oscillators to perform driven oscillations. The amplitude of these oscillations depends on
the angular frequency w of the incident field, on the eigenfrequency wy of the oscillators, on

26



the coupling strength f between the electromagnetic field and oscillator, and on its damping
7.

These properties go together to describe the dielectric function

Ne?

=1
€(w) + o

(Wi — w? —iwy) ™, (2.37)

where N is the number of oscillators per unit volume and ¢ is the dielectric constant.

The term %62 gives us the coupling strength of the electromagnetic field to the oscillators. In a
quantum mechanical model, this coupling is given by the transition matrix element squared

(13 = | < lH"li > |, (2.38)
where ¢ and 7 stand for initial and final state, and |H£ | yields the expectation value of the dipole
operator squared.

The oscillator strength is thus defined as

. 2NOJ0
N th

|HP (2.39)
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and expresses the probability of absorption or emission of electromagnetic radiation in transi-
tions between energy levels of an atom or molecule.[14]

2.2 Experimental Method

The purpose of this section is to introduce the reader to the characterization method used in the
present work.

2.2.1 Photoluminescence Spectroscopy

Photoluminescence is the spontaneous emission of light from a material under optical excita-
tion. Photoluminescence spectroscopy is a widely used and efficient technique for the analysis
of the optoelectronic porperties in semiconductors. By applying external light with energy
hv > E,, the reemitted photons can give detailed information on discrete electronic states, in-
volving intrinsic and extrinsic optical processes, including internal transitions involving defects
and their energy levels. One of its biggest advantages is that it is a non-destructive, contactless,
technique, which provides electrical characterization of our samples.

Photoluminescence depends on the nature of the optical excitation. The excitation energy gov-
erns the penetration depth of the incident light. The density of photoexcited electrons con-
tributes to the photoluminescence signal output, and can be controlled by adjusting the intensity
of the incident beam. If the type or quality of the material in the sample varies spatially, the
photoluminescence signal will change with excitation position. Furthermore, pulsed optical
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excitation provides powerful means for studying the brief changes in the state of our physical
system. In time resolved photoluminescence spectroscopy, short laser pulses produce virtually
instantaneous excited populations after which the photoluminescence signal can be monitored
to study recombination events.

Photoluminescence spectroscopy can be used for bandgap determination, separating and analysing
radiative and non-radiative recombination processes. Furthermore is detecting and identifying
defects and impurity levels possible. The photoluminescence energy associated with these lev-
els can be used to identify specific defects. An assessment of material quality can be made
by quantifying the radiative recombination. Photoluminescence spectroscopy is also widely
used when it comes to the study of surfaces. PL often originates near the surface of a ma-
terial, and photoluminescence analysis becomes an important tool in the characterization of
surfaces.

There are also some limitations to photoluminescence spectroscopy. Among those is the fact
that PL spectroscopy proves inefficient when it comes to the study of recombination mecha-
nisms at deep states as the radiative transitions give a very broad spectra. This can be a result of
e.g strong phonon coupling. Materials dominated by non-radiative recombination mechanisms
are difficult to study as the entire method of photoluminescence spectroscopy relies on radiative
events.[13, 17]

A typical set-up for photoluminescence measurements can be found in figure 2.11.
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Figure 2.11: A typical experimental setup for photoluminescence measurements

2.3 Theoretical Method

Here an explanation of the primary method of the present study is presented. A closer look is
provided on the Poisson equation, theoretical approach to strain and two essential concepts of
k - p perturbation theory with respect quantum mechanical modelling, namely the single- and
multi-band single envelope function approximations.
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2.3.1 Poisson Equation

The Poisson equation deals with electrostatics within our model and reads as follows

V- [eoer () V d(x)] = —p(x). (2.40)

Here ¢ is the permittivity of vacuum, €, the material dependent static dielectric constant, and
¢ the electrostatic potential. The dielectric function is anisotropic for wurtzite structures and
isotropic for zincblende. The charge density distribution p(z) reads

ple) = e[—n(x) + plx) + Nj () — N3 (@) + py(a)], (2.41)

where e is the elementary charge, n and p are the electron and hole densities. Nj,+ and N are
the concentrations of ionized donors and acceptors.

pric represents fixed interface or volume charge densities, and may be taken into account if
they arise from piezo- or pyroelectric charges. The densities can be calculated either classi-
cally, by the Thomas-Fermi approximation, or quantum mechanically. The Poisson equation
is discretized on a non-uniform grid with a finite-difference method, which is the dominant
approach to partial differential equations, and solved numerically by Newton’s method. As pre-
viously mentioned, the unique solution of the Poisson equation requires specifying boundary
conditions. Typically we use Neumann boundary conditions for the Poisson equation, which
suggests a vanishing electric field at the boundaries.

d¢/0z =0 (2.42)

In the case of non-equilibrium simulations, Dirichlet boundary conditions are used. In this
case the built-in potential first has to be determined using Neumann boundary conditions. Then
the electrostatic potential is fixed, according to Dirichlet, at the boundaries with respect to the
chemical potentials taking into account the calculated built-in potential. If there are any contacts
present in the simulation, the chemical potentials of these are fixed and correspond to the applied
bias.[8, 18]

An overview of a possible program flow in neztnano? is provided in Fig. 2.12.
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Figure 2.12: Flowchart of the self-consistent solution of the Schrddinger, Poisson, and current
equations. Original figure can be found in[8].

2.3.2 Strain

Strain has two major effects on semiconductors which we have to account for in our simula-
tions.

 Strain is responsible for piezoelectric polarization charges, contributing to the charge
density in the Poisson equation and changing the electrostatic potential.

* Strain directly influences the electronic structure by inducing shifts in the band edges via
the deformation potentials.

Furthermore, strain can be used to alter and optimize the electronic and optical properties of our
quantum wells by varying both the energy levels and the spatial extent of the wavefunctions.
As we are working with heterostructures comprised of semiconductor materials with different
lattice constants, it is important to note that they are subject to elastic deformations. The effects
of these deformations on the lattice changes drastically with the growth direction. It goes with-
out saying that an exact knowledge of strain effects is of importance to interpretation of data
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as well as being an important tool for device engineers in altering the electronic structure of
semiconductor devices.

In ii-vi semiconductors, strain is followed by a displacement of the centres of positive and neg-
ative charges within a unit cell, leading to the formation of electric dipoles. These microscopic
dipoles are not compensated in the case of inhomogeneous strain fields, at interfaces or sur-
faces, and as such yield macroscopic polarization charges called piezoelectric charges. In the
wurtzite crystal structure we also find a permanent polarization, independent of strain, along
the c-axis. This leads to macroscopic polarization charges at surfaces and interfaces which are
termed pyroelectric charges.

A n'? rank tensor in m-dimensional space is a mathematical object that has n indices and m"
components, and obeys certain transformation rules. Each index of a tensor ranges over the
number of dimensions of space. Elasticity theory gives us a number of tensors, these tensors are
only characterized by a small number of elasticity constants due to symmetry in the crystals.
The diagonal elements of the strain tensor measure the extensions per unit length along the
coordinate axes, positive values yield tensile strain, while negative yield compressive strain). In
principle this means that the lengths of the considered volume element change while the angles
remain constant. The off-diagonal elements measure the shear deformations where the volume
remains constant and the angles change.

The piezoelectric polarization is proportional to the strain tensor

Ppiezo = €ijk€jk (243)

Where proportionality constants form a third rank tensor e;;. In Voigt notation we get one non-
zero component for zincblende and three for wurtzite. The three non-zero components in the
case of wurtzite crystal structure are ey, e31, and e3;. For the relation between the piezoelectric
polarization vector and the strain tensor the following equation holds:

2615(I) 13(.%‘)
Ppiezo,wz = 2615(17) 12(%)
es1(z)en(z) + es1(w)ean () + e33(w)ess(w)

€
€
To obtain the full polarization vector for wurtzite crystal structure the contribution

P

piezo,wz —

p(r)

of the pyroelectric polarization has to be added. Here p(x) is the material dependent pyroelec-
tric constant.[8]

Ppol,wz<x> - Ppiezo,wz (.T) + Ppyro,wz(x) (244)
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In regions where P, (x) is constant, there are no polarization charges present. This is not
necessarily the case at interfaces, where the piezo- and pyroelectric constants undergo an abrupt
change from one material to another. In this case polarization charges are likely to occur. The
same will be the case for position independent piezoelectric constants in inhomogeneous strain
fields.

In the nertnano® software, strain is calculated prior to all other equations, and is therefore
considered independent of these. The separation of strain from the main part of the pro-
gram is not fully justified in the case where strong pyroelectric fields exist, e.g in the wurtzite
structure.[18]

2.3.3 Single-band Envelope Function Approximation (Effective Mass Ap-
proximation)

In theoretical modelling of semiconductor devices, it is often useful to use & - p perturbation the-
ory as an approximation scheme for calculation of the bandstructure and optical properties of
our crystalline solids. Perturbation theory comprises mathematical methods for finding an ap-
proximated solution to a problem by starting from the exact solution of a simpler problem. This
is very useful if the problem can’t be solved exactly, but can instead be formulated by adding
small terms to the mathematical description of the exact solvable problem. An approximation
for the solution of P with a small parameter € can be written as the series

Where the higher terms of € becomes smaller and smaller. An approximate solution to this is
found by truncating the series.

The £ - p approximation exploits the fact that many properties of semiconductors depend solely
on the shape and position of the extrema of the conduction and valence bands at k = 0, and
as such a precise knowledge of the entire bandstructure is not needed. To achieve a good
approximation we therefore expand the dispersion relation F,, (k) around these extrema at kg
up to the second order in |k — ko | and rewrite the Hamiltonian.

2
100 = Hlko) + ™ (k ~ ko) -+ 2 (ke ko)? (2.46)
The single-band Schodinger equation is a special case of the 8 x 8 k - p Schrodinger equation,
which will be further discussed in the next section. If the coupling between valence and con-
duction band is ignored, i.e electrons and holes are decoupled, one obtains a twofold degenerate
Schrodinger equation for the electrons in a heterostructure. This is the same as the Effective
Mass Approximation. We recall the Schrodinger equation

HUY,(z) = E, V¥, () (2.47)
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The Hamiltonian now becomes

(—%V M)V +V(2)V,(z) = E, ¥, () (2.48)

Since we are dealing with electrons, V' () becomes the resulting conduction band edge profile
including band shifts due to strain, electrostatic potential and the band offsets. As we remem-
ber, each index of a tensor ranges over the number of dimensions of space. M is the tensor
describing the effective mass to allow for different values along the directions

L/mge 1/mgy 1/my,
M =1 1/my 1/my, 1/my.
I/mee 1/my 1/my,

M generally assumes the form of an ellipsoid, but it is spherical for electrons at the I" point with
its eigenvalues on the diagonal. This approximation gives a good description of the electron
valleys at the center of the Brillouin zone. The L and X, in the case of a non-corresponding
simulation and crystal system, points do however need off-diagonal components to describe the
electron masses. For a good description of the entire system it is therefore necessary to solve
several Schrodinger equations with the same V(x), but with different effective mass tensors. In
the case of band edges being split due to strain, each Schrodinger equation will also have a
different V(x).

In the case of wurtzite, which we know to be hexagonal and not cubic, a spherical effective
mass tensor is no longer appropriate at the I" point. It is necessary to differentiate between the
mass parallel to the c-axis, m,, and the two masses perpendicular to it, m, . The inverses of
these masses comprise the diagonal components of the effective mass tensor.

It is possible to use the same Schrodinger equation for all the valence bands, i.e heavy, light
and split-off holes. The different band edges are in that case taken as V(x). The single-band
model with a spherical mass is in general not very accurate for holes, and even less so if strain
is present. This is because the energy dispersion F(k is no longer isotropic. The single-band
model does however describe the ground state of heavy holes in heterostructures quite well, and
can give a qualitative picture of the physics in our semiconductor device, e.g for electron-hole
interband transition energy as a function of quantum well width, electric field, alloy composition
etc.

As it takes considerable less time to run an effective mass approximation than a 8 x 8 k - p
simulation, one may use the single-band to optimize the modelling file before running more
computer heavy calculations.

Seeing as we in many cases are interested in the single-band Schrodinger equation for het-
erostructures in real space, as it may give us a better understanding of our semiconductor device,
a real symmetric eigenvalue problem arises that is solved iteratively.[8, 14, 16, 18]
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2.3.4 Multi-band % - p Envelope Function Approximation

A more accurate description of the bandstructure may be obtained by using the multi £ - p
methods. These differ mainly in the number of bands taken into consideration. If you consider
many enough bands, the predictions yielded are close to perfect, but the computational force
and time required is accordingly greater. The nextnano® software makes use of the 6 x 6
and 8 x 8 k - p model, in the case of 8 x 8 the lowest conduction band and the three highest
valence bands are included, while all other remote bands are treated as perturbations. Spin-orbit
interaction and strain are taken into account.

The key feature of the & - p method is the envelope function ansatz based on Bloch’s theorem.
As we recall from previous chapters the electron wave function in a crystal can be separated
into an oscillating Bloch part which is periodic over atomic distance, and a smooth envelope
function which varies at a greater scale.

We recall ,

h h
H(k) = H(k —(k — ko) - —(k — ko)% 2.4
(k) ( 0)+m< 0) P+2m( 0) (2.49)
The Bloch factors w,, x, for k = kq obey

(p + fiko)?

2m

H(kO)un,ko = [ + ‘/ian(x) + V(n)]un,ko = En(kO)un,koa (250)

and form a complete set of orthonormal functions, meaning that we can expand the Bloch factors
for an arbitrary value of k

unk Z Cnv un ko ) (251)

Rewriting we get the expression

B, (K)o Z K)cn (2.52)

And so the Hamiltonian can be represented by the infinite dimensional matrix that couples all
energy bands by means of the momentum matrix elements p,, between the respective Bloch
factors for k = kg

2
H (1) = [Bo) + 51— (b — Ko I + - (k ~ o) - iy @53

The rapidly oscillating Bloch functions may be eliminated from the electron Hamiltonian ac-
cording to Lowdin perturbation theory, limiting the infinite dimensional Hamiltonian matrix to
one with finite dimensions.

As previously mentioned nextnano? utilizes 6 x 6 and 8 x 8%-p. In the 6 x 6 k-p Hamiltonian, all
conduction bands are considered as perturbation. In the 8 x 8 case the lowest conduction band
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is no longer treated as a perturbation, but included in the & - p Hamiltonian. The related material
parameters for 8 X 8 k - p are thus different from those in the 6 X 6 k - p case. [16, 14, 18]

2.3.5 Spurious Solutions

When numerically implementing the % - p Hamiltonian, one will sooner or later encounter spuri-
ous solutions. These are unphysical wavefunctions that look strange. They might materialize by
displaying very strong oscillations, or they may show spikes at material interfaces. Occasion-
ally, their energies can be found lying within the forbidden band gap. The spurious solutions
might arise from incorrect discretization, or from the used k - p parameters. [18]

2.3.6 Boundary Conditions for the Schrodinger Equation

When choosing boundary conditions for the Schrodinger equation we are left with Neumann
and Dirichlet Boundaries. These boundary conditions appear in several places in our theoretical
method: The unique solution of the Poisson equation requires specifying boundary conditions.
Boundary conditions have to be specified at the boundaries of the nanostructure, and further-
more, they are also used at the interfaces of contacts. We will in this case choose to talk about
them in the framework of the Shcrodinger equation.

Neumann and Dirichlet Boundaries

The consequence of choosing either Dirichlet or Neumann boundary conditions, for the Schrodinger
equation, depends on whether we have a shallow or a sloped potential.

0.05 S ——

ook 00 POE00000000000 | 2 Dirichlet sass Dirichlet
E' ' ‘ eigenvalues wavefunctions
= 0.03}f — Neumann —— Neumann
o o2k ‘ eigenvalues wavefunctions
®
5 0.01[eeevececcesacseccescancs

0,00 |_Potential

] 5 10 nm 0 5 10 nm
Distance Distance
(a) Dirichlet and Neumann eigenvalues. (b) Dirchlet and Neumann wavefunctions.

Figure 2.13: Dirichlet and Neumann wavefunctions and eigenvalues for a shallow potential.
Figures originially from [19]

For a shallow potential, Dirichlet boundaries yield eigenfuctions with a cosine shape as it is the
case of a potential well with infinitely high barriers. With Neumann boundaries one obtains the
same eigenvalues, but as shown in figure 2.9, the eigenfunctions are shifted by a phase of 7.
The eigenvalue zero also occurs with a constant wavefunction.[19]
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Figure 2.14: Dirichlet and Neumann wavefunctions and eigenvalues for a sloped potential.
Figures originially from [19]

As we can see in the case of the sloped potential, the Dirichlet wavefunctions are forced to zero
at the boundaries of the quantum region, while the Neumann wavefunctions do not have to meet
this requirement and are found to be non-zero at the boundaries.

The mixed boundary condition

If one only solves the Schrodinger equation for an inner region in the sample, as is often the
case for a SQW or MQW device, you can either choose Dirichlet or Neumann boundaries, as
the states eventually will be normalized to 1, i.e a fully occupied state is equivalent to exactly
one electron. At the interface between the inner region and the rest of the sample,the idealistic
assumption that charge neutrality exists, and that the DOS is the same as in bulk material, is
made. With pure Dirichlet boundary conditions, however, the density would decrease to zero at
the interface whereas with Neumann boundary conditions the density would increase. Thus, it
is reasonable to assume something like a mixed state. This means that we solve the Schrédinger
equation once with Dirichlet and once with Neumann boundary conditions to normalize the
states to 1/2. This is made plausible by looking at Fig 2.13. For the same eigenfunction one ob-
tains one sine and one cosine function, the sum over both is constant. As both eigenfunctions are
normalized to 1/2, the occupation of these mixed states corresponds to one electron.[8]
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Chapter 3

Results and discussion

In this chapter the experimental and theoretical results, yielded from PL spectroscopy and quan-
tum mechanical modelling respectively, are presented and discussed.

3.1 Photoluminescence Spectroscopy

Polar (0002) and non-polar (11-20) Cd,Zn;_,O0/Mgg os ZnO MQWs (with x=0, 0.25, 1.0) were
grown on C-plane (0002) and R-plane (01-12) oriented sapphire substrates by metal organic
vapor phase epitaxy (MOVPE). The 4-period MQWs with different thicknesses Cd,Zn;_,O,
(x=0, 0.25, 1.0), QW layers were grown at 370°C with the chamber working pressure of 600
Torr. Diethyl zinc (DEZn) and dimethyl cadmium (DMCd) were used as group-II sources, and
tertiary butanol (t-BuOH) was used as group-VI source. The DEZn and t-BuOH flows were
fixed at 100 and 150 sccm, respectively for all samples, while DMCd flow was fixed at 25 and
75 scem for Cdg o570y 750 and CdO QW, respectively. The thickness of the well and barrier
layers was controlled by tuning the growth time according to the growth rate. More details on
the MOVPE growth conditions are given in[20].

Time-resolved photoluminescence (TRPL) measurements were carried out on polar/nonpolar
MQW structures (series 598) comprising X4 bilayers of 3nm-thick ZnCdO QW (Cd 25%)
and 10nm MgZnO barrier (Mg 8%) on C- or R-Al203 substrates, respectively. Time-integrated
(steady state) PL experiments were performed with abovementioned series along with MQW
structures representing pure ZnO quantum wells, as well as MgZnO quantum wells. More
specifically, (series 599 and 601) polar/non-polar 3nm-thick ZnO and Mg y3Zng.97 QW /10nm-
thick MgZnO barrier (Mg 8%) X4 bilayers on C- or R- Al;O3 substrates.

Time-resolved photoluminescence (TRPL) properties of the Zn(Mg,Cd)O MQW structures were
investigated in the 10K-300K temperature range by employing 372nm wavelength laser (Pico-
Quant, 50ps-pulsed, average power 2mW @40MHz) as an excitation source. In addition, cw
325nm HeCd laser (7mW) was used for acquisition of time-integrated spectra and for micro-
imaging of PL patterns. The luminescence from the sample was collected by a long working
distance microscope and then directed both to imaging spectrograph (HORIBA Jobin Yvon,
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1HR320) with two exit ports coupled to EMCCD camera (Andor DL-658M) and photon count-
ing PMT (Becker&amp;Hickl, PMC100) and also to fiberoptic spectrometers (Ocean Optics,
HR4000 and USB4000 with 0.2/2nm spectral resolutions, respectively). Low temperature mea-
surements were performed using closed-cycle He-refrigerator (Janis, Inc., CCS450).

Schematic sketches of optical configuration and block diagram of the experimental setup are

presented in figure 3.1 and 3.2, respectively.
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. . | Spectrometer
To Fiberoptic iHR320/EMCCD
Spectrometer <>
USB4000
(\ 70%-Mirror
|
LWD Mitutoyo l
X10 Objective 7'y XY-Scan
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pls-372nm
T=10-300K cw-325nm

Figure 3.1: Optical configuration of the PL and TRPL experiments
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Figure 3.2: Schematic diagram of the PL/TRPL setup
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3.1.1 Time-Integrated (Steady State) Photoluminescence Spectroscopy

The steady state PL measurements of our structures were carried out as explained in section 2.1.
The resulting PL spectra of polar ZnCdO/MgZnO MQW at various temperatures is representa-
tive for our measurements, and can be found in Fig. 3.3.

Energy (eV)
3432 3 28 26 24 2,2 2 1,8

Tr1rr 1 1 1 1 °© 1 T T

T T
—— 10K
0/Zn, ,,Mg 1,0 ¢-AL,0, — ;gﬁ

- Zn,,.Cd

0.75~-0.25

—— 50K

Intensity (Arbitrary units)

350 400 450 500 550 600 650 700
Wavelength (nm)

Figure 3.3: PL spectrum in linear scale of the polar ZnCdO/MgZnO MQW at various tempera-
tures.

A decrease in efficiency of the luminescence is shown with increasing temperature, this thermal
quenching of the photoluminescence intensity indicates an opening of competing non-radiative
relaxation pathways. The barriers are found to be emitting non-negligible photoluminescence,
this can be an indication of varying quality of interfaces and thus efficient relaxation processes.
A closer look at the high energy peak positions is given by high resolution PL. measurements at
10K in Fig. 3.4,
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Figure 3.4: High resolution PL spectrum of the polar ZnCdO/MgZnO MQW at 10K.

where we find the highest excitonic line at 10K corresponding to ~3.45 eV. As we remember
ZnO structures have exciton binding energies of the order 60meV, which certainly holds for
low temperatures, meaning that what we are seeing is actually the exciton line found slightly
below the conduction band edge.

The temperature dependent PL intensity of a quantum well is described by a modified two
channel Arrhenius fit function

1(0)
1+ Cy-exp(—ELJkT) + Cy - exp(—FEy kT
Where I(T) is the integrated PL intensity at temperature T, &k is the Boltzmann constant, F

I(T) 3.1)

denotes activation energy, while C' is a tunneling factor and /(0) is the integrated intensity at
the temperature limit.

The activation energies found using this fit for integrated PL intensity at peak positions as a
function of temperature in our samples are shown in Fig. 3.5.
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Figure 3.5: Integrated PL intensity plotted versus temperature with Arrhenius single and multi-

ple fit functions.

The relatively low activation energies found in the regime 10-14 meV, are likely to correspond
to a localization energy or ionization energy of donor bound excitons. Values around 30 meV
can likewise be contributed to a localization or ionization energy of acceptor bound excitons.
Activation energies of 45-55 meV are in turn likely to correspond to exciton binding energies
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in our different samples[21, 22]. Free excitons in bulk material ZnO is well known to have
binding energies of about ~60 meV. In quantum well heterostructures it is also possible to find
activation energies of the order ~ 10> meV corresponding to the energy required for a carrier
escaping from the well into the surrounding barriers.[23]

3.1.2 Time Resolved Photoluminescence Spectroscopy

The samples under investigation using time resolved photoluminescence spectroscopy were
grown as specified in section 3.1

Zn, ,5Cd, ,/Mg; ,,ZN0, 5, MQW ¢c-AlLO,
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Figure 3.6: Photoluminescence intensity decay after pulsed excitation at various sample tem-
peratures for a c—plane ZnCdO/ZnMgO MQW structure.

The decay corresponding to the central wavelengths of 390 and 420nm were measured as a
function of temperature as shown in figure 3.6. Typically it is possible to observe a reduction of
the height and a change of the time dependence of the transients with increasing temperature.
The transient parameters [, corresponding to the initial intensity, and 7, corresponding to the
intensity decay time, have both been taken from single-exponential fits in appropriate time
intervals, as is illustrated in figure 3.7. Correcting for the system response function allows us to
gain relevant information on radiative and non-radiative lifetimes in our samples.
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Figure 3.7: Photoluminescence intensity decay after pulsed excitation at 10K for a c-plane
ZnCdO/ZnMgO MQW structure. The dashed lines illustrates the parameter /. while the red
line represents the single-exponential fit within one of the time intervals, illustrated by the
dashed arrows, taken into account, in this case 7.

The measured time decay 7, at a temperature 7' is related to the radiative and non-radiative
recombination times 7z and 7Ty g, respectively, by

1 1 1
= + ) 2
TL(T> TR(T) TNR<T) (3 )

It is further supposed that the carriers in the levels which undergo recombination are at thermal
equilibrium, i.e the thermalization processes are much faster than the recombination processes.
This implies that there is a strong coupling between these states, so that a single time constant
will describe the radiative processes inside the whole PL band. The same will then also hold

true for the non-radiative processes.

At the same time, the temperature dependence of the luminescence intensity, denoted I, (7),
integrated over the whole PL band can be expressed as

7(T)
r(T)
where 7(T) is the radiative efficiency at temperature 7, and I, serves as a normalization factor
that depends on the number of photoexcited carriers.

— Ion(T), (3.3)

I(T) =1

From equations 3.2 and 3.3, it follows that

mll) = b7y = Sy oy
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It is therefore possible to extract both the radiative and non-radiative recombination times, as a

r(T) = 70(T) (3.5)

function of 7', from the combined measurements of 7, and I,,(T). [24]

In figure 3.8 one can see the lifetimes 7» of the two central wavelengths as a function of tem-
perature. 7, corresponding to cw 390nm is shown to oscillate between values of 2ns, and does
not provide us with much information. The central wavelength of 420nm was therefore chosen
to determine the radiative and non-radiative carrier lifetimes. of 7 and 7.
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Figure 3.8: Lifetimes 7, of the two central wavelengths plotted against each other as a function
of temperature.

The extraction of radiative and non-radiative lifetimes were done as described in Eqgs. 3.2-5
for the polar and non-polar case, and is shown below. For the measured lifetimes, 71, 75 in
the different samples it is shown that at low temperatures the non-radiative lifetimes are long,
indicating slow recombination processes. Subsequently the radiative lifetimes are low, yielding
rapid recombinations, meaning that these processes dominate at low temperatures.

A transition between radiative and non-radiative lifetimes is found at 100K for 7; and 7 in the
polar samples, while this transition occurs at 50K in the non-polar case, indicating a more rapid
opening of competing, non-radiative, pathways in the non-polar ZnCdO/MgZnO than is found
for the polar case.

At high temperatures the non-radiative recombination processes are dominating for all the sam-
ples. This is in accordance with the thermal quenching noticed in the steady state PL. measure-
ments of the polar ZnCdo/MgZnO MQW structure in section 3.1.1
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Figure 3.9: Separation of radiative and non-radiatve lifetimes in our polar and non-polar
ZnCdO/MgZnO heterostructures

A low temperature measurement of lifetimes varying with well width was conducted on a very
similar system with Zng 75Cdg 250 quantum wells with ZnO barriers. It is clearly shown in Fig.
3.10 (a) that the carrier lifetimes increased as a function of increasing well width in the polar
case, while this dependency is not shared by the non-polar sample. A measure of the lifetime
To versus temperature is shown in Fig. 3.10 (b).

With a well width of L,, = 3nm we see a discrepancy in lifetimes between the polar and the
non-polar case. This discrepancy is also found in the case of Zng 9goMg 05O barriers, indicating
that the two systems operate in a similar manner with respect to the polar and non-polar cases.
The quantum confined Stark effect(QCSE) slows down radiative recombination dynamics [22],
which is what happens when we increase the well width in our polar heterostructure and the
QCSE begins to dominate. The increase in lifetimes is in good agreement with expected trends
associated with the increased electron-hole separation and corresponding reduction of the os-
cillator strength[25]. The oscillator strength is also shown to be a lifetime related term. The
lifetime 7; can be expressed as

1
— =) Au, (3.6)
Ti A
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Figure 3.10: Measurement of 75 as a function of well width at low temperatures in ZnCdO/ZnO
heterostructures, and a similar ZnCdO/ZnMgO 3nm MQW heterostructure as a function of
temperature.

where A;; is the spontaneous transition rate given as the probability per unit time(s~') for an
atom in any state of energy level ¢ to make a transition to any state corresponding to energy
level k. The oscillator strength is proportional to the spontaneous transition rate, f oc A;
[26]. Oscillator strengths and the quantum confined Stark effect will be further discussed in the
context of quantum mechanical modelling.

As a concluding matter the time resolved photoluminescence spectroscopy, lifetimes 7; and 7
were plotted as a function of inverese temperature, and then fitted with an Arrhenius multiple
fit function. The activation energies extracted are in good accordance with the values yielded
by the time-integrated photoluminescence spectroscopy, and can be found in figure 3.11
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Figure 3.11: Arrhenius multiple channel fit of 7, plotted as a function of inverse temperature.
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3.2 Quantum Mechanical Modelling

The quantum mechanical modelling was performed using the single-band(effective mass) enve-
lope and the multi-band & x p envelope function approximation. The effective mass approxima-
tion is a powerful tool when used to check tendencies, and gives good treatments of the gamma
band and the unstrained ground state for heavy holes. Where more precise treatment is needed
the 8 x 8 k£ - p model is used.

All simulations are of Zn-face ZnO unless specified otherwise(the only difference between O-
face and Zn-face is the reversal of polarization fields)

3.2.1 Quantum Confinement Effects of a Quantum Well

A 1D quantum well for a type I structure has two exciton limits for the ground state transition,
i.e (el-hhl):

* Infinitely thin quantum well(2D limit): E¢; g = 4Fcs, Aewqw = Aex/2
* Infinitely thick quantum well (3D bulk exciton limit): Fey gy = Eegy Aex guw = Aex

Between these limits, the exciton correction, which depends on the well width, has to be calcu-
lated numerically. This holds true for both the ground state and the excited states, e.g (el1-1h1),
(e2-hh2) etc.

Lambda()) is defined as the variational parameter which is equivalent to the exciton Bohr radius
in units of nm. [27]

In the case of a polar-polar ZnCdO/MgZno SQW structure of identical chemical composition to
our experimental samples, i.e Zng 75Cdg.250/Zng 92Mg( 05O, varying the well width from 1nm
to 10nm with a quantum region encompassing the entire sample and mixed boundary conditions
yields figure 3.12
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Figure 3.12

The tendencies are as expected, but we note that the values for the exciton binding energies are
an order of magnitude smaller than expected bulk value, while the exciton Bohr radius at the
same time seem to be exaggerated for increasing well widths. Another method yielding more
precise values of the exciton binding energies and the Bohr exciton radius in the quantum well
can be found by using Dirichlet boundary conditions and limiting the quantum region to the
well, i.e we now view the device as having one ZnCdO SQW with infinite barriers. It is still
of interest to investigate the polar case, shown in Fig. 3.13, as it is thought to have a higher
probability than the non-polar case of showing any quantum confined Stark effect.
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Figure 3.13: Exciton binding energy and exciton Bohr radius as a function of well width in
polar-polar ZnCdo and ZnO.

The exciton binding energy of 42.77 meV in the 3nm well is in good accordance with the
extracted activation energy thought to belong to the exciton binding energy from the equivalent
experimental samples. The quantum confined regime is defined by the stippled blue lines, and
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is given by the well width Ly, corresponding to higher exciton binding energies than expected
from bulk value. The QCSE can be explained by the electron-hole separation in the bands
induced by the strong fields found in our polar ZnCdO/MgZnO heterostructure.

This can further be illustrated with the oscillator strength, which as we recall from section
2.1.16 is proportional to |H5 |2, of the ground state transition (hh1-el). The spatial separation
of electrons and holes in our SQW, as a result of polarization fields, gives us a small H. Z-’? ]2, and
thus a small oscillator strength. As previously stated, the effective mass model still holds for
ground state transition between the heavy hole and gamma band. In Fig. 3.14 the ground state
transition energies and the corresponding overlap matrix is plotted against the well width, Ly .
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Figure 3.14: Transition energies between the heavy hole band and the gamma band and the

corresponding spatial overlap matrix elements as function of well width in polar-polar ZnCdo
and ZnO.

The large values for the spatial overlap matrix element, and as a result the oscillator strength,
is only found in the already determined quantum confinement regime corresponding to Ly, ~
2.5nm for a polar ZnCdO SQW structure and Ly ~ 4nm for a polar ZnO SQW structure.
The difference can be explained by the disparity in polarization fields from the highly polarized
Zng 75Cdg 250/Zng 9oMgp 0sO SQW, with a calculated electric field along the z-axis of ' =
4022kV /em for Ly, zncao = 3nm, and the calculated electric field along the z-axis ' =
61kV/em for the corresponding ZnO/Zng goMgo 0sO SQW. F' matches well with previously
reported values for ZnCdO[28].

A closer look at the quantum confined Stark effect

A better visualization of the separation of electron and holes in the QCSE regime can be seen
with the placement of the expectation values of holes and electrons in the polar-polar case. As
we remember from section 2.3.3, the single-band approximation is not very accurate for holes,
and even less so when strain is present. The effective mass model in Fig. 3.15(b) is still doing
a good job illustrating the spatial separation of electron and holes in their respective bands as a
result of the built-in field, resulting in a lower oscillator strength.
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Figure 3.15: Band edges with the expectation values ¥2 in the electron/hole ground states in
polar and non-polar Zng 75Cdg.250/Zng g2 Mg 0sO SQW

Fig. 3.15(a) shows the ground state in a 3nm non-polar ZnCdo/MgZnO SQW with its expecta-
tion value found in the middle of the well. As there are no polarization fields to speak of, the
spatial overlap matrix element between holes and electrons in their respective ground states is
big. No quantum confined Stark effect is expected to be observed in this case.

The following figures show the ground state energy of the 3 nm quantum wells as a function of
the applied electric field strength F. The calculated energies can be represented by a parabolic
fit. Over the range of electric fields investigated, the ground state energy can be represented by
the parabola:

Ey(F) = E1(0) — 0.000365F2

where F;(0) refers to the ground state energy at zero electric field. Here, the electric field
strength, £, is given in units of kV/cm. [29]
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Figure 3.16: QCSE effects on the energy of the gamma band as a function of electric field
strength. Stippled lines indicates the field strength where the QCSE starts to take place.

As one can see from the figures, the ZnMgO/MgZnO and ZnO/MgZnO SQWs are expected to
start showing QCSE like behaviour at electric field strengths with values F' close to those found
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in our calculations. In the case of the ZnCdO/MgZnO SQW it is clearly shown that a stronger
electric field is required for our sample to exhibit quantum confined Stark effects, then again the
transition regime found at 200kV/cm is an entire order of magnitude lower than the calculated
value expected for the Ly z,ca0 = 3nm sample, and the QCSE effects are expected to be more
pronounced here than in the other samples, as illustrated in Figs. 3.13-14.

3.2.2 The Extremes

ZnO and CdO form in different stable crystal structures, wurtzite and rock salt respectively,
which complicates the fabrication of single-phase alloys in a broad compositional range. [20]
Zaoui et al. have predicted rock salt ZnCdO to be more stable than its wurtzite phase for Cd
contents > 37.5% based on comparison of corresponding cohesive energies[30]. Other studies
report the limit for alloying ZnO with CdO in strict wurtzite phase at 30%Cd[28, 31, 32] As a
result of this, it is highly unlikely to achieve a wurtzite CdO/MgZnO QW heterostructure, and
a too high Cd concentration can yield unphysical models. In Figs. 3.17-18 we find polar-polar
and non-polar band edge models of the theoretical case of a CdO/MgZnO heterostructure with
a wurtzite crystal structure.
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Figure 3.17: Effective mass model of non-polar CdO/M g 0sZnO band edges.

The bandgap corresponding to the ZnCdO well is found to be slightly lower than reported
values of ~2.3 eV at low temperatures. We recall from section 2.3.3 that this might be strain
induced. Another reason can be inexact treatment of the valence bands in the effective mass
approximation.
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Effective mass: Polar-Polar CdO\Zn, Mg, ,,O
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Figure 3.18: Effective mass model of polar-polar CdO/Mg 1sZnO band edges.

As a result of strong polarization fields, the conduction band edge drops beneath the valence
band edge at the opposite sides of the SQW. This "broken band edge profile" cannot be solved
with the 8 X 8 k£ - p model, and a more exact treatment of the valence bands is not possible.
In figure 3.19 we can see the piezo and pyroelectric charges for the same system are found at
the interfaces between the SQW and barriers, as expected from section 2.3.2. It is shown that
piezoelectric effects are dominating at very high Cd concentrations.
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Figure 3.19: Piezo and pyroelectric charges in our CdO/MgZnO SQW model.

The broken band edge profile seems unphysical, and other processes are thought to take place
to compensate for the very strong polarization fields found in the polar-polar case. Typically
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there are a lot of carriers excited in the quantum wells, and these are able to screen the internal
field to some extent, this process is shown in Fig 3.20.

salIsuap Jallied buiseasnurg

1dds

Figure 3.20: Conduction band edge profile varying with increasing carrier densities. Unmodi-
fied Fig. can be found in[25]

As a result of this screening, the QCSE is somewhat mitigated, i.e the expected red-shift is
reduced and the lifetimes shortened with increasing carrier densities.

Two dimensional electron gas (2DEG) sheet carrier density

High 2DEG sheet carrier densities of the order 10'®/cm? have been reported in GaN het-
erostructures. In fact the wurtzite hexagonal close packed structure with non-centro symmetric
property is thought to be the main source for formation of the 2DEG at GaN heterostructure
interfaces, mainly due to piezoelectric and pyroelectric polarization. [33, 34]

Equally large internal fields are expected to be present in the theoretical case of high concentra-
tion Cd in ZnCdo/MgZnO waurtzite heterostructures. For 90% Cd, the calculated 2DEG sheet
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carrier density is found to be 9 - 10*? /cm?. We reiterate here that such a high Cd concentration
in ZnCdO structures is not expected to be found in the wurtzite phase.

Difficulties with the electronic structure in CdO and MgO

CdO and MgO is found to occur in rock salt structure, whereas modest concentrations of
Zn; ,Cd,O and Zn;_,Mg,O assume the wurtzite structure of the parent compound ZnO. Ex-
perimental data for wurtzite CdO and MgO is therefore not available, which complicates the
standard approach of deriving the electronic properties of these alloys by interpolation of re-
sults for the binary compounds. Janotti and de Walle and Yan et. al [35, 36] report deformation
potentials derived from first-principles methods. The problems related to calculations of elec-
tronic bandstructure with the local density approximation and density functional theory are
well known [37]. Using the deformation potentials derived from these first-principles methods
causes problems in the valence band structures, as illustrated in the 8 x 8 k - p calculation in
Fig. 3.21.

8x8 kp polar-polar zn_,.Cd ,./Zn Mg, O SQW
05 T T T T T T T T T

- Valence band edges

Energy(eV)

15 L 1 L 1 . 1 L
-4 -2 0 2 4

Position(nm)

Figure 3.21: Valence band edges using deformation potentials derived from first-principles cal-
culations

As we can see the band edges corresponding to the valence band of the quantum well are
inverted, yielding some unphysical system where the well is now serving as a barrier for holes
in the valence band.

By systematically changing the deformation potentials, while keeping a steady relationship
between them as according to the first-principle calculations, it is possible to get a more physical
representation of the ZnCdO system than given in Fig. 3.21. The quasicubic approximation used
for determining the deformation potentials in GaN[38] was also attempted, but it does indeed
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seem to break down for wz-CdO as reported by Yan et al.[36], as it does not appear to result in
atype I QW.

The deformation potentials in the quasicubic approximation are given as:
D1+ D3 = Do,

Ds +2D, =0,
D3 + 4D5 = \/§D6

A comparison with reported calculations for ZnO/MgZnO and ZnCdO/MgZnO was conducted
to assess the material parameters and polarization fields using the single-band envelope function
approximation. The stippled lines are the self-consistent SC band structures obtained by solving

the Schrodinger equation for electrons and the 3 x 3 Hamiltonian for holes as reported by Jeon
et al.[39]
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Figure 3.22: A comparison between the effective mass approximation and reported calculations

To get corresponding band edges in the ZnO/MgZnO, the initial values for the spontaneous
polarization constants in Mgo and ZnO, reported by Gopal and Spaldin [40], was only changed
with 3%. The spontaneous polarization(pyroelectric polarization) is the dominating factor in
the ZnO/Zn, sMg 2O heterostructure, as can be seen in Fig. 3.22.
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Figure 3.23: Polarization fields in ZnO/MgZnO

In the case of ZnCdO it is a bit more complicated, and the piezoelectric constants carry more
weight. A polarization field giving the same incline of the band edges in the quantum well
does end up giving a different slope in the barriers, meaning that the polarization fields in
these areas are treated differently. This difference can be explained by some undefined inter-
face/surface states at the end of their model, or that the two approaches yield different polariza-
tion fields.

3.2.3 Coupling in MQWs

As mentioned in section 2.3.3 a thorough study of the valence band edges cannot be done using
the effective mass model. Tendencies shown in MQW models, with regards to coupled wells,
will therefore be restricted to the conduction band in the following section.

The bandgap of Zn; _,Mg, O is given by 3.37+2.51x eV, the value of x is limited to 0.43[25, 41].
Thus, a Mg concentration of 8%, will yield a bandgap of 3.57 eV, this is in good accordance
with our theoretical values shown in Figs. 3.17-18. The Mg concentration dependency of the
bandgap means that it is possible to adjust barrier heights with varying the Mg concentration in
our barriers.

Tunneling between barriers depend on both barrier width and height. Therefore it can be ar-
gued that the best contenders among our experimental samples for showing coupling between
quantum wells, are the ZnO/Zng 9oMgg 05O and Zng ;Mg 030/Zng 9oMg 05O 3nm MQWs / 10
nm barriers. In Fig. 3.24 the coupling of wells in the gamma band edge is shown for the first
quantized electron state with decreasing barrier height in the ZnO/MgZnO MQW system.
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Figure 3.24: Gamma band edges and the expectation value W? for the first quantized electron
state with varying Mg concentrations.

The coupling between wells is seen to increase with decreasing barrier height. At 8% the
wavefunction decreases exponentially in the barrier, and there is no communication between
the wells, while at 5% there is a small wavefunction overlap between two adjacent wells. For
3% Mg concentration this coupling is more pronounced, and one more well is included in
the overlap. The coupling effects for 1% Mg in the barrier are seen to be very strong for
nearby wells, and as many as ten at a time are, to different degrees, expected to show coupled
behaviour.

The increase in tunnelling through the barriers can be viewed in the context of the position-
momentum uncertainty discussed in section 2.1.7. Decreasing the Mg content of our barriers is
shown to lower the bandgap, and thus the barrier height

Vm ~ (Eg,barm’er - Eg,well)'

In the case of the ZnO/MgZnO MQW system, the Mg concentration limit for coupled wells is
found to be at 8%, and we do not expect to see any communication between quantum wells
at higher concentrations. Following the determination of bandgaps in ZnMgO, we find that
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the barrier height in our ZnMgO/MgZnO experimental heterostructure is comparable to that
of the 5% Mg content model. The minimal communication shown for 5% Mg indicates that
no coupling behaviour is likely to occur for any of our experimental samples. To show that
the barrier width also plays a part in the coupling of wells, the ZnO/Zng 92Mgy.0sO MQW was
calculated with 10/7/5/3 nm barriers as shown in Fig. 3.25.
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Figure 3.25: Gamma band edges and the expectation value ¥? for the first quantized electron
state with varying well widths.

The only noticeable communication between quantum wells is found for the case where barrier
width is equal to that of the quantum wells. Varying both the barrier height and width can be
useful tools for achieving coupling between wells, and in some cases even a superlattice. Even
though we don’t seem to have superlattice behaviour or coupling in our experimental samples
based on these theoretical models, an increase in PL yield is expected in MQW heterostructures
compared to SQWs.

According to Zippel et al. [42] a study using time resolved photoluminescence on a series of
coupled QWs, revealed a clear two-component decay for barrier widths of 2.2, 4 and 6 nm. The
additional decay component was attributed to a spatially indirect exciton, which only occurs
when the wells are coupled. This doesn’t seem to be physical in the case of coupling between
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identical quantum wells. Davis and Jagadish[25] suggest that the additional decay component
arises from recombination between symmetric electron and antisymmetric hole or vice versa.
Control of the optical properties of Zn(Mg,Cd)O quantum wells can be achieved by varying the
structure and chemical composition. The case of spatially indirect excitons can be realised with
coupling between asymmetric wells, where the lifetimes are expected to increase, and as a result
reducing the oscillator strength. These properties have been thoroughly discussed throughout
the work, and a study of said properties using quantum mechanical modelling and time resolved
photoluminescence in conjunction can therefore be expected to give a good insight to what is
actually happening in the case of coupling between wells and possible superlattices.
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Chapter 4

Summary and Concluding Remarks

4.1 Summary

The study set out to investigate the importance of alloy composition, structuring of Zn(Mg,Cd)O
heterostructures and the related polarization fields to quantum confinement effects (including
a closer look at the quantum confined Stark effect), recombination mechanisms and coupling
of wells in MQW structures. Photoluminescence spectroscopy in conjunction with single- and
multi-band envelope approximation functions within the confines of k - p perturbation theory
and nextnano? software was used to provide insight on the underlying mechanisms of quantum
confinement effects and recombination.

Evidence derived from & - p perturbation theory was presented showing the dependence of quan-
tum confinement effects on well width. The quantum confinement regime was defined to the
area where the quantum wells were thin enough to exert exciton binding energies far above the
expected bulk value, likewise was the QCSE regime found for increasing well widths where
the exciton binding energy dropped below the bulk value. A closer look was taken at the quan-
tum confined Stark effects, and the electron-hole separation as a result of polarization fields
was found and illustrated in the context of a polar-polar SQW heterostructure. The polariza-
tion fields were identified and shown to occur at the interfaces, as was expected from previous
theory. Lifetimes and oscillator strengths were defined and treated with respect to the quantum
confinement effects. The QC and QCSE regimes and effects were well defined, not only with
respect to exciton binding energies, but also with oscillator strengths and radiative lifetimes in
our Zn(Mg,Cd)O heterostructure systems, making for possible comparisons with time resolved
photoluminescence spectroscopy measurements.

Activation energies from our Zn(Mg,Cd)O heterostructures were extracted using time-integrated
and time resolved photoluminescence spectroscopy, and some likely contenders for the ex-
tracted values were identified. One of these was the activation energy thought to correspond
to the exciton binding energy in our Zng 75Cdg 250 3nm QW, whose value of 42 meV was re-
produced in an independent effective mass approximation model of calculated exciton binding
energies as a function of well width in an analogous semiconductor system. Time resolved
photoluminescence spectroscopy was further utilized to identify and separate radiate and non-
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radiative lifetimes, which in turn gave another indication on the nature of quantum confined
Stark effects. The differences between the polar and non-polar heterostructures were discussed
with repect to lifetimes, and the QCSE was identified in the polar sample. A detailed view
of lifetimes as a function of temperature was given, and the differences in thermal quenching
between the polar and the non-polar sample was established.

The possibility of achieving coupled quantum wells in the Zn(Mg,Cd)O heterostructures was
investigated using the effective mass approximation, and the most likely contenders for show-
ing communication between adjacent wells in our experimental samples were identified as the
ZnMgO/MgZnO MQWs. The dependency of coupling between quantum wells on barrier width
and height was discussed, it was further shown that both altering the barrier height by varying
Mg concentrations, and varying barrier widths are viable ways of controlling communication
between wells.

The limiting cases of the different &k - p perturbation models were found in the case of high
Cd content Zn(Mg,Cd)O wurtzite heterostructures, especially in treatment of the valence band.
Both due to the spherical mass tensor not being a good approximation to the hexagonal wurtzite
structure, and because of the poorly defined material parameters of wurtzite CdO found in lit-
terature. Only first-principle deformation potentials have previously been found for CdO in
wurtzite phase, which are not necessarily exact as a result of the well known bandgap problem
existing in LDA and DFT. An approach using the quasicubic approximation, which gives the de-
formation potentials in GaN, was attempted and discarded as it didn’t result in any known QW
structure. The deformation potentials were therefore systematically changed, loosely maintain-
ing the relationship previously reported by first-principles calculations, until the k-p calculations
yielded a result that was of physical nature.

4.2 Concluding Remarks

Photoluminescence spectroscopy and k - p perturbation theory have been shown to be powerful
tools that may facilitate the correlation of the performance of Zn(Mg,Cd)O heterostructures to
their processing.

Varying barrier height and width in MQW:s can be a way of realizing superlattices in Zn(Mg,Cd)O
MQW heterostructures, giving another way of manipulating the optical properties of the system.
Moreover it has been shown that k - p perturbation theory can be used to find heterostructures
likely to exhibit coupled behaviour, which in turn can be studied experimentally. One promis-
ing experimental approach is time resolved photoluminescence spectroscopy, a method that has
proven to be effective in characterizing decay components and lifetimes. The importance of
lifetimes and oscillator strengths in the quantum confinement and quantum confined Stark ef-
fect regimes, makes the use of these theoretical and experimental approaches in conjunction a
very powerful tool to understand the underlying mechanisms.

The single- and multi-band envelope function approximations have proven to be extremely ef-
fective in treating well defined semiconductor systems. The limitations are encountered when
dealing with unknown systems and poorly defined material parameters; these limitations can be
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approached with a careful modification to the parameters. In combination with other theoretical
studies and experimental data, the % - p perturbation treatment can be used as a tool to attack
difficult problems yielded by challenging systems. It is therefore important to note that this
method is not a black box tool in the framework of nextnano?, but requires a good knowledge
of semiconductor and quantum physics to be used reliably.

4.3 Future Work and Potential Applications

There are many interesting aspects of applying k - p perturbation theory to treat our systems
quantum mechanically, and the different uses go far beyond what has been looked at in this
study. A quick summary of elements that would be of interest with regards to our Zn(Mg,Cd)O
heterostructures include, but are not limited to:

* Look at k - p dispersion of our theoretical models.

— Identify minibands and DOS in potential superlattices.

Take a closer look at intersubband transitions in quantum wells.

Include surface states and their effects on the bending of band edge profiles.

Include doping and study the effects with respect to modelling.

Look into the effects of varying dimensionality of quantum structures.

Further study of physical consequences of varying temperature in the theoretical models.

A more detailed study of coupling between wells in Zn(Mg,Cd)O MQW heterostructures, uti-
lizing both time resolved photoluminescence spectroscopy and quantum mechanical modelling
in the context of £ - p perturbation theory, should be conducted. This may lead to an increased
understanding of yet another way of manipulating optical properties in promising MQW het-
erostructures.
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