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Abstract 

The sensitivity of the solution of the equations governing one-dimensional 

polymer flooding in an oil reservoir is investigated with respect to uncertain­

ties in the input parameters, such as porosity, absolute and relative perme­

abilities, and adsorption functions. In the standard deterministic model per­

turbations in the time to water breakthrough in the production well, due to 

controlled perturbations in the input data, are reported. It is found that the 

sensitivity is significant. A corresponding stochastic fl.ow model is analyzed 

by tools from structural reliability theory. Sensitivity measures of the statis­

tics of the time to breakthrough are reported. Correlations between the input 

variables seem to have a considerable effect on their relative importance. 

*Department of Mathematics, University of Oslo, P. 0. Box 1053, N-0316 Oslo 3, Norway. 
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1 Introduction 

The rapid growth of computer power and efficient numeric.al met.hods has made it. 

possible to solve very complex m1athematical models. In many areas, and partic­

ularly in multi-phase reservoir fl.ow mechanics, the mathematical models contain 

physical assumptions and input data which are subjected to rather large uncertain­

ties. Surprisingly, systematic investigations of such uncertainties in reservoir mod­

els seem to have attracted little attention in the literature compared to develop­

ment of more sophisticated mathematical models and numerical solution schemes. 

Most of the literature on input parameter uncertainties and heterogeneities in 

reservoir flow discuss deterministic methods for obtaining representative "mean" 

values of the rock parameters {[3], [9], [16]), given some random variation of these 

parameters. Specific values of the input parameters are also often determined by 

{incomplete) solution of inverse problems, e.g. as in history matching. In such an 

approach the output of the code is compared to some physical observations and the 

input parameters are adjusted iteratively to obtain a procedure where (hopefully) 

the output values converge. to the observed values. A serious problem with this 

approach is that the available physical observations are so limited that the inverse 

problem becomes under determined. The computed input parameters therefore 

represent one out of an infinite number of possible solutions. 

Recently, stati.stical methods have begun to attract some attention in reservoir 

simulation, see e.g. [15] or [6]. It is expected that stochastic reservoir simulation 

will become commercially available during the next decade, but presently the long 

CPU time associated with such approaches is prohibitive. Also in a stochastic 

simulator there will be input data to the code that are subjected to uncertainties. 

However, the stochastic approach can in a particular flow problem to a larger 

extent than a deterministic model utilize information inherent in experimental 

data and engineering experience. 

By the term deterministic sensitivity analysis we shall mean investigation of 

the sensitivity to input data in a deterministic simulator. Consequently, stochastic 

sensitivity analysis refers to sensitivity study of a stochastic reservoir simulator. 

The aim of the first part of this note is to investigate the sensitivity of an 

important output parameter from a deterministic reservoir simulator to controlled 

perturbations in the input data. Besides ranking of the input parameters ac­

cording t_~_t_}i_~~r. r~lil,~_ive illlportance we also give exact numerical estimates of the 

input/output perturbations. As the number of simulations required in such a 

study becomes very large, only a one-dimensional flow model has been employed 

fur the investigations herein. It is also natural to gain insight into the sens.itivities 

of the one-dimensional problem before investigating more complicated two- and 

three-dimensional flow cases. The governing equations are solved numerically and 

model a two-phase EOR polymer :flooding process without capillary effects. The 
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output parameter is chosen as the time to water breakthrough in the production 

well. This quantity is also closely related to the total oil production until water 

breakthrough. We are especially interested in the sensitivity t.o parameters that 

must be measured from laboratory experiments on core samples, such as poros­

ity, absolute permeability, relative permeabilities and adsorption functions. Since 

only experimental data from the rock near the wells are available, it is important 

to introduce space variation of the input parameters between the wells. Special 

emphasis is here paid to heterogeneous media and the influence of an assumed 

piecewise linear or discontinuous variation of the rock parameters. 

In a deterministic sensitivity analysis there are two main approaches. The first 

and most obvious idea is to perturb one input parameter and measure the corre­

sponding perturbation in the output parameter by solving the governing equations. 

This approach is mainly used here, and it is previously employed in reservoir flow 

by Evrenos and Comer (7] in a sensitivity study of gas-water relative capillarity 

and permeability. However, in comparison with [7] our investigation involves much 

more numerical experiments, a different mathematical model, and a different or­

ganization of the analysis. The second technique utilize linear partial differential 

equations for sensitivity coefficients ([17]). This may be a very effective approach 

if integrated in implicit (nonlinear) solution algorithms. We present some exam­

ples showing that this latter technique is inapplicable in reservoir flow where the 

solutions frequently contain shocks. 

The goal of deterministic sensitivity analysis is twofold. Firstly, it is to de­

termine the ranking of the input parameters according to their relative influence 

on output perturbation. This ranking will point out the input parameters which 

are most important to measure accurately and will also provide insight into the 

mechanics of the flow model. Secondly, the sensitivity analysis give information 

about the accuracy of the output given a (commonly accepted) inaccuracy in the 

input data. This level of accuracy is of particular interest e.g. when a mathemat­

ical model is integrated in a comprehensive project context, also including social 

and economic factors. 

In a stochastic reservoir simulator the uncertainty of the input parameters of 

the deterministic mathematical model are expressed by a· joint probability dis­

tribution. However, in practice it is difficult to establish more than marginal 

distributions for each parameter and maybe some correlation coefficients. Vari-

ants of _Mont~~CaxloH,imulatio!!_j~_chniques are ~fu_domina.ting in stochastic _________ _ 

reservoir simulation ([6]). A large number of input parameter sets are generated 

in accordance with the prescribed statistical distribution of the parameters. Then 

the flow model is solved for ea.ch parameter set and a statistical analysis of the 

output results is performed. Another, more analytical, approach utilize recent 

results from structural reliability theory. We show that this latter type of method 
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is well suited for the problems treated in this note, and therefore adopt these in 

the stochastic sensitivity analysis. A technical report by Selvig [15] is, to this 

author's knowledge, the only at.tempt t.o apply structural reliability met.hods t.o 

reservoir flow mechanics. Some activity on applications of such reliability methods 

to finite element discretized continua is emerging ([12]), but up to now structural 

reliability methods have mostly been applied to compute the failure probability of 

static beam structures under different loading conditions. A general discussion of 

Monte-Carlo simulation and analytically based reliability methods are given by 

Bjerager [4]. 

In the stochastic sensitivity analysis we may have three aims. The first is 

to measure the sensitivity to the input data in a stochastic reservoir simulator. 

Such data includes quantities that describe the statistical distributions as well as 

ordinary deterministic parameters entering the problem. This type of sensitivity 

measure is closely related to that used for the deterministic simulator, but the 

nature of the two types of analysis makes it natural to present the results slightly 

differently. Our second goal is to rank the most important stochastic variables 

in the flow problem. This yields information on which input parameters that 

need to be modeled stochastically. The final aim would be to relate uncertainty 

in input, for example in terms of standard deviations, to uncertainty in output. 

However, this requires a complete probability distribution of the output parameter. 

Although it is possible to calculate such distributions with the present methods 

of stochastic analysis, the amount of computational work has been considered to 

large in this initial study. 

We remark that a quantitative comparison of deterministic and stochastic sen­

sitivity analysis is impossible, due to the different nature of a deterministic and 

a stochastic simulator. However, qualitative comparison may be of interest, espe­

cially to increase the understanding of the impact of different input data on the 

final output of the simulator. 

Although the present note concerns the particular problem of oil reservoir flow, 

the proposed approach is of a general character. Similar investigations should be of 

interest in other fields where the mathematical models require input data subjected 

to significant uncertainties. 

2 The governing equations 
---~-----------~- -- ------~----------

Polymer flooding is an enhanced oil recovery (EOR) technique where a mixture of 

water and a polymer is injected in the reservoir to displace oil. The appearance 

of tlie polymer causes the viscosity ratio between the injected and displaced fluid 

phases to decrease and thereby enhance the recovery process (see [8]). 

We consider the flow of two immiscible, incompressible phases, one aqueous 
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phase and one oil phase, in a porous medium. Only space variations in one direc­

tion is taken into account. The aqueous phase consists of water and a polymer 

component, wliiCh is totally miscible in water. Let S be the saturation of the 

aqueous phase (i.e. 1 - S is the oil saturation), and let C be the concentration 

(mass fraction) of the polymer component in the aqueous phase (clearly, 1 - C is 

the concentration of water in the aqueous phase). By applying Darcy's law, the 

principle of mass conservation, and neglecting capillary pressure effects one may 

derive the following system of partial differential equations governing S and C for 

0 < x < L and t > 0: 

</>as + v BF _ o, 
8t 8x 

(1) 

8 8 
</> Bt [SC+ A]+ v Bx [CF] - o. (2) 

where x is the space coordinate, t denotes time, v is the total Darcy filtration 

velocity (independent of x ), and </>is the porosity. Fis the fractional flow function 

{[14]) which depends on S and C. Adsorption of the polymer on the rock is 

modeled by the function A that depends on C. The above two equations determine 

Sand C when vis known. This is the case if the injection velocity is controlled in 

the injection well ( x = 0 ). If instead the pressure difference between the injection 

and production well is prescribed, t' will depend on the pressure field P which is 

governed by 

! (H~:) =0. (3) 

We have v = -H8P/8x, where His a function of Sand C. In this latter case v 

will be a function of time. In mathematical literature on one-dimensional polymer 

flooding it is common to treat v as a known constant. However, this may result 

in a peculiar fact: If v is prescribed in one-dimensional flow then the absolute 

permeability only enters the equations (1) and (2) through the gravity terms, 

and the effect of the absolute permeability is small. On the contrary, when the 

pressure difference is prescribed, the velocity v is approximately proportional to 

the absolute permeability, with the consequence that the output quantities become 

highly sensitive to the value of the absolute permeability, which is always the case 

in two- and three-dimensional flow. In this work we therefore employ pressure 

boundary conditions that result in a realistic influence of the absolute permeability. 

The fractional flow function has the form 
--•- ------------------ - - ------------ --- - ·-----~·-----------·-------~------------ --------------------- ------------------

(4) 

where k,.w and k,.0 are the relative permeability of the aqueous and oil phases, 

respectively. Here µ = µa./ µ 0 , where µa. and µ 0 are the viscosities of the aqueous 

and oil phases, respectively. We have not included gravity effects in this paper. 
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We have nevertheless studied these effects and found them less interesting in a 

sensitivity ana.iysis context. The viscosity of the aqueous phase depends on the 

polymer concentrations. In this work we have employed a linear relation bet.ween 

µa/ µ0 and the concentration C: 

µ = v + ( · lOOC. 

If C = 0 then v = µw/ µ 0 , where µw is the water viscosity. We may typically have 

1 :S ( :S 2. The relative permeability curves have been written on the form 

K [ S - Sw,. ]a 
wm . 1 - Sor - Sw,. 

(5) 

(6) 

Here Kwm and Korn. are maximum values of k,.w and k,.0 , respectively, Sw,. is the 

irreducible saturation of the aqueous phase, and Sor is the irreducible oil satura­

tion. Figure 1 shows the geometric interpretation of the parameters in the relative 

permeability curves. The function H, which enters the pressure equation (3), has 

the form 

H = f( ( k,.w + k,.0 ) • 

µa µo 

Here f< is the absolute permeability. However, it is convenient to define a charac­

teristic absolute permeability K, and introduce K = f< / K. This K will in t.he rest 

of the paper be referred to as the absolute permeability. The adsorption function 

is assumed to have the form 

A= e · lOOC ' 
1+17 • lOOC 

where e and 17 are empirically determined constants. 

The parameters introduced above must fulfill the following constraints: 

Sw,. :S S :S 1 - Sor 

0 :S Sw,. + Sor :S 1 

O:SC:Sl 

0 :S Kwm :S 1 

O :S Korn. :S 1 

a,b,K,µ>0 
~-· -----~-------------- --~-- ------- .. ·-ct<:.~< 1 

e,112:0 

As initial and boundary conditions for the equations (1 ), (2) and (3) we have 

used: 

S(x, 0) - Sw,. 
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S(O, t) 1 - s0 
or 

C(x,O) 0 

C(O, t) { A t < t. 
0 t ~ t. 

P(O, t) AP 

P(L, t) 0 

where S! denotes S,,,. _at :z: = 0. Recall that only pressure differences, aud not 

the pressure level, influence incompressible flow. The injection concentration A is 

usually small, typically A = 0.01. With these boundary and initial conditions the 

typical qualitative features of the solution in a. homogeneous medium are: 

J 

• There is one shock in C, say at :z: = :z: •• C equals the constant A behind the 

shock, provided t. > t. For t. < t, the C profile becomes plug formed. 

• When adsorption is present, there a.re two shocks in S, one a.t :z: = z. and 

one for x > :z: •• The two shocks reduce to one single wheu A -+ 0. 

Observe that the well-known Buckley-Leverett problem ([14]) is a special case of 

the polymer model where either C is constant or ( = 0. 

A central finite difference method is used for solving the elliptic pressure equa­

tion (3). The two hyperbolic conservation laws (1) and (2) are solved by the 
12 .,---,,--,--,...-,--,-,-,--,---,,--,--,...-,-,-,-,--,--....-.-.,..-,,.....,-,-,-,--,......,..-,-.,.......,,.....,-,-,-,--,--.....,.-, 

iO ------ --~-- -- ---- -------- --------------------------- ----------------- ---- --- -- --- --- : K , • 1 wm 
' ' . . . . . 
' . 
' ' ' ' ' ' ' . . . . ' 

0.8 ' ' ' k ' ' rw ' 

0.6 

' . 
--~------ ----------------------------------------------- --------------------------- ' 

0.4 

02 
- ----------------·- -------~-------------

' 

. 00 L.J._J_..L_J......1,==C...l_L...l____J___i_L...l____J___i_L...l____J_..l_.L..:I:::::t::::l::::..i.....L-J......J._.LJ_L...J._.LJ--L...J._.LJ--L.....L..J 

0.0 0.1 

Swr 
02 0.3 0.4 0.5 0.6 0.7 0.8 Q.9 

s 1- s,,,. 
Figure 1: Example of parameters entering the relative permeability curves. 

a= 1.5, b = 3.5, Sw,. = 0.1, S,,,. = 0.2, Kwm = 1.0, Kom = 0.5. 
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explicit first-order Godunov (upwind) scheme on a uniformly partioned grid with 

N grid points ([10]). Let At be the time step length and let Ax be the spacing in 

the grid. The stability requirement can be deduced from Johansen et al. [10] and 

is in our case 

At< Ax min (~, ±) . 
- o::.;:i:::.;L v l~I v{ 

In each simulation we have chosen At as large '°s possible according to this stability 

criterion. 

The present numerical scheme leads to rather diffusive solution for C, and the 

C shock usually extends over 8-10 intervals. If there is only a single shock in S, 

our scheme resolves this shock quite satisfactorily, that is, over about two grid 

intervals. When there are two shocks in S, the shock which has the same position 

as the shock in C is dispersed over 8-10 intervals (due to the diffusive C profile). 

The shock in the front of the saturation profile is ordinarily resolved over a couple 

of grid intervals. 

3 Deterministic analysis 

3.1 Sensitivity measures 

Let p = (p1 , ••• ,p9 )T be a vector of space varying, empirically determined, param­

eters entering the governing equations (1) and (2). Heterogeneity modeling will 

require that p is defined for each of the N points in the computational mesh. Since 

the basic equations may develop shock solutions, N is usually large, and it is not 

possible in practice to accurately determine pat each point. Therefore we suggest 

to introduce a coarse "parameter grid". Suppose we want p to be piecewise linear. 

Then we may define a parameter grid (y0, ... ,yM) where M << N, y0 = 0 and 

YM = L. The vector pis then defined only for each Yi, i = O, .•• ,M, and we let 

Pi = (pl, ... ,pi)T denote the value of p at x =Yi· Intermediate values of pin an 

interval [yi, Yi+i] are computed by linear interpolation. The space variation of rock 

properties is often discontinuous. This can be modeled by partitioning n = [O, L] 
into M + 1 non-overlapping intervals ni, i = O, ••• , M. On each ni, pis constant in 

space and the value is denoted by Pi· For each i and j we constrain the perturbed 

values pf to lie in the interval If. 
__ L __________________ TC?_measur~_!!ie influence of~tur!!_~!_ion_i_~ p, we must_9ecideon which out_-:_ _____________ _ 

put quantities to examine. In this note we have used time to water breakthrough 

T in the production well, which for the present system of hyperbolic equations 

&11d boundary conditions can be defined as 

T = inf{t : S(L, t) > S(L, O)} 
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Another interesting quantity is the total volume of oil produced until water break­

through: 

R foL ¢[1 - S( :r:, O)]d:r: - foL ¢[1 - S( :r:, T)]dx 

foL ¢S(x,O)dx - foL ¢S(x,T)dx. 

Integrating (1) from :r: = 0 to :r: =Land in time from t = 0 tot= T we get 

From the formulas for the fractional flow function and our boundary and initial 

conditions it is easily deduced that F2 =L = 0 for t < T and F2 =o = 1 for t > 0. 

Therefore 

R=vT 

where vis the time average of v in the time interval [O, T]. (Notice that when t' is 

constant in time, (1) implies T,...., 1/v so that R becomes independent of v.) 
The sensitivity analysis is organized in the following way. Reference parameter 

vectors, Pier, i = O, ... , M, are defined. The value of T obtained with the reference 

parameter vectors as input is denoted Trer. Then for some O ::; i ::; M and 

j = O, ... , q the parameter pf is perturbed inside the interval If. The corresponding 

extreme values of T are denoted max T/ and min T/. T is usually a monotonic 

function of pf so these extreme values occur at the end points of the intervals If. 
Instead of reporting the numbers max T/ and min T/ we report maximum relative 

reduction (MRR) 
minT? - rrer 

I 

Tref 

and maximum relative increa"e (MRI) 

maxT? - rrer 
I 

Tref 

For example, MRR measures the maximum relative reduction in the time to break­

through when one parameter at one coarse mesh grid point is perturbed (inside a 

specified interval) while all other parameters equal the reference values. 

We have also calculated T values corresponding to "worst case" (ront) and 

"best case" ( Tbest). Twont is computed by choosing pf E If (all i and j) so that 

T is minimized. Similarly, T"u• correspoffitsto the ch01ce of all pf E 1/ so that T 

is maximized. We will report AMRR (absolute maximum relative reduction) and 

AMRI (absolute maximum relative increase) by relating Twont and Tbest to the 

reduction/increase in Tref as explained for MRR and MRI above. For example, 

the AMRI value represents the increase in rrer when all input parameters are 

adjusted (within their intervals) so that T is maximized. 
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Of the parameters entering the fractional fl.ow function it is physically reason­

able to assume that v and ( can be treated as known constants without uncer-

tainty. On the contrary,¢, Kwm, Kom, S10r, S"", a, b, K, e and TJ may vary with 

the space coordinates and must. be determined by laboratory experiments on core 

samples from the wells. One difficulty is to assign a space variation to these pa­

rameters between the well values. For sensitivity analysis we introduce the vector 

p = (p1, ... ,pq)T, q = 10, as 

1 ,J.. 2 3 b 4 s s_s p = 'f'l p =a, p = ' p = wr, p - ""' 

6 R" r K s K 9 t 10 P = wm1 P = om, P = ' P = ~' P = T/· 

It is advantageous to consider 4 groups of uncertain parameters: (</>), (K), 

(a,b,Swr,Sur,Kwm,Kom), and (e,11), corresponding to porosity, absolute penne­

ability, fractional flow function (relative permeability) parameters and adsorption 

function parameters. We define AMRI-F to be the absolute maximum relative 

increase in T when all fraction flow function parameters (a,b,Swr,Sur,Kwm,Kom) 

are adjusted inside their intervals If so that T is maximized. Similarly, we define 

AMRl-A to be the corresponding maximum when the adsorption function param­

eters are adjusted optimally. The definition of the minimum quantities AMRR-F 

and AMRR-A should follow directly. 

3.2 Solution of equations for sensitivity coefficients 

The purpose of sensitivity analysis is to examine the change of an output param­

eter due to a change Ap in p. To explicitly indicate the dependence of e.g. S 

upon p, we write S(:r,t;p). In this section ·we examine an approach for obtaining 

information about S(x, t; p + Ap) which requires solution of the governing equa­

tions with p as input in addition to some linear partial differential equations for 

the 1en1itivity coefficientJ. For simplicity we restrict the following discussion t.o 

the Buckley-Leverett problem, that is, no polymer is present, and the governing 

equation consist of (1) where Fis a function of Sonly. We also treat v as a given 

constant, i.e. the pressure equation (3) is not solved. 

We define the sensitivity coefficient Ui as 

8 
u,(x,t;p)=-8 .S(x,t;p), i=l, ... ,q. 

p' 
(7) 

~ --·-· · ---- -- -------xn-equat1oii ror· u.,-caiioe-aenveaoyaenvatroil-or (iJ wHli.iespecfto-p1 . -T1115- --·----­
gives 

(8) 

Note that-8F/8p' is carried out by keeping S constant. This equation is linear in 

u, since S(x,t;p) is known from equation (1). Observe that the coefficients and 
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the nonhomogeneous term in the equation for Ui are discontinuous in both space 

and time. An estimate of S( :z:, t; p + Llp) can then be calculated from a first-order 

truncated Taylor series: 

q 

S(:z:,t;p + Llp) ~ s+(:z:,t;p,Ap) := S(x,t;p) + :Lu;(x,t;p)Ap-1. (9) 
j=l 

The use of sensitivity coefficient equations in elliptic groundwater flow has been 

e~amined by Yukler (17]. Scalar hyperbolic conservation laws in one space dimen­

sion are most conveniently solved by explicit finite difference schemes. In this case 

the calculation of S(x,t;p + Llp) by the approximate procedure (8) and (9) is 

computationally more expensive than solving the exact equation (1) with p + Llp 

as input. However, in more complex situations where implicit time schemes with 

Newton-type iterations are used, the solution of a linear equation for a Ui is much 

cheaper than than solving a nonlinear equation for S(x, t; p+Llp). In such cases it 

is possible with little additional cost to compute some sensitivity coefficients Ui to­

gether with the solution S( x, t; p ). Such an approach would be very advantageous 

for operators of implicit reservoir simulation codes. 

We have examined the accuracy of the approach (8) and (9). A homogeneous 

reservoir with the following parameter values was investigated: </> = 0.25, µ = 4, 

a = b = 2.5, Swr = Sor = 0.2, Kwm = Kom = 1, V = 9.26 · 10-7m/s. Let us for 

example consider perturbations in the parameter p3 = b and define U3 = as I 8b. 

The results showed that u3 was close to zero in the whole domain, except in a 

narrow region around the shock in S(:r,t;p), where u3 had a pronounced peak . 

. The height of this peak increased with both N and Ab. The peak extended over two 

grid points, regardless of the N value (only N ::s; 200 was tested). The perturbed 

curve s+ = S + u 3Llb therefore also displayed a significant overshot around the 

shock front. With 103 perturbation in b, s+ represented a qualitative reasonable 

approximation to S(x, t; p + Ap ). Nevertheless, the uncertainties in b are likely 

to be much larger than 103 and for example 1003 increase in b resulted in an s+ 
curve which was in poor agreement with S(:z:,t;p + Llp). Of course we obtained 

limAb-o s+(:z:,t;p) = S(:z:,t;p + Llp). The poor behavior of s+ is not surprising 

since a first order Taylor series is employed. The quality of athe approximation 

then depends on the smoothness of S( x, t; p ), and the most inaccurate parts of 

the s+ curve is exactly in the shock region of S(:z:, t; p ). 

···-~---····-- _ __ ________ S~ l!a.sa.lso_~e~11 ___ cajc:_l!J.~!~_<Lfal' p~r~_'!rb~ti_C>_ll~ i!lJb~ <>!h~r.1!~.r~m~~~_r~ it:ncl_ . _______________ _ 
satisfactory quality of the results was only obtained when the perturbations were 

uninterestingly small. The use of separate equations for calculating sensitivity 

coefficient& is therefore not generally appropriate in reservoir simulation. 
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3.3 Results 

________ ln_this_s~dion_we_pl"es_ent_xalues_of_p_edurhations-in_T_due-t-0-v-acious-Pedur-hations. _____ _ 

in the input parameters as described in section 3.1. All results are generated by 

solving the exact differential equations and not by the methods outlined in section 

3.2. 
Let us first state some preliminary results based on the physics in the prob­

lem. Firstly we consider the parameters that enter the Buckley-Leverett problem. 

Changing the porosity</> in a homogeneous medium is equivalent to a linear change 

in the time scale. Increasing </> leads to an increase in T in incompressible flow 

since the available volume for the fluids becomes larger. Increasing K makes the 

fluids flow faster and T is then reduced. If we increase a this corresponds to a de­

crease in water permeability and consequently the time to breakthrough increases. 

Similarly, if b is increased, the oil permeability is decreased and the time to wa­

ter breakthrough decreases. Increasing Kwm increases the water permeability and 

has thus the same effect as decreasing a. A similar reasoning yields variations in 

Kom. Graphical discussion of shock velocities in a homogeneous medium based on 

the fractional flow curve reveals that an increase in Swr or Sor leads to a larger 

shock velocity and hence a decrease in the time to breakthrough is experienced. 

In the polymer flooding case with monotonic adsorption functions the saturation 

shock velocity decreases when increasing the slope of A. That is, T increases with 

increasing e and decreases with increasing 17. To summarize, we have 

8T 
8</> > o, 

8T 
8a > O, 

BT 
8b < o, 

8T 
8Swr < O, 

8T 
8Sor < o, 

BT BT 8T BT 8T 
8KwfTt < O, BK om > O, BK -< O, Be > O, B17 < O. 

In all tables we have sorted the parameters after their importance given by the 

MRI- and MRR values. Numerical values are reported with two decimals, and 

when "0.00" appears, this should be interpreted as a number less than 0.005, but 

not necessarily zero. All tables in this report are written directly in :U.TBX text 

processing format by the computer in order to minimize typing errors. 

Before discussing perturbations in T due to perturbations in input parameters 

one should clarify the uncertainty in T due to errors in the numerical method. 

We have performed experiments where A:c-+ 0 and studied the convergence of T. 
-~---- ___ m _ _ __ The~rror in_T<:lue_ to discretization with N_~_ 30 has never been observed to k_ _______________ _ 

larger than 23. The results in this note are computed with grids where N = 80 

or N = 40. In all calculations we have used L = 1000 m, tt = 10-11 m 2, A= 0.01, 

"' = (µw/ µ0 ) = 1/4, and AP = 500 MPa. Unless otherwise stated, p·olymer is 

injected during the whole simulation, i.e. t. > T. 
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3.3.1 Homogeneous reservoir 

______ C_onsider_a_homogeneo_us_r_eseLYoir,J1ere-formally-defined-hy-M-=-O-and-p-0011staut 

in [O, L] with the value p 0 • In Table 1 results from pure water flooding, i.e. the 

standard Buckley-Leverett problem, are presented. The next Tables 2-5 corre­

spond to polymer flooding with different values of ((i.e. different mobility ratios). 

One should observe that increasing A, i.e. the polymer concentration, while keep­

ing ( fixed, will give approximately the same results as increasing (, keeping A 

fixed (as is done here). We have used ( = 2 as a standard value for most simu­

lations in this work. In Table 6 the polymer is injected only for t, = 500 days. 

The input parameters are perturbed by 503 in Tables 1-6. A perturbation by 

only 203 gives the results in Table 7. Table 8 corresponds to perturbations larger 

than 503, but still physically realistic. Results from polymer injection without 

adsorption effects are displayed in Table 9. The Tables 6-9 are to be compared 

with Table 3. 

parameter pr"f 
() intervals lb MRR MRI 

K 1.00 (0.50, 1.~] -0.33 1.00 

"' 
0.20 (0.10, 0.30) -0.50 0.50 

a 2.00 (1.00, 3.00) -0.65 0.23 

Korn 0.60 (0.30, 0.90) -0.20 0.46 

K.,,m 0.60 (0.30, 0.90] -0.17 0.39 

Sor 0.20 (0.10, 0.30] -0.17 0.17 
s.,, .. 0.20 (0.10, 0.30] -0.17 0.17 

-------
b 2.00 (1.00, 3.00] -0.02 0.06 

AMRR AMRI AMRR-F AMRI-F · AMRR-A AMRI-A 
-0.95 3.80 -0.84 0.59 

Table 1: Perturbation results for a homogeneous reservoir. ref = 788 days. ( = O (Buc.k­

ley-Leverett problem). 
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pa.tameter pref 
0 intervals I~ MRR MRI 

K 1.00 [0.50, 1.50] -0.33 1.00 

a 2.00 [1.00, 3.00] -0.72 0.29 

<P 0.20 [0.10, 0.30] -0.50 0.50 

Kwm. 0.60 [0.30, 0.90] -0.22 0.62 

s.,,r 0.20 [0.10, 0.30] -0.23 0.28 

Korn. 0.60 [0.30, 0.90] -0.12 0.32 

Sor 0.20 [0.10, 0.30] -0.19 0.20 

e 0.20 [0.10, 0.30] -0.03 0.04 

b 2.00 [1.00, 3.00] 0.00 0.05 

T/ 1.00 [0.50, 1.50] -0.02 0.01 

AMRR AMRI AMRR-F AMRI-F AMRR-A AMRI-A 

-0.96 6.98 -0.88 1.54 -0.05 0.04 

Table 2: Perturbation results for a homogeneous reservoir. Tref = 1124 days. ( = 1. 

parameter Pber intervals I~ MRR MRI 

K 1.00 [0.50, 1.50] -0.33 1.00 

a 2.00 [1.00, 3.00] -0.76 0.31 

K.,,111 0.60 [0.30, 0.90] -0.26 0.78 

<P 0.20 [0.10, 0.30] -0.50 0.50 

s.,,r 0.20 [0.10, 0.30] -0.25 0.34 

Sor 0.20 [0.10, 0.30] -0.20 0.21 

Korn. 0.60 [0.30, 0.90] -0.08 0.23 

e 0.20 [0.10, 0.30] -0.04 0.06 
b 2.00 [1.00, 3.00] 0.00 0.07 

T/ 1.00 [0.50, 1.50] -0.02 0.01 

AMRR AMR! AMRR-F AMRI-F AM RR-A AM RI-A 

-0.97 8.84 -0.90 2.19 -0.07 0.07 

Table 3: Perturbation results for a homogeneous reservoir. Tref = 1398 days. ( = 2. 

parameter Pbd intervals I~ MRR MRI 
K.,..,,. 0.60 [0.30, 0.90] -0.36 1.25 

K 1.00 [0.50, 1.50] -0.33 1.00 
a 2.00 [1.00, 3.00] -0.85 0.32 
<P 0.20 [0.10, 0.30] -0.50 0.50 

Swr 0.20 [0.10, 0.30] -0.33 0.53 

Sor 0.20 [0.10, 0.30] -0.24 0.26 

b 2.00 [1.00, 3.00] -0.04 0.19 

- _________ _£_ ..... 0.20 __ (n.l~0 .. 3.0l _--:.o..na . . _1l.12 . 

Kom 0.60 [0.30, 0.90] -0.06 0.07 

T/ 1.00 [0.50, 1.50] -0.04 0.03 

AMRR AMRI AMRR-F AMRI-F AMRR-A AMRI-A 

-0.99 9.43 -0.96 3.58 -0.13 0.14 

Table 4: Perturbation results for a homogeneous reservoir. Tref = 3539 days. ( = 10. 
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parameter p~ef intervals lb MRR MRI 

K.,,,m 0.60 [0.30, 0.90] -0.41 1.20 

K 1.00 [0.50, 1.50] -0.33 0.90 

a 2.00 [1.00, 3.00] -0.88 0.30 

¢i 0.20 [0.10, 0.30] -0.50 0.49 

Swr 0.20 [0.10, 0.30) -0.37 0.60 

Sor 0.20 [0.10, 0.30) -0.26 0.29 

b 2.00 [1.00, 3.00] -0.08 0.23 

Korn 0.60 [0.30, 0.90] -0.17 0.12 

e 0.20 [0.10, 0.30] -0.11 0.16 

T/ 1.00 [0.50, 1.50] -0.05 0.03 

AMRR AMRI AMRR-F AMRI-F AM RR-A AMRI-A 
-0;99 6.93 -0.98 2.90 -0.16 0.18 

Table 5: Perturbation results for a homogeneous reservoir. rrer = 7787 days. ( = 25. 

parameter Pber intervals lb MRR MRI 

K 1.00 [0.50, 1.50] -0.29 0.77 

a 2.00 [1.00, 3.00] -0.72 0.24 
¢i 0.20 [0.10, 0.30] -0.44 0.39 

Kwm 0.60 [0.30, 0.90] -0.21 0.51 

Swr 0.20 [0.10, 0.30] -0.21 0.25 

Sor 0.20 [0.10, 0.30] -0.17 0.17 

Korn 0.60 [0.30, 0.90] -0.08 0.24 

e 0.20 [0.10, 0.30] -0.03 0.04 

b 2.00 [1.00, 3.00] 0.02 0.02 

T/ 1.00 [0.50, 1.50) -0.02 0.01 

AMRR AMRI AMRR-F AMRI-F AMR.R-A AMRI-A 

-0.96 3.50 -0.89 1.06 -0.05 0.05 

---------------------------- --------·------------- ---------------·-------~-~--------- - -- ----------~--------------------~---

Table 6: Perturbation results for a homogeneous reservoir. rref = 1228 days. ( = 2. Polymer is 

only injected for a short period, t, = 500 days. 
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parameter pf,"f intervals Ifi MRR MRI 

K 1.00 [0.80, 1.20] -0.17 0.25 

<P 0.20 [0.16, 0.24] -0.20 0.20 

a 2.00 [1.60, 2.40] -0.20 0.14 

K,ttm 0.60 [0.48, 0. 72] -0.13 0.19 

Swr 0.20 [0.16, 0.24] -0.11 0.12 

Sor 0.20 [0.16, 0.24] -0.08 0.08 

Korn 0.60 [0.48, 0.72] -0.04 0.06 

e 0.20 [0.16, 0.24] -0.02 0.02 
,,, 1.00 [0.80, 1.20] -0.01 0.01 

b 2.00 [1.60, 2.40] 0.00 0.01 

AMRR AMRI AMRR-F AMRI-F AM RR-A AMRI-A 

-0.62 1.42 -0.42 0.56 -0.03 0.03 

Table 7: Pertm::bation results for a homege-neous reservoi-r. T•ef == U98 days. ( == 2. In contrast 

to Tables 1-6, where the input parameters are perturbed by 503, the perturbation bere is only 

203. 

parameter Pbef intervals lb MRR MRI 
K· 1.00 [0.10, 10.00] -0.90 8.78 

Kwm 0.60 [0.10, 1.00] -0.31 4.14 
a 2.00 [0.50, 6.00] -0.94 0.80 

<P 0.20 [0.05, 0.35] -0.75 0.75 

Su•r 0.20. [0.00, OAO] -0.46 0.87 

Korn 0.60 [0.10, 1.00] -0.09 0.93 

Sor 0.20 [0.00, 0.40] -0.40 0.44 

e 0.20 [0.00, 1.00] -0.19 0.14 
b 2.00 [0.50, 6.00] 0.08 0.18 
,,, 1.00 [0.00, 2.00] -0.05 0.03 

AMRR AMRI AMRR-F AMRI-F AM RR-A AMRI-A 

-0.25 0.14 

-H-- Tahle 8: Pe1tarbatiou results for a homogeneous reservoir. 'ref - 1398 days. ( - 2. The pertur- ------------­

bation of the input parameters are larger than in the Tables 1-7, but still physically reasonable. 

The AMRR/I values are only given for the adsorption function since the extreme combination of 

all input parameters in this case is not considered to have practical relevance. 
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parameter Prr intervals I~ MRR MRI 
K 1.00 [0.50, 1.50] -0.33 1.00 

a 2.00 [1.00, 3.00] -0.78 0.29 

Ku•n1. 0.60 [0.30, 0.90] -0.26 0.80 

4' 0.20 [0.10, 0.30] -0.50 0.50 

Su•r 0.20 [0.10, 0.30] -0.29 0.48 

Sor 0.20 [0.10, 0.30] -0.21 0.22 

Kom 0.60 [0.30, 0.90] -0.07 0.21 

b 2.00 [1.00, 3.00] 0.01 0.07 

AMRR AMRI AMRR-F AMRI-F AMRR-A AM RI-A 

-0.97 7.94 -0.91 2.06 

Table 9: Perturbation results for a homogeneous reservoir. rr-'1 = 1591 days. ( = 2. No 

adsorption function (A = 0). 
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We may summarize the main results as follows. 

--------·e-In---the-Buckley=heverett-problem-(Table-1--)----K--,---9'> and--a(in this order) are 

the most important parameters. 

• When polymer is injected (Table 2-5), Kwm also becomes a significant. pa­

rameter. Polymer injection has a considerable effect on the ranking of the 

parameters. 

• As ( increases, the sensitivity in T due to perturbations in a and Kwm 

increases, while the sensitivity due to perturbations in K decreases. The 

residual saturations, and especially Swr, increase with ( up to ( = 10 and 

thereafter show a slight decrease. 

• The influence of the adsorption function parameters { and T/ is fairly small 

in all our simulations, even in Table 5, where ( = 25. 

• When only a polymer plug is injected (Table 6), the sensitivity in T due to 

perturbations in Kand</> is smaller than when polymer is absent (Table 1) 

or when it is injected during the whole simulation (Table 3). 

• The MRR and MRI values of a indicate that the sensitivity of T to pertur­

bations in a is much larger when a E [1, 2] than when a. E [2, 3]. From Table 

8 we see that even larger sensitivities are encountered when a < 1. Although 

we usually have a > 1 in two-phase fl.ow, [16] reports laboratory experiments 

where a< 1. 

• 503 perturbation in Swr, Sor, b, {, T/, and Korn results in a perturbation of 

T less than 50%. For Kwm, a, K, and </>the absolute value of either MRR 

or MRI is likely to exceed 0.5. 

• The sensitivity of T due to perturbation of all fractional flow parameter 

values, represented by AMRR-F and AMRI-F, is significantly larger than 

the sensitivity of T due to perturbation of porosity or absolute permeability. 

The importance of F relative to K and </> is also considerably larger in 

polymer flooding compared to pure water flooding. The sensitivity of T to 

variations in the adsorption function may be considered as negligible. As a 

conclusion we regard the relative permeability curve of the aqueous phase as 

-tliCmosf important-source oftincertaintiesTD.- a polymer flooding problem. 

Both F and K represent the most important input quantities in pure water 

flooding. 

• Comparison of Tables 3 and 7, as an example, show that 503 perturbation 

of all parameters in the relative permeability curves gives a variation of T 
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between 140 and 3075 days, while 203 perturbation leads to TE [811, 2181] 

days. The reason why the reduction in T is much larger than than the 

increase is mainly due the influence of the a and Kwm parameters. 

3.3.2 Heterogeneous reservoir 

The purpose of this section is to give examples of sensitivity measures when the 

reservoir has space varying rock properties. We assume that the input parameters 

p are known without uncertainty in the injection and production well, i.e. for x = 0 

and x = L. We have applied two models for the space variation of p between the 

wells: 

• Diacontinuoua 9-rock model. Let [O, L] = 0 0 U 0 1 U 0 2 , where 

1 
!'lo= [O, 4LJ, 

The p vector is then assumed to be constant in each ni, i = O, 1, 2, the 

corresponding values being p 0 , p 1 and p 2 . All perturbations regard the p 1 

values, since p 0 and p 2 correspond to well values without uncertainty. 

• Linear 9-point model. A coarse "parameter grid", Yo = O, Y1 = !L, Y2 = L, 

is introduced. The p vector now vary linearly between the Yi points. Again 

all perturbations regard the p 1 values. 

Figures 2-5 depict the space variations of the input parameters. At first sight it 

would be natural to let the length of ni in the discontinuous model to lL. However, 

. with the above chosen values the mean value of p throughout the domain is the 

same in both the linear and the discontinuous model. 

In Tables 10 and 11 the reference values are constant throughout the domain, 

and the midpoint value p 1 is perturbed by 503. The two tables correspond to 

discontinuous and linear space variation of p (cf. Figure 2 and 4). In the next 

Figure 2: Discontinuous space variation of a parameter pf. Homogeneous reference values. The 

thick line indicates the reference value while the thin line represents the perturbed value. 
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Figure 3: Discontinuous space variation of a parameter pt. Heterogeneous reference values. The 

thick line indicates the reference value while the thin line represents the perturbed value. 

Figure 4: Linear variation of a parameter pt. Homogeneous reference values. The thick line 

indicates the rtference value while the thin line represents the perturbed value. 

Figure 5: Linear space variation of a parameter pt. Heterogeneous reference values. The thick 

line indicates the reference value while the thin line represents the perturbed value. 
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parameter Pr.,r intervals I{ MRR MRI 

i=O i = 1 i=2 

Cl.ZO 0.20 0.20 [0.10, 0.30] 0.20 0.20 

K 1.00 1.00 1.00 [0.50, 1.50] -0.09 0.27 

a 2.00 2.00 2.00 [1.00, 3.00] -0.22 0.14 
. K.,,,,. 0.60 0.60 0.60 [0.30, 0.90] -0.07 0.17 

S.,,r 0.20 0.20 0.20 [0.10, 0.30] -0.07 0.08 

Sor 0.20 0.20 0.20 [0.10, 0.30] -0.07 0.07 

Kam 0.60 0.60 0.60 [0.30, 0.90] -0.02 0.09 

b 2.00 2.00 2.00 [1.00, 3.00] -0.01 0.03 

e 0.20 0.20 0.20 [0.10, 0.30] 0.00 0.00 
,., 1.00 1.00 1.00 [0.50, 1.50] 0.00 0.00 

AMRR AMRI AMRR-F AMRI-F AM RR-A AM RI-A 

-0.37 1.89 -0.25 0.60 -0.01 0.00 

Table 10: Perturbation results for a heterogeneous reservoir. rrcf = 1398 days. ( = 2. Dis­

continuous space variation of parameters. Homogeneous reference values. Tbe variation of p is 

depicted in Figure 2. 

tables (12-15) the reference values are varying between the two wells. Also here 

results are presented for both discontinuous and linear variation of p. Tables 12 

and 13 show results when the oil is less mobile than the aqueous phase at x = 0, 

while the situation is completely opposite at x = L. The coutrary problem, with 

oil as the most mobile phase at x = O, leads to the results displayed iu Tables 14 

and 15. 

The ma.iu conclusions from section 3.3.1 are also valid here, aud we will now 

only make a comment on piecewise linear versus piecewise discontinuous space 

variation of the parameters. In Tables 10 and 11 the reference values of T is of 

course identical, and the sensitivity measures in these tables can be compared. 

In particular we notice that perturbations in K have much larger effect on T 
in the linear model than iu the discontinuous one. In Tables 12-15, where the 

reference parameter values are non-constant, we observe that the type of space 

variation influences the Tnf values and comparison of sensitivity measures from 

different tables becomes meaningless. However, comparison of rrer values indicates 

that the type of space variation has a significant impact on the calculations in a 

deterministic simulator. As the number of points in the coarse parameter grid 

inc.teases, the influence of the type of space variation of course decreases. In many 

practic8l cases where knowledge about the-rock-propertie-;between the wells is 

lacking, the present coarse parameter grid is thought to be representative. 

Observe that the results obtained here do not apply to general interpolation of 

quantities in numerical schemes - they are only valid for very coarse meshes, such 

as those used here for space variation of p. 
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parameter p~ef intervals Ji MRR MRI 

i = 0 i = 1 i = 2 

¢ 0.20 0.20 0.20 [0.10, 0.30] -0.31 0.31 

K 1.00 1.00 1.00 [0.50, 1.50] -0.18 0.42 

a 2.00 2.00 2.00 [1.00, 3.00] -0.34 0.21 

K.,,.,. 0.60 0.60 0.60 [0.30, 0.90] -0.14 0.29 

S.,,r 0.20 0.20 0.20 [0.10, 0.30] -0.14 0.15 

s,,,. 0.20 0.20 0.20 [0.10, 0.30] -0.12 0.12 

Kom 0.60 0.60 0.60 [0.30, 0.90] -0.04 0.13 

b 2.00 2.00 2.00 [1.00, 3.00] -0.02 0.04 

{ 0.20 0.20 0.20 [0.10, 0.30) -0.01 0.02 

'7 1.00 1.00 1.00 [0.50, 1.50) -0.01 0.00 

AMRR AMRI AMRR-F AMRI-F AMRR-A AM RI-A 

-0.67 3.07 -0.48 0.94 -0.02 0.02 

Table 11: Perturbation results for a heterogeneous reservoir. Tref = 1398 days. ( = 2. Linear 

space variation of parameters. Homogeneous reference values. The variation of p is depicted in 

Figure 3. 

parameter Prer intervals Ii MRR MRI 

i=O i = 1 i=2 

K 0.50 1.00 1.50 [0.50, 1.50) -0.10 0.30 

K.,,.,. 0.90 0.60 0.30 [0.30, 0.90] -0.08 0.22 
¢ 0.10 0.20 0.30 [0.10, 0.30) -0.12 0.11 

S.,,r 0.10 0.20 0.30 [0.10, 0.30) -0.09 0.09 

Sor 0.30 0.20 0.10 [0.10, 0.30] -0.06 0.06 

a 1.00 2.00 3.00 [LOO, 3.00) -0.06 0.05 

Ko,,. 0.30 0.60 0.90 [0.30, 0.90] -0.02 0.06 

b 3.00 2.00 1.00 [1.00, 3.00) -0.01 0.04 

{ 0.10 0.20 0.30 [0.10, 0.30) -0.02 0.02 

'7 1.50 1.00 0.50 [0.50, 1.50] -0.01 0.01 

AMRR AMRI AMRR-F AMRI-F AM RR-A AM RI-A 

-0.34 1.19 -0.25 0.33 -0.03 0.02 

- -- -- ------------ --·----- -- -- -~----------------------------------- -- -------- -------- ------------------·--·------- --- --- ----

Table 12: Perturbation results for a heterogeneous reservoir. ~f = 2903 days. ( = 2. Dis­

continuous space variation of parameters. Heterogeneous reference values. The variation of p is 

depicted in Figure 4. 
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parameter P!"r intervals Ii MRR MRI 

i=O i = 1 i=2 

K 0.50 1.00 1.50 [0.50, 1.50) -0.21 0.49 

Kumi 0.90 0.60 0.30 [0.30, 0.90) -0.17 0.37 

<P 0.10 0.20 0.30 [0.10, 0.30) -0.25 0.25 

a 1.00 2.00 3.00 [1.00, 3.00) -0.27 0.14 

Swr 0.10 0.20 0.30 [0.10, 0.30] -0.16 0.20 

Sor 0.30 0.20 0.10 [0.10, 0.30] -0.12 0.12 

Kom 0.30 0.60 0.90 [0.30, 0.90) -0.03 0.08 

e 0.10 0.20 0.30 [0.10, 0.30] -0.03 0.04 

b 3.00 2.00 1.00 [1.00, 3.00] -0.01 0.03 

11 1.50 1.00 0.50 [0.50, 1.50] -0.01 0.01 

AMRR AMRI AMRR-F AMRI-F AM RR-A AM RI-A 

-0.69 2.65 -0.54 0.76 -0.05 0.05 

Table 13: Perturbation results for a heterogeneous reservoir. rrer = 2236 days. ( = 2. Linear 

space variation of parameters. Heterogeneous reference values. The variation of p is depicted in 

Figure 5. 

parameter P!.,r intervals I{ MRR MRI 

i = 0 i = 1 i=2 

a 3.00 2.00 1.00 [1.00, 3.00] -0.25 0.09 

<P 0.30 0.20 0.10 [0.10, 0.30] -0.14 0.14 

K 1.50 1.00 0.50 [0.50, 1.50) -0.05 0.15 

Ku•m 0.30 0.60 0.90 [0.30, 0.90) -0.04 0.07 

Su•r 0.30 0.20 0.10 [0.10, 0.30) -0.05 0.05 

Sor 0.10 0.20 0.30 [0.10, 0.30] -0.05 0.05 

Kom 0.90 0.60 0.30 [0.30, 0.90] -0.01 0.07 

b 1.00 2.00 3.00 [1.00, 3.00) -0.03 0.04 

e 0.30 0.20 0.10 [0.10, 0.30] 0.00 0.00 

11 0.50 1.00 1.50 [0.50, 1.50) 0.00 0.00 

AMRR AMRI AMRR-F AMRI-F AM RR-A AMRI-A 

-0.29 0.97 -0.21 0.37 0.00 0.00 

..... -----------·-------------- ------------- ----- ----------------------~-- -----~--- ---------~------------------------------- -------·------

Table 14: Perturbation results for a heterogeneous reservoir. Tref = 2280 days. ( = 2. Dis­

continuous space variation of parameters. Heterogeneous reference values. The variation of p is 

depicted in Figure 4. 
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parameter Prer intervals Ii MRR MRI 

i=O i = 1 i=2 
K 1.50 1.00 0.50 [0.50, 1.50] -0.17 0.44 

¢ 0.30 0.20 0.10 [0.10, 0.30) -0.27 0.28 

a 3.00 2.00 1.00 [1.00, 3.00] -0.35 0.16 

K,..,, 0.90 0.60 0.30 [0.30, 0.90] -0.08 0.26 

K.,,"' 0.30 0.60 0.90 [0.30, 0.90) -0.10 0.18 

s.,,r 0.30 0.20 0.10 [0.10, 0.30) -0.11 0.11 

Sor 0.10 0.20 0.30 [0.10, 0.30) -0.10 0.10 

b 1.00 2.00 3.00 [l.00, 3.00] -0.05 0.08 

{ 0.30 0.20 0.10 [0.10, 0.30) -0.01 0.01 

T/ 0.50 1.00 1.50 [0.50, 1.50) 0.00 0.00 

AMRR AMRI AMRR-F AMRI-F AM RR-A AM RI-A 

-0.57 2.34. -0.36 0.69 -0.01 0.01 

Table 15: Perturbation results for a heterogeneous reservoir. rrer = 1656 days. ( = 2. Linear 

space variation of parameters. Heterogeneous reference values. The variation of p is depicted in 

Figure 5. 
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4 Stochastic analysis 

--------cSince-th-e-un-c~rta.in input paramet.ers p exhiOit a ranaom variation throughout a 

reservoir it is reasonable to treat these parameters formally as stocha1tic random 

field". In practice the governing partial differential equations are solved numer­

ically and they are therefore reduced to sets of linear algebraic equations. Sta­

tistically this means that a stochastic random field is discretized to a vector of 

stochastic variables. The purpose of this part of the note is to apply methods for 

calculating the statistics of the time T to water breakthrough in the production 

well. In our case the discretized mathematical model for T consists of sets of 

algebraic equations where the coefficients are stochastic variables with prescribed 

distributions. 

We will employ recently developed methods from structural reliability for de­

termining the statistics of T and the sensitivity to input parameters. Structural 

reliability methods have the advantage over sampling techniques (of the Monte­

Carlo type) in that sensitivity of probabilities to variations in parameters in both 

the flow model and the input distributions are cheaply computed. Reliability meth­

ods generally give accurate results when the computed probabilities are small. As 

we will show later, it is likely that reliability methods may be very accurate over 

the whole range of probabilities in the present reservoir flow problems. Selvig [15) 

has studied the feasibility of structural reliability methods in reservoir simulation. 

Selvig used an analytical, one-dimensional, homogeneous, water flooding simulator 

to demonstrate the principles of the application. Porosity, absolute permeability 

and irreducible water saturation were chosen as stochastic input variables. In this 

paper we apply structural reliability methods to the flow problems described in 

section 3. 

We select r of the input parameters pf to be stochastic variables. These vari­

ables are denoted by X E R", X = (X1, ••• , X,. )T, and called ba,ic variables. 

Given statiatical information about X we want to establish statistics of the output 

T. For this purpose a first order reliability method (FORM) is used. Since this 

type of analysis is less known to readers of reservoir fl.ow, the next section reviews 

some of the basic theory. We also introduce notation and definitions and describe 

how the present problem can be formulated for FORM analysis. The version of 

FORM used in this note is closely related to that described in [11]. It is referred 

to Madsen et al. [13) for general theory on FORM. 

4.1 Theory 

Let X = (X1 , ••• , X,.f be a vector of basic variables. We are interested in com­

puting the probability of the event Pr {g(X) :::; O}, where g(X) is a limit state 

function. Let n E R" be the set of points where g :::; 0 (the failure domain). 
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Clearly the probability can be computed as 

(TO) 

where /x(x) is the joint probability density of the vector X. We will define 

the limit state function as g = T - T"', giving Pr {g:::;; O} = Pr {T:::;; T"'}' where 

T"' = wT. Tis the deterministic,value of T when E[X] is used as input. Note that 

T must be computed by solving the differential equations from section 2. There are 

two problems with the use of (10). Firstly, it may be difficult to establish the joint 

density, and secondly, the evaluation of the integral, for example by quadrature 

rules, becomes very expensive, even for moderate values of r. The first problem 

may be solved to some extent by using methods such as those in [11], which will 

be discussed below. The second problem can be treated by FORM analysis. 

In general it is extremely difficult to assign a joint density to input variables in 

reservoir simulation. At most we can hope to establish marginal distributions for 

each basic variable and maybe some correlation coefficients. Let 0xi(xi) be the 

marginal distribution function of Xi. The associated density d0/dxi is denoted 

by 8:1Axi). If Cov[·, ·]is the covariance operator and D[·] is the standard deviation 

operator, the correlation coefficient is 

The correlation matrix R is then {R}i; = e(Xi,X;)., The method used herein 

restrict the statistical information about the basic variables to only include 0 X;, 

i = 1, ... , r, and R. We refer to [11] for extensions to cases where some or all joint 

distributions are prescribed. 

4.1.1 FORM approximations to probabilities 

Let (x1 , x 2 ) be the eucledian inner product of x1 , x 2 E Rr, and let I lx1 11 = J (xl, x 1 ) 

be the corresponding norm. In the case where the failure 1urface, defi~ed by 

g(X) = O, is a hyperplane, and /x(x) is a standardized, multivariate normal 

density, 

/x(x) = (2:)r/2 exp (-~llx112), 
the integral in (10) can be calculated analytically: 

lo fx(x)dx = ~(-/3). (11) 

Here ~ is the cumulative, univariate, standardized, 'normal distribution function, 

and /3 is the distance between X = 0 and the (linear) failure surface g = 0. Let 

x* be the point on g = 0 which is closest to origo (x* is called the de1ign point). 

Then /3 = llx*ll· 
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To formulate a first order reliability method we consider a mapping 

---X---+--Z---+-'¥ 

such that Y = (Yi, ... , Yr )T is a vector of statistically independent, normally 

distributed variables with mean zero and unit variance. If the failure surface is 

linear in the Y-space, the result ( 11) gives 

Pr{g ~ 0} = ~(-,8), ,8 = llY*ll (12) 

with y* as the design point in the Y-space. In the general case where the failure 

surface is nonlinear (12) holds approximately, i.e. Pr {g ~ O} ~ +(-,8), provided 

the curvature of the surface at y = y* is small. The first order reliability method 

(FORM) refers to this approximate method of calculating Pr {g ~ O}. 

4.1.2 Transformation of the basic variables 

In Z-space the variables are as1mmed to be jointly normally distributed wit.h cor­

relation matrix Ro, zero mean and unit standard deviation. The mapping Z--+ Y 

will therefore be a linear transformation 

Lo is here the lower triangular Cholesky decomposition of Ro: Ro = L0L~. The 

mapping X --+ Z is defined by 

(13) 

In addition the R matrix must be transformed to Ro. This may be done ap­

proximately by empirically based formulas (see [11]) for a wide range of distribu­

tions 0 X;. However, we will exclusively be concerned with normally or lognor­

mally distributed variables in X-space. In this case the transformation (13) and 

the formulas for transforming R to Ro can be simplified and made exact. Let 

{Roh; = e(Zi, Z;). If Xi is normally distributed with mean E[Xi] and standard 

deviation D[Xi], we have 
Xi - E[Xi] 

zi = D[Xi] . 

If both Xi and X; are normal variables, e(Zi,Z;) = e(Xi,X;). For a lognormally 

distributed variable xi the transformation (13) simplifies to 
---------· -------~--- ---~---

-- In Xi - E[ln Xi] 
Zi = D[lnXi] ' 

and e(Zi,Z;) = Ae{Xi,X;), where 

A= ln(l + e(Xi,X;)6i6;) 

e(Xi,X;)Jln(l + 6l)ln{l + 61) 
{14) 
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-·--------

when both Xi and Xi a.re lognorma.lly distributed. The coefficient of variation, 6i, 

is defined as 
- - ------- ------(5~-D-[-.Xi]­

I - E[Xi]. 

If Xi is normally distributed and Xi is lognormally distributed, we have 

.x - 6j 
- Jln(l + 6J). 

(15) 

The formulas (14) and (15) are exact. It is remarked that the joint normal distribu­

tion of Z is of course an assumption and implies a certain joint density of X. This 

joint density is in general different from the exact joint density which is uuknown, 

but the two densities have the same correlation matrix R. The basic assumption is 

that the distribution is characterized to a large extent by second-order statistics. 

Notice that uncorrelated basic variables imply stochastically independent variables 

when we use the transformation X --+ Z described above. 

4.1.3 Determination of the design point 

Let gy(Y) be the limit state function in Y -space. The design point y* is the 

solution of the constrained minimization problem 

There will generally be several local minima of the distance to the failure surface. 

The computation of a local minimum is carried out by a standard procedure ([11], 

. [13)). In this work we iterate in X-space and linearize the transformation X --+ Y 

in each iteration. De:fiue the vector M = ({L1 , ..• , ftr )T and the matrix D = 
diag( 0-i, ... , Ur). Given an initial guess x 0 = ( :z:~, ... , :z:~)T for the design point in 

X-space we iterate for f = O, 1, ... as follows: 

Al <p { ~-1 [ex;(:z:D]} 
i=l, ... ,r (16) Cf· 

Bx;(:z:!) I 

Al :z:~ - a-~~-1 [e (:z:~)] i=l, ... ,r (17) µi - I I .X; I l 

Ql filRofil (18) 

xl+I -l. (xl - Ml, Virg(xl))- g(xl) l l 
M + (V ir9(xl), QlV irg(xl)) Q V irg(x ) (19) 

- ·---------- -

_yl+I - UL0-1 [nt]-l_(xl+l ~ Qt) {20} 

{3l+I V(yl+I, yl+l) (21) 

fo these equations V., is the gradient operator in X-space, that is, 

v · = (a!, ' · · · ' a!J 
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<p denotes the univariate normal density function with zero mean and unit variance. 

Equation (20) shows that Mand D can be interpreted as instantaneous/equivalent 

mean and standard-deviation of X. Ju fact, when X are jointly normally dis­

tributed, Mand fi contain the means and standard deviations, respectively. Since 

the value of g is a result of a numerical solution of partial differential equations, 

the gradient V z9 of g with respect to the basic variables must be computed numer­

ically. In each iteration the algorithm above therefore requires r + 1 evaluations of 

g = T-T"'. The iteration is stopped when l.B'+l -.Bll ::; £13, where for our purposes 

Ef3 = 0.01 suffices. Having found ,B, we utilize the approximation 

Pr { (X) < O} ~ { ~(-.8) g(x*) > O, 
9 - ~(.B) g(x*) ::; 0. 

One may not.ice that if X is jointly normally distributed .B coincides with the 

Hasofer-Lind reliability index [13]. 

4.1.4 Sensitivity measures 

One of the attractive features of FORM is that one can compute sensitivity co­

efficients very efficiently. Let the transformation X --+ Y be denoted by Y = 
T(X; E[X], D[X]). Then we have 

8;~] = ~(y*, 8E~X] T(x*;E[X],D[X])) (22) 

and 

(23) 

The limit state function may contain a set of parameters r besides the basic vari­

ables X: g = g(X; r ). In our case r may be input variables which are not treated 

stochastically. It can be shown that 

8,B frg(x*; r) 

8r V(V 111g(x*),Q*V 111g(x*)} 
(24) 

Q* is the value of Q in the last iteration. Strictly speaking, the sensitivity co­

efficients above are approximately correct and approach the exact coefficients as 

.B --+ oo. It is important to remark that the gradients of g with respect to limit 

state function parameters or. distributioll pan.meters must be determined numer­

ically in our application. In practice we are often interested in the sensitivity of 

Pr {T::; Tw} to distribution or limit state function parameters. Such quantities 

are oMained straightforwardly: 

8 
TE = 8E[X] Pr {T::; T"'} 

8.B 
- c.p(,B) 8E[X)' 
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Define the unit vector a = ( o:1 , ••• , O'.r f as a = y* / f3, The quantities a~, ... , a~ 

are termed importance factor1 and since :Li'=t a1 = 1, a1 reflects the relative 

importance of Xi in determination of f3 or Pr {g ::; O}. 

Omi11ion 1en1itivity factor1 reflect the error in f3 when one of the basic variables 

Xi is treated as a constant with value equal to, say the median mi of Xi. Generally 

we have 

O'.~ --+ 0. (25) 

Thus, when "'r'i is close to unity, the variable X, contributes very little to f3 (or 

Pr {g ::; O}) and may be omitted from the stochastic analysis and instead replaced 

by its median value. By checking the "'r'i values in the first iteration one can 

omit several stochastic variables and thereby increase the efficiency of the analysis 

considerably. Recall that r + 1 solutions of the partial differential equations are 

required in each iteration. In many cases, as will be shown later, only a few basic 

variables contribute significantly to the determination of (3. 
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4.2 Examples of failure surfaces in reservoir flow 

·~ . 

------~R=e=c=alJ_j_haLac_c11racy __ of_F_ORM-depends-on-the-GUF-va.tu-re-0f-t-he-f'ail-ure-surface---------­

g = 0 at the design point in Y -space. If the failure surface is approximately linear, 

-~ 

~(-/3) will be a very good approximation to Pr {g :::; O}. There may frequently be 

many local minima of the distance to the failure surface, and the computation of 

the probabilities is then more complicated and expensive ([13)). 

To gain insight into the quality of the FORM approximations in the present 

problem we have plotted contour lines of the limit state function when there are 

two basic variables. As physical problem the homogeneous fl.ow case in section 

3.3.1 was chosen. Parameter values were as in Table 3. The expectation of a basic 

variable equals here the reference value in Table 3, and the coefficient of variation 

is chosen as 1/3. T..., = T0 .8 = 1123 days. Figure 6 shows g as a function of a and 

b in X-space and as a function of transformed variables in Y -space. A lognormal 

distribution is assigned to a and b. The variables are uncorrelated. At this point it 

would be natural to introduce additional symbols to distinguish determiuis-tic and 

stochastic quantities. However, with the widely used notation which is employed 

here for the input parameters no simple rule (e.g. upper case stochastic variables, 

lower case deterministic variables) seems applicable. It should nevertheless be clear 

from the context whether a variable is stochastic or deterministic. In Figure 7 we 

have plotted g as a function of Swr and Sor. These basic variables are lognormally 

distributed with correlation coefficient e( Swr, Sor) = 0.5. Figure 8 visualizes g 

as a function of Kwm and Kom. These two basic variables are uncorrelated and 

lognormally distributed. Finally in Figure 9, g is plotted as a function of <P and 

K, where e( ¢, K) = 0.8, and <P is normally distributed while K has a lognormal 

distribution function. 

The plots of g(X) give an indication of how T varies with a, b, Swr, S0 r, Kwm, 

K 0 m, <P and K, that can be of interest with respect to interpretation of the results 

from a deterministic simulator. 

From the plot of gin Y ...,.-space we see that the failure surfaces, which correspond 

to the contour lines of g, are approximately linear. This indicates high accuracy of 

FORM probabilities. We also see that there a.re not more than one local minimum 

of the distance to the failure surface, and the formulas presented previously are 

sufficient for calculating probabilities. 
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Figure 6: The limit state function g = T-T.., as a func.tion of X 1 =a and X 2 = b (left) and the 

corresponding transformed variables Y1 and Y2 (right). e(a, b) = 0. 
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Figure 7: The limit state function g = T - T.., as a function of X 1 = S.,,r and X 2 = Snr (left) 

and tlte correspondi.ag traa.ffornled v•ri.Wa Y1 attd Y:i (rig"ht). u(S.,,r,Sor)::: 0. 

33 

• 



0.4 

g as a runction of Kwm and Korn 

0.4 0.5 0.6 
Kwm 

0.7 0.8 

l.D 

0.9 

I in lhe sl&ndarized Y-space 

-1.5 - l.0 -0.5 0.0 
Yl 

0.5 1.0 

Figure 8: The limit state function g = T - T.., as a function of Xi = K.,,,,. and X2 = K..,,,, (left) 

and the corresponding transformed variables Y1 and Y2 (right). u(K.,.,,., Km11) = 0. 
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Figure 9: The limit state function g = T - T.., as a function of Xi =~and X2 = K (left) and 

t.Jte coneepon4ing tranrimttecj variabl~ Y1 and Y2 (right). e(ip, K) = 0.8. 
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4.3 Results 

-------~We-st-art-wii-h-report-ing-some-iftformatiou-on-t-he-numerkal-perfortnance--of-t-he--------1 

search algorithm. It is important to note that T is not a smooth function of the 

input parameters when the partial differential equations are discretized: T can 

only be determined as m6t, m being an integer. This property influences the 

computation of derivatives of the limit state function g = T - Tw. For example, 

consider the calculation of 8g / 8x1 by 

If E is so small that g( x1 + E, x2 , ••• , z,.) - g( x1 , ••• , x,.) :::; 6t, we will obtain 

8g / 8x1 = 0 when g is found from a numerical scheme for the partial differential 

equations. Even if Eis large enough to prevent vanishing derivative, convergence 

problems of the search algorithm may occur. Of course, the value of E when com­

puting 8g/8xi depends on the magnitude of Xi· We have scaled all basic variables 

such that their magnitudes are of order unity. In this work we have obtained good 

results with E = 0.1 for all basic variables. In general the convergence rate of the 

search algorithm depends on w. When w E [1/2, 2] the convergence is fast, usually 

3-4 iterations. Convergence problems may occur when w is outside this interval. 

A natural way of organizing the stochastic analysis in accordance with the 

deterministic one would be to choose E[X] as the reference values in the determin­

istic case, assign the same coefficient of variation to all Xi, and then finally report 

the coefficient of variation of T. Such an approach requires construction of the 

probability density of T. Since one FORM computation produces one point on the 

cumulative T distribution curve, one needs at least 10 such points to determine 

the standard deviation and expectation of T. With 4 iterations per FORM calcu­

lation and 8 basic variables, each physical problem then requires 360 solutions of 

the partial differential equations. For reference we suggest the following procedure 

for calculating moments of T. Let 0T(t), t 0 :::; t:::; tn, be the marginal distribution 

of T, and assume ithat 0i = 0T(ti), is known for some ti, i = O, ... ,n. Then 

integration by parts in the definition of the moments gives 

Employing Simpson's rule for integration we may write 

To avoid very large computational cost we have only computed the probability 

that the time to breakthrough is 203 less than the deterministic reference values 

provided in section 3 (i.e. w = 0.8). This is the information about the uncertainty 
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in T which will be presented. A practical interpretation of the reported proba-

bilities is that they (approximately) represent the risk of under predicting._t'-h_e_o_i_l ____ _ 

production until water breakthrough by more than 203. 

4.3.1 Homogeneous reservoir 

We consider the same physical problem as in section 3.3.1, i.e. a homogeneous 

reservoir. The basic variables are defined as 

Since the influence of uncertainties in e and T/ is fairly small, we treat these param­

eters deterministicly. In accordance with common practice the porosity is assumed 

to be normally distributed whereas the absolute permeability is assigned a lognor­

mal distribution. The other basic variables can attain positive values only. Due to 

lack of better knowledge we let these be lognormally distributed. The expectation 

E[X] is chosen equal to the reference values in section 3.3.1, and the standard 

variation follows from assigning a coefficient of variation bi to each basic variable. 

Table 16 displays the results for uncorrelated basic variables while Table 17 

gives the results for the case when the basic variables are correlated. The sign of 

correlation coefficients are chosen in accordance with the physics of the problem. 

It is remarked that the entries in R must be chosen so that Ro becomes positive 

definite, for example, correlation coefficients t;>(Xi, X;) close to ±1 must be avoided, 

as these may result in le(Zi,Z;)I > 1. If a high correlation (e.g. e(Xi,X;) 2:. 0.7) 

is assigned for many of the basic variables convergence problems of the algorithm 

(16)-(21) may occur. In the tables the kin the second column refers to the coarse 

grid point where the basic variable is defined. The present problem is homogeneous 

and the k value is irrelevant. We have run the problem in Tables 16 and 17 for 

several values of w, and Figure 10 shows the probability distribution of Tin the 

correlated and the uncorrelated case. Table 18 displays results from the Buckley­

Leverett problem. If X is jointly normally distributed, we obtain the results listed 

in Table 19. Table 20 shows results where all basic variables for which 'Yi ::::; 1.03 

after the first iteration are omitted from the stochastic analysis. This table should 

be compared to Table 17. In Tables 16-20 the coefficient of variation hi equals 

____ J.fJ_._ Tables 21 presents results when--~~. Tables 23 and 22 show results for 

uncorrelated and correlated variables, respectively, when hi = 0.1 for all variables, 

except for K where hi = 1 /2. This choice of the coefficient of variation is intended 

to model the fact that uncertainties in K is usually larger than uncertainties in 

the other basic variables. 
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-~ --------------

parameter TD omitted? k E[X] D(X] x· o:~ • 
0 0.20 0.067 0.18 0.39 1.28 3.29 -0.18 no 

---a--------o--2~00-o~e61----1~11----0~9--rn--u:z9--=n:-u-9------no--------------

b 0 2.00 0.667 1.90 0.00 1.00 -0.01 0.00 no 
Sf/IT 0 0.20 0.067 0.20 0,08 1.04 -2.31 0.15 no 

Snr 0 0.20 0.067 0.20 0.05 1.02 -1.82 0.12 no 

K.,,,,. O 0.60 0.200 0.60 0.12 1.06 -0.76 0.08 110 

Kmn 0 0.60 0.200 0.58 0.00 1.00 -0.16 0.02 no 

K 0 1.00 0.333 1.02 0.17 1.10 -0.52 0.05 no 

Table 16: Physical problem as in Table 3. E(X] equals prr in Table 3, and 

6; = 1/3 for all variables. No correlation between the basic variables. f3 = 0.51, 

Pr {TS To.so} = Pr {TS 1119} = 0.30, 3 iterations. 

parameter 

a 

b 

K,,,,,. 
K,.,,, 
K 

k 

0 

0 

0 

0 

0 

0 

0 

0 

E(X] D(X] x· 
0.20 0.067 0.18 

2.00 0.667 1.69 

2.00 0.667 1.83 

0.20 0.067 0.22 

0.20 0.067 0.21 

0.60 0.200 0.59 
0.60 0.200 0.57 

1.00 0.333 0.94 

o:~ • 
0.22 

0.42 

0.04 

0.13 

0.11 

0.08 
0.00 
0.01 

'Yi 
1.13 

1.31 

1.02 

1.07 

1.06 

1.04 
1.00 
1.01 

2.46 

0.44 

0.13 

-2.84 

-2.64 

-0.62 
-0.03 

-0.14 

TD omitted? 

-0.10 110 

-0.16 no 

-0.03 no 

0.12 no 

0.11 110 

0.07 no 
0.00 no 
0.03 110 

Table 17: Physical problem as iu Table 3. E(X] equals pref in Table 3, and Ci = 1/3 for all 

variables. 0(9'>,a) = 0.1, 0(4>,b) = 0.1, 0(4>,Swr) = -0.4, 1?{9'>,Sm-) = -0.4, 0(4> 1 K.,,.,,) = 0.1, 

o( 4>, K "'") = 0.1, o( 4>, K) = 0.8. /3 = 0.51, Pr {T S To.so} = Pr {T S 1119} = 0.31, 3 itf':rations. 
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~o.e 
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f 
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3000 4000 

Figure 10: Probability distribution 9T(t) = Pr {TS t} for the time T to water breakthrough. 

The physical problem corresponds to that in Tables 16 and 17. The solid line represents correlated 

variables while the dashed line represents uncorrelated variables. 
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para.meter k E[X) D[X) x· a~ • 'Yi lE lD omitted? 

<P 0 0.20 0.067 0.18 0.25 1.15 2.47 -0.13 no 

a 0 2.00 0.667 1.66 0.38 1.27 0.41 -0.16 no 

b 0 2.00 0.667 1.82 0.03 1.01 0.10 -0.03 no 

S111r 0 0.20 0.067 0.22 0.12 1.07 -2.53 0.09 no 

Sor 0 0.20 0.067 0.22 0.14 1.08 -2.71 0.09 no 

K111m 0 0.60 0.200 0.59 0.04 1.02 -0.44 0.05 no 

Kom 0 0.60 0.200 0.59 0.03 1.01 -0.36 0.04 no 

K 0 1.00 0.333 0.93 0.02 1.01 -0.16 0.03 no 

Ta.hie 18: Buckley-Leverett problem (pure water :flooding). E[X) equals Pref in Ta.-

ble 1, a.nd bi = 1/3 for a.11 variables. Correlations as in Table 17. /3 = 0.61, 

Pr {T $ To.so} = Pr {T $ 617} = 0.27, 3 iterations. 

parameter k E[X) D[X] x" a:~ • 'Yi lE lD omitted? 

<P 0 0.20 0.067 0.19 0.20 1.12 2.53 -0.07 no 

a 0 2.00 0.667 1.85 0.42 1.32 0.37 -0.06 no 

b 0 2.00 0.667 1.95 0.04 1.02 0.12 -0.01 no 

Swr 0 0.20 0.067 0.22 0.14 1.08 -2.08 -0.09 no 

Sor 0 0.20 0.067 0.22 0.12 1.06 -1.93 -0.08 no 

K.,.m 0 0.60 0.200 0.62 0.07 1.04 -0.50 -0.02 no 

Kom 0 0.60 0.200 0.60 0.00 1.00 -0.07 0.00 no 

K 0 1.00 0.333 1.00 0.01 1.01 -0.13 0.00 no 

Table 19: In contrast to Table 17 a.11 variables are here normally distributed. Correlations as in 
------~--------------------- --------,---•-

-- - ·--- -----· ------ '!'able 17. f3 - 0.33, Pr {T $ To.sof= Pr {T $ 1119} = 0.37, 2 iterations. 
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parameter k E[X] D[~ x* o:~ l'i i!!l iv omiJted? 

<P 0 0.20 0.067 0.18 0.40 1.29 3.29 -0.19 no 

a 0 2.00 0.667 1.76 0.20 1.11 0.29 -0.09 no 

b 0 2.00 0.667 1.89 0.00 1.00 0.00 0.00 yes 

s.,,r 0 0.20 0.067 0.20 0.08 1.04 -2.31 0.15 no 

Sor 0 0.20 0.067 0.20 0.05 1.02 -1.80 0.12 no 

K,,'"'· 0 0.60 0.200 0.60 0.11 1.06 -0.75 0.08 no 

Korn 0 0.60 0.200 0.56 0.00 1.00 0.12 -0.02 yes 

K 0 1.00 0.333 1.02 0.17 1.10 -0.51 0.05 no 

Table 20: Physical problem as in Table 3. E[X] equals p!"f in Table 3, and Ci = 1/3 for all vari-

ables. Basic variables for which 'Yi S 1.03 after the first iteration, are omitted from the stochastic. 

analysis. Uncorrelated basic variables. /3 = 0.51, Pr {TS To.so} = Pr {TS 1119} = 0.30, 4 

iterations. 

parameter k E[X] D[X] x* o:~ • 'Yi iE iv omitted? 

<P 0 0.20 0.020 0.19 0.21 1.12 4.58 -0.15 110 

a 0 2.00 0.200 1.84 0.39 1.28 0.73 -0.23 no 
b 0 2.00 0.200 1.93 0.05 1.03 0.25 -0.04 no 

s.,,r 0 0.20 0.020 0.22 0.14 1.08 -5.56 -0.06 no 

Sor 0 0.20 0.020 0.22 0.12 1.07 -5.16 -0.05 no 

K111•n. 0 0.60 0.060 0.62 0.07 1.04 -1.09 0.00 no 

K°'" 0 0.60 0.060 0.60 0.00 1.00 -0.14 0.01 no 

K 0 1.00 0.100 0.99 0.01 1.01 -0.25 0.02 no 

Table 21: Pl1ysical problelu as in Table 3. E[X] equals pref in Table 3, and ci = 0.1 for all 

variables. Correlations as in Table 17. /3 = 1.17, Pr {TS To.so} = Pr {TS 1119} = 0.12, 4 

iterations. 

parameter k E[X] D[X] x* o:~ • 'Yi iE iv omitted? 

<P 0 0.20 0.020 0.20 0.07 1.04 4.13 -0.04 no 

a 0 2.00 0.200 1.97 0.03 1.02 0.30 -0.03 no 
b 0 2.00 0.200 1.99 0.00 1.00 0.00 0.00 no 
s.,,r 0 0.20 0.020 0.20 0.02 1.01 -3.33 0.07 no 

Sor 0 0.20 0.020 0.20 0.01 1.01 -2.60 0.05 no 

K.,,m 0 0.60 0.060 0.60 0.02 1.01 -0.97 0.03 no 

Kon• --+----&:-60------tr.666-----o:tttr---o:oo- -J:"()1t- · -~ - -u:ur - ---·---·------ --------------·------
-->..--------------- -----·----- ·------~---- no 

K 0 1.00 0.500 1.20 0.85 2.56 -0.63 -0.01 no 

Table 22: Physical problem as in Table 3. E[X) equals P!ef in Table 3, and Ci = 0.1 for all 

variables, except for K which has a coefficient of variation equal to 1/2. Uncorrelated variables. 

/3 = 0.68, Pr {TS To.so}= Pr {TS 1119} = 0.25, 4 iterations. 
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parameter k E[X] D[X] x* a~ • "Yi lE lD omitt~d? 

¢ 0 0.20 0.020 0.21 0.21 1.13 -6.78 -0.14 no 

a 0 2.00 0.200 1.94 0.16 1.09 0.66 -0.10 no 

b 0 2.00 0.200 1.97 0.04 1.02 0.31 -0.03 no 

S111r 0 0.20 0.020 0.21 0.25 1.16 -11.27 0.13 no 

Sor 0 0.20 0.020 0.21 0.25 1.15 -11.15 0.14 no 

Kwm 0 0.60 0.060 0.60 0.00 1.00 -0.32 0.01 no 

Kmn 0 0.60 0.060 0.60 0.01 1.00 0.46 -0.02 no 

K 0 1.00 0.500 1.22 0.09 1.05 -0.19 -0.01 no 

Table 23: Physical problem as in Table 3. E[X] equals Pr"f in Table 3, and oi = 0.1 for all 

variables, except for K which has a coefficient of variation equal to 1/2. Correlations as in Table 

17. /3 = 0.78, Pr{T ~To.so}= Pr{T ~ 1119} = 0.22, 4 iterations. This table is to be compared 

to Table 21. 

X correlated X uncorr~lated 

w = 0.5 w = 2.0 w = 0.5 w = 2.0 

¢ 0.22 0.16 0.41 0.32 

a 0.50 0.36 . 0.26 0.15 

b 0.03 0.07 0.00 0.00 

Swr 0.10 0.16 0.06 0.10 

Sor 0.09 0.12 0.04 0.05 

K.,,m 0.06 0.11 0.10 0.15 

Kon, 0.00 0.00 0.00 0.01 

K 0.01 0.02 0.13 0.23 

-~ -·-- ---·-·. - -- ·- Table ~- "t'atiatious of al with w~ --ntefigures represent-The extren1e v&lues o(O:l -wb;.~- .. 
w E [0.5, 2]. 
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Although the tables themselves summarize the most interesting results from 

the sensitivity analysis, we make some general remarks and conclusions here. 
----------------- ------------

• Water flooding versus polymer flooding gave very small differences in the 

results contained in the tables. Some differences between the computed 

probabilities did however exist. Similarly, negligible differences arose when 

treating all basic variables as normally distributed, except. for a slight change 

in Pr { T :S Tw}. This means that in a stochastic analysis the presence of 

polymer or the choice between normal and lognormal distribution is not 

significant if the interest is to compute sensitivity measures. 

• The influence of hi on the o:~ coefficients is negligible as long as hi is the same 

for all variables. Increasing hi for e.g. K only is reflected in a la:cger value of 

the importance factor o:~, especially if the variables are uncorrelated. It can 

be seen that hi ha.s a significant influence on the computed probabilities. As 

expected, decreasing hi leads to greater sensitivity to E[X]. 

• When the basic. variables are uncorrelated it is seen from the o:~ values that 

</>is the most important parameter. Also a and K contribute significantly. 

A ranking of the importance will be qualitatively the same as in the deter­

ministic ca.se, a.s long as hi is the approximately the same for all variables. 

In practice the coefficient of variation of K may be larger than for the other 

variables, and in this case K is by far the most important ha.sic variable. 

• With fairly correlated variables the situation is different: a is clearly most 

important while e.g. K plays a minor role. The importance measure of </> is 

more than halved compared to the uncorrelated case. Correlations have a 

significant impact on the relative importance of the stochastic variables. 

• The stochastic analysis provide two different measures of input parameter 

importance: 

1. the importance factor o:~ which reflects the importance of modeling a 

parameter stochastically, and 

2. the TE and TD values which give information about the parameters that 

are most important to measure accurately in laboratory experiments. 

__!:': - --~---------- -----·------
~u The tables show that although " gives-the-largest eontributionw--theconfpu-

tation of Pr {T :S Tw}, the most important quantities to measure accurately 

is the expectation of the residual saturations and porosity, especially Swr. 

The sensitivity to expectations is also much larger than the sensitivity to 

standard deviations. 
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• The presented tables correspond to computations where w = 0.8. It is of 

interest to investigate the sensit.ivity of our conclusions to variations in w. 
---

The-pro--blems treatea.--in ~aoles 16 and 17 have been run with different. w 

values. It turned out that nl varied monotonically with w. Table 24 displays 

the extreme values of al when w E [0.5, 2]. It is seen that the internal ranking 

of the basic variables, according to the importance factor al, is not affected. 

Similar investigations of TE and TD showed that the variation with w was 

not significant. As w--+ 1 (from both sides) TE increased in absolute value 

for all basic variables. The variation of TD with w did not exhibit a regular 

pattern common to all xi's. 

4.3.2 Heterogeneous reservoir 

We now treat the problem in section 3.3.2 stochastically. We choose the input 

parameters at the midpoint y1 = ~L as basic variables, again with exception of e 
and 17. The distributions are as in the previous section. 

Tables 25 and 26 present results with and without correlation between the basic 

variables, respectively. The physical problem corresponds to that treated in Table 

13 (the aqueous phase is the most mobile phase at :r = 0). In Table 29 we can 

see the effect of omitting stochastic variables after the first iteration. Linear space 

variation of parameters are employed in all tables, except in Table 28 where the 

variation is piecewise discontinuous as depicted in Figure 4. Table 30 corresponds 

to the physical problem in Table 15 (the aqueous phase is the less mobile phase 

at :r = 0 ). Sensitivity to some deterministic parameters that enter the limit state 

. function are shown in Tables 27 and 31. Similar sensitivity measures TR have 

been calculated also corresponding to Table 25 and 28. However, the TR values 

for the latter two cases were in qualitative agreement with those in Table 27. With 

a discontinuous space variation of p the IT RI values were slightly larger than with 

a linear variation. The k value in the second column in all tables refers to the kth 

point. in the coarse "parameter grid". 

We see that most of the conclusions listed for the homogeneous case also holds 

here. There were small differences in the computed probabilities in the different 

tables. This indicates that a statistical analysis, where the interest is on the output 

probabilities, is robust. For example, no significant deviation due to linear or dis­

continuous space variation was observed, except that the discontinuous variation 

usually led te> ~lowttronvergenced the search algorithm. -Omission of basic vari~ 

ables where "Yi ~ 1.03 after the first iteration gave in general slower convergence 

(see e.g. Table 29) and inaccurate probability estimate. 

42 



parameter k E[X) D[X] x* a~ • "Yi TE TD omitted? 

4i 1 0.20 0.200 0.13 0.22 1.13 0.70 -0.10 no 

a 1 2.00 2.000 1.12 0.11 1.06 0.10 -0.04 no 

b 1 2.00 2.000 1.44 0.00 1.00 -0.01 0.00 no 

sfJIT 1 0.20 0.200 0.18 0.12 1.07 -0.96 0.12 no 

<t s<>r 1 0.20 0.200 0.16 0.03 1.01 -0.50 0.07 no 

Kwm 1 0.60 0.600 0.58 0.26 1.16 -0.40 0.07 no 

Kam l 0.60 0.600 0.41 0.00 1.00 0.05 -0.01 no 

I K 1 1.00 1.000 0.97 0.25 1.16 -0.23 0.04 no 

Table 25: Physical problem as in Table 13. E[X] equals p~ef in Table 11, and 6i = 1/3 

for all variables. Uncorrelated variables. Linear space variation of parameters. /3 = 0.76, 

Pr {T .:S To.ao} =Pr {T .:S 1789} = 0.22, 2 iterations. 

parameter k E[X] D[X] x* a~ • "Yi TE TD omitted? 

4i 1 0.20 0.200 0.16 0.08 1.04 0.41 -0.03 no 
a 1 2.00 2.000 0.92 0.41 1.31 0.21 -0.08 no 
b 1 2.00 2.000 1.21 0.05 1.03 0.07 -0.02 no 

S.,,T 1 0.20 0.200 0.23 0.18 1.10 -1.03 0.09 no 

s<>r 1 0.20 0.200 0.22 0.11 1.06 -0.82 0.08 no 

K.,,.,. 1 0.60 0.600 0.55 0.15 1.08 -0.32 0.06 no 

Kon• 1 0.60 0.600 0.40 0.01 1.00 0.09 -0.02 no 
K 1 1.00 1.000 0.76 0.01 1.01 -0.06 0.02 no 

"' Table 26: Physical problem as in Table 13. E(X] equals p~f in Table 13, and 6i 1/3 = 

for all variables. e(¢,a) .- 0.1, e(¢, b) = 0.1, e(¢, Swr) = -0.4, e(¢,Sor) = -0.4, 

. .:Jc -- e(~. Kum) 0.1, ~(¢, K""') 6.1,#, K) - 0.8. Linear space variation of parameteis~--13;;-0.76,----

Pr {T .:S To.ao} = Pr {T .:S 1789} = 0.22, 4 iterations. 
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-----------

parameter le p~ef lR 
¢ 1 0.10 0.00 

¢ 3 0.30 0.89 

a 1 1.00 0.05 

a 3 3.00 0.08 

b 1 3.00 0.01 
b 3 1.00 -0.03 

S,,,r 1 0.10 -0.31 
·~ s.,,r 3 0.30 -0.37 

Sor 1 0.30 -0.12 

Sor 3 0.10 -0.38 
I K,,,,,, 1 0.90 -0.15 

K.,m• 3 0.30 -0.16 

K.,,,, 1 0.30 -0.02 

Kom 3 0.90 0.06 

K 1 0.50 -0.19 

K 3 1.50 -0.03 

e 1 0.10 -0.14 

e 2 0.20 -0.11 

e 3 0.30 0.00 

1J 1 1.50 0.01 

1J 2 1.00 0.01 

1J 3 0.50 0.00 

Table 27: Sensitivity to well values. This table corresponds to Table 26. 

parameter le E[X) D[X) x* Q~ • "Yi lE lD omitted? 

¢ 1 0.20 0.200 0.20 0.00 1.00 0.04 0.00 no 

a 1 2.00 2.000 0.87 0.53 1.46 0.24 -0.09 no 

b 1 2.00 2.000 1.25 0.04 1.02 0.05 -0.02 no 

S.,,r 1 0.20 0.200 0.22 0.19 1.11 -1.03 0.10 no 

Sor 1 0.20 0.200 0.20 0.08 1.05 -0.73 0.08 no 
K.,,.,. 1 0.60 0.6(}{) 0.56 0.14 1.08 -0.29 0.05 no 

, K.,,.,. 1 0.60 0.600 0.40 0.01 1.01 0.10 -0.02 no 

K 1 1.00 1.000 0.87 0.01 -1...QL_ =fi..05__ 0 01 ----lte- --- ---- ------- -----------~ 

- ~ ------ ----------- - -------- ---

Table 28: Physical problem a5 in Table 12. E[X) equals p~ef in Table 12, and 6i = 1/3 for all 

variables. Correlations as in Table 26. Discontinuous space variation of parameters. f3 = 0.81, 

Pr {T ~ To.so} = Pr {T ~ 1978} = 0.21, 7 iterations. 
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parameter k E[X] D[X] x• a~ • "Yi iE iv omitted? 

¢ 1 0.20 0.067 0.16 0.43 1.33 2.39 -0.27 no 

a 1 2.00 0.667 1.60 0.22 1.13 0.23 -0.10 no 
b 1 2.00 0.667 1.89 0.00 1.00 0.00 0.00 yes 

S.,,r 1 0.20 0.067 0.24 0.15 1.08 -1.93 0.01 no 

Sor 1 0.20 0.067 0.19 0.00 1.00 0.00 0.00 yes 
·I 

K.,,.,. 1 0.60 0.200 0.65 0.20 1.12 -0.64 0.03 no 

Kam 1 0.60 0.200 0.57 0.00 1.00 0.00 0.00 yes 

,. K 1 1.00 0.333 0.95 0.00 1.00 0.00 0.00 yes 

Table 29: Physical problem as in Table 13. E[X] equals Pr'1 in Table 13, and Ci = 1/3 for 

all variables. Correlations as in Table 26. All basic variables for which "Yi $ 1.03 after the first 

iteration, are omitted from the stochastic analysis. Linear space variatim1 of parameters. /3 = 1.00, 

Pr{T $To.so}= Pr{T $ 1789} = 0.16, 10 iterations. 

parameter k E[XJ D[X] x• a~ • "Yi iE iv omitted? 

¢ 1 0.20 0.200 0.16 0.09 1.05 0.49 -0.04 no 
a 1 2.00 2.000 0.91 0.68 1.76 0.30 -0.12 110 

b 1 2.00 2.000 1.34 0.01 1.00 0.03 -0.01 no 

S.,,r 1 0.20 0.200 0.20 0.07 1.04 -0.78 0.08 no 

Sor 1 0.20 0.200 0.20 0.08 1.04 -0.79 0.09 no 

Kum• 1 0.60 0.600 0.46 0.02 1.01 -0.15 0.03 no 

K""' 1 0.60 0.600 0.47 0.04 1.02 -0.20 0.04 no 

.. K 1 1.00 1.000 0.71 0.01 1.01 -0.07 0.02 no 

Table 30: Physical p-roblem as in Table 15. E[X] equals Pier in Table 15, and 60 = 1/3 for 
_JC _________ all va.riaeles. Correlations as in Table -U-:--fr== 0.63, Pr {'.Z' 57o:80}-:Tr"{T~-1325 };;-0.27, 4 -

iterations. 
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. 
parameter k pfef T'n 

I ¢i 1 0.30 0.97 
¢i 3 0.10 0.10 
a 1 3.00 0.03 
a 3 1.00 0.12 
b 1 1.00 -0.04 
b 3 3.00 -0.01 
s.,, .. 1 0.30 -0.53 
s.,, .. 3 0.10 0.02 
SOf" 1 0.10 -0.50 
SOf" 3 0.30 -0.02 

K.,,"' 1 0.30 -0.21 
K·w1n 3 0.90 -0.02 
Kom 1 0.90 0.01 
Kam 3 0.30 -0.29 
K 1, 1.50 -0.07 
K 3 0.50 -0.23 

e 1 0.30 -0.06 

e 2 0.20 -0.03 

e 3 0.10 -0.01 

17 1 0.50 -0.01 

17 2 1.00 -0.01 

17 3 1.50 -0.01 

Table 31: Sensitivity to well values. This table corresponds to Table 30 . 

.. 

_....s,. ___ --·~-- ------ -------- -·-- --·------------ -
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5 Conclusion and discussion 

---------:oeiermirnsffc anastocliasf.icsensitivTI.y-analysis represent two basically different 

ways of handling uncertainties. In the deterministic approach one calculates the 

effect (on the output) of a controlled hypothetical perturbation in the input. A 

stochastic analysis is based on the statistical structure in fictitious or performed 

observations and therefore applies to a specific real-world problem. When dis­

cussing sensitivity in general for a mathematical model the deterministic analysis 

probably gives the easiest perception of the model's "sensitivity", i.e. which in­

put quantities that are most important to measure accurately, and how much the 

output is affected due to a change in input. However, in a particular physical 

I 
problem where experience or measurements of the input data exist, a stochastic 

treatment have the advantage of incorporating the statistical information on the 

uncertainties and their effect on the output. The practical use of "sensitivity" (i.e. 

"What is most important to measure?") in the stochastic context is the sensi­

tivity to statistical distribution parameters (TE, TD), and not sensitivity to the 

input quantities that are modeled as stochastic variables ( af). The a~ quant.ities 

give.s valuable information about the input quantities that need to be modeled 

stochastically. 

In this paper we have tried to determine the relative importance of some input 

parameters that enter a reservoir fl.ow model. Polymer flooding including adsorp­

tion effects represented the simulated recovery process. For comparison we have 

also presented results from pure water flooding. The effect of including a poly­

mer component in the injected phase showed to be significant in the deterministic 

sensitivity study, but not in the stochastic approach. 

The deterministic sensitivity analysis was carried out by perturbing some input 

parameters and then measuring the effect on the time T to water breakthrough in 

the production well. Besides being of practical importance itself, T is also closely 

related to the total volume of oil produced until_ breakthrough. The input pa­

rameters studied herein were porosity, absolute permeability, quantities defining 

relative permeability curves and adsorption function parameters. The influence of 

the latter type of parameters was almost negligible. However, complete omission 

of the adsorption function had some effect on T (typically 203 in this study). Ab­

solute permeability, porosity, and the exponent a in the relative permeability curve 

for the aqueous phase were the m~~t imp()rta~tpa,rameters. As the injected poly-

- merconcentrati;;.Ilincreased, or when the viscosity of the water/polymer mixture 

increased, the maximum relative permeability of the aqueous phase also became a 

significant parameter. The relative oil permeability seemed to be censid~ably less 

important than the relative water/polymer permeability. The sensitivity of T to 

perturbations in a was largest when a was small. In situations of greatest physical 
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relevance this means that the sensitivity is largest when the curve is linear. 

One of the most serious deficiencies of a deterministic__siud~L-is---tl1e-pFoolems-- -----;----
--- ------------

with incorporation of the experimentally reported degree of functional relationship 

between the input parameters. A stochastic analysis of the present problem, based 

on a first order reliability method (FORM), showed that correlation between the 

stochastic variables had a significant effect on their relative importance. A strik­

ing feature was that the absolute permeability played a less important role in the 

stochastic analysis than in the deterministic one. However, in practice the coeffi­

cient of variation of the absolute permeability K may be larger than the coefficients 

of the other basic variables and then the importance of K increases, especially in 

the uncorrelated case. The expectations of the residual saturation variables, and 

occasionally also the porosity, showed to be the most important input data to a 

stochastic simulator. The output probabilities for T show little sensitivity to the 

type and dispersion of the distribution functions for the basic variables. 

It is a general problem that the iterative procedure used in the stochastic 

analysis requires a large number of calls to the solution module for the partial 

differential equations. When applying this type of methods to problems in two 

and three space dimensions, the present approach is probably too CPU-time con­

suming, especially in heterogeneous problems. One way of reducing the work is to 

examine the importance factors after the first iteration and then omit unimportant 

basic variables from the rest of the analysis. This strategy has been tested, but 

not found particularly attractive. To prevent loss in probability accuracy, only a 

couple of the variables could be omitted. Sometimes omission led to slower con­

vergence and thus no overall gain in efficiency. Simplified FORM methods, such 

as advanced mean-value FORM [4], should be tested. 

The main conclusion from the deterministic analysis is that there are serious 

uncertainties in the output of a reservoir simulator, first of all due to missing 

information about the water/polymer relative permeability curve. The imposed 

space variation of the parameters, this will usually be piecewise linear or piece­

wise discontinuous variation on a very coarse grid, have a significant influence 

on the output results. The uncertainty in this type of models defines a level of 

accuracy which may be utilized when constructing an using solution methods for 

the partial differential equations. For example, tolerances in termination crite­

ria used in simulators can be chosen large, and thereby increasing the efficiency. 

_ Ano!_!!~r conseqµ,~nc;;~ co_uld he that rather .cR:lEle mathematical approximations to -

the governing equations, especially in more complicated black-oil or compositional 

models, may result in significant simplifications without loss in overall accuracy 

as long as the most important physical effects are maintained. One may then take 

advantage of these simplifications when constructing numerical methods. Rough 

approximations of the fractional flow curve used in front trackers [5] is an example 
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of a first step in this direction. 
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