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A numerical analysis of non-linear convection in a Hele-Shaw 

cell heated from below is performed. The stability of the static-

nary solutions with respect to infinitesimal disturbances are exa­

mined. Further, the velocity distribution in the convection cell 

is discussed, and the theoretical results are found to fit well 

with available experimental data. 
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1 Introduction 

During the recent years convection in a porous medium has 

received considerable interest, due both to its geophysical im­

portance and to the mathematical simplicity of the model. A 

number of theoretical and experimental papers haye appeared in 

the literature. Schneider [1},Elder [2], Buretta [3] and Bories 

& Combarnous [4] have performed laboratory experiments. Finite 

amplitude convection in a porous medium has been analysed nume-

rically by Elder [2], Straus [SJ and Kvernvold [6], and analyti­

cally by Palm, Weber & Kvernvold [7]. 

The analogy between motion in a porous medium and motion in 

a Hele-Shaw cell has frequently been used to simulate porous con-

vection, especially with emphasis on the velocity distribution and 

the cell structure of the convective motion. See for example 

Wooding [8], Horne & O'Sullivan [9] and Hartline & Lister [10]. 

By defining an appropriate permeability the analogy between 

the stationary two-dimensional motion in a porous medium and the 

motion in a Hele-Shaw cell is obvious. However, one must be care­

ful to use this similarity too far, because the stability proper­

ties for the two types of non-linear motion are quite dif~erent. 

In a porous medium disturbances of three-dimensional character are 

--~he mo_s_~_~riti~_~l ___ ones _(_[~], [6]) while for a Hele-Shaw cell only 

-----~ -- -- two-dimensional disturbances may - exist. 

The main aim of the present paper is to study the difference 

between the stability regions for non-linear convection in a Hele­

Shaw cell and non-linear convection in a porous medium. Further, 

the velocity distribution and the heat transport are also discussed. 
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2 The governing equations 

We consider a Hele-Shaw cell defined by two vertical planes 

of infinite horizontal extent, height h, and separated by a 

distance d, where d << h. The fluid confined in the cell is 

supposed to be bounded vertically by two perfect heat conducting 

and impermeable planes, having constant temperature T1 and 

T1 + AT, respectively, where the lower plane is the warmer. 

Following Hartline & Lister [10], the governing equations 

for motion in a Hele-Shaw cell may be written : 

+ d2 + 
V = - 'f2li(Vp - p 0 yg6k) 

+ V•V : 0 

c aT + ~•VT 
at 

AT T = T0 - 11 z + e 

where the Boussinesque approximation has been utilized. 

By introducing dimensionless quantities 

h, AT, 

( 2 .1) 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

for length, velocity, temperature, pressure and time, respectively, 

the equations (2.1)-(2.4) becomes 

-- -+- + 
V - - VP + ~HSElK 

+ 
V•V = 0 

~ + ~·ve = w + v2 e at 

where the Hele-Shaw Rayleigh number is 

-- f-2.-6} 

(2.7) 

(2.8) 

(2.9) 
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Equations {2.6), {2.7) and (2.8) are formally identical to the 

equations describing convection in a porous medium if the perme-

ability for the Hele-Shaw cell is defined as 

d3 
~s = 12Y 

The boundary conditions imposed on the system are 

e = w = o for z = 0,1 

(2.10) 

(2.11) 

From equation (2.6) we observe that the vertical component of 

vorticity is zero. This, together with equation (2.7), makes it 
possible to introduce a scalar function, w, such that 

-+ -+ -+" 
v = v x v x k 1jl = aw (2.12) 

Further, by eliminating the pressure from equation (2.6), we find 

e = - _1_ v2ljJ 
RHS 

(2.13) 

and by combining (2.6), (2.8) ,- (2.12) and (2.13}_. we finally obtain 

(2.14) 

with the boundary conditions 

w = 1jJ = 0 zz for z = 0,1 (2.15} 

The critical Rayleigh number, RHSc' is obtained from the 
linearized version of (2.14), giving RHSc = 4n2 for a critical 
wave number ac = n, where a is the overall horizontal wave 

number defined by v1 2 ip = -a 2 $. (Lapwood [11]). 

-----------------------------------
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3 Method of solution 

To obtain a sufficiently exact solution of the problem for 

supercritical Rayleigh numbers the equations will be solved by 

numerical methods. Using Galerkin's method we will find a sta­

tionary solution of (2.14) and examine the stability of this solu-

tion with respect to small disturbances. 

The stationary two-dimensional solution of (2.14) subject 

to the boundary condition (2.15) is obtained by expanding the 

function w in an infinite series : 

• • 
1jl = l l 

p:-oo q:1 
A eipa.y sin q 'II' z 

pq 
( 3 .1) 

where each term satisfies the boundary conditions. The symmetry 

of the problem implies the restriction 

A = A pq -pq 
(3.2) 

corresponding to convection cells without tilt. 

Substituting (3.1) into (2.14), multiplying by -inax e sin m'lf z 

and integrating over the whole fluid layer, we obtain an infinite 

set of algebraic equations for Anm (Kvernvold [6]) 

-------------- =-~ l. A -k +lAk1 (k2 a. 2+12'1f2) (km+ In) (rrk)&2,.. 
~ k 1 n ,m 

' 
+~ lem, 1 An-k, sm 1 (m-1 )Akl (k2a2+12'11'2) (km-ln) (n-k).a2w 

' 
where 

1 
s l = { 0 rn, -1 

for m > 1 
for m = -1 
for m < l 

( 3. 3r---
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In order to handle this set it is necessary to truncate the 

series (3.1). We choose to neglect all terms with 

In! (3.4) 

where N is a sufficient large number. 

Because of the symmetry of equation (2.14) the solution will 

only contain amplitudes with n+m even, giving N(N+1)/2 equa-

tions to solve. For a given N the equations are solved by a 

Newton-Raphson iteration procedure. Usua.lly less than 5 iterations 

are needed to obtain a satisfactorily convergent solution. To 

determine the value of the truncation parameter, N, we follow Busse 

[12] assuming the solution to be sufficiently accurate if, by 

replacing N by N+1, the Nusselt number 

varies less than 1%. The over-bar denotes horizontal average. 

After obtaining a solution, "'s' of the stationary set of equa­

tions (3.3), the stability of this solution with respect to infini-

tesimal disturbances is examined. By introducing \jJ : \jJ + \jJ I 
s 

into 

equation (2.14) and linearize with respect to the infinitesimal dis-

turbanc, \jJ', we obtain the following equation 

with boundary conditions 

1'1' = iti' = 0 zz for z = 0,1 (3.7) 

If there exists a solution of (3.6) with growing time depen­

dence, the stationary solution is said to be unstable. Otherwise 



- 8 -

is is stable. 

A general expression for the perturbation, w', is given by 
', 

1jl' = I 
p,q 

A eipax ei(dx+by)+ot sinm ir z 
pq (3.8) 

where d and b are free parameters. For a Hele-Shaw cell the 

geometry forces the motion to be purely two-dimensional, and con-

sequently we may put b = O. This means that the perturbation is 

·two-dimensional with axis parallel to the axis of the stationary 

sol\Jtion. Instability arising from disturbances of this type, is 

termed E~ instability. For ordinary porous ~onvection it may 

be shown that disturbances with d = 0 and b ~ 0 are the most 

dangerous (Straus [5], Kvernvold [6]). 
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4 Results and discussions 

The results of the numerical calculations are shown in Fig. 

1 - 6. In Fig. 1 we have displayed the vertical heat transport 

defined by the Nusselt number (3.5) as a function of the Rayleigh 

number. It is assumed that there is no heat flux through the ver-

tical walls of the Hele-Shaw cell. This may be achieved either by 

insulating the vertical walls, or by putting several Hele-Shaw 

cells beside each other. A medium composed of several Hele-Sh~w 

cells (eventually with perforated, permeable walls) may also be 

treated as an anisotropic porous medium (Kvernvold & Tyvand [13]). 

The shaded area in Fig. 1 indicates the region for experimental 

results obtained by [1], (2] and [3]. 

In Fig. 2 we have shown the stability region for convection 

in a Hele-Shaw cell compared to the stabillty region for convec­

tion in a porous medium. We observe that convection in a Hele-Snow 

cell is stable for a much wider range of wave numbers and Rayleigh 

numbers than ordinary porous convection. The stability region for 

two-dimensional convection in porous medium closes for Ra~ 8Rac. 

For convection in a Hele-Shaw cell, however, the stability region 

did not show any tendency to close as far as calculations were 

performed. 

-----------------------------

porous medium and convection in a Hele-Shaw cell is a result of 

the different geometrical configurations of the two problems. While, 

for convection in a porous medium disturbances with arbitrary 

orientation will exist, the geometry forces the disturbances to be 

purely two-dimensional with axis parallel to the axis of the sta­

tionary roll for convection in a Hele-Shaw cell. For porous 
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convection the most unstable disturbances are of cross-roll 

character (d = O) and have exponential time dependence. For a 

Hele-Shaw cell, however, only disturbances with d = 0 (Eckhaus­

instabili ty) exist, and the instability is of exponential character 

except for a < a 0 and ~S < 7.8 ~Se' where it is oscillatory. 

The results given in Fig. 2 confirm the results obtained by 

Horne & O'Sullivan [9] by a finite two-dimensional method. They 

found, by considering a unicelluar motion near the critical point 

and then by increasing the Rayleigh number slowly, that the motion 

became unstable for RHS ..... 7 RHSc" From Fig. 2 we observe that 

cells with critical wavelength become unstable at RaHS ..... 7.5 RHsc· 

Further [9] found that,by suddenly raising the temperature diffe­

rence between the boundaries,motion with shorter wavelength would 

occur and this motion was stable for Rayleigh numbers up to at 

least 1250. This is also seen from Fig. 2 where rolls with wave­

numbers greater than 2 a 0 are shown to be stable for Rayleigh 

numbers up to 500. No calculations have been performed for Ray­

leigh numbers above this value, but as mentioned before, there is 

nothing which indicates a closure of the stability region for even 

higher Rayleigh numbers. 

We may therefore conclude from Fig. 2 that although the sta­

tionary motion in a Hele-Shaw cell and a porous medium are 

analogous, the stability-domains- are quite different. ~-S- must --~---­

be taken into account when a Hele-Shaw cell is used to simulate 

porous convection. 

Recent experimental investigators on convection in a Hele­

Shaw cell ([9],[10D have mainly been concerned with the velocity 

distribution and the cell structure. In Fig. 3 we have displayed 
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the calculated maximum value of the vertical velocity component 

for a = ac· For comparison we have also plotted experimental 

values obtained by Hartline & Lister [10]. The figure shows 

satisfactory agreement between the analysis and the experiments. 

'!'he numerical values lie in fact within the reported errorbounds 

for the measurements. The slightly trend, however, for the ex­

perimental values to lie somewhat below the numerical ones may 

perhaps be explained by looking at Fig. 4, where we have plotted 

the vertical velocity distribution for different values of the 

Rayleigh numbers. Fig. 4 shows that the vertical velocity is not 

symmetric about z = !, while [10] did assume symmetry in their 

handling of the experimental data. For experimental reasons they 

did not measure the vertical velocity component, wm' at z = !, 
but at a distance away from this midline depending on the flow 

velocity. (Unfortunately, they do not give any values for this 

distance). The raw velocity data, wm, are then adjusted to the 

midline velocity by assuming 

( 4 .1 ) 

The numerical results given in Fig. 4 shows that this last assump­

tion is not a good approximation for RHS greater than 2 - 2.5 

times the critical Rayleigh number. For RHS < 2.5 RHSc' however, 

.. ------~~_J:.h~ __ fj._()1!__ is approx!!Il__§._~l_ _ _f3l1!11111_~!'1~ ~'!:)~~- z = ~, Fig. 3 

shows that numerical and experimental results fit well together. 

It is also worth mentioning the difference in the boundary 

conditions for the numerical and experimental model. In the expe­

rimental model the velocity vanishes identically at z = 0,1, 

while in the numerical model the velocity has its maximum value at 

the boundary. Although we would expect the boundary layer to be 
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of the same order of magnitude as the thickness of the Hele-

Shaw cell, this will imply a horizontal volume flux which is from 

5 to 10 percent lower in the experiments than in the numerical 

model. From continuity reasons, then,we would expect a smaller 

experimental value for the vertical velocity than those obtained 

by numerical methods. 

' ,, 
In addition the velocity will also vary with the wave nUi~ber. 

This is shown in Fig. 5, where the maxi.mum value of the vertical 

velocity component is given as a function of the wave number and 

for different values of the Rayleigh number. As seen from the 

figure, the maximum value of the vertical velocity always occurs 

for wave numbers greater than the critical one. The variation is, 

however, less than 10 percent for wave numbers in the central region 

of the stability domain. 

In Fig. 6 we have displayed some of the most important ampli-

tudes, Anm' for a = a c as functions of 

<~s - RHSc) /RHSc = AR~ The most striking features is the linear 

relation between the logarithms of the amplitudes and AR. This 

means that 

(4.2} 

In the paper by Palm, Weber and Kvernvold [7] it is found 

.. mn - - ~hat-Tcir-srnalT -- AR ---K~ 1--NnTAffrO-.~--ana-n7ft2 __ N_llR-~ --pcfr--large_r __ 

overcritical Rayleigh numbers higher order of AR must be taken 

into account. From Fig. 6 we observe that A11 - (AR)0.57 for 

AR > 0.3. For AR < 0.3 numerical calculations show that p 

decreases and approaches 0.5 when AR + o. Similarly, it is found 

that A02 - (AR) 1 •03 and A04 - (AR) 1 •5 for all AR greater 

.,, than 0 .1. (As far as two-dimensional motion is stable). The other 
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amplitudes shown in the figure can not be given by (4.2) only, 

but as a good approximation we may write 

Aa1 - (6R)1.5, A22 - (~R)1.25 and Ai3,..., (~R)1.20. 

From an experimental point of view it would be of interest to 

verify this numerical results by a spectral analysis of the velo­

city field and the temperature field. 
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Figure legends 

Nusselt number versus Rayleigh number 

numerical values 

shaded area; experimental values 

Region of stable rolls 

~-•--- marginal stability 

exponential 1nstab111ty 

------- oscillatory 1nsta9ility 

Figure 3 The maximum value of' the non-dimensional vertical 
velocity for a = ac versus Rayleigh number 

numerical values 

4 experimental values obtained by Hartline & 
Lister [10] 

Figure 4 The variation of non-dimensional vertical velocity 
with height for a = a c 

Figure 5 The variation of the maximum value of the non­

dimensional vertical velocity with wave number 

for a = a c 
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