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1 Introduction  
 This thesis falls into the realm of statistical genomics. Statistical genomics is 

special in that it involves the integration of theory from two fields: statistics and 

genetics, in particular quantitative and population genetics. Much like statistics, 

genetics has an extensive theoretical foundation in the form of mathematical models 

that show how different evolutionary pressures, namely selection, mutation, migration 

and random genetic drift, affect gene frequencies and genetic variation. Statistical 

genomics builds on this knowledge and provides the statistical tools needed to make 

inference from genomic data, which is universally complex, high dimensional and 

fraught with multiple testing issues. 

 The central focus of this thesis is the genome-wide association study (GWAS) 

and associated applications and statistical methods. In brief, the goal of GWAS is to 

identify polymorphic loci, specific positions of variation in human DNA, that are 

associated with a given disease or trait. As will become apparent, this is not a 

straightforward task, and is filled with both genetic and statistical issues.  These 

include, but are not limited to, dealing with the non-independence of alleles along a 

chromosome (linkage disequilibrium; LD), the frequency distribution of risk alleles, 

the statistical modeling of the relationship between disease and genotype, statistical 

correction for testing up to millions of genetic variants often in a hypothesis-free 

context, and particularly in this thesis, dealing with multiple correlated traits. 

 This thesis is divided in to five chapters. The first chapter provides an 

introduction including a primer to human genetics and historical description of 

GWAS together with the advent of the genomic era. The second chapter describes the 

materials and methods used in this thesis, including the GWAS analytical pipeline and 

new methodology in the so-called post-GWAS era. The second chapter also gives 
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details of the false discovery rate methodology and the phenotypes used in this thesis. 

The third chapter states the specific aims of this thesis and the fourth chapter gives a 

brief summary of each PhD paper. Finally, in the fifth chapter, the papers are 

discussed, and concluding remarks are made. 

1.1 A primer to human genetics 

1.1.1 Organization of the genetic material 
 The cells of every life form contain a special molecule called dioxyribonucleic 

acid (DNA), the so-called "blueprint of life", that influences how each organism 

develops, functions and passes traits to the next generation. Humans are diploid and 

have approximately 5x1013 cells, each of which has a nucleus where the DNA is 

organized on 23 pairs of chromosomes. Within an individual, each cell contains the 

identical DNA sequence of nucleic acids, of which there are four types: adenine (A), 

guanine (G), cytosine (C) and thymine (T). The Human Genome Project, completed 

in 2003, decoded the human genome and provided the first map of these ATCGs 

along the 23 chromosomes. It is possible to provide such a "reference genome" 

because about 97% of genome is fixed (Auton et al., 2015).  The remainder of the 

genome shows variation between individuals, and potentially contributes to the 

similarity between relatives.  Similarity between relatives implies heritable variation, 

i.e. the fraction of phenotypic variability between individuals that can be attributed to 

genetic variation. Notably heritability is possible to estimate from phenotype data 

alone and does not require any genotyping.  Complex traits that have high heritability 

are exactly those that are targeted by GWAS. 

1.1.2 Transmission of genetic material from parent to offspring 
 The genetic material is passed on from parent to offspring via a process called 

meiosis that occurs exclusively in the sex cells and leads to the formation of haploid 

gametes, containing only one set of chromosomes; these are the sperm in males and 
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eggs in females. Crucial to this process is recombination, where novel non-parental 

combinations of genetic variants are formed along the chromosomes. This is an 

important contributor to variation in human populations, and is a critical factor to 

consider when applying statistical methods to genomic data. 

 If recombination did not exist, all loci along a chromosome would be linked, 

causing strong statistical dependencies for all loci on a given chromosome. But since 

recombination does occur, loci that are far apart on a chromosome are inherited 

independently from each other. LD, i.e. the non-random association between genetic 

variants (alleles) on a chromosome, tends to be strong for physically close loci and 

tends to get weaker and weaker as a function of distance. LD decays over time and the 

pattern and extent of LD seen in human populations has been shaped by population 

history and events such as bottlenecks (sudden reductions in population size) and 

periods of rapid growth (Reich et al., 2001). When only genotyping a subset of 

variants, exploiting patterns of LD is an essential element for a good genome-wide 

genotyping strategy.  

1.2 A brief historical description of GWAS 

1.2.1 Advent of GWAS 
 Long before the Human Genome Project was started, geneticists understood that 

genetic variation was key to understanding heritable complex traits and disease. 

Developing a strategy to identify specific trait loci, however, was and is a complex 

issue. Critical to this is the allelic spectrum of disease, i.e. the frequency distribution 

of risk alleles. This topic was heavily debated around the turn of the millennia in 

anticipation of the genomic era (Pritchard and Cox, 2002, Reich and Lander, 2001, 

Weiss and Clark, 2002). How many loci contribute to a common trait? Should the risk 

alleles be common or rare? Several lines of reasoning lead to the conclusion that with 

a few known exceptions, complex traits are highly polygenic, that is have hundreds or 
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thousands of contributing risk loci (Weiss and Clark, 2002, Pritchard and Cox, 2002, 

Reich and Lander, 2001). The polygenic nature of complex traits is widely accepted 

as fact. More controversial, particularly in the pre-genomic era, was the allelic 

spectrum of disease. The debate centered on whether risk variants (alleles) for 

common disease would be common or rare. Proponents of the so-called common 

disease/common variant hypothesis (CD/CV) argued that late-onset common diseases 

should be largely caused by common variants of modest effect size. Common variants 

are appealing to work with because they are relatively easy and cheap to identify, can 

be detected in smaller samples (power) and are generally older and geographically 

dispersed. But, neighbouring older variants have undergone more recomination, 

breaking down LD compared to more rare, local or more recent variants. The 

disadvantage here is that with weak LD, more variants need to be typed in order to 

have reasonable coverage of the common variation in the human genome. The 

strongest evidence for CD/CV came from the simulation studies of Reich and Lander 

(2001) who showed the CD/CV was plausible. However Weiss and Clark (2002) 

provided very strong, theoretical evidence showing that most risk variants would 

likely not be common. Despite the lack of solid evidence for the CD/CV hypothesis, 

and despite compelling evidence against this model of common disease, there was a 

strong push to go forward with a strategy to map the common variation in the human 

genome. This strategy was likely pursued because, at that time, the technology did not 

exist for large-scale sequencing studies (essential to map rare variants), and the 

genetics community largely believed that common variants were the best hope for 

genetic mapping of disease. 

1.2.2 The Hapmap Project 
 The HapMap project (http://hapmap.ncbi.nlm.nih.gov) was initiated late in 2002 
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in order to map all of the common single nucleotide variants in the human genome, 

known as single nucleotide polymorphism (SNPs), and its first phase was completed 

in 2005 (Gibbs et al., 2003, International HapMap Consortium, 2005). The HapMap 

project focused solely on common SNPs, in this case defined as those where the least 

frequent allele (called the minor allele) occurs in at least 1% of the population. Using 

the publically-available Hapmap data, and its corresponding LD structure, so-called 

tag SNPs can be identified. Tag SNPs are SNPs that are very well correlated with all 

the other SNPs in a defined region. Such a strategy employed when designing the first 

commercially-available GWAS genotyping panels, such as those offered by 

Affymetrix and Illumina. 

1.2.3 What is a GWAS? 
 A GWAS is a type of study that is typically conducted in hundreds or thousands 

of unrelated subjects. Unrelated subjects can be treated as independent observations, 

whereas with related subjects, the genetic correlations due to relatedness need to be 

taken into account. The samples typically come from retrospective cohort studies or 

cases-control studies. For each subject, a trait or several traits (outcomes, also called 

phenotypes in genetics) and covariates of interest are measured, and hundreds of 

thousands to a few millions common genetic variants are genotyped. For case-control 

studies, independently for each of these SNPs, it is then investigated if the allelic or 

genotype frequencies are significantly altered between the case and the control 

groups. This is typically done using logistic regression and the effect size is reported 

as an odds ratio. Similarly for quantitative traits, linear regression is used 

independently for each SNP to see if a given SNP is associated with the outcome. The 

effect size in this case is reported as the regression coefficient for the SNP term. 

Clearly with so many statistical tests being performed, a formal statistical correction 
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for multiple testing is a mandatory step in GWAS, and this subject will be explored in 

detail in Sections 2.1.3 and 2.4. 

 Although there are several options for modeling SNP genotype, the most 

common approach is to use an additive model, where SNP genotypes are ordered and 

then modeled on a continuous scale. For instance a SNP with minor allele “A” and 

major allele “G” would have 3 possible genotypes: “AA”, “AG” and “GG”. With the 

additive model, we assume that genotype contributes in an additive manner to the 

phenotype, which implies that the heterozygous genotype “AG” lies exactly in 

between the two homozygous genotypes. As such we can translate the genotype 

categories “AA”, “AG” and “GG” to a continuous scale: 0, 1, 2. Nearly all of the 

published GWAS studies to date use this approach. 

1.2.4 The GWAS era 
 After the completion of the 1st Hapmap phase in 2005, it was theoretically 

possible to create a genome-wide panel of tag SNPs. Simultaneously, advances in 

genotyping technology meant that it was suddenly efficient both in terms of cost and 

time to carry out genome-wide genotyping, thanks to commercially-available GWAS 

chips from Illumina and Affymetrix.  The first large-scale, well-designed GWAS for 

complex disease was published in Nature in 2007 and performed by the Wellcome 

Trust Case Control Consortium (WTCCC; Messerli et al., 2007). This study seeded a 

massive publication boom, where the number of GWAS studies has increased at an 

increasing rate. This is clearly evident in Figure 1, from in the Catalog of Published 

Genome-Wide Association Studies, showing the number of GWAS publications per 

calendar year from 2005-2013 (Welter et al., 2014). As of 2013, the catalog contained 

1751 curated publications of 11 912 SNPs associations at p < 10-5. 

 Clearly the GWAS approach for discovery of disease-associated genetic 
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variants has been widely adapted and a large number of trait-associated SNPs have 

been found. But has GWAS really been a success? It turns out that this is not a simple 

question to answer. Very few common variants of moderate to major effect have been 

found via GWAS. GWAS trait-associated common variants have very small effect 

sizes (Figure 2; Manolio et al., 2009). In fact, the effect sizes of common variants on 

common disease are universally so small that tens of thousands or even over one 

hundred thousand subjects are required to conduct a reasonably powered GWAS. 

Such sample sizes are impossible to achieve in individual studies and necessitate the 

formation of international consortia. These consortia perform meta-analysis of 

essentially all globally available samples for a given trait, with genotyping data 

available and that meet the inclusion criteria (e.g. often limited to one ethnicity).  

Examples include the Psychiatric Genetics Consortium 

(https://www.med.unc.edu/pgc) and the CardiogramplusC4D Consortium 

(www.cardiogramplusc4d.org/) whose data are used in this thesis. Even when 

including every virtually sample available globally, GWAS are still notoriously 

underpowered to identify common variants with extremely small effect sizes (odds 

ratio<1.1) independent of the choice of genotyping platform (Spencer et al., 2009). 

 In 2009, Manolio et al. coined the term “missing heritability”, referring to the 

fact that the genetic variants identified by GWAS explain very little of the heritability 

for most complex traits and common diseases. The so-called missing heritability is 

likely due to a wide variety of factors including, but not limited to epigenetics, 

disease-causing rare variants, gene-gene interactions, gene-environment interactions 

and the underpowered nature of typical GWAS analysis (Eichler et al., 2010). One 

analytical approach to uncovering part of the missing heritability is to apply more 

sophisticated statistical methods to existing GWAS data, especially if the methods 
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involve the addition of biological knowledge. But before exploring these more 

advance methods, it is important to establish an understanding of the conventional 

GWAS statistical analysis pipeline. 

2 Methods 

2.1 GWAS – Analytical pipeline 

2.1.1 Review 
 Let us first recall that the goal of GWAS is to detect loci associated with 

variation in a trait of interest, usually in a sample of independent subjects. Let us also 

recall that, because of the statistical dependencies between loci (i.e. LD), a properly 

chosen panel of ~1,000,000 SNPs is sufficient to tag most of the common genetic 

variation in the (European) human genome. As was introduced in Section 1.2.3, 

assuming the additive genetic model allows us to treat the three genotype categories at 

a bi-allelic SNP as a continuous variable with coding 0 (minor allele homozygote), 1 

(heterozygote) and 2 (major allele homozygote). 

 We will first consider a simple GWAS design, with one retrospective sample, 

one phenotype and a one-SNP-at-a-time regression analysis. In GWAS, the phenotype 

is either categorical (usually binary case/control) or continuous (called “quantitative” 

in genomics literature). An underlying assumption for a successful GWAS is that the 

chosen genotyping platform has reasonable genomic coverage for the population from 

which the samples have been drawn. 

2.1.2 Association testing in GWAS 
 Quantitative phenotypes are analyzed using a linear regression approach, with 

one SNP and clinical covariates are predictor variables. For simplicity, let us consider 

a regression model without covariates, but in practice covariates can easily be added. 

For n samples with outcome yj, j = 1,…,n, and additively-modelled genotype xjg in 
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individual j for SNP g, the linear regression model is yj = �g + �gxjg + �jg, where 

�jg is normally distributed with mean 0 and describes the error term of the 

relationship between outcome and genotype.  The null hypothesis is for each SNP g 

that the coefficient of the SNP term, �g, is equal to zero and the test statistic is a 

Wald test, 
!!

!"(!!), where se is the standard error.  Here the estimated coefficient 

of the SNP term is reported as the effect size. Binary phenotypes are usually analyzed 

using a logistic regression approach, again with one SNP and clinical covariates as 

predictor variables. Covariates are again dropped for simplicity. Here, we code the 

outcome Yj as 1 cases and 0 for controls, and the logistic regression model is 

log Pr !! = 1
Pr !! = 0 = !!! + !!!!". The null hypothesis for each SNP g is 

that the probability of being a case or a control is not associated with genotype. The 

effect size of a given SNP is reported as an odds ratio.  

 In the regression analysis step, it is possible to correct for genetic within sample 

differences (population stratification) by including the first few principle components 

derived from the genome-wide SNP panel, which can be interpreted as a sort of 

“origin score”. This correction is desirable because it is protective against spurious 

associations in the case of both different phenotypic distributions and different allelic 

frequency distributions in the different subpopulations that may exist in the dataset. 

 After one regression model is built for each SNP on the genotyping panel, the 

strength of association between each SNP and the phenotype can be summarized by 

an effect size, associated confidence interval and a p-value. Given that on the order of 

one million SNPs are included in a GWAS, correction for multiple testing is a critical 

step in any GWAS analysis. There are several options here, as well as clear 

conventions established in the GWAS literature.  
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2.1.3 Corrections for multiple testing in GWAS 
 A p-value, which is the probability of seeing a test statistic equal to or greater 

than the observed test statistic if the null hypothesis is true, is generated for each 

statistical test. Statistical tests are generally called significant (i.e. the null hypothesis 

is rejected) if the p-value falls below a predefined �, most often set to 0.05 and  

known as the type I error rate. This probability is for a single statistical test but in 

GWAS on the order of 106 tests are conducted. If we were to declare SNPs as 

significantly associated with phenotype based on their p-values and a cut-off of 0.05, 

the cumulative type I error rate over all statistical tests is much greater than 0.05. As 

such, formal corrections for multiple testing are necessary, in order to maintain an 

overall type I error rate of 0.05 for the entire GWAS. 

 The simplest approach to correcting for multiple testing is the Bonferroni 

correction. The Bonferroni correction adjusts the alpha value from � = 0.05 to � = 

(0.05/m) where m is the number of statistical tests conducted, i.e. the number of SNPs 

in the GWAS.  

 A related approach is to use the Bonferroni correction for genome-wide 

significance. The Bonferroni corrected significance threshold for a million tests is 

0.05/1,000,000 = 5x10-8, and this cut off very commonly used as the “gold standard” 

for declaring an association significant in GWAS, regardless of the number of SNPs 

on the genotyping panel. This is because, for the European population it is estimated 

that there are approximately one million independent common SNPs in the genome, 

once the dependencies due to LD are taken into account (Clarke et al., 2011). Another 

estimate is 7.2x10-8 but p<5x10-8 is the most common choice in the literature 

(Dudbridge and Gusnanto, 2008, Pe'er et al., 2008). 

  The Bonferroni correction is appropriate when a single false positive in a set of 

tests would be a problem, otherwise is a very conservative approach and potentially 
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leads to a large number of false negatives. An alternative, less conservative approach 

for correcting for multiple testing involves controlling for the expected proportion of 

false discoveries amongst the rejected null hypothesis instead. In GWAS, this is the 

proportion of trait-associated SNPs that are actually false positives. The first 

statistical procedure for controlling the false discovery rate (FDR) was proposed by 

Benjamini and Hochberg (1995). In brief, the p-values are ordered from smallest to 

largest, and assigned a corresponding rank i. For instance, for the smallest p-value, i = 

1. Compare each individual p-value to its Benjamini-Hochberg critical value, i/m)*q, 

where i is the rank, m is the total number of tests, and q is the false discovery rate you 

choose. The largest p-value that is less than (i/m)*q is significant, and all of the p-

values smaller than it are also significant. 

 Importantly, the FDR and Bonferroni corrections do not re-order the SNPs 

compared to their raw p-value rankings; they simply suggest different cut-off points 

as to what is declared as statistically significant. In Section 2.4 we will further explore 

procedures for correcting for multiple testing, including some methods that re-order 

the SNPs compared to their raw p-value rankings. But for the time being, let us 

continue to describe the typical GWAS pipeline. 

2.1.4 Validation of GWAS “discoveries” 
 The gold standard for validation of a GWAS association is the replication of the 

association in an independent sample. Here the burden of multiple testing is less 

severe and the correction only needs to be made for the number of SNPs in the 

“associated” SNP set carried forward to the validation step, often on the order of 50 – 

100 SNPs.  

2.1.5 Meta-analysis in GWAS 
 The description of the GWAS analytical pipeline above assumes that the 

individuals are from one sample. In practice, nearly all GWAS studies of major 
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impact are conducted by consortia who collect as many studies as possible to be 

combined in a meta-analysis. Here issues such as phenotype definition, inclusion 

criteria, population stratification and genotyping platform become critically 

important. Imputation of missing genotype data is usually required. Genotype 

imputation exploits known LD patterns and haplotype frequencies in a reference 

population (e.g. from HapMap or the 1000 Genomes project) to estimate genotypes 

for SNPs not directly genotyped in the study. Meticulous routines for data storage, 

security, privacy and access are required. Detailed discussion of these issues is 

beyond the scope of this thesis but it is important to keep these potentially 

complicating factors in mind.  

 Assuming all of the issues above have been dealt with in a reasonable manner, 

conducting a GWAS meta-analysis for a given phenotype is straightforward. Each 

contributing study provides regression-derived effect size and associated standard 

error and the sample size for each SNP. Importantly, each study must specify the 

reference allele at each SNP; otherwise the effect direction cannot be aligned between 

studies. Subsequently, meta-analysis, such as inverse variance meta-analysis is 

conducted. The meta-analysis effect size estimate and associated p-value are then 

reported for each SNP and correction for multiple testing is performed. Usually the 

GWAS consortium will exclude some of its contribution studies from the meta-

analysis and reserve them for a second phase of analysis (i.e. validation of the 

associated SNPs). 

2.1.6 Multiple related phenotypes in GWAS 
 It is common that several, related phenotypes are investigated by GWAS. This 

can be carried out in one study using the same sample set  (e.g. the Global Lipids 

Consortium used the same sample to investigate several outcomes including 
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triglycerides, high-density lipoprotein, low-density lipoprotein and total cholesterol 

(Teslovich et al., 2010). Related phenotypes can also be investigated in 

(approximately) independent samples by separate consortia and published in separate 

publications (e.g. blood pressure (Ehret et al., 2011) and triglycerides (Teslovich et 

al., 2010)). When related phenotypes are investigated in the same sample, it is often 

because there is not one obvious primary phenotype, and it cost-effective to look at as 

many heritable phenotypes as possible using the same dataset. Other motivations for 

investigating related phenotypes (in one sample or in independent samples) include 

that the genetic basis so-called endophenotypes (stable phenotypes with a clear 

genetic connection) should be easier to identify than broader clinical definitions of 

disease or other quantitative traits (such as body mass index). Some related complex 

phenotypes, like type 2 diabetes and coronary artery disease, clearly merit their own 

consortium-level investigation. 

 Until recently, it was not common to integrate cross-phenotype results in any 

formal way. However, informal investigations of overlapping “discoveries”, usually 

at the gene level, were often made. An example of this is the Venn diagram 

summarizing the findings of the Global Lipids Consortium, which gives a visual 

display of the overlapping gene sets for the four investigated lipids phenotypes 

(Figure 3). It is perhaps expected that related lipids phenotypes will also have 

overlapping gene sets, given their strong phenotypic correlation.  

 Statistics has well-developed methodology for dealing with multivariate data 

but these methods are rarely applied to GWAS data in order to deal with multiple, 

related phenotypes. The reasons for this are not entirely clear, but likely just have to 

do with conventions in the field of genomics. For a summary of multivariate methods 

for GWAS see Galesloot et al. (2014). 
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2.1.7 Relevant phenotypes for this thesis  

2.1.7.1 Neurocognitive function 
 Neurocognitive function broadly refers to multiple inter-correlated cognitive 

domains including attention, psychomotor speed, learning and memory, intelligence 

and executive functioning. In Paper 1, we investigate twenty-four neurocognitive 

tests falling into these five clinical domains via GWAS. 

 Heritability estimates for different aspects of neurocognitive function range 

from approximated 50 to 80% (e.g. Lee et al., 2010). Despite its high heritability, 

neurocognitive function is a particularly challenging phenotype to investigate via 

GWAS. Reasons for this include: the multivariate nature of neurocognition, the lack 

of a clear primary phenotype and a lack of consistent phenotype definitions across 

studies (due to different test batteries for neurocognition). Additionally, there is no 

consensus on how to deal with important covariates and confounders such as age, 

education and underlying diseases. Options here include using these as 

inclusion/exclusion criteria or including them as covariates in the statistical model. 

All in all, these particular challenges encountered for GWAS of neurocognitive 

function result in highly underpowered studies with limited or no options for 

replication. 

 Presently, nine loci have been associated with the key words “general cognitive 

ability” or “intelligence” or “cognitive test” or “neurocognive function” in the GWAS 

catalogue (http://www.ebi.ac.uk/gwas/home) at a p-value implying genome-wide 

significance (p-value < 5x10-8). The results are summarized in Table 1. We include 

the results from Paper 1 in this list since it was published already in 2012. 
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Table 1. Single nucleotide polymorphisms associated with neurocognition at p-value 
< 5x10-8. Chr, chromosome. 
 
rs# Gene Chr Reference 
rs10457441 intergenic 6 (Davies et al., 2015) 
rs17522122 AKAP6 14 (Davies et al., 2015) 
rs10119 TOMM40 19 (Davies et al., 2015) 
rs2300290 PTPRO 12 (LeBlanc et al., 2012, i.e Paper 1) 
rs719714 WDR72 15 (LeBlanc et al., 2012, i.e. Paper 1) 
rs6043979 KIF16B 20 (Loo et al., 2012) 
rs3758171 PAX5 9 (Loo et al., 2012) 
rs3815908 ELSPBP1 19 (Loo et al., 2012) 
rs17518584 CADM2 3 (Ibrahim-Verbaas et al., 2015) 
 

2.1.7.2 Coronary artery disease  
 In Paper 2, coronary artery disease (CAD) is investigated via GWAS. CAD is a 

leading cause of death worldwide. CAD happens when the arteries that supply blood 

to the heart acquire a build up of cholesterol and plaque causing them to be hardened 

and narrowed. Less blood is able to flow through the arteries causing less oxygen to 

get to the heart, leading to heart attack and often to permanent heart damage or even 

death. CAD also leads to heart failure and irregular beating of the heart. The 

heritability of CAD is approximately 40-50% (Peden and Farrall, 2011). 

 Several related consortia have investigated the genetics of CAD via GWAS 

leading to the identification of 46 CAD-associated loci achieving both p-value<5x10-8 

and validation in an independent dataset (CARDIoGRAMplusC4D Consortium et al., 

2013; Table 2). These 46 loci were for the most part identified via consortium-based 

efforts including that of the CARDIoGRAMplusC4D Consortium whose summary 

statistic data is used in Paper 2. 
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Table 2. Single nucleotide polymorphisms associated with coronary artery disease at 
p-value < 5x10-8. Loci are reported at least one of the following publications:  
(CARDIoGRAMplusC4D Consortium et al., 2013, Schunkert et al., 2011, Samani et 
al., 2007, Clarke et al., 2009, Kathiresan et al., 2009, Soranzo et al., 2009, Wang et 
al., 2011, IBC!50K!CAD!Consortium, 2011). 
rs# Chr Gene 
rs4845625 1 IL6R 
rs515135 2 APOB 
rs2252641 2 ZEB2-AC074093.1 
rs1561198 2 VAMP5-VAMP8-GGCX 
rs7692387 4 GUCY1A3 
rs273909 5 SLC22A4-SLC22A5 
rs10947789 6 KCNK5 
rs4252120 6 PLG 
rs264 8 LPL 
rs9319428 13 FLT1 
rs17514846 15 FURIN-FES 
rs2954029 8 TRIB1 
rs6544713 2 ABCG5-ABCG8 
rs1878406 4 EDNRA 
rs2023938 7 HDAC9 
rs602633 1 SORT1b 
rs11206510 1 PCSK9 
rs6725887 2 WDR12 
rs9818870 3 MRAS 
rs12190287 6 TCF21 
rs3798220 6 SLC22A3-LPAL2-LPA 
rs11556924 7 ZC3HC1 
rs1333049 9 CDKN2BAS1 
rs579459 9 ABO 
rs12413409 10 CYP17A1-CNNM2-NT5C2 
rs2505083 10 KIAA1462 
rs974819 11 PDGFD 
rs3184504 12 SH2B3 
rs4773144 13 COL4A1-COL4A2 
rs2895811 14 HHIPL1 
rs12936587 17 RAI1-PEMT-RASD1 
rs1122608 19 LDLR 
rs9982601 21 Gene desert (KCNE2) 
rs17114036 1 PPAP2B 
rs17609940 6 ANKS1A 
rs12526453 6 PHACTR1 
rs501120 10 CXCL12 
rs1412444 10 LIPA 
rs46522 17 UBE2Z 
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rs216172 17 SMG6 
rs2075650* 19 ApoE-ApoC1 
rs445925* 19 ApoE-ApoC1 
rs17464857 1 MIA3 
rs12539895 7 7q22 
rs9326246 11 ZNF259-APOA5-APOA1 
rs7173743 15 ADAMTS7 
*not in high LD 

2.2 Methodology in the post-GWAS era 

2.2.1 Are further discoveries possible with existing GWAS data? 
 We have already described the “missing heritability” problem in GWAS. 

Although it is tempting to abandon common variants altogether and look for the 

missing heritability elsewhere, several lines of evidence suggest that there are still 

discoveries to be made in existing GWAS data. By looking at the quantile-quantile 

plot from almost any given large GWAS, it is clear that the p-value distribution has 

many more small p-values than expected by chance, and that the typical Bonferroni 

threshold used to declare statistical significance results in a large number of false 

negatives. A quantile-quantile plot for a typical Consortium-based GWAS is shown in 

Figure 4. By convention, these plots are displayed on the –log10 scale. Clearly, 

observed p-value distribution departs from the null distribution before the typical 

GWAS significance threshold of p-value < 5x10-8. This is strong empirical evidence 

that there are many false negatives in GWAS when a standard analytical pipeline is 

used. In many ways this is not surprising since the typical GWAS analysis is highly 

conservative, underpowered and done in a hypothesis-free manner (i.e. SNPs are 

treated as exchangeable). The question arises: Can we do better? Is there anything in 

statistics or biology that can help us to get more out of the existing data? The short 

answer is yes, that by using more advanced statistical methods, particularly those that 

incorporate additional biological knowledge, it is possible to make new discoveries in 

the GWAS data we already have available. 
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 So what type of biological knowledge can be used to aid in the hunt for disease-

causing genes? Prior to the GWAS era (pre-2007), it was common to focus the hunt 

for disease-variants in tens or hundreds of known protein coding genes. This so-called 

“candidate gene approach”, where genes are selected according to a priori knowledge 

of the gene’s biological function, has not been a useful way to identify genetic 

variation associated with disease or traits. By focusing on biologically-relevant genes, 

the burden of multiple testing is reduced. Even with less stringent significance 

thresholds, the candidate gene approach was not been very successful at identifying 

trait-associated loci. It turns out that, even if we know which genes are important for 

disease etiology, this is not equivalent to knowing where important genetic variation 

lies. Again, this is not entirely surprising since population genetics tells us that the 

more important a gene is for survival and function, the less natural variation we 

expect to see in the gene. Other reasons for the failure of the candidate gene approach 

may be that we know altogether too little about which genes may play a role in 

disease, too little about regulatory or other non-coding genetic variants, or maybe we 

simply know too little about important common variation in the genome in general.  

 In the last few years, our knowledge about the structure of the genome and 

particularly regulatory elements has exploded. Our understanding of the human 

genome has moved long past the "central dogma of molecular biology" that says that 

a gene is a piece of DNA that codes for a piece of messenger RNA (mRNA) that in 

turn codes for a protein. Although the central dogma is a good description of bacterial 

genomics, it is not an adequate description of how the human genome works. We now 

know that a large part of the important genetic variation lies outside of the tiny bits of 

the genome that code for proteins, and instead are involved in gene regulation. The 

ENCODE (Encyclopedia of DNA Elements) Consortium aims to identify all 
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functional elements in the human genome and maintains a comprehensive webpage 

and database (https://www.encodeproject.org). A better understanding of the 

regulatory elements of the genome has largely been driven by new technology and 

clever application of the new technology. Paired with bioinformatic tools (i.e. 

methods and software tools for understanding biological data), so-called “-omics” 

studies have led to several major genome-level insights about how gene regulation 

works.  

 The second-wave analysis of GWAS, characterized by improved use of 

bioinformatics, statistics and genetical knowledge is still in its infancy but has lead to 

the development of exciting and promising approaches for the discovery of disease-

associated genetic variants. A detailed review of all of these new –omics technologies 

and related methodology is beyond the scope of this thesis, so we will instead focus 

on examples of how particular new insights into how human genetics works have 

been incorporated into GWAS analysis. 

2.2.2 Example 1: Expression quantitative trait loci (eQTL) and GWAS 
 Increasing evidence suggests that single nucleotide polymorphisms (SNPs) 

associated with complex traits are more likely to be expression quantitative trait loci 

(eQTLs) than would be expected by chance alone. Beginning around 2007, 

researchers (Stranger et al., 2007) began innovative genome-level studies in humans 

to find genetic variants (usually SNPs) that associate with variation in gene 

expression (usually at the mRNA level), termed eQTL experiments (see early review 

in Gilad et al., 2008). Here the goal is to identify SNPs that exhibit genotype-

dependent gene expression (mRNA), with focus usually being on nearby protein-

coding genes.  The focus on nearby protein-coding genes is in part to reduce the 

burden of multiple testing, because we know that genetic variants can also influence 
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gene expression of distant genes such as genes on other chromosomes. Nearby eQTLs 

are called cis-eQTLs and distant eQTLs are called trans-eQTLs. Since gene 

expression is tissue dependent, eQTLs are specific to a given tissue type, for instance 

adipose tissue or blood. The basic idea for any cis-eQTL analysis involves first 

defining “nearby” (e.g. limit association analysis to genes +/-1000 kb from a given 

SNP), then calculating an association statistic between the given SNP and the mRNA 

expression data one at a time for all “nearby” genes. This results in one p-value for 

each SNP-nearby gene pair.  

 It has been shown that eQTLs are enriched for SNPs associated with complex 

diseases and traits using GWAS (Cookson et al., 2009, Nicolae et al., 2010). As such, 

eQTLs are one type of biological information that can be used to re-prioritize GWAS 

findings. For example, Westra et al. (2013) incorporate eQTL information into 

GWAS using p-value weighting methods. In brief, the GWAS p-values are 

reweighted by weights based on the eQTL p-value for each SNP. This is just one 

example of how eQTL can be incorporated into a GWAS analysis, in this case at the 

summary statistic level. 

2.2.3 Example 2: Genome annotation and GWAS 
 Genome annotation can also be used to improve gene discovery in existing 

GWAS data. SNPs can be annotated to different genomic regions such as regulatory 

elements, coding genic elements, introns, and intergenic regions. The annotation is 

based not only on the exact physical location of a given SNP but also on LD with the 

SNP and the different genomic elements. Schork et al. (2013) show that certain 

genomic elements are enriched for small p-values in GWAS, indicating that genomic 

annotation is useful for breaking the exchangeability assumption of the standard 

GWAS pipeline. This assumption is broken when SNPs come from pre-determinable 
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categories or clusters, within which they can be dependent and share distributions of 

effects. Using genome annotation as informative prior information means that a 

posteriori SNPs are no longer exchangeable and are no longer identically-distributed. 

The suggestion of Shork et al. is to incorporate the annotation information in a 

conditional false discovery rate setting (see Section 2.4.3.1 for more on the 

conditional false discovery rate). 

2.2.4 Example 3: Multiple traits, pleiotropy and GWAS 
 The idea that one gene can influence more than one phenotype is well 

established in genetics (pleiotropy). The phenotypes may be obviously connected (e.g. 

high-density lipoprotein and low-density lipoprotein) or less obviously connected 

(e.g. the sickle cell anemia gene leads to both changes in red blood cell morphology 

and to improved resistance to malaria). When pleiotropy is also highly polygenic (i.e. 

there are many genes effecting both phenotypes), it should be detectable at the 

genome-level. Andreassen et al. (2013) use stratified quantile-quantile plots (Figure 

5) to visualize this. When stratifying the GWAS p-values for a first trait based on 

their significance in a second related trait, there is more and more leftward deflection 

on the plot. This indicates that on the genomic scale, the p-values in the second trait 

are informative about significance in the first trait, indicating polygenic pleiotropy. 

This implies that the p-values from trait 2 can be useful prior information to 

incorporate into the analysis to discover SNPs associated with trait 1. Using 

conditional false discovery rate (Section 2.4.3.1), the exchangeability assumption 

implicit in standard GWAS is broken, and the analysis favors those SNPs that are 

associated with both trait 1 and 2. The methods of Andreassen et al. (2013) are used 

in Paper 2 and the related polygenic-pleiotropy informed methods of Zablocki et al. 

(2014) are used in Paper 3. 
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2.3 Sample overlap in cross-trait analysis of GWAS 
 Analysis of GWAS data in the post-GWAS era often requires the integration of 

GWAS data for related traits, usually at the summary statistic level. There are several 

potential advantages when working with cross-trait GWAS, including increasing the 

power and sophistication of the statistical methodology, and the possibility to ask 

more sophisticated biological questions. Since summary statistics do not contain any 

sensitive information, it is now common practice for GWAS consortia to release their 

summary statistics for public download from their homepages. Summary statistics are 

efficient to work with compared to genotype-phenotype data, and when a sufficient 

statistic is used, they contain all information needed for further inference. 

 When the GWAS sample for a first trait overlaps with the GWAS sample for a 

second trait, the test statistics for a given SNP will be spuriously correlated, even 

when genotype is independent from both phenotypes. Lin and Sullivan (2009) were 

the first to address the methodological challenge of integrating GWAS with 

overlapping subjects. Using the correlation between the maximum likelihood 

estimates for the regression coefficients for a given SNP g, correlation due to overlap 

for two case control-studies is: 

!"# !!, !! ≈ !
!! !!

!!! exp!(∝!+∝!)!+ !!!
!"#(∝!!∝!)

!!!!!!!!!!!!!!!!!!!!!!!!!!!!![2.3.1] 
 
where exp !! + !!! ≈ !!!!!!" !!"!!", and n1 is the sample size of study 1, and n2 

the sample size of study 2, and where we denote the number of cases in study 1 and 2 

as n11 and n21 respectively, similarly n10 and n20 for the number of controls in study 1 

and 2 respectively, and denote the overlap in controls by nc0 and in cases by nc1. To 

calculate this, one needs only the summary statistics and the numbers of overlapping 

and non-overlapping subjects, which in practice can often be determined from the 

original GWAS publications. In Paper 3, we use approach of Lin and Sullivan to 
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provide analogous formulas for the correlation due to overlap for all possible pairings 

of GWAS studies. 

In some situations, it is not possible to determine the actual number of 

overlapping subjects. In this case the GWAS summary statistics for the two traits can 

be used to estimate the correlation. If all SNPs in both GWAS were null (i.e. truly 

independent from both phenotypes), and if the samples were non-overlapping, the 

correlation of the summary statistics would be approximately 0. If all SNPs in both 

GWAS were null but samples overlapped, the correlation of summary statistics would 

give an estimate of the spurious correlation due to overlap. But in reality, GWAS 

summary statistics contain both null and non-null SNPs (i.e. those with a true genetic 

effect on one or both phenotypes). Thus, correlation of the summary statistics would 

include both the effect of the overlapping subjects and the effect of the non-null 

SNPs, which may be truly correlated (i.e. pleiotropy). To date there are two proposed 

methods for estimating the correlation due to sample overlap from GWAS summary 

statistics. 

 Province and Borecki (2013) propose using the tetrachoric correlation of a 

binary transformation of summary statistics to estimate the correlation due to overlap. 

In their proposed method they categorize the GWAS summary statistics for each 

study (z-scores) as z<0 and z>0. They then calculate the tetrachoric correlation of the 

resulting categorized vectors. They argue and show with simulation studies that this 

protects against the influence of the non-null SNPs in estimating the correlation due to 

sample overlap. 

 Zhu et al. (2015) also derive a formula for estimating the correlation due to 

sample overlap based on summary statistics. First, prune the GWAS summary 

statistics down to an independent set of SNPs (based on known LD structure in the 
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data). Second, calculate: 

corr(T1,T2)={�g(Tg1−�1)(Tg2−�2)}/sqrt{�g(Tg1−�1)2(Tg2−�2)2}                 [2.3.2] 

where T1,T2 are the test statistics for the SNPs for traits 1 and 2 in their corresponding 

cohorts, and �1 and �2 are their corresponding means. Their method assumes that all 

correlation in the test statistics can be either attributed to overlapping or related 

samples in the two studies. Therefore this method for estimating correlation due to 

sample overlap will not work well if there is also polygenic pleiotropy. 

2.4 A primer to false discovery rate methodology 

2.4.1 Benjamini-Hochberg false discovery rate 
 As discussed in Section 2.1.3, correction for multiple testing is an essential part 

of GWAS analysis. Although the historical “gold standard” correction is a 

Bonferroni-based cut-off of 5x10-8, this is indisputably an overly conservative 

approach (for example see empirical evidence of this in the typical GWAS quantile-

quantile in Figure 4). A viable and more liberal alternative is instead controlling the 

false discovery rate (FDR). As introduced in Section 2.1.3, the FDR was first 

introduced in the landmark paper ‘Controlling the false discovery rate: a new and 

powerful approach to multiple comparisons’ by Benjamini and Hochberg (1995). 

Interestingly, further development of FDR-based methodology has been largely 

inspired by problems arising in genomics research, where studies involving gene 

expression microarray experiments were the first application to present with multiple 

testing challenges on such an enormous scale (Benjamini, 2010). 

 To control the number of false discoveries, i.e. the expected ratio, E(V/R), of the 

number of false positives V among all significant tests R, Benjamini and Hochberg 

introduced a step-up procedure that is guaranteed to control E(V/R) at a level less than 

q, the desired FDR control. We revisit this procedure, first introduced in Section 
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2.1.3, with the addition of more formal notation. First, order the m p-values from 

smallest to largest, p(1) ≤ ... ≤ p(m) and assign a corresponding rank i to each p-value.  

Compare each individual p-value to its Benjamini-Hochberg critical value, (i/m)*q. 

Define k = max(i : p(i) ≤ (i/m)*q) and all hypotheses belonging to p(1),...,p(k) are 

rejected. Thus the largest p-value that is less than (i/m)*q is significant, and all of the 

p-values smaller than it are also significant as well.  

2.4.2 The Bayesian approach to the false discovery rate 
 The FDR has subsequently been approached from a Bayesian perspective (see  

Storey, 2002, Efron et al., 2001, Efron and Tibshirani, 2002, Efron, 2008). 

Fundamental to the Bayesian approach is the two-group model, where each of the m 

tests is either null or non-null with prior probability �0 or �1 = 1 - �0 respectively. 

The p-value, p1g, or more generally the test statistic for SNP g, z1g, has a different 

distribution based on whether it is null or non-null. In the following we drop the g 

subscript for simplicity. Let F0(z1) and F1(z1) denote the cumulative distribution 

functions of the density functions f0(z1) and f1(z1), for the null and non-null densities 

functions respectively. As such, z1 follows a two-group mixture model with 

cumulative distribution function: 

 F(z1) = π0F0(z1) + π1F1(z1) [2.4.2.1] 

and density function 

 f(z1) = π0f0(z1) + π1f1(z1). [2.4.2.2] 

From here we can use Bayes theorem and define the tail area-based FDR (Fdr) as 

 Fdr(z1) = Pr(null | Z ≥ z1) = π0F0(z1)/ F(z1) [2.4.2.3] 

and the local FDR (fdr) as  

 fdr(z1) = Pr(null | Z = z1) = π0f0(z1)/ f(z1). [2.4.2.4] 

Fdr is very much like a corrected p-value and connects very closely to the Benjamini 
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and Hochberg FDR (Efron, 2008). In order to estimate Fdr or fdr, one proceeds by 

fitting the mixture model in either Equation 1.6.1 or 1.6.2 to the observed data. This 

can be done using either a theoretical null model (e.g. standard normal distribution for 

z-scores or uniform(0,1) distribution for p-values), or an empirical null model (e.g. 

specifying a distribution type but estimating the parameters from the data). 

Additionally, an estimate of f(z1) or F(z1) is required, as is an estimate of π0 (which in 

GWAS can reasonable and conservatively be set to 1). F(z1) can be estimated by the 

empirical cumulative distribution funtion mp/m, where mp is the number of tests with a 

z-score greater than or equal to z1 and m is the total number of tests. GWAS data is 

particularly well-suited to Fdr or fdr estimation since m is very large (on the order of 

106) and π0 well approximated by 1 (that is, only a few dozen to a few hundred 

common variants out of ~one million are expected to be non-null). 

2.4.3 Bivariate extensions of the false discovery rate 
 The FDR methods described above implicitly assume the exchangeability of 

SNPs. Breaking this assumption and incorporating prior information on each SNP 

will improve power, as long as this prior information is truly a useful covariate. The 

prior information could be different kinds of annotation (see Sections 2.2.2 to 2.2.4 

for examples), but in this thesis we focus on pleiotropy. The basic idea is that in the 

presence of polygenic pleiotropy, the GWAS summary statistic of a second trait (z2) 

can be informative for FDR modeling for the first trait (z1). Papers 2 and 3 in this 

thesis use FDR methodology involving bivariate extensions to Equations 2.4.2.3 and 

2.4.2.4. Paper 2 uses the conditional FDR (condFdr) and the related conjunctional 

FDR (conjFdr), extensions of the Fdr, using estimating procedures described in 

Andreassen et al. (2013). Paper 3 uses the covariate-modulated FDR (cmfdr), an 

extension of the fdr, proposed by Ferkingstad et al. (2008) using estimating 
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procedures first described in Zablocki et al. (2014).  

 Conceptually, a full mixture model for two traits is a four-group mixture model, 

given by the following density function: 

 f(z1, z2) = π0f0(z1, z2) + π1f1(z1, z2) + π2f2(z1, z2) + π3f3(z1, z2) [2.4.3.1] 

and where π0 is the proportion of SNPs for which both phenotypes are null, π1 is the 

proportion of SNPs where both phenotype 1 and 2 are non-null (i.e. the pleiotropic 

SNPs), π2 is the proportion of SNPs where phenotype 1 is null and phenotype 2 is 

non-null, and π3 is the proportion of SNPs where phenotype 2 is null and phenotype 1 

is non-null. Likewise, f0(z1, z2) is the density function for the SNPs where both 

phenotypes are null, f1(z1, z2) is the density function for the SNPs where both 

phenotypes are non-null, f2(z1, z2) is the density function for the SNPs where 

phenotype 1 is null and phenotype 2 is non-null and f3(z1, z2) is the density function 

for the SNPs where phenotype 2 is null and phenotype 1 is non-null. This full 

specification of the four-group mixture model is a useful starting point since it 

classifies SNPs into four biologically-interpretable categories, which may be useful 

for future inference. In practice, a simplified mixture model is usually assumed for 

estimation procedures in bivariate extensions of the local false discovery rate. If we 

imagine that all non-null SNPs are non-null for both trait 1 and trait 2 (i.e., π2 and π3 

are 0), the mixture model in Equation 2.4.3.1 simplifies to: 

f(z1, z2) = π0f0(z1, z2) + π1f1(z1, z2). [2.4.3.2] 

2.4.3.1 Conditional false discovery rate 
 The condFdr is defined, using Bayes Theorem, as: 

 condFdr(z1 | z2) = Pr(null for trait 1 | Z1≥ z1 and Z2 ≥ z2)   

= π0 (z2)F0(z1 | z2) / F(z1 | z2)  

 

[2.4.3.1.1] 

or on the p-value scale, 
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 condFdr(p1 | p2) = Pr(null for trait 1 | P1 ≤ p1 and P2 ≤ p2)  

 = π0 (p2)F0(p1 | p2) / F(p1 | p2)  

 

[2.4.3.1.2] 

 Under the null hypothesis p1 and p2 are independent so F0(p1 | p2) = F0(p1) = p1. 

This can be thought of as the expected quantile of p1 under the null hypothesis. 

Therefore  

 condFdr(p1 | p2) =  π0 (p2)p1 / F(p1 | p2).  [2.4.3.1.3] 

Conservatively, π0 (p2) is set to 1. The conditional cumulative distribution function, 

F(p1 | p2), needs to be estimated from the data. This can be thought of as the observed 

quantile of p1 conditioned on the p-value in the second trait being as small as or 

smaller than the observed p-value, p2. The approach taken here is described in detail 

in Andreassen et al. (2013). In brief SNPs are binned into a “look-up table”, with the 

p-value in the first trait in the rows and the p-value from the second-trait in the 

columns. From this table, the observed quantile of p1 amongst the subset of SNPs for 

which the p-value for the second trait is as small as or smaller than p2 is calculated. 

2.4.3.2 Covariate modulated local false discovery rate 
 The local false discovery rate has also been extended to include information 

from a second variable. This extension was first proposed by Ferkingstad et al. (2008) 

and further developed by Zablocki et al. (2014). In Paper 3, we use the estimation 

procedures of Zablocki et al. (2014). 

 The cmfdr is defined, using Bayes Theorem, as: 

 cmfdr(z1 | z2) = Pr(null for trait 1 | Z1= z1 and Z2 = z2) 

 =  π0 (z2)f0(z1) / f(z1 | z2) 

 =  π0 (z2)f0(z1) /{ π0 (z2)f0(z1) + π1(z2)f1(z1 | z2)}. 

 

 

[2.4.3.2.1] 

Here it is required to estimate the proportion of SNPs that are null for trait 1 given 

that Z2=z2, the parameters for the null density function for z1, which is assumed 



! 29!

independent from z2 and the non-null density function for z1 given that Z2=z2. A fully 

Bayesian estimation procedure is followed, where f0(z1) follows a folded normal 

distribution with mean 0 and f1(z1|z2) follows a gamma distribution. Here the shape 

parameter is modeled as dependent on z2 and but the rate parameter is assumed 

independent from z2. The proportion of non-null SNPs for trait 1 is dependent on z2, 

and is modeled using a logistic regression procedure. The implementation of this 

procedure in R is available from the authors at: 

https://sites.google.com/site/covmodfdr/. 

3 Aims 
 This thesis aims to apply and improve analyses of GWAS data, specifically 

using a standard GWAS pipeline for the genotype-phenotype data from TOP study for 

multiple neurocognitive traits (Paper 1), and using pleiotropy-informed false 

discovery rate methodology for summary statistic data from the 

CARDIoGRAMplusC4D Consortium and related cardio-metabolic traits for CAD, in 

order to find trait-associated genetic variants (Paper 2). We aimed to propose a 

method to adjust for sample overlap in cross-trait analysis of GWAS data when only 

summary statistics are available (Paper 3). 

4 Summary of papers in this thesis 

4.1 Paper 1 
LeBlanc, M., Kulle, B., Sundet, K., Agartz, I., Melle, I., Djurovic, S., Frigessi, A. and 
Andreassen, O.A., 2012. Genome-wide study identifies PTPRO and WDR72 and 
FOXQ1-SUMO1P1 interaction associated with neurocognitive function. Journal of 
psychiatric research, 46(2), pp.271-278. 
 

The aim of this paper was to find SNPs/genes associated with neurocognitive 

function using the standard GWAS approach. Samples were from the Thematically 

Organized Psychosis (TOP) Study conducted at Oslo University Hospital. The sample 
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included healthy individuals (n = 377) and patients with schizophrenia spectrum 

disorders (n = 204) and bipolar disorders (n = 177) having genotype (Affymetrix 

Genome-Wide Human SNP Array 6.0) and neurocognitive data available. Twenty-

four neurocognitive tests falling into five clinical domains (Attention, Executive 

Functioning, Psychomotor Speed, Learning and Memory, Intelligence) were explored 

as outcome variables using a standard GWAS approach. Two independent 

associations achieve genome-wide significance based on Bonferroni correction and 

these were annotated to the PTPRO and WDR72 genes. Additionally, we looked for 

interaction in the subset of SNPs with p-value < 3.6 × 10−7, corresponding to an 

overall α of 0.2, and found a significant FOXQ1-SUMO1P1 interaction. The findings 

should be replicated in independent samples, but indicate a role of PTPRO in 

Learning and Memory, WDR72 with Executive Functioning, and an interaction 

between FOXQ1 and SUMO1P1 for Psychomotor Speed. 

4.2 Paper 2 
LeBlanc, M., Zuber, V., Andreassen, B.K., Witoelar, A., Zeng, L., Bettella, F., Wang, 
Y., McEvoy, L.K., Thompson, W.K., Schork, A.J., Reppe, S., Barrett-Connor, E., 
Ligthart, S., Dehghan, A., Gautvik, K.M., Nelson, C.P., Schunkert, H., Samani, N.J., 
CARDIoGRAM Consortium, Ridker, P.M, Chasman, D.I., Aukrust, P., Djurovic, S., 
Frigessi, A., Desikan, R.S., Dale, A.M and Andreassen, O.A., 2016. Identifying Novel 
Gene Variants in Coronary Artery Disease and Shared Genes with Several 
Cardiovascular Risk Factors. Circulation Research, 118(1):83-94. 
 

 The main aim of this paper was to find SNPs/genes associated with coronary 

artery disease (CAD) using a post-GWAS era approach. Here we used the summary 

statistics from a large-scale genomic study conducted by CARDIoGRAMplusC4D 

Consortium together with GWAS summary statistics from eight related 

cardiovascular risk factors to improve gene discovery for CAD. The eight risk factors 

were: type 1 diabetes, type 2 diabetes, high-density lipoprotein, low-density 

lipoprotein, triglycerides, C-reactive protein, body mass index and systolic blood 
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pressure. Using the conditional FDR pairwise with CAD as the primary trait and each 

risk factor as the secondary trait, we found a significant polygenic pleiotropy 

enrichment for each pair. We identified 67 novel loci associated with CAD (overall 

conditional FDR < 0.01). Further, we identified 53 loci with significant effects in both 

CAD and at least one risk factor. The observed polygenic overlap between CAD and 

cardio-metabolic risk factors indicates an etiological relationship that warrants further 

investigation. The new genetic loci identified implicate novel genetic mechanisms 

related to CAD. A favorable editorial was published in the same issue of Circulation 

Research highlighting the importance of the results to the cardiac genetic community 

(Quertermous and Ingelsson, 2016).  

4.3 Paper 3 
LeBlanc, M.*, Zuber V.*, Thompson W.K., Andreassen O.A., Frigessi A. and 
Andreassen, B.K., 2016. A correction for sample overlap in genome-wide association 
studies in a polygenic pleiotropy-informed framework. (Submitted to Plos Genetics) 
*Contributed equally 
 

The main aim of this paper was to propose a method for correcting for sample 

overlap when integrating GWAS data across several traits, at the summary statistic 

level. When two GWAS contain overlapping subjects, their summary statistics for a 

given SNP are correlated even under the null hypothesis of no genetic effects. The 

proposed correction is based on the correlation between the maximum 

likelihood (ML) estimates for the regression coefficients from the first and second 

GWAS, for a given SNP under the null hypothesis. We derive the correlation for any 

pairwise combination of quantitative or case-control GWAS, and then use this 

correlation in a linear transformation to de-correlate the GWAS summary statistics. 

Using the covariate-modulated false discovery rate and simulated GWAS for two 

traits and with sample overlap, we show that without correction for sample overlap, 

the false discovery proportion greatly exceeds that of simulated independent GWAS. 
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When applying the proposed correction to the simulated data with overlap, proper 

control of the false discovery rate is restored. The proposed correction is then applied 

to genotype-phenotype data from the Psychiatric Genetics Consortium. We generate 

summary statistics for GWAS for schizophrenia and bipolar disorder using first 

independent control sets and then overlapping control sets. We show that before 

applying the proposed correction, using the covariate-modulated false discovery rate 

leads to more “discoveries” that are most likely false positives, and this gets worse as 

the extent of sample overlap increases. After applying the proposed correction, the 

number of discoveries in the overlapping GWAS is comparable to the number of 

discoveries in the independent GWAS, implying successful control of the false 

discovery rate.
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5. Discussion 
!

5.1 Thesis overview 
This thesis focuses on specific applications and methods pertaining to 

genome-wide association studies. In Paper 1, we worked with genotype-phenotype 

data from the TOP study and conduct a basic genome-wide association analysis for 

several neurocognitive traits. The main aim of the paper was to identify SNPs 

associated with neurocognition. The analysis plan mainly followed a standard GWAS 

analytical pipeline, but did not include a replication step. The work presented in 

Paper 1 was conducted during the “GWAS era”. The work presented in Paper 2 and 

Paper 3 was conducted in the “post-GWAS era”. In Paper 2, we used summary 

statistics from GWAS for coronary artery disease and related cardio-metabolic traits, 

all sourced from international consortia-based studies, to improve discovery of CAD 

associated common genetic variants and to quantify the extent of polygenic pleiotropy 

for CAD and each related trait. Here we used the conditional false discovery rate to 

integrate summary statistics for pairs of traits, with CAD conditioned on each of the 

secondary, related traits. We performed an internal validation step and attempted an 

external validation step. In conducting the analysis for Paper 2, we encountered 

overlapping samples for CAD and several of the secondary traits. Having access only 

to the GWAS summary statistics and not the underlying genotype-phenotype data 

meant that we could not remove the sample overlap by splitting the samples. 

Therefore, in Paper 3, we propose two-step method for correcting for sample overlap 

when working with summary statistics for two GWAS having non-distinct sample 

sets. The first step of our proposal is a de-correlation step and the second step is user-

defined. In Paper 3 the covariate-modulated false discovery rate was used in the 

second step. We also applied the proposed correction in Paper 2 using the proposed 



! 34!

de-correlation step followed by the conditional false discovery rate analysis. 

This discussion is organized as follows. First we discuss the main 

contributions, strengths and weaknesses, and suggestion possible future work and 

provide a conclusion for each paper. We then conclude with a general discussion of 

how these papers together fit into the general themes raised in this thesis. 

5.2 Paper 1 

5.2.1 Paper 1 – main contributions 
 In Paper 1, we aimed to identify neurocognitive-trait associated SNPs. At the 

time that this analysis was conducted (mainly in 2009/2010), there was not a 

comparable published GWAS of neurocognitive traits, although GWAS for certain 

neurocognitive traits we beginning to emerge (Bates et al., 2009, Butcher et al., 2008, 

Papassotiropoulos et al., 2006). The main contribution of Paper 1 is the identification 

of two novel loci associated with neurocognition in the TOP sample. A SNP 

annotated to PTPRO was associated with a Learning and Memory trait, and a SNP 

annotated to WDR72 was associated with an Executive Functioning trait. A more 

speculative finding was the identified interaction between FOXQ1 and SUMO1P1 for 

a Psychomotor Speed trait. 

5.2.2 Paper 1 – strengths and weaknesses 
 The main weaknesses in Paper 1 are its small sample size (lack of power) and 

its lack of a replication sample. It can also be argued that the 24 different 

neurocognitive traits could have been analyzed in a more cohesive, elegant and 

powerful way. However, these weaknesses are particularly challenging to address for 

neurocognitive traits. The challenges here include that the neurocognitive test battery 

is never the same from one study of neurocognition to the next, making multi-study 

data alignment and meta-analysis difficult to conduct. Within one study, statistical 

methods for multivariate data may be difficult to apply because of missing data. In the 
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TOP study, the 24 neurocognitive tests were rarely conducted on all subjects and data 

imputation would thus be required for multivariate methods. In analyses not published 

or presented here, we did the required imputation and followed this by principal 

components analysis (PCA). Here we found that the neurocognitive traits were largely 

independent from each other and did not strongly cluster into the clinically-defined 

neurocognitive domains. This presented an obstacle for multivariate analysis, which is 

of course most powerful when the traits are correlated. In earlier studies of 

neurocognition, the first principle component itself is used at the outcome. We did not 

want to do this, however, as it essentially removes the possibility for future replication 

efforts. The TOP study is in all likelihood unique in its test battery and no other study 

would be able to replicate the exact same principle component.  

When we corrected for multiple testing, we only did a within-trait correction. 

In other words, we did not account for multiple testing across traits. Surprisingly, this 

is the common approach in GWAS, but strictly speaking the topic should at least be 

addressed. However, our study was hypothesis-generating, and we did not want 

employ an overly conservative approach and increase the false negatives. 

 As a secondary result, we identified a SNP-SNP interaction. A strength of this 

analysis is that we only carried forward the top SNPs from the GWAS analysis, 

reducing the multiple testing burden, but simultaneously this may also be a weakness, 

since association in GWAS may not be a good criteria for pre-screening SNPs likely 

to interact with each other. 

5.2.3 Paper 1 – future work 
Since Paper 1 was published, there has been one major GWAS of 

neurocognition (Ibrahim-Verbaas et al., 2015) that specifically tried to replicate our 

WDR72 association but the finding did not replicate. The replication effort did not use 
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exactly the same neurocognitive test and was likely underpowered, but the result did 

not even nominally replicate. To improve discovery of neurocognitive-related 

common genetic variants, in addition to the obvious need for larger sample sizes, it 

may be useful to explore neurocognitive GWAS data using post-GWAS era 

methodology such as those we used in Paper 2 and Paper 3. Conditional quantile-

quantile plots, followed by further analysis when polygenic pleiotropy is seen could 

be helpful. Incorporating brain-eQTLs into the analysis may also help in identifying 

neurocognitive-trait associated SNPs. 

5.2.4 Paper 1 – conclusion 
Our GWAS of neurocognition in a sample of 700 individuals identified two 

neurocognitive-trait associated SNPs that have yet to be replicated in an independent 

sample. It may be possible to revisit the dataset in the future with more advanced 

statistical methods from the post-GWAS era, but this will never “overcome” the small 

sample size, which is 10x to 100x smaller than the most successful GWAS for other 

common human traits. 

5.3 Paper 2 

5.3.1 Paper 2- main contributions 
In Paper 2, we aimed to identify coronary artery disease associated SNPs and 

to illustrate the extent of polygenic overlap between CAD and related cardio-

metabolic traits. The main contributions of Paper 2 are the identification of 67 novel 

CAD associated loci, 53 loci associated with both CAD and at least one related trait, 

and the identification of significant polygenic overlap between CAD and 8 related 

traits. This provides strong evidence the known phenotypic correlations between CAD 

and the related traits are accompanied by genetic correlations. 

5.3.2 Paper 2 – strengths and weaknesses 
A strength of Paper 2 is that it uses the best-available data available. 
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Specifically, it uses summary statistics from consortia-based GWAS for CAD and 

related cardio-metabolic traits. Without exception, the underlying samples are the 

largest available and the studies have been published in high-impact journals. The 

original studies for CAD and each related trait was based on a standard GWAS 

pipeline, and then replication in an independent dataset. A weakness of our analysis is 

lack of a stringent independent replication step, but has several other strengths 

compared to the standard GWAS pipeline. We provide an internal validation, called 

the replication rate, which is essentially a cross-validation procedure using sub-studies 

instead of individuals as the unit in the derivation and validation sets. We also 

nominally replicate some of the findings in an independent prospective cohort. By 

identifying a polygenic pleiotropic signal for CAD and each related trait, we establish 

a type of information that can be used to break the exchangeability assumption 

implicit in standard GWAS and improve power by incorporating this information into 

our analysis pipeline. 

A limitation of Paper 2 is that we again do not formally adjust for computing 

the condFdr for 8 pairs. We do use a relatively stringent threshold, following the 

method of Andreassen et al. (2014) but a more precise solution is given by Liley and 

Wallace (2015) for declaring the upper bound for the false discovery rate of all 

declared SNPs. We were already in the review process when this method was 

published and would have employed it had we been aware of it at the time of analysis. 

Compared to earlier publications, we modified the condFdr estimation in two 

important ways. Since the  “GWAS” summary statistics from the 

CardiogramplusC4D Consortium are based on the Metabochip (Voight et al., 2012), 

they are not actually from a GWAS in the strict sense. The Metabochip is a custom 

Illumina genotyping panel designed to test, ~200,000 SNPs of interest for metabolic 
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and atherosclerotic / cardiovascular disease traits. Content on the chip was selected on 

the basis of previously published GWAS results and of HapMap and 1000 Genomes 

Project SNP content. The Metabochip includes fine mapping around previous GWAS 

hits. This has important implications for all types of false discovery rate calculations 

using the Metabochip since the number of SNPs in LD on the chip is higher for non-

null SNPs. To account for this, we estimated the condFdr, namely F(p1|p2) using an 

LD-pruned set of SNPs. This was an important modification to avoid a substantial 

increase in the type 1 error rate in the condFdr and a loss of control of the false 

discovery rate. 

We also quantified the extent of and adjusted for sample overlap using the 

methods developed in Paper 3. This was of critical importance and without this 

adjustment, the false discovery rate would have been greatly inflated. Liley and 

Wallace (2015) provide an alternative approach to calculating the condFdr when 

samples overlap for case-control studies but not for overlapping samples when one 

study has a quantitative outcome. Therefore, their method would not have been 

sufficient for our application, and their approach was published after we had 

completed the analysis for Paper 2. 

The lack of a “perfect” replication sample is a definite weakness, but no 

perfect replication sample is available. We instead applied an internal validation 

analysis (replication rate) and attempted replication in a prospective dataset. 

5.3.3 Paper 2 – future work 
 For the novel loci reported here, the next step will be to replicate them in an 

independent study, should such a dataset become available. Additional work to 

establish causality, and work in the laboratory to understand biological mechanisms 

connecting CAD and related cardio-metabolic traits should be conducted in the future. 



! 39!

5.3.4 Paper 2 – conclusion 
Our paper makes a substantial contribution to the field of cardiac genetics and 

makes important polygenic connections between CAD and eight related cardio-

metabolic traits. Additionally, we believe we wrote a paper that made the power and 

utility of advanced statistical methods clear to non-statisticians. 

5.4 Paper 3 

5.4.1 Paper 3 – main contribution 
  This manuscript proposes a correction for sample overlap for cross-trait 

analysis of GWAS data at the summary statistic level. Overlap in samples between 

two GWAS studies can introduce bias when combining and integrating the two 

studies and thus leads to spurious findings. Our correction is appropriate for both 

case-control studies and for quantitative outcomes. Additionally, our correction can 

be seen as a pre-processing step, which allows for any type of data integration 

downstream. Since consortia-based GWAS for related traits nearly always contain 

overlapping samples and data is released on the level of summary statistics, our 

proposed correction makes an important and useful contribution to the field. It allows 

for unbiased downstream integration of GWAS with overlap in samples and cross-

trait analysis without the access to the original genotype data. 

5.4.2 Paper 3 – strengths and weaknesses 
 A main strength of Paper 3 is that is provides an easy to implement correction 

for sample overlap and strong evidence that this correction works using both 

simulation studies and genotype-phenotype data from the PGC. Our approach to 

correcting for sample overlap has the distinct advantage of not being tied to any 

particular downstream implementation of cross-trait analysis. The correction for 

sample overlap proposed by Liley and Wallace (2015) is tied to the condFdr and 

case-control studies. Their critical insight is that sample overlap renders F0(p1) 
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dependent on p2, and they modify this part of the estimation procedure using the 

correlation due to overlap provided in the Lin and Sullivan (2009) paper. 

5.4.3 Paper 3 – future work 
 The method of Liley and Wallace (2015) could be extended using the 

correlations due to sample overlap that we provide for quantitative trait studies and 

for the quantitative trait study-case control study combination. This may seem 

obvious, but it is not obvious for the many of the end users of these methods. The 

cmfdr method could also be extended in a similar way to the Liley and Wallace paper. 

Their insight that sample overlap renders F0(p1) dependent on p2 could be used to 

develop a new algorithm for estimating the cmfdr. Our paper again provides the 

correlations due to sample overlap for all possible study combinations necessary for 

such an estimation.   

5.4.4 Paper 3 – conclusion 
The proposed method provides a de-correlation step that can be incorporated 

into any cross-trait GWAS analytical pipeline, and can drive research forward by 

allowing for data integration of GWAS datasets containing overlapping subjects. 

Although this is not the first publication on overlapping subjects in GWAS, this is the 

first publication to provide the explicit formulas needed for calculating correlation 

due to sample overlap for all possible pairs of case-control and quantitative trait 

studies, when only summary statistics are available. Since our proposed method is 

easy to implement, and since the paper provides a detailed synthesis on the subject of 

sample overlap, we believe that researchers will better understand the bias induced by 

sample overlap and how to address the bias caused by sample overlap. 

5.5 Concluding Remarks 
 This thesis aimed to apply and improve analyses for GWAS and to address the 

issue of sample overlap in cross-trait analysis of GWAS data at the summary statistic 
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level. Although at the surface, many of the statistical methods used here are standard 

and are based on well-established regression methods and correction for multiple 

testing, naïve application of these techniques without consideration of the special 

properties of genomic data will lead to incorrect conclusions. Heritability, linkage 

disequilibrium in the human genome, design of the genotyping chips and a basic 

understanding of the allelic spectrum of disease are all important consideration when 

conducting genomic analyses. A good overview of common practices in genomic 

studies is also important, otherwise critical issues like sample overlap for two datasets 

coming from two separate GWAS Consortia published in separate manuscripts could 

easily be missed, resulting in an extremely biased analysis. It seems that, going 

forward, the most successful approaches to genomic data, and certainly to GWAS 

data, will continue to combine biological knowledge in a clever way with improved 

and innovative statistical techniques. The key here is to use the biological knowledge 

in such a way that the exchangeability assumption implicit in a naïve GWAS pipeline 

is broken, but without being too biased by this prior biological knowledge and overly 

committed to which loci are important.
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Figures 
!

  

 

 

Figure 1. Published GWAS, 2005-2013. Figure from the Catalog of Published 

Genome-Wide Association Studies. Figure is downloaded from 

https://www.genome.gov/26525384 and the Catalog is currently maintained at 

http://www.ebi.ac.uk/gwas/ (Welter et al., 2014).

3XEOLVKHG *:$�5HSRUWV�������ದ ����

7R
WD
O�1

XP
EH
UR

I�3
XE
OLF
DW
LR
QV

����

&DOHQGDU�4XDUWHU
7KURXJK���������SRVWLQJV

�

���

����

����

����

����

���� ���� ���� ���� ���� ���� ���� ���� ����



! 51!

 

 

 

 

Figure 2. Feasibility of identifying genetic variants by risk allele  

frequency and strength of genetic effect (odds ratio). Figure from Manolio et al. 

(2009). 
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Figure 3. Venn diagram summarizing the genes annotated to genome-wide significant 

SNPs for four different outcomes in the Global Lipids Consortium GWAS. Figure 

from the Global Lipids Genetics Consortium (2013).
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Figure 4. A typical quantile-quantile plot for a Consortium-based GWAS.
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Figure 5. Stratified quantile-quantile plot. Conditional quantile-quantile plot of 

nominal versus empirical -log10 p-values in Coronary Artery Disease (CAD) as a 

function of significance of association with low density lipoprotein cholesterol (LDL). 

Dotted line indicates the null hypothesis. 
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