
Real-Time Road Estimation for
Autonomous Driving
A computer vision based approach

Eirik Sundet
eirisu@ifi.uio.no
Master’s Thesis Spring 2016

Real-Time Road Estimation for
Autonomous Driving

Eirik Sundet
eirisu@ifi.uio.no

May 2, 2016

ii

Abstract

During the last decade, there has been an increasing interest and dedi-
cation towards developing self-driving cars. The enhancements of sensor
technology and processing power have made more advanced autonomous
systems possible.
For self-driving cars, robust and accurate navigation is essential. In that
context, cameras, in collaboration with specialized graphics processing
units (GPU), has been shown to serve as a valuable tool to map the lo-
cal scenery surrounding the vehicle.

This thesis proposes a computer vision based method for detecting
road in a local scenery, purposed for road following. The method utilizes
on-line machine learning techniques to model the road, in terms of a set
of features. The choice of features is widely discussed in this thesis, as is
the methods for modeling the road. The proposed methods for both mod-
eling and detecting the road are executable in real-time and are adaptable
to variation in road appearance.

The algorithm has been thoroughly tested in four different sceneries,
which includes three recorded sequences containing tarmac road, and one
containing dirt road. The algorithm has been evaluated in relation to sim-
ilar state-of-the-art algorithms which has proved reliable for road detec-
tion.

The proposed algorithm shows great promise for detecting tarmac
road in homogeneous scenery, where it almost matches the state-of-the-
art algorithms. However, it struggles when the road appearance is less
consistent throughout the images. Dirt road, inconsistently shadowed
road and extreme illumination conditions currently pose as challenging
situations.

iii

iv

Contents

1 Introduction 1
1.1 Background and Motivation 1

1.1.1 The UGV System Architecture 2
1.2 The Self-Driving Car . 3

1.2.1 DARPA Challenge 2005 - Off-road Navigation 4
1.2.2 DARPA Challenge 2007 - the Urban Challenge 4
1.2.3 Repercussions of the DARPA Challenges 5

1.3 Research Goals . 6
1.4 Thesis Structure . 7

2 Background Theory 9
2.1 Outdoor Imaging . 9

2.1.1 Illumination Invariant Images 10
2.2 Image Features . 13

2.2.1 Color Features . 13
2.2.2 Textural Features . 14
2.2.3 Local Standard Deviation 19

2.3 Classification, Modeling and Discrimination 21
2.3.1 Normal/Gaussian Distribution 21

2.4 Machine Learning for Model Estimation 26
2.4.1 Expectation Maximization 28

2.5 Geometrical Features - Detecting Road Edges 30

3 Method and Implementation 33
3.1 The Road Estimation Algorithm 33

3.1.1 Features Extraction . 34
3.1.2 Modeling the road class 40
3.1.3 Probability Estimation 42

3.2 Vanishing Point Detection . 43

4 Experiments and Results 45
4.1 Experiment Data . 45
4.2 Experimental Plan . 46
4.3 Reference Algorithm . 47
4.4 Experiment 1 - Texture from Illumination Invariant Images . 49

v

4.4.1 Results from Experiment 1 50
4.4.2 Analysis of the results of Experiment 1 51

4.5 Experiment 2 - Feature Separability vs. Computation Time . 52
4.5.1 Result of Experiment 2 54
4.5.2 Analysis of the results of Experiment 2 56

4.6 Experiment 3 - Road Estimation Performance 57
4.6.1 Result of Experiment 3 61
4.6.2 Analysis of the results of Experiment 3 65

4.7 Experiment 4 - Vanishing Point detection 69
4.7.1 Results of Experiment 4 70
4.7.2 Analysis of the results of Experiment 4 70

5 Discussion 73
5.1 Collective Discussion of the Experiment Results 73
5.2 Future Work . 74

5.2.1 Extracting training samples 74
5.2.2 Improving the Illumination Invariant Images 75
5.2.3 Increasing estimation rate 75
5.2.4 Vanishing Point Detection 76

5.3 Conclusion . 77

vi

List of Figures

1.1 Overview of the systems at work on the UGV. The Scene
Analysis System, where this thesis belongs, is marked in
blue. The square boxes represent the individual processing
systems, and the rounded boxes represent the different
sensors. The lines represent exchange of data between the
sub-systems. 2

1.2 Illustration of the planned Scene analysis system. The
square boxes represent the individual systems at work in
the Scene Analysis system while the lines represent data
exchanged between these systems 3

2.1 Illustration of how light is emitted from the sun, reflected
from the surface of an object, and at last recorded as an
intensity value at a specific pixel on the image sensor. The
light reflected at a point Xi in the 3D real world is captured
in the image plane at pixel xi. 10

2.2 Illustration of the many sources of electromagnetic radia-
tion that enters the camera lens. 11

2.3 Example of the different amount of shades contained in (a)
the gray-level intensity image Ig, and (b) the illumination
invariant image I , both computed on an image from the
KITTI dataset for road segmentation [1]. 12

2.4 Illustration of one individual computational step of the
GLCM calculation. In this example, the comparison offset
(∆x, ∆y) is set to (3, 2), and the intensities are normalized
to the number of GLCM levels, which is set to 5. Note
that this figure only represents one arbitrary co-occurrence
observations. The same procedure is applied for every pixel
in IG. 15

2.5 Illustration of an arbitrary feature computed by calculating
the GLCM from a local neighborhood. 16

2.6 Example of the results of computing the variance feature
image. 17

2.7 Example of the results of computing the angular second
moment feature image. 17

vii

2.8 Example of the results of computing the inertia feature image. 18

2.9 Example of the similarity of computing the entropy feature
image from (a) the GLCM, and (b) the histogram, from the
illumination invariant image I 19

2.10 Example of two filter kernels commonly used for image
blurring, i.e. the Box filter (left) and the Gaussian filter (right). 20

2.11 Example of a univariate Gaussian density. The mean and
variance of the Gaussian is marked by the two dashed lines. 22

2.12 The two figures show examples of bivariate Gaussian
densities. In (a), the Gaussian is viewed in 3D, where the
density is represented as a value on the vertical axis. In
(b) the Gaussian is viewed in 2D to illustrate how it can be
used as a distance measure. The colored contours represent
specific distances of the Mahalanobis distance. All points
on such a contour will have an equal distance to the mean,
as illustrated by the points plotted. 23

2.13 Example of a complex data distribution. In (a), the data
is modelled as a single Gaussian, while in (b) the data is
modelled as a mixture of two Gaussians. 24

2.14 Illustration of the advantage of using mixture of Gaussian
modeling. In (a), the data marked in blue is modeled as
a single Gaussian, while in (b) the data marked in blue is
modeled as a mixture of two Gaussians. The ellipsoidal
contours represents imaginary, discrete distances from the
mean of the Gaussians. 25

2.15 Visualization of the usage of Eq. (2.14) to compute a
complex distance measure, with respect to a MoG model
computer with 3 Gaussians. 27

2.16 Example of the progress of estimating the parameters of
the Gaussians during the EM algorithm. The distribution
in (a) is set to be modeled as a MoG model containing
3 Gaussians. The figures (b), (c) and (d) show how the
parameters of the Gaussians converge towards an optimal
mixture, displayed in (e). Figure (f) shows the ground truth
distributions used to create the dataset in (a). The size of the
ellipsoids corresponds to the weight of each Gaussian. . . . 29

2.17 Illustration of two parallel road edges intersecting at a
vanishing point. 31

viii

3.1 An overview of the different methods and operations at
work in the road estimation algorithm; represented in the
figure as rectangular boxes. The lines represent exchanges
of data from one operation to another, and the arrow
indicates the operation which receives the data. Each line
is marked with a specific color, which matches the color of
the operation from where the data was created. 34

3.2 Illustration of how the sliding window algorithm is paral-
lelized. This illustrations shows 3 parallel workers creating
image regions of size W×M, where W is the window size,
and M is the width of the image. The regions are marked
here as the dashed lines. 36

3.3 Comparison of the computation time for extracting the local
entropy feature image, using the straightforward algorithm
and the optimized algorithm. 37

3.4 Illustration of the GLCM coordinate system transformation.
The GLCM coordinates i and j, in the left figure, correlates to
to the coordinate k, in the right figure. How k relates to i and
j in the right figure, are visualized through the yellow and
blue dashed lines. Each of the co-occurrence counts shown
in the left figure corresponds to the bar in the right figure
with the matching color. 38

3.5 Illustration of the extraction of I∆, represented here as the
area within the dashed line. The area outside the original
image is not included in I∆. 39

3.6 Illustration of how the learning rate is retained by only
using 10% of the new training samples contained in the
extraction window. For each new image, the training
samples are extracted from the window, marked here as
a dashed rectangle. 10% of the training samples are then
merged with the global sample vector trough a random
selection procedure. The 90% selection of the global sample
vector is also randomly selected. 42

3.7 A selection of some of the Gabor kernels contained within
the Gabor filter bank. 44

4.1 A selection of image from the first recorded sequences from
the UGV. 45

4.2 A selection of image from the second recorded sequences
from the UGV. 46

4.3 A selection of image from the third recorded sequences
from the UGV. 46

ix

4.4 The images above shows (a) the grayscale intensity and
(b) the illumination invariant version of the same image,
obtained from the KITTI dataset. Image (c) and (d) shows
the local standard deviation feature images computed from
the two, respectively. 49

4.5 The plots show the distribution of the classes Road and
Environment in terms of the local standard deviation
feature image, calculated from (a) the grayscale intensity
image, and (b) the illumination invariant image 50

4.6 The plots show the distribution of the two classes in terms
of the local entropy feature image, calculated from (a)
the grayscale intensity image, and (b) the illumination
invariant image . 50

4.7 The plots show the distribution of the two classes in terms
of the local variance feature image, calculated via the
GLCM from (a) the grayscale intensity image, and (b) the
illumination invariant image 51

4.8 The figure show how the joint overlap percentage is
calculated. The two areas, marked as "FP" and "FN", are
summed together. Since the two functions are normalized,
these combined areas amounts to the error between the two
arbitrary classes. 53

4.9 This figure displays the Probability Density function for the
4 features: (a) blue color channel, (b) green color channel,
(c) red color channel, (d) local standard deviation. 54

4.10 This figure displays the Probability Density function for the
4 features: (a) local entropy, (b) sum of squares (calculated
from the GLCM), (c) inertia (calculated from the GLCM), (d)
angular second moment (calculated from the GLCM). 55

4.11 Illustration of the advantage of using mixture of Gaussian
modeling, (a) regular ROC curves, (b) x-axis scaled loga-
rithmically. The area previous to the dotted red line, i.e. the
area where the false alarm rate is below 0.1, is most interest-
ing part of the ROC curve for evaluating the algorithm. . . . 59

4.12 Example of an image from the first UGV sequence, and the
corresponding computed likelihood image. 61

4.13 ROC curve from experiment 3 conducted on the first UGV
sequence, where the x-axis has been scaled logarithmically. . 61

4.14 Example of an image from the second UGV sequence, and
the corresponding computed likelihood image. 62

4.15 ROC curve from experiment 3 conducted on the second
UGV sequence, where the x-axis has been scaled logarith-
mically. 62

4.16 Example of an image from the Sunny-Shadow sequence, and
the corresponding computed likelihood image. 63

x

4.17 log-ROC curve from experiment 3 conducted on the Sunny-
Shadow sequence. 63

4.18 Example of an image from the After-Rain sequence, and the
corresponding computed likelihood image. 64

4.19 log-ROC curve from experiment 3 conducted on the After-
Rain sequence. 64

4.20 Example of the failures of computing the (b) a standard
deviation feature image from (a) an image containing dirt
road. The area in the image containing shadows has an
impact on the feature-image. 66

4.21 The figures above demonstrates the benefit of the MoG
density modeling method compared to the single Gaussian
density modeling method. (a) shows an example of three
consecutive images where snow inconsistently covers the
road. When the snow area enters the extraction window
(marked in green), these pixels becomes part of the model.
From the images, it is clear that the impact of the snow
pixels are far more drastic on the single Gaussian model in
(b), than on the MoG model in (c). 68

4.22 Example of three accurate vanishing point estimations. The
manually marked vanishing point is marked in green, while
the estimated is marked in blue. 70

4.23 Example of three inaccurate vanishing point estimations.
The manually marked vanishing point is marked in green,
while the estimated is marked in blue. 71

xi

xii

List of Tables

2.1 Overview of symbolic names used for the different image
types throughout the thesis. 13

4.1 The table shows the shows the percentage of joint overlap
of the densities for the classes: Buildings (Blds), Sky, Cars,
Pedestrians (Pdst), Trees, and Vegetation (Vgtn), when
compared to the density of the road class. The joint overlap
is calculated for each of the 8 features listed. 56

4.2 The table shows the average computation time of extracting
the features of all 41 images. Since the color channels can be
retrieved directly from the image, they are not included in
this table. All images are of size 1242×375p. 56

4.3 Experiment 2 - List of features combinations and number of
Gaussians in the MoG model for the different runs. 58

4.4 The table shows the window sizes used to compute the
entropy (ENTR) and the standard deviation (SDEV) feature
images, for each of the four sequences 58

4.5 Table showing the quantifiable results for the first UGV
sequence. 61

4.6 Table showing the quantifiable results for the second UGV
sequence. 62

4.7 Table showing the quantifiable results for the Sunny-Shadow
sequence. 63

4.8 Table showing the quantifiable results for the After-Rain
sequence. 64

4.9 Table showing the Gabor kernel sizes used for the different
image sizes in order to compute the pixel orientations. The
confidence threshold (conf) for assigning pixel orientations
is also listed. 69

4.10 Table showing results of Experiment 4. 70

xiii

xiv

Preface

My deepest gratitude goes to my two supervisors, Kyrre Harald Glette
and Idar Dyrdal. Thank you for all your support and seemingly limitless
knowledge.

I must also send my gratitude towards Trym Vegard Haavardsholm
and Thomas Olsvik Opsahl, who has also been of considerable help dur-
ing the work with this thesis.

A special thanks to Anders Ueland, for all your help, and for all the
helpful discussions we have had.
My fellow students, family, and friends for your support, thank you.

Most of all, thanks goes to my better half, Nora Dalaker Steenberg.
Thank you for all the loving support through these last weeks, it was
greatly needed.

xv

xvi

Chapter 1

Introduction

This chapter will give a short introduction to the motivation behind this
thesis. A brief description of the planned outline of the UGV project
is presented, as well as some of the most promising computer vision
methods used for autonomous vehicle applications. At last, the goal and
an outline of the rest of the thesis are presented.

1.1 Background and Motivation

In the fall of 2014, the Norwegian Defense Research Establishment (FFI)
initiated the Unmanned Ground Vehicle (UGV) project, aimed at making
an autonomous vehicle capable of conducting several tasks related to
different war scenarios.
For the UGV to know where it is, how fast it is moving, and in which
direction, a robust navigational system is essential. Inertial navigation is the
typical approach to autonomous navigation, which involves integrating
data from several sensors [2]. The inertial navigation system proposed for
the UGV is a combination of Inertial Measurement Unit (IMU) and GPS.
However, this combination is not accurate enough for the UGV to reliably
stay on the road. Also, the inertial navigation system does not have
any information about obstacles and variations in the scenery which may
deviate from prior information gathered from maps, or similar. Therefore,
an analysis of the local scenery is necessary.
Several approaches to mapping the local scenery are planned, utilizing
different sensors and methods. The UGV is currently equipped with four
types of sensors for navigational purposes: GPS, IMU, Light Detection and
Ranging (LIDAR) and cameras. On the roof, there are three 9.1MP cameras.
Two of them are monochrome (black-and-white), capable of higher detail
and sensitivity. In between the two monochrome cameras, the chromatic
(color) camera is located.

1

1.1.1 The UGV System Architecture

Route planning
system

Camera LIDAR

GPS IMU

Navigation

Scene
Analysis

Motion
Planning

Path Following Controller

Image stream LIDAR point cloud

GPS position IMU data

Route

Path

Steering and
speed commands

NAV data

Local 2D map(x,y)

NAV data

NAV data

 Requested Destination

Figure 1.1: Overview of the systems at work on the UGV. The Scene
Analysis System, where this thesis belongs, is marked in blue. The square
boxes represent the individual processing systems, and the rounded boxes
represent the different sensors. The lines represent exchange of data
between the sub-systems.

The planned UGV system, illustrated in figure 1.1, is complex. Many
different sensors and processing steps depend on one another. It consists
of several processing systems, each taking care of a certain aspect related
to the navigation. How all of these sub-systems should be stitched to-
gether, is still investigated, and the goal is to do so in a manner where the
sub-systems can best complement each other.
The planned functionality is that an operator requests a destination (ge-
ographical coordinate), which is processed by the Route Planning system.
This route planning is based on maps and topological information. When
the route is established, the system waits for the approval of the opera-
tor to initiate. After the operator approves the planned route, the route is
forwarded to the Motion Planning system. This system utilizes information
from all the sensors in the process of planning how to move, so that the
UGV stays on its planned route. The motion planning depends on two
other systems, namely the Navigation system, where the global position
is estimated based on GPS and IMU data, and the Scene Analysis system,
which is the topic of this thesis. The object of the Scene Analysis system
is to identify the local surroundings, both road and others, and thereby
identify the scenery in terms of driveability. Along with prior information
from map data, this information will then be used to avoid drift arising in
the Navigation system. The purpose of the Scene Analysis system is also

2

to prevent the UGV from crashing into local obstacles in the scenery. The
planned movement path generated from the Motion Planning system is
sent to the Path Following system, which generates the necessary steering
and speed commands. These commands are sent to the Controller, where
the engine power, steering, and brakes are controlled.

Within the Scene Analysis system, many different methods are being
researched. In addition to the road estimation algorithm, Stereo Vision,
SLAM and Object Detection is planned to be integrated into this system.
All of these methods will be merged to establish a measure of the local
scenery, and the position of the UGV with respect to this scenery. This is
illustrated in figure 1.2.

Road
Estimation

Object
Detection

SLAMStereo Vision

Merging
estimates

Disparity image Estimated position Detected objectsRoad probability image

Sensor data

Local Map(x, y)

Scene Analysis system architecture

NAV data

Figure 1.2: Illustration of the planned Scene analysis system. The square
boxes represent the individual systems at work in the Scene Analysis
system while the lines represent data exchanged between these systems

1.2 The Self-Driving Car

In this section, some of the most successful attempts to develop self-
driving cars are presented.

Development of self-driving cars has been attempted several times
since at least 1926 [3], to different extents and success [4]. The modern
day breakthrough, however, came with the DARPA Grand Challenge [5].
Funded by the Defense Advanced Research Projects Agency (DARPA), the

3

DARPA Grand Challenge was a competition for robotics researchers, en-
gineers, inventors and hobbyists across the United States, aiming to spur
innovation in unmanned ground vehicle navigation. The objective of the
competition was to develop a mobile robot that was able to traverse a
predetermined route autonomously. The competition was arranged three
times; the first in 2004, the second in 2005 and the third in 2007. The first
two competitions took place on a desert road, where the vehicles had to
traverse unrehearsed off-road terrain. The third focused on navigation in
urban scenes.

1.2.1 DARPA Challenge 2005 - Off-road Navigation

The DARPA Grand Challenge of 2005 was by far more successful than the
first challenge. In the 2004 race, none of the 15 finalists completed more
than 11.9km of the 212.4km course. In the 2005 race, 22 of the 23 finalists
traveled further than 11.9km, and a remarkable 5 vehicles completed the
entire 212.4km course. In the 2005 challenge, the autonomous car Stanley
won the race [6], finishing at the winning time of 6 hours, 53 minutes.
Stanley was created at Stanford University, and the vehicle utilized some
promising methods for vision based navigation.
To estimate the road, Stanley used a combination of LIDAR data and
computer vision. It utilized the LIDAR to extract a patch of the area in
front of the vehicle that resembled drivable terrain. This patch was then
projected into the camera plane, and the pixels in the image corresponding
to this patch then served as the training samples for modeling the road,
with respect to the feature space defined by the three color channels
Red, Green and Blue. The road was modeled as a Mixture of Gaussians
(discussed further in 2.3.1). For each new image, the samples extracted
from the laser patch was modelled as k new "local" Gaussian densities
using the EM algorithm (discussed further in 2.4.1) [7]. These new
Gaussians were then merged into the existing n Gaussians, learned from
the previous images. Thrun et. al claims that this allowed for both robust,
time-dependent modeling of the drivable terrain, and at the same time fast
adaption to sudden changes in the scenery.

1.2.2 DARPA Challenge 2007 - the Urban Challenge

In 2007, another DARPA Challenge was organized. This version of the
self-driving car competition was called the "Urban Challenge", and its pur-
pose was to focus on self-driving cars in urban scenes. The competition
did not only concentrate on the problem of navigating through a course,
like the 2005 DARPA Challenge, but also challenged the vehicles to obey
the laws of driving on public roads, such as keeping in the lane, avoiding

4

hitting other cars and pedestrians, and following the rules in intersections.
The top three self-driving cars finishing the challenge was Boss [8], Junior
[9] and Odin [10].
For Boss, both offline and real-time perception techniques were used. The
offline approach utilized aerial imagery along with predefined GPS way-
points to obtain prior estimates of the road shape. This method involved
training neural network classifiers (see section 2.4). However, for the real-
time road estimation, none of the autonomous vehicles used vision-based
techniques. For the vehicle Odin, it is explained how vision-based tech-
niques were tested previous to the competition, but that these techniques
were scrapped due to lack of robustness. Instead, they landed on only us-
ing high-density LIDAR data to detect the road and drivable surfaces. As
did the two other autonomous vehicles, Boss and Junior.
This was an interesting change from the 2005 DARPA Challenge, where
most of the contenders used a vision-based approach to improve the per-
ception of the nearby scenery. One factor that may be crucial for the differ-
ence in approaches may be the fact that the 2007 DARPA Challenge was
conducted at a parking lot, where vision based approaches may yield a lot
of ambiguity, while in the 2005 challenge there was a clear road to follow.
Another important aspect was the vast improvement in high resolution LI-
DAR sensors that was developed as a result of the second DARPA grand
challenge in 2005. The LIDAR manufacturer Velodyne was inspired by the
2005 challenge to improve their LIDAR technology, and before the 2007
challenge, the HDL-64E sensor was developed, producing higher resolu-
tion LIDAR data [11].

1.2.3 Repercussions of the DARPA Challenges

Since the DARPA Urban challenge, a huge interest in self-driving cars has
arisen. The automotive industry has increased their research in advanced
driver assisting systems, such as autonomous parking, lane following, etc.
In 2009, Google initiated a project aiming to develop a self-driving car.
The technology and techniques used by Google builds on much of the re-
search and discoveries which rose from the DARPA challenges, such as
high density maps in combination with high resolution LIDAR sensors,
cameras and radar sensors, as well as complex software techniques such
as machine learning [12].

In this context, it is also worth mentioning a branch of machine
learning algorithms which has received a lot of attention in the last
decade, namely Deep learning. Advances in graphics processing units
(GPUs) and initiatives from several contributors on making larger datasets
for image recognition purposes, like ImageNet [13], has helped to put

5

a greater focus on the field of machine learning for computer vision
purposes. A particular Deep Learning algorithm showing great potential
is Convolutional Neural Nets (CNN). Although it was originally developed
in 1980 by Kunihiko Fukushima [14], it had its modern day revival in
2012 with the CNN model described in [15]. Since then, CNN has been
used for many computer vision purposes [16], [17], [18], and is currently
the dominating approach in the KITTI Vision Benchmark for road/lane
detection [1], and in the KITTI Vision Benchmark for object detection [19].
CNN is also currently the leading approach to recognizing handwritten
digits from the MNIST database [20].
Although CNN is not the focus of this thesis, it is an important part of the
modern day state-of-the-art.

1.3 Research Goals

This thesis will focus on a computer vision based approach related to local
navigation. More specifically, the primary goal of this thesis is to develop a
method for detecting the location of road, perceived from the perspective
of a chromatic camera positioned on the roof of the UGV, using computer
vision and machine learning methods. The method must produce detec-
tion of the road in real-time. The real-time criterion in this context requires
that the rate of estimation must match the frame rate of the camera, which
for this camera model is adjustable.
The purpose of the algorithm is not to produce a binary segmented im-
age, where each pixel are classified as "road" or "not road", but rather pro-
duce a probability image, where each pixel contains a probability of being
a pixel representing the road. The reason for this approach is based on
the assumption that it is more robust to merge this probability image with
other soft estimates, as for example those computed from the Stereo Vi-
sion, SLAM, or Object Recognition.

The primary goal of this thesis has been to develop and implement a
robust computer vision based road estimation algorithm, which is adapt-
able to variations in road appearance, and simultaneously executable in
real-time. The focus has been on finding robust image features, which
makes the problem of separating the road from other scenery object easier.
The road is continuously modeled as the UGV is traversing the environ-
ment, making the estimation adaptable to changing road appearance. The
road is modeled as a Mixture of Gaussian (MoG) distribution, using a ma-
chine learning algorithm known as the Expectation Maximization (EM) al-
gorithm. The MoG modeling method through the EM algorithm is chosen
for its ability to quickly parameterize complex data distributions, which is
an important requirement for the adaptability of the road estimation algo-
rithm.

6

As an effort to boost the confidence of the classical pixel classification
approach, an additional method is described in this thesis. This method
exploits the geometrical properties in an image, and seeks to detect the
left and right road edge. The algorithm involves detecting the vanishing
point of the two road edges, and then finding the lines in the image which
leads up to the detected vanishing point, and simultaneously displays
typical characteristics of road edges. This method shall serve as an
independent algorithm, and the two shall be merged to provide a more
robust estimation of the road, exploiting color, textural and geometrical
properties of the road images.

1.4 Thesis Structure

This thesis is divided into five chapters: Introduction, background theory,
implementation, experiments, and discussion.

Chapter 2 gives an introduction to the theory and related work used in
the thesis work.
Chapter 3 contains an overview of the implementation of the different
methods used for extracting features, modeling the road, and estimation of
the road. In addition, this chapter will present how the different methods
are optimized to meet the real-time criterion.
Chapter 4 describes three experiments conducted to investigate different
aspects of the road estimation algorithm, and one larger experiment where
the performance of the algorithm is evaluated.
Chapter 5 presents an overall discussion of the experiment results. Some
suggestions for future work are discussed, and lastly, a final conclusive
summary of the thesis is presented.

7

8

Chapter 2

Background Theory

Estimation of the road from images require three components. The first
is a model of the road describing the parameters θ of the road in terms of
the chosen feature space. The second is a learning algorithm which allows
θ to be estimated from a set of training samples. The third component is a
probability function which estimates the new pixel’s probability of being
a road pixel.

This chapter attempts to give an overview of the field of computer
vision techniques applicable to this problem. Some of the most promising
modeling techniques for the road estimation problem will be discussed,
as well as some common image features which presumably will make the
estimation of the road easier, including color, textural and geometrical
features. Some different methods for extracting such features will be
discussed. Lastly, a brief description of some machine learning algorithms
for computer vision purposes are discussed, with emphasis on machine
learning algorithms for fast parameter estimation.

2.1 Outdoor Imaging

Images are created by electronic sensors capturing light which is emitted
from some source and then reflected off the surface of an object. Different
object surfaces have different reflective properties which, when captured
by an image sensor, creates different colors and intensities. An illustration
of this shown in figure 2.1. For the purpose of detecting road, both color
and intensity may serve as an important clue.

In outdoor scenes at daytime, the sun is the main source of illumina-
tion. However, the light reflected from objects are not the only electro-
magnetic radiation involved in the process of imaging. The sun, although
often considered as a point source, is continuously emitting light all over
the planet, causing photons to bounce all around. For imaging, this causes
a lot of scattered light to enter the lens. These are photons reflected from

9

X1 = (X1, Y1, Z1)

X2 = (X2, Y2, Z2)

x2 = (x2, y2)

x1 = (x1, y1)

Image Plane

Figure 2.1: Illustration of how light is emitted from the sun, reflected from
the surface of an object, and at last recorded as an intensity value at a
specific pixel on the image sensor. The light reflected at a point Xi in the
3D real world is captured in the image plane at pixel xi.

object to object, losing some energy on the way, but finally making its way
onto the image sensor. Such scatter light enables both imaging sensors
and humans to see objects and elements that are not necessarily directly
lit up by the sun, also known as shadowed areas, which aid to increasing
the complexity of the scenery, in terms of light. Figure 2.2 presents an il-
lustration of the many sources of electromagnetic radiation present in an
outdoor scene.

2.1.1 Illumination Invariant Images

Shadows and illumination variations cause severe problems for color
based scene analysis. It distorts the actual colors of the objects, and can
confuse an algorithm in many ways. These variations are caused by vari-
ous light sources illuminating different parts of the objects.
In daylight, when the sky is clear, the dominant illumination source is the
sun. However, there are also plenty of indirect light sources present. As
mentioned, this light originates from sunlight which is reflecting off dif-
ferent objects, like clouds. This causes shadowed areas to reflect light onto
the image sensor with a different intensity and frequency than those re-
flected from direct sunlight.

Methods which deals with the problem of illumination variations has
been developed [21], [22], [23]. This thesis adopts the method presented
in [23] for the purpose of minimizing the effect of shadows in road images.

10

Di
re

ct
Su

nli
gh

t
Reflected Sunlight

Thermal Radiation from object

Scattered light from background

Scattered sunlight

Sc
att

er
ing

Figure 2.2: Illustration of the many sources of electromagnetic radiation
that enters the camera lens.

How an image sensor R with spectral sensitivity F(λ) behaves with
respect to an illumination source with emitted spectral power distribution
E(λ) incident on an object with surface reflectivity S(λ), is described by the
following equation:

Rx,E = ax · nx Ix
∫

Sx(λ)Ex(λ)F(λ)dλ (2.1)

where the unit vectors ax is the direction of the sunlight, nx is the direction
of the surface normal and Ix represents the intensity of the illumination on
point x.
This relationship can be used to create an intensity image I , which
emphasizes the effect of the reflectivity of the material surface Sx(λ),
and minimizes the effect of the illumination source spectrum Ex(λ) and
intensity Ix.
As in [21], it is assumed that F(λ) can be modelled as a Dirac delta function
centered on wavelength λi, which leads to the response function:

Rx,E = ax · nx IxSx(λi)Ex(λi) (2.2)

For road images, [23] describes, with certain assumptions and simplifi-
cations, how Eq. (2.2) can be rewritten as a function of the 3 color channels
of an image (R, G and B) to produce an illumination invariant image I :

I = log(R2)− αlog(R1)− (1− α)log(R3) (2.3)

11

where α is a scaling constant based on the peak spectral response of the
color channels. α is found by solving the following equation with respect
to alpha:

1
λ2

=
α

λ1
+

1− α

λ3
(2.4)

where λ1, λ2 and λ3 are the peak spectral response of the color channels
Blue, Green and Red, respectively.

The result of Eq. 2.3, calculated from the color image IRGB, is shown
in figure 2.3b. As shown, the shadows in the gray-level intensity image
IG, shown in figure 2.3a, have almost been removed in the illumination
invariant image I .

(a)

(b)

Figure 2.3: Example of the different amount of shades contained in (a) the
gray-level intensity image Ig, and (b) the illumination invariant image I ,
both computed on an image from the KITTI dataset for road segmentation [1].

Several applications has shown to benefit from exploiting the illumi-
nation invariant images [22], [24]. For road estimation, this thesis will dis-
cuss the benefits and drawbacks of using the illumination invariant image
to extract features.

12

2.2 Image Features

Choosing the right features is an important task in most practical com-
puter vision application. There is a large assortment of measures and
properties that can be extracted from an image. The image could be used
directly as a feature, or a pre-processing step could be applied, which
transforms the image into some new space of variables, where the problem
hopefully will be easier to solve. This pre-processing stage is commonly
known as feature extraction [25].

The problem of detecting road from images is complex. There are
seemingly infinite variations of road texture, color, illumination, and shad-
ows, so the choice of features should be carefully made according to these
challenges. The goal should be to find features that are as invariant as pos-
sible to these variations while simultaneously emphasizing the character-
istics of the road. It should also be kept in mind the real-time requirement
of the application.

For clarity, in the equations, figures and examples used in the following
section, the same symbolic names will be employed for the different
image types. These names are listed in Table 2.1. An arbitrary pixel will
be referred to with the (x, y) notation, where x is the horizontal image
coordinate, and y is the vertical coordinate.

IRGB 3-channel color image, using the RGB color-space
I Illumination Invariant Image
IG Gray-level intensity image

Table 2.1: Overview of symbolic names used for the different image types
throughout the thesis.

2.2.1 Color Features

For pixel classification, color is one of the most obvious choices of features.
For humans, colors and intensity variations are one of the main vision
based sources of information that enable discriminate between objects. In
image processing, there are several ways of representing color. The most
common representation is through the RGB color-space, where all colors
are represented as a combination of the three primary colors Red, Green
and Blue. Different color intensities are expressed by adding intensity
values to each of the three colors. Commonly, this value is within the
range [0, 255].
For classification purposes, the three color channels could be used directly
as features. In a color image, a single pixel IRGB(x, y), can therefore be

13

expressed as a 3-dimensional feature vector, containing three intensity
values for each of the colors Red, Green, and Blue.

Although the variation is great, the color of road is usually some shade
of gray. Regarding classification, the color makes the road stand out
in cases where it is surrounded by elements containing colors different
from gray, like grass, trees, corn fields, and similar. However, in areas
containing similar colors, as in cities, the color-based approach shows
its weakness. Additionally, the color-based approach fails in the face of
shadows covering the road surface, since the color of the shadowed road
is so different from the rest of the road.

2.2.2 Textural Features

Another way of segmenting image elements from one another is to look
at the texture of the elements. For humans, texture helps to distinguish
between objects of similar color and intensity. Although the concept of
texture is commonly understood, there is no precise definition of it. Wil-
son [26] describes texture as "Spatially extended patterns with more or less
accurate repetitions of some basic structure element, called texels. Texture
analysis can, therefore, be seen as the concept of segmenting objects which
are uniform with respect texture. The size and shape of these texels are ar-
bitrary, and, in order to differentiate between the different texels in a single
image, local window operations are necessary. The choice of window size
is highly problem dependent and requires a prior analysis of how texels
of the relevant object varies in terms of size, shape, orientation, contrast,
etc. For road estimation, it is important to be aware that drivable road can
contain many variations of texture, so a single assumption about the road
texture is rarely valid for all situations. However, a general observation is
that the road texels are small, and occupies rarely more than a few pixels
(this depending on the distance from the road to the camera, and the type
of camera used). This property can help to separate the road from objects
such as trees, buildings, cars, and people, where the textural patterns usu-
ally occupy larger regions in the image.

Gray-Level Co-Occurrence Matrix

There are several approaches to texture analysis. One of the most popular
involves the use of the Gray-Level Co-Occurrence Matrix (GLCM) to gather
statistical information about an image, or a local image region [27]. As the
name suggests, the GLCM is usually calculated from gray-level intensity
images, gathering information based solely on the pixel intensity. The
GLCM describes an image texture by calculating how often pairs of pixel
intensities, with a specific spatial relationship, occurs.

14

215 16 41 129 1 25 41 250

78 31 51 378 31 74 331 74 3

1 25 41 250

378 31 74 3

25 74 250

85 74 3

215 16 41 129

78 31 4931 74 3

1 25 41 25088 41

11 41 129 1

78 31 2 37874 3

25 41 250234 41 250

251

31

163 211 129 0

78 31 41 37874 3

144 41 25025 199 250

215

31

Δx= 3

Δy=2

378 31 74 3

250

3

 +1

78 31

41 250

3

250

31 31 74 333 74 3123 25 41 25065 248

255 41 93 7 97 28 19 3

IG

i

j

GLCM

Figure 2.4: Illustration of one individual computational step of the GLCM
calculation. In this example, the comparison offset (∆x, ∆y) is set to (3, 2),
and the intensities are normalized to the number of GLCM levels, which is
set to 5. Note that this figure only represents one arbitrary co-occurrence
observations. The same procedure is applied for every pixel in IG.

To compute the GLCM from the gray-level intensity image IG, each
pixel in IG(x,y) must be compared to the pixel IG(x+∆x,y + ∆y), where (∆x,
∆y) is a specified offset which dictates the horizontal and vertical distance
of the comparison. In the GLCM, the observation of the pixel intensities
IG(x,y) and IG(x+∆x,y+∆y) counts as 1 co-occurrence. Mathematically, the
Gray-Level Co-Occurrence matrix P is defined as:

P(i, j|∆x, ∆y) =
N−∆x

∑
x=1

M−∆y

∑
x=1

{
1 if IG(x, y) = i and IG(x + ∆x, y + ∆y) = j
0 otherwise

(2.5)
where N×M is the size of IG.
To avoid a large GLCM, the range of the gray-level intensity is normalized
to the range [0, G− 1], where G is the specified size of the GLCM. The size
G is commonly known as GLCM levels, and influences the possible reso-
lution of the statistical measures extracted from the GLCM, but also the
computational complexity of calculating these measures.

In figure 2.4, an example of a single computational step of a GLCM
calculation is illustrated. The two pixels marked by the circles, containing
the gray level intensities IG(x,y) = 215 and IG(x+∆x,y+∆y) = 74, are
compared. Normalized from the range [0, 255] to the range [0, 4], these
values translates to the GLCM coordinate:

P
(

IG(x, u)
255

× (G− 1),
IG(x + ∆x, y + ∆y)

255
× (G− 1)

)
15

= P
(

215
255
× 4,

74
255
× 4
)
= P(3, 1)

Furthermore, the observed co-occurrence of the intensity values 215
and 74 causes the value of P(3, 1) to increase by one. The same proce-
dure is applied to all other pixels, IG(x,y), and the final result is a GLCM
containing the number of observed co-occurrences for every possible co-
occurrence in the range [0, 4]. Normally, the choice of GLCM levels is
higher. The number 5 in this example is chosen for illustration purposes.

In practical applications, like the road estimation algorithm, it is
rarely convenient to compute the GLCM for the entire image, since this
only yields an overall statistical measure of gray-level intensity change.
Instead, the GLCM should be used as a tool to distinguish between
the different objects in a single image that most likely displays different
textural properties. As described by Peckinpaugh, the GLCM can be used
to compute such textural properties for local neighborhoods, or windows,
throughout the gray-level intensity image IG [28]. Figure 2.5 shows an
example of the GLCM calculated for a local window before a statistical
measure is extracted from it. Notice that the coordinate of the center pixel
in the window is the coordinate assigned to the feature value in the feature
image.

1 3 0 0 0

G = 5

P(x,y)IG(x,y)

[N, M] = [32, 32]

1 6 3 5 0

5 2 1 5 1

1 3 4 2 1

0 2 4 1 2

W = 9

Counting intensity changes
within the window

Calculating
feature based
on GLCM

Feature Image

Figure 2.5: Illustration of an arbitrary feature computed by calculating the
GLCM from a local neighborhood.

Several statistical measures can be calculated from the GLCM. For the
purpose of detecting road, it is appropriate to choose measures which will
yield different results for road patterns compared to the pattern of other
objects. This thesis has chosen to focus on the features: Variance, Angular
Second Moment, and Inertia.

VAR =
G−1

∑
i=0

G−1

∑
j=0

(i− µ)2P(i, j) (2.6)

16

Eq. (2.6) is the equation for GLCM Variance, a measure which weights
higher the elements in the GLCM P(i, j) that differs from the average µ.
Road has a pretty constant pattern, which means it will typically yield low
variance measures, while in trees or bushes, the patterns are usually more
random, consequently yielding a higher variance measure. An example
of the results of computing the variance feature image from I is shown in
figure 2.6.

Figure 2.6: Example of the results of computing the variance feature
image.

ASM =
G−1

∑
i=0

G−1

∑
j=0

(
P(i, j)

)2 (2.7)

Angular second moment, in Eq. (2.7), is a measure of the number of gray
levels present in the neighborhood. Few gray levels will result in a GLCM
with few non-zero elements. However, these few non-zero elements
will have a high count, thus yielding a higher Angular second moment
value. This will typically occur in neighborhoods where the pattern is
highly uniform. An example of the angular second moment feature image
computed from I is show in figure 2.7.

Figure 2.7: Example of the results of computing the angular second
moment feature image.

17

INR =
G−1

∑
i=0

G−1

∑
j=0

(i− j)2P(i, j) (2.8)

Inertia, in Eq. (2.8), emphasizes the GLCM values away from the matrix
diagonal. A high inertia value corresponds to a neighborhood where there
is a high degree of pairwise variation, when comparing pi to pj. This
occurs in neighborhoods with a lot of contrast, i.e. transitions from low
to high gray level values, and conversely.

Figure 2.8: Example of the results of computing the inertia feature image.

The choice of window size, comparison distance and angle of compari-
son is important when working with pattern recognition. This will dictate
both the quality of the statistical texture measures, the sensitivity to objects
with certain spatial repetition of the patterns, and the sensitivity to objects
with a strong orientation.

Texture from Histogram

A somewhat simpler method of extracting textural descriptions from an
image is to use an intensity histogram. Intensity histograms are a histogram
containing the number of occurrences of the different gray-level intensi-
ties within the image neighborhood [29].
Like the GLCM, the intensity histogram can be used to provide a statistical
description of the neighborhood. However, unlike the GLCM, the inten-
sity histogram only counts the occurrences of the gray-level intensities and
not the pairwise co-occurrence of two individual intensities. Although this
results in the loss of the spatial aspect of the statistical information, the
intensity histogram still contains information which enables the approxi-
mation of many of the same features found from the GLCM. Furthermore,
the computational complexity of estimating the textural features decreases
greatly.

An example of such a feature is the Entropy, which is given by Eq. (2.9).
Entropy is a measure of the degree of disorder in the neighborhood. Eq.

18

(a)

(b)

Figure 2.9: Example of the similarity of computing the entropy feature
image from (a) the GLCM, and (b) the histogram, from the illumination
invariant image I

(2.9) yields high values if all histogram counts are equal, i.e. if there are
several distinct intensity values present in the neighborhood. Entropy is
the opposite measure of the angular second moment, which was given
by Eq. (2.7). An example of the different results between computing
the entropy measure from the GLCM and from the intensity histogram
is shown in figure 2.9. Entropy is defined by:

ENT = −
G−1

∑
i=0

P(i)log2{P(i)} (2.9)

2.2.3 Local Standard Deviation

Some image features can be extracted without having to depend on the
GLCM, intensity histograms or other statistical neighborhood operations.
More specifically, some features can be calculated very quickly by approx-
imating certain statistical measures. One of these is the local standard de-
viation feature, which is a measure of how much a neighborhood devi-

19

ates from the mean of the neighborhood. Local standard deviation can be
viewed as a measure of local energy.
Eq. (2.10) is the basic expression for standard deviation.

σ =
√

E[(X− µ)2] (2.10)

where E is the expected value of the variable X, and µ is the mean value of
X. Eq. (2.10) could be reformulated as a function only dependent on the
expectation value.

σ =
√

E[X2]− (E[X])2 (2.11)

Eq. (2.11) is known as the computational formula for variance.
Utilizing Eq. (2.11) in image processing, requires a method for computing
the expectation of a neighborhood surrounding each pixel in the image.
A sliding window is an obvious choice, but estimating the expectation for
each of window over the whole image, is a computationally exhausting
exercise. However, the expected value can be approximated by the use of
a blurring function. Image blurring involves convolving an image with a
filter kernel. This exercise translates to replacing each pixel in the image
with the average of its neighborhood, weighted by the values contained in
the filter kernel.

1 1 1

1 1 1

1 1 1

1 1 1

1

1

1

1

1 1 1 1

1

1

1

1

1

1
25

1 4 7

4 16 26

7 26 41

4 16 26

4

16

26

16

1 4 7 4

1

4

7

4

1

1
273

Box Filter Gaussian Filter

Figure 2.10: Example of two filter kernels commonly used for image
blurring, i.e. the Box filter (left) and the Gaussian filter (right).

There are different types of filter kernels used for image blurring, each
weighting a local pixel neighborhood in a different way. Two kernels
which are frequently used, are the Box filter and the Gaussian filter, rep-
resented in figure 2.10. The Gaussian filter is an important blurring fil-
ter which weights the neighborhood based on the closeness to the center
pixel. Gaussian blurring is often favorable for noise reduction, and usu-
ally produce a "prettier" image than when a box filter is used. Still, for the
purpose of approximating a local mean, the box kernel is more appropri-
ate.

20

Blurring I with a box filter can, therefore, be used as an approximation
of the expectation E[X], as used in Eq. (2.11), of local neighborhoods
throughout I . Similarly, E[X2] is described by blurring the quadratic
image, i.e. the image multiplied with itself. The local standard
deviation can be calculated very quickly with only the help of a blurring
computation, and a few computational steps which are easily parallelized.

2.3 Classification, Modeling and Discrimination

Given that the objects in an image belong to different classes, these objects
are viewed as having different models. A model is a parametrization of a
class, described in terms of features.
Bayesian decision theory is a fundamental statistical approach to the prob-
lem of pattern classification, which strides to estimate the probability that
an observation belongs to a specific class. This probability is based on the
probability of the class P(ωi) (or prior probability), and the class-conditional
probability density function p(x|ωi), which can be considered as an obser-
vations likelihood of belonging to the class ωi.

In real world problems, perfect descriptions of these distribution func-
tions are rarely available. In fact, these functions are often unknown, and
to solve this issue, the unknown functions must be estimated from a set of
samples, through a training procedure. Such a training procedure usually
involves fitting a model to the training samples through some optimiza-
tion scheme. Two popular methods approaches to this, is the Maximum
likelihood and the Bayesian approach [30].
However, to perform a parameter estimation of these functions, prior
knowledge about the distribution functions must be utilized. In proba-
bility theory, there are as many probability distributions as there are prob-
lems, and they are divided into two main categories based on whether the
variable x is discrete or continuous. Discrete uniform distribution and Bino-
mial distribution are examples of two common discrete distributions, while
the Gaussian/Normal distribution is an example of a very common continu-
ous distribution. A collection of common probability distributions can be
found in [31]

2.3.1 Normal/Gaussian Distribution

In many image analysis problems, the probability distribution is un-
known. In these types of problems, the Normal/Gaussian distribution
is often used. The Normal/Gaussian distribution is based on the Central
Limit Theorem [32], which states that the average of large amounts of ran-
dom variables will converge towards a normal distribution. The distribu-

21

tion becomes increasingly normal as the number of variables increase. The
normal distributions popularity is due to its apparent analytical simplic-
ity, and because it is easily specified by only the two parameters expected
value, or mean, and the expected squared deviation, or variance.

In the univariate case, i.e. the case of a single continuous random
variable x, the Gaussian density is expressed as in Eq. (2.12).

N (x|µ, σ2) =
1

(2πσ2)1/2 exp
{
− 1

2σ2 (x− µ)2
}

(2.12)

For the multivariate case, i.e. the case of a D-dimensional vector x̄, the
multivariate Gaussian density is expressed as in Eq. (2.13).

f (x̄|µ̄, Σ) =
1

2πD/2
1
|Σ|1/2 exp

{
− 1

2
(x̄− µ̄)TΣ−1(x̄− µ̄)

}
(2.13)

where µ̄ now is a D-dimensional mean vector (for each of the D features),
Σ is a D×D covariance matrix, and |Σ| denotes the determinant of Σ.
An example of a univariate Gaussian density is illustrated in figure 2.11.
An example of a multivariate Gaussian density, specifically a bivariate
density, is illustrated in figure 2.12b.

-3 -2 -1 0 1 2 3

X

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

f(
x
|
µ

 σ
)

Gaussian Distribution

σ

µ

Figure 2.11: Example of a univariate Gaussian density. The mean and
variance of the Gaussian is marked by the two dashed lines.

Distance from the Gaussian distribution

The objective of generalizing data into models is to obtain a more man-
ageable object to which new data can be compared. These models could,

22

(a)

Gaussian Distribution (PDF)

-3 -2 -1 0 1 2 3

x

-3

-2

-1

0

1

2

3

y

(b)

Figure 2.12: The two figures show examples of bivariate Gaussian
densities. In (a), the Gaussian is viewed in 3D, where the density is
represented as a value on the vertical axis. In (b) the Gaussian is viewed
in 2D to illustrate how it can be used as a distance measure. The colored
contours represent specific distances of the Mahalanobis distance. All
points on such a contour will have an equal distance to the mean, as
illustrated by the points plotted.

for instance, be used to investigate the similarity of one set of data to an-
other by comparing their models. In pixel classification, it is appropriate
to compare a model to each new data sample that occurs. The compari-
son is performed by comparing the data sample to the parameters of the
model through some cost/distance function.
For the Gaussian distribution, if the mean and the variance of the distribu-
tion is known, the parameters can be used to compute a distance measure
for new, unobserved data. This method uses the probability density func-
tion, given by Eq. (2.13), with the known mean and covariance to compute
the distance from the given input variable x to the mean, in the feature
space. This distance is dependent on the difference between x and µ, and
the "shape" of the class distribution, which is dictated by the covariance.
The concept is illustrated in figure 2.12b. In this example, a set of train-
ing data has been used to model a bivariate Gaussian density based on
the mean µ̄ (marked as a blue star in the figure) and the covariance Σ of
the distribution. The contours (ellipsoidal lines) in the figure represent
the discrete, imaginary distances to the mean of the Gaussian. Points on
these contours will be equally distanced from the mean, which is illus-
trated in figure 2.12b by the three points. The two blue points is equally
distanced from µ̄ while the red point is further away. When the probability
density functioned is used as a distance measure, the distance will not be
linear throughout the feature space, contrary to Euclidean distance, which
is why the contours in the illustration have an ellipsoidal shape.

These principles are the same with higher dimensionality, but illustra-
tions of higher-dimensional distributions are less intuitive, which is why

23

this thesis will only use 1-dimensional and 2-dimensional distributions as
examples.

Mixture of Gaussians

-6 -4 -2 0 2 4 6

x
1

-6

-4

-2

0

2

4

6

x
2

 Scatter Plot and Fitted Gaussian Mixture Contours

(a)

-6 -4 -2 0 2 4 6

x
1

-6

-4

-2

0

2

4

6

x
2

 Scatter Plot and Fitted Gaussian Mixture Contours

(b)

Figure 2.13: Example of a complex data distribution. In (a), the data
is modelled as a single Gaussian, while in (b) the data is modelled as a
mixture of two Gaussians.

Although the Gaussian distribution is a helpful assumption for mod-
eling real world datasets, it has its limitations. Real world data is often
messy, and the assumption that a distribution could be best described as
a single Gaussian is often inaccurate. As an example, inspect the distribu-
tions presented in figure 2.13.

In figure 2.13a, the data is represented with respect to two arbitrary
features. The data is grouped into two clusters, with a slight random devi-
ation for each sample. Often in classification problems, distributions like
these originate from two different class-conditional distributions. How-
ever, this could very well be the characteristics of a single source. Al-
though the purpose of extracting features from raw measurements is to
simplify the problem, the result is not necessarily simple. As for this ex-
ample, where the data is grouped into two clusters, modeling this data
as a single Gaussian does not sufficiently describe the characteristics of
the distribution. The Gaussian density is centered at a mean somewhere
between the two clusters, and the covariance is fairly emphasized in the
direction between the two classes.

A way to improve the description of the distribution is to represent the
data as a superposition of several Gaussians, called mixture of Gaussians
(MoG). This way of describing distributions is more versatile to complex
data distributions, as illustrated in figure 2.13b, where two Gaussians have
been utilized to describe the distribution. As for the single Gaussian case,
this model contains the parameters µ̄ and Σ for each Gaussian, but now

24

there is one set of parameters for each of the K Gaussians, i.e. µ̄k and Σk.
Additionally, to describe the influence each Gaussian has on the model,
each Gaussian is assigned a weight, ωk, which corresponds to the portion
of the dataset used to parameterize that particular Gaussian. An example
of a situation where the assumption of a single Gaussian distribution leads
to inaccuracies, and how a MoG distribution assumption improves upon
this, is illustrated in figure 2.14a and 2.14b.

-6 -4 -2 0 2 4 6

x
1

-6

-4

-2

0

2

4

6

x
2

 Scatter Plot and Fitted Gaussian Mixture Contours

(a)

-6 -4 -2 0 2 4 6

x
1

-6

-4

-2

0

2

4

6

x
2

 Scatter Plot and Fitted Gaussian Mixture Contours

(b)

Figure 2.14: Illustration of the advantage of using mixture of Gaussian
modeling. In (a), the data marked in blue is modeled as a single
Gaussian, while in (b) the data marked in blue is modeled as a mixture
of two Gaussians. The ellipsoidal contours represents imaginary, discrete
distances from the mean of the Gaussians.

In figure 2.14, two different class conditional distributions are repre-
sented in the same feature space. The data marked in blue serves as train-
ing samples for estimating the parameters of one of the distributions. In
figure 2.14a, these samples are modeled as a single Gaussian. The mean
of this Gaussian lies somewhere between the two blue clusters. The prob-
lem becomes evident when a second distribution is introduced, marked
in green in the figure, which belongs to another class. Although this dis-
tribution is pretty well separated from the two clusters of the first class,
the single Gaussian does not describe the distribution well enough to dis-
criminate between the two. In fact, the distribution belonging to the sec-
ond class is closer to the mean of the estimated Gaussian from the first
class, which proves a problem if the two is to be discriminated. Figure
2.14b illustrates how a MoG distribution resolves this issue by modeling
the distribution as two individual Gaussians. In the illustration, the sec-
ond distribution is well separated from the parameterized model of the
first.

As well as for the single Gaussian case, the MoG model can be used
to compute a distance measure between the model and new, unobserved
data. Section 2.3.1 described how Eq. (2.13) along with known means and

25

covariance could be used to compute the distance between a new sample
and the model mean. These equations can be translated to apply for the
MoG model as well. The distance measure of a new data sample x is
estimated across all K Gaussian densities, introducing the weight ωk of
each density.

f (x̄|ω̄, µ̄, Σ) =

K−1

∑
k=0

ω̄k
1

2πD/2|Σk|1/2 exp
(
− 1

2
(x̄− µ̄k)

TΣ−1
k (x̄− µ̄k)

)
(2.14)

Equation (2.14) weights the dominating Gaussian density highest, and
consequently, the highest ranked density in the mixture contributes the
most to the distance measure. Using the multivariate probability density
function for a MoG model as a distance measure leads to a rather complex
distance measure in the feature space. A single sample will be drawn to
the different means of the individual densities, with respect to their vari-
ance and weight. An example of this complex distance measure is illus-
trated in figure 2.15.

As mentioned, in order to use this method to estimate the distance
from sample x̄ to the model mean, the parameters ω̄, µ̄ and Σ must be
estimated for each Gaussian beforehand. This task involves finding the
combination of Gaussian densities that best represents the distribution.
For this purpose, a popular method for obtaining this combination is the
Expectation Maximization algorithm [33].

2.4 Machine Learning for Model Estimation

In most image analysis problems that concerns recognition of patterns or
specific objects, it is almost impossible to guess the optimal classification
model beforehand. This is where machine learning is deployed. Machine
learning in this sense involves initializing some general model, and then
using training data, the unknown parameters of the model is learned or
estimated. There are many forms of machine learning which is applicable,
and there has been written several books addressing the subject [25],
[30], [31]. Again, depending on the problem at hand, different machine
learning approaches may be favorable. In general, in terms of the learning
process, there are three main categories; Supervised learning, Unsupervised
learning and Reinforced learning. Supervised learning involves presenting
the learning algorithm with both the data and the ground truth labels
for the data. In unsupervised learning, no information about the data is
presented. The algorithm is left on its own to make sense of the data. In
reinforced learning, the learning algorithm is given feedback on how well
the model performs with respect to some goal or performance measure,

26

-6 -4 -2 0 2 4 6

x
1

-8

-6

-4

-2

0

2

4

6

x
2

 Scatter Plot and Fitted Gaussian Mixture Contours

Figure 2.15: Visualization of the usage of Eq. (2.14) to compute a
complex distance measure, with respect to a MoG model computer with 3
Gaussians.

which is then given as input to the next iteration. Approaches to machine
learning includes Decision trees, Support vector machines, Clustering, Genetic
algorithms and more. A machine learning approach which has gotten a
lot of attention in the last decade is Deep learning, which is a result of the
large advances in graphics processing units (GPU) [34]. Deep learning
is a collective term for machine learning algorithms which uses multiple
layers of complex data structures to model the data. In image analysis,
Convolutional neural nets (CNN) is a specific deep learning approach
which has become a popular method for object recognition purposes. An
example of CNN used for image analysis purposes is presented in [35],
where a computational model for face recognition is developed using a
CNN.
However, CNN and many other machine learning algorithms require
time-consuming training procedures accompanied by huge amounts of
labeled training data to achieve adequate results. These kinds of learning
procedures are referred to as offline training, where there is no time limit
to when the learning has to be finished. Yet, for certain problems, there
may not be enough data to perform such an offline learning scheme,
or perhaps the classes change over time. In these situations, a system
which is adaptable to such changes is desirable. Furthermore, a machine
learning algorithm which is adaptable to change requires online learning.
Online learning describes a learning scheme where learning goes on as
the data are collected. For classification purposes, this enables alternating
execution of learning and classification.

27

2.4.1 Expectation Maximization

The Expectation-Maximization (EM) algorithm is an algorithm which seeks
to maximize the likelihood of parameters in a statistical model [33]. In this
thesis, the EM algorithm will be discussed in the context of maximizing
the likelihood of the parameters of a MoG model. However, it should be
emphasized that it has broad applicability, and can be applied to a variety
of statistical models [25].

As discussed in section 2.3.1, a MoG model is parameterized by the
means µ̄k, covariance Σk, and weights ω̄k of each of the K Gaussians, de-
noted as θ = (ω̄k, µ̄k, Σk). Given a set of N training samples, the EM algo-
rithm seeks to establish the value for θ which optimizes the description of
these samples. The algorithm starts of by an initial guess for the parame-
ters θ. Then, the EM algorithm proceeds by an iterative process, which in-
volves alternating between an expectation-step (E-step), and a maximization-
step (M-step).

The E-step calculates the posterior probability of each sample x̄i
belonging to each of the K Gaussians, given the current estimate for
the parameters θ. These posterior probabilities are often referred to as
responsibilities, and are given by equation (2.15):

p(k|x̄i) =
ωk f (x̄i|µ̄k, Σk)

∑K
j=1 ωj f (x̄i|µ̄j, Σj)

(2.15)

where f (x̄i|µ̄k, Σk) is the multivariate Gaussian density function of a single
Gaussian within a MoG model (Eq. (2.14))

After the responsibility p(k|x̄i) has been computed for all samples, the
algorithm proceeds with the M-step, where θ is re-estimated using the
current responsibilities:

µ̄new
k =

1
Nk

N

∑
i=1

p(k|x̄i)x̄i (2.16)

Σnew
k =

1
Nk

N

∑
i=1

p(k|x̄i)(x̄i − µ̄new
k)(x̄i − µ̄new

k)T (2.17)

ωnew
k =

Nk
N

(2.18)

where Nk is the sum of the responsibilities in relation to k-th Gaussian.

After the M-step is finished, the log-likelihood function for the current
estimation for the parameters θ is evaluated. The likelihood function of

28

MoG model is equivalent to the probability density function, evaluated
for all samples X̄. The log-likelihood function is therefore given by:

L(X̄|θ) =
N

∑
i=1

ln
(

f (x̄i|θ)
)
=

N

∑
i=1

ln
(K

∑
k=1

ωk f (x̄i|µ̄k, Σk)

)
(2.19)

If the evaluation of the log-likelihood function does not reveal a con-
vergence, the iteration continues by returning to the E step.

0 2 4 6 8 10 12 14

1

2

3

4

5

6

7

8

9

10

(a)

2 4 6 8 10 12

1

2

3

4

5

6

7

8

9

(b) 10 steps

2 4 6 8 10 12

1

2

3

4

5

6

7

8

9

(c) 20 steps

2 4 6 8 10 12

1

2

3

4

5

6

7

8

9

(d) 50 steps

2 4 6 8 10 12

1

2

3

4

5

6

7

8

9

(e) 154 steps

0 2 4 6 8 10 12 14

1

2

3

4

5

6

7

8

9

10

(f)

Figure 2.16: Example of the progress of estimating the parameters of the
Gaussians during the EM algorithm. The distribution in (a) is set to be
modeled as a MoG model containing 3 Gaussians. The figures (b), (c)
and (d) show how the parameters of the Gaussians converge towards
an optimal mixture, displayed in (e). Figure (f) shows the ground truth
distributions used to create the dataset in (a). The size of the ellipsoids
corresponds to the weight of each Gaussian.

The EM algorithm is not guaranteed to find the optimal solution for
θ. Even finding a local maxima may be time-consuming. It is therefore

29

appropriate, especially for real-time applications, to set a threshold for the
degree of convergence, and the allowed number of iterations, before the
iteration is terminated. The choice of these two will be a trade-off between
estimation quality and computation time.
Figure 2.16 illustrates an example of the convergence of the EM algorithm.
Three bivariate normal distributions are created with slightly different
mean and covariance. In figure 2.16b, the estimation is quite poorly
compared to the ground truth distributions, showed in figure 2.16f.
However, through several iterations, the algorithm reaches an optimal
estimation of the MoG parameters, and convergence is detected in figure
2.16e. The color of the points indicates to what Gaussian in the mixture
the points are closest to, and the separation of the points in figure 2.16e
shows that the estimated MoG model discriminates the points in a way
that is pretty close to the ground truth distributions.

2.5 Geometrical Features - Detecting Road Edges

Anthropogenic objects often exhibit prominent geometrical properties,
otherwise not often present in nature itself. Road is an excellent example
of such properties. From the perspective of a drivers, the edges of the road
will appear as either straight lines, or smoothly curved lines (more or less,
depending on the state of the road and road shoulder). This property is
evidently also found in other structures along the road, especially in urban
scenes. Distinguishing the lines which originate from the road edges from
all other lines is a tricky matter, but there are some characteristics which
can be generalized for the road edges. Firstly, these lines are usually pretty
long, and they usually delimit the road area from an area of different char-
acteristics. Also, the left and right road edge have a common vanishing
point, i.e. the point in the image plane where the two spaciously parallel
lines seemingly intersect. The apparent intersection of these lines is due to
the perspective in which the lines are viewed from. The perspective of a
camera, placed on top of a vehicle, is approximately perpendicular to the
angle of the road edges. When the 3-dimensional road edges are projected
into the 2-dimensional camera plane, they will no longer appear parallel
as illustrated in figure 2.17.

The vanishing point can be used to aid the detection of road edges,
which is shown in by the proposed methods described in [36] and [37].
The second approach, proposed by Hui Kong et. al, divides the road de-
tection search into two main parts. The first part concerns finding the van-
ishing point, and the second part concerns the finding the edges which
are moving towards the vanishing point, and simultaneously displays the
characteristics of typical road edges.

30

Vanishing
Point

Figure 2.17: Illustration of two parallel road edges intersecting at a
vanishing point.

The vanishing point detection part starts by finding the dominant ori-
entation of each pixel in the image. This is conducted through a method
known as Gabor filtering. Gabor filtering is an image processing procedure
which weights higher the elements in the image with a certain frequency
and orientation ([31], section 13.1). The procedure involves filtering the
image with a 2D filter kernel, called a Gabor kernel, which is the product of
2D Gaussian and a 2D sinusoid. A Gabor kernel is parameterized by the
covariance of a 2D Gaussian, and the phase, orientation, and wavelength
of a 2D sinusoid. Consequently, a single Gabor kernel responds higher to
elements with similar frequency, orientation, and scale.

In [37], to compute the response for several orientations, a set of Ga-
bor kernels, Gω,φ(x, y), is used. Gω,φ(x, y) contains Gabor kernels with φ
different orientations at ω different scales. Continuing, the image is fil-
tered with each of these kernels, which produces ω × φ response images.
These response images are then used to compute a texture orientation image,
θ(x, y), where each pixel is assigned the estimated orientation of its asso-
ciated neighborhood. θ(x, y) is computed by the maximum average complex
response of Gω,φ(x, y), which is a two-step procedure:

Rφ(x, y) =Averageω

{
Real(Gω,φ)

2 + Imag(Gω,φ)
2}

θ(x, y) =Argmaxφ

{
Rφ(x, y)

} (2.20)

From this θ(x, y), the vanishing point is estimated through a local soft
voting scheme, where each pixel is voted on by pixels gathered in a half-

31

circle beneath it (see [37] section IV). As explained in the article, this half-
circle scheme is used to avoid favoring points higher up in the image.

When the vanishing point is found, the second part of the algorithm is
initiated.
The search for lines which represents the left and right road edge is based
on maximizing two different criteria. The first criteria is referred to in [37]
as the OCR criterion. This criterion investigates the consistency of a line’s
orientation. OCR is measured by splitting the detected lines into a set
of discrete points, and for each point, the angular difference between the
point’s orientation and the line’s orientation is calculated. If this angular
difference at each of these points is beneath a certain threshold, the line is
considered to have a consistent orientation.
The second criterion is a color-based difference measure between two
triangular areas, A1 and A2, on either side of line. The difference between
area A1 and A2, is defined by the following equation:

di f f (A1, A2) =
|mean(A1)−mean(A2)|√

var(A1) + var(A2)
(2.21)

The two areas A1 and A2 are determined by three points: the vanish-
ing point, the intersection point of the line and the image border, and lastly
the intersection point of the image border and a line which is angled at a
20◦ offset of the original line.

The road edge is then selected as the line which maximized the product
of the two measures, OCR and di f f (A1, A2).

32

Chapter 3

Method and Implementation

In this chapter, the road estimation algorithm is described in detail. This
includes all of the methods and operations at work in the algorithm, and
how these are assembled together.
The implemented methods for extracting the features are described,
including the optimization methods necessary for fast computation. The
usage of the Expectation Maximization algorithm for estimating the
parameters of the MoG model of the road is presented. The output of the
algorithm is also presented, along with a discussion of why this format is
chosen.
Lastly, the implementation of the algorithm for detecting the road edges,
through vanishing point detection, is described.

3.1 The Road Estimation Algorithm

The road estimation algorithm has been developed using a combination
of Matlab, for prototyping and testing of different methods, and C++ with
OpenCV [38] for implementation.
Matlab is utilized because of its efficient and clean graphical interface.
It provides a lot of built-in functions which enables fast prototyping of
code. The graphical interface provides helpful tools for debugging and
visualizing of results and intermediate states.
After functions, methods or concepts have been proven valid in Matlab;
the code has then been translated into C++ code, which is done for
the purpose of computational efficiency. Matlab is a special-purpose
tool, possessing optimized functions which make matrix iterations very
efficient. However, when self-made matrix-iterating procedures are
introduced, it becomes slow. For that purpose, C++ is a much more
efficient programming language.
Together with the C++ programming language, the OpenCV library is
used. OpenCV is an open source computer vision and machine learning
library, which contains an extensive collection of optimized algorithms.

33

These algorithms are based on both classic and state-of-the-art algorithms.

Feature
Images

MoG model

Feature
Images

Scene Analysis
System

Road Estimation
Algorithm

Compute
Illumination-Invariant

Image

RGB Image

II-Image

Compute
Feature Images

II-Image

RGB Image

Extract training
samples

EM
Training Samples

MoG model

Estimate Road
Probability
Image

Feature
Images

MoG
model

Probability
Image

RGB Image

Figure 3.1: An overview of the different methods and operations at work
in the road estimation algorithm; represented in the figure as rectangular
boxes. The lines represent exchanges of data from one operation to
another, and the arrow indicates the operation which receives the data.
Each line is marked with a specific color, which matches the color of the
operation from where the data was created.

In figure 3.1, a visual illustration of the road estimation algorithm is
presented. As shown in the figure, there are several individual opera-
tions at work, and each is dependent on data from a different operation.
Chronologically, the algorithm starts off by computing the illumination
invariant image I from the RGB input image IRGB. I is then used to com-
pute the D-dimensional feature images F = F1, F2, ..., FD, where D is the
number of features. The color channels R, G and B in IRGB are used as in-
dividual feature images in F. F is then used, along with the EM algorithm,
to estimate the MoG model of the road, Croad. Finally, Croad and F is used to
compute the probability image P, where each pixel contains a probability
of being a road pixel.

Both the resolution and frame rate of the cameras used on the UGV,
is adjustable. Therefore, the implementation of the algorithm allows all
window sizes W used in the feature extraction methods to be specified by
the user.

3.1.1 Features Extraction

The features chosen is a mixture of the three color channels R, G and B,
and a set of textural features. The textural features include Local Standard
Deviation, Local Entropy, and three features computed via the GLCM,
namely Variance, Inertia and Angular Second Moment. As an effort to make
the feature space more robust to shadows which are cast over the road,

34

all of the textural features are calculated from the illumination invariant
image I .

Local Standard Deviation

The local standard deviation feature is computed by the procedures
described in section 2.2.3. A box filter H is chosen for blurring. If the
user does not specify the size of H, it is set to 1

35 the size of the image
diagonal. The expectation of the local neighborhoods throughout I is
thus interpreted as the result of blurring I by H, and Eq. (2.11) is then
utilized to compute the standard deviation image. Algorithm 1 presents
the pseudo-code for extracting the local standard deviation feature image.

Algorithm 1: Algorithm for calculating the local standard deviation
feature-image
1 function localSdev (I , H);

Input : The illumination invariant image I and the box filter H
Output: Local Standard Deviation feature-image Iσ

2 x← I ;
3 x2← I2;
4 E[x]← blurImage(x, H);
5 E[x2]← blurImage(x2, H);

6 Iσ ←
√

E[x2] + (E[x])2;

Local Entropy

The local entropy feature is extracted by computing the histogram for the
neighborhoods contained in a sliding window, iterating through I . The
entropy of each neighborhood is then calculated using Eq. (2.9).
To speed up the algorithm, the sliding window iteration is done in parallel.
The parallel workers iterate trough the rows of I . For each row, the W

2
previous and the W

2 subsequent rows of I are extracted, where W is the
chosen size of the sliding window. This results in a W ×M section of the
image, I∆W,M, where M is the width of I . Then, the window slides along
I∆W,M with a regular sliding window iteration, computing the histogram
for each window, and calculating the local entropy for each histogram.
This allows for sliding window computation to be executed in parallel, as
illustrated in figure 3.2. If not specified by the user, W is set to 1

35 the size
of the image diagonal.

In addition to the parallelization of the sliding window, there is another
possible optimization. The straightforward algorithm involves extracting

35

Sliding
window

Sliding
window

Sliding
window

Parallel
workers

Figure 3.2: Illustration of how the sliding window algorithm is paral-
lelized. This illustrations shows 3 parallel workers creating image regions
of size W×M, where W is the window size, and M is the width of the
image. The regions are marked here as the dashed lines.

a new window for each sliding step and then calculating the histogram
based on the pixel values within that window. However, most of these
pixels have already been seen in the previous window. There are in fact
only W new pixels entering the window, and W pixels leaving it, culminat-
ing in a total of 2W needed histogram updates for each window iteration.
So, to avoid counting most of the pixel values over and over again, the
values of the pixels leaving the window is subtracted from the histogram,
and the new pixel values are added, as described in [39]. This procedure
decreases the complexity of computing the histogram for each window
from W2 to 2W. The exception is, of course, the initial windows at the be-
ginning of IδW,M, where all pixel values must be counted.
To illustrate the decreased computational complexity, both the straight for-
ward algorithm and the optimized version were used to compute the en-
tropy of 20 different images. The results, shown as a line plot in figure 3.3,
shows a tremendous improvement in terms of computation time. These
results stem from the two version of the algorithm implemented in MAT-
LAB, so the time-consumption is not quite comparable to the C++ version.
The results still give an indication of the degree of improvement. Algo-
rithm 2 presents the pseudo-code for extracting the local entropy feature
image E, with optimizations.

36

Algorithm 2: Algorithm for calculating the local entropy feature-
image.
1 function localEntropy (I , W);

Input : Illumination invariant image I , and the window size W
Output: Local entropy feature image E

2 for all n ∈ image rows of I do in parallel
3 I∆W,M ← get_row_selection(I , n-W

2 , n+W
2);

4 H← calc_initial_histogram(I∆W,M);
5 E(n, 0)← calc_local_entropy(H);

6 for m ∈ image columns except first do
7 colout ← get_column(I∆W,M, m-1);
8 colin ← get_column(I∆W,M, m+W);

9 H← subtract_from_histogram(H, colout);
10 H← add_to_histogram(H, colin);

11 E(n, m)← calc_local_entropy(H);
12 end
13 end

0 2 4 6 8 10 12 14 16 18

runs

0

10

20

30

40

50

60

C
o
m

p
u
ta

ti
o
n
 t
im

e
 [

s
e

c
o

n
d

s
]

Speed comparison of entropy computation

Regular Method

Optimized Method

Figure 3.3: Comparison of the computation time for extracting the local
entropy feature image, using the straightforward algorithm and the
optimized algorithm.

37

GLCM - Variance, Inertia and Angular Second Moment

The textural features based on the GLCM are calculated as described in
section 2.2.2. Still, estimating local texture features based on the GLCM is
a highly complex process. Luckily, there are a few optimizations possible.

The first optimization is the same the one applied to the local en-
tropy extraction, where intensity histograms of the local areas were
computed for each window in a sliding window iteration. The same
process of only adding the new columns which enter the sliding win-
dow is applied to the GLCM approach as well. However, because
the counts in the GLCM are dependent on a spatial, pairwise rela-
tionship between the pixels, the sliding window optimization cannot
be implemented directly. For the implementation to work, a trans-
formation of the GLCM coordinate system must be applied first.

7
4

6

9

i

j

G-1

G-1

(G-1)2

0
0

i+(G-1)j

j
i

occurrences

G

Figure 3.4: Illustration of the GLCM coordinate system transformation.
The GLCM coordinates i and j, in the left figure, correlates to to the
coordinate k, in the right figure. How k relates to i and j in the right figure,
are visualized through the yellow and blue dashed lines. Each of the co-
occurrence counts shown in the left figure corresponds to the bar in the
right figure with the matching color.

In a regular GLCM matrix, each column i indicates the normalized in-
tensity value of the base pixel, while the each row j indicates the the
normalized intensity of the comparison pixel. Together this forms a 2-
dimensional coordinate system, and the values contained in the the this
array corresponds to the normalized intensity co-occurrences. This 2-
dimensional coordinate system, however, could be transformed into a 1-
dimensional coordinate system, according to the following equation:

k = i + (G− 1)j (3.1)

38

where k is the coordinate of the new 1-dimensional GLCM and G is the
number of GLCM levels.
Figure 3.4 shows an illustration of the transformation. The orange and
blue lines is meant to illustrate how the increasing indexes i and j corre-
sponds to new coordinate k. The values of these lines are not in any way
correlated with the co-occurrence counts but are purposed for visualiza-
tion.

Δx = 3

Δy = 3

Figure 3.5: Illustration of the extraction of I∆, represented here as the area
within the dashed line. The area outside the original image is not included
in I∆.

Using this new coordinate system, it is now possible to compute the
co-occurrence counts directly on the image. First, the image must be
remapped from [0, R] to [0, G], G still being the number of levels in the
GLCM, and R being the range of the gray-level intensity. The resolution of
the image remains the same. Then, equation (3.1) is applied directly to the
image. This is made possible by realizing that the gray-level intensity of
all the pixels in the image I , which are now remapped to [0, G], represents
the coordinate i of the GLCM. Moreover, instead of locating the coordinate
j by searching for the pixel displaced by ∆x, ∆y, a region of I , which has
its origin located ∆x, ∆y displaced from the origin of I , is extracted. This

39

region, illustrated in figure 3.5 by the dashed black line, will be referred to
as I∆ (the area outside of the original image I is excluded). I∆ contains the
gray-level intensities of all pixels displaced ∆x, ∆y relative to all the pixels
in I (except for those near the borders), and the pixels in I∆ represents the
index j. Eq. (3.1) can then be used to compute the co-occurrence image
Ik, where each pixel represents a co-occurrence count, by replacing i and j
with I and I∆, respectively:

Ik = I + (G− 1)I∆ (3.2)

Then, it is just a matter of sliding a window over Ik, increasing the
GLCM counts for each new column, and decreasing the counts for each
leaving column. Each pixel Ik(x, y) maps directly to the GLCM coordi-
nate k.

3.1.2 Modeling the road class

To estimate the road model through the EM algorithm, a set of training
samples are required. The training sample set is extracted in real-time
from a small window at the lower center of the image, i.e. the part of the
image that contains what is right in front of the UGV, and most likely con-
tains road. The underlying assumption is that the UGV is positioned on
the road at all times. Although this method fails if the window contains
other elements than the road, it is very efficient and easily implemented,
and worked well for early testing on recorded sequences.

When the road samples have been extracted from this window, they
are used to build the model of the road. The road is modeled as a Mix-
ture of Gaussians, using the EM algorithm described in section 2.4.1. The
MoG modeling method is chosen based on its adaptability to unknown
probability distributions of complex characteristics. As mentioned earlier,
the condition of the road may change over time, and to adapt to these
changes, the modeling method must be general enough to avoid too spe-
cific assumptions about the road conditions. The MoG density provides
such a modeling method. The road may contain elements which do not re-
semble the usual gray tarmac. Such elements could, for example, be road
markings, manhole covers, shadows, or similar. Should these elements
enter the extraction window, it is undesirable to let these pixels affect the
learning procedure too much. Although these elements may be part of the
road, they can also contribute to pulling the model parameters towards
other scenery objects, in terms of the feature space. The hypothesis is that,
by modeling the road as a MoG model, these elements will only be part
of a lower weighted Gaussian in the mixture, and the contribution to the
model will hopefully be minimized.

40

The EM algorithm is chosen based on its suitability for fast, online ma-
chine learning. The aspect of the EM algorithm which makes it particu-
larly attractive for the road estimation algorithm is the possibility of feed-
ing known model parameters to the training, along with the training data,
and, thus, achieving faster convergence. The underlying assumption is
that the difference of the road class from image to image is small. Conse-
quently, the MoG density model should not have to change a lot for each
new image. By feeding the known model parameters from the last image
into the EM algorithm for the current image, just a small adjustment of the
Gaussian densities is necessary. The pseudo-code for this implementation
is presented in Algorithm 3.

Algorithm 3: Algorithm for learning the MoG model from an
extracted training sample set, through the EM algorithm
1 function learn_model (I f , K);

Input : The N×M×D feature image F, where [N,M] is the image
size and D is the number of features, and the desired
number of Gaussians K

Output: The model parameters [µk, Σk, ωk]

2 W f ← extract_training_samples(F);
3 if this frame is the first frame then
4 [µk, Σk, ωk]← EM(W f , K);
5 end
6 else
7 [µk, Σk, ωk]← EM_with_initial_parameters(W f , K, µk, Σk, ωk);
8 end

It is desirable to have enough Gaussian densities to avoid sudden
changes in the road appearance to influence the model too heavily. Simul-
taneously, an excessive number of Gaussian densities will result in a very
complex MoG model, which further will cause high computation time for
the EM algorithm.
The optimal number of Gaussians in the MoG model is not easily general-
ized to all situations. As an example, estimating tarmac country road, in
scenery dominated by green grass, is significantly easier than detecting a
dirt road. Therefore, the current implementation of the algorithm allows
the user to specify the number of Gaussians in the mixture. By default, if
not specified by the user, the number of Gaussians is set to 3.

To minimize the impact of temporary road elements, such as road
markings, has on the road model, the modeling method has been
implemented with a learning rate. For every new set of training samples

41

trainingSamplesi

trainingSamplesi+1

imagei

imagei+1

Video Streamtime

i

i+1

Global sample vector

Figure 3.6: Illustration of how the learning rate is retained by only using
10% of the new training samples contained in the extraction window. For
each new image, the training samples are extracted from the window,
marked here as a dashed rectangle. 10% of the training samples are
then merged with the global sample vector trough a random selection
procedure. The 90% selection of the global sample vector is also randomly
selected.

extracted from the window, only 10% of the samples are used to model
the road. This 10% are chosen by first, randomly shuffle the sample
vector, and then extracting the first 10% of the vector. The remaining
90% of the learning stems from an already existing, global sample vector.
Similar to the new sample vector, the global sample vector is randomly
shuffled before 90% of the vector is extracted. The two vectors are then
concatenated before it is passed to the EM algorithm. The concept of the
retained learning rate is illustrated in figure 3.6.

3.1.3 Probability Estimation

Without any proper way of locating surrounding elements in the image,
the only model stored in the system is that of the road. Consequently,
the only probability measure will be with respect to this model. Moreover,
because of the large variation in road texture, lighting conditions, shadows
and such, elements can appear very differently from image to image. The
solution is to produce a soft probability image, where each pixel contains

42

a likelihood of being part of the road.
From the EM algorithm, the parameters µk, Σk and ωk for each of K
Gaussian density in the MoG model are known. The distance from each
of the pixel to the mean of the model is calculated from the multivariate
probability density function for MoG models (Eq. (2.14)). The calculation
is done in parallel, which enables fast computation of the probability
image P.

3.2 Vanishing Point Detection

The method for detecting road edges is based on the approach proposed
by [37]. The vanishing point detection algorithm has been implemented
with the same Gabor filter bank, where the Gabor kernels are computed
at φ = 36 different orientations, at ω = 5 different scales. If the size of
the Gabor kernels is not specified by the user, it is set to 1

10 of the image
diagonal. A selection of the Gabor kernels used is presented in figure 3.7.
The implementation for detecting the left and right road edge from the
estimated vanishing point is also equivalent to the one proposed in [37].
For each detected vanishing point, 29 suggested linear road edge lines are
computed. The best suggestion is chosen based on the OCR measure, and
the color-based difference measure between the two triangular areas on
either side of the line, as described in section 2.5. The two triangular areas,
A1 and A2, are computed from the vanishing point, the point where the
suggested line intersects with the image border, and the point where a new
line, with a 20◦ offset from the suggested line, intersects with the image
border.

43

Figure 3.7: A selection of some of the Gabor kernels contained within the
Gabor filter bank.

44

Chapter 4

Experiments and Results

This chapter will present the methods used to evaluate the performance of
the proposed algorithm. First, the image sequences used for evaluation are
presented. Then, the experiment procedures are explained, including the
research question for each experiment. For each experiment, a detailed
explanation of the procedure is presented, including parameter settings,
the image sequences used, and the presentation method of the results.
Since the experiments are dependent on the results of the previous ones,
the experimental results are presented immediately after each experiment,
including a short, intermediate analysis of the results.

4.1 Experiment Data

The experiments in this section have been conducted on several image
sequences from different sources. From the UGV, there have been three
video sequences selected for testing. The video sequences differ a lot in
terms of road structure, lighting conditions, and surrounding scenery, and
each offers a different degree of difficulty. Some of the images from each
sequence is displayed in figure 4.1, 4.2 and 4.3.

(a) (b) (c)

Figure 4.1: A selection of image from the first recorded sequences from the
UGV.

45

(a) (b) (c)

Figure 4.2: A selection of image from the second recorded sequences from
the UGV.

(a) (b) (c)

Figure 4.3: A selection of image from the third recorded sequences from
the UGV.

In extension, some additional datasets have been used [22], [1]. The
necessity for this is based on the need for testing the algorithm in varying
conditions.

4.2 Experimental Plan

The experiments are divided into three main focus areas, each aiming to
determine different research questions. The first two experiments are fo-
cused on feature extraction, the third on modeling and feature combina-
tion, and the fourth experiment on vanishing point detection.

The first experiment evaluates the separability of textural features ex-
tracted from the illumination invariant image, compared the correspond-
ing features extracted from the gray level intensity image. The second ex-
periment extends the first experiment and seeks to investigate in greater
detail how well different features are capable of discriminating between
objects in a typical road scenery, and to compare this to the computation
time of extracting these features.

The third experiment is by far the most extensive, and aims to evalu-

46

ate the performance of the road estimation algorithm under four different
conditions. This performance is tested for different combination of fea-
tures, giving an indication of the necessity of the feature combinations in
the various conditions. Also, the third experiment seeks to evaluate the
performance when the road is modeled as a MoG model with 3 Gaussians,
compared to the version where the road is modeled as a single Gaussian.
The purpose of this experiment is that the algorithm should be tested on
sequences with varying conditions, and thus, an investigation of how the
different features and number of Gaussians affect the performance in these
conditions is necessary.

The fourth and last experiment aims to determine roughly the suitabil-
ity of the vanishing point detection method for improving the accuracy
of the road estimation algorithm. The experiment investigates the accu-
racy of estimating vanishing points, compared to the computational load
of this estimation.

4.3 Reference Algorithm

The KITTI Vision Benchmark is one of the main computer vision bench-
marks for autonomous driving [1]. It contains datasets for road segmenta-
tion, stereo vision, optical flow, and more. It also contains on-line leader-
boards over the highest scoring algorithms for the different vision-based
applications.

The road dataset is a collection of 289 training images, and 290 test
images, which are the ones used for evaluation. All of the images are
captured in urban scenery. However, none of the training or test images
appear chronologically, i.e. both sets are an unsorted collection of ran-
dom road images. The reason is that the KITTI road benchmark is meant
to evaluate machine learning algorithms and classifiers which are trained
off-line on the training images, and only evaluated on the test images. The
road estimation algorithm proposed in this thesis violates this evaluation
procedure since it is based on on-line machine learning. Furthermore, one
of the key assumptions for the usage of the EM algorithm is that the varia-
tion in road appearance between two consecutive images is minimal. This
assumption is no longer correct for the KITTI datasets since the images
appear unordered.

Although the road estimation algorithm cannot be submitted to the
KITTI Vision Benchmark, the Benchmark can still be used as a reference
point. The submitted algorithms in the KITTI leaderboards are evaluated
based several measures: Maximum F1-Measure (F1max), average precision
(AP), precision (PRE), recall (REC), false positive rate (FPR), and false negative

47

rate (FNR). The last four measure are based on the threshold value which
yields F1max. All of the highest ranked approaches in the leaderboards are
based on Convolutional Neural Nets.

The road estimation algorithm presented in this thesis will not be
evaluated against a reference algorithm, based on the lack of a suitable
method for doing so. Still, the KITTI leaderboards will be used to get an
idea of what estimation performance can be considered as adequate.

48

4.4 Experiment 1 - Texture from Illumination
Invariant Images

The hypothesis explored in this experiment is that textural features will
benefit from being extracted from the illumination invariant image, rather
than from the grayscale intensity image. In order to test this, the KITTI
dataset for road/lane detection [1] is used because it contains a good varia-
tions of road images.

(a) (b)

(c) (d)

Figure 4.4: The images above shows (a) the grayscale intensity and (b) the
illumination invariant version of the same image, obtained from the KITTI
dataset. Image (c) and (d) shows the local standard deviation feature
images computed from the two, respectively.

A selection of ten images, containing different amounts of shadows, is
selected. For each image, the textural features are computed as presented
in figure 4.4. Through the binary label images, the pixels belonging to
each of the classes Road and Environment are collected into two vectors.
When this procedure is done for all ten images, a Gaussian distribution is
fitted to the data belonging to each of the classes Road and Environment,
thereby producing a plot containing a visual representation of the feature
distribution of the Road compared to that of the Environment. This
is done for both the illumination invariant and the grayscale intensity
version of the image, thus producing two plots which is used for analysis,
presented in figure 4.5, 4.6 and 4.7
Since different texture features may respond differently to the two image
types, three textural features have been selected for investigation, namely
local standard deviation, local entropy, and local variance calculated from the
GLCM.
The images in the KITTI dataset is of size 1242×375p. The window sizes
chosen are 21×21, for local standard deviation, and 15×15p for local

49

entropy. The variance is computed from a GLCM of 16 levels, which again
is computed from a sliding window of 31×31 pixels.

4.4.1 Results from Experiment 1

Gray-Level Intensity

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
ro

b
a

b
ili

ty
 D

e
n

s
it
y

0

0.5

1

1.5

2

2.5
Probability Density Function - Standard Deviation

Road

Environment

(a)
Gray-Level Intensity

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
ro

b
a

b
ili

ty
 D

e
n

s
it
y

0

1

2

3

4

5

6
Probability Density Function - Standard Deviation

Road

Environment

(b)

Figure 4.5: The plots show the distribution of the classes Road and
Environment in terms of the local standard deviation feature image,
calculated from (a) the grayscale intensity image, and (b) the illumination
invariant image

Gray-Level Intensity

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
ro

b
a

b
ili

ty
 D

e
n

s
it
y

0

0.5

1

1.5

2

2.5

3

3.5

4
Probability Density Function - Entropy

Road

Environment

(a)
Gray-Level Intensity

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
ro

b
a

b
ili

ty
 D

e
n

s
it
y

0

0.5

1

1.5

2

2.5

3

3.5

4
Probability Density Function - Entropy

Road

Environment

(b)

Figure 4.6: The plots show the distribution of the two classes in terms of
the local entropy feature image, calculated from (a) the grayscale intensity
image, and (b) the illumination invariant image

50

Gray-Level Intensity

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
ro

b
a

b
ili

ty
 D

e
n

s
it
y

0

0.5

1

1.5

2

2.5
Probability Density Function - GLCM Variance

Road

Environment

(a)
Gray-Level Intensity

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
ro

b
a

b
ili

ty
 D

e
n

s
it
y

0

2

4

6

8

10

12

14
Probability Density Function - GLCM Variance

Road

Environment

(b)

Figure 4.7: The plots show the distribution of the two classes in terms of
the local variance feature image, calculated via the GLCM from (a) the
grayscale intensity image, and (b) the illumination invariant image

4.4.2 Analysis of the results of Experiment 1

The results from Experiment 1 display a distinct improvement in terms
of separation of the road class from everything else in the image, when
the textural features are extracted from the illumination invariant images.
In figure 4.5a, 4.6a and 4.7a the two classes are more or less encased in
one another, meaning it would be nearly impossible setting a threshold to
separate the two. In figure 4.5b, 4.6b and 4.7b the two classes are much
more distinguished. For local standard deviation and GLCM variance,
the road class is much sharper when computed from the illumination
invariant image, meaning the variance of the distribution is lower. For
entropy, it is pretty much the same variance for both images. However,
there is not only an upside of extracting texture from the illumination
invariant image. As was presented in figure 2.3, the illumination invariant
image adds a significant amount of noise, and it is evident that the
computation cause a decrease in texture distinctiveness. Although this
decrease is undesirable, it is crucial to have a method to avoid shadows
spoiling the estimation. So, for now, texture computation from the
illumination invariant image is more appealing.

51

4.5 Experiment 2 - Feature Separability vs. Com-
putation Time

To test the feature separability for multiple object classes, a dataset contain-
ing images that are properly labeled, with individual labels for each of the
many object types existing in the scenery, is necessary. The procedure in
this experiment is chosen in light of the fact that there are no perfect fea-
tures, i.e. each feature performs better in certain circumstances, and worse
in others. The goal of this experiment is not to find the optimal features,
but rather to give an indication of how well the features can discriminate
between the different objects in the scenery.
To perform this analysis, 41 images from the KITTI dataset are selected.
The original dataset only includes labeled images with labels for "road"
and "not road", and for this experiment, labeled images for several object
classes are needed. Therefore, the labeled images have been gathered from
a second source [40].

The features tested in this experiment are:

• The three color channels [R,G,B]

• SDEV = Local standard deviation

• ENTR = Local entropy

• GLCM VAR = Variance computed from the GLCM

• GLCM INR = Inertia computed from the GLCM

• GLCM ASM = Angular second moment computed from the GLCM

The procedure of this experiment starts by extracting all eight feature
images from all of the 41 images. For each feature, all pixels in the 41 fea-
ture images are divided into 7 separate vectors, according to the labeled
images. The labels used are: Road, Buildings, Sky, Cars, Pedestrians, Trees,
and Vegetation. This results in 7 class vectors for each of the 8 features. A
Gaussian distribution is then fitted to each of these vectors, and lastly, the
probability density function (PDF) is computed for each of these distribu-
tions. The result displays a probability density function computed for each
object class at each feature. The results are presented as eight individual
probability density function plots.
Also, a table listing the percentage of the joint overlap between the Road
PDF and the PDF of all other classes, for every feature, is presented. The
joint overlap is measured as the sum of False Positive (FP) and False Nega-
tive (FN) of the Road PDF when compared to the PDF of the other classes.
A visualization is shown in figure 4.8. Since the density functions are nor-
malized, the integral of these areas corresponds to the portion of the two

52

100 110 120 130 140 150 160 170 180 190 200

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

FPFN

Figure 4.8: The figure show how the joint overlap percentage is calculated.
The two areas, marked as "FP" and "FN", are summed together. Since the
two functions are normalized, these combined areas amounts to the error
between the two arbitrary classes.

densities which will cause either false positives or false negatives, when a
threshold is set at the point where the two curves intersect.

53

4.5.1 Result of Experiment 2

0 50 100 150 200 250

Gray-Level Intensity

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Pr
ob

ab
ilit

y
D

en
si

ty
PDF of classes - Blue Channel

Buildings

Sky

Cars

Road

Pedestrians

Trees

Vegetation

(a)

0 50 100 150 200 250

Gray-Level Intensity

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

Pr
ob

ab
ilit

y
D

en
si

ty

PDF of classes - Green Channel

Buildings

Sky

Cars

Road

Pedestrians

Trees

Vegetation

(b)

0 50 100 150 200 250

Gray-Level Intensity

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

Pr
ob

ab
ilit

y
D

en
si

ty

PDF of classes - Red Channel

Buildings

Sky

Cars

Road

Pedestrians

Trees

Vegetation

(c)

0 50 100 150 200 250

Gray-Level Intensity

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Pr
ob

ab
ilit

y
D

en
si

ty

PDF of classes - SDEV

Buildings

Sky

Cars

Road

Pedestrians

Trees

Vegetation

(d)

Figure 4.9: This figure displays the Probability Density function for the
4 features: (a) blue color channel, (b) green color channel, (c) red color
channel, (d) local standard deviation.

54

0 50 100 150 200 250

Gray-Level Intensity

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05
Pr

ob
ab

ilit
y

D
en

si
ty

PDF of classes - ENTR

Buildings

Sky

Cars

Road

Pedestrians

Trees

Vegetation

(a)

0 50 100 150 200 250

Gray-Level Intensity

0

0.01

0.02

0.03

0.04

0.05

0.06

Pr
ob

ab
ilit

y
D

en
si

ty

PDF of classes - GLCM VAR

Buildings

Sky

Cars

Road

Pedestrians

Trees

Vegetation

(b)

0 50 100 150 200 250

Gray-Level Intensity

0

0.01

0.02

0.03

0.04

0.05

Pr
ob

ab
ilit

y
D

en
si

ty

PDF of classes - GLCM INR

Buildings

Sky

Cars

Road

Pedestrians

Trees

Vegetation

(c)

0 50 100 150 200 250

Gray-Level Intensity

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Pr
ob

ab
ilit

y
D

en
si

ty

PDF of classes - GLCM ASM

Buildings

Sky

Cars

Road

Pedestrians

Trees

Vegetation

(d)

Figure 4.10: This figure displays the Probability Density function for
the 4 features: (a) local entropy, (b) sum of squares (calculated from
the GLCM), (c) inertia (calculated from the GLCM), (d) angular second
moment (calculated from the GLCM).

55

Joint overlap percentage
Blds* Sky Cars Pdst* Trees Vgtn*

Blue 51.4% 0.0% 8.4% 30.9% 0.4% 0.2%
Green 43.1% 0.0% 4.8% 8.9% 5.1% 6.3%
Red 41.3% 0.0% 4.2% 4.4% 3.5% 3.7%

SDEV 9.5% 80.4% 0.7% 0.0% 0.1% 0.1%
ENTR 14.2% 82.7% 0.3% 0.0% 0.0% 0.0%

GLCM VAR 44.8% 0.5% 73.4% 84.4% 0.1% 0.0%
GLCM INR 67.5% 0.2% 68.5% 44.4% 35.1% 46.9%
GLCM ASM 26.9% 0.0% 54.6% 22.0% 1.6% 1.0%

Table 4.1: The table shows the shows the percentage of joint overlap of the
densities for the classes: Buildings (Blds), Sky, Cars, Pedestrians (Pdst),
Trees, and Vegetation (Vgtn), when compared to the density of the road
class. The joint overlap is calculated for each of the 8 features listed.

Feature Average computation time
SDEV 7 ms
ENTR 161 ms

GLCM VAR 568 ms
GLCM INR 542 ms
GLCM ASM 549 ms

Table 4.2: The table shows the average computation time of extracting the
features of all 41 images. Since the color channels can be retrieved directly
from the image, they are not included in this table. All images are of size
1242×375p.

4.5.2 Analysis of the results of Experiment 2

In figure 4.9 and 4.10, the densities of the different objects for the different
feature images are show. The results suggest that the prior assumption,
i.e. that the road’s separability to other object types varies with feature
investigated, is correct. For instance, in figure 4.9, the road is easily
separated from the sky in all of the color channels, while in the local
Entropy feature, it is not that easily separated. For the entropy feature, the
two densities have a joint overlap of 82.7%. Contrarily, the road is very
well separated from cars, pedestrians, trees and vegetation in the entropy
feature. This is in agreement with the assumption that the road has a lower
degree of disorder than these objects.
For all features, the hardest object class to distinguish from the road was
buildings. Although undesirable, this problem is not easily dealt with for
any feature. The reason is that buildings display significant variations in
terms of building material, color, shape, patterns, etc. A particular difficult
building type to deal with is concrete buildings. These buildings have

56

very similar features as the road, both textural and color. To solve this
issue, one will have to explore other features than those based on color or
texture, such as lines, curves, and object boundaries.
A surprising, and interesting result of this experiment, is that the features
computed via the GLCM performs poorest by far. Since the GLCM takes
into account the spatial aspect of the patterns, it is usually a better choice
of texture description. However, because of the perspective of which
the road is viewed from, the texture of the nearby road will not have
the same spatial frequency as the far away road. The texture of nearby
road may display similar properties as the texture of bush far away, and
thus, the GLCM approach fails in this case. To make the GLCM approach
reliable for feature extract, a better approach would perhaps be to estimate
the GLCM from a window with a size that changes according to the
vertical position of the image. Alternatively, by projecting the image
onto the plane of the map (birds view); the road should display more
consistent textures across the vertical position of the image, which again
may improve the results. Nevertheless, the poor separability, combined
with the extensive computation time, despite all optimization, leads to
the conclusion that the features calculated via the GLCM are currently not
feasible for real-time usage.

4.6 Experiment 3 - Road Estimation Performance

The purpose of the third experiment is to investigate the quality of the
road estimation algorithm for different combinations of features. The fea-
tures combined are the ones that showed most promising in the results
from the second experiment, i.e. the three color channels, local standard
deviation (SDEV), and local entropy (ENTR).
Each feature combination is additionally tested for two choices for the
number of Gaussians in the road model, namely one and three. The pur-
pose of this is to roughly investigate the impact of this choice. The com-
bination of features and the number of Gaussians for each run is listed in
Table 4.3.

To obtain an understanding of the performance of the road estimation
algorithm in different scenarios, the experiment is conducted of four
different image sequences. The first recorded sequences from the UGV,
which is presented in figure 4.1, should be the easiest to estimate road
from, based on the consistency of both the road and the illumination
conditions in these images. The second recorded sequence from the UGV,
which is presented in figure 4.2, is also used. This sequence is included
to evaluate the algorithm’s performance on dirt road. Additionally, two
external image sequences, created for the research presented in [22], has
been incorporated in this experiment. The first of these sequences is

57

Run # #Gaussians Features Combined
1 1 RGB
2 3
3 1 RGB, SDEV
4 3
5 1 RGB, ENTR
6 3
7 1 RGB, ENTR, SDEV
8 3

Table 4.3: Experiment 2 - List of features combinations and number of
Gaussians in the MoG model for the different runs.

recorded under critical lighting conditions, where the road is greatly
covered by shadows due to a low sun. This sequence will be referred to as
the Sunny-Shadow sequence. The second sequence is captured after it has
rained, and the road is therefore inconsistently wet. This sequence will be
referred to as the After-Rain sequence. The resolution of the images in these
sequences is a bit higher than the images in the UGV sequences. Although
the difference is terms of size is not intentional, it adds another aspect
to the experiment, i.e. how the different parameter combinations affect
the performance of the algorithm, according to the image resolution. The
window sizes used to extract the entropy and standard deviation features
are therefore adjusted according to the image resolution. These sizes are
listed in Table 4.4.

Sequence Resolution ENTR window SDEV window
UGV seq. 1 422×338 15×15 15×15
UGV seq. 2 422×338 15×15 15×15

Sunny-Shadows 640×480 21×21 21×21
After-Rain 640×480 21×21 21×21

Table 4.4: The table shows the window sizes used to compute the entropy
(ENTR) and the standard deviation (SDEV) feature images, for each of the
four sequences

Ground truth label images are included for the two image sequences.
For the two UGV sequences, labeled images have been manually created.
For the third sequence, presented in figure 4.3, manual labeling is difficult
since the snow makes the boundary of the road invisible. The third se-
quence is therefore not included in this experiment. All of the label images
are binary, where each pixel is classified as either road or environment.

The procedure of the experiment starts by running the road estimation
algorithm with each of the parameter combinations listed in Table 4.3, on

58

all of the four sequences. For each run, the probability images produced
by the algorithm are stored. Then, using the binary label images, the pix-
els belonging to road and environment in all of the probability images
are extracted, and sorted into two separate vectors. These two vectors are
then used to compute true positive and false positive rate in a ROC curve.
The results of this procedure will, therefore, be four plots, for each of the
four sequences, where each plot contains eight ROC curves, for each of the
eight parameter combinations.

Given that a pixel’s probability of being a road pixel is represented as
a value between 0 and 1, the ROC curve is a graphical plot displaying
the true positive rate against the false positive rate as the discrimination
threshold decreases from 1 to 0. Since the road estimation algorithm
produces probability images and not binary, segmented images, the ROC
curves are therefore an appropriate method for performance evaluation.

False Positive Rate

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
r
u
e

P

o
s
it
iv

e

R

a
t
e

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ROC Curves

(a)
False Positive Rate

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

T
r
u
e

P

o
s
it
iv

e

R

a
t
e

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ROC Curves

(b)

Figure 4.11: Illustration of the advantage of using mixture of Gaussian
modeling, (a) regular ROC curves, (b) x-axis scaled logarithmically. The
area previous to the dotted red line, i.e. the area where the false alarm rate
is below 0.1, is most interesting part of the ROC curve for evaluating the
algorithm.

In the results from Experiment 3, an important thing to notice is that the
x-axis in the plot of the ROC Curves is scaled logarithmically. This scaling
is done because the important part of the ROC curve is the points to the
left, i.e. those points corresponding to higher threshold values. The road
estimation algorithm is not perfect, and there will always be a portion of
missed detections. In the KITTI leaderboards, the best scoring algorithms
have an F1max score above 90%. This score corresponds to the ROC curve
reaching a 0.9 true positive rate before it reaches a 0.1 false positive rate.
This ratio will, therefore, be the reference for an adequate performance re-
sult under this experiment. However, how quickly the true positive rate
reaches the 0.9 mark is valuable information, as illustrated in figure 4.11a,
the false positive rate in this range might be hard to make out. The bene-

59

fit of scaling the x-axis logarithmically for this purpose is shown in figure
4.11b. It is also for the logarithmic ROC curve desirable that the true pos-
itive rate rises as quickly as possible, but now the ratio between the two
rates are more easily discerned.

In addition to the ROC plot, for each sequence, a table listing the area
under the logarithmic ROC curves is presented. This value is given to offer
a measurable value of the ROC curves. The F1max and the Precision score
is also listed in these tables, supplying an impression of the performance
in relation to the KITTI leaderboards. Though, it must be emphasized
that the F1max measure in this experiment cannot directly be compared to
the KITTI leaderboards, but is used to give an impression of what can be
considered as adequate performance. The F1max and precision scores are
functions of the true positive and the false positive rate, given in Eq. (4.1)
and (4.2).

F1max =
2TP

2TP + FP + FN
(4.1)

PRE =
TP

TP + FP
(4.2)

60

4.6.1 Result of Experiment 3

First UGV Sequence

Figure 4.12: Example of an image from the first UGV sequence, and the
corresponding computed likelihood image.

False Positive Rate

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

T
ru

e
 P

o
s
it
iv

e
 R

a
te

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ROC Curves

Run 1

Run 2

Run 3

Run 4

Run 5

Run 6

Run 7

Run 8

Figure 4.13: ROC curve from experiment 3 conducted on the first UGV
sequence, where the x-axis has been scaled logarithmically.

Run # area under log-ROC F1max PRE Runtime
1 5.0558 93.22% 93.71% 25.64fps
2 5.3782 93.57% 94.54% 7.63fps
3 5.5435 91.35% 94.43% 19.60fps
4 5.8302 91.46% 94.16% 5.21fps
5 5.7056 93.10% 93.94% 10.75fps
6 6.0137 92.98% 94.17% 4.50fps
7 5.6830 91.40% 93.79% 9.52fps
8 6.1865 91.71% 94.34% 3.77fps

Table 4.5: Table showing the quantifiable results for the first UGV
sequence.

61

Second UGV Sequence

Figure 4.14: Example of an image from the second UGV sequence, and the
corresponding computed likelihood image.

False Positive Rate

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

T
ru

e
 P

o
s
it
iv

e
 R

a
te

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ROC Curves

Run 1

Run 2

Run 3

Run 4

Run 5

Run 6

Run 7

Run 8

Figure 4.15: ROC curve from experiment 3 conducted on the second UGV
sequence, where the x-axis has been scaled logarithmically.

Run # area under log-ROC F1max PRE Runtime
1 4.0977 88.69% 86.60% 25.66fps
2 3.9166 88.39% 85.23% 7.61fps
3 4.2210 87.46% 86.22% 19.19fps
4 3.4516 88.03% 86.26% 5.18fps
5 4.4516 89.45% 87.25% 10.80fps
6 4.3342 88.86% 86.70% 4.49fps
7 4.3337 87.98% 86.75% 9.09fps
8 4.3404 88.04% 86.78% 3.70fps

Table 4.6: Table showing the quantifiable results for the second UGV
sequence.

62

Sunny-Shadows Sequence

Figure 4.16: Example of an image from the Sunny-Shadow sequence, and
the corresponding computed likelihood image.

False Positive Rate

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

T
ru

e
 P

o
s
it
iv

e
 R

a
te

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ROC Curves

Run 1

Run 2

Run 3

Run 4

Run 5

Run 6

Run 7

Run 8

Figure 4.17: log-ROC curve from experiment 3 conducted on the Sunny-
Shadow sequence.

Run # area under log-ROC F1max PRE Runtime
1 3.0411 81.19% 75.58% 12.78fps
2 3.1357 81.37% 80.29% 3.69fps
3 4.0700 86.36% 85.28% 8.70fps
4 4.2335 85.16% 85.69% 2.28fps
5 5.0969 86.05% 88.47% 4.60fps
6 5.0980 84.11% 85.13% 1.98fps
7 5.2533 87.15% 88.44% 4.65fps
8 5.2709 85.66% 86.95% 1.89fps

Table 4.7: Table showing the quantifiable results for the Sunny-Shadow
sequence.

63

After-Rain Sequence

Figure 4.18: Example of an image from the After-Rain sequence, and the
corresponding computed likelihood image.

False Positive Rate

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

T
ru

e
 P

o
s
it
iv

e
 R

a
te

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ROC Curves

Run 1

Run 2

Run 3

Run 4

Run 5

Run 6

Run 7

Run 8

Figure 4.19: log-ROC curve from experiment 3 conducted on the After-
Rain sequence.

Run # area under log-ROC F1max PRE Runtime
1 4.3770 83.89% 83.64% 12.80fps
2 4.6493 84.79% 86.31% 3.69fps
3 7.4196 88.86% 91.10% 8.69fps
4 7.5251 89.17% 90.41% 2.27fps
5 7.6186 90.48% 94.74% 4.56fps
6 7.5257 90.94% 94.75% 1.96fps
7 7.9173 89.82% 92.84% 4.54fps
8 7.9557 90.94% 93.07% 1.85fps

Table 4.8: Table showing the quantifiable results for the After-Rain
sequence.

64

4.6.2 Analysis of the results of Experiment 3

The results from Experiment 3 contain a lot of information and require
some effort to analyze.

The results show that the road estimation algorithm performs far worse
on the dirt road sequence than on sequences containing tarmac road. It is
desirable that the ROC curve increase as fast as possible, i.e. that the true
positive rate increases much quicker than the false positive rate. As men-
tioned, the algorithm is considered as well performing if the true positive
rate reaches 0.9 before the false alarm rate reaches 0.1. In the ROC curves
in figure 4.15, from the second UGV sequence, for all the runs, the 0.9 true
positive rate is not reached before the false alarm rate has reached approxi-
mately 0.2, which is considered poor. This is also reflected in the F1max and
precision score in Table 4.6, which averages around 88% and 86%, respec-
tively. The F1max and precision score from the Sunny-Shadow sequence
are also quite poor, which leads to the conclusion that extreme lighting
conditions are still a challenge for the algorithm.

One conclusion which is reasonably clear from the ROC curves is that
the inclusion of textural features has a positive effect on the estimation
performance, regarding how quickly the true positive rate rises, especially
for the sequences containing tarmac road. For all of the sequences, the
true positive rate rose faster (with respect to the false positive rate) com-
pared to the first two runs, where the features only included the three color
channels. The consequence is especially dramatic in the results from the
Sunny-Shadow and After-Rain sequences, which contained tarmac road
under tough conditions. These results agree with the prior hypothesis, i.e.
that under tough conditions, the texture of the road will be more consistent
than the color, especially when computed from the illumination invariant
image. The tendency is the same for the first UGV sequence, although not
to the same extent. This sequence contains no shadows, and the road ap-
pearance is pretty consistent for all images. Consequently, the algorithm
yields pretty good results, even when only the color channels were used
as a features.

The only exception to improvement as a cause of adding textural fea-
tures was in run 4 of the second UGV sequence when the local standard
deviation feature was added. Table 4.6 shows that run 4 has a lower area
under the log-ROC curve than that of run 2, which also used a MoG model
with 3 Gaussian densities. This suggests that the local standard deviation
feature does not have the same separation capability for dirt road as for
tarmac road. The local standard deviation is a measure of energy through-
out the image, and it is reasonable to assume that tarmac road has a sig-
nificantly lower amount of energy than dirt road, since dirt road is less

65

(a) (b)

Figure 4.20: Example of the failures of computing the (b) a standard
deviation feature image from (a) an image containing dirt road. The area
in the image containing shadows has an impact on the feature-image.

smooth. However, in run 1 and run 3 of this sequence, where the same
feature combinations were used in collaborations with a MoG model con-
taining only 1 Gaussian density, the results points to the opposite. The ex-
act reason why these results contradict one another is unclear. In general,
dirt road displays a higher degree of variation, in terms of texture, than
tarmac road. Therefore, even if the MoG model with 3 Gaussian densities
captures the characteristics of this variation better, the road may appear
too similar to other objects in the scene, in terms of the specific texture.
Therefore, the problem may be caused by the feature’s lack of separation
ability relative to other scenery objects, rather than with the number of
Gaussian densities in the MoG model. Since experiment 2, which regarded
feature separability, only was conducted on sequences containing tarmac
road, no conclusive opinion on this matter can be made without conduct-
ing experiment 2 again for the dirt road sequence. Figure 4.20 shows an
example of the local standard deviation computed from a dirt road image
from the second UGV sequence. The standard deviation image displays
low value for most of the road, but at the area covered by shadow displays
higher values. On tarmac road, the effect of the shadow is neutralized by
use of the illumination invariant image. However, the method described
in 2.1.1 for computing such images are not as invariant to dirt road shad-
ows as for tarmac road. This may be caused by the fact the underlying
assumptions which made the simplification of Eq. (2.3) possible, does not
apply to the dirt road.

Including local entropy has an undisputed positive effect on the ROC
curves for all sequences. Although smaller, this also applies to the re-
sults from sequence 2. Combining entropy with color leads to better re-
sults than the combination of color and standard deviation, thus implying

66

that entropy is the better choice of the two features. Yet, as presented in
the Runtime column of Table 4.5, 4.6, 4.7, and 4.8, entropy is a far more
time-consuming feature to extract. So, choosing between the two features,
should that be necessary, seems to be a trade-off between estimation qual-
ity and computation time. Regardless, including both textural features
yields the best overall results through all sequences, especially when the
variations in road appearance increase, as it does in the Sunny-Shadow
and the After-Rain sequences. The higher resolution in these sequences
should also be taken into consideration. Higher resolution will cause bet-
ter expression of the texture of the objects in the scene, and consequently,
cause a larger impact on the performance of the algorithm. This might
also be a cause to why the ROC curves from these sequences increase
more rapidly when texture is introduced than the ROC curves from the
first UGV sequence, which also contains tarmac road.

Regarding the difference between the numbers of Gaussians used to
model the road, the results are unclear. In Table 4.5, 4.6, 4.7 and 4.8,
the results are ambiguous for each sequence, and for each set of feature
combinations. Also, when compared pairwise with the same feature
combinations (f. ex: Run 1 vs. Run 2, Run 7 vs. Run 8), the difference
is minimal. This leads to the conclusion that the number of Gaussianss
has little effect on the overall quality of the road estimation. However,
this a quantitative experiment, investigating the quality of the estimation
algorithm across several images. The MoG modeling approach, however,
is used as an attempt to minimize impact on the road model caused
by occasionally appearing elements, such as road markings, manholes,
and shadows. Therefore, a quantitative experiment is not well suited to
reveal these advantages. On the other hand, it is hard to conduct such
an experiment. By definition, such circumstances occur only occasionally,
and, therefore, it is difficult to account for them. Still, empirical knowledge
has been acquired from several observations of the benefits of choosing
more than one Gaussian density under such circumstances.
An example of this is presented in figure 4.21, where three consecutive
images from the third recorded sequence from the UGV is shown. The
example shows an incident where the extraction window gradually covers
more and more of the part of the road covered by snow. Although this
area is considered as part of the road, its appearance is more similar
to the snow on the side of the road, than the tarmac underneath the
snow. Consequently, when these pixels are used as training samples for
the model, the model will be "pulled" towards the snow in the feature
space. The prior assumption, namely that a MoG model containing several
Gaussians is less affected by such issues, is evident in this example.
The conclusion is therefore that the road estimation algorithm benefits
from modeling the road as several Gaussian densities, although the exact
number should be investigated further.

67

(a)

(b)

(c)

Figure 4.21: The figures above demonstrates the benefit of the MoG
density modeling method compared to the single Gaussian density
modeling method. (a) shows an example of three consecutive images
where snow inconsistently covers the road. When the snow area enters
the extraction window (marked in green), these pixels becomes part of the
model. From the images, it is clear that the impact of the snow pixels are
far more drastic on the single Gaussian model in (b), than on the MoG
model in (c).

68

4.7 Experiment 4 - Vanishing Point detection

Experiment 4 seeks to investigate the quality of the algorithm vanishing
point detection, described by Kong et. al [37], compared to the compu-
tational time of the detection. The accuracy of the algorithm is tested by
applying it to a selection of 100 images from two different UGV record-
ing sessions. The first sequence was recorded in the summer of 2015, and
the second in January of 2016. The latter sequence, therefore, contains im-
ages where snow inconsistently covers the road. The images are selected
to achieve a variation of difficulty. The variation is achieved by selecting
images with variations in terms of straight and curved road, road with
different amount of inclination, cars, and other challenges caused by the
scenery.

For each image, the estimated vanishing point is compared to a man-
ually marked vanishing point. The Euclidean distance between these two
points is calculated and normalized according to the length of the image
diagonal. The normalization is applied to enable pixel distance compari-
son across image sizes. The performance of the vanishing point estimation
is then represented as the mean and variance of normalized distance, as
well as the average computation time.

The experiment is conducted for four different image sizes. A Gabor
filter bank, containing 36 different orientations at five different scales, is
used for all image sizes. The size of the Gabor kernels is chosen according
to the size of the images. The image and Gabor kernel sizes tested
are listed in Table 4.9, as is the confidence threshold for assigning pixel
orientation. The size of the half-circle used in the soft voting scheme is set
to 0.35×Image_Diagonal for all image sizes.

Image size Gabor kernel size conf
800×600 89×89 0.6
400×300 49×49 0.5
200×150 25×25 0.4
100×75 15×15 0.4

Table 4.9: Table showing the Gabor kernel sizes used for the different
image sizes in order to compute the pixel orientations. The confidence
threshold (conf) for assigning pixel orientations is also listed.

69

4.7.1 Results of Experiment 4

Image size Mean error Variance Average computation time
800×600 0.013 0.05 508.2sec
400×300 0.024 0.12 23.1sec
200×150 0.076 0.77 3.3sec
100×75 0.101 0.65 0.7sec

Table 4.10: Table showing results of Experiment 4.

4.7.2 Analysis of the results of Experiment 4

The results of Experiment 4 show that with sufficient image resolution,
accurate and robust estimations of the vanishing points can be achieved.
For the image size 800×600, both the mean error and the variance is low.
For the lower resolutions, however, the robustness of the estimate quickly
decreases, which is evident from the rapidly increasing variance. Still,
the computation time for the 800×600 sized images is dramatically high,
which makes it irrelevant for real-time usage. So, a lower resolution must
be chosen, and with optimization, a window size somewhere between
400×300 and 200×150 might be fast enough.

(a) (b)

Figure 4.22: Example of three accurate vanishing point estimations. The
manually marked vanishing point is marked in green, while the estimated
is marked in blue.

When viewing the estimated vanishing points in their associated im-
age, the situation which proves most difficult is curved road, as shown
in figure 4.23a and 4.23a. The problem arises from the fact that the score
in the voting scheme is based on a linear relationship between the poten-
tial vanishing point and the pixels in the half-circle. In images containing

70

(a) (b)

Figure 4.23: Example of three inaccurate vanishing point estimations. The
manually marked vanishing point is marked in green, while the estimated
is marked in blue.

curved road, there are multiple points which have a strong linear relation-
ship with points from both the left and the right road edge. In addition,
the pixels within the area which is closest to the vehicle, i.e. the lower part
of the image, displays a more confident orientation values. The reason for
this is simply that this area is closer to the camera, and therefore, the geo-
metric details are much better. This leads to a favoring of points which are
lower in the image, i.e. closer to the vehicle.

Kong et. al improves the vanishing point estimation in a second step.
After the initial estimation, the left road edge is detected. This edge is
then split into regularly spaced segments, and redefined according to the
OCR criterion, thus allowing for curvature in the road edge. The vanish-
ing point is redefined as the ending point of the new left road edge.
However, this improvement step only works if the initial estimation of the
vanishing point is reasonably accurate. It is therefore concluded not con-
duct any experiment regarding the second part of this algorithm, i.e. the
detection of road edges, before a more reliable implementation is found.

The conclusion of this experiment is that the current implementation
is not adequate for reliable real-time road estimation. The results are
promising, and with further work, it might help to improve the existing
texture and color based road estimation algorithm.

71

72

Chapter 5

Discussion

This chapter concludes the thesis, beginning with a quick discussion of the
overall results from the experiments. Then, some possibilities for future
work is presented, and lastly a final, conclusive summary is presented.

5.1 Collective Discussion of the Experiment Re-
sults

The work with the road estimation algorithm is still not widely explored.
Until now, it has only been tested on video sequences recorded while a
driver has controlled the vehicle. However, the reliability of the algorithm
under real-time, autonomous driving, is currently under investigation.
Some early tests suggests that the algorithm is reliable for autonomous
driving as long as the amount of shadows is small. This agrees with the
results of Experiment 3, which revealed that the algorithm performs well
under uniform light conditions, but still struggles to deal with shadows
and backlight. For autonomous driving, an error like this would be fatal
for the path planning, and will have to be addressed in the long term, for
a properly working navigation system. It is still poorly investigated how
well all subsystems at work on the UGV collaborates, and what yields
good results for the road estimation algorithm, might be a disadvantage
for other parts of the system. This is of course pure guesswork but is still
something to keep in mind for future work.

The testing done until now has been a mix of estimation quality and ef-
ficiency performance. Achieving accurate and robust estimation has been
the primary aim of the conducted work, but the real-time criterion has
always been kept in mind. The combinations of features used in Experi-
ment 3 are currently those shown to perform adequately in terms of this
real-time criterion, and are therefore the ones implemented in the road es-
timation algorithm.

73

The experiments described in chapter 4 was conducted on an office
computer with limited processing capacity, and without any specialized
graphics processor, so there is likely more that can be done to achieve
faster computation speed. Some optimization has been exercised, but this
aspect is still to be further improved. The UGV is a long term project, so
one should also account for future technology as well. Therefore, even
though Experiment 2 showed that the GLCM features currently proved
too slow, it might be possible to utilize them with further optimization
and/or better hardware. As discussed in 4.5.2, this will also require the
images to be projected onto the map plane.

5.2 Future Work

In this section, some of the main topics regarding future work will be
discussed.

5.2.1 Extracting training samples

The largest weakness in the current implementation of the algorithm is the
method for extracting training samples from the image. As mentioned in
section 3.1.2, the current algorithm does this by extracting a square win-
dow at the bottom of the image, assuming that only pixels belonging to
the road are contained in this window. Nevertheless, if the window cov-
ers objects which are not a part of the road, the model of the road will be
corrupt. The MoG model, along with the 10% learning rate, is a method to
avoid this problem for short occurrences of such objects. Still, should the
window be exposed to other objects over a longer period, the MoG density
model will slowly converge towards the parameters of these objects. This
problem often occurs while the UGV is driving through sharp turns.

To solve this problem, a better method of extracting the training sam-
ples has to be applied. The Stanley vehicle, as previously mentioned, uses
LIDAR data to estimate the nearby road [6]. This estimate is used to ex-
tract the training samples from the image, thus enabling Stanley to esti-
mate road further away in the scenery than possible from only the LIDAR
data. Another solution may be to use other prior probabilities from the
other scene analysis methods, such as the stereo vision, as proposed in
[41]. However, since all of these methods are currently under research,
this thesis will not speculate in too much detail the matter of which these
methods could best supplement the road estimation algorithm.

74

5.2.2 Improving the Illumination Invariant Images

As discussed, the variation of road appearance is almost endless, and
it is difficult to identify all problems and challenges that may appear
by only testing the algorithm on previously recorded sequences. The
results of Experiment 3 showed that the algorithm, in general, performs
well in circumstances where the road is uniform. In both the first UGV
sequence, where the road was dry tarmac, and the After-Rain sequence,
where the road was wet tarmac, the estimation achieved a true positive
rate above 0.9 at false alarm rate 0.1, which is a pretty decent overall
result. However, in the second UGV sequence, where the road was dirt
and gravel, and in the Sunny-Shadow sequence, where there was a lot
of shadows and backlight, the results were considerably poorer. Hence,
shadows and extreme illumination conditions still cause problems. The
performance especially decrease in situations where shadows are cast over
dirt road. The reflective property of dirt road is not as consistent as that
of tarmac road, and the assumptions and simplifications that allowed the
illumination invariant to be computed according to Eq. (2.3) are therefore
less valid. Although the first milestone of this project is to achieve
autonomous driving on tarmac road, in long term, the UGV should be
able to traverse dirt and unstructured road as well.
A solution to this problem may be to change the approach for computing
the illumination invariant image. Instead of computing the illumination
invariant image based on prior information about the peak spectral
response of the image sensor, Álvarez et. al proposes a method which,
in extension, is based on calibrating the spectral properties of the current
scenery, based on a set of training samples from each image [22]. Although
this method is computationally more complex, it may be more robust
than the simplified version currently implemented in the road estimation
algorithm. This method might also contribute to making the algorithm
even more robust to shadows and extreme light conditions.

5.2.3 Increasing estimation rate

There is still much that can be done in order to further speed up the road
estimation algorithm. The biggest potential for improvement is to execute
the independent operations in the algorithm in separate threads. Recall
figure 3.1, where the different operations of the road estimation algorithm
are illustrated. Both the model estimation and the road estimation pro-
cesses are dependent on the feature image computation. However, if the
model is allowed to be updated at a different rate than at that which is used
by the road estimation process; these two processes can be executed in two
separate threads. Since the computation time of the EM algorithm will no
longer influence the road estimation rate, the restriction on the number of
Gaussians the road is modeled as can, therefore, be set to a more generous

75

number without having to account for the road estimation rate as much.
This also applies to the number of iterations the EM algorithm is allowed
before termination.

Another potential for increasing the overall estimation rate is to further
optimize the methods for extracting feature images. A particularly
promising approach is presented in [42], where the histogram of local
neighborhoods are computed using a technique they have referred to as
integral histogram. Unfortunately, further investigation of this method has
not been included in this thesis, but it shows great promise for speeding up
the extraction of the local entropy image. Also, the techniques proposed
in [42] might also be used to further improve the efficiency of the GLCM
based feature extraction methods described in 13.

5.2.4 Vanishing Point Detection

The results of Experiment 4 suggested that the current implementation of
the vanishing point detection algorithm is infeasible for real-time usage.
The required resolution for reliable estimations causes the algorithm to
be too slow. As mentioned in 4.7.2, in fairness to the algorithm, the
second step of the algorithm should be tested before a conclusion about
the accuracy of the estimation is made. Unfortunately, this has not been
included in this thesis.
However, in the final months of the work with this thesis, a new approach
for detecting vanishing points was published [43]. The proposed method
includes a particle filter that allows previously estimated vanishing
point to influence the search for new vanishing points. The underlying
assumption is that, between two consecutive images, the vanishing point
is usually in the same general area of the image. Based on this, the
proposed method normalizes the size of the image a fixed size of 61×81
pixels. Although the small image size may cause poor results for single
image estimation, over time the estimation will be sufficiently accurate
and reliable. In the article, the authors have compared this approach to
that of [37] (and two others), and the results are impressive. Compared
to [37], which had a normalized distance error of 0.0316, the proposed
method of [43] only had a normalized distance error of 0.0189. Compared
to the results of Experiment 4, this is almost as good as what was achieved
when the image resolution was set to 800×400 pixels. In Experiment
4, this image resolution caused an average computation time of 508.2
seconds, while the method proposed by [43] only needs an average
computation time of 0.027 seconds to achieve almost as good results. To
conclude, the improvement of this approach is significant, and it shows
great promise for improving the existing texture and color based road
estimation algorithm.

76

5.3 Conclusion

This thesis presents a method for detecting road in a local scenery, using
computer vision and machine learning techniques. The algorithm utilizes
a Mixture of Gaussian distribution to model the road, which is learned and
adjusted in real-time while the algorithm is provided with images. The
features used are a combination of the three color channels Red, Green,
and Blue, and the textural features local standard deviation and local en-
tropy. The textural features are created from illumination invariant images,
which in turn are computed from the RGB color image given as input to
the algorithm.

The performance of the algorithm is tested for four different scenar-
ios, with four different combinations of the features, and for two choices
for the number of Gaussians in the MoG model. The performances has
proved sufficient under homogeneous illumination conditions, i.e. if the
amount of backlight and shadows are low. Although it is not directly com-
parable, under such conditions, the algorithm was shown to perform al-
most as good the top algorithms on the KITTI leaderboard for road/lane
detection. Still, despite the efforts to make the algorithm more invariant to
the illumination variations in road scenery, uneven illumination remains a
problem. The performance also decreased when the algorithm was tested
on a sequence containing dirt road. The combination of greater variation
in road texture, and the fact that the illumination invariant image was less
resistant to the effects of shadows on dirt road, was the reason for the
lower performance in this scenario.

The evaluation of the algorithm’s performance supported the prior hy-
pothesis, namely that the inclusion of textural features had an increasingly
positive effect as the scenery conditions got more difficult. Still, including
these features decreased the rate of estimation. Furthermore, the degree of
improvement was highly dependent on the resolution of the input image.

77

78

Bibliography

[1] Jannik Fritsch, Tobias Kuehnl, and Andreas Geiger. A new perfor-
mance measure and evaluation benchmark for road detection algo-
rithms. In International Conference on Intelligent Transportation Systems
(ITSC), 2013.

[2] Oliver J Woodman. An introduction to inertial navigation. University
of Cambridge, Computer Laboratory, Tech. Rep. UCAMCL-TR-696, 14:15,
2007.

[3] "’phantom auto’ will tour city". The Milwaukee Sentinel, Google news
archive, 1926.

[4] Richard Wallace, Anthony Stentz, Charles E Thorpe, Hans Maravec,
William Whittaker, and Takeo Kanade. First results in robot road-
following. In IJCAI, pages 1089–1095. Citeseer, 1985.

[5] Martin Buehler, Karl Iagnemma, and Sanjiv Singh. The 2005 DARPA
grand challenge: the great robot race, volume 36. Springer Science &
Business Media, 2007.

[6] Sebastian Thrun, Mike Montemerlo, Hendrik Dahlkamp, David
Stavens, Andrei Aron, James Diebel, Philip Fong, John Gale, Morgan
Halpenny, Gabriel Hoffmann, et al. Stanley: The robot that won the
darpa grand challenge. Journal of field Robotics, 23(9):661–692, 2006.

[7] Richard O Duda, Peter E Hart, et al. Pattern classification and scene
analysis, volume 3. Wiley New York, 1973.

[8] Chris Urmson, J Andrew Bagnell, Christopher R Baker, Martial
Hebert, Alonzo Kelly, Raj Rajkumar, Paul E Rybski, Sebastian Scherer,
Reid Simmons, Sanjiv Singh, et al. Tartan racing: A multi-modal
approach to the darpa urban challenge. 2007.

[9] Michael Montemerlo, Jan Becker, Suhrid Bhat, Hendrik Dahlkamp,
Dmitri Dolgov, Scott Ettinger, Dirk Haehnel, Tim Hilden, Gabe
Hoffmann, Burkhard Huhnke, et al. Junior: The stanford entry in
the urban challenge. Journal of field Robotics, 25(9):569–597, 2008.

79

[10] Andrew Bacha, Cheryl Bauman, Ruel Faruque, Michael Fleming,
Chris Terwelp, Charles Reinholtz, Dennis Hong, Al Wicks, Thomas
Alberi, David Anderson, et al. Odin: Team victortango’s entry in the
darpa urban challenge. Journal of Field Robotics, 25(8):467–492, 2008.

[11] David S Hall. High definition lidar system, July 1 2014. US Patent
8,767,190.

[12] CHRIS URMSON. Progress in self-driving vehicles. FRONTIERS OF,
2015.

[13] J Deng, W Dong, R Socher, LJ Li, K Li, and L Fei-Fei. Imagenet: A
large-scale hierarchical image database (2009). CVPR.

[14] Kunihiko Fukushima. Neocognitron: A self-organizing neural
network model for a mechanism of pattern recognition unaffected by
shift in position. Biological cybernetics, 36(4):193–202, 1980.

[15] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet
classification with deep convolutional neural networks. In Advances
in neural information processing systems, pages 1097–1105, 2012.

[16] Rahul Mohan. Deep deconvolutional networks for scene parsing.
arXiv preprint arXiv:1411.4101, 2014.

[17] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn:
Towards real-time object detection with region proposal networks. In
Advances in Neural Information Processing Systems, pages 91–99, 2015.

[18] Andrej Karpathy, George Toderici, Sanketh Shetty, Thomas Leung,
Rahul Sukthankar, and Li Fei-Fei. Large-scale video classification
with convolutional neural networks. In Proceedings of the IEEE
conference on Computer Vision and Pattern Recognition, pages 1725–1732,
2014.

[19] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we ready for
autonomous driving? the kitti vision benchmark suite. In Conference
on Computer Vision and Pattern Recognition (CVPR), 2012.

[20] Yann LeCun, Corinna Cortes, and Christopher JC Burges. The
mnist database of handwritten digits, 1998. Available electronically at
http://yann. lecun. com/exdb/mnist, 2012.

[21] Graham D Finlayson and Steven D Hordley. Color constancy at a
pixel. JOSA A, 18(2):253–264, 2001.

[22] José M Álvarez and Antonio M Ĺopez. Road detection based
on illuminant invariance. Intelligent Transportation Systems, IEEE
Transactions on, 12(1):184–193, 2011.

80

[23] Will Maddern, Alex Stewart, Colin McManus, Ben Upcroft, Winston
Churchill, and Paul Newman. Illumination invariant imaging: Ap-
plications in robust vision-based localisation, mapping and classifica-
tion for autonomous vehicles. In Proceedings of the Visual Place Recogni-
tion in Changing Environments Workshop, IEEE International Conference
on Robotics and Automation (ICRA), Hong Kong, China, 2014.

[24] Colin McManus, Winston Churchill, Will Maddern, Alexander D
Stewart, and Paul Newman. Shady dealings: Robust, long-term
visual localisation using illumination invariance. In Robotics and
Automation (ICRA), 2014 IEEE International Conference on, pages 901–
906. IEEE, 2014.

[25] M Bishop Christopher. Pattern recognition and machine learning.
Company New York, 16(4):049901, 2006.

[26] Roland Wilson and Michael Spann. Image segmentation and uncer-
tainty. John Wiley & Sons, Inc., 1988.

[27] Robert M Haralick, Karthikeyan Shanmugam, and Its’ Hak Dinstein.
Textural features for image classification. Systems, Man and Cybernet-
ics, IEEE Transactions on, (6):610–621, 1973.

[28] Sarah H Peckinpaugh. An improved method for computing gray-
level cooccurrence matrix based texture measures. CVGIP: Graphical
Models and Image Processing, 53(6):574–580, 1991.

[29] Rafael C Gonzalez and Richard E Woods. Digital image processing.
Prentice hall, 2002.

[30] Richard O Duda, Peter E Hart, and David G Stork. Pattern
classification. John Wiley & Sons, 2012.

[31] Simon JD Prince. Computer vision: models, learning, and inference.
Cambridge University Press, 2012.

[32] John Rice. Mathematical statistics and data analysis. Nelson Education,
2006.

[33] Arthur P Dempster, Nan M Laird, and Donald B Rubin. Maximum
likelihood from incomplete data via the em algorithm. Journal of the
royal statistical society. Series B (methodological), pages 1–38, 1977.

[34] Kyoung-Su Oh and Keechul Jung. Gpu implementation of neural
networks. Pattern Recognition, 37(6):1311–1314, 2004.

[35] Steve Lawrence, C Lee Giles, Ah Chung Tsoi, and Andrew D Back.
Face recognition: A convolutional neural-network approach. Neural
Networks, IEEE Transactions on, 8(1):98–113, 1997.

81

[36] Yinghua He, Hong Wang, and Bo Zhang. Color-based road detection
in urban traffic scenes. Intelligent Transportation Systems, IEEE
Transactions on, 5(4):309–318, 2004.

[37] Hui Kong, Jean-Yves Audibert, and Jean Ponce. General road
detection from a single image. Image Processing, IEEE Transactions on,
19(8):2211–2220, 2010.

[38] G. Bradski. Opencv library. Dr. Dobb’s Journal of Software Tools, 2000.

[39] Thomas S Huang, George J Yang, and Gregory Y Tang. A fast two-
dimensional median filtering algorithm. Acoustics, Speech and Signal
Processing, IEEE Transactions on, 27(1):13–18, 1979.

[40] Ben Upcroft, Colin McManus, Winston Churchill, Will Maddern, and
Paul Newman. Lighting invariant urban street classification. In
Robotics and Automation (ICRA), 2014 IEEE International Conference on,
pages 1712–1718. IEEE, 2014.

[41] Kurt Konolige, Motilal Agrawal, Robert C Bolles, Cregg Cowan,
Martin Fischler, and Brian Gerkey. Outdoor mapping and navigation
using stereo vision. In Experimental Robotics, pages 179–190. Springer,
2008.

[42] Fatih Porikli. Integral histogram: A fast way to extract histograms
in cartesian spaces. In Computer Vision and Pattern Recognition, 2005.
CVPR 2005. IEEE Computer Society Conference on, volume 1, pages 829–
836. IEEE, 2005.

[43] J. Shi, J. Wang, and F. Fu. Fast and robust vanishing point detection
for unstructured road following. IEEE Transactions on Intelligent
Transportation Systems, 17(4):970–979, April 2016.

82

	Introduction
	Background and Motivation
	The UGV System Architecture

	The Self-Driving Car
	DARPA Challenge 2005 - Off-road Navigation
	DARPA Challenge 2007 - the Urban Challenge
	Repercussions of the DARPA Challenges

	Research Goals
	Thesis Structure

	Background Theory
	Outdoor Imaging
	Illumination Invariant Images

	Image Features
	Color Features
	Textural Features
	Local Standard Deviation

	Classification, Modeling and Discrimination
	Normal/Gaussian Distribution

	Machine Learning for Model Estimation
	Expectation Maximization

	Geometrical Features - Detecting Road Edges

	Method and Implementation
	The Road Estimation Algorithm
	Features Extraction
	Modeling the road class
	Probability Estimation

	Vanishing Point Detection

	Experiments and Results
	Experiment Data
	Experimental Plan
	Reference Algorithm
	Experiment 1 - Texture from Illumination Invariant Images
	Results from Experiment 1
	Analysis of the results of Experiment 1

	Experiment 2 - Feature Separability vs. Computation Time
	Result of Experiment 2
	Analysis of the results of Experiment 2

	Experiment 3 - Road Estimation Performance
	Result of Experiment 3
	Analysis of the results of Experiment 3

	Experiment 4 - Vanishing Point detection
	Results of Experiment 4
	Analysis of the results of Experiment 4

	Discussion
	Collective Discussion of the Experiment Results
	Future Work
	Extracting training samples
	Improving the Illumination Invariant Images
	Increasing estimation rate
	Vanishing Point Detection

	Conclusion

