
Optimizing a PoS Tag Set for
Norwegian Dependency
Parsing

Petter Hohle
Master’s Thesis Spring 2016





Abstract

This thesis presents a systematic, empirical investigation of how an existing PoS
tag set can be modified and optimized for the task of syntactic dependency parsing
of Norwegian. The tag set of the Norwegian Dependency Treebank is modified
and optimized through experiments with the morphological features in the tree-
bank. The experiments are complemented by evaluation of a range of state-of-
the-art PoS taggers and syntactic parsers applied to Norwegian. The results of our
work are concrete contributions to the Norwegian NLP community: (i) a data set
split (training/development/test) of the Norwegian Dependency Treebank; (ii) a
PoS tag set optimized for syntactic dependency parsing of Norwegian; (iii) a PoS
tagger model trained on the treebank; and (iv) a syntactic parser model trained on
the treebank.
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Chapter 1

Introduction

Part-of-speech (PoS) tagging is a central component in many Natural Language
Processing (NLP) tasks, as it provides morphosyntactic analysis by assigning each
word in a particular sentence a part-of-speech tag taken from a predefined set of
potential tags, called the tag set. In particular, the resulting PoS tags allow for
syntactic parsing, which involves analyzing the structure of the sentence. PoS tag
sets are generally developed with the linguistic considerations and preferences of
their developers in mind rather than being based on empirical evaluation of what
tags provide the most useful linguistic information. Furthermore, PoS tag sets
are generally taken for granted and used in an unaltered form instead of being
optimized for the task at hand, syntactic parsing.

There are few off-the-shelf NLP tools for Norwegian today. Until now, the
most widely used PoS tagger for Norwegian has been the rule-based Oslo-Bergen
Tagger, which has served the Norwegian NLP community well over the years.
However, numerous aspects of the tagger call for the release of and transition to
new tools closer to the state-of-the-art. It is not open-source, nor is it actively
maintained, which severely impair its usability. Additionally, due to its rule-based
nature, it cannot learn from or be trained on annotated data. In the pre-processing
before PoS tagging, it performs tokenization and lemmatization, both of which
are useful for several NLP applications. However, as it is not modular, we cannot
isolate any of the individual components and run them separately on running text
without having to run the entire pipeline.

The newly developed Norwegian Dependency Treebank is the first freely avail-
able treebank for Norwegian and contains manually annotated morphosyntactic
analyses of sentences in both official written standards of Norwegian, i.e., Bok-
mål and Nynorsk. The treebank contains information about parts-of-speech and
morphological properties such as definiteness, gender and number, and may there-
fore be used to train and evaluate PoS taggers for Norwegian. Furthermore, the
treebank is annotated with syntactic analyses represented in the dependency gram-
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1. INTRODUCTION

mar scheme, which allows for the training and evaluation of syntactic dependency
parsers for Norwegian. Due to its very recent development and the lack of a stan-
dardized data set split of the treebank, it has not been extensively used to train and
evaluate PoS taggers and dependency parsers, until now.

This thesis seeks to identify an optimized part-of-speech tag set for syntac-
tic parsing of Norwegian based on the Norwegian Dependency Treebank as well
as present a comparative analysis of the performance of a range of state-of-the-
art PoS taggers and syntactic dependency parsers when applied to Norwegian.
Through experiments with linguistically motivated tag set modifications, we will
examine how different granularities of categories, e.g., different sized tag sets,
affect the results of both PoS tagging, and, more importantly for this thesis, syn-
tactic dependency parsing. This allows us to assess the effects of various lin-
guistic features on the tagging and parsing of Norwegian and identify the most
morphosyntactically informative linguistic features in the treebank. As there is
currently no readily available PoS tagger model or syntactic parser model trained
on the treebank, we will train and evaluate a variety of state-of-the-art PoS taggers
and dependency parsers on the treebank to identify tools and provide accompa-
nying models that can be applied to running text in Norwegian. The results of
our work are concrete contributions to the Norwegian NLP community: a data
set split (training/development/test) of the Norwegian Dependency Treebank, a
tailored PoS tag set optimized for syntactic dependency parsing, and clear recom-
mendations regarding tools for PoS tagging and syntactic parsing of Norwegian.

1.1 Overview
Chapter 2 provides a brief introduction to the Norwegian Dependency Tree-
bank and the tasks of PoS tagging and syntactic parsing together with their re-
spective approaches, exemplified by concrete tools. It also provides an overview
of previous work on PoS tagging for Norwegian and Swedish as well as the effects
of tag set granularity on PoS tagging.

Chapter 3 describes the various parts-of-speech found in Norwegian and their
respective morphological properties followed by how these are represented in the
PoS tags and morphological features of the Norwegian Dependency Treebank.
This is complemented by linguistic considerations for designing and modifying
PoS tag sets as well as a qualitative comparison of the tag set of NDT and those
of other comparable treebanks.

Chapter 4 outlines the experimental setup used in our experiments with linguis-
tically motivated tag set modifications, which includes a proposed data set split of
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1.1. Overview

NDT, our implemented tag set mapping and the choice of PoS tagger and syntac-
tic parser for the development phase, and how the sum of these components are
conjoined in a pipeline under which the tag set experiments are run.

Chapter 5 details our experiments with modifying the PoS tag set of NDT us-
ing linguistic insights and assesses the results of these experiments. For the most
promising tag set modification for each category, we perform in-depth error analy-
sis of tagging and parsing performance. Finally, we present our optimized tag set,
obtained by combining the most promising tag set modification for each category.

Chapter 6 presents a comparative analysis of a wide array of state-of-the-art
PoS taggers and dependency parses on the task of tagging and parsing the Nor-
wegian Dependency Treebank using our optimized tag set. The best tagger and
parser will then be employed on the held-out test data set using our optimized tag
set, the results of which will be compared to the results obtained using the original
tag set to contrast the tag sets and demonstrate the effects of our optimization.

Chapter 7 serves as a summary and conclusion of this thesis, also discussing
future work related to this thesis.
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Chapter 2

Background

To start things out, we briefly outline the newly developed Norwegian Depen-
dency Treebank and provide an introduction to PoS tagging and syntactic pars-
ing together with their respective approaches, exemplified through state-of-the-art
tools. With this established, we will look at previous work related to this thesis,
which includes PoS tagging for Norwegian and investigating the effects of tag set
granularity on the performance of PoS taggers for English.

2.1 The Norwegian Dependency Treebank
The Norwegian Dependency Treebank (NDT) (Solberg et al., 2014) is the first
publicly available treebank for Norwegian and serves as the basis for this thesis.
It was developed at the National Library of Norway in collaboration with the
University of Oslo, and contains manual syntactic and morphological annotation.
The treebank contains 311 000 tokens of Bokmål and 303 000 tokens of Nynorsk,
the morphological annotation of which follows that of the Oslo-Bergen Tagger
(Hagen, Johannessen, & Nøklestad, 2000; Solberg, 2013), which in turn is largely
based on the work of Faarlund, Lie, and Vannebo (1997). The annotated texts are
mostly newspaper text, but also include government reports, parliament transcripts
and excerpts from blogs. The annotation process of the treebank was supported by
the Oslo-Bergen Tagger, described in Section 2.2.1, and then manually corrected
by annotators.

2.2 Part-of-Speech Tagging
Part-of-speech tagging is concerned with assigning a single part-of-speech to each
word in a sentence. Parts-of-speech, also known as PoS or word classes, are
used to group words with similar grammatical properties, e.g. verbs, nouns and
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2. BACKGROUND

adjectives. The words in a particular PoS often function similarly in terms of what
they can occur nearby (i.e., syntactic properties) or the affixes they can take (i.e.,
morphological properties). Furthermore, parts-of-speech can be divided into two
broad classes: closed class types, which have a relatively fixed membership and
generally do not get assigned new words (e.g., pronouns and prepositions), and
open class types, which have an open membership, continuously being assigned
new words (e.g., nouns and verbs).

Different granularities are used in different tag sets, and while one can use as
few as eight parts-of-speech for a very high-level approach, some systems oper-
ate with several hundred tags. The more is not necessarily the merrier, as while
fine-grained tags provide more information, it becomes increasingly difficult to
determine the correct tag with each of them being so fine-grained (Jurafsky &
Martin, 2009, pp. 157–158).

To evaluate the performance of a PoS tagger, we compare its predictions on a
held-out test set with a so-called ‘gold standard’, which is a manually annotated
version of the test set. If the tagger agrees with the human annotator on the tag of
a given word, the tagger has made a correct prediction. We iterate the entire data
set and compare the predictions of the tagger with the human annotation in order
to accumulate the number of correct predictions. The typical evaluation metric
for measuring tagger performance is accuracy, which is a simple fraction of the
number of correctly tagged tokens divided by the total number of tagged tokens.

Part-of-speech tagging plays an important role in many Natural Language Pro-
cessing (NLP) applications as a pre-processing step, i.e., it lays the ground for
further processing of the text on which the tagging was performed. Many parsers,
dependency parsers in particular, require the input text to be PoS tagged. This is
by no means a trivial task, even though it may seem fairly straightforward; simply
looking the word up in the dictionary is not sufficient. The main challenge here,
like in so much of computational linguistics, is ambiguity, which is a pervasive
phenomenon in languages. One word can potentially belong to several parts-of-
speech, and while most words in English are unambiguous, many of the most
common words are in fact ambiguous (Jurafsky & Martin, 2009, p. 167). When
faced with ambiguity, a tagger has to be able to disambiguate, i.e., resolve the
ambiguity. This can be done in several ways, e.g., by looking at the surrounding
words in the sentence forming the context, which can actually be very informative
of the word and provide useful information as to what tag should be assigned to
the word in question. For instance, if the preceding word is a determiner, chances
are that the word in question is a common noun.
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2.2.1 Approaches to PoS Tagging
PoS tagging is performed by PoS taggers, which can generally be divided into
two groups: rule-based and data-driven taggers. Where rule-based taggers rely
on handwritten rules in order to assign each word the correct tag, the data-driven
(also known as stochastic) taggers determine the correct tag based on gathered
statistics. While rule-based taggers can be directly applied to new text, the data-
driven taggers need to be trained first in order to gather the statistics used in the
tagging. One could argue that rule-based taggers are (indirectly) data-driven, as it
is highly likely that existing rules are altered and/or new rules are added as more
data is processed. However, these changes are carried out by trained linguists, as
opposed to the machines used in data-driven approaches, which is based on the
method of machine learning. In the following sections, I will go into detail about
these two approaches, discussing their respective merits and how they differ as
well as provide examples of PoS taggers employing them.

Data-driven PoS Taggers

Data-driven taggers are taggers that are trained on annotated data, with this train-
ing consisting of processing and analyzing the input data to recognize and general-
ize patterns that are used to find the most likely tag for a given word in a given con-
text. This is done by applying machine learning techniques, which can learn from
and subsequently make predictions on data. The trained models and the gathered
statistics are then used in the tagging of new data. The training data sets are typ-
ically manually annotated corpora, i.e., large text collections in which the words
are labeled with part-of-speech tags by human annotators. The most widely used
corpus for English is the Penn Treebank (Marcus, Santorino, & Marcinkiewicz,
1993), which consists of 4.5 million words gathered from sources including the
Wall Street Journal, IBM computer manuals and texts from the Library of Amer-
ica.

TnT One of the most well-known data-driven PoS taggers is TnT1 (Brants,
2000), short for Trigram’n’Tags, which uses Hidden Markov Models (HMMs)
combined with a smoothing technique and handling of unknown words. HMM-
based taggers employ two kinds of probabilities to determine the correct tag:
emission probabilities, which express the probability of a tag emitting a certain
word, i.e., the probability of seeing a particular word given a particular tag, and
transition probabilities, which express the probability of a particular tag given the
preceding tag(s). As is standard in HMMs, the emission probabilities and tran-
sition probabilities are estimated using Maximum Likelihood Estimation (MLE),

1http://www.coli.uni-saarland.de/~thorsten/tnt/

7

http://www.coli.uni-saarland.de/~thorsten/tnt/


2. BACKGROUND

which is based on relative frequencies encountered in the training. After this ini-
tial probability estimation, TnT smooths contextual and lexical frequencies and
implements support for handling unknown words, which I will return to shortly.

Smoothing is a technique used to try to the solve the problem of sparse data,
which is caused by the fact that the data in any corpus will be sparse in the sense
that it can not include all acceptable, grammatical sentences or sequences of tags.
The probability of a sequence containing an unknown word will be 0 if smoothing
is not applied, as the probabilities are estimated using maximum likelihood esti-
mation, and the maximum likelihood of a word that has not been seen will be 0,
even if it is a perfectly fine word in a perfectly fine sentence (Jurafsky & Martin,
2009, pp. 131–132). Smoothing resolves this by reserving some of the probability
mass to unseen words. A number of smoothing techniques can be employed to
achieve this, but Brants (2000) argues that the smoothing paradigm that yields the
best results in TnT is linear interpolation of unigrams, bigrams and trigrams.

The handling of unknown words in TnT is carried out by using suffix analysis.
Tag probabilities are set according to the word’s ending, as Brants (2000) argues
that the suffix is a strong predictor for PoS classes. The probability distribution
for a particular suffix is obtained by looking at all words in the training set that
share the same suffix. Furthermore, Brants (2000) argues that using suffixes of
infrequent words is a better approximation for unknown words than using suffixes
of frequent words, and the suffix handling procedure is thus restricted to words
appearing less than 10 times.

HunPos HunPos2 (Halácsy, Kornai, & Oravecz, 2007) is an open-source PoS
tagger based on TnT. Its main feature, departing slightly from TnT, is augment-
ing the parameters of the traditional emission probability estimation, additionally
taking into account the preceding tag, thus incorporating more context into the
standard HMM model. The authors of HunPos argue that this can lead to as much
as 10% reduction in the error rate. HunPos reaches an accuracy of 96.58% on
the Wall Street Journal data of the Penn Treebank (Marcus et al., 1993), while the
original TnT obtains an accuracy of 96.46%. Halácsy et al. (2007) argue that the
increase in the emission order clearly improves the performance of the tagger for
English.

Stanford The Stanford tagger3 (Toutanova, Klein, Manning, & Singer, 2003) is
based on maximum entropy, also known as multiclass logistic regression, which
generalizes logistic regression to multiclass problems. Their novel approach com-
bines this with cyclic (bidirectional) dependency networks, where the probability

2https://code.google.com/archive/p/hunpos/
3http://nlp.stanford.edu/software/tagger.shtml
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of a given node (word or tag) is conditioned on both the preceding and the fol-
lowing word(s) or tag(s), yielding bidirectional inference. Toutanova et al. (2003)
make extended use of lexical features focusing on surrounding words, which they
found to be very useful, and not incorporated into previous models. They report an
accuracy of 97.24% on the Wall Street Journal data of the Penn Treebank, which
at the time of publication was the best automatically learned PoS tagging result.

SVMTool SVMTool4 (Giménez & Màrquez, 2004) is a data-driven PoS tagger
that employs Support Vector Machines (SVMs) to perform the tagging. An SVM
model is geometric rather than probabilistic, and represents the objects (corre-
sponding to words in the case of PoS tagging) as points in a vector space. It is a
max-margin classifier, meaning that it aims to make the decision boundary sepa-
rating the classes as wide as possible. SVMTool is highly flexible and tunable, and
offers a rich feature set which can be modified to fit different needs. These fea-
tures include word features and PoS features for the three preceding and following
words and tags, respectively, as well as both preceding and following bigrams and
trigrams. They also take into account affixes and orthographic features, such as
capitalization, hyphenation and similar information related to the word form. The
tagger reached an accuracy of 97.16% on the Wall Street Journal data of the Penn
Treebank.

Rule-based PoS Taggers

In contrast to data-driven taggers, rule-based taggers do not use probabilities to
determine the correct tag, but instead have a large set of handwritten disambigua-
tion rules for all the possible ambiguities they might encounter. If a rule-based
tagger encounters an ambiguity to which there is no applicable rule, it is simply
unable to perform the disambiguation. The tagging is performed in two stages:
first, the word in question is looked up in the dictionary in order to obtain a list
of potential parts-of-speech. This list is then (hopefully) narrowed down to a sin-
gle part-of-speech by applying the relevant disambiguation rule(s) (Jurafsky &
Martin, 2009, pp. 170–172).

Oslo-Bergen Tagger The Oslo-Bergen Tagger5 (Hagen et al., 2000), henceforth
OBT, is an example of a rule-based tagger. It was developed for Norwegian and
uses a formalism called Constraint Grammar (CG). Taggers employing the CG
approach applies a large set of linguist-written constraints to the input sentence to

4http://www.cs.upc.edu/~nlp/SVMTool/
5http://www.tekstlab.uio.no/obt-ny/english/
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rule out incorrect parts-of-speech, with each rule either adding, removing, select-
ing or replacing a tag or a set of a tags.

The authors behind OBT chose to develop a large number of detailed con-
straints for each possible correct reading. When facing ambiguous readings, it
finds all possible readings for each word, and then applies the appropriate con-
straint in order to disambiguate and find the correct reading. However, the con-
straints do not necessarily produce one single reading per token. As the OBT only
concentrates on grammatical ambiguity, and does not look at ambiguity between
lemmas, it may output several readings, thus not fully disambiguating. This, com-
bined with the fact that continued rule writing gave diminishing returns, motivated
the addition of a statistical module.

This resulted in OBT+Stat (Johannessen, Hagen, Nøklestad, & Lynum, 2011),
a statistical module that resolves all ambiguities left in the OBT output, including
the grammatical ambiguities and the lemma ambiguities originally left on purpose
as well as the unfortunate ambiguities. This statistical module uses the aforemen-
tioned HunPos tagger to perform the disambiguation, which is run independently
of the CG-based disambiguation when the CG tagger leaves more than one read-
ing per token, in which case the results from the two taggers are unified. If the two
taggers agree on a reading, that reading is selected. Otherwise, an attempt is made
to disambiguate using the lemma. This lemma disambiguation scheme works by
using a word frequency list derived from NoWaC (Guevara, 2010), a corpus of
Norwegian documents published on the Internet. It selects the lemma with the
highest frequency in the corpus, based on the assumption that most lemmas will
appear as words in a large corpus as Norwegian lemmas correspond to uninflected
word forms. However, if the lemma disambiguation fails, an arbitrary reading out
of the possible readings is selected.

After the CG-driven disambiguation had been performed, 8.6% ambiguous
tokens were still present, which were all resolved by the statistical module. The
OBT+Stat tagger achieved an overall accuracy of 96.56%, which Johannessen et
al. (2011) consider to be a good result, considering that they removed all remain-
ing ambiguity and at the same time kept a large, detailed tag set and disambiguated
lemmas with identical tags.

2.3 Syntactic Parsing
Syntactic parsing is concerned with analyzing sentence structure, one aspect of
which is assigning syntactic functions to words in a sentence, e.g., finding the
subject and object in a sentence. Syntactic parsers typically require the input
sentence to be labeled with parts-of-speech, as these provide important linguistic
information about the words in a sentence and are often used as features in the

10



2.3. Syntactic Parsing

Head Dependent

Preposition Prepositional complement
Finite verb Complementizer
First conjunct Subsequent conjuncts
Finite auxiliary Lexical/main verb
Noun Determiner

Table 2.1: Annotation choices in NDT, taken from Solberg et al. (2014).

parser. Just as for PoS tagging, ambiguity is the main obstacle in parsing. Most
sentences have more than one possible structure, hence the parser must be able
to determine the correct analysis out of a potentially very large set of possible
analyses. Syntactic parsing serves as an important step in a range of NLP tasks
where the structural analysis of sentences is crucial.

There exists a wealth of linguistic theories to represent syntactic structures,
but as Norwegian Dependency Treebank is based on dependency grammar, we
will focus on dependency grammar.

2.3.1 Dependency Grammar
Dependency grammar assumes a binary, asymmetrical relation between words in
a sentence, so-called dependencies, where each node has a single head, of which
it is the dependent. These dependencies are represented as arcs from a head to its
dependent, where the label on the arc denotes the name of the dependency relation,
e.g., SUBJ (subject) or ADV (adverbial). The head is regarded as the superior node
in the relation in that it is more prominent and in some way governs its dependent,
‘allowing’ for its presence (Nivre, 2005).

The syntactic annotation choices in NDT are largely based on the Norwegian
Reference Grammar (Faarlund et al., 1997). The annotation choices are outlined
in Table 2.1, taken from Solberg et al. (2014), providing overview of the analyses
of syntactic constructions that often distinguish dependency treebanks, such as
coordination and the treatment of auxiliary and main verbs. See an example of a
dependency graph taken from NDT in Figure 2.1.

2.3.2 Data-Driven Dependency Parsing
Dependency parsing is the process of parsing a sentence and assigning it syn-
tactic structure represented in terms of dependency grammar. Similarly to the
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Det er et resultat av President Bushs kamp mot terrorisme .

FINV

SUBJ DET
SPRED

ATR APP DET

PUTFYLL

ATR PUTFYLL

IP

Figure 2.1: Example of a dependency graph representation of a sentence taken
from NDT.

approaches to PoS tagging, the most successful dependency parsers today employ
statistical modeling and machine learning, resulting in data-driven dependency
parsers. Given an input sentence, we want to derive the correct, i.e., the most
probable, dependency graph out of a set of candidate graphs.

Data-driven dependency parsing can be broadly divided into two main ap-
proaches: graph-based models and transition-based models (McDonald & Nivre,
2011). Parsers employing the graph-based approach parameterize models over
dependency subgraphs and learn these parameters to score an entire dependency
graph for a given sentence in order to find and locate the highest-scoring, optimal
parse from a set of candidate parses. They are hence globally trained and often
employ exhaustive search to find and locate the most probable parse for a given
sentence. Transition-based approaches, on the other hand, parameterize models
over transitions between states in an abstract state machine and use local training
and greedy search to find the best transition (the locally optimal choice) from any
given state.

Data-driven dependency parsing has seen a surge in recent years, with several
shared tasks dedicated to advance the state of the art of dependency parsers. We
will now turn to four dependency parsers which will be trained and evaluated on
NDT in later experiments in Chapter 6.

Malt MaltParser6 (Nivre et al., 2007) is a transition-based dependency parser
based on a deterministic parsing strategy along with treebank-induced classifiers

6http://maltparser.org/
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for predicting parser actions, i.e., transitions. It uses history-based feature models,
which involves using previous transitions as a means to guide the parsing. It
comes with a variety of parsing algorithms, feature models and machine learners
to choose from, the optimal of which can be found by employing MaltOptimizer
(Ballesteros & Nivre, 2012), used to optimize the parameters of the parser.

Mate The Mate parser7 (Bohnet, 2010) is graph-based and uses maximum span-
ning trees and third-order features to find the best dependency parse. The maxi-
mum spanning tree of a sentence is the highest scoring tree spanning the whole
sentence, where the score of a dependency tree is the sum of the scores of its de-
pendencies. Third order features involve the parser being able to evaluate sub-
structures containing three dependencies. It has been shown to perform very
well for English (Choi, Tetreault, & Stent, 2015), which Bohnet (2010) attributes
mainly to the use of the Hash Kernel.

RBG The RBG parser8 (Lei, Xin, Zhang, Barzilay, & Jaakkola, 2014) is a
graph-based dependency parser using tensor decomposition and a low-rank fac-
torization method to map high-dimensional feature vectors to low-dimensional
representations, as described by (Lei et al., 2014). It can be run with either first-
order or third-order features, where the first-order feature model is the fastest but
least accurate.

Turbo The Turbo parser9 (Martins, Almeida, & Smith, 2013) is graph-based and
employs dual decomposition and specialized head automata to handle third-order
features in producing non-projective dependency graphs, i.e., graphs with crossing
arcs. Dual decomposition splits the original problem into local subproblems and
seek an agreement on the overlapping variables.

2.4 Previous Work

2.4.1 PoS Tagging for Norwegian
Marco (2014) developed an open-source part-of-speech tagger for Norwegian
based on an existing processing library, motivated by the scarcity of PoS tag-
gers for Norwegian, with the author citing the Oslo-Bergen Tagger (Hagen et al.,
2000) as the only available tool for this purpose. The tagger is mostly based on

7https://code.google.com/archive/p/mate-tools/
8https://github.com/taolei87/RBGParser
9http://www.cs.cmu.edu/~ark/TurboParser/
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statistics and makes use of a simple and standard tag set, hence clearly departs
from the rule-based and tag-comprehensive approach seen in OBT.

Methodology and Data The part-of-speech tagger was created using the FreeL-
ing tool, an open-source text processing tool offering a number of language anal-
ysis services, with its part-of-speech tagger being the focus of this paper. The
tagger uses an adaptation of Norsk ordbank as its dictionary, which is a large
database of lexical units with morphosyntactic and argument structure informa-
tion. It was trained and evaluated on a pre-release version of NDT using the
FreeLing-included HMM tagger, which is a trigram tagger based on TnT. The tag
set in both the dictionary and the gold standard corpus was simplified and stan-
dardized, with the simplification consisting of combining certain original tags into
a single tag and omitting some of the arguably less important grammatical infor-
mation. The adapted tag set is mostly based on the EAGLES standard, where the
first letter of each tag indicates the part-of-speech of the word and the remaining
letters specify more fine-grained morphosyntactic and semantic information.

FreeLing analyses forms not found in the dictionary, i.e., unknown words, by
use of a compound module and an affixation module that checks whether the word
is a compound or a derived form, respectively. The compound module works by
simply concatenating words found in the dictionary to check whether the word
in question is a compound of existing words, and the affixation module detects
whether a word is a derived form, based on a list of affixes applied to words in the
dictionary. Additional modules customized for the purpose of this tagger include
the tokenizer and the multiword expression module.

Error Analysis Most errors seen in the tagging were due to ambiguities in the
dictionary. These include ambiguities in morphological features, such as nomi-
native versus accusative case ambiguity in pronouns, number ambiguity in nouns
and gender ambiguity in adjectives. Words not included in the dictionary, such
as many proper nouns, acronyms and compound words, also constitute a large
portion of the errors.

Evaluation The accuracy of the tagger was evaluated using five-fold cross val-
idation over the gold standard . Three types of morphological information with
increasing degree of detail were evaluated: (i) main part-of-speech (PoS-1); (ii)
main part-of-speech and information about the subtype of the part-of-speech, e.g.,
auxiliary versus main verb (PoS-2); and (iii) detailed morphosyntactic informa-
tion given by the tag, e.g., gender, number and case (PoS-3). The tagger’s perfor-
mance was evaluated as quite close to that of state-of-the-art taggers for English
(between 96% and 98%) reaching an accuracy of 97.3%, 96.2% and 92.4% for
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PoS-1, PoS-2 and PoS-3, respectively. It yielded a higher accuracy in morphosyn-
tactic tagging than the OBT+Stat tagger, but as pointed out by Marco (2014), this
is not necessarily a valid comparison, considering that the two taggers use differ-
ent tag sets and data sets. It is worth noting that the performance of taggers are
not necessarily directly comparable; unless the taggers are trained and tested on
the same premises and resources, a direct comparison is rather futile. Moreover,
even if one were to evaluate them in a near-identical manner, the results wouldn’t
necessarily be all that revealing, as a tagger developed and trained for tagging a
specific type of text performing poorly at tagging a completely different type of
text does not provide useful information about the tagger. We want to find out how
the tagger performs on the data to which we want to apply it. With this in mind, I
will turn to a paper investigating how taggers can be evaluated and compared in a
systematic manner.

2.4.2 Comparing PoS Taggers for Swedish
Megyesi (2001) argues that the manner in which PoS taggers are evaluated by
researchers differ greatly, making it difficult to compare the performance of the
systems. Motivated by this, Megyesi set out to compare four data-driven learning
algorithms on the task of PoS tagging of Swedish, and to investigate what types
of errors they made as well as the effects of tag set size and training set size.
The four algorithms in question are Hidden Markov Model (HMM), Maximum
Entropy (MaxEnt or ME), Memory-Based Learning (MBL) and Transformation-
Based Learning (TBL). These taggers had all previously been tested for English
with an average accuracy between 95% and 97%, and were used with their default
settings as the main goal was to evaluate the systems out-of-the-box. The exper-
iments were run on the second version of the Stockholm-Umeå Corpus (SUC)
(Gustafson-Capková & Hartmann, 2006), which was annotated with a Swedish
version of PAROLE tags, with the tag set totaling 139 tags. The corpus was
randomly divided into ten roughly equal parts to get subsets containing different
parts.

Taggers Memory-based learning is a case-based approach where new items are
classified based on their similarities to the items already stored in memory dur-
ing learning (Daelemans, Zavrel, Berck, & Gillis, 1996). The maximum-entropy
framework called MXPOST is a probabilistic classification-based approach based
on a maximum-entropy model where contextual information is represented as bi-
nary features that are used simultaneously in order to predict the PoS tag. It uses
beam search to find the most probable sequence of tags, and then chooses the tag
sequence with the highest probability (Ratnaparkhi, 1996). Transformation-based
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learning is a rule-based approach that learns by detecting errors, and generates
new rules based on the observed errors and the subsequent resolution of these
errors (Brill, 1994). TnT is used as presented in section 2.2.1.

The evaluated taggers have in common their approach to representing data,
which is to generate a feature vector for each word in the corpus, consisting of the
words they appear with and their respective tags, i.e., the context. However, these
taggers differ with respect to what features they store in the vectors. MBL takes
into account the current word, the preceding and following word forms, the two
preceding tags and the immediately following tag; ME includes the current word,
the following and preceding two words and the preceding two tags; TBL uses a
context of three preceding and following words and/or tags; and finally, TnT is
trigram-based and works as previously described.

Evaluation PoS taggers can be evaluated in a number of ways, and Megyesi
(2001) decided to evaluate the taggers from three different aspects to see how
they compare: (i) the accuracy of each classifier was evaluated by using the entire
tag set and 10% of the SUC as training data; (ii) the original tag set was divided
into smaller subsets of varying size to investigate the effects of tag set size (See
Section 2.4.3); (iii) the size of the training corpus was varied from one thousand
up to one million tokens for each tagger to see how the various sizes affect the
error rates.

To ensure a fair comparison, each tagger was trained on the same portion of
SUC for each of the experiments, and the resulting classifiers were then evaluated
on the same separate test set. The taggers were only allowed to assign a single tag
(i.e., not a set of possible tags) to each token in the test data set.

TnT had the highest overall accuracy of 93.55%, and also succeeds best in the
annotation of known and unknown words, with the MXPOST tagger coming in
second at 91.20%. The memory-based learner (89.28%) performs slightly better
than the transformation-based learner (89.06%), which performs poorly at tagging
unknown words, but manages to disambiguate known words quite well. The dif-
ferent taggers make different types of errors; whereas TBL and MB more often
make mistakes in the morphological analysis of categories, TnT and ME more
frequently confuse PoS categories for ambiguous words.

Each tagger was trained ten times on the same data of various sizes, includ-
ing 1 000, 10 000, 100 000 and 1 millions tokens. The corresponding test set
was subsequently annotated by each of the resulting classifiers. The error rate
decreases as the size of the training data increases, unsurprisingly, as the ratio of
unknown words to known words is much lower in larger data sets. The impact of
the size of the training data on the taggers differ greatly; whereas ME was highly
sensitive to the data set and shows a great decrease in error rate (88%), TBL was

16



2.4. Previous Work

less sensitive, and the error rate decreased by 50% when going from 5 000 to 500
000 tokens. TnT outperforms the other taggers on the task of annotating unknown
words when the training set consists of 20 000 or more tokens, and when there are
less than 20 000 tokens, TBL has the lowest error rate. TnT consistently outper-
forms all the other taggers in annotating known words, showing an error rate of
only 3.5% when the training set consists of one millions tokens. It is also worth
taking into consideration the run times of the different taggers. Whereas TnT can
learn from 100 000 tokens in one second, and manages to tag a text containing the
same amount of data in three seconds, ME and TBL spends roughly a day training
on 100 000 tokens.

HunPos In a round of follow-up experiments, Megyesi (2009) evaluated the
aforementioned HunPos tagger on the task of PoS tagging for Swedish. The tag-
ger was trained on SUC, and in a similar fashion to the experiments carried out in
Megyesi (2001), trained on different subsets of the corpus, varying in size from
1000 tokens to 1 million tokens. The separate test set contained 117 685 tokens
in 7 464 sentences. The annotation was done using the PAROLE tag set, which
at the time of writing contained 156 tags. Various feature settings were used in
training the tagger to investigate what settings serve as the most appropriate for
Swedish, among them the order of tag transitions, i.e., the number of preceding
tags included in the estimation of transition probabilities, using either bigram tag-
ging or the default trigram tagging. Different estimations of emission probabilities
were also tested, where the probability of a word is conditioned only on the tag
of the word itself or both the current tag and the immediately preceding tag, with
the former being used in TnT and the latter being the default in HunPos. Megyesi
(2009) found that bigram models perform better and are more appropriate when
the training data contains less than 50 000 tokens, while trigram models are to be
preferred when the training data contains more than 50 000 tokens. Furthermore,
the size of the suffixes was varied, experimenting with setting the size to 5 and 9
in addition to the default value of 10 to investigate whether a decrease in suffix
length can increase performance. Megyesi (2009) argues that the results prove
this not to be the case, and that the larger suffix window is always to be preferred
for Swedish. She finally experimented with varying the maximum frequency with
which a word can occur in order to be added to the suffix tree and used in the
suffix analysis, either 5, 9 or the default value of 10. For training data contain-
ing less than 100 000 tokens, reducing the frequency requirement for words to be
added to the suffix tree can lead to an improvement in tagger performance. For
larger training data sets, however, the experiments by Megyesi (2009) suggest that
the default value of 10 can be used, as there are no significant improvements in
decreasing the frequency requirement.
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HunPos was then compared to the taggers evaluated in Megyesi (2001), namely
MBT, MXPOST, TBL and TnT. These were all run with default settings, while
HunPos was tested both with default settings and optimal settings, where the op-
timization involved choosing the feature settings that led to the highest accuracy.
Consistent with the results presented in Megyesi (2001), the HMM-based tag-
gers performed best, with HunPos and TnT performing closely to one another
on all training data sizes. HunPos had the highest accuracy when the training
data contained less than 20 000 tokens, while TnT performed best on the remain-
ing data sets, except for when the training data set consisted of 1 million tokens,
where HunPos was marginally better than its predecessor, showing an accuracy of
95.90% compared to TnT’s 95.89%.

2.4.3 The Effects of Tag Sets
Part-of-speech tag sets are often taken for granted, and many NLP applications for
English use the tag set supplied by the de facto standard Penn Treebank (Marcus
et al., 1993), totaling 45 tags, in an unaltered form. It is therefore interesting
to investigate whether more fine-grained tag sets can lead to improvements in
tagger performance, as they certainly increase the linguistic utility, emitting more
linguistic information than their more coarse-grained counterparts. It is known,
and rather apparent, that more complex tag sets may complicate the tagging and
lead to drops in tagger accuracy, as the likelihood of ambiguity is higher.

Mapping Fine-Grained Tag Sets to Coarse-Grained Tag Sets In addition to
the complete tag set of 139 tags in the Stockholm-Umeå Corpus (Gustafson-
Capková & Hartmann, 2006), Megyesi (2001) trained the taggers on four sub-
sets of these tags, consisting of 26, 39, 44 and 48 tags, respectively. In Megyesi
(2002), the tag sets are slightly altered, consisting of 25, 39, 43 and 48 tags, re-
spectively. These experiments were carried out because a tag set with complete
morphological tags is not necessarily needed for all NLP applications (Megyesi,
2002). For applications where a complete fine-grained tag set is excessive, one
can instead reduce the size of the tag set, which in turn leads to a decrease in error
rate as the tagger has an easier task determining the correct tag. A subset of tags
with some more general properties, perhaps only the main PoS tags, may suffice.
Due to this, Megyesi (2002) chose to map the original tag set into smaller tag sets
in the training data to investigate how this affects the performance, with the goal
being to develop tag sets that can be useful for various applications. The smaller
subsets differ with respect to the type of morphological features included within
each PoS category. The smallest subset totaling 26 tags consists of the main PoS
tags as well as some subcategorization information, while the larger subsets of
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39, 44 and 48, respectively, are extensions of this. For the tag set containing 39
tags, the extension involved including distinctions between present and perfect
participle and between verbs in various tenses. This tag set was then used as basis
for further distinctions for the tag sets of 44 and 48 tags, leading to increasingly
fine-grained tag sets.

The number of errors made by each tagger is higher when using a large tag set,
which is not surprising, considering that it is more challenging to determine the
correct tag when the set of possible tags is larger. TnT consistently performs best,
again with ME coming in second, MB third and TBL last. TnT and MB seem to be
less sensitive to the size of the tag set than ME and TBL, as the changes in error
rate are smaller. Megyesi (2002) experimented with using tag sets of different
sizes in training and testing, using the complete tag set of 139 tags in the training
and the smallest subset of 25 tags in the testing. This lead to a decrease in error
rate for TnT and MB, while causing more errors for ME and TBL, compared to
when both training and testing were done on the smallest tag set.

Mapping Coarse-Grained Tag Sets to Fine-Grained Tag Sets While Megyesi
(2001) mapped the original tag set into smaller subsets, MacKinlay (2005) mapped
a coarse-grained tag set into more fine-grained subsets, thus augmenting the tag
set. The approaches do, however, share a common goal, which is to investigate
the effects of tag sets on tagger performance. MacKinlay used the Penn Treebank
and its accompanying tag set, totaling 45 tags, as basis for the experiments, from
which new, more fine-grained tag sets were mapped using the Natural Language
Toolkit (NLTK) in Python. The algorithms used for carrying out the experiments
were Transformation-Based Learning (TBL), Support Vector Machines (SVM)
and Maximum Entropy (MaxEnt or ME).

The primary goal of MacKinlay (2005) was to improve tagger performance
using linguistic insight. The tags were subdivided in a linguistically sensible way
into finer-grained tag sets, which yield additional information that may be used to
assist the tagger in making syntactic generalisations which are not apparent either
from the coarse PoS tags or from the sparsely populated lexical feature vector.
Finer-grained tag sets increase its linguistic utility as more linguistic information
is present. However, complex tag sets may in turn lead to increased difficulty in
determining the correct tag due to a potentially increased number of possible tags
for a word, between which the tagger has to disambiguate.

MacKinlay (2005) attempted to resolve the problem of complex tag sets lead-
ing to an increase in error rate by mapping the new tags back to the original tags
before evaluation, hence using the mapped tags only internally as a means to in-
crease the tagger performance, not to be used in the final evaluation. The modi-
fications adhered to certain restrictions for this inverse mapping to be carried out

19



2. BACKGROUND

sufficiently: there can be no discrepancies between the original and the inversely
mapped tags, i.e., the original tags had to be unambiguously recoverable from the
new tags.

Motivation It may seem rather pointless to strive for a small performance
improvement, e.g., increasing the accuracy from 97.01% to 97.05%. Sentence-
level accuracy, however, increases much more radically even when there is only
a small increase in token-level accuracy. MacKinlay (2005) argues that a tagger
which yields 97% accuracy for tokens, achieves 49% at the sentence level, while
a tagger performing at 98% yields an accuracy of 62% for entire sentences. This
indicates that it certainly is worth striving for a slight increase in word token ac-
curacy, as it leads to a substantially higher performance over sentences.

Experimental Evaluation The linguistically motivated modifications, i.e.,
tag mappings, were conditioned on both lexical features and syntactic features.
It is interesting to investigate modifications of both types as they clearly differ in
how they use linguistic insight.

The syntactically conditioned modifications involved looking at the head of
the phrase or the preceding or following words to determine the correct tag. One
of these modifications involved introducing a new, separate class for subordinate
conjunctions, which are originally grouped with prepositions in the IN class, as
well as mapping the prepositional uses of to into IN, while being left as TO when
used as an infinitive marker. Other modifications include attempting to resolve the
difficulty of distinguishing adjectives from verb participles, as they can be hard or
even impossible even for humans to disambiguate when extended knowledge of
the context is not provided. However, MacKinlay (2005) argues that the word
in question can unambiguously be classified as an adjective when paired with a
degree adverb, as verb participles cannot be modified by an adverb.

The tag set modifications conditioned on lexical features include attempts to
resolve the ambiguity between IN and RP, as prepositions function as predicate
complement in verb particles. There are words in the IN class that do not have
a corresponding homograph in RP, meaning that they cannot be the predicate
complement in a verb particle, hence can be unambiguously tagged as IN. They
therefore mapped the ambiguous members of IN to a separate class as a pre-
processing step to distinguish them from those which are unambiguous. Other
lexically conditioned modifications include mapping determiners and articles into
classes based on how they indicate the number of the noun phrase they precede,
i.e., if the noun is singular (e.g., a) or plural (e.g., some), or if the number simply
cannot be inferred from the determiner (e.g., the).

In addition to the primary approach, MacKinlay (2005) pursued an alterna-
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tive, more data-driven approach by using machine learning to determine clusters
within the tag sets corresponding to patterns of syntactic regularities. A range
of syntactic and collocational features were introduced to assist in determining
these patterns. The features for each <word type,tag> pair are derived from syn-
tactic and collocational patterns seen in the training. For instance, one feature was
Par_is_VBP, which simply states the probability of the parent of the word being
VBP. The values of these features are probability distributions indicating their rel-
ative frequency. The features and their values were then used to generate clusters,
which assist the tagger in assigning words the correct tag.

The results of these experiments were not of the promising kind, as the intro-
duction of new classes and more fine-grained tag sets rarely led to an improvement
in performance, in most cases in fact having a negative impact on the accuracy.
Even in the cases where they saw an improvement in performance, the improve-
ments were for the most part marginal at best. The most promising modifications
were generally those resulting from the clustering approach rather than the lin-
guistic modifications. They argue that it seems like the linguistic modifications
are less data-dependent while the data-driven modifications have a slight tendency
to overfit. The modifications which had no impact on the performance, i.e., that
neither led to an increase nor a decrease in accuracy, may still be used in other
NLP applications where the increased linguistic utility by itself is useful.
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Chapter 3

Parts-of-Speech & Tag Sets

This chapter provides an overview of the parts-of-speech in Norwegian and the
tag set of the Norwegian Dependency Treebank, complemented by linguistic and
computational considerations for designing and modifying tag sets. We will dis-
cuss how the tag set of the Norwegian Dependency Treebank is designed with
regard to parts-of-speech in Norwegian and present a qualitative comparison of
the tag set of NDT and tag sets of other comparable treebanks to see how they
relate.

3.1 Considerations for Designing Tag Sets
We are looking to optimize the existing tag set of NDT for dependency parsing
of Norwegian, thus identify a tag set that yields high parser performance while
also providing us with useful linguistic information. As tagging is an important
preprocessing step for parsing, the performance of the tagger will likely have great
impact on the parser performance.

The granularity of a tag set is directly related to its size; a coarse-grained tag
set consists of a relatively small number of tags, and as tag sets increase in size,
the more fine-grained they become. Smaller, more coarse-grained tag sets tend to
lead to higher tagger accuracy because it is easier to infer the correct tag when
the number of possible choices is smaller. Indeed, simply opting for a tag set
consisting of a single tag would lead to 100% accuracy. This would, however, be
entirely useless for NLP tasks, as we want to find a tag set that also models the
relevant morphological and syntactic information.

Leech (1997) noted the conflict between linguistic and computational consid-
erations one often encounters when designing tag sets. The linguistic quality of a
tag set is determined by the extent to which it represents all important grammati-
cal information in the language, while the computational tractability of a tag set is
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determined by how easy it is to infer the correct tag for a particular word and how
useful a particular tag is in aiding the disambiguation process (Leech, 1997).

We are looking for tag sets that are of high linguistic quality and are highly
computationally tractable. Some more fine-grained distinctions may actually im-
prove the tagger performance, as the extra information available may assist the
tagger in disambiguating ambiguous and unknown words. However, tag sets of
very high linguistic quality are likely to lead to diminishing returns and compro-
mise the computational tractability, as the tagger is unable to properly learn very
fine-grained distinctions for which there is not sufficient training data. Hence,
there is often a trade-off between the two aspects, and we want to find the ‘golden
mean’ between coarse-grained and fine-grained tag sets.

The best tagging does not necessarily lead to the best parse, and a tag set that
is optimized in terms of tagger performance alone is not necessarily optimized for
parsing. We will therefore modify the tag set of NDT in various ways to see how
the tag set granularity affects the tagging and, more importantly in our case, the
syntactic parsing in order to a identify a tag set tailored for dependency parsing of
Norwegian.

3.2 Existing Tag Sets
The tag set of a given treebank is the set of tags that can be assigned to tokens in
the treebank. The number of tags and thus the granularity varies greatly between
treebanks, and in order to limit ourselves to a small number of tag sets to which we
will compare the tag set of NDT, we chose Penn Treebank (Marcus et al., 1993),
Stockholm-Umeå Corpus (Gustafson-Capková & Hartmann, 2006) and Universal
Dependencies (Nivre, 2015). It is worth discussing what grammatical information
is represented in the tags of the various tag sets and the authors’ rationale when
developing the tag set.

Penn Treebank was chosen due to its status as the de facto standard treebank
for English. It is widely used in NLP and has also served as inspiration for other
treebanks. Stockholm-Umeå Corpus was chosen as Swedish is closely related
to Norwegian and thus very similar and comparable in terms of morphology and
syntax. Finally, we compare the tag set of NDT to the tag set of Universal Depen-
dencies because it is an attempt to define a cross-lingual tag set.

3.2.1 Penn Treebank
Penn Treebank (Marcus et al., 1993) is the de facto standard treebank for English.
It was developed at the University of Pennsylvania from 1989 to 1996, and its tag
set is based on that of the Brown corpus (Francis & Kuc̆era, 1979). The Brown
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corpus tag set comprises 87 simple tags, but additionally allows the formation of
compound tags, giving a total of 187 tags. In order to reduce the size of the tag
set, Marcus et al. (1993) set out to eliminate the redundancy present in the Brown
corpus tag set by taking into account both lexical and syntactic information in the
development of tags. The final morphosyntactic tag set of Penn Treebank consists
of 36 PoS tags, disregarding tags for punctuation, symbols, etc..

Penn Treebank introduces more fine-grained distinctions mainly for nouns
and verbs, which are inflected and agree with words in their context. The tag
set consists of fairly fine-grained tags for nouns (four tags), verbs (six tags) and
wh-words (four tags), as well as separate tags for adjectives and adverbs of com-
parative and/or superlative degree. Apart from these, the categories are mostly
rather broad, such as DT (determiner).

State-of-the-art PoS taggers trained and evaluated on Penn Treebank report an
accuracy between 97% and 98%1.

3.2.2 Stockholm-Umeå Corpus
Stockholm-Umeå Corpus (Gustafson-Capková & Hartmann, 2006) is a treebank
for Swedish, developed in collaboration between Stockholm University and Umeå
University in the 1990s. It was the first generally accessible, annotated corpus of
the Swedish language. Its tag set is based on the tag set of SWETWOL (Karlsson,
1992) and extensively discussed in Ejerhed, Källgren, Wennstedt, and Åström
(1992). The tag set of SUC comprises 22 morphosyntactic tags and is thus quite
coarse-grained. It consists of mostly very general categories, such as JJ (adjec-
tive), NN (noun) and VB (verb).

Östling (2013) presented Stagger, an open source part-of-speech tagger for
Swedish, which reached an accuracy of 96.58% on the second version of SUC. In
comparison, TnT (Brants, 2000) obtained an accuracy of 95.9%.

3.2.3 Universal Dependencies
As parts-of-speech vary greatly between languages, properly comparing the per-
formance of taggers across languages is often impossible, as the tag sets are highly
dissimilar and therefore incomparable. In order to try to alleviate the issues caused
by these differences, Petrov, Das, and McDonald (2012) set out to develop a uni-
versal tag set, universal in the sense that it is cross-lingual and applicable to a range
of languages. This is based on the idea that there exists a set of coarse syntactic

1http://aclweb.org/aclwiki/index.php?title=POS_Tagging_(State
_of_the_art)
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PoS categories in similar forms across languages, so-called universals. They de-
fined a tag set consisting of twelve universal PoS categories: NOUN (noun), VERB

(verb), ADJ (adjective), ADV (adverb), PRON (pronoun), DET (determiners), ADP

(adpositions, i.e., prepositions and postpositions), NUM (numeral), CONJ (con-
junction), PRT (particle), ’.’ (punctuation mark) and X (a catch-all for categories
such as abbreviations and foreign words). These categories are based on what
Petrov et al. (2012) consider to be the most frequent parts-of-speech that exist in
most languages. Moreover, these categories are what they expect to be the most
useful for users of PoS taggers.

To evaluate the universal tag set, they trained a supervised tagger based on a
trigram Markov model (Brants, 2000) on the treebanks of 22 different languages.
For each of these treebanks, they created a mapping from the original treebank
tag set to the universal PoS tags, based on annotation guidelines and PoS tag
definitions. They experimented with three combinations of training and testing:
training and testing on the original tag set, training and testing on the universal tag
set, and finally, training on the original tag set and testing on the universal tag set
by mapping the predictions to the universal tag sets. Accuracies for each of these
experiments were presented, and in all cases, training on the original tag set and
testing on the universal tag set resulted in the highest accuracy.

Nivre (2015) revised and extended the universal tag set with five additional
tags, namely INTJ (interjection), PROPN (proper noun), AUX (auxiliary verb),
SCONJ (subordinate conjunction) and SYM (symbol), resulting in a total of 17
tags. Additionally, PRT was renamed PART and ’.’ was renamed PUNCT. This was
done as part of the Universal Dependencies (UD) project2, which is developing
cross-linguistically consistent treebank annotation for a wide array of languages.

3.3 Parts-of-Speech in the Norwegian Dependency
Treebank

The Norwegian Dependency Treebank operates with 12 morphosyntactic PoS
tags, 7 of which additionally have features for more fine-grained morphological
information, such as gender, number, definiteness and tense. We will take advan-
tage of these features in the development of new tag sets, where we will create new
tags which are concatenations of a coarse tag and one or more of these features.
This allows us to assess what morphological information is useful in tagging and
parsing of Norwegian.

As the tag set of the NDT borrows heavily from the Oslo-Bergen Tagger,
which in turn is based on Faarlund et al. (1997), we mainly rely on Faarlund

2http://universaldependencies.org
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et al. (1997) in discussing the parts-of-speech and their respective properties. All
examples are taken from the Norwegian Dependency Treebank, unless otherwise
noted. Feature values in brackets, e.g., <adv> (used for adjectives which may
function as adverbials), give additional information about the token that might be
relevant, but does not concern the morphological form directly (Kinn, Solberg, &
Eriksen, 2013).

In the following, we will look at the parts-of-speech of Norwegian, how they
are represented and used in the Norwegian Dependency Treebank, and compare
the tag set of NDT to three other arguably comparable tag sets, namely those of
the aforementioned Penn Treebank (Marcus et al., 1993), Stockholm-Umeå Cor-
pus (Gustafson-Capková & Hartmann, 2006) and Universal Dependencies (Nivre,
2015), outlined in Section 3.2. See Table 3.1 for complete overview of their tag
sets, compared to the tag set of NDT.

3.3.1 Nouns
Nouns are words that denote entities and objects, either real or abstract. In Nor-
wegian, nouns have gender (masculine, feminine or neuter) and are inflected for
number (singular or plural) and definiteness (definite or indefinite). For instance,
a masculine noun such as bil ‘car’ have four different forms: indefinite singular
bil, definite singular bilen, indefinite plural biler and definite plural bilene. Intro-
ducing rather fine-grained tags for nouns may prove useful due to the nature of
nouns, as they have modifiers with which they agree (in gender, number and defi-
niteness). Example (3.1) shows this agreement, where the form of the determiner
and adjective is dependent on the properties of the noun they modify.

(3.1) Det
It

var
was

et
a.NEUT

kraftfullt
powerful.NEUT

svar
answer.NEUT

‘It was a powerful answer’

In NDT, nouns can also have three different types: appell ‘common noun’,
prop ‘proper noun‘ or fork ‘abbreviation’. Nouns in genitive case, e.g., Karis
‘Kari’s’, are tagged as noun and marked with the feature gen. This is quite dif-
ferent from the Penn Treebank, where genitives have the possessive ending split
off and tagged separately as a possessive ending (POS).

Penn Treebank operates with four PoS tags for nouns, e.g., NN for mass or
singular nouns and NNP for singular proper nouns. SUC distinguishes between
common and proper nouns, NN and PM, respectively. Similarly, the UD tag set has
NOUN for common nouns and PROPN for proper nouns. As they all distinguish
between proper and common nouns, investigating how the noun type may affect
tagging and parsing of Norwegian is of interest.
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Description NDT PTB SUC UD

Adjective adj JJ JJ ADJ
JJR PC
JJS

Adverb adv RB AB ADV
RBR HA
RB$
WRB

Determiner det DT DT DET
PDT PS NUM
PRP$

Infinitive marker inf-merke TO IE PART

Interjection interj UH IN INTJ

Conjunction konj CC KN CONJ

Preposition prep IN PP ADP
ADV

Pronoun pron PRP PN PRON
PRP$ PS
WP HP
WP$ HS

Subordinate conjunction sbu IN SN SCONJ

Noun subst NN NN NOUN
NNS PM PROPN
NNP
NNPS

Unknown ukjent FW UO X

Verb verb VB VB VERB
VBD AUX
VBG
VBN
VBP
VBZ
MD

Table 3.1: Qualitative comparison of the tag sets of NDT, PTB, SUC and UD.
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3.3.2 Verbs
Verbs are words that convey actions, e.g., spille ‘play’ and lese ‘read’. Verbs are
inflected for tense in Norwegian, and can also have the imperative mood, indi-
cating a command. For instance, the verb skrive ‘write’ has five different forms:
imperative skriv, infinitive skrive, present skriver, preterite skrev and past perfect
(har) skrevet. We furthermore see passive voice marked either through inflection
(See Example (3.2)) or periphrastically with an auxiliary verb (e.g., ble skrevet)
(Faarlund et al., 1997). The usage and distribution of auxiliary verbs in Norwegian
is very similar to that of English, however, the treebank does not have a separate
category, or even feature, for auxiliary verbs, but instead simply treats them as
verbs.

(3.2) Fondet
Fund.DEF

bør
should

forvaltes
manage.PASS

av
by

Norfund
Norfund

‘The fund should be managed by Norfund’

Perfect participles, e.g., skrevet ‘written’, can function either as verbs, e.g.,
Han hadde skrevet boken ‘He had written the book’, or as adjectives, e.g., En
skrevet bok ‘A written book’. Note that perfect participles appearing as adjec-
tives can be inflected for definiteness in Norwegian, e.g., Den skrevne boken ‘The
written book’. To determine whether a perfect participle is an adjective or a verb,
the authors of NDT utilized certain syntactic tests. If the participle is an attribute
preceding a head noun, it should be tagged as adjective, but when the participle
is a complement to the auxiliary verbs ha ‘have’ or få ‘get’, or a modal verb, it
should be assigned the verb tag. However, if the participle is complement to
the auxiliary verbs være ‘be’ or bli ‘become’, it could be either verb or adjective.
If a degree adverb such as fort ‘quickly’ can precede the participle, it should be
tagged as verb, and if it can be modified by a manner adverb such as veldig ‘very’,
it should be given the adj tag. The treebank uses the bracket tag <perf-part>
as a feature for perfect participles which are adjectives (Kinn et al., 2013). As
present participles are generally regarded as adjectives (Faarlund et al., 1997), we
discuss them in Section 3.3.3.

Penn Treebank has a total of six verb tags, among those VB for verb base form,
VBD for verbs in past tense and VBZ for verbs in third person singular present. In
addition to these tags, they have a separate tag for modal auxiliary verbs, MD. It
makes sense to have more fine-grained verb tags for English, as verbs in English
agree with their arguments (subject and object) in person and number (cf. I am,
you are, he is). The tag set of SUC is far more coarse-grained with only a single
tag for verbs, VB, while the UD tag set includes VERB and a separate AUX tag for
auxiliary verbs.
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3.3.3 Adjectives
Adjectives are words that describe or modify other words, mostly nouns, by as-
signing them certain attributes. In Norwegian, adjectives agree with the noun they
modify in terms of gender, number and definiteness. A given adjective gener-
ally takes on three different forms: indefinite masculine/feminine singular (e.g.,
stor ‘big’), indefinite neuter singular (e.g., stort) and definite/plural (e.g., store).
Most, but not all, adjectives can furthermore be inflected for degree, viz., pos-
itive (e.g., stor), comparative (e.g., større ‘bigger’) and superlative (e.g., størst
‘biggest’). Comparative and superlative can be expressed either through inflec-
tion or periphrastically with a degree adverb (e.g., mer tilfreds ‘more satisfied’).

The treebank operates with five different features for adjectives: gender, num-
ber, type, definiteness and degree. Gender, number, definiteness and degree are
as just described. The type feature is use to denote the type of the adjective,
and applies to adjectives which are in some sense ‘special’, hence most adjec-
tives will not be assigned a type. The five available types are <adv> ‘adver-
bial’, <ordenstall> ‘ordinal number’, <perf-part> ‘perfect participle’,
<pres-part> ‘present particle’ and fork ‘abbreviation’. Adjectives that can
occur as adverbials include temporal adverbs that can be inflected, such as ofte ‘of-
ten’ and snart ‘soon’, cf. veldig ofte ‘very often’ and ganske snart ‘pretty soon’,
respectively. As previously mentioned, bracket tags give additional information
about the token that might be relevant, but does not concern the morphological
form directly (Kinn et al., 2013).

Participles are verb forms that can function as adjectives and hence modify
nouns, e.g., en patentert oppfinnelse ‘a patented invention’ (perfect participle) or
en levende person ‘a living person’ (present participle). Generally, if the perfect
participle is an attribute preceding a noun, it is tagged as adjective, otherwise, it
is tagged as verb. However, these are just the general principles, and there are
exceptions; see section 3.3.2 for the full discussion on the treatment of perfect
participles in the treebank. Present participles are almost exclusively used as ad-
jectives in Norwegian, where they generally appear in the same syntactic positions
as other adjectives, i.e., as complements to nouns, predicates, etc., and can hence
best be described as an adjective. The exceptions are restricted to very specific
syntactic constructions with continuous aspect in which the present participle fol-
lows the auxiliary verb bli ‘become’ (Faarlund et al., 1997).

Penn Treebank operates with three adjective tags: JJ for adjectives, JJR for
comparative adjectives and JJS for superlative adjectives. Furthermore, they have
separate tags for participles: VBG for present participle (also known as gerund)
and VBN for past participle. In SUC, similarly to Penn Treebank, we see the JJ
tag for adjectives and a separate tag for participles, PC. In the UD tag set, there is
a single tag for adjectives, namely ADJ.
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3.3.4 Determiners
Determiners are words that occur with a noun or noun phrase, where they deter-
mine or specify the reference of the noun or noun phrase (Faarlund et al., 1997),
e.g., noen ‘some’ or min ‘my’. Determiners in Norwegian can have gender (fem-
inine, masculine or neuter), number (singular or plural) and definiteness (definite
or indefinite), agreeing with the noun or noun phrase they modify. NDT also has
a number of possible types for determiners: possessives (denoting possession or
belonging), demonstratives (referring to an entity in the context), quantifiers (ex-
pressing quantity of some kind), amplifiers (amplifying degree of ownership, etc.)
and interrogatives (introducing a question).

In some cases, the noun or noun phrase is not explicitly expressed, but instead
implicit, e.g., Min (bil) er nyere enn din ‘My (car) is newer than yours’ (Faarlund
et al., 1997). Possessives may also follow the noun, cf. Example 3.3.

Both Penn Treebank and SUC use the DT tag for determiners and have a sepa-
rate category for possessive pronouns (PRP$ and PS, respectively). Determiners
in the PTB tag set include articles such as every and no, indefinite determiners
such as any, each and those, and instances of all and both when they do not
precede a determiner or possessive pronoun (Santorino, 1990). The tag set of
the Penn Treebank furthermore have a separate category for predeterminers, PDT.
The English language distinguishes between possessive determiners (e.g., my) and
possessive pronouns (e.g., mine). This is not the case for Norwegian, which uses
the same form in both cases, thus simplifying the tagging.

The UD tag set has a single category for determiners, DET. It does, however,
have a separate tag for numerals, NUM, which includes quantifiers, which function
as determiners and are tagged as such in NDT.

(3.3) Jeg
I

kjente
knew

ikke
not

konen
wife.DEF

hans
his

(...)

‘I did not know his wife’

3.3.5 Pronouns
Pronouns are words that can take the place of a noun or noun phrase, e.g., hun
‘she’ or vi ‘we’. Norwegian pronouns can exhibit gender (feminine, masculine
or neuter), number (singular or plural), person (first, second or third) and case
(nominative or accusative). Note that case-marking only applies to pronouns in
Norwegian, as in English. We furthermore see four types of pronouns in the NDT:
interrogative (sp), personal (pers), reflexive (refl) and reciprocal (res). One
generally also considers possessives as pronouns, but these are tagged as deter-
miners in the Norwegian Dependency Treebank, for reasons we consider in 3.3.4.
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Reflexive pronouns are pronouns that refer to a preceding (pro)noun, its an-
tecedent. In Norwegian, the accusative form of personal pronouns in first and
second person can act as reflexive, e.g., Jeg så meg om ‘I looked around’, jeg
being first person singular nominative and meg being (normally, in non-reflexive
constructions) first person singular accusative. However, the reflexive pronoun
seg is exclusively reflexive, used only in third person, cf. Example (3.4).

(3.4) Israel
Israel

bryr
cares

seg
REFL.3

om
about

dette
this

‘Israel cares about this’

The Penn Treebank tag set contains four tags for pronouns: PRP for personal
pronouns, PRP$ for possessive pronouns, WP for wh-pronouns and WP$ for pos-
sessive wh-pronouns. SUC operates with the PN tag for pronouns, additionally
separating possessive pronouns in the PS tag. For interrogative/relative pronouns
and interrogative/relative possessive pronouns, they have the tags HP and HS, re-
spectively. The UD tag set has a single tag for pronouns, namely PRON.

3.3.6 Adverbs
Adverbs are words that modify verbs, adjectives, determiners and more, and typi-
cally express manner, time, degree, etc.. It is sometimes also regarded as a catch-
all category for words unfit for other categories. In the NDT, the adv ‘adverb’
category does not have any features and hence no further morphological informa-
tion. Adverbs that are derived from adjectives by conversion (also known as zero
derivation), i.e., adverbs that have the same form as their corresponding adjective
and normally express the manner in which a verb is performed, are simply tagged
as adjective, but given the feature <adv>. Furthermore, these adverbs are given
the exact same morphological features as the adjective from which they are de-
rived. Other adverbs, such as locative or temporal adverbs, are simply tagged as
adverbs.

Penn Treebank operates with four different tags for adverbs: RB for adverbs,
RBR for comparative adverbs, RBS for superlative adverbs and lastly WRB for
wh-adverbs. SUC has a single tag for adverbs (AB), as does the UD tag set (ADV).

3.3.7 Other Categories
Several parts-of-speech in the treebank (mostly closed classes) do not have any
available features, hence there are no features to use for tag set modifications.
These categories are, apart from adv, inf-merke ‘infinitive marker’, interj
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‘interjection’, konj ‘conjunction’, prep ‘preposition’, sbu ‘subordinate con-
junction’ and ukjent ‘unknown’ (mostly foreign words).

Penn Treebank uses the TO tag for both uses of the word ‘to’, including the
infinitive marker. SUC tags infinitive markers with the IE tag. In the UD tag
set, infinitive markers are tagged as particles (PART). Interjections receive the UH
tag in Penn Treebank, IN in SUC and INTJ in the UD tag set. Conjunctions are
tagged with CC in Penn Treebank, KN in SUC and CONJ in the UD tag set. Penn
Treebank groups both prepositions and subordinate conjunctions under the IN tag.
SUC assigns PP to prepositions and SN to subordinate conjunctions, while the UD
tag set uses ADP and SCONJ, respectively. For foreign words, Penn Treebank uses
the FW tag, while SUC uses UO. The X tag in the UD tag set acts as a catch-all for
foreign words as well as other categories, including abbreviations.
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Chapter 4

Experimental Setup

In preparation to conducting our experiments with linguistically motivated tag
set modifications, a concrete setup for the experiments needed to be established,
which is presented in the following. This setup includes a proposed data set split
(training/development/test) of the Norwegian Dependency Treebank, our initial
tag sets and how we realize the tag set modifications by mapping the original
tags to new, more fine-grained tags by appending selected sets of morphological
features. We then detail the evaluation of tagging and parsing in our tag set exper-
iments before discussing various ways of computing a baseline tagger accuracy to
which we can compare the tagger performance. Finally, we present the tagger and
parser used in our tag set experiments and how the sum of these components are
conjoined in a pipeline under which the experiments are run.

4.1 Data Set Split
When working with data for machine learning, it is common practice to split the
data into separate sets to be used for specific parts of the machine learning process.
This usually involves splitting the data into three data sets: training data, which
is used for training the machine learning algorithm; development data, used for
evaluation of the system during development; and test data, to be used for the final
evaluation of the system. It is crucial that we keep the test set separate from the
other data and abstain from using it during the development as the final evaluation
needs to be performed on new data for the most realistic evaluation of how the
system will perform on data outside of the treebank.

A central point of concern in machine learning is that machine learning algo-
rithms have a tendency to overfit. Overfitting occurs when the learning algorithm
is excessively trained on the training data, leading to the algorithm being ‘fitted’ to
the training data to such an extent that its performance on the training/development
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Source Genre # Sentences # Tokens

Aftenposten Newspaper 4629 75832
Bergens Tidende Newspaper 2587 38762
Dagbladet Newspaper 3573 48640
Klassekampen Newspaper 686 12446
Sunnmørsposten Newspaper 847 13231
Verdens Gang Newspaper 755 11091
Blogs Blogs 806 12514
Government reports Government reports 843 14797
Parliament transcripts Parliament transcripts 970 17463

Total 15696 244776

Table 4.1: Overview of the training data set of NDT.

data is a false measure of its predictive performance on unseen data. We want the
training data to be representative of the data we encounter elsewhere in the tree-
bank (i.e., in the development and test sets), but not overly representative, as that
would lead to the algorithm being geared towards the training data and highly
sensitive to input data. The algorithm needs to be able to generalize from training
data to unseen data.

4.1.1 Data Set Split of the Norwegian Dependency Treebank
Currently, there is no standard data set split of the Norwegian Dependency Tree-
bank. We therefore propose a split of the treebank which we hope to establish as
the new standard. A standard split is important for ease of use and reusability of
the treebank, which we facilitate by splitting on files and listing what files com-
prise the different data sets (See Appendix A). Furthermore, we have collected the
data for the data sets in separate files in CoNLL format, which will be distributed
with the treebank. Our data set split was used in the Norwegian contribution to
the Universal Dependencies project (Øvrelid & Hohle, 2016). See Tables 4.1, 4.2,
4.3 and 4.4 for overview of the split of the treebank.

Our split of the Norwegian Dependency Treebank splits the data into three
data sets, viz., training, development and testing. 80% of the data is used in the
training, 10% in the development and the final 10% resides in the held-out test
data set, which is a commonly used data set split for machine learning in NLP.
NDT consists of data from various sources in a range of genres, namely newspa-
per articles, blog posts, parliament transcripts and government reports. The data
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Source Genre # Sentences # Tokens

Aftenposten Newspaper 659 11006
Bergens Tidende Newspaper 400 5141
Dagbladet Newspaper 448 7086
Klassekampen Newspaper 119 2135
Sunnmørsposten Newspaper 186 2923
Verdens Gang Newspaper 98 1465
Blogs Blogs 200 1444
Government reports Government reports 100 2298
Parliament transcripts Parliament transcripts 200 2969

Total 2410 36467

Table 4.2: Overview of the development data set of NDT.

Source Genre # Sentences # Tokens

Aftenposten Newspaper 578 9160
Bergens Tidende Newspaper 348 5332
Dagbladet Newspaper 415 5048
Klassekampen Newspaper 114 1912
Sunnmørsposten Newspaper 168 2983
Verdens Gang Newspaper 15 277
Blogs Blogs 144 2433
Government reports Government reports 47 1165
Parliament transcripts Parliament transcripts 110 1724

Total 1939 30034

Table 4.3: Overview of the test data set of NDT.
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Source Genre # Sentences # Tokens

Aftenposten Newspaper 5866 95998
Bergens Tidende Newspaper 3335 49235
Dagbladet Newspaper 4436 60774
Klassekampen Newspaper 919 16493
Sunnmørsposten Newspaper 1201 19137
Verdens Gang Newspaper 868 12833
Blogs Blogs 1150 16391
Government reports Government reports 990 18260
Parliament transcripts Parliament transcripts 1280 22156

Total 20045 311277

Table 4.4: Overview of the full data set of NDT.

from these sources is organized in files, where each file contains a maximum of
100 documents. Here, a document denotes a coherent piece of text from a given
source, i.e., an article, a blog post, a parliament transcript or a government report.

We want new words and sentences in the development and test data sets, while
balancing the split in terms of genre. This is important because the language of
different genres tends to differ in many ways, and we cannot expect a tagger that
is trained exclusively on fashion blogs to perform well on the sports section of a
newspaper, for instance.

The two approaches for splitting the treebank we considered was either to
maintain contiguous sections within the sources (i.e., splitting on files) or to di-
vide the corpus into units of ten sentences each, assigning the first eight sentences
of each unit to the training data set and the two remaining sentences to develop-
ment and testing, respectively. This is analogous to assigning every ninth sentence
to development and every tenth sentence to testing, and simply assigning the re-
maining sentences to the training set.

We opted for contiguous sections within the sources of the treebank, where
the first 80% of the files from a particular source is used for training, the next
10% is used for development and the final 10% is used for testing. The entirety
of a given document is generally contained in one of the data sets, instead of
having document fragments distributed over the sets. Fragments are problematic
because they might lead to overfitting, as we would be testing on sentences from
a document that has already been partially seen in the training. There are some
overlap of documents, i.e., documents that start in one file and continue and end
in the next, but this can occur only with the last document of a particular file, and
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Tag set # Tags

Original 19
Full 368

Table 4.5: Overview of the initial tag sets and their respective size.

is hence rather negligible.

4.2 Initial Tag Sets
In our experiments, we want to investigate how we can use the morphological fea-
tures included in the treebank in the creation of new, more fine-grained tags. The
original tag set of NDT contains 19 tags, 12 of which are morphosyntactic tags,
the remaining 7 being for punctuation, symbols, etc.. In an initial experiment, we
concatenated the tag of each token with its set of morphological features in order
to map the original tag set to a new, more fine-grained tag set1. The result of this
was a total of 368 tags, which is clearly very fine-grained. These two tag sets thus
represent two extremes in terms of granularity, shown in Table 4.5.

As a consequence of the very fine granularity in the full tag set, we see tags in
the development and test data that do not occur in the training data. As these tags
are not part of the training data, the tagger has no way of learning or successfully
assigning them. This is the case only for very infrequent tags, and is caused by
the problem of sparse data. As there is no clear way of resolving this minor issue,
we do not take any action to alleviate this.

4.3 Tag Set Mapping
In order to modify the tag set of the treebank, we need to be able to map the
original tag set to a new tag set. This is done by specifying the features to be con-
catenated to the relevant existing tag(s) in a separate file and supplying it to the
pipeline as an argument. For instance, to create new tags for nouns which include
the grammatical gender, we would add subst fem ‘noun feminine’, subst mask
‘noun masculine’ and subst nøyt ‘noun neuter‘ to the tag set file, thus creating the
new tags subst|fem, subst|mask and subst|nøyt. We then replace the

1Hereafter referred to as the full tag set
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ID Token Tag Features New Tag

1 Lam subst appell|nøyt|ub|ent subst|nøyt
2 og konj _
3 piggvar subst appell|mask|ub|ent subst|mask
4 på prep _
5 bryllupsmenyen subst appell|mask|be|ent|samset subst|mask
6 | clb _

Table 4.6: Example of tag set mapping, introducing gender for nouns.

original tag with the more fine-grained tag for all applicable tokens in the tree-
bank, here corresponding to tokens tagged as subst, having either fem, mask
or nøyt in the morphological features. See Table 4.6 for an example of the tag
set mapping. This is one of the mappings carried out in the experiments with tag
set modifications, the results of which can be seen in Section 5.3.1.

The tag set mapping needs to be deterministic and injective, i.e., for any given
token, there can be at most one applicable new tag. This imposes restrictions
on what tag set modifications we can carry out, which will be further discussed
where relevant. We need to enforce determinism both locally, in regard to a spe-
cific feature, as well as across features when we combine features. This involves
the various values for a given feature having to be mutually exclusive, ensuring
local determinism. If any token in the treebank has more than one of these fea-
ture values, we would ultimately reach a dilemma in which we have to choose
which feature to use. For instance, when experimenting with tense and voice for
verbs, we found that many relevant tokens in the treebank had both tense and
voice marked, meaning that there were two possible tags for these verbs, either
appending the tense or the voice to the original tag. As this violates the deter-
minism, we instead combined the feature values for the relevant tokens, result-
ing in verb|inf|pass ‘verb infinitive passive’ and verb|pres|pass ‘verb
present passive’, as all passive verbs in Norwegian are either infinitive or present
tense. Similar workarounds are performed when necessary and presented accord-
ingly.

4.4 Evaluation
To evaluate and compare the performance of PoS taggers and syntactic depen-
dency parsers, there are certain metrics regarded as ‘de facto standards’ in the
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field. We adhere to these standards in order to facilitate a comparative analysis of
the various systems that can be readily compared to previous work.

For a given class (e.g., PoS or dependency relation), the true positives are the
instances correctly predicted as belonging to said class, while the false positives
are the instances erroneously assigned to said class. The false negatives are the
instances that should have been assigned to said class, but erroneously was not.

Precision measures the reliability of the system’s predictions, i.e., the percent-
age of instances assigned to a given class by the system that actually belong in the
class per the gold standard.

Precision =
true positives

true positives + false positives

Recall measures the robustness of the system, i.e., the percentage of instances
in a given class per the gold standard that the system correctly assigned to said
class.

Recall =
true positives

true positives + false negatives

F-score is a harmonic mean of precision and recall.

F-score = 2 ∗ precision * recall
precision + recall

PoS Tagging Accuracy is defined as the percentage of tokens assigned the cor-
rect PoS tag.

Accuracy =
# correctly tagged tokens

# tagged tokens

The TnT-included evaluation script tnt-diff is used to evaluate TnT as
well as our MFT baseline tagger in our tag set experiments. Precision, recall and
F-score are calculated by our tailor-made tagger error analysis script2.

Syntactic Parsing Unlabeled attachment score (UAS) measures the percentage
of tokens that are assigned the correct head by the system, while labeled attach-
ment score (LAS) additionally takes the label into account.

UAS =
# correctly attached tokens

# tokens
2See https://github.com/petterhh/ndt-tools
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LAS =
# correctly attached and labeled tokens

# tokens

Frequency-weighted difference of F-scores for a given dependency relation
weights the difference in F-score between two samples by the relative frequency
of the dependency relation.

Weighted F-score diff = F-score diff ∗ # tokens assigned given label
# tokens

The parser accuracy scores, including LAS and UAS, were computed by the
eval.pl3 script used in the CoNLL shared tasks. It also reports the precision
and recall of labeled and unlabeled attachment, which we use in our error analyses.

4.5 Baseline
It is common practice to compare the performance of PoS taggers to a pre-computed
baseline for an initial point of comparison. For PoS tagging, a commonly used
baseline is the Most Frequent Tag (MFT) baseline, which we use in our experi-
ments. This involves labeling each word with the tag it was assigned most fre-
quently in the training. For all unknown words, i.e., words not seen in the training
data, there are two main approaches: assign it the most frequent tag overall in the
training data, or the tag most frequently assigned to words seen only once in the
training data. We adopted the latter approach for our baseline tagger, as we believe
that unknown words may have much in common with words that occur only once
in the training, more so than simply words of the most frequent part-of-speech.
The reason for this is that unknown and infrequent words have in common that
they rarely occur, and we might therefore expect them to have similar properties.

Norwegian is a synthetic language with a quite productive morphology, paving
the way for many closed compound words, e.g., trøffelhonningvinaigrette, ’truffle
honey vinaigrette’. The possibility for these kinds of derivations leads to the for-
mation of many new words, and it is very likely that unseen data contains many
closed compound words, as well as proper nouns, that were not seen in the train-
ing data. In the case of the initial tag sets, noun is the most frequent tag for words
occurring only once in the training; subst ‘noun’ for the coarse-grained tag set
and subst|prop ‘proper noun’ for the fine-grained tag set. If we instead were
to use the most frequent tag overall as our baseline, prep ‘preposition’ would
be assigned to previously unseen words when using the full tag set, mostly due to

3http://ilk.uvt.nl/conll/software.html
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prep having no morphological features, hence not being affected by the inclusion
of these. As prepositions is a closed class, and we expect to see all prepositions
in the training data, this does not seem very promising, and serves to indicate that
our approach for unknown words may be the better choice.

4.6 PoS Tagger
For our experiments with tag set modifications, we want a PoS tagger that is both
fast and accurate. There is often a trade-off between the two, as the best taggers
tend to suffer in terms of speed due to their complexity. However, a tagger that
achieves both close to state-of-the-art accuracy as well as very high speed is TnT
(Brants, 2000), which we introduced in Section 2.2.1. The fact that TnT was used
for evaluating the universal tag set (Petrov et al., 2012), as described in Section
3.2.3, served as another good indication of TnT being appropriate for our task.
The sum of these factors led to TnT being the tagger of choice for our experiments.

4.7 Syntactic Parser
In choosing a parser for our experiments, we considered previous work on de-
pendency parsing of Norwegian, specifically that of the Norwegian Dependency
Treebank, as presented in Solberg et al. (2014). They evaluated a range of de-
pendency parsers, such as MaltParser (Nivre et al., 2007) and the Mate parser
(Bohnet, 2010), which we briefly described in Section 2.3.2. They reported that
the Mate parser proved best in parsing of NDT, where it achieved a labeled attach-
ment score (LAS) of 90.41% and unlabeled attachment score (UAS) of 92.84%
for Bokmål. In comparison, MaltParser with default settings reported 84.57% and
88.02% for LAS and UAS, respectively, while reaching an LAS of 89.61% and
UAS of 91.96% after a round of optimization using the optimization tool MaltOp-
timizer (Ballesteros & Nivre, 2012). Mate was consequently chosen as the parser
for our experiments with tag set modifications.

4.8 Tags & Features
As we seek to quantify the effects of PoS tagging in a realistic setting, we want to
run the parser on automatically assigned PoS tags. For the training of the parser,
however, we have two options: using either gold standard or automatically as-
signed tags. In order to settle on a configuration, we conducted experiments with
gold standard and automatically assigned tags to see how they differ with respect
to performance. The results of these experiments are shown in Table 4.7. They
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Training Testing LAS UAS

Gold Gold 90.15% 92.51%
Gold Auto 85.68% 88.98%
Auto Auto 87.01% 90.19%

Table 4.7: Results from initial parsing experiments. Gold denotes gold standard
tags, Auto denotes automatically assigned tags from TnT.

reveal that the combination of training and testing on automatic tags is superior
to training on gold standard tags and testing on automatic tags. This is rather sur-
prising, as one would expect gold standard tags to always be the preferred choice.
This motivates us to use automatically assigned tags both for training and testing
in our tag set experiments.

Note that it is absolutely crucial that the morphological features in the treebank
(See column Features in Table 4.6) are removed when using automatic tags, as
they are still gold standard. For instance, if a verb token is erroneously tagged
as a noun, we could potentially have a noun token with verbal features such as
tense, which markedly obfuscates the training and parsing. Another important
factor is that we want to isolate the effect of PoS tags, necessitating the exclusion
of morphological features.

A similar approach was employed in the dependency parser comparison of
Choi et al. (2015), where they trained on automatically assigned PoS tags and
excluded any morphological features from the input data. They found Mate to be
the best parser for the English portion of the OntoNotes 5 corpus, beating a wide
range of contemporary state-of-the-art parsers.

4.9 Pipeline
With all the components in place for our experimental setup, the pipeline under
which we run each experiment is presented in Figure 4.1. First, we perform the
mapping of the relevant tags in the data sets. We then train TnT on the mapped
training data and use the resulting model to tag the mapped development data.
Subsequently, we tag the training data with TnT and use the resulting data to train
Mate, which is then used to parse the tagged development data.
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Figure 4.1: Architecture of the experimental pipeline.
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Chapter 5

Tag Set Optimization

It is now time to turn to our experiments with tag set modifications. In these ex-
periments, we will modify the tag set of the Norwegian Dependency Treebank in
various ways by taking advantage of the morphological features in the treebank.
They will be used in the creation of more fine-grained tags to quantify the effects
of PoS tag set granularity on parsing and identify an optimized tag set for NDT,
complemented by in-depth error analysis of tagging and parsing. The experiments
will be carried out for the five parts-of-speech for which there is a range of mor-
phological features in the treebank, namely determiners (det), verbs (verb),
nouns (subst), pronouns (pron) and adjectives (adj). In the conclusion of this
chapter, we will present an optimized tag set for NDT along with results from
parsing with said tag set.

5.1 Motivation
As we discussed in Chapter 3, introducing more fine-grained distinctions in a
tag set may improve the tagger performance as well as the performance of down-
stream applications such as syntactic parsers, which is the focus of this work. With
more fine-grained linguistically motivated distinctions, we increase the linguistic
information represented in the tags, which may assist the tagger in disambiguating
ambiguous and unknown words, which in turn may aid the parser in recognizing
and generalizing syntactic patterns. However, the addition of more linguistic in-
formation to the tags and thus a more fine-grained tag set will most likely lead
to a drop in tagger accuracy, due to the increase in complexity. The best tagging
does not necessarily lead to the best parse, and it is therefore interesting to inves-
tigate how the tag set modifications may affect the interplay between tagging and
parsing. We seek to identify the most beneficial and informative morphological
features for syntactic parsing of NDT and append these to the existing coarse-

47



5. TAG SET OPTIMIZATION

Tag Set # Tags

Original 19
Full 368

Table 5.1: Overview of the initial tag sets and their respective size.

Tag Set MFT Accuracy LAS UAS

Original 94.14% 97.47% 87.01% 90.19%
Full 85.15% 93.48% 87.15% 90.39%

Table 5.2: Evaluation of tagging and parsing the development data with the two
initial tag sets.

grained tags to create a new tag set tailored for dependency parsing of Norwegian.
As we want to investigate how we can increase the linguistic quality of a tag

set, we will not introduce tag set modifications which are not linguistically mo-
tivated. We will only consider distinctions we deem linguistically sensible, even
if we expect them to impair the computational tractability; investigating the inter-
play between these two considerations is ultimately our goal.

5.2 Baseline Experiments
In an initial round of experiments, we trained and evaluated TnT and Mate on
the training and development data, respectively, using the two initial tag sets de-
scribed in Section 4.2 (repeated in Table 5.1 for convenience) to see how the tag
set granularity would affect the tagging and parsing performance. The original tag
set is the existing tag set in NDT, while the full tag set is created by concatenating
the PoS tag of each token with its set of morphological features. In Table 5.2, we
report the results of these experiments. We see that the tagger accuracy drastically
drops when going from the original to the full tag set. The MFT baseline for the
original tag set is 94.14%, while it drops by almost 9 percentage points to 85.15%
for the full tag set. TnT reports an accuracy of 97.47% on the original tag set,
which is reduced to 93.48% for the full tag set. These results confirm our hypoth-
esis that the very high linguistic quality in the full tag set comes at the expense of
computational tractability in terms of tagger performance.

However, the additional linguistic information provided by the full tag set im-
proves the parser performance. With the original tag set, Mate reports an LAS of

48



5.2. Baseline Experiments

Tag Freq Precision Recall F-score

adj 3144 95.89% 94.97% 95.43%
adv 1337 96.00% 96.93% 96.46%
det 2408 96.06% 95.14% 95.60%
inf-merke 531 99.62% 99.81% 99.72%
interj 35 92.00% 65.71% 76.67%
konj 1307 99.62% 99.16% 99.39%
prep 4878 98.37% 97.62% 97.99%
pron 2369 96.08% 97.34% 96.71%
sbu 1074 90.49% 93.95% 92.19%
subst 8944 97.69% 98.29% 97.99%
ukjent 51 67.80% 78.43% 72.73%
verb 5932 97.79% 97.08% 97.44%

Table 5.3: Tagger performance with the original tag set.

87.01% and a UAS of 90.19%, which increases to 87.15% and 90.39%, respec-
tively, when using the full tag set. As we are looking for fine-grained distinctions
that improve the syntactic parsing, these results are promising and serve to indi-
cate that additional morphological information assists the syntactic parsers, which
will be further explored later in this chapter.

To assess what parts-of-speech are challenging for the tagger, we performed
error analysis of tagging with the original coarse tag set, presented in Table 5.3.
The frequency of the various PoS tags and dependency relations in the follow-
ing is reported per their frequency in the gold standard development data. We
find that ukjent ‘unknown’ is the most challenging tag for the tagger, with a
reported F-score of 72.73% on the development data. As this constitutes a highly
disparate class containing mostly foreign words, and is the second least frequent
tag in the data, this is not surprising. We see a similar trend for interjections, the
least frequent tag. On the other hand, the tagger obtains an F-score of more than
97% for infinitive markers, conjunctions, prepositions, nouns and verbs. Infinitive
markers and conjunctions are the two categories with an F-score exceeding 99%.
Both these classes contain almost exclusively unambiguous tokens, which makes
it easy for the tagger to recognize them and successfully assign them the correct
tag.

In Table 5.4, we present the error analysis of parsing with the original tag
set. We observe similar patterns as for tagging, where the most frequent depen-
dency relations generally achieve the highest F-scores. DET (determiner), FINV
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Jeg er norsk i Norge , og fransk i Frankrike .

FINV

SUBJ
SPRED

ADV
PUTFYLL

IK

KONJ

KOORD-ELL

ADV PUTFYLL

IP

Figure 5.1: Example of sentence with dependency relation KOORD-ELL (coordi-
nation with verbal ellipsis).

Pål Anders Ullevålseter deltar i årets Rally Dakar .

FINV
SUBJ

FLAT

FLAT

ADV DET

PUTFYLL
FLAT

IP

Figure 5.2: Example of sentence with dependency relation FLAT (flat structure).

(finite verb), INFV (nonfinite verb), IP (sentence-separating punctuation), KONJ

(conjunction), PUTFYLL (prepositional complement) and SBU (complementizer)
obtain an F-score exceeding 90%. Coordination (KOORD) and adverbial (ADV),
albeit frequent, constitute challenging constructions, with reported F-scores of
76.54% and 80.06%, respectively. They are known to be notoriously difficult
to parse due to the structural ambiguity they often exhibit, which we will see
more clearly in our later experiments. An even more difficult type of coordina-
tion is found in coordination with verbal ellipsis (KOORD-ELL), which obtains
an F-score of mere 12.90%. In coordination with verbal ellipsis, the verb in the
first conjunct is elided in the second conjunct, exemplified in Figure 5.1, where er
‘am’ is implicitly the verb for the second conjunct. Other challenging construc-
tions include apposition (APP), flat structure (FLAT), indirect object (IOBJ) and
superfluous word (UKJENT). FLAT is assigned to constructions to which it is not
appropriate or possible to give a hierarchical, syntactic structure, such as foreign
quotes, proper nouns and other multi-words units; see Example in Figure 5.2.
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Deprel Description Freq Precision Recall F-score

ADV Adverbial 5101 79.40% 80.73% 80.06%
APP Apposition 285 46.32% 49.07% 47.66%
ATR Attribute 4010 83.82% 82.86% 83.34%
DET Determiner 2435 93.14% 88.94% 90.99%
DOBJ Direct object 1982 87.64% 85.44% 86.53%
FINV Finite verb 2097 96.90% 96.76% 96.83%
FLAT Flat structure 691 76.85% 76.40% 76.62%
FOBJ Formal object 10 40.00% 66.67% 50.00%
FOPRED Free object predicative 7 28.57% 50.00% 36.36%
FRAG Fragment 301 84.05% 84.05% 84.05%
FSPRED Free subject predicative 49 32.65% 40.00% 35.95%
FSUBJ Formal subject 360 85.56% 75.86% 80.42%
IK Sentence-internal punctuation 5 20.00% 100.00% 33.33%
INFV Nonfinite verb 1761 95.29% 95.50% 95.39%
INTERJ Interjection 34 55.88% 70.37% 62.29%
IOBJ Indirect object 74 63.51% 83.93% 72.31%
IP Sentence-separating punctuation 98 95.92% 95.92% 95.92%
KONJ Conjunction 1297 93.29% 93.36% 93.32%
KOORD Coordination 1344 76.71% 76.37% 76.54%
KOORD-ELL Coordination with verbal ellipsis 33 12.12% 13.79% 12.90%
OPRED Object predicative 87 44.83% 58.21% 50.65%
PAR Parenthetical expression 188 72.34% 86.62% 78.84%
POBJ Potential object 7 42.86% 100.00% 60.00%
PSUBJ Potential subject 205 65.85% 82.32% 73.17%
PUTFULL Prepositional complement 4433 94.90% 94.39% 94.64%
SBU Complementizer 1071 95.99% 95.19% 95.59%
SPRED Subject predicative 1025 84.88% 84.06% 84.47%
SUBJ Subject 3102 88.36% 89.94% 89.09%
UKJENT Superfluous words 15 0.00% 0.00% 0.00%

Table 5.4: Parser performance in terms of labeled attachment with the original tag
set.
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5.3 Tag Set Experiments
We will modify the tags for nouns, verbs, adjectives, determiners and pronouns in
NDT by appending selected sets of morphological features to each tag in order to
increase the linguistic information expressed by the tags. For each of these cate-
gories, we will provide a brief recap of the linguistic considerations as discussed
in Section 3.3 and present the set of available morphological features before going
into how these features were used in the tag set modifications and the results of
tagging and parsing with these modifications. Finally, we present error analysis
of tagging and parsing with the most promising tag set modification in terms of
parser performance.

For each tag, we first experiment with each of the features in isolation before
employing various combinations of them. We base our choices of combinations
on how promising the features are and what we deem worth investigating in terms
of linguistic utility, in order to see how the features might interact.

To gain a better understanding of what constructions constitute challenges for
the parser, and similarly the most challenging categories for the tagger, we per-
form error analysis of the most promising tag set modification for a particular
category in terms of parser performance (specifically, labeled attachment score).
Precision and recall for labeled attachment are reported by the aforementioned
eval.pl script (as used in the CoNLL shared tasks), from which we calculate
the F-score, which serves as the harmonic mean of precision and recall. The cor-
responding precision, recall and F-score for tagging are computed by our tailor-
made tagger error analysis script1.

We do not perform statistical significance testing of the differences in parser
accuracy scores for all tag set modifications. Instead, we test for statistical signif-
icance for the most successful tag set modification for each respective category in
Section 5.4, where we combine the best tag set modification for each category to
a final, optimized tag set.

For the parser error analysis, we use frequency-weighted differences in F-
scores, where the difference in F-score from the baseline (i.e., the original tag set)
for a particular dependency relation is weighted by its relative frequency in the
gold standard development set. Weighting the differences by relative frequency
is crucial because improvements from baseline are more significant for more fre-
quent relations; the more frequent a relation is, the greater the effect of said im-
provement. We report the five most improved dependency relations.

The complete overview of the tag set modifications used in the experiments
are presented in Appendix B.

1See https://github.com/petterhh/ndt-tools
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Feature Values Description

Definiteness be, ub Definite, indefinite
Gender fem, mask, nøyt Feminine, masculine, neuter
Number ent, fl Singular, plural
Type appell, prop Common, proper
Case gen Genitive

Table 5.5: Overview of available morphological features for nouns.

5.3.1 Nouns
In Norwegian, there is agreement in gender, definiteness and number between
nouns and their modifiers (adjectives and determiners), motivating us to inves-
tigate how these properties interact in syntactic parsing. In addition to gender,
definiteness and number, nouns are marked with type2 and case in NDT. The fea-
tures and their respective set of values are presented in Table 5.5.

The results from tagging and parsing with modifications to nouns are reported
in Table 5.6. As nouns constitute the largest class in the treebank by far (as shown
in Table 5.3), the effects are greatest for noun tokens in terms of overall change
in performance. Apart from case, none of the tag set modifications improves
the tagging. However, they all give rise to increases in parser accuracy scores.
Genitive case marks possession, hence nouns marked with genitive case are quite
different from other nouns, taking a noun phrase as complement. Distinguishing
on type is useful and informative, as evident by the presence of separate tags for
proper and common nouns in many tag sets, such as those of PTB, SUC and UD
(described in Section 3.2). When introducing the distinction of type, we see a large
increase in parser accuracy scores, with an LAS of 88.07% and UAS of 91.11%,
both exceeding the baseline by more than a percentage point. Definiteness is
the most informative feature for parsing, achieving LAS of 88.27% and UAS of
91.42%

We then combined the most promising tag set modifications to investigate how
they might interact and assist each other. The most successful combinations in
terms of LAS are case and definiteness (88.39%), type and case (88.46%), and

2Note that we throughout our experiments with all five categories only consider main types
when experimenting with the type feature. Secondary types, i.e., types that come in addition to
the main type and serve as less linguistically informative, e.g., fork (abbreviation) and høflig
(polite), are discarded. Norwegian, like many other Germanic languages, has separate forms for
polite/formal possessives, indicated with capital first letter, e.g., Deres ‘your(s)’. They are, how-
ever, practically nonexistent in current Norwegian, with only two occurrences in NDT.
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5. TAG SET OPTIMIZATION

Feature(s) MFT Accuracy LAS UAS

— 94.14% 97.47% 87.01% 90.19%
Case 93.77% 97.48% 87.63% 90.72%
Definiteness 89.67% 97.00% 88.27% 91.42%
Gender 89.54% 96.09% 87.21% 90.36%
Number 90.04% 96.37% 87.97% 91.00%
Type 91.90% 96.92% 88.07% 91.11%
Case & definiteness 89.65% 97.03% 88.39% 91.44%
Type & case 91.73% 96.92% 88.46% 91.51%
Type & definiteness 89.65% 96.99% 88.44% 91.48%
Type & number 90.02% 96.37% 87.95% 90.95%
Type, case & definiteness 89.61% 97.05% 88.81% 91.73%
Type, definiteness & number 88.39% 96.46% 88.06% 91.12%

Table 5.6: Results of experiments with modified PoS tags for nouns.

type and definiteness (88.44%). This led us to combine all of them in a final
experiment, in which we reach an LAS of 88.81%, improving upon the baseline
by 1.8 percentage points, while also achieving the second highest tagger accuracy
out of all the experiments.

The tagger error analysis for the combination of type, case and definiteness is
shown in Table 5.7. We observe that common nouns without marked definiteness
are the most challenging for the tagger, while definite common nouns and indefi-
nite common nouns achieve the highest F-scores, both close to 97%, coincidently
also being the most frequent tags. Turning to the parser error analysis in Table 5.8,
we find that the dependency relation DET (determiner), occurring 2435 times in
the gold standard development data, benefits most from the tag set modification,
with an increase in F-score of more than 4 percentage points. FLAT (flat structure),
the second most improved dependency relation, is mostly assigned to multi-words
units such as proper nouns, and benefits greatly from additional information about
nouns, especially knowing whether a noun is common or proper, reflected in the
large improvement in parser accuracy scores.

5.3.2 Verbs
Verbs in NDT may take on six different feature values, shown in Table 5.9. Note
that both voice and mood have only a single value, pass (passive) and imp (im-
perative), respectively. Verbs without pass are implicitly active, and verbs which
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5.3. Tag Set Experiments

Features Tag Freq Precision Recall F-score

Baseline subst 8944 97.69% 98.29% 97.99%

Type, case & definiteness

subst|appell|ub 4185 96.73% 96.80% 96.76%
subst|appell|be 2193 94.94% 98.36% 96.62%
subst|prop 2022 94.40% 92.58% 93.48%
subst|prop|gen 154 88.55% 95.45% 91.87%
subst|appell|be|gen 148 95.89% 94.59% 95.24%
subst|appell 128 92.92% 82.03% 87.14%
subst 89 96.39% 89.89% 93.02%
subst|appell|ub|gen 25 95.65% 88.00% 91.67%

Table 5.7: Tagger performance with the most promising tag set modification for
nouns, namely type, case and definiteness.

Features Deprel Freq Baseline W/ feat Diff

Type, case & definiteness

DET 2435 90.99% 95.18% 0.3176
FLAT 691 76.62% 89.00% 0.2664
PUTFYLL 4433 94.64% 96.04% 0.1938
SUBJ 3102 89.09% 91.08% 0.1927
ATR 4010 83.34% 84.83% 0.1855

Table 5.8: The five most improved dependency relations in terms of F-score,
ranked by their weighted difference, for the most promising tag set modification
for nouns, namely type, case and definiteness.
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5. TAG SET OPTIMIZATION

Feature Values Description

Mood imp Imperative
Tense inf, pres, pret,

perf-part
Infinitive, present, preterite, past
perfect (participle)

Voice pass Passive

Table 5.9: Overview of available morphological features for verbs.

are not imperative, are implicitly indicative.
Initially, we modified the tag set by introducing each of the features in separate

experiments, before trying out various combinations of these. For combinations
with voice and tense, we included both voice and tense in the tag, as the tags need
to be injective and all tokens with voice marked also have tense marked.

In an additional experiment, we mapped the verb tenses (mood, in the case
of imperative) to finiteness. Finite verbs are verbs that can serve as root in an
independent clause, i.e., verbs in imperative, present or preterite, which nonfi-
nite verbs, i.e., infinitive and past perfect (participle), cannot. This distinction is
syntactically grounded, and we might therefore expect it to positively impact the
syntactic parsing, as finite verbs and nonfinite verbs appear in completely different
syntactic constructions. All verbs have finiteness, hence this distinction has broad
coverage.

As noted in Section 3.3.2, NDT does not have a separate tag for auxiliary
verbs. As these act quite differently from main verbs, which they often precede,
this distinction would be quite useful and interesting to investigate in our exper-
iments. However, NDT does not have features for auxiliary verbs, so we would
have to make use of the syntactic structure of the verbs to implement this dis-
tinction. This is beyond the scope of this thesis, hence not implemented. In the
conversion of NDT to UD (Øvrelid & Hohle, 2016), the tagger error analysis re-
vealed that the AUX (auxiliary verb) tag of the UD PoS tag set obtains an F-score
of 91%, indicating that the distinction between auxiliary and main verbs is diffi-
cult for the tagger to make. As all auxiliary verbs in Norwegian may also take the
form of a main verb (from which they are grammaticalized), this drop in accuracy
is expected.

As Table 5.10 shows, the introduction of more fine-grained distinctions rarely
lead to an increase in tagger accuracy. In fact, none of them improve upon the
baseline; the original tag set achieves the highest accuracy overall. This serves
to indicate that more fine-grained distinctions for verbs might not be beneficial
for tagging Norwegian. However, more fine-grained linguistically motivated dis-
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5.3. Tag Set Experiments

Feature(s) MFT Accuracy LAS UAS

— 94.14% 97.47% 87.01% 90.19%
Mood 94.12% 97.43% 87.04% 90.19%
Tense 93.74% 97.30% 86.97% 90.18%
Voice 94.13% 97.45% 86.96% 90.09%
Mood & tense 93.74% 97.31% 87.12% 90.31%
Voice & tense 93.74% 97.28% 86.99% 90.15%
Mood, tense & voice 93.74% 97.27% 86.83% 90.05%
Finiteness 93.72% 97.35% 87.30% 90.43%

Table 5.10: Results of experiments with modified PoS tags for verbs.

tinctions yield better parses in many cases. In three of the seven altered tag sets,
namely for mood, mood and tense, and the finiteness mapping, we see a rise in
LAS and UAS.

Imperative clauses are fundamentally different from indicative clauses, as they
lack an overt subject; they are implicitly addressed at the reader(s)/listener(s).
This is illustrated by the increase (albeit marginal) in LAS when introducing the
distinction of mood, from 87.01% to 87.04%, even if mood (imp) accounts for
only 23 tokens in the development data. The combination of mood and tense leads
to LAS of 87.12% and UAS of 90.31%, both of which outperform the baseline.
However, when combining voice, mood and tense together, we get a drop in LAS
and UAS, to 86.83% and 90.05%, respectively.

The mapping to finiteness proved to greatly improve the parsing, as we saw
the overall largest parser accuracy scores, with 87.30% for LAS and 90.43% for
UAS, 0.29 and 0.24 percentage points higher than the baseline, respectively. This
coincides with the observations seen for Swedish in Øvrelid (2008), where finite-
ness was found to be a very beneficial linguistic feature for parsing. Looking at the
parser error analysis in Table 5.12, we see that FINV ‘finite verb’ and INFV ‘nonfi-
nite verb’ are among the five most improved dependency relations, the others be-
ing KOORD ‘coordination’, SPRED ‘subject predicative’ and KONJ ‘conjunction’.
The ‘law’ of coordination of likes states that two elements can be coordinated only
if they are of the same syntactic category. This is reflected in the improvement for
finite and infinite verbs, as we generally coordinate verbs with the same finiteness.
The error analysis from tagging with marked finiteness in Table 5.11 shows that
nonfinite verbs are more challenging than finite verbs for the tagger, which could
be caused by them being less than half as frequent.
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5. TAG SET OPTIMIZATION

Feature Tag Freq Precision Recall F-score

Baseline verb 5932 97.79% 97.08% 97.44%

Finiteness
verb|fin 3999 97.93% 97.10% 97.51%
verb|infin 1933 93.05% 94.88% 93.95%

Table 5.11: Tagger performance with the most promising tag set modification for
verbs, namely finiteness.

Feature Deprel Freq Baseline W/ feat Diff

Finiteness

KOORD 1344 76.54% 78.51% 0.0825
SPRED 1025 84.47% 85.56% 0.0348
FINV 2097 96.83% 97.22% 0.0257
INFV 1761 95.39% 95.80% 0.0223
KONJ 1297 93.32% 93.83% 0.0206

Table 5.12: The five most improved dependency relations in terms of F-score,
ranked by their weighted difference, for the most promising tag set modification
for verbs, namely finiteness.

5.3.3 Adjectives
Adjectives are words that describe or modify other words, mostly nouns, by as-
signing them certain attributes. In Norwegian, adjectives agree with the noun they
modify in gender, number and definiteness. In NDT, there are five different fea-
tures for adjectives, presented in Table 5.13. Four of the five types are bracket
tags, which do not concern the morphological form directly, with the last value
being fork ‘abbreviation’, none of which serve as particularly linguistically in-
formative.

The tagging and parsing results in Table 5.14 show that none of the tag set
modifications lead to improvements in tagger accuracy. Degree and type are the
most promising features in terms for tagger performance, with reported accuracy
of 97.41% and 97.40%, respectively. All but two tag set modifications outper-
form the baseline parser accuracy scores, the most successful being degree, with a
reported LAS of 87.29% and UAS of 90.44%, improvements of 0.28 and 0.25 per-
centage points, respectively, from the baseline. Other promising features include
definiteness and type.

Turning to combinations of features, definiteness and number achieve the best
results, very close to that of degree, with 0.02 percentage points lower LAS and
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5.3. Tag Set Experiments

Feature Values Description

Definiteness be, ub Definite, indefinite
Degree komp, pos, sup Comparative, positive, superla-

tive
Gender m/f, nøyt Masculine/feminine, neuter
Number ent, fl Singular, plural
Type <adv>, <ordenstall>,

<perf-part>,
<pres-part>, fork

Adverb, ordinal number, past
participle, present participle, ab-
breviation

Table 5.13: Overview of available morphological features for adjectives.

Feature(s) MFT Accuracy LAS UAS

— 94.14% 97.47% 87.01% 90.19%
Definiteness 93.45% 96.84% 87.14% 90.29%
Degree 94.13% 97.41% 87.29% 90.44%
Gender 93.56% 96.89% 87.10% 90.25%
Number 93.51% 96.71% 86.99% 90.10%
Type 94.12% 97.40% 87.11% 90.25%
Definiteness & degree 93.45% 96.81% 87.23% 90.39%
Definiteness & gender 92.94% 96.31% 87.18% 90.39%
Definiteness & number 93.48% 96.78% 87.27% 90.44%
Degree & gender 93.56% 96.87% 87.00% 90.16%
Degree & number 93.49% 96.76% 87.13% 90.26%
Definiteness, degree & number 93.47% 96.81% 87.14% 90.30%

Table 5.14: Results of experiments with modified PoS tags for adjectives.
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5. TAG SET OPTIMIZATION

Feature Tag Freq Precision Recall F-score

Baseline adj 3144 95.89% 94.97% 95.43%

Degree

adj|pos 2485 96.44% 94.93% 95.68%
adj|komp 273 98.88% 96.70% 97.78%
adj|sup 153 99.34% 98.69% 99.02%
adj 233 72.53% 72.53% 72.53%

Table 5.15: Tagger performance with the most promising tag set modification for
adjectives, namely degree.

Feature Deprel Freq Baseline W/ feat Diff

Degree

ADV 5101 80.06% 80.82% 0.1208
FLAT 691 76.62% 78.62% 0.0430
DOBJ 1982 86.53% 87.19% 0.0409
KOORD 1344 76.54% 77.25% 0.0299
INFV 1761 95.39% 95.78% 0.0214

Table 5.16: The five most improved dependency relations in terms of F-score,
ranked by their weighted difference, for the most promising tag set modification
for adjectives, namely degree.

identical UAS. Adjectives agree with their head noun and determiner in definite-
ness and number, making this an expected improvement. The combination of
definiteness and degree is also quite promising, obtaining LAS of 87.23% and
UAS of 90.39%. It is interesting that none of the combinations surpass the ex-
periment with degree alone, which indicates that degree does not interact with the
other features in any syntactically significant way.

The tagger evaluation in Table 5.15 reveals that the 233 tokens without marked
degree constitute a challenging group for the tagger, as the tagger obtains an ac-
curacy of mere 72.53%. For tokens with degree marked, superlative is the least
challenging, with accuracy exceeding 99%. Comparative comes in second with
97.78%, while the most frequent degree, positive, reaches an accuracy of 95.68%.
The parser error analysis in Table 5.16 shows that adverbials, for which there are
5101 occurrences in the gold standard development data, gain most from the dis-
tinction of degree, with an increase in F-score from 80.06% to 80.82%. As noted
in Section 5.2, adverbials are often difficult to parse, mainly due to structural am-
biguity arising with the problem of PP attachment.
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5.3. Tag Set Experiments

Feature Values Description

Definiteness be, ub Definite, indefinite
Gender fem, mask, nøyt Feminine, masculine, neuter
Number ent, fl Singular, plural
Type dem, forst, kvant,

poss, sp
Demonstrative, amplifier, quan-
tifier, possessive, interrogative

Table 5.17: Overview of available morphological features for determiners.

5.3.4 Determiners
Determiners occur with a noun or noun phrase, of which they determine or specify
the reference. In Norwegian, determiners agree with their head noun in gender,
number and definiteness. NDT operates with four features for determiners, viz.,
type, gender, definiteness and number. In Table 5.17, these features and their
respective set of available values are presented.

For a number of reasons, we do not report results from combinations of fea-
tures for determiners, as the features could not be combined in any meaningful
way. For instance, determiners in plural never have marked definiteness, hence
this combination would only apply to determiners in singular and roughly corre-
spond to the distinction on definiteness alone. Moreover, determiners in plural are
not distinguished in terms of gender (thus ruling out the combination of number
and gender), neither are definite determiners. Another aspect taken into consider-
ation is that the most promising distinction, definiteness, applies to such a small
number of tokens that more fine-grained distinctions would be overly sparse.

The results from the experiments with determiners are shown in Table 5.18.
Introducing the type led to an increase in tagger accuracy by 0.14 percentage
points to 97.61%, while marginally impacting the parsing, with LAS of 87.00%,
0.01 percentage points below the baseline, and UAS of 90.11%, 0.08 percentage
points below the baseline. The fact that the baseline remains the same is espe-
cially worth noting, as increased tag set granularity almost inevitably leads to a
drop in the MFT baseline. The increase in tagger accuracy when introducing the
distinction of type is noteworthy, as we expected the finer granularity to lead to a
decrease in accuracy. This serves to indicate that more fine-grained distinctions
for determiners, which is a quite disparate category in the treebank, may be quite
useful for tagging. However, as it has negative impact on the syntactic parsing, we
can conclude that the type of a determiner does not assist in generalizing syntac-
tic patterns, as most determiners, regardless of type, appear in the same syntactic
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5. TAG SET OPTIMIZATION

Feature MFT Accuracy LAS UAS

— 94.14% 97.47% 87.01% 90.19%
Definiteness 94.13% 97.49% 87.30% 90.42%
Gender 93.86% 97.28% 87.09% 90.31%
Number 94.06% 97.49% 87.04% 90.18%
Type 94.14% 97.61% 87.00% 90.11%

Table 5.18: Results of experiments with modified PoS tags for determiners.

constructions (i.e., before a noun or noun phrase).
Gender, on the other hand, improved the parsing, but complicated the tag-

ging, as the various genders are often difficult to differentiate, especially so in the
case of masculine and feminine, which share many of the same determiners. The
number of a determiner, i.e., singular or plural, led to a small increase in tagger
accuracy and LAS, while marginally lower UAS, 90.18%, 0.01 percentage points
lower than that of the original tag set. Almost all determiners have number, and
the introduction of this distinction led to small increases in tagger accuracy and
LAS, but marginally lower UAS. The introduction of definiteness to the determin-
ers led to the best parsing results, LAS of 87.30% and UAS of 90.42%, while also
increasing the tagger accuracy slightly. The increase in LAS and UAS is rather
interesting, as Table 5.19 shows that this change applies to only 121 tokens. As
this accounts for a very small number of tokens, coupled with the previously noted
considerations, we did not consider further fine-grained modifications with defi-
niteness. This goes to show that tokens with overt definiteness have noticeable
impact on the syntactic parsing, and that distinguishing on definiteness is very
beneficial.

When we look at the tagger performance for definiteness in Table 5.19, we
see that indefinite determiners achieve an F-score of 100%, while definite deter-
miners reach 96.08% and the remaining determiners without marked definiteness
obtain an F-score of 95.56%. The tagger perfectly tags the indefinite determiners,
which constitutes a quite closed class, with only four tokens, viz., egen (amplifier
‘own’, feminine/masculine), eget (amplifier ‘own’, neuter), annen (demonstrative
‘other’, feminine/masculine) and annet (demonstrative ‘other’, neuter), all singu-
lar. Comparing the results to the baseline, we see a decrease of 0.04 percentage
points for the ‘base’ tag det.

The error analysis of parsing with definiteness for determiners is shown in Ta-
ble 5.20, and it is evident that adverbials (ADV) benefit the most from the distinc-
tion of definiteness, together with DOBJ ‘direct object’, KOORD ‘coordination’,
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5.3. Tag Set Experiments

Feature Tag Freq Precision Recall F-score

Baseline det 2408 96.06% 95.14% 95.60%

Definiteness
det 2287 95.99% 95.15% 95.56%
det|ub 72 100.00% 100.00% 100.00%
det|be 49 92.45% 100.00% 96.08%

Table 5.19: Tagger performance with the most promising tag set modification for
determiners, namely definiteness.

Feature Deprel Freq Baseline W/ feat Diff

Definiteness

ADV 1597 80.06% 80.71% 0.1034
DOBJ 1982 86.53% 87.32% 0.0485
KOORD 1344 76.54% 77.60% 0.0443
KONJ 1297 93.32% 93.90% 0.0236
SUBJ 3102 89.09% 89.33% 0.0230

Table 5.20: The five most improved dependency relations in terms of F-score,
ranked by their weighted difference, for the most promising tag set modification
for determiners, namely definiteness.

KONJ ‘conjunction’ and SUBJ ‘subject’. Definiteness is known to be a distin-
guishing property for syntactic arguments, as noted by Croft (2003), who found a
cross-lingual tendency for subjects to be definite and objects to be indefinite.

5.3.5 Pronouns
Pronouns include personal, reflexive, reciprocal and interrogative pronouns in
NDT. Pronouns can be assigned five features, i.e., case, gender, number, per-
son and type, with their respective values shown in Table 5.21. As possessive
pronouns are assigned to the det class, they are not discussed here.

The results in Table 5.22 show that number, person and type are the most
informative features for parsing, with LAS of 87.21%, 87.22% and 87.19%, re-
spectively. However, when combining number and person, we observe a drop by
more than 0.2 percentage points, indicating that these features do not interact in
any syntactically distinctive way. The most interesting observation is that all ex-
periments exceed the baseline tagger accuracy, the most improved being the most
fine-grained distinction, namely type, case and number combined, obtaining a
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5. TAG SET OPTIMIZATION

Feature Values Description

Case akk, nom Accusative, nominative
Gender fem, fem|mask, mask,

nøyt
Feminine, feminine/masculine,
masculine, neuter

Number ent, fl Singular, plural
Person 1, 2, 3 1st, 2nd, 3rd
Type pers, refl, res, sp Personal, reflexive, reciprocal,

interrogative

Table 5.21: Overview of available morphological features for pronouns.

tagger accuracy of 97.52%. This shows that the introduction of more fine-grained
distinctions for pronouns is beneficial and aids the PoS tagger in disambiguating
ambiguous words. While case alone yields an LAS of 87.08%, we found that the
combination of type and case, which is the most successful experiment in terms
of parser performance, yields the second highest tagging accuracy of 97.51%.
The reason for this is that pronouns of different type and personal pronouns of
different case exhibit quite different properties and appear in different construc-
tions. Pronouns in nominative case (i.e., subjects) primarily occur before the main
verb, while pronouns in accusative case (i.e., objects) occur after the main verb,
as Norwegian exhibits so-called V2 word order, requiring that the finite verb of a
declarative clause appears in the second position, hence its name. The combina-
tion of type and number comes in close to the performance of type and case, with
LAS of 87.27% and UAS identical to that of type and case.

Gender did not have notable impact on the parsing, which is not surprising,
seeing as the various genders have roughly equal properties. There is no agree-
ment between pronouns and verbs in neither gender, number nor person in Norwe-
gian, unlike English, for instance, where there is agreement in number and person
(e.g., I am vs. You are vs. He is). This agreement is the reason for Penn Treebank
having separate tags for verbs in third person singular present (VBZ), non-third
person singular present (VBP), etc., as we saw in Chapter 3.

Turning to the tagger error analysis in Table 5.23, we see that reflexive and
reciprocal pronouns are tagged with an F-score of 100%. The reason for this is
that seg is unambiguously the only reflexive pronoun in Norwegian, and hveran-
dre ‘each other’ is unambiguously the only reciprocal pronoun, which simplifies
the tagging, even though they are infrequent. Interrogative pronouns (pron|sp)
receive an F-score of 99.19%, while personal pronouns without marked case is the
most challenging class for the tagger, with a reported F-score of 92.13%. Personal
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Feature(s) MFT Accuracy LAS UAS

— 94.14% 97.47% 87.01% 90.19%
Case 94.12% 97.50% 87.08% 90.21%
Gender 94.13% 97.48% 87.06% 90.23%
Number 94.13% 97.49% 87.21% 90.33%
Person 94.14% 97.49% 87.22% 90.32%
Type 94.14% 97.48% 87.19% 90.40%
Number & person 94.13% 97.49% 96.98% 90.16%
Type & case 94.12% 97.51% 87.30% 90.41%
Type & number 94.13% 97.49% 87.27% 90.41%
Type & person 94.14% 97.49% 87.00% 90.14%
Type, case & number 94.12% 97.52% 87.11% 90.36%

Table 5.22: Results of experiments with modified PoS tags for pronouns.

pronouns in nominative or accusative reach an F-score exceeding 98%.
The parser error analysis in Table 5.24 shows that adverbial (ADV), coordi-

nation (KOORD), subject (SUBJ), attribute (ATR) and prepositional complement
(PUTFYLL) are the dependency relations benefiting the most from the distinction
of type and case. Adverbials and coordination are the most improved, just as for
determiners and adjectives. As they are notoriously challenging for parsers, as
seen in Section 5.2, the additional linguistic information greatly assists the parser
in parsing these constructions.

5.4 Optimized Tag Set
The most successful tag set modification for each category and their respective
results are presented in Table 5.25. Nouns benefit by far the most from the intro-
duction of more fine-grained linguistically motivated distinctions, with an LAS of
88.81% and UAS of 91.73%. We observe that the most promising tag set modifi-
cations for verbs, adjectives, determiners and pronouns all reach LAS of ~87.30%
and UAS of ~90.40%. To investigate the overall effect of these tag set modifica-
tions, we tested each of the improvements in parser accuracy scores from baseline
for statistical significance using Dan Bikel’s randomized parsing evaluation com-
parator script3, as used in the CoNLL shared tasks. For the most successful tag
set modification for each of the categories seen in Table 5.25, the difference in

3Available as compare.pl at http://ilk.uvt.nl/conll/software.html
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Features Tag Freq Precision Recall F-score

Baseline pron 2369 96.08% 97.34% 96.71%

Type & case

pron|pers|nom 1121 97.38% 99.55% 98.46%
pron|pers 825 91.31% 92.97% 92.13%
pron|pers|akk 203 100.00% 97.54% 98.75%
pron|refl 143 100.00% 100.00% 100.00%
pron|sp 62 100.00% 98.39% 99.19%
pron 9 100.00% 88.89% 94.12%
pron|res 6 100.00% 100.00% 100.00%

Table 5.23: Tagger performance with the most promising tag set modification for
pronouns, namely type and case.

Features Deprel Freq Baseline W/ feat Diff

Type & case

ADV 5101 80.05% 80.46% 0.0632
KOORD 1344 76.54% 77.70% 0.0485
SUBJ 3102 89.09% 89.47% 0.0369
ATR 4010 83.34% 83.59% 0.0318
PUTFYLL 4433 94.64% 94.81% 0.0241

Table 5.24: The five most improved dependency relations in terms of F-score,
ranked by their weighted difference, for the most promising tag set modification
for pronouns, namely type and case.
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Category Feature(s) MFT Accuracy LAS UAS

Baseline — 94.14% 97.47% 87.01% 90.19%
Noun Type, case & definiteness 89.61% 97.05% 88.81% 91.73%
Verb Finiteness 93.72% 97.35% 87.30% 90.43%
Adjective Degree 94.13% 97.41% 87.29% 90.44%
Determiner Definiteness 94.13% 97.49% 87.30% 90.42%
Pronoun Type & case 94.12% 97.51% 87.30% 90.41%

Table 5.25: Results of tagging and parsing with the most successful tag set modi-
fication for each category.

LAS from the original tag set is statistically significant at significance level 0.05
(p-value < 0.05), as are all differences in UAS, except for verbs with finiteness
(p-value 0.15) and pronouns with type and case (p-value 0.06).

An overview of the final, optimized tag set can be found in Table 5.26, com-
prising three new tags for adjectives, two for determiners, six for pronouns, seven
for nouns and two for verbs, totaling 20 tags. Appending these to the original tag
set comprising 19 tags, we reach a total of 39 tags for NDT.

The results from tagging and parsing with the optimized tag set are reported in
Table 5.27, compared to the initial tag sets. The parser achieves an LAS of 88.87%
and UAS of 91.78%, which constitutes substantial increases from the baseline,
by 1.86 and 1.59 percentage points, respectively. The increase from type, case
and definiteness for nouns alone is no more than 0.06 percentage points and not
statistically significant, but as all the other tag set modifications are far behind in
terms of parser accuracy scores, this does not serve as particularly shocking.

In the next chapter, we will evaluate various taggers and parsers on NDT using
this optimized tag set in order to identify the optimal pipeline for syntactic parsing
of Norwegian based on NDT.
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Tag Description

adj|komp Comparative adjective
adj|pos Positive adjective
adj|sup Superlative adjective
det|be Definite determiner
det|ub Indefinite determiner
pron|pers Personal pronoun
pron|pers|akk Personal pronoun, accusative
pron|pers|nom Personal pronoun, nominative
pron|refl Reflexive pronoun
pron|res Reciprocal pronoun
pron|sp Interrogative pronoun
subst|appell Common noun
subst|appell|be Common noun, definite
subst|appell|be|gen Common noun, definite, genitive
subst|appell|ub Common noun, indefinite
subst|appell|ub|gen Common noun, indefinite, genitive
subst|prop Proper noun
subst|prop|gen Proper noun, genitive
verb|fin Finite verb
verb|infin Nonfinite verb

Table 5.26: The optimized tag set.

Tag set MFT Accuracy LAS UAS

Original 94.14% 97.47% 87.01% 90.19%
Full 85.12% 93.46% 87.13% 90.32%
Optimized 89.20% 96.85% 88.87% 91.78%

Table 5.27: Results of tagging and parsing with the optimized tag set, compared
to the initial tag sets.
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Chapter 6

Optimized Pipeline for Norwegian
Dependency Parsing

In Chapter 5, we optimized a tag set for syntactic parsing of the Norwegian De-
pendency Treebank. We will now train and evaluate the state-of-the-art PoS tag-
gers and dependency parsers we introduced in Chapter 2 on the Norwegian De-
pendency Treebank using our optimized tag set. Additionally, the automatically
assigned tags from the most successful tagger will be used to train and evaluate
the various parsers to assess the effects of automatically assigned tags on parsing.
We will finally run the most successful tagger and parser on the held-out test data
with the optimized tag set and contrast these results to those obtained using the
original tag set.

6.1 PoS Tagger
There is a plethora of available PoS taggers, but we will consider only at a select
few publicly available state-of-the-art taggers representing a range of contempo-
rary approaches, viz., the aforementioned TnT v2.21 (Brants, 2000), HunPos v1.02

(Halácsy et al., 2007), the Stanford tagger v3.6.03 (Toutanova et al., 2003) and
SVMTool v1.3.14 (Giménez & Màrquez, 2004). TnT is an HMM-based trigram
tagger, while HunPos is a re-implementation of TnT, using tag bigrams instead
of unigrams to estimate the emission probability. The Stanford tagger is based
on maximum entropy, also known as logistic regression, and cyclic dependency
networks. Lastly, SVMTool is an implementation of Support Vector Machines

1http://www.coli.uni-saarland.de/~thorsten/tnt/
2https://code.google.com/p/hunpos/
3http://nlp.stanford.edu/software/tagger.shtml
4http://www.cs.upc.edu/~nlp/SVMTool/
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(SVM). See Section 2.2.1 for further details on these taggers. The taggers were
trained on the training set and evaluated on the development data set of the Norwe-
gian Dependency Treebank, using the original and the optimized tag set. The run
times of training and tagging were computed using the UNIX command time.
The taggers were all run on the High Performance Computing (HPC) cluster at
the Department of Informatics, University of Oslo.

TnT and HunPos were run with default settings and evaluated using the TnT-
included tnt-diff, which calculates the accuracy.

The Stanford tagger comes with a variety of included architectures, determin-
ing what features are used to build the model. We use the included generic, de-
scribed as language-independent in the documentation, and bidirectional5words,
reported to be the most accurate in the manual.

SVMTool is highly flexible and tunable, but we limited our runs to experi-
menting with the option of strategy, employing three of the available seven. Apart
from this, SVMTool was run with default settings. The strategies make use of a set
of five predefined models, detailed in the documentation of the tagger. The train-
ing time represents the time spent learning the model(s) required for the strategy
in question. Strategy 0 is the default strategy, making use of model 0 and tagging
the data in a greedy on-line fashion in a single pass. With strategy 1, the data is
tagged in two passes. In the first pass, the unseen morphological context remains
ambiguous, while in the second pass, the tag predicted in the first pass is known
and used as a feature. Strategy 2 tags the data in a single pass, but uses both Model
0 and Model 2, choosing the optimal one in a given case; if all the words in the
unseen context is already known, it uses Model 0. Otherwise, it uses Model 2.

6.1.1 Results on Original and Optimized Tag Set
In a realistic setting, both speed and accuracy are important factors to consider for
PoS taggers and syntactic parsers, especially considering the trade-off between
the two, as very fast systems tend to suffer in terms of accuracy, while the most
accurate systems often lag behind in terms of speed. In the following, we will
focus on accuracy, as we are optimizing in terms of performance. However, for
some applications, high speed may be more critical than high performance, and
we therefore include the run times of training and running the systems, providing
insights that can hopefully aid other potential users in choosing a tagger and/or
parser that best meets their needs.

We report the time spent training and tagging with the various taggers on the
optimized tag set in Table 6.1. SVMTool with strategy 0 is trained in 5 minutes,
while the two other strategies spend roughly twice that. Strategies 0 and 2 tag
the data in 14 and 17 seconds, respectively, while strategy 1 spends 29 seconds.
The Stanford tagger employing the generic architecture spends roughly 5 minutes
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6.1. PoS Tagger

Tagger Setup Training Time Tagging Time

HunPos Default 1.6s 0.6s
Stanford Generic 5m 22s 7.1s
Stanford Bidirectional5words 7m 47s 39.1s
SVMTool Strategy 0 5m 16s 14.2s
SVMTool Strategy 1 10m 51s 29.4s
SVMTool Strategy 2 10m 21s 17.1s
TnT Default 0.5s 0.4s

Table 6.1: Duration of training and testing the various taggers on the training and
development data, respectively, using the optimized tag set.

Accuracy

Tagger Setup Original Optimized

Baseline MFT 94.14% 89.20%
HunPos Default 97.73% 96.92%
Stanford Generic 96.82% 94.24%
Stanford Bidirectional5words 97.01% 94.43%
SVMTool Strategy 0 97.70% 97.19%
SVMTool Strategy 1 97.90% 97.40%
SVMTool Strategy 2 97.72% 97.04%
TnT Default 97.47% 96.85%

Table 6.2: Results of tagging the development data with the original tag set and
the optimized tag set.

training, while training the bidirectional5words variant takes almost 8 minutes.
Stanford with the bidirectional5words architecture, which is the slowest tagger,
tags the development data in just under 40 seconds, while the generic variant
spends 7 seconds. TnT was able to learn from the 244k tokens in the training data
in under 1 second, while also spending less than a second tagging the development
data. HunPos is not far behind, spending 1.6 seconds training, while tagging the
development data in 0.9 seconds.

In Table 6.2, we report the performance of the taggers on the development
data set with the original and the optimized tag set. It reveals that tagging with the
original tag set yields better tagger accuracy than the optimized tag set, which is
expected due to the increase in complexity with the 20 additional tags in the op-
timized tag set. We see that SVMTool employing strategy 1 achieves the highest
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accuracy of 97.40% with the optimized tag set, followed by strategy 0 (97.19%)
and strategy 2 (97.04%). Stanford tagger with the generic architecture obtains
the lowest accuracy of 94.24% with the optimized tag set, followed by the bidi-
rectional5words variant, which obtains an accuracy of 94.43%. TnT reaches the
third lowest accuracy using the optimized tag set of 96.85%, while HunPos comes
in fourth with 96.92%.

As these results show that SVMTool employing strategy 1 is the best tagger
for NDT, we will use its assigned tags to investigate the effects of automatically
assigned PoS tags on syntactic parsing.

6.2 Syntactic Parser
In similar fashion to the PoS taggers, the parsers were run on the High Perfor-
mance Computing (HPC) cluster at the Department of Informatics, University of
Oslo. They were trained on the training set and subsequently tested on the de-
velopment set of NDT, the run times of which were computed using the UNIX
command time.

MaltParser v1.8.15 (Nivre et al., 2007) is a transition-based dependency parser
based on a deterministic parser strategy and treebank-induced classifiers; Mate
v3.616 (Bohnet, 2010) is graph-based and uses maximum spanning trees with
third-order features; RBG v1.17 (Lei et al., 2014) is a graph-based dependency
parser employing tensor decomposition and a low-rank factorization method; Tur-
boParser v2.3.08 (Martins et al., 2013) is a graph-based third-order non-projective
dependency parser. These parsers are further detailed in Section 2.3.2. The parser
accuracy scores, namely LAS and UAS, were computed by the eval.pl script
used in the CoNLL shared tasks.

RBGParser was run both with default settings, employing third-order features,
and ‘basic’ settings, employing first-order features, in order to investigate whether
we could get a considerable decrease in training and parsing time while maintain-
ing high accuracy. MaltParser was first run with default settings and then after
a round of optimization with the optimization tool MaltOptimizer9 (Ballesteros
& Nivre, 2012), the duration of which was added to the training time. Mate and
TurboParser were run out-of-the-box with default settings.

As morphological features generally require separate morphological analysis
and hence are not included in non-annotated data, these were removed from the

5http://www.maltparser.org
6http://code.google.com/p/mate-tools
7http://www.github.com/taolei87/RBGParser
8http://www.cs.cmu.edu/~ark/TurboParser/
9http://nil.fdi.ucm.es/maltoptimizer/
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6.2. Syntactic Parser

input data for the most realistic comparison. Furthermore, as parsers differ with
respect to the use of morphological features, a direct comparison between parsers
that to varying degree make use of morphological features would be ‘unfair’ and
misleading. A parser employing these features may report a higher accuracy than
one that excludes them, while not necessarily implying superiority. We want to
focus on how the PoS tags may affect the parsing and isolate the task of PoS
tagging in order to investigate the effect of part-of-speech information.

We furthermore want to investigate the interplay between gold standard and
automatically assigned tags and how the choice of tag configuration affects the
parser results. We therefore ran the parsers with three configurations: (i) train and
test on gold standard tags; (ii) train on gold standard tags and test on automatically
assigned tags from SVMTool; (iii) train and test on automatically assigned tags
from SVMTool.

6.2.1 Results on Optimized Tag Set
We previously noted the trade-off between speed and performance and the fact
that even though we optimize in terms of performance, the speed of the various
parsers are of interest. In Table 6.3, we present the run times of the various syn-
tactic parsers, trained and tested on gold standard tags using the optimized tag set.
MaltParser with default settings is by far the fastest, spending only 41 seconds
training on the training data. MaltParser optimized, RBG with default settings
and TurboParser, on the other hand, spend 1 hour and 15 minutes, 1 hour and
46 minutes, and 1 hour and 44 minutes, respectively. Mate is trained in 17 min-
utes and TurboParser in roughly 15 minutes. All parsers are able to parse the
development data in less than a minute. The two variants of MaltParser parses
the development data in less than 10 seconds, while Mate spends 34 seconds and
RBG with basic settings spends 17 seconds. TurboParser and RBG with default
settings parse the data in just under a minute.

Turning to the results in Table 6.4, it is clear that Mate, with the third fastest
training and the fourth fastest parsing, is the best parser, with an LAS of 91.83%
when trained and tested using gold standard tags, only behind RBG with default
settings in terms of UAS when training on gold standard tags and testing on auto-
matically assigned tags (91.46% vs. 91.60%). It is worth noting that the authors
of RBG, Lei et al. (2014), report UAS as their evaluation metric and optimize their
parser in terms of UAS. MaltParser with default settings obtains the lowest LAS
and UAS in all experiments (86.22% and 89.53% for LAS and UAS, respectively,
when using gold standard tags for both training and testing), followed by its op-
timized counterpart (similarly 89.93% and 92.17%). RBG with basic settings is
consistently the fourth best parser and obtains an LAS of 90.58% when trained and
tested on gold standard tags, while running it with default settings yields the third
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Parser Training Time Parsing Time

MaltParser 41s 4s
MaltParser optimized 1h 15m 42s 7s
Mate 17m 48s 34s
RBG default 1h 46m 36s 59s
RBG basic 14m 57s 17s
TurboParser 1h 43m 6s 56s

Table 6.3: Duration of training and testing the various parsers on the training and
development data, respectively, trained and tested on gold standard tags using the
optimized tag set.

best LAS in all configurations (91.52% when trained and tested on gold standard
tags) and UAS very close to or better than that of Mate. TurboParser consistently
obtains the second best LAS (91.67% when using gold standard tags for both
training and testing) and the third best UAS. Using automatically assigned tags
instead of gold standard tags for training and testing leads to an expected drop in
LAS of more than 3 percentage points for all parsers.

We observe an expected trend for all parsers when going from training and
testing on gold standard tags to training on gold standard tags and testing on au-
tomatically assigned tags, as we see a substantial drop in parser accuracy scores.
What strikes us as very interesting is that the parsers (except for MaltParser op-
timized) parse the development data with automatic tags more accurately when
trained on automatic tags rather than on gold standard tags. This coincides with
the results we found when parsing with Mate on automatically assigned tags from
TnT in Section 4.8. We expected that gold standard tags would always be the best
choice, as automatically assigned PoS tags contain errors which could obfuscate
the training. These results indicate that this is not the case. Using automatically
assigned tags for both training and testing is statistically significantly better at a
significance level of 0.05 than training on gold standard tags and testing on auto-
matically assigned tags for Mate, RBG basic and Turbo in terms of both LAS and
UAS. For RBG with default settings, the difference is statistically significant only
in terms of LAS.
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LAS UAS

Parser G-G G-A A-A G-G G-A A-A

MaltParser 86.22% 82.88% 82.96% 89.53% 87.10% 87.16%
MaltParser optimized 89.93% 86.38% 86.32% 92.17% 89.53% 89.51%
Mate 91.83% 88.39% 88.80% 94.03% 91.46% 91.84%
RBG default 91.52% 88.17% 88.35% 94.02% 91.60% 91.72%
RBG basic 90.58% 87.26% 87.55% 92.96% 90.56% 90.79%
TurboParser 91.67% 88.25% 88.43% 93.88% 91.41% 91.56%

Table 6.4: Results of parsing the development data using the optimized tag set. G
denotes gold standard tags, A denotes automatically assigned tags from SVMTool.
For instance, G-G denotes training and testing on gold standard tags. It is clear
that training and testing on automatically assigned tags is superior to training on
gold standard tags and testing on automatically assigned tags across the board.
Mate is the best parser overall, only being surpassed by RBG with default settings
in terms of UAS when training on gold standard tags and testing on automatic
tags.

6.3 Final Evaluation
With SVMTool (employing strategy 1) established as the best tagger and Mate as
the best parser on our optimized tag set, we can finally evaluate on the held-out
test data set and compare our findings to the original tag set to contrast the tag
sets and make clear the effects of our optimization. As in our previous runs, we
experiment with both gold standard tags and automatically assigned tags: (i) train
on gold standard tags and test on gold standard tags; (ii) train on automatically
assigned tags and test on automatically assigned tags. We exclude training on gold
standard tags and testing on automatically assigned tags as that combination was
found to be consistently inferior to training and testing on automatically assigned
tags in our previous experiments.

Table 6.5 presents the results of parsing the development data set and the held-
out test data set with the original tag set and the optimized tag set using either gold
standard tags or automatically assigned tags from SVMTool. Parsing the devel-
opment data set with our optimized tag set yields very promising results, with
improvements ranging from 1.52 percentage points (UAS, training and testing on
gold standard tags) to 2.07 percentage points (LAS, training and testing on auto-
matically assigned tags) compared to the original tag set, all of which are statisti-
cally significant at a significance level of 0.05. Turning to the parser results on the
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LAS UAS

Data Set Configuration Original Optimized Original Optimized

Dev
Gold–Gold 90.15% 91.83% 92.51% 94.03%
Auto–Auto 86.73% 88.80% 89.99% 91.84%

Test
Gold–Gold 90.55% 92.12% 92.97% 94.20%
Auto–Auto 86.76% 88.28% 90.13% 91.22%

Table 6.5: Results of parsing the development data set and test data set with the
setup we found most successful, i.e., tagging with SVMTool and parsing with
Mate, compared to the results obtained with the original tag set. Gold–Gold de-
notes training and testing on gold standard tags, Auto–Auto denotes training and
testing on automatically assigned tags from SVMTool.

held-out test data set, we see increases in parser accuracy scores of more than 1
percentage point in all experiments when using our optimized tag set, all of which
are statistically significant at a significance level of 0.05. The largest increase
is seen for LAS when training and testing on gold standard tags, from 90.55%
with the original tag set to 92.12% with the optimized tag set10, constituting 1.57
percentage points. The improvement seen for LAS when using automatically as-
signed tags is very close, from 86.76% to 88.28% (1.52 percentage points). These
results indicate that the additional linguistic information in the tags of our opti-
mized tag set greatly aids syntactic parsing and that optimizing an existing PoS
tag set for a downstream application can be useful and beneficial.

10It is worth comparing our parser results with the first published results on parsing the Nor-
wegian Dependency Treebank (Solberg et al., 2014) using the original tag set and gold standard
tags. Parsing their held-out test data set with Mate, they reported an LAS of 90.41% and UAS of
92.84%. However, as they used a different data set split, their results are not strictly comparable
to our results and should perhaps be taken with a grain of salt.
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Chapter 7

Conclusion & Future Work

In this thesis, we have developed an optimized PoS tag set for syntactic depen-
dency parsing of Norwegian. The optimized tag set is based on the tag set of
the Norwegian Dependency Treebank (Solberg et al., 2014), the first treebank
of its kind for Norwegian. The tag set was optimized by augmenting the original,
coarse-grained tag set containing 12 morphosyntactic tags with additional linguis-
tic information represented in the various morphological features assigned to to-
kens in the treebank. The improvements in parser performance with our optimized
tag set indicate that a more fine-grained PoS tag set may assist syntactic parsers
in recognizing and generalizing syntactic patterns, while potentially compromis-
ing the performance of PoS taggers. Our optimized tag set was attained through
experiments with the range of morphological features of the parts-of-speech avail-
able in the treebank, namely noun, verb, adjective, determiner and pronoun. These
experiments also served as an assessment of how and to what extent the various
morphological features aid syntactic parsing.

The linguistic and computational considerations for designing PoS tag sets
and how these might often conflict was discussed in Chapter 3, where we also
presented a qualitative comparison of the PoS tag set of the Norwegian Depen-
dency Treebank and those of other comparable treebanks, such as Penn Treebank
and Stockholm-Umeå Corpus. Furthermore, we provided an in-depth survey of
the parts-of-speech in Norwegian and their respective properties, before detailing
how these are represented in the Norwegian Dependency Treebank. The morpho-
logical properties of the PoS tags in the Norwegian Dependency Treebank served
as basis for our experiments with tag set modifications, where we identified the
most informative morphological features for syntactic parsing of Norwegian.

In preparation to conducting our experiments with linguistically motivated tag
set modifications, we established a concrete setup for the experiments, outlined in
Chapter 4. As a standardized data set split (training/development/test) of the Nor-
wegian Dependency Treebank was not yet established, we introduced a data set
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split that will be distributed with the treebank and proposed as the new standard,
annotated with tags from our optimized tag set. Our data set split was used in the
conversion of the Norwegian Dependency Treebank to annotations adhering to
the Universal Dependencies scheme (Øvrelid & Hohle, 2016), where much of the
same experimental setup was used and the results of evaluating the converted tree-
bank were compared to our results obtained on the original treebank. We created
a mapping for carrying out the tag set modifications that maps the relevant ex-
isting tags to new, more fine-grained tags including more relevant morphological
features. We then presented the evaluation metrics used to evaluate the perfor-
mance of PoS taggers and syntactic parsers in our tag set experiments and how
we altered the treebank to simulate a realistic setting. As it is common practice
to compare the accuracy of PoS taggers to a pre-computed baseline, we looked at
various ways of computing the commonly used Most Frequent Tag (MFT) base-
line, which provided the baseline accuracy for our experiments. Finally, the sum
of these components were combined into a pipeline which we employed in each
of our experiments with tag set modifications.

The experimental setup established in Chapter 4 was put to use in Chapter 5,
where we conducted our experiments with tag set modifications and assessed the
results of these experiments to optimize the tag set of the Norwegian Dependency
Treebank. In order to establish initial figures to which we could compare the
results of our experiments, we conducted baseline experiments with our two initial
tag sets, i.e., the original tag set comprising a total of 19 tags, and the full tag
set, which was created by concatenating the coarse PoS tag of each token with
its set of morphological features, yielding a total of 368 tags. The results of these
experiments showed that the morphological features were informative and assisted
syntactic parsing of Norwegian. We then turned to our main experiments with
modified PoS tags, where we for each part-of-speech experimented with a range
of morphological features to find the most syntactically informative ones, i.e.,
those that led to the best parser accuracy scores. In addition to utilizing each of
the features in isolation, we combined the most promising features to see if the
features interacted in a syntactically informative way, which often proved to be
the case. For nouns, the most informative features are type, case and definiteness,
and similarly type and case for pronouns. Finiteness is the most informative verbal
feature, and for determiners, information about definiteness yields the best parser
accuracy scores, while degree is the most syntactically informative feature for
adjectives. We performed error analysis of both tagging and parsing with the most
promising tag set modification for each part-of-speech to further analyze how they
assisted the tagging and parsing. Finally, the most promising tag set modifications
for each respective category were combined to a final, optimized tag set which
proved to give a large rise in parser accuracy scores from our initial experiments.

With the optimized tag set established, we evaluated a range of state-of-the-art
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PoS taggers and syntactic dependency parsers on the task of tagging and parsing
the Norwegian Dependency Treebank in Chapter 6. We found SVMTool to be
the best tagger and Mate the best parser, which we finally used to parse the held-
out test data. Our results revealed an increase in parser accuracy scores from the
original tag set of more than 1 percentage point across the board. Furthermore, we
found that the combination of training and testing on automatically assigned tags
is superior to training on gold standard tags and testing on automatically assigned
tags. The interplay between these tag configurations is to our knowledge severely
underinvestigated, and, contrary to our empirical results, the general assumption
seems to be that gold standard tags are always the preferred choice, even when
testing with automatically assigned tags.

This work has presented a systematic, empirical investigation of how an ex-
isting PoS tag set can be modified and optimized for the task of syntactic de-
pendency parsing, complemented by evaluation of a range of state-of-the-art PoS
taggers and syntactic parsers applied to Norwegian. This has resulted in con-
crete contributions to the Norwegian NLP community: (i) a data set split (train-
ing/development/test) of the Norwegian Dependency Treebank; (ii) a PoS tag
set optimized for syntactic dependency parsing of Norwegian; (iii) a PoS tagger
model (based on SVMTool) trained on the treebank; and (iv) a syntactic parser
model (based on Mate) trained on the treebank. These resources are made pub-
licly available1 with the hope that they can be found useful by researchers and
others interested in applying and advancing NLP applications for Norwegian.

7.1 Future Work
There are several aspects of this thesis that can be further explored in future work,
including extrinsic evaluation of the effects of PoS tag sets on other downstream
NLP applications besides parsing, such as sentiment analysis and named entity
recognition. These applications often require tagged data, but are markedly dif-
ferent from syntactic parsing, hence the evaluation would involve investigating an
entirely different aspect of the effects of tag set granularity.

Tokenization is the piece left of the puzzle that is a complete pipeline from
raw text to parsed data for Norwegian. An off-the-shelf tokenizer for Norwegian
is thus an important tool required for the facilitation of research and employment
of NLP applications for Norwegian, as the tokenizer included in the Oslo-Bergen
Tagger cannot be run separately and the tagger cannot reproduce the annotation
choices of the Norwegian Dependency Treebank.

We have focused on Norwegian Bokmål in our work, which is the most preva-

1See https://www.github.com/petterhh/ndt-tools
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lent written standard of Norwegian. However, the Norwegian Dependency Tree-
bank also contains data in Nynorsk, the other official written standard of Norwe-
gian, which can be used in similar fashion to the Bokmål portion of the treebank
for training and evaluating various NLP applications. In the future, we would be
interested in investigating how and to what extent the two varieties of Norwegian
differ with respect to various morphosyntactic aspects, as they are very similar in
terms of both morphology and syntax.
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Appendix A

Data Set Split

The data set split (training/development/test) of the Norwegian Dependency Tree-
bank and the files comprising each data set are described in the following. Each
file contains a maximum of 100 sentences.

A.1 Training Data
The training data set of NDT consists of 15696 sentences distributed over 180
files, shown in Table A.1.

A.2 Development Data
The development data set of NDT consists of 2410 sentences distributed over 26
files, shown in Table A.2.

A.3 Test Data
The test data set of NDT consists of 1939 sentences distributed over 26 files,
shown in Table A.3.

81



A. DATA SET SPLIT

Source File Interval # Files

Aftenposten ap001_0000 – ap012_0002 53
Bergens Tidende bt001_0000 – bt005_0001 28
Dagbladet db001a_0000 – db013_0004 42
Klassekampen kk001_0000 – kk006_0000 10
Sunnmørsposten sp-bm001_0000 – sp-bm001_0008 9
Verdens Gang vg001_0000 – vg002_0003 8
Blogs blogg-bm001_0000 – blogg-bm003_0000 9
Government reports nou001_0000 – nou004_0000 10
Parliament transcripts st001_0000 – st005_0000 11

Total 180

Table A.1: Overview of the files comprising the training data set of NDT.

Source File Interval # Files

Aftenposten ap012_0003 – ap014_0002 7
Bergens Tidende bt005_0002 – bt005_0005 4
Dagbladet db013_0005 – db014_0002 5
Klassekampen kk006_0001 – kk007_0000 2
Sunnmørsposten sp-bm002_0000 – sp-bm002_0001 2
Verdens Gang vg002_0004 1
Blogs blogg-bm003_0001 – blogg-bm003_0002 2
Government reports nou004_0001 1
Parliament transcripts st005_0001 – st005_0002 2

Total 26

Table A.2: Overview of the files comprising the development data set of NDT.

Source File Interval # Files

Aftenposten ap014_0003 – ap015_0002 7
Bergens Tidende bt005_0006 – bt006_0001 4
Dagbladet db014_0003 – db014_0007 5
Klassekampen kk007_0001 – kk008_0000 2
Sunnmørsposten sp-bm003_0000 – sp-bm003_0001 2
Verdens Gang vg002_0005 1
Blogs blogg-bm003_0003 – blogg-bm003_0004 2
Government reports nou004_0002 1
Parliament transcripts st005_0003 – st005_0004 2

Total 26

Table A.3: Overview of the files comprising the test data set of NDT.
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Appendix B

Tag Sets

The following provides an overview of the tag set modifications, i.e., the addi-
tional tags, used in our tag set experiments, as described in Section 5.3.

B.1 Noun

B.2 Verb

B.3 Adjective

B.4 Determiner

B.5 Pronoun
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B. TAG SETS

Feature(s) Tag(s)

Case subst|gen

Definiteness subst|be
subst|ub

Gender
subst|fem
subst|mask
subst|nøyt

Number subst|ent
subst|fl

Type subst|appell
subst|prop

Case & definiteness

subst|be
subst|be|gen
subst|ub
subst|ub|gen

Type & case

subst|appell
subst|appell|gen
subst|prop
subst|prop|gen

Type & definiteness
subst|appell|be
subst|appell|ub
subst|prop

Type & number

subst|appell
subst|appell|ent
subst|appell|fl
subst|prop

Type, case & definiteness

subst|appell
subst|appell|be
subst|appell|be|gen
subst|appell|ub
subst|appell|ub|gen
subst|prop
subst|prop|gen

Type, definiteness & number

subst|appell|be|ent
subst|appell|be|fl
subst|appell|ub|ent
subst|appell|ub|fl
subst|prop

Table B.1: Tag set modifications for nouns (subst).
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B.5. Pronoun

Feature(s) Tag(s)

Mood verb|imp

Tense

verb|inf
verb|perf-part
verb|pres
verb|pret

Voice verb|pass

Mood & tense

verb|imp
verb|inf
verb|perf-part
verb|pres
verb|pret

Voice & tense

verb|inf
verb|perf-part
verb|pres
verb|pret
verb|inf|pass
verb|pres|pass

Mood, tense & voice

verb|imp
verb|inf
verb|perf-part
verb|pres
verb|pret
verb|inf|pass
verb|pres|pass

Finiteness verb|fin
verb|infin

Table B.2: Tag set modifications for verbs (verb).
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B. TAG SETS

Feature(s) Tag(s)

Definiteness adj|be
adj|ub

Degree
adj|komp
adj|pos
adj|sup

Gender adj|m/f
adj|nøyt

Number adj|ent
adj|fl

Type

adj|<adv>
adj|<ordenstall>
adj|<perf-part>
adj|<pres-part>
adj|fork

Definiteness & degree

adj|be|pos
adj|be|sup
adj|komp
adj|pos
adj|ub|pos
adj|ub|sup

Definiteness & gender

adj|be
adj|ub
adj|ub|m/f
adj|ub|nøyt

Definiteness & number adj|be|ent
adj|ub|ent

Degree & gender

adj|komp
adj|pos
adj|pos|m/f
adj|pos|nøyt
adj|sup

Degree & number

adj|komp
adj|pos
adj|pos|ent
adj|pos|fl
adj|sup

Definiteness, degree & number

adj|be|pos|ent
adj|ub|pos|ent
adj|komp
adj|pos
adj|sup

Table B.3: Tag set modifications for adjectives (adj).
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B.5. Pronoun

Featur Tag(s)

Definiteness det|be
det|ub

Gender
det|fem
det|mask
det|nøyt

Number det|ent
det|fl

Type

det|dem
det|forst
det|kvant
det|poss
det|sp

Table B.4: Tag set modifications for determiners (det).

87



B. TAG SETS

Feature(s) Tag(s)

Case pron|akk
pron|nom

Gender
pron|fem
pron|fem|mask
pron|mask
pron|nøyt

Number pron|ent
pron|fl

Person
pron|1
pron|2
pron|3

Type

pron|pers
pron|refl
pron|res
pron|sp

Number & person

pron|ent|1
pron|ent|2
pron|ent|3
pron|fl|1
pron|fl|2
pron|fl|3

Type & case

pron|pers
pron|pers|akk
pron|pers|nom
pron|refl
pron|res
pron|sp

Type & number

pron|pers|ent
pron|pers|fl
pron|refl
pron|res
pron|sp

Type & person

pron|pers|1
pron|pers|2
pron|pers|3
pron|refl
pron|res
pron|sp

Type, case & number

pron|pers
pron|pers|akk|ent
pron|pers|akk|fl
pron|pers|nom|ent
pron|pers|nom|fl
pron|refl
pron|res
pron|sp

Table B.5: Tag set modifications for pronouns (pron).
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