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Abstract

Processor architectures have been evolving quickly since the introduction of the central
processing unit. For a very long time, one of the important means of increasing per-
formance was to increase the clock frequency. However, in the last decade, processor
manufacturers have hit the so-called power wall, with high heat dissipation. To overcome
this problem, processors were designed with reduced clock frequencies but with multiple
cores and, later, heterogeneous processing elements. This shift introduced a new challenge
for programmers: Legacy applications, written without parallelization in mind, gain no
benefits from moving to multicore and heterogeneous architectures. Another challenge for
the programmers is that heterogeneous architecture designs are very different with respect
to caches, memory types, execution unit organization, and so forth and, in the worst case,
a programmer must completely rewrite the application to obtain the best performance on
the new architecture.

Multimedia workloads, such as video encoding, are often time sensitive and interac-
tive. These workloads differ from traditional batch processing workloads with no real-time
requirements. This work investigates how to use modern heterogeneous architectures ef-
ficiently to process multimedia workloads. To do so, we investigate both simple and
complex workloads on multiple architectures to learn about the properties of these archi-
tectures. When programing multimedia workloads, it is very important to know how the
algorithms perform on the target architecture. In addition, achieving high performance
on heterogeneous architectures is not a trivial task, often requiring detailed knowledge
about the architecture. We therefore evaluate several optimizations so we can learn how
best to write programs for these architectures and avoid potential pitfalls. We later use
the knowledge gained to propose a framework design and language called Parallel Pro-
cessing Graph (P2G). The P2G framework is designed for multimedia workloads and
supports heterogeneous architectures. To demonstrate the feasibility of the framework,
we construct a proof-of-concept implementation. Two simple workloads show that we can
express multimedia workloads in the system. We also demonstrate the scalability of the
designed solution.
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Chapter 1

Introduction

1.1 Background and Motivation

Multimedia applications are one class of applications that typically follow the trend of
increasing processing demands to continuously increase quality and perceived experience.
For example, live interactive multimedia services are steadily growing in volume. In this
respect, Internet users uploaded over 100 hours of video to YouTube every minute in
2014 [139]. In the future, consumers will demand features such as interactively refined
video search, dynamic participation in video conferencing systems, and user-controlled
views in live media content. To support these features, we must be able to process
compute-intensive workloads such as those required in extracting video features to identify
objects, in the calculation of three-dimensional depth information from camera arrays, or
in generating Freeview video from multiple camera sources in real time. This adds further
magnitudes of processing requirements to already computationally intensive tasks such as
the traditional video encoding of high-definition videos.

Over the last decade, we have witnessed two paradigm shifts within modern processor
architectures. The first shift was when single-core processors reached their power and fre-
quency limits, forcing chip designers to start focusing on on-chip parallelism. This started
with the introduction of IBM’s POWER4 dual-core processor [118] and was followed by
the introduction of Hyper-Threading Technology [60] on Intel’s Pentium 4 processors.
Today, dual- and quad-core processors from Intel and AMD are a commodity in desktop
and laptop computers. Mobile devices have followed the same trend and several processor
designs, such as Nvidia’s Tegra 4 mobile system on a chip (SoC) [91], have a quad-core
general-purpose processor.

The other paradigm shift was the introduction of heterogeneous processing architec-
tures, such as the Cell Broadband Engine [54] from Sony, Toshiba, and IBM (STI) and
the graphics processing units (GPUs) of Nvidia, AMD, and other vendors.

Heterogeneous processing architectures provide more computing power than tradi-
tional general-purpose single- and multicore systems. The processing cores have different
instruction sets, use several different types of memory, and provide different programming
abstractions compared to traditional desktop processors. Heterogeneous processing cores
are often designed very differently from general-purpose cores, being more specialized to-
ward solving specific tasks. Because of this, the cores in a heterogeneous architecture can
utilize more of the die space on the chip for arithmetic and logic units (ALUs) and use

3



4 Chapter 1. Introduction

less space for caches and control logics. We are also witnessing the trend of heteroge-
neous processing in mobile devices, where all SoCs have dedicated processors for audio,
video, and imaging. Even the latest generation of Intel x86 processors has a dedicated
coprocessor called Quick Sync [61] for video encoding, decoding, and transcoding.

Today, programmers who want to utilize these heterogeneous processing architectures
face several challenges. They must write their applications with a very detailed knowl-
edge about the target architecture and, when the target architecture is changed or even
upgraded to a new generation by the hardware vendors, applications optimized for one
architecture will in some cases require a complete rewrite for utilization or at least effi-
cient execution on the new architecture. We therefore need abstractions and programming
concepts that will ease the development of applications for heterogeneous processing ar-
chitectures. This thesis is meant as a step toward this goal.

1.1.1 Heterogeneous Architectures

Processor architectures have been evolving quickly since the introduction of the central
processing unit (CPU) and vendors often release either a new architecture or an updated
architecture every year. For a very long time, one of the important means of increasing
performance was to increase the clock frequency of the processors. However, in the be-
ginning of the 2000s, this approach started to become problematic [79]. As processors
evolved, the chips also shrank, with the manufacturing process packing more and more
transistors onto smaller areas. With the introduction of the 90nm process in 2004, several
vendors hit the so-called power wall: The transistors, working at very high frequencies,
leaked power and, to make them run stably, the voltage had to be increased, resulting in
higher heat dissipation.

The CPU vendor’s first solution to this challenge was to place multiple cores onto
a single chip and AMD was the first to introduce such a processor for consumers, with
the Athlon 64 X2 in 2004 [3]. Multi-core processors were nothing new and had previ-
ously been provided by multiple vendors, but only in high-end systems, with multiple
processor sockets connected to the buses. The introduction of multicore systems was a
paradigm shift for the average developer, who now had to parallelize applications to scale
performance.

A different approach to continuously scale performance is to add simple cores or more
specialized cores that can carry out certain tasks more quickly and more efficiently—hence
the term heterogeneous architectures. Heterogeneous architectures in a simple form have
been around for a long time. One example is from 1985, when Intel’s 80386 processor had
the option of adding an x87 floating-point coprocessor. This coprocessor was later inte-
grated into the main processor core as an independent pipeline when the 80486 processor
was launched in 1989. In Chapter 2, we examine the x86 core in more detail and see that
what seems to be a single core is in fact built up of several heterogeneous elements.

Another example of heterogeneous architecture is the use of processor cores with dif-
ferent capabilities and instruction sets. One example of such an architecture is Intel’s
specialized network processor IXP1200, which was launched in 1999 [56]. This architec-
ture had one general-purpose core to run the operating system and execute the control
plane in the network and several specialized cores for packet processing. Another example
of such a system in the consumer market is the Sony PlayStation 3, launched in 2006 [55].
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The PlayStation 3 featured the Cell Broadband Engine, a heterogeneous processor op-
timized for floating point operations, which are important in both computer games and
multimedia processing. Perhaps the most common heterogeneous architecture in com-
puters today, however, consists of GPUs working together with the CPU. Over the last
decade, GPUs have evolved from simple fixed-function pipelines to fully programmable
processors. With the launch of CUDA in 2007 [92], Nvidia introduced low-cost high-
performance computing to the masses.

However, programming heterogeneous architectures has proven to be a significant
challenge. Legacy applications written without parallelization gain no benefit from the
move to multicore and heterogeneous architectures. In some cases, legacy applications
may even perform worse on modern architectures, because the architectures are focused
toward adding more cores at a lower frequency instead of having fewer cores at a high
frequency. Another challenge with heterogeneous architectures (e.g., GPUs) is that they
can be very different in design in regard to caches, types of memory, execution unit
organization, and so forth, and, in the worst case, the programmer must completely rewrite
the application to obtain the best performance from a new architecture. Chapters 3
and 4 present our experience with developing multimedia workloads for some of these
heterogeneous architectures.

1.1.2 Multimedia Workloads

A multimedia workload is often characterized as being time sensitive and iterative. Video
processing is an example that involves a multimedia workload and it is explored later in
this thesis. Encoding and decoding video are very computationally intensive operations,
where calculations have to be done for all the pixels in a frame. Video encoding is
a common operation in video processing; raw data from the imaging sensor are often
compressed according to bandwidth or storage requirements defined by the scenario. The
most common standard for video coding today is H.264 [131], which was defined by the
International Telecommunication Union (ITU) and the International Organization for
Standardization (ISO) as a video codec for everything from streaming video to mobile
devices to TV broadcasting and high-definition videos stored on Blu-ray disks.

Since H.264 is currently the de facto standard for video coding in the industry, a great
deal of research has been performed on how to optimize its encoding and decoding. Most
of the devices available have dedicated hardware to either assist the processor or carry out
the decoding. The same trend appears for encoding. Dedicated hardware implementations
are fast and have low energy requirements. However, they lack the flexibility of software
implementation, they are complex and expensive to manufacture, and, when parameters
(e.g., the resolution or the frame rate) are changed, the hardware must also be changed in
most cases. Multimedia workloads developed in software are more flexible and are easier
to update and replace compared to hardware implementations, where the entire chip has
to be changed for a different implementation. This thesis therefore focuses on software
implementations of multimedia workloads.

The software multimedia workloads investigated in this thesis are independent fil-
ters and operations on video data organized in pipelines, often with real-time processing
requirements. One example of such a multimedia workload is the real-time panorama
stitching pipeline in the Bagadus soccer analysis system [114], which is investigated fur-
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ther in Chapter 4.
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Figure 1.1: The real-time panorama video stitching pipeline in the Bagadus soccer analysis
system [114].

Figure 1.1 provides an overview of the Bagadus pipeline. In the Bagadus pipeline, raw
video data from multiple video cameras is read over the network in real time. The pipeline
comprises several independent steps for converting the data between different formats,
optimizing the videos, and finally stitching them together into a panoramic video. Most
of the steps in the pipeline have dependencies that have to be satisfied before they can
start processing and each step also has different degrees of parallelization potential. To
fulfill the system’s real-time requirements of 30 frames per second, the pipeline has to
deliver an encoded panoramic video frame every 33 milliseconds. Another challenge of
the Bagadus pipeline is the scalability of the video data, where adding more cameras,
increasing the resolution of existing cameras, or increasing the system’s frame rate will
increase its computational demands. The addition of more and other more complex
steps such as high dynamic range (HDR) rendering in the pipeline will also increase the
complexity of the system.

1.2 Problem Statement

When used efficiently, modern heterogeneous architectures provide the processing power
required by resource-hungry multimedia workloads. However, the diversity of resources to
which developers are exposed makes it very hard to develop programs that are portable
and scalable on multiple architectures. Even with new languages such as OpenCL, which
are supposed to be a “recompile-only” solution, the applications must be tuned and in
many cases hand optimized for the different heterogeneous architectures. In examining
this area of computing, we proceeded according to the following problem statement:

How can programmers efficiently develop multimedia workloads for
modern heterogeneous multicore architectures?

The problem stated in this thesis focuses on how to use modern heterogeneous archi-
tectures to efficiently process multimedia workloads. We want to learn how programmers
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need to think when writing their applications for these architectures. Many details about
the architectures are also undocumented, so we need to learn how the architectures behave
when processing multimedia workloads. We approached the problem statement in three
steps, presented in Chapters 3, 4, and 5 and briefly formulated as follows:

e Learn about the behavior of heterogeneous architectures by implementing and eval-
uating prototypes where simple multimedia workloads run on a single heterogeneous
architecture.

e Learn how to use multiple heterogeneous architectures to process a complex pipeline
with several multimedia workloads running in real time.

e Propose new ways of designing and developing multimedia workloads with a frame-
work for processing multimedia workloads on heterogeneous architectures.

1.3 Limitations

To reduce the scope of this thesis, we limited the number of heterogeneous architectures
investigated. We also examine GPUs from only one vendor, Nvidia. The main reason for
focusing on only one vendor is the availability of programming tools and documentation
when the project started. The multimedia workloads we consider are data intensive and
have good parallelization potential.

We focus only on processing multimedia workloads on the constrained resources of a
single machine, not those of large-scale distributed systems. Many small devices today—
such as smartphones, tablets, laptops, and desktop PCs—can process multimedia work-
loads, which is also expected by the users of such devices. Our main focus is therefore
the efficient utilization of resources on these platforms.

1.4 Research Method

As defined by the Association for Computing Machinery (ACM) Education Board [25] in
1989, the discipline of computer science is divided into three major paradigms. Each of
these paradigms has its roots in different areas of science and all can be applied to com-
puting and computer science. The ACM Education Board states that the paradigms are
intertwined and that it is irrational to say that any one of the paradigms is fundamental.
These three computer science paradigms are as follows.

e Theory: This paradigm has its roots in mathematics. It defines objects of study and
hypothesizes their interrelations; it then determines whether these relations are true
and interprets the results. This paradigm is concerned with the ability to describe
and prove relationships among the objects of study.

e Abstraction: This paradigm is from the experimental research field and consists of
four stages. A scientist forms a hypothesis, constructs a model, makes a prediction
before designing an experiment, and collects data. This paradigm is concerned with
the ability to use predictions that can be compared with real-world situations.
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e Design: This paradigm is from the field of engineering and involves building a
device or system to solve the given problem. The scientist states the requirements
and specifications of a design and the system’s implementation. The system is then
tested and the previous steps can be repeated if the system does not meet the
requirements. This paradigm is concerned with the ability to implement specific
instances and use them to perform useful actions.

All three of these paradigms are applied in our field of multimedia systems research,
the one to use depending on the problem to be solved. In our case, in which we want to
investigate how to use heterogeneous multicore architectures for processing multimedia
workloads, we first determined if the theory paradigm could be applied. The theory
paradigm requires a precise definition and modeling of the multimedia software and the
heterogeneous multicore hardware we want to use. This is particularly challenging with
hardware, since many of the details about the low-level behavior of schedulers and the
execution pipeline are known only to the hardware vendors. We therefore rejected this
paradigm for this thesis. The next paradigm is the abstraction paradigm. This paradigm
is often used, typically in combination with simulators. One can model the behavior of
both the software and the hardware architecture in a simulator to try to capture the
system’s behavior. We used this paradigm in one of the initial investigations on using
heterogeneous architectures for multimedia workloads. However, the challenge is that
simulators are no better than the models used and, as mentioned previously, because of
the black boxes in the hardware, many of the details about the architectures are unknown.
It is therefore impossible to know how good the simulated behavior is without conducting
experiments on real systems and we rejected this theory as well. The last paradigm is the
design paradigm. With this paradigm, we specified the requirements and built prototype
systems. These prototypes were evaluated on real-world systems and, based on the data
gathered, the prototype improved over multiple iterations. One of the challenges with this
paradigm is that it can take significant effort to implement these prototypes, which in
itself is not necessarily scientific work. The fact that many of the details of the hardware
are not published by their vendors is a challenge in our investigation of how to program
multimedia workloads for modern heterogeneous multicore architectures. We therefore
have to make many assumptions and simplifications if we want to simulate exactly how
the hardware works. We therefore decided to use the design paradigm in this thesis. It
requires more engineering work, but we were not limited by inaccurate models as a basis
for the simulations.

1.5 Main Contributions

The main research question in Section 1.2 states the challenge on how to efficiently use
modern heterogeneous multicore architectures to process multimedia workloads. This
problem statement is addressed from both a low-level standpoint, where we carry out
experiments with simple multimedia workloads on different heterogeneous multicore ar-
chitectures, and a more high-level one, where we present, implement, and evaluate a
programming model to support the real-time processing of multimedia data. The pa-
pers that are part of the contribution of this thesis have been published in a number of
peer-reviewed conference proceedings and international journals and are included in full
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in Chapter 6. Several other papers related to processing multimedia workloads were not
included in the thesis to limit its scope. A summary of the main contributions included
is as follows.

e We learned about the behavior of heterogeneous architectures with simple multime-
dia workloads. The first architecture we experimented with was Intel’s IXP network
processor. This architecture was used for experiments involving network protocol
translation [32]. The next architecture was the x86 processor architecture. Here,
the first case study involved the efficient implementation of Motion JPEG (MJPEG)
encoding [112]. We also conducted case studies on using multiple x86 cores for multi-
rate video encoding [34] and running a multi-threaded game server prototype [102].
For the GPU architecture, we conducted case studies on its memory [94], opti-
mization of host-to-device communication [13], and cheat detection [117]. We also
revisited the MJPEG workload with both the GPU [112] and Cell architectures.
The IXP architecture provided experience in working with a state-of-the-art (at the
time) heterogeneous architecture with several special features. With the MJPEG
workload on the x86 architecture, we learned the importance of selecting algorithms
optimized for the target architecture and the benefits of using the vector unit avail-
able on all modern processors. The shared memory model on the x86 revealed the
importance of reusing parts of computationally heavy multimedia workloads and of
using the optimal number of threads for the number of cores available. On the GPU
architecture, we learned about the importance of using the memory architecture
correctly and optimizing transfers between the host CPU and the GPU with asym-
metrical transfers. We also observed that when offloading multimedia workloads to
a GPU, they have to be large enough to compensate for the added latency of data
transfers and launching kernels on the GPU. With the MJPEG workload, as on the
x86, we learned the importance of optimizing algorithms for the target architecture.
On the Cell architecture, we also learned the same lessons as on the x86 and GPUs:
It is important to select an algorithm suited for the target architecture and always
vectorize your workload when possible. Our MJPEG experiments also suggested
that programmers prefer programming models exposed by the GPU compared to
models exposed by the vector unit on x86 and the Cell.

e The knowledge obtained from investigating simple multimedia workloads was used
to investigate a more complex multimedia workload, that is, part of the Bagadus
soccer analysis system, which has three components: a tracker subsystem, an ana-
lytics subsystem, and a video subsystem [114]. The complex workload used in these
experiments was that of a video subsystem that involved the real-time capture,
pre-processing, stitching, and encoding of a panoramic video stream from a soccer
stadium [113]. Here, we had to optimize the workload for multiple heterogeneous
architectures to run the workload in real time. By implementing the subsystem as
a pipeline and optimizing for both the x86 architecture and GPUs, we were able to
capture the five 720p streams and stitch them into a panoramic video on a single
commodity gaming PC.

e We used our knowledge from processing both simple and complex multimedia work-
loads on heterogeneous systems and from our evaluation of multicore scheduling
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mechanisms [115] as follows. We proposed a programming language and frame-
work that exposes the parallelization opportunities of a multimedia workload for a
runtime that allows for the efficient execution of a workload on the available het-
erogeneous hardware [31]. We also developed a prototype of this system running on
a single machine with support for multicore x86 processors, together with several
simple multimedia workloads running on the system. In addition, we conducted
experiments demonstrating the system’s usability for multimedia workloads.

There are many opportunities for further work within this field; however, we aim to
show the essential challenges of using heterogeneous multicore architectures for processing
multimedia workloads and the essential considerations that programmers must make when
choosing both the architectures and the algorithms.

1.6 Outline

This thesis is written as a collection of paper and it is therefore organized in two parts.
Part I provides an introduction and places the research papers in context and Part II
includes the selected full papers.

The first part is organized as follows: In Chapter 2, we introduce the heterogeneous ar-
chitectures used in our research. We also look at the low-level programming abstractions
that are used when programming the different heterogeneous architectures. In Chapter 3,
we research several simple multimedia workloads on the heterogeneous architectures and
we discuss how to use the architectures for the different multimedia workloads and how
to structure the workloads to obtain the best performance from the architectures. This is
followed up in Chapter 4 with an investigation of a more complex pipeline, with several
components running on different heterogeneous architectures. Based on our results in
Chapters 3 and 4, we introduce in Chapter 5 the P2G framework for running multimedia
workloads on heterogeneous architectures. We benchmark and evaluate a set of multime-
dia workloads within the P2G framework. Chapter 6 gives an overview of the research
papers and, finally, Chapter 7 provides a conclusion.



Chapter 2

Heterogeneous Computing

In this chapter, we introduce the heterogeneous hardware architectures used for experi-
ments in this thesis. This introduction provides insight into the history of the different
architectures; it gives a basic introduction to the architecture by looking at the state-of-
the-market products available in each of the architectures.

The architectures we have chosen are very different with respect to the amount of avail-
able computational resources—floating point units, arithmetic and logic units (ALUs),
and so forth—and how these are connected in the architecture’s execution pipeline. The
memory types and layouts are also very different, some of the architectures having a
shared memory model that hides the memory management from programmers and other
architectures having an explicit memory model, which gives programmers full control over
the memory. We also examine caches, how they are organized, and whether programmers
have any control over how they are used. Next, we look at the buses that connect the re-
sources within the processors and as well as the processors with each other and resources
in the machine. Finally, we look at what these heterogeneous architectures expose to
programmers. We investigate three examples of what the architectures expose to pro-
grammers and how the programming model is used to hide some of the architecture’s
complexity.

2.1 Hardware Architectures

In this section, we take a more detailed look at some heterogeneous architectures. First,
we look at the family of x86 processors, specifically those produced by Intel. Next,
we introduce the Intel IXP2400 network processing unit (NPU) with a heterogeneous
architecture before looking into the Cell Broadband Engine (CBE). Finally, we take a
look at Nvidia graphics processing units (GPUs) used for general-purpose programming,.

2.1.1 Intel x86 Processor Architecture

The x86 processor architecture has a long history, dating back to Intel’s 8086 central
processing unit (CPU) released in 1978 as a fully 16-bit processor. One of the reasons
this instruction set succeeded in becoming the dominant instruction set in the mainstream
computer market was the fact that IBM selected the 8086 for the original IBM PC. Over
the years, the x86 instruction set has undergone many extensions (32 bit in 1985 and

11
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64 bit in 2003) and additions. However, the instruction set has always been backward
compatible with previous versions. A modern x86 processor from 2014 is still able to
execute 16-bit code compiled for the original 8086. Over the years, several vendors have
also been designing and manufacturing CPUs compatible with the x86 instruction set
(e.g., Intel, AMD, VIA, and Cyrix). However, today only two remain and, of those, Intel
is the dominant vendor.

Originally, x86 was a little-endian, variable instruction length complex instruction set
computer (CISC) design. However, over the years, the processors executing the instruction
set changed greatly. The introduction of superscalar pipelines, where a CPU with a
single instruction stream can dynamically check data dependencies and process multiple
instructions per clock cycle, made it possible for the x86 processors to execute more
operations in parallel in a single clock cycle (i.e., fetch, decode, execute, memory, and
write back). Modern x86 architectures are able to decode x86 instructions into smaller
operations called micro-operations (pops). The processors then use out-of-order execution
to reorder those pops. This approach combined with a superscalar pipeline enables modern
processors to extract parallelism out of the code stream for improved performance. A great
deal of responsibility is left to the instruction decoders. It is the decoder’s job to make
the execution as efficient as possible, as well as all the instructions and pops analyzed by
branch predictors. If branches are detected, the processors will use speculative execution
to try to prevent miss predicted branches stalling the pipeline. In the same way, a great
deal of effort is also put into prefetching data from memory into the different caches, so
that as much data as possible is ready in the caches for execution.

A technique called symmetric multiprocessing (SMP) is used to implement multiple
processor cores in a x86 system. Here, two or more identical processors, all of which
have full access to the 1/O devices, connect to a single shared main memory and are all
controlled by a single operating system. Even though the architectures of x86 processors
have evolved over the years, the principles behind SMP are still the same, leading to several
challenges when trying to scale the numbers of processing cores in an SMP system. One
of the challenges is memory. In early SMP systems, all cores shared the same memory
controller, but with integration of the memory controller onto the die of processors, the
access times to the different parts of memory are not the same. Another challenge is
cache coherency. Since all processor cores have the same access to the main memory,
all the caches on the processors must be kept up-to-date. If one core changes data,
this change must be broadcasted to all the other cores that work with the same data.
The first x86 implementations with multiple cores had one processor core per socket
and multiple sockets on a motherboard. The first attempts at processing more than
one thread simultaneously on a single die used simultaneous multithreading (SMT) on
Intel’s Pentium 4 processors. Because of the very long pipeline on Pentium 4 processors,
several parts of the pipeline were often idle. To use more resources, Intel implemented
Hyper-Threading Technology [60], it’s version of hardware multithreading. Intel’s first
true multicore processor, with two separate independent cores on a single die, was the
Pentium D, introduced in 2005. Today, most commodity desktop machines and laptops
have two or four processor cores on a single die. In the server and workstation space, up
to 18 cores are fitted onto a single die.

During work on this thesis, several generations of processor architectures were released
by Intel, a list of which can be found in Table 2.1. The processor roadmap used by Intel
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Architecture | Codename Fabrication process | Released
Core Merom 65 nm 2006
Perryn 45 nm 2007
Nehalermn Nehalem 45 nm 2008
Westmere 32 nm 2010
. Sandy Bridge | 32 nm 2011
Sandy Bridge | ;o0 B};idge ° 22 nm 2012
Haswell Haswell 22 nm 2013
Broadwell 14 nm 2014

Table 2.1: Roadmap of Intel processors used in our experiments.

today was introduced in 2007 and is called the Tick Tock CPU roadmap [58]. The
idea of this roadmap is to follow every new architecture, referred to as a “tock,” with a
shrink in fabrication processes referred to as a “tick.” One of the advantages with this
strategy is the reduction of risk when moving to a completely new fabrication process,
since the architecture is already known, and vice versa when developing a new processor
architecture.

Processor 1 Processor 2
North Bridge Cache Cache
Hub Main -
Hub Main
Interface|| Memoy QPI Interface| | Memoy
Processor
System Bus
¢ ¢ Processor
Processor Processor Bl Hub Main
Q Interface | | Memoy
Cache
Cache Cache Cache
Processor 1 Processor n Processor n Pro:f:sor
(a) Traditional system bus (b) Point-to-point links

Figure 2.1: Comparison of SMP architectures.

Over the period of this thesis, the architecture connecting multiple processors and
external devices has also changed and an overview of the two different architectures can be
seen in Figure 2.1. During the 1990s and the 2000s, until the Nehalem architecture, Intel
used a simple bus called the front-side bus (FSB) to connect multiple CPUs and to connect
these to the so-called north bridge (Figure 2.1(a)). The north bridge is also referred to
as the memory controller hub. This is where the memory controller is located and also
where you would connect external devices that require fast access to main memory. These
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devices are often connected by a PCI, AGP, and, later, PCI Express bus. Such I/O devices
as network and hardware are connected on the “south bridge” via the hub interface, also
referred to as the DMI. One of the challenges with the FSB was that it is a shared bus and
was quickly becoming a bandwidth bottleneck when multiple CPUs were connected. With
the Nehalem architecture, the FSB was replaced by several point-to-point interconnects,
called QuickPath Interconnect (QPI) [59] (Figure 2.1(b)), and the memory controller was
integrated onto the same die as the processor cores were. To better share the memory
controller between multiple cores on the die, a level 3 cache was added. Furthermore, the
PCI Express bus used to connect external devices was also added to the same die, thus
eliminating the need for a north bridge. With the Sandy Bridge architecture, a GPU was
also integrated into the same die as the processor cores were. This GPU also shares the
memory controller with the processor cores and uses the same level 3 cache to connect to
the memory.
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Figure 2.2: Intel Haswell architecture diagram.
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The Haswell Architecture

The latest x86 architecture from Intel is called Haswell [104]. It was released in 2013 and,
according to the Intel CPU roadmap [58], it was a tock, that is, a new architecture. A
detailed overview of a single Haswell core is shown in Figure 2.2.

The first part of the Haswell processor architecture, orange and purple in Figure 2.2,
is called the front end. This part of the processor is perhaps one of the most complex
parts of a modern x86 CPU. The instruction cache is kept coherent with the data cache.
Haswell has four decoders to decode the x86 instructions, including three simple decoders
that are able to decode one fused pop and one complex decoder that is capable of decoding
four fused pops. With pops fusion, the decoders are able to combine x86 instructions that
can be executed in parallel (i.e., jump and compare). The front end also includes other
important features, such as the branch predictor; however, details of the branch prediction
unit are not published by Intel. The next part of the pipeline, in yellow in Figure 2.2, is
the out-of-order scheduler. Haswell has a 192-instruction out-of-order window. The first
part of out-of-order execution is renaming. Here, the renaming allocates resources and
maps the source and destination x86 registers onto the underlying physical register files.
The idea of out-of-order execution is to optimally reorder the instructions for execution,
making sure that as many dependencies as possible are met before the instruction is
executed, and, after reordering, to place the pops in a unified scheduler queue ready for
execution. Execution is split into two parts: Fxecution units, in blue, and memory units, in
green in Figure 2.2. In total, the Haswell architecture has eight execution ports, meaning
that each cycle the oldest eight non-conflicting pops that are ready for execution are
taken out of the unified scheduler and dispatched to the execution ports. Computational
pops are sent to port 0, 1, 5, and 6. Three of the four computational execution ports are
also capable of executing 256-bit single instruction multiple data (SIMD) instructions.
Memory operation pops are sent to ports 2, 3, 4, and 7. The memory hierarchy on the
Haswell core is similar to that of earlier Intel processors. For each core, there is a 32-kB
level 1 data cache and a 256-kB unified level 2 cache, both private for the core. The level
3 cache, however, is shared with the other cores on the die and with the on-die GPU.

A single Haswell x86 core can therefore have up to two hardware threads that execute
up to eight instructions in parallel. This is carried out with techniques such as superscalar
pipelines, multithreading, and out-of-order-execution.

Intel Many Integrated Core (Intel MIC) Architecture

Intel MIC is a multicore architecture developed by Intel incorporating work from the now
defunct Larrabee GPU architecture [109] and the Single-chip Cloud Computer research
project [78]. The first commercial product released in the MIC family had the codename
Knights Corner and was later branded Intel Xeon Phi [21].

The Xeon Phi architecture consists of up to 61 simple x86 cores and a basic overview of
the architecture is shown in Figure 2.3. The processor architecture used is the P54C [21]
architecture, originally used in the Pentium processor from 1993. The cores have been
modified with support for the 64-bit x86 instruction set and support for four-way SMT.
The process still keeps its original in-order execution pipeline design and the coherent
level 2 cache has been extended to 512 kB per core. The main change in the architecture
from the original P54C cores lies in the floating-point pipeline. The P54C has a simple
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Figure 2.3: Intel Xeon Phi MIC architecture.

x87 floating point unit [21] and the Xeon Phi has a 512-bit SIMD unit in addition to the
x87 pipeline. This SIMD unit is able to process 16 independent 32-bit values and eight
independent 64-bit values. Additionally, fused multiply and add operations are supported.
However, the unit is not compatible with existing MMX/SSE code; so, even though the
Xeon Phi cards use x86 cores, they are not backward compatible with the x86 instruction
set. All the cores are connected by a 512-bit ring bus and the card has up to 16 GB
of on-board GDDR5 memory. The Xeon Phi cards are connected to the host computer
through a PCI Express 2.0 interface.

To control the processor, a customized version of Linux is booted on the card when
initialized from the host computer. The Xeon Phi supports the offloading of parts of
programs from the host processor and, since the card has its own operating system, it can
also work as a stand-alone system.

2.1.2 Intel IXP Network Processor

The Intel Internet eXchange Processor (IXP) Architecture [57] is an NPU. An NPU is a
specialized processor designed and optimized for efficient packet handling and through-
put. A typical NPU features several small processing elements optimized for pipelining
and executing data plane tasks and a general-purpose processing core to execute con-
trol plane workloads, thus making this a heterogeneous multicore architecture. Intel’s
first generation of NPUs was called the IXP1200 [56]. This processor features a 32-
bit StrongARM general-purpose core and six special-purpose cores called micro engines
(uEngines). The NPU used in our research is a second-generation processor from Intel
called the IXP2400 [57]. The IXP2400 cards were chosen because it was one of the easiest
architectures to program. Intel continued developing their NPUs with a third generation
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of processors called IXP28XX and, in 2007, sold the entire product line to Netronome.
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Figure 2.4: Intel IXP2400 architecture diagram.

The Intel IXP2400 architecture overview is shown in Figure 2.4. The basic elements on
the chip include a 600 MHz XScale processor. The XScale is a general-purpose processor
using the ARMv5 instruction set and the general-purpose processor also runs a Linux
or VxWorks operating system to control the card. Additionally, the IXP2400 has eight
specialized packet pEngines also running at 600 MHz. The pEngine uses a proprietary
instruction set that is not compatible with the ARMvb5 instruction set on the XScale. Each
pEngine is capable of running four threads in hardware and the pEngines are optimized
for general packet processing in the data plane (fast path). The XScale is used for the
control plane (slow path). The pEngines are grouped in clusters of four cores and, within
each cluster, the cores can communicate with neighbor cores via specialized registers.
In normal configurations, two pEngines are reserved for low-level network receive and
transmit functions using open-source software, leaving only six pEngines available for
application usage.

Moreover, the IXP2400 has three kinds of memory, with different bandwidths and
access times. The 256 MB of SDRAM is used for the operating system and packet store,
the 8 MB of SRAM is used for metadata (e.g., packet headers), and the 16 kB of on-
chip scratchpad is used for interprocess communication and synchronization between the
cores. The IXP2400 is connected to the host computer and supports direct memory access
(DMA) transfers with a 64-bit PCI connector and the card has three physical mini-GBIC
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connector for gigabit Ethernet.

The software development kit for the IXP2400 cards includes a specialized compiler
to program the pEngines. The compiler is a C compiler for the MicroC language. The
[XP2400 allows data to be processed at wire speeds with very low latency. The cards can
process packets with a very limited protocol stack. This allows the programmer to both
update and extract information with very low processing overhead. This makes these
NPUs ideal for applications such as deep packet inspection and statistics collection.

2.1.3 Nvidia Graphics Processing Units

A GPU is a specialized and dedicated hardware originally designed to render graphics
on a screen. A GPU can be integrated as part of the computer’s chipset, as a discrete
expansion card, or integrated on the die of the main processor. Originally, the GPU was
designed to render three-dimensional (3D) scenes onto a two-dimensional frame of pixels.
The first generations of GPUs had a fixed rendering pipeline with very limited flexibility
and programmability. Compared to a normal general-purpose processor such as the x86
architecture from Intel, GPUs have a very different architecture. On the CPU, as seen in
Figure 2.5, much of the die space is used for control logics, such as out-of-order execution,
cache, and branch prediction [69]. A GPU has much less control logic and more ALUs.
The GPU is designed to perform the same calculations over a large number of values,
which is very similar to vector processors; for example, when rendering a 1080p (Full HD)
frame, about 2 million independent pixels are processed in parallel.
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Figure 2.5: Comparison of transistor usage on a CPU and on a GPU.

The term GPU was defined in 1999, when Nvidia launched their GeForce 256 graphics
adapter [133]. This was not the first 3D graphics card, but it was the first card to support
hardware transform and lightning, meaning that the entire graphics pipeline now ran on
the graphics adapter.

The progression of GPUs was mainly driven by the gaming industry in the beginning
and the development of graphics cards was closely tied to the development of Microsoft’s
DirectX application programming interface (API). A new version of the API brought new
generations of GPUs. In DirectX 8, programmable vertex shaders were added, which
allowed the programmer to control how each vertex in the 3D scene was converted to
discrete pixels in the output. DirectX 9 also added support for programmable fragment
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Figure 2.6: A pre-DirectX 10 graphics pipeline [43], with a programmable vertex processor
and fragment processor.

shaders. An example of a DirectX 9 pipeline is shown in Figure 2.6. The fragment shaders
gave the programmers direct control over pixel lightning, highlighting, translucency, and
shadows. It was also possible to use these fragment and vertex shaders for general-
purpose computations, given that one’s problem could be mapped as a frame. To do so,
data had to be stored as textures on the GPU and shader programs were executed on
the data; the results had to be stored either in texture memory or in the frame buffer.
With DirectX 10, the traditional 3D pipeline was replaced with a unified processing
architecture [12]. Gaming was still the main driver for the GPUs, but changes in the
GPU architecture made it much more suitable for general-purpose stream processing.
It was also with the first DirectX 10 GPUs in 2007 that Nvidia launched CUDA, which
made it possible to program GPUs with extensions to the C language [84]. Since the initial
release of CUDA, both the underlying hardware and software stack have undergone both
minor and major revisions, referred to as compute capability. During work on this thesis,
we used three different generations of GPUs from Nvidia, an overview of which is shown
in Table 2.2. During the last phase writing of this thesis, Nvidia also released a new-
generation GPU called Maxwell; however, we take a more detailed look into how the
third generation of CUDA-capable GPUs, codename Kepler, from Nvidia are designed
and how their memory architecture works compared to that of a normal CPU.
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Architecture | Codename | Compute | Released
Tesla G80 1.0 2006
GT200 1.3 2008
Fermi GF100 2.0 2010
GF110 2.1 2010
Kepler GK104 3.0 2012
GK110 3.5 2013
Maxwell GM107 5.0 2014

Table 2.2: Roadmap of Nvidia GPUs used in our experiments.

The Kepler GK110 Architecture

The Kepler architecture consists of a number of processing cores clustered together in what
is called a streaming multiprocessor (SMX), a shared level 2 cache, memory controllers,
and a PCI Express interface to the host machine. The GPU used in the latest revision of
the Kepler architecture is called GK110 [90] and this high-end chip has up to 15 active
SMX clusters.

The SMX shown in Figure 2.7 on the GK110 GPU contains 256 separate cores. Of
these cores, 192 cores have single-precision integer and floating point ALUs and 64 support
double precision. The SMX also includes registers, instruction cache, and 64 kB of shared
memory and level 1 cache, shared by all the cores on a single SMX that can be partitioned
by the programmer. Each SMX also contains 32 load and store units to provide groups
of threads access to DRAM in parallel. Finally, the SMX has 16 special function units
(SFUs), used to calculate complex mathematical instructions such as cosines and square
roots.

Scheduling on the GPU is done at two levels: High-level scheduling on the entire chip
is handled by what Nvidia calls a GigaThread engine. In the documentation, it is also
referred to as the Grid Management Unit [90]. This unit controls all the groups of threads
executing on the GPU and can manage both CPU- and GPU-generated workloads. Low-
level scheduling at the SMX level is carried out by a quad warp scheduler. An SMX
schedules threads in groups of 32 parallel threads called warps. The scheduler is capable
of selecting four warps in parallel and each warp can dispatch two independent instructions
per cycle. All the threads in a warp have to execute the same instruction and branching
is not supported. If branching should occur in the code, each of the branches must be
evaluated for all the running threads.

The memory hierarchy on GPUs is different from that on CPUs. There are different
types of memory with different properties and the memory is explicitly managed by the
programmer; thus memory usage will often have an impact on performance. Figure 2.8
shows an overview of the memory hierarchy on the Kepler architecture. The first level in
the hierarchy is at the thread level. All the cores on the SMX share a total of 65,536 32-bit
registers. Registers are the fastest memory type on the GPU, with access times of one clock
cycle. The challenge with the registers is that their number is limited and if the threads
use up all the registers, the overflow data will be stored in what is called local memory.
Local memory is private to each thread and resides in the DRAM, which is described later.
The second level in the memory hierarchy involves shared memory, level 1 cache, and a
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Figure 2.7: Nvidia GK110 SMX architecture [90], slightly modified.

read-only data cache. This level is also on chip within each SMX. The on-chip memory in
the SMX can be dynamically partitioned by the programmer between level I cache and
shared memory. The access time is also a single clock cycle and the memory is accessible
by all threads running on the same SMX. Shared memory provides the programmer fast
memory for sharing data and reducing the need for slow off-chip memory access. However,
the shared memory is uniformly divided into banks and the throughput is dependent on
the data layout. The Kepler architecture also introduced a 48-kB read-only data cache,
which in previous GPU generations were only accessible by the texture units. This data
cache does not have the same bank structure as the shared memory and can support
full-speed unaligned memory access patterns. At the third level, the Kepler architecture
has 1536 kB of level 2 cache. This cache is shared among all SMX units on the GPU
and services all load, store, and texture requests to DRAM, enabling more efficient data
sharing across the GPU. Programmers are not allowed to explicitly control the level 1
or level 2 cache. The last level in the memory hierarchy is the DRAM. The DRAM is
built up of three different memory spaces: global memory, texture memory, and constant
memory. With Kepler, the DRAM is off chip and is significantly larger and much slower
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Figure 2.8: The Kepler memory hierarchy.

compared to the higher levels in the hierarchy. The DRAM is often referred to as global
memory. Global memory can be accessed by all SMX units and can be accessed with 32 |
64-, or 128-byte transactions, given that the access address is aligned with the transaction
size. The memory controller on the GPU tries to combine multiple operations into fewer
and larger transactions, which is known as memory coalescing. In early GPU generations,
memory coalescing was very important; however, with more advanced memory controllers
that are not only optimized for graphical workloads, the demands on memory operations
have been relaxed.

The two other memory spaces in DRAM are constant and texture memory. Both are
read only by the GPU, meaning that they have to be allocated and written to by the host
CPU. Both these memory spaces are cached and, depending on the access patterns, this
can reduce access time to the data. Constant memory is limited to 64 kB in total and
texture memory is limited to 48 kB per SMX unit. If the data accessed in both constant
and texture memory are not in the cache, the GPU must fetch the data from DRAM with
the same access time as regular global memory.

The GK110 chip is used in two different product lines: as a dedicated compute copro-
cessor for general-purpose GPU workloads (Nvidia Tesla) and as a graphics card (Nvidia
GeForce and Quadro) for playing computer games and running other 3D applications.
The chip itself is comprised of 7.1 billion transistors and has up to 2880 cores and up
to 12 GB of on-board DRAM. With a typical power consumption of 250 watts, it can
deliver up to 5121 tera floating point operations per second (TFLOPS) of single-precision
processing power and 1707 TFLOPS of double-precision processing power.

2.1.4 STI Cell Broadband Engine

The CBE [54] is a heterogeneous multicore processor developed in cooperation by Sony,
Toshiba, and IBM. The project was started by Sony in 2000 when they requested a CPU
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for the new PlayStation 3 game console. The design goal of the CBE was a processor
1000 times faster than the Emotion Engine from the PlayStation 2 game console [7].
Development of the CBE started in 2001 and the first product to utilize the processor
was Sony’s PlayStation 3 game console. The CBE was later also used in high-performance
computing, when IBM launched several blade servers featuring multiple Cell processors.
The chip was also used by Toshiba in laptops and HDTVs as an accelerator for ofoading
media processing, such as in decoding, upscaling, and post-processing.

SPE SPE SPE SPE
A A A A I/0
v A v \
<—>
PPE > EIB
§ § { ¢ DRAM
SPE SPE SPE SPE

Figure 2.9: CBE architecture.

The CBE consists of several main components: a power processing element (PPE)
for general-purpose processing, up to eight synergistic processing elements (SPEs) for
high-throughput computations, a FlexIO interface for connecting multiple processors and
devices such as network and disk controllers, and, finally, a memory controller. All the
components on the chip are connected by the element interconnect bus. An overview of
the CBE architecture is shown in Figure 2.9.

The general-purpose processor on the CBE, called the PPE, is based on a standard
IBM PowerPC 970 [54]. This processor is from the POWERA4 family and implements
both the 32- and 64-bit PowerPC instruction set and is capable of executing two threads
in parallel. The PPE has two levels of cache (32-kB level 1 data cache, 32-kB level 1
instruction cache, and 512-kB level 2 cache), has a simple branch prediction unit, supports
virtual memory, and has a vector unit called the VMX. The vector unit on the PPE is
a standard IBM AltiVec SIMD unit and it is capable of processing a 128-bit vector with
either four independent 32-bit words, eight 16-bit shorts, or 16 eight-bit bytes. The VMX
supports both floating point and integer values.

The specialized computational cores in the CBE are called SPEs and an overview
of an SPE is shown in Figure 2.10. A single SPE contains a synergistic processor unit
(SPU). The SPU has a large 128-entry 128-bit register for vector processing. The SPU is
able to execute two hardware threads in parallel; even though its vector unit has much in
common with the VMX unit in the PPE, they do not share the same AltiVec instruction
set. The SPE also only supports a 32-bit instruction set. The SPU supports both single-
and double-precision floating point values. However they are not fully compatible with the
[EEE 754 standard for double precision [54]. Support for “not a number” and infinity have
been removed to extend the range and numbers are truncated downward, toward zero.
The memory flow controller in the SPE cannot directly access data in the main system
memory; it can only access data in a small, 256-kB local storage. The local storage is
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Figure 2.10: Overview of an SPE.

non-coherent and is basically a user-controlled cache, which stores both the code and
data that the SPU will process. To copy data between other SPEs, the PPE, or the main
memory, the SPEs must use DMA transfers. These transfers can be requested both by
the PPE and the SPEs and must be set up explicitly when programming the CBE. The
architecture includes hardware support for primitives such as signals, message passing,
and atomic updates. There are message queues for communication between the SPEs,
PPE, or internally among the SPEs and the queues can be used by either an interrupt
handler or polling.

The CBEs used in our research are from the Sony PlayStation 3 game console. The
CBE in a PlayStation 3 is clocked at 3.2GHz. One of the SPEs is disabled to improve the
yield in the manufacturing process and a second SPE is reserved for a hypervisor, which
leaves six SPEs for the user. The system has 256 MB of main memory, where about 40
MB of memory is reserved for the hypervisor. The hypervisor also blocks access to certain
parts of the hardware, including the GPU and certain hardware debugging features in the
CBE. Early versions of the console also supported booting Linux. In Linux, the CBE can
be programmed using the standard GNU Compiler Collection to generate code for both
the PPE and SPE.

2.1.5 Other Hardware Architectures

There are also several other interesting hardware architectures from a heterogeneous
standpoint. In this section, we mention a couple of other architectures that we have
not been able to investigate during work on this thesis and we take a brief look at their
main features.
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Field-Programmable Gate Array (FPGA)

A FPGA is an integrated circuit that is designed to be configured by users. To configure an
FPGA, hardware description language is used. The process is similar to that used when
making dedicated application-specific integrated circuits for specific applications. The
FPGA contains programmable logic blocks and a reconfigurable interconnect to connect
the blocks. After a schematic hardware description language design is completed, an
electronic design tool must be used to generate a netlist, which describes how the logic
blocks are supposed to behave and how they are connected. Finally, the design must be
validated with respect to the placement and timing of the chip.

From a technical standpoint, an FPGA can be used to solve any problem that is
computable. One of the challenges with FPGAs is that the programmer has to break
down the problems to the logical gate level. Since all the logic gates on an FPGA work
in parallel, programmers must also take into account synchronization issues. For complex
workloads, another challenge is that only a limited number of logic blocks are available
on an FPGA and the blocks cannot be efficiently reconfigured during execution. 73]

Modern FPGAs such as the Xilinx Zynq [135] series have started to combine traditional
design with logic blocks and interconnects with an embedded ARM microprocessor. This
design is often referred to as a system on a programmable chip. It makes it easier to
reconfigure the chip during runtime and programmers can use the programmable part of
the chip for parallel parts of their applications. We have not looked into FPGAs. The
programming model is very different from that of traditional multicore systems and we
do not have any experience with hardware design.

Very Long Instruction Word (VLIW) Architectures

A VLIW architecture is a type of processor architecture that is designed to take advantage
of the instruction-level parallelism available in program code. The idea behind VLIW is
to enable programs and compilers to explicitly specify which instructions can execute in
parallel. The idea is not new, as described in Section 2.1.1. For example, x86 processors
use their superscalar architecture to execute independent instructions in different parts of
the processor and out-of-order execution reorders instructions to improve efficiency. The
drawbacks with both these approaches is that they make the hardware more complex,
resulting in larger circuits and higher power consumption. With VLIW, the processor
executes operations in parallel based on a fixed schedule generated when the program is
compiled. For even better efficiency, hints can be given to the compiler.

The VLIW concept was first invented in the early 1980s [36]. The first implementation
of VLIW was Intel’s first 64-bit processor, called the 1860, released in 1989 [71]. The only
VLIW processor architecture produced today is the Itanium architecture from Intel and
it is used only in enterprise-class server systems. We have therefore not investigated this
architecture further. Graphics processors from AMD also used VLIW [51]; however, these
have since been replaced by a RISC SIMD architecture called Graphics Core Next.

NEC SX Vector Supercomputer Architecture

The SX series architecture from NEC involves a dedicated vector processor. The latest
iterations of the processor are the SX-ACE and SX-9 processors [142]. Each core contains
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four vector processing units. Each of the vector processing units has a 16-stage pipeline
and 16 vector registers that can store 256 64-bit words. Many of the details about how
the cores operate are not public. The theoretical performance of a chip with four cores is
256 GFLOPS and multiple chips can be connected in multinode systems with SMP.

The architecture is highly optimized toward vector processing and, as a result, scalar
programs do not scale well on this architecture. The systems are shipped with SUPER-
UX, with is a custom UNIX operating system maintained by NEC. One of the main
applications for the SX architecture is to run simulations of complex climate models for
meteorological use [107]. The SX architecture is not considered in this thesis, since it is
only used in high-end enterprise-class servers.

2.1.6 Summary

In this section, we introduced the four heterogeneous architectures that we are going
to use for our experiments in this thesis. The architectures are very different but they
share some properties. Table 2.3 compares the state-of-the-market products in each of
the heterogeneous architectures.

Feature IXP x86 Cell GPU
General-purpose cores | 1 1-16 1 0f
Vector instruction set | No 256-bit 128-bit No *
AVX2 AltiVec
Specialized cores 8 0 8 192-2880
Instruction set ARMv5/ | x86 PowerPC | PTX
1C
SMT (multithreading) | No Yes Yes No
Memory model Shared Shared Exclusive | Exclusive
Cache coherency Yes Yes No * No
On-chip memory Yes No Yes Yes
Off-chip memory Yes Yes Yes Yes
Memory types SRAM/ DRAM DRAM DRAM
DRAM
Branch prediction Limited Yes Limited Limited
Cache hierarchy L1 L1-L2-L3 | L1-L2 L1-L2
User-controlled cache | No No Yes Yes °
Active development Yes Yes No Yes

t The GPU needs a host CPU to operate, but there is no CPU on the card.

f Not exposed outside the driver.

¥ Coherence between multiple Cell processors, but not with SPEs.

> Shared memory is a cache; architecture also has caches not controlled by the programmer.

Table 2.3: Comparison of the four heterogeneous architectures.

The very different properties of the architectures makes their utilization challenging
for programmers. Architectures such as the x86 use a shared memory model, where the
memory management unit on the processor takes care of all the data transport between
the cores and caches. However, on architectures such as the Cell and GPUs, which have
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an exclusive memory model, programmers need to carefully consider the data flow of
the program. Even GPUs and the IXP have multiple memory spaces available that are
more suited for some operations. The properties of these memory types on the GPU are
investigated further in Section 3.3.1. The number of cores in these architectures is also
very different. On x86 processors and on the Cell, programmers typically need tens of
threads for optimal performance, whereas on a GPU programmer need thousands and
perhaps tens of thousands of threads to obtain optimal performance. Finally, all the
architectures have different instruction sets, so there will be very little portability of code
between the architectures. This is further explored in Chapter 3.

2.2 Hardware Abstractions and Programming Models

In Section 2.1, we described several modern heterogeneous processing architectures used
in our research on processing multimedia workloads. If we look at the processing cores,
memory, caches, and buses that connect them, these architectures are very different.
However, the hardware abstractions and programming model used to expose the hardware
to programmers do not change that often.

One example where a hardware abstraction is used to expose the hardware differently
to the programmer and to the operating system is SMT. SMT is used both in x86 cores
and on the PPE in the CBE. The basic idea behind SMT is that a single processing core
is exposed as two or more separate cores to programmers and to the operating system.
Another example in which hardware abstractions are hiding the underlying hardware is
the GPUs from Nvidia described in Section 2.1.3. The last-generation Kepler GK110
GPU uses the programming model called single instruction, multiple threads (SIMT),
which was already used by the first programmable Tesla G80 GPU released in 2006. The
underlying hardware between these two GPUs has, however, changed considerably.

2.2.1 SMT

SMT is a technique used to improve the throughput of a superscalar CPU pipeline. When
a single thread is running and stalls due to a cache miss or any other high-latency instruc-
tion, it leaves parts of the processor idle. With SMT, a single processor core is exposed
to the operating system as two or more cores and the hardware tries to efficiently utilize
all the resources in the superscalar pipeline, as shown in Figure 2.11.

Intel calls this Hyper-Threading Technology. It was first used in 2002 in the Pentium 4
architecture to expose a single CPU core as two virtual cores. The same technology is
also used in the Intel Xeon Phi many-core architecture, whereas a single processor core is
exposed as four virtual cores on the Phi. In addition to Intel, IBM is using SMT on the
PPE PowerPC processing core in the CBE. SMT does not always improve performance.
There are several cases in which it can actually reduce performance for both threads
running on the processor core. The basic aim of a general-purpose CPU design is to
run a single thread as quickly as possible. The cores are often designed with techniques
such as out-of-order execution, superscalar pipelines, branch prediction, and prefetching.
SMT is often considered the last resort in filling the pipeline to prevent stalls. When
two threads compete for resources, they often take more time to finish than if they did
not have to share any resources. On the other hand, in on some architectures, such as
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Figure 2.11: A superscalar processor design with and without SMT.

the Xeon Phi many-core architecture, many cores share the memory controller, resulting
in greater memory latency. With SMT, the cores are better able to hide some of this
memory latency.

2.2.2 SIMD

SIMD, described in Flynn’s taxonomy [38] and shown in Figure 2.12, is a technique
where multiple processing elements perform the same operation on multiple data points
in parallel. SIMD is also often referred to as vector processing, since the multiple data
points are often stored in a data vector. The first mainstream use of SIMD was Intel’s
Pentium processors with MMX extensions, launched in 1996. MMX supports 64-bit long
vectors. After Intel released MMX, Motorola and IBM quickly introduced their AltiVec
vector extensions for the PowerPC and POWER systems. Since its release, Intel has also
improved and extended MMX, first to 128 bits with several versions of Streaming SIMD
Extensions and, finally, to 256 bits with two versions of the Advanced Vector Extensions.
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Figure 2.12: SIMD programming model.
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Multimedia workloads frequently perform identical operations on large data sets, which
is one of the reasons why SIMD was brought to desktop and mobile processors. In the
CBE, SIMD is an essential part of the architecture. The PPE has an AltiVec SIMD unit
and the SPEs work on a 128-bit vector. Although SIMD instructions became mainstream
with the Pentium processor in 1996 and the adoption of the PowerPC for MacOS, their
use has been and still is an art. On the Cell, SIMD instructions are used explicitly
through vector extensions to C/C++, which allows basic arithmetic operations on vector
data types of intrinsic values. This means that the programmer can apply a sequential
programming model but needs to adapt the memory layout and algorithms to the use of
SIMD vectors and operations. On the x86, programmers also have to explicitly use the
SIMD instructions and, even though the compilers are able to auto-vectorize some simple
data patterns, these operations generally have to be made manually.

2.2.3 SIMT

The abstraction used when programming GPUs from Nvidia is called SIMT. Nvidia first
introduced this model with the CUDA processing framework, released together with the
Tesla G80 GPU in 2006. CUDA uses a two-tiered threading model that maps to the
architecture. Threads are bundled into groups, which are organized in a grid, as illustrated
in Figure 2.13.

The global scheduler on the GPU distributes the groups to available SMXs and all the
threads in a group execute on the same SMX. The program that is executed on the GPU
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Figure 2.13: Nvidia CUDA programming model.
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is called a kernel. It is up to the programmer to choose how the threads are organized.
The optimal number of blocks and number of threads per block vary depending on the
GPU generation used. The optimal size of these parameters also varies depending on
the register space each thread in a block requires. If the register space on an SMX is
exhausted, the GPU will use local memory,! which is located off chip, resulting in a
massive increase in access time. SIMT enables code that uses only well-known intrinsic
types that can be massively threaded. Low-level operating system functions schedule
these threads in groups called warps (the size of a warp can be hardware specific).The
control flow of the threads can diverge as in an arbitrary program. However, this will
essentially serialize all the threads in the block, which will impact performance. If none
of the threads in the warp diverge, all the threads will execute the same operation. The
operation is then performed as a vector operation containing the data of all the threads
in the block.

2.2.4 Summary

In this section, we briefly introduced the different programming models used by the archi-
tectures in this chapter. SMT is typically used by the architectures with more complex
general-purpose cores (i.e., Cell and x86), to try using the execution pipelines more effi-
ciently. For programmers and operating systems, the use of SMT is transparent, which
can be challenging, since some applications have shown reduced performance when they
have to share resources on the same processor cores.

Both the Cell and x86 architectures use explicit SIMD instructions. This means that
the programmer can apply a sequential programming model but needs to adapt (if possi-
ble) the algorithms and memory layout to use SIMD vectors and operations. The GPUs
from Nvidia use an abstraction called SIMT. Such abstractions enable programmers to
write code that uses well-known intrinsic types but which are massively threaded. It is
the runtime of the GPU that schedules the threads. In this model, it is possible for the
threads to diverge, as in arbitrary programming, even though this will have negative ef-
fects on performance. The functionalities provided by SIMD and SIMT are very similar.
In SIMD programming, vectors are used explicitly by the programmer, many of whom
think in terms of sequential operations on very large operands. In SIMT programming,
the programmer can think in terms of threaded operations on intrinsic data types. The
SIMT concept has an interesting property: If SIMD is used, the vector width must be
known to the programmer. SIMT hides this and the code can be optimized for several
vector widths. Even though the functionality is similar, programmers still need to think
differently when using these architectures, as demonstrated in our case studies on the
different architectures in Chapters 3 and 4.

2.3 Summary
In this chapter, we introduced the heterogenecous hardware architectures and the pro-

gramming models used to program them. The architectures have very different proper-
ties, which makes their utilization challenging for programmers. In the next chapter, we

!Local memory in OpenCL is the same as shared memory in CUDA.
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look at case studies with simple multimedia workloads running on the different heteroge-
neous architectures presented in this chapter. These case studies are used to learn how
to efficiently use the different architectures.
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Chapter 3

Using Heterogeneous Architectures
for Simple Tasks

Heterogeneous systems have recently received a lot of attention. They provide more
computing power than traditional single-core systems, but their efficient use of avail-
able resources is a challenge. On some architectures, the processing cores have different
strengths and weaknesses compared to desktop processors. Several different types and
sizes of memory are exposed to the developer and limited architectural resources require
considerations of data and code granularity.

To learn more about the properties of our heterogeneous architectures, we performed
different experiments on the architectures with simple tasks related to multimedia to gain
experience. By simple tasks we mean small operations, simple steps, or small parts of
a larger complex pipeline. In most of the cases, only the part of the workload running
on the heterogeneous architecture was optimized for performance, since we wanted to
isolate only this part of the workload. The simple tasks in our investigations ranged from
experiments on how to use the different memory spaces on an Nvidia graphics processing
unit (GPU) most efficiently to protocol translation on the Intel IXP network processor
and offloading parts of Motion JPEG (MJPEG) video encoding pipeline to the single
instruction multiple data (SIMD) unit on an x86 processor, the synergistic processing
element (SPE) unit on the Cell, or the cores of an Nvidia GPU.

This chapter is organized by the heterogeneous architectures. First, we take a look at
the Intel IXP network processor. We then experiment with the Sony—Toshiba-IBM Cell
Broadband Engine before we run tests on the x86 processor architectures. Finally, we
evaluate the performance of different workloads on GPUs. In all these sections, we take a
closer look at each architecture, with one or more case studies. We use these case studies
to gain experience on how to efficiently use these architectures for parallel processing.
However, not all the workloads have been tested on all architectures.

3.1 Intel IXP Network Processor

The Intel IXP network processor was used in the early stages of this thesis as an architec-
ture that could explore the limits of integrated layer processing [24]. To do this, we used a
protocol translation prototype. The IXP card provided early insight into how to program
an asymmetric shared memory architecture and experience with video streaming.

33
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In Section 3.1.1, we take a closer look at a case study based on our work with network
protocol translation [32,33]. We use an Intel IXP2400 network processor to transparently
translate RTP/UDP video streams, which was the popular way of streaming video a
decade ago, to HTTP/TCP, which is the de facto solution today.

3.1.1 Case Study: Network Protocol Translation

In this section, we describe our implementation of a dynamic transport protocol transla-
tor on an Intel IXP2400 network processor. The IXP architecture was used in the early
stages of the research work to gain experience with a heterogeneous architecture. Stream-
ing services are available almost everywhere today. Major newspapers and TV stations
provide on-demand and live video content. Video on-demand services are common and
even personal media are frequently streamed using services such as YouTube.

Setting

The debate about the best protocols for streaming has been going on for years. Initially,
streaming services on the Internet used UDP for data transfer because multimedia appli-
cations often have demands for bandwidth, reliability, and jitter that could not be offered
by TCP. Today, this approach is hampered by the filters of Internet service providers
(ISPs) and by firewalls in access networks and in end systems. ISPs reject UDP because
it is not fair to accept it over TCP traffic and many firewalls reject UDP because it is
connectionless and requires too much processing power and memory to ensure security. It
is therefore fairly common to use HI'TP streaming, which delivers streaming media over
TCP. The disadvantage is that the end user can experience playback hiccups and quality
reduction because of the probing behavior of TCP congestion management, leading to
oscillating throughput and slow packet rate recovery. A sender who uses UDP would, in
contrast, be able to maintain a constant desired sending rate. Servers are also expected to
scale more easily when sending smooth UDP streams and avoid dealing with TCP-related
processing.

To explore the benefits of both TCP and UDP, we experiment with a proxy that
carries out a transparent protocol translation. This is similar to the proxy caching ISPs
employ to reduce their bandwidth and we do, in fact, aim at a combined solution. There
are, however, too many different sources of adaptive streaming media for end users to
apply proxy caching for all of them. Instead, we aim at live protocol translation in a
TCP-friendly manner that achieves high perceived quality for end users. Our prototype
proxy is implemented on the Intel IXP2400 network processor and enables the server to
use UDP on the server side and TCP on the client side.

Preliminary tests comparing HT'TP/TCP video streaming from a web server and RT-
SP/RTP/UDP streaming from a Komssys video server [45] show that, in case of loss, our
solution using a UDP server and a proxy later translating to TCP delivers a smoother
stream at the playout rate while the TCP stream oscillates heavily.

Workload: Translating Proxy

An overview of our protocol translating proxy is shown in Figure 3.1. The client sends a
GET request, which is translated to RTSP by the proxy. The proxy then generates the
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Figure 3.1: Overview of the streaming scenario.

pipeline and starts to push data. The TCP connection between the proxy and client is
assumed to be fast enough. If not, the proxy will drop packages before the TCP sequence
numbers have arrived. Note that both peers are unaware of each other. The server
assumes the client uses UPD and vice versa.

The steps and phases of a streaming session are as follows. The client sets up a HTTP
streaming session by initiating a TCP connection to the server; all packets are intercepted
by the proxy and modified before being passed on to the streaming server. The proxy
also forwards the TCP three-way handshake between the client and server, updating the
packet with the server’s port. When established, the proxy splits the TCP connection
into two separate connections that allow for the individual updating of sequence numbers.
The client sends a GET request for a video file. The proxy translates this into a SETUP
request and sends it to the streaming server using the TCP port of the client as its
proposed RTP/UDP port. If the setup is unsuccessful, the proxy will inform the client
and close the connection. Otherwise, the server’s response contains the confirmed RTP
and RTCP ports assigned to a streaming session. The proxy sends a response with an
unknown content length to the client and issues a PLAY command to the server. When
received, the server starts streaming the video file, using RTP/UDP. The UDP packets
are translated by the proxy as part of the HTTP response, using the source port and
address matching the HTTP connection. Because the RTP and UDP headers combined
are longer than a standard TCP header, the proxy can avoid the penalty of moving the
video data in memory, thus permitting reuse of the same packet by padding the TCP
options field with NOPs. When the connection is closed by the client during or after
playback, the proxy issues a TEARDOWN request to the server to avoid flooding the
network with excess RTP packets.

Implementation

Our prototype is implemented on a programmable network processor using the IXP2400
chipset [57]. The chipset is Intel’s second-generation, highly programmable network pro-
cessor and is designed to handle a wide range of access, edge, and core network applica-
tions. A more detailed overview of the architecture is given in Section 2.1.2.

The transport protocol translation operation is shown in Figure 3.2. The protocol
translation proxy uses the XScale core and one micro engine (uEngine) application block.
In addition, we use two pEngines for the receiving (RX) and the sending (TX) blocks.
Incoming packets are classified by the pEngine based on the header. The RTSP and
HTTP packets are queued for processing on the XScale core (control path), while the
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Figure 3.2: Packet flow on the Intel IXP2400.

RTP packets are handled on the pEngine (fast path). TCP acknowledgments with a zero
payload size are processed on the pEngine for performance reasons.

The main task of the XScale is to set up and maintain streaming sessions, but after
initialization, all video data are processed (translated and forwarded) by the pEngines.
The proxy supports partial TCP/IP implementation, covering basic features. This is
done, to save both time and resources on the proxy.

Experiments

We investigated the performance of our protocol translation proxy compared to plain
HTTP streaming in two different settings. In the experiment shown in Figure 3.3, we
induced unreliable network behavior between the streaming server and the proxy, while
in the second experiment, the unreliable network connected the proxy and the client.
We performed several experiments where we examined both the bandwidth and the de-
lay while changing both the link delays (0-200 ms) and the packet drop rate (0-1%).
We used a web server and an RTSP video server using RTP streaming, running on a
standard Linux machine. Packets belonging to end-to-end HTTP connections made to
port 8080 were forwarded by the proxy, whereas packets belonging to sessions initiated
by connections made to port 80 were translated. The bandwidth was measured on the
client by monitoring the packet stream with tcpdump [121]. We include only the server—
proxy loss experiments in this thesis. For more details about the TCP congestion control
implementation and the full evaluation, see paper I [32].

The results from the test where we introduced loss and delay between the server and
the proxy are shown in Figure 3.3. The plot shows that our proxy that transparently
translates from RTP/UDP to TCP achieves a mostly constant rate for the delivered
stream. Sending the HTTP stream from the server, on the other hand, shows large
performance drops when the loss rate and the link delay increase.
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Figure 3.3: Achieved bandwidth, varying drop rate and link latency with 1% server—proxy
loss.

Discussion

Even though our proxy seems to provide better, more stable bandwidths, there is a trade-
off, because instead of retransmitting lost packets (and thus old data if the client does
not buffer), the proxy fills the new packet with new, updated data from the server. This
means that the client in our prototype does not receive all the data and artifacts may be
displayed. On the other hand, in case of live and interactive streaming scenarios, delays
due to retransmission may introduce dropped frames and delayed playout. This can cause
video artifacts, depending on the codec used. However, this problem can be easily reduced
by adding a limited buffer per stream sufficient for one retransmission on the proxy.

One issue in the context of proxies is where and how the proxy should be implemented.
For this study, we chose the IXP2400 platform, since we explored the offloading capabilities
of such programmable network processors earlier. With such an architecture, the network
processor is suited for many similar operations and the host computer could manage the
caching and persistent storage of highly popular data served by the proxy itself. However,
the idea itself could also be implemented as a user-level proxy application or integrated
into the kernel of an intermediate node performing packet forwarding packets at the cost
of limited scalability and potentially greater latency.

Both TCP and UDP have their strengths and weaknesses. In this case study, we used
a proxy that carried out transparent protocol translation to utilize the strengths of both
protocols in a streaming scenario. It enabled the server to use UDP on the server side
and TCP on the client side. The server gained scalability by not having to deal with TCP
processing. On the client side, the TCP stream was not discarded and passed through
firewalls. The experimental results show that our protocol transparent proxy achieved
translation and delivers smoother streaming than HTTP streaming.

Summary

For the context of this thesis, we learned that the IXP is a complicated architecture to
work with. Writing the network translation proxy requires detailed knowledge about the
platform. Another observation is that, when working with a cutting-edge architecture,
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the quality of the documentation and compilers can be a challenge.

3.1.2 Implications

The IXP2400 is an asymmetric multicore architecture and has processing elements with
different capabilities. The XScale core is a general-purpose ARM11 core and the uEngines
are specialized cores built for packet processing. This architecture is a shared memory
architecture, meaning that all the cores (both XScale and pEngines) have access to the
same memory. This is very convenient for the programmer when developing applications,
since inter-process communication is very simple. However, there are challenges with
shared memory architectures and you might end up with unnecessary transfers to prefetch
local caches as a result. In addition, cache coherency protocols can consume resources
on the interconnects between the processing elements, preventing efficient performance
scaling.

The asymmetric nature of the IXP2400 chip can also be a disadvantage. The special-
ized cores often require special compilers, application programming interfaces (APIs), and
tools to write applications. This was an issue with the IXP2400 chip when we conducted
experiments on the platform, where lack of documentation and subpar, buggy compilers
can create problems for a programmer.

Writing an application for the IXP2400 also requires the programmer’s detailed knowl-
edge about the architecture. One of the main advantages with this architecture is the
ability to analyze and manipulate network packets at full line speed (1 Gbps) while adding
as little latency as possible to the stream. To achieve this, programmers need to know
the different memory types on the board and how to use them. The architecture also has
many special features, such as a hardware thread context switch that waits until after
memory fetch/store completion. A disadvantage is that one loses almost all portability
with an application written for an architecture such as this. When moving to the next
generation of hardware, an application might require a complete rewrite.

Revisiting with State-of-the-Market Hardware

When these experiments were conducted in 2006 and 2007, it was not possible to write
a protocol translation proxy that could run on a standard Linux desktop PC at the full
line speed of 1 Gbps. With recent general-purpose hardware such as the Intel Haswell
architecture, it is possible to do this with software executing on the central processing
unit (CPU). On the other hand, network processors have also evolved. Netronome, the
company that bought the IXP technology from Intel, has continued developing both
hardware and software. Their adapters are now capable of processing two 100-Gbps fiber
links at line speed [82]. This is not possible on a desktop PC today.

Another possibility would be to use another heterogeneous architecture to process the
network traffic. Han et al. [47] have shown that a software router implemented on an
Nvidia Fermi GPU can forward data at a rate of 39 Gbps, outperforming a CPU-based
software router by a factor of four. A GK110 Kepler GPU, which is the latest GPU
generation, would do this even faster. However, a GPU implementation will have some of
the same challenges as our IXP2400 implementation. Heterogeneous architectures provide
great flexibility and performance, but often at the cost of portability.
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3.2 x86 Processor Architecture

The x86 processors in modern computers are a symmetric multicore CPU with a shared
memory model. In the symmetric multicore processing (SMP) model, the cores should
theoretically be identical. However, many architectural details, such as the underlying
hardware architecture, are hidden from programmers. We therefore want to learn more
about the architecture.

The x86 architecture can have a different degree of connectivity to the other cores.
Cores can be on the same chip, in the same package, in different sockets on the same
machine, and in some cases even distributed over multiple machines with interconnects
such as Numascale [86]. The system memory can also be segmented in such a way that
access to other parts of system memory may have to traverse through other cores via
the processor interconnect. In our experiments, x86 processors are also often a part of
a heterogeneous architecture, with one or more GPUs connected over PCI Express as a
COProCessor.

In this section, we take a closer look at three case studies. The first case study pre-
sented in Section 3.2.1 is based on our article “Tips, Tricks and Troubles: Optimizing for
Cell and GPU” [112]. Even though that research paper was mainly focused on the Cell and
GPUs, we also conducted experiments on the efficiency of discrete cosine transformation
(DCT) algorithms and the effect of using SIMD on the x86. The second study presented
in Section 3.2.2 is based on our work on multi-rate encoding with the VP8 codec [34,35].
In these experiments, we use the shared memory model of the x86 architecture to reuse
parts of the computational heavy analysis stage of the video encoder. In the final study in
Section 3.2.3, we investigate the parallel execution of a game server [102], using a thread
pool to execute lightweight game server -related tasks running on a multi-socket x86 SMP
system.

3.2.1 Case study: Motion JPEG Encoding

We want to learn how to think when the multicore system at our disposal is a Cell, x86,
or GPU. We aim to understand how to use the resources efficiently and point out tips,
tricks, and problems as a small step toward a programming framework and a scheduler
that parallelizes the same code efficiently on several architectures. Specifically, we look at
effective programming for the workload-intensive yet relatively straightforward MJPEG
video encoding. This task consumes many CPU cycles in the sequential DCT, quantiza-
tion, and compression stages. On single-core systems, it is almost impossible to process
a 1080p high-definition (HD) video in real time, so it is reasonable to apply multicore
computing in this scenario.

Workload: MJPEG

The MJPEG format is widely used by webcams and other embedded systems. It is
similar to video codecs such as Apple ProRes and VC-3, used for video editing and
post-processing due to their flexibility and speed— hence the lack of inter-prediction
between frames. As shown in Figure 3.4, the encoding process of MJPEG comprises
the splitting of video frames into 8x8 macroblocks, each of which must be individually
transformed to the frequency domain by forward DCT and quantized before the output
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Figure 3.4: Overview of the MJPEG encoding process.

is entropy coded using variable-length coding (VLC). JPEG supports both arithmetic
coding and Huffman compression for VLC and our encoder uses predefined Huffman
tables for the compression of the DCT coefficients of each macroblock. The VLC step
is not context adaptive and macroblocks can thus be independently compressed. The
length of the resulting bitstream, however, is probably not a multiple of eight and most
such macroblocks must be completely bit-shifted when the final bitstream is created.

The MJPEG format provides many layers of parallelism; starting with the many inde-
pendent operations in calculating DCT's, the macroblocks can be transformed and quan-
tized in arbitrary order and frames and color components can be encoded separately. In
addition, every frame is entropy coded separately. Thus, many frames can be encoded in
parallel before the resulting frame output bitstreams are merged. This provides a very
fine level of granularity for parallel tasks, providing great flexibility in implementing the
encoder.

The forward two-dimensional (2D) DCT function for a macroblock is defined in the
JPEG standard for image component s, , to output DCT coefficients S, ,, as

77
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where C,,, C, = Lz for u,v = 0 and C,,C, = 1 otherwise. The equation can be directly
implemented in an MJPEG encoder and is referred to as 2D plain. The algorithm can be
sped up considerably by removing redundant calculations. One improved version that we
label one dimensional (1D) plain uses two consecutive 1D transformations with a transpo-
sition operation in between and after. This avoids symmetries and the 1D transformation
can be optimized further. One optimization uses fast DCT, the Arai-Agui-Nakajima [5],
or AAN, further refined by Kovac and Ranganathan [72]. Another uses a precomputed
8x8 transformation matrix that is multiplied with the block together with the transposed
transformation matrix. The matrix includes the post-scale operation and the full DCT
operation can therefore be completed with just two matrix multiplications, as explained
by Kabeen and Gent [15]. More algorithms for calculating DCT exist, but they were not
covered in our experiments.

x86 Experiments

The first x86 experiments investigated the efficiency of choosing the correct algorithm for
the platform. We implemented the different DCT algorithms as scalar single-threaded
versions on an Intel Core i5-750 based on the Nehalem microarchitecture. The perfor-
mance details for encoding HD video were captured using Oprofile and can be seen in
Figure 3.5.
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Figure 3.5: MJPEG encoding time on a single-thread x86.

The plot shows that the 1D AAN algorithm using two transposition operations was the
fastest in this scenario, with the 2D matrix version second fastest. The average encoding
time for a single frame using a 2D-plain arrangement is more than nine times slower than
a frame encoded using 1D AAN. For all algorithms, the DCT step consumed the most
CPU cycles.

Using a scalar version of the DCT is not the most efficient use of the execution pipeline
on a x86 processor. We therefore took the simple DCT algorithm (2D plain) and optimized
it with Streaming SIMD Extension (SSE) vector instructions. The experiments were
conducted on an Intel Core i7-3720QM processor and the optimized version of the DCT
algorithm used the 128-bit SSE 4.2 instruction set. In this experiment, we use the 1080p
standard test sequence “tractor” to benchmark the implementation.

2D-Plain-SIMD

2D-Plain-Scalar

L L I L L B T T L L L
0 500 1000 1500 2000 2500 3000 3500
Average encode time (ms)

Figure 3.6: Scalar and SIMD versions with a 2D-plain arrangement on an x86.

The results are shown in Figure 3.6. The scalar version of the code that is a straight-
forward implementation of the 2D-plain algorithm uses around 3500 ms per HD frame.
The SIMD optimized version uses only 222 ms. This implementation uses 128-bit SIMD
vectors, meaning that we can process four DCT values in parallel, while the scalar version
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only processes one value at a time.

Summary

These results show that even on the x86 processor architecture, it is important to both
choose the right algorithm and optimize the selected algorithm for the platform. However,
writing an SIMD version of the x86 code is, as we see later with Cell, a tedious process.
Everything must be done by hand and, since not all x86 processors support the same
SIMD instructions, you might need multiple versions of the optimization if you want code
portability.

3.2.2 Case Study: Multi-Rate Video Encoding with VP8

To learn more about the importance of sharing data between multiple threads and pro-
cesses when parallelizing multimedia workloads, we investigate how to use the x86 archi-
tecture for multi-rate video encoding with the VP8 codec. We use the shared memory
architecture of the x86 processors to reuse the computationally expensive analysis step
between multiple instances of the VP8 encoder running in different threads.

Setting

The amount of video data available on the Internet is exploding and the number of video
streaming services, both live and on demand, is quickly increasing. For example, consider
the rapid deployment of publicly available Internet video archives providing a wide range
of content such as newscasts, movies, and educational videos. Internet users uploaded 100
hours of video to YouTube every minute in October 2014 [139]. Furthermore, all major
(sports) events, such as European soccer leagues, NFL hockey, NBA basketball, and NFL
football, are streamed live with only a few seconds’ delay to millions of concurrent users
over the Internet, supporting a wide range of devices, from mobile phones to HD displays.
The number of videos streamed from such services is on the order of tens of billions
per month [37,139] and leading industry experts conjecture that traffic on mobile phone
networks will soon be dominated by video content [23].

Adaptive HTTP streaming is frequently used on the Internet and is currently the
de facto video delivery solution. For example, Move Networks [81] was one of the first
providers of segmented adaptive HT'TP streaming, later followed by major actors such as
Microsoft [141], DASH [110], Apple [96], and Adobe [2]. In these systems, the bitrate (and
thus video quality) can be changed dynamically to match varying bandwidths and CPU
resources, providing a large advantage over non-adaptive systems, which are frequently
interrupted due to buffer underruns or data loss. The video is thus encoded in multiple
bitrates matching different devices and different network conditions.

Today, H.264 is the most frequently used codec. However, an emerging alternative
is the simpler VP8, which is very similar to H.264’s baseline profile and supposedly well
suited for web streaming, with native support in major browsers, royalty-free use, and
similar video quality as H.264 [95,108]. Nevertheless, for both codecs, the challenge in
the multi-rate scenario is that each version of the video requires a separate processing
instance of the encoding software. This may be a challenge in live scenarios, where all the
rates must be delivered in real time, and, in YouTube’s case, will require an enormous
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data center to maintain the upload rate. Thus, the process of encoding videos at multiple
levels of quality and data rates consumes both time and resources.

Workload: The VP8 Codec

The VP8 codec [9] was originally developed by On2 Technologies as a successor to VP7
and is a modern codec for storing progressive video. After acquiring On2 Technologies
in 2010, Google released VP8 as an open-source WebM project, a royalty-free alternative
to H.264. The WebM format was later added as a supported format in the upcoming
HTML5 standard.

Many of the features in the VP8 codec are heavily influenced by H.264. The VP8
codec has similar functionality as the H.264 baseline profile. One of the differences is that
VPS8 has an adaptive binary arithmetic coder instead of context-adaptive VLC (CAVLC).
However, VPS8 is not designed to be an all-purpose codec and it primarily targets web and
mobile applications. This is why VP8 has omitted features such as interlacing, scalable
coding, slices, and color spaces other than YUV 4:2:0. This reduces encoder and decoder
complexity while retaining video quality for the most common use case, that is, making
VPS8 a good choice for lightweight devices with limited resources.

A VP8 frame is either of the intra-frame or the inter-frame type, corresponding to I-
and P-frames in H.264, but it has no equivalent to B-frames. In addition, VP8 introduces
the concept of tagging a frame as altref and golden frames, which are stored for reference
in the decoder. When predicting, blocks may use regions from the immediately previous
frame, from the last golden frame, or from the last altref frame.

The encoding loop of VP8 is very similar to that of H.264. The process consists of an
analysis stage, which decides if intra- or inter-prediction will be used, DCT, quantization,
dequantization, and inverse DCT (iDCT), followed by an in-loop deblocking filter. The
result of the quantization step is entropy coded using a context-adaptive Boolean entropy
coder and stored as the output bitstream. The output bitrate of the resulting video is
dependent on the prediction parameters in the bitstream and quantization parameters.

Multi-Rate Encoding

The multi-rate encoder is based on the reference VP8 encoder, released as part of the
WebM project [9]. Figure 3.7 shows a simplified call graph of the VP8 reference encoder.
In this call graph, we can see the flow of the program, how many times a function has
been called, and the percentage of execution time spent in different parts of the code.
The basic flow of the entire encoder is illustrated in the upper part of Figure 3.8, with an
analysis and the encoding part of the pipeline.

The analysis part consists of macroblock mode decision and intra/inter-prediction,
which corresponds to vp8_rd_pick inter mode in Figure 3.7. The encode part refers to
transformation, quantization, dequantization, and inverse transformation, corresponding
to the functions vp8_encode_inter* and vp8_encode_intrax* for the various block modes
chosen. The Output involves entropy coding and writing the output bitstream to a file.
This part of the encoder is not shown in the call graph. Profiling of the VP8 encoding
process shows that during encoding of the foreman test sequence, over 80% of the execu-
tion time is spent in the analysis part of the code; that is, if this part can be reused for
encoding operations for other rates, resource consumption can be greatly reduced. This
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Figure 3.7: Profile of the main parts of the reference VP8 encoder.

can be done because the outputs have identical characteristics except for the bitrate and
the main difference between them involves the quantization parameters. Regardless of
the target bitrate, the analysis step that includes searching for motion vectors and other
prediction parameters can be carried out without considering the target bitrate, trading
this for prediction accuracy.

To evaluate this approach, we implemented a VP8 encoder with support for multi-
ple outputs. We reused a single analysis step for several instances of the encoding part,
as seen in Figure 3.8. This mitigates the requirements for re-doing the computationally
heavy analysis step and at the same time allows the encoding instances to emit different
output bitrates by varying the quantization parameters in the encoder step. The encoder
starts one thread for each specified bitrate, where each thread corresponds to a separate
encoding instance. The instances have identical encoding parameters, such as key frame
interval and subpixel accuracy, except for the target bitrate. Since the bitrate varies,
each instance must maintain its own state and reconstruction buffers. The threads are
synchronized on a frame-by-frame basis, where the main encoding instance analyzes the
frame before the analysis computations are made available to the other threads. This pro-
cess involves macroblock mode decision and intra- and inter-prediction. The non-main
encoding instances reuse these computations directly without carrying out the computa-
tionally intensive analysis steps. Most notably, vp8_rd_pick_inter mode (Figure 3.7) is
only performed by the main encoding instance. Since the VP8 encoder is not written with
the intention of running multiple encoding instances in parallel, the encoder goes through
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Figure 3.8: Basic flow for the multi-rate VP8 encoder.

significant changes to adapt itself to run multiple instances in parallel.

Experiments

For this case study, we include only one of the experiments that investigated encoding
performance at HD resolution. We do not include quality assessment tests, prediction
bitrate selection, and the analysis of encoding behavior for different content. These tests
are considered out of the scope of this thesis and can be found in paper V [34].

In the HD streaming scenario, we performed experiments using the 1080p resolution
test sequence blue sky encoded at 1500 kbps, 2000 kbps, 2500 kbps, and 3000 kbps. To
measure performance, we used time to measure the CPU time consumed. All experiments
were run on a four-core Intel Core i5-750 processor based on the Nehalem microarchitec-
ture. This processor does not support SMT.

Figure 3.9 shows the results for the four different output rates. To see if there is a
difference for the different prediction bitrates chosen when using the multi-rate encoder,
we included one test for each prediction bitrate. These results are compared to the
combined CPU time used when encoding the videos for the same rates using the reference
encoder with both a single thread and multiple threads. The CPU time used in the
multi-rate approach needs only 40.5% of the time it takes to encode four sequences using
the reference encoder. The multi-rate approach scales further if the number of encoded
streams is increased. In addition, the time spent in kernel space is far less in the multi-rate
approach compared to the reference encoder and we believe this is a result of reading the
source video from disk only once.

Summary

To demonstrate our idea, we implemented a prototype that reuses the most expensive
operations based on a performance profile of the encoding pipeline. In particular, our
multi-rate encoder reuses the analysis part consisting of macroblock mode decision and
intra/inter-prediction. The experimental results indicate that we can encode the different
videos at the same rates with approximately the same levels of quality compared to the
VPS8 reference encoder, while significantly reducing the encoding time.
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Figure 3.9: CPU time in an HD streaming scenario (blue sky).

We analyzed and performed experiments with Google’s VP8 encoder, encoding differ-
ent types of video at multiple rates for various scenarios. Our main contribution is that we
propose a way of reusing decisions from intra- and inter-prediction in the video encoder
to avoid computationally expensive steps that are redundant when encoding for multiple
target bitrates of the same video object. The method can be used in any video codec,
comprising an analysis and encoding step with similar structure as for H.264 and VPS8.
Furthermore, the method was implemented in the VP8 reference encoder as a case study
and the experimental results show that the computational demands are significantly re-
duced at the same rates and approximately the same quality levels compared to the VP8
reference implementation; that is, for a negligible loss in quality in terms of PSNR, the
processing costs can be greatly reduced.

We also learned that the shared memory architecture on the x86 is suited for sharing
the data from the computationally expensive steps in the VP8 encoder. Our experiments
also show that if we use multiple instances of the reference encoder, the performance is
actually better if the workload is executed sequentially instead of concurrently. This is
due to greater contention in both the operating system scheduler and on buses, caches,
and execution resources on the CPU.

3.2.3 Case Study: Parallel Execution of a Game Server

Many multimedia workloads are massively parallel and, when such workloads are opti-
mized on the x86 architecture, the number of threads used is an important parameter.
Too many threads will result in decreased performance due to the context switching over-
head in the operating system. With our game server workload, we want to investigate
this threshold on the x86 architecture.
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Setting

Over the last decade, online multiplayer gaming has experienced amazing growth. Providers
of the popular online games must deliver reliable service to thousands of concurrent play-
ers, meeting strict processing deadlines for the players to have an acceptable quality of
experience.

One major goal for large game providers is to support as many concurrent players in a
game world as possible while preserving strict latency requirements for the players to have
an acceptable quality of experience. The load distribution in these systems is typically
achieved by partitioning game worlds into areas of interest to minimize message passing
between players and allow the game world to be divided between servers. Load balancing
is usually completely static, where each area has dedicated hardware. This approach is,
however, limited by the distribution of players in the game world and the problem is that
the distribution of players is heavily skewed, with about 30% of players in 1% of the game
area [20]. To handle the most popular areas of the game world without reducing the
maximum interaction distance for players, individual spatial partitions cannot be serial.
The most CPU-intensive loads for a massively multiplayer online game (MMOG) server
are in situations in which the players experience the most “action.” Hence, the worst-case
scenario for a server is when a large proportion of the players gather in a small area for
high-intensity gameplay.

The traditional design of MMOG servers relies on sharding for further load distribution
when too many players visit the same place simultaneously. Sharding involves making a
new copy of an area of a game, where players in different copies are unable to interact.
This approach eliminates most requirements for communication between the processes
running individual shards. An example of such a design can be found in Chu et al. [22].

The industry is now experimenting with implementations that allow for greater lev-
els of parallelization. One example is Eve Online [30], which avoids sharding and allows
all players to potentially interact. Large-scale interactions in Eve Online are handled
through an optimized database. At the local scale, however, the servers are not paral-
lel and performance is extremely limited when too many players congregate in one area.
With a lockless, relaxed atomicity state (LEARS), we take this approach even further
and focus on how many players can be handled in a single game world segment. We
present a model that allows for better resource utilization of multiprocessor game server
systems that should not replace spatial partitioning techniques for work distribution but,
rather, complement them to improve on their limitations. Furthermore, a real prototype
game is used for evaluation, where captured traces are used to generate server loads. We
compare multithreaded and single-threaded implementations to measure the overhead of
parallelizing the implementation and to demonstrate the experienced benefits of paral-
lelization. The change in responsiveness of different implementations with increased loads
on the server is studied and we discuss how generic elements of this game design impact
performance on our chosen implementation platform.

Workload: LEARS Model Game Server

Traditionally, game servers have been implemented much like game clients: based around
a main loop that updates every active element in the game. These elements include, for
example, player characters, non-player characters, and projectiles. The simulated world
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has a list of all the active elements in the game and typically calls an update for each
element. The simulated time is kept constant throughout each iteration of the loop, so
that all the elements obtain updates at the same points in simulated time. Such a point
in time is referred to as a tick. Using this method, the active element performs all its
actions during the tick. Since only one element updates at a time, all actions can be
performed directly. The character reads input from the network, performs updates on
itself according to the input, and updates other elements with the results of its actions.

LEARS is a game server model with support for lockless, relaxed atomicity state
parallel execution. The main concept is to split the game server executable into lightweight
threads at the finest possible granularity. Each update of every player character, Al
opponent, and projectile runs as an independent work unit.

White et al. [130] describe a model they call a state-effect pattern. Based on the
observation that changes in a large actor-based simulation are happening simultaneously,
the model separates read and write operations. Read operations work on a consistent
previous state and all write operations are batched and executed to produce the state
for the next tick. This means that the ordering of events scheduled to execute in a tick
does not need to be considered or enforced. For this design, we additionally remove the
requirement of batching write operations, allowing these to happen at any time during the
tick. The rationale for this relaxation is found in the way traditional game servers work.
In the traditional single-threaded main loop approach, every update is allowed to change
any part of the simulation state at any time. In such a scenario, the state at a given time
is a combination of values from two different points in time, current and previous, exactly
the same situation as in the design presented here.

The second relaxation relates to the atomicity of game state updates. The fine granu-
larity creates a need for significant communication between threads to avoid problematic
lock contention. Systems where elements can only update their own state and read any
state without locking [1] obviously do not work in all cases. However, game servers are
not accurate simulators and, again, depending on the game design, some (internal) errors
are acceptable without violating game state consistency.

The end result of our proposed design philosophy is that there is no synchronization in
the server under normal running conditions. Since there are cases in which transactions
are required, they can be implemented outside the LEARS event handler, running as
transactions requiring locking.

Design and Implementation

In our experimental prototype implementation of the LEARS concept, the parallel ap-
proach is realized using thread pools and blocking queues. The creation and deletion of
threads incur large overheads and context switching is an expensive operation. These
overheads constrain a system’s design, that is, threads should be kept as long as possible,
and the number of threads should not grow unbounded. We use a thread pool pattern to
work around these constraints and a thread pool executor (the Java ThreadPoolExecutor
class) to maintain the pool of threads and a queue of tasks. When a thread is available,
the executor picks a task from the queue and executes it. The thread pool system itself is
not preemptive, so the thread runs each task until it is done. This means that, in contrast
to normal threading, each task should be as small as possible, that is, larger units of work
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Figure 3.10: Design of a game server.

should be split up into several sub-tasks.

The thread pool is a good way to balance the number of threads when the work is
split into extremely small units. When an active element is created in the virtual world,
it is scheduled for execution by the thread pool executor and the active element updates
its state exactly as in the single-threaded case. Furthermore, our thread pool supports
the concept of delayed execution. This means that tasks can be put into the work queue
for execution at a specified time in the future. When the task is finished for one time slot,
it can reschedule itself for the next slot, delayed by a specified time. This allows active
elements to have any lifetime, from one-shot executions to the duration of the program.
It also allows different elements to be updated at different rates, depending on the game
developer’s requirements.

All work is executed by the same thread pool, including the slower input/output (I1/0O)
operations. This is a consistent and clear approach, but it does mean that game updates
could be stuck waiting for I/O if not enough threads are available.

The thread pool executor used as described above does not restrict which tasks are
executed in parallel. All systems elements must therefore allow any of the other elements
to execute concurrently.

To enable fast communication between threads with shared memory (and caches), we
use blocking queues, using the Java BlockingQueue class, which implements queues that
are synchronized separately at each end. This means that elements can be removed from
and added to the queue simultaneously and, since each of these operations is extremely
fast, the probability of blocking is low. Thus, these queues allow information to be passed
between active objects. Each active object that can be influenced by others has a blocking
queue of messages. During its update, it reads and processes the pending messages from
its queue. Messages are processed in the order they were put in the queue. Other active
elements put messages in the queue to be processed when they need to change the state
of other elements in the game.

Messages in the queues can only contain relative information and not absolute values.
This restriction ensures that the change is always based on updated data. For example,
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if a projectile needs to tell a player character that it took damage, it should only inform
the player character about the amount of damage, not the new health total. Since all
changes are put in the queue and the entire queue is processed by the same work unit, all
updates are based on up-to-date data.

To demonstrate LEARS, we implemented a prototype game containing all the basic
elements of a full MMOG, with the exception of persistent states. The system was imple-
mented in Java. This programming language has strong support for multithreading and
has well-tested implementations of all the required components. The basic architecture
of the game server is described in Figure 3.10. The thread pool size can be configured
and will execute the different workloads on the CPU cores. The workloads include the
processing of network messages, moving computer-controlled elements (only projectiles in
this prototype), checking for collisions and hits, and sending outgoing network messages.

Experiments

In this case study, we only include the resource consumption and thread pool size ex-
periments. We also conducted experiments on client latency. These tests are considered
beyond the scope of this thesis, but the experiments can be found in paper VI [102].

To simulate realistic game client behavior, the game was run with five people playing
the game with a game update frequency of 10 Hz. The network input to the server
from this session was recorded with a timestamp for each message. The recorded game
interactions were then played back multiple times in parallel to simulate a large number
of clients. To ensure that client performance was not a bottleneck, the simulated clients
were distributed among multiple physical machines. Furthermore, since an average client
generates 2.6 kbps of network traffic, the 1 Gbps local network interface that was used
for the experiments did not limit the performance. The game server was run on a server
machine containing four dual-core AMD Opteron 8218 processors with a total of 16 GB
of RAM (4 GB of RAM per socket).

We investigated resource consumption when players connected to the game server as
shown in Figure 3.11. We present the results for 620 players, since this is the highest num-
ber of simultaneous players that the server could handle before a significant degradation
in performance. The server was able to keep the update rate smooth, without signifi-
cant spikes; CPU utilization grew while the clients were logging on and then stabilized at
almost full CPU utilization for the rest of the run.

To investigate the effects of the number of threads in the thread pool, we performed
an experiment where we kept the number of clients constant while varying the number
of threads in the pool. A total of 700 clients were chosen, since this number slightly
overloads the server. The number of threads in the pool was increased in increments of
two, from two to 256. Figure 3.12 clearly shows that the system utilizes more than four
cores efficiently, since the four-thread version shows significantly higher response times.
At one thread per core or more, the numbers are relatively stable, with a tendency toward
consistently lower response times with more available threads, up to about 40 threads.
This could mean that threads are occasionally waiting for I/O operations. Since thread
pools are not preemptive, such situations would lead to one core going idle if there were
no other available threads. Too many threads, on the other hand, could lead to excessive
context switch overhead. The results show that the average slowly increases after about
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50 threads, though the 95th percentile is still decreasing with an increasing number of
threads, up to about 100. From then on, the best case worsens again, most likely due to
context switching overhead.

Summary

In terms of programming techniques, we have shown that we can improve resource utiliza-
tion by distributing the load across multiple CPUs in a unified memory multiprocessor
system. This distribution is made possible by relaxing constraints on the ordering and
atomicity of events. The system scales well, even in the case in which all players must
be aware of all other players and their actions. The thread pool system balances load
well between the cores and its queue-based nature means that no task is starved unless
the entire system lacks resources. Message passing through the blocking queue allows
objects to communicate intensively without blocking each other. Running our prototype
game, we show that the eight-core server can handle a factor of two more clients before
the response time becomes unacceptable.

Our results indicate that it is possible to design an “embarrassingly parallel” game
server. We also observe that the implementation is able to handle a quadratic increase
in in-server communication when many players interact in a game world hotspot. The
experiments also show that if too many threads are added to the thread pool, performance
will decrease. This is mainly due to greater contention in the operating system scheduler.
We also saw the importance of balancing the number of threads with the number of CPU
cores available in the system. If the size of the thread pool is too large, the delays on the
game server will increase.

3.2.4 Implications

The x86 architecture is very straightforward for application development. The architec-
ture uses a shared memory model, which means that all the processors available to an
operating system are able share the memory and the processor manufacturers have im-
plemented cache coherency protocols to make sure that the data in all the caches are
updated. However, this comes at a cost. The traffic generated by these protocols can
end up starving the bandwidth on the inter-core communication buses that are used for
sharing data and accessing memory.

On asymmetric architectures such as the Cell, IXP, and GPUs, on often has specialized
cores that are fast for specific operations. On the x86, all the cores are general purpose.
However, they often have specialized functions, such as SSE/AVX units, to carry out fast
vector operations, but this requires the applications to be optimized by hand.

Another challenge with the x86 when running an application with many threads is
that the threads on the platform are not as lightweight as on the Cell or on GPUs and
too many threads executing on too few cores will result, as we saw in Section 3.2.3, in loss
of performance due to the context switching overhead. We also saw the same trends with
the VP8 encoder in Section 3.2.2. Running Google’s reference encoder serially provided
better performance than running it concurrently.

The x86 hides a great deal of the architectural details from programmers. This makes
the architecture very easy to use, but comes at the cost of performance.
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Revisiting with State-of-the-Market Hardware

If we were to revisit these experiments with the latest generation of Haswell x86 processors,
we would probably obtain better performance. The advantage for end users with the x86
is its backward compatibility. This means that we can just run the programs, even
without recompiling them. This is not an optimal solution for hardware manufacturers.
Compatibility with old instructions makes these processors’ designs more complex, which
increases their power consumption. However, if we want to utilize the more advanced
vector instructions and other extensions (i.e., transactional memory support) that are
added in new generations of processors, we still have to rewire the applications for support.

3.3 Graphics Processing Units

A GPU is an asymmetric coprocessor that is often connected to the CPU with a PCI
Express bus. In some cases, it can also be integrated onto the CPU die. The GPU is a
highly parallel architecture and, where an x86 processor would require tens of threads to
achieve peak performance, a GPU would typically require thousands of threads. A GPU,
like the Cell, has an exclusive memory model. The GPU has multiple off-chip and on-chip
memory types that a programmers must use correctly to achieve the best performance.
The main focus for our experiments on the GPU was first to learn how they performed in
different scenarios and, later, how we could offload parallel parts of multimedia workloads.

In the following section, we take a closer look at four case studies. First, in Sec-
tion 3.3.1, we look at how to use the memory correctly and the implications of not choos-
ing the right memory space. Next, in Section 3.3.2, we look at communication patterns
between the host CPU and the GPU, using a multimedia workload. In Section 3.3.3, we
use the GPU to detect cheating in a multiplayer game and, finally, in Section 3.3.4, we
look at the MJPEG workload that we also touched upon in the Cell and x86 portions of
this chapter.

3.3.1 Case Study: GPU Memory Spaces and Access Patterns

To obtain the best possible performance when using a GPU, programmers need to be
careful when it comes to resource usage. Registers per thread, occupancy on the GPU,
memory placement, and access patterns are properties of a GPU kernel that are impor-
tant for achieving optimal performance. As part of a master’s thesis [94], we conducted
experiments with the memory architecture on GPUs released in 2006 and 2008 based on
the Nvidia Tesla architecture.

To gain a better understanding of how to optimize memory access, the programmer
needs to be aware of how memory instructions are executed by the memory controller on
the GPU. This is especially important in the case of global memory, since it is used by
every thread and it is the memory space with the highest latency. The threads on an
Nvidia GPU are scheduled in groups of 32 threads called warps. To make the scheduling
more flexible, the memory transactions from a warp are executed on a half-warp basis.
This is due to the design of the shared memory and to ease the handling of memory
transactions from threads in a divergent warp. Divergence within a warp means that
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threads execute different instructions, which can be due to branching in the code or idle
threads.
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Figure 3.13: Global memory access patterns.

The half-warps executing on the GPU are most efficient when memory access from
simultaneously running threads can be combined into a single memory transaction to
global memory. This is known as a coalesced memory transaction. The half-warp must
meet certain requirements to coalesce the memory transaction and these requirements
are determined by the GPU’s compute capability. The compute capability also affects
how the transactions are issued. If the requirements are not met, this is referred to as a
uncoalesced memory transaction.

An example of a coalesced and an uncoalesced access pattern is illustrated in Figures
3.13(a) and 3.13(b). In this example, coalesced access is achieved by having each thread
access a 32-bit word in sequence within a 64-byte segment. The uncoalesced access reads
values from different segments, making it impossible for the memory controller to coalesce
such access.

Global Memory

Global memory is used most efficiently when all the threads of a half-warp can issue a
coalesced memory transaction. The size of a memory transaction that can be executed
depends on the compute capability supported by the GPU. A 64- and a 128-byte trans-
action can be performed on a compute capability of 1.0 and 1.1 GPU, while a compute
capability of 1.2 and greater also added support for 32-byte transactions. The transaction
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size is important, since global memory is considered to be partitioned into segments of 32
bytes, 64 bytes, or 128 bytes.

Constant and Texture Memory

The constant and texture memory spaces are designed for read-only data structures that
have elements that reside close in memory. The memory spaces are limited in size, are read
only, and are therefore not always suitable for certain applications. Both memory spaces
use a caching mechanism in which an 8-kB cache is available for both texture and constant
memory on each SM/SMX. If there is a cache miss, a read costs the same as a fetch from
global memory, since both memory spaces are subsets of global memory. An advantage
of using these read-only memory spaces is that the requirements for optimal performance
are not as strict as in global memory. Threads of a warp that read texture addresses that
are close together will achieve the best performance; so, mapping the read-only data to
fit this alignment is considered a good optimization.

The texture and constant caches differ in the kind of locality for which they are
optimized. The constant cache is as fast as reading a register, as long as all the threads in
a half-warp read from the same address (data element), and the cost scales linearly with
the number of different addresses that are read. The texture cache is a more flexible cache,
since it does not require each thread to read the same address for full speed. However,
having threads read addresses that are close to each other is recommended, since the
cache is optimized for 2D spatial locality used in imaging. Texture memory is normally
used for the storage of texture data used for rendering images.

Experiments and Summary

Coalesced memory access can have a large performance impact. However, few quantified
results exist and the efficient usage of memory types, alignment, and access patterns
remains an art. Weimer et al. [129] experimented with bank conflicts in shared memory
but, to shed light on the penalties of inefficient memory type usage, further investigation
is needed. We therefore performed experiments that read and wrote data to and from
memory with both uncoalesced and coalesced access patterns [94] and used the Nvidia
CUDA Visual Profiler to isolate the GPU times for the different kernels.

Texture uncoalesced
Constant uncoalesced
Global uncoalesced
Texture coalesced
Constant caching
Global coalesced

0 10 20 30 40

Time (ms)

Figure 3.14: Optimization of GPU memory access.
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Figure 3.14 shows that an uncoalesced access pattern increases the latency of the data
transfer on the order of four times due to the increased number of memory transactions.
Constant memory and texture memory are cached and the performance of their unco-
alesced access is improved compared to global memory, but there is still a three-time
penalty. Furthermore, the cached memory types support only read-only operations and
are restricted in size. When used correctly, the performance of global memory is equal
to the performance of the cached memory types. The experiment also shows that correct
memory usage is imperative, even when cached memory types are used. It is also im-
portant to ensure that the memory access follows the specifications of particular GPUs
because the optimal access patterns vary between GPU generations [94].

3.3.2 Case Study: Host—Device Communication Optimization

A very important aspect of using a GPU is moving the data from the host CPU into
the GPU as quickly as possible. While doing this, it is also important to always have
workloads ready for the GPU and not leave any cores idle. As part of a master’s thesis [13],
we performed experiments on a CUDA-based H.264 encoder from the National University
of Defense Technology, China. The encoder is called cuve264b and is a port of their
streaming HD H.264 encoder [134] to the CUDA architecture. In this thesis, we investigate
the effects of optimizing communications between the host CPU and the GPU. For details
about the H.264 video compression standard and for a full evaluation, the reader should
consult the master’s thesis mentioned [13].

The cuve264b encoder uses slices to help parallelize the encoding process. By dividing
each frame into multiple slices, the encoder can encode each slice independently. In a
snapshot of the encoder on which we conducted our experiments, the number of slices
was hard-coded to 34. This version also only supports the 1080p resolution. However,
720p resolution was added later. All the tests in this experiment were conducted on a
GeForce GTX 480 GPU based on the Fermi compute architecture. The CPU used in
the experiments was an Intel Core i7-860 based on the Nehalem microarchitecture, with
Hyper-Threading Technology (SMT) enabled.

To ensure that video frames from the host CPU are always available to the GPU,
readahead was been implemented on the CPU side and makes sure that the encoder has
finished reading the frames of uncompressed videos into main memory before the frame
is requested by the GPU. This is one of the optimizations implemented to make sure that
the cores in the GPU are never idle. By optimizing the code with readahead on the host
CPU side, we were able to reduce the encoding time by around 20% [13].

CUDA Streams

Readahead was implemented by using multiple threads on the host CPU to asynchronously
perform the IO operations. However, multiple threads on the host cannot perform con-
current operations on the GPU. To enable this, CUDA provides an asynchronous API
called CUDA Streams [92]. This API allows us to copy data directly into the GPU’s
global memory and queue up multiple operations on the GPU. These operations are per-
formed asynchronously to the host threads and the GPU is able to perform some of the
operations concurrently. In early-generation GPUs from the Tesla architecture, it was
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only the transfer of data between the host and device and the computations that could
be overlapped. With the next generation of GPUs from the Fermi architecture, the GPU
could concurrently execute up to 16 kernels while transferring a single stream. To en-
able asynchronous memory transfers, pinned memory must be used on the host. This
enables the direct memory access (DMA) engine on the GPU to transfer the data without
involving the CPU.

Experiments and Summary

To measure the effects, we implemented asynchronous transfers in the cuve264b encoder.
We also implemented support for reusing memory, since pinned memory is a limited
resource and slow to allocate. As we can see from Figure 3.15, the asynchronous transfers
are about 10 times faster than the synchronous version. The results depend on the number
of frames that have to be encoded, so, since our test sequences are of limited length, the
difference would be greater for long videos, such as feature films and television shows.
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Figure 3.15: Total time spent on transfers to GPU on three different 1080p sample videos.

Our experiments show that using asynchronous transfers such as CUDA Streams to
overlap the transfers with computations for large workloads such as H.264 reduces the
GPU idle time and consequently also the encoding time. With newer computing devices
from the Fermi architecture, the GPU is also able to schedule and execute other kinds
of processing tasks concurrently, not only overlap computations from a single kernel and
memory transfers.
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3.3.3 Case Study: Cheat Detection

When offloading parts of a processing pipeline to a GPU, the data transfer from the host
CPU will add latency to the execution. It is therefore important to make sure that the
offloaded workload is large enough to overcome this transfer latency. In this section, we
use a cheat detection workload to test this effect on a GPU.

Setting

On-line multiplayer gaming has experienced amazing growth over the last decade and
has been accompanied by cheating as the most prominent type malicious game player
behavior [137]. It is in the best interest of game service providers to eradicate cheating.
However, the demand for stable service for resource-intensive games restricts the amount
of resources that can be dedicated to cheat detection mechanisms.

Many on-line multiplayer games suffer from excessive cheating in one form or another.
However, in many cases, cheating is hard to prove [99]. The only part of a distributed
system that a game service provider can trust is the part of the system running on
hardware under their control. Any other part of the system can and will most likely be
exploited by a cheater.

In-game physics, aimed to increase game realism, has experienced increased popularity
in many kinds of games. Most games that have implemented in-game physics use it as
a major part of the gameplay experience, some even basing the entire gameplay around
physics alone. In-game physics is therefore a very likely part of a game to be exploited.
To address this problem, central servers or other trusted entities must ensure consistency
in the movements of all the clients in the game. With our approach, the physics engine
can be implemented on the server together with the cheat detection mechanisms. This
solution frees resources on the game clients; however, it requires more hardware on the
server side.

Adding more hardware to a system can increase its performance, but this is only a
temporary solution. The hardware used in commercial game server clusters is expensive
and the performance gained might only be sufficient for a short period. Because of the
physical limitations halting the increase in single-threaded performance in normal CPUs,
further performance increase is accomplished by adding more identical processing cores.
The modern GPU is a relatively inexpensive example of such a parallel architecture.
The process of adding new and faster hardware is now slowly substituted by migrating
systems to parallel processors. For this change to be beneficial, serial algorithms must be
parallelized.

Our goal in this case study is to use an example cheat detection workload to learn
about the overhead of moving the data to the GPU. If we offload too small of a workload
to a GPU, the overhead of the data transfer will be greater than the time it takes to
perform the calculations on the CPU.

Workload: Cheat Detection

To show the benefits of using a GPU for cheat detection, we created a simple space race
game simulation where the spacecrafts must visit virtual positions, also referred to as
targets. The clients are placed randomly in the virtual world, giving some clients an
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advantage, since they might be placed closer to a target. When a target is reached, the
clients continue to the next target.

The simulation follows a client—server-based game architecture where all clients send
their position updates to the server. This approach is chosen for the same reasons as in
consumer market game development: ease of development, total control of client commu-
nication, and a centralized control point. Discrete clients are created within the simulation
and communication follows the same flow that would be normal in a networked multi-
player game. Furthermore, because we wanted to design our simulation independent of
wall-clock time, we used an artificial timeline based on game ticks. A tick is a theoretical
time duration specified in the system’s configuration.

To allow for reproducible tests, the simulation uses two different modes of operation,
named the generation mode and the playback mode. The generation mode uses the
principles of the game to determine the random placement of a given number of clients
in a virtual environment. From these positions, the clients try to reach the closest target.
After reaching a target, they continue to the next target, using a thruster to propel
themselves. External forces, such as gravity, affect the clients. While this is happening,
the server writes each client’s location in the virtual environment to several files. These
files are used in playback mode. Generation mode also generates movement for cheaters.
The numbers of cheaters can be adjusted in generation mode. A cheater behaves in the
same manner as an honest client but regularly performs unrealistic motions. Playback
mode initializes the clients. The client state information is read from the files generated
in generation mode and the states are reported to the server. The server samples the
state information updates from every client, placing the samples in a sample buffer. The
buffer is read by the cheat detection thread when full.

Because all clients in the game were controlled by the computer, rules were needed
to determine their behavior in trying to reach a target. To reach their targets, the
clients required motion planning. We did not implement any advanced motion planning
algorithms. The clients knew the targets that they reached. After a target was reached,
the clients continued to the closest unaccomplished target. Client movement was restricted
by the physical model. Honest clients did not break the rules of the model, while cheating
clients did.

In our simulation, the objects experienced both linear and angular acceleration. There
was a constant gravitational pull affecting the objects, much like the gravity on Earth. All
the other forces were generated by the objects themselves, using thrusters. Figure 3.16
shows an outline of a game object, with a main rear thruster and bow thrusters. Objects
moved forward with the rear thruster and rotated using the bow thrusters. The size and
thruster power could be modified by parameters.

The physics engine is one of the main parts of the simulation. The engine is responsible
for calculating the sum of all physical forces acting on all objects and updates their
positions accordingly. The physics engine is controlled by configuration parameters that
allow one to change physical properties quickly, even during runtime. Game objects are
registered with the physics engine, so it maintains a pool of objects to manage. Updates
of the parameters of an object, such as throttle, are handled by the individual clients.
Integration of the time steps from one game tick to the next is carried out by the engine.
The physics engine does this by updating every game object in the object pool. The main
implementation of the physics engine runs on the CPU and is only used in generation
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Figure 3.16: Illustration of a game object with bow thrusters in the front and the main
thruster in the back.

mode. During playback mode, the cheat detection mechanisms act as a reverse physics
engine; they try to determine if the position updates are valid within the current physical
model.

The physical model used in this example is a simple model, with only a couple of
physical effects. The most basic of these effects is linear motion. Basic linear motion is
implemented using Newton’s second law of motion:

ZF =ma (3.1)

This law states that the sum of all forces acting on an object is the product of the
object’s mass and its acceleration. The acceleration is measured by observing the change
in speed over a known distance. In our game, two linear forces act on an object. The first is
the acceleration applied by the game object’s main thruster, as illustrated in Figure 3.16.
The second is the vertical gravity, which is constant throughout the entire model. The
total linear force is represented by the sum of these two vectors.

The second physical effect is angular motion. To allow object rotation in all dimen-
sions, the properties of the objects in the game must be extended. Similar to the linear
motion properties of distance, velocity, and acceleration, we have angular motion proper-
ties. The equations

dw

Q = — 3.2
da

= — 3.3

where (2 is the angular displacement of an object in radians, w is its angular velocity in
radians per second, and « is its angular acceleration in radians per second squared, show
these relations.

Angular motion is applied to the game objects when the bow thrusters illustrated
in Figure 3.16 are used to change the course of an object. Support for collisions is
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implemented in the model. However, due to lack of time, it was not implemented in the
cheat detection mechanisms. It was only present in generation mode.

There are different ways to cheat in the simulation. Clients cheat by either temporarily
modifying the power of their thrusters or modifying the values of their current state: their
position, velocity, and rotation. If a cheating client temporarily increases the capabilities
of one of its thrusters, it is able to accelerate faster, perform quicker turns. Cheaters
who change their state can position themselves closer to a target or change their rotation
to point toward a target. They might also increase or decrease the magnitude of their
velocity vector when either dashing for a target or slowing down to avoid passing a target.

Implementation

We implemented two versions of the cheat detection mechanism. One was written for the
host CPU, while the other was a CUDA version, written for the GPU device. The cheat
detection mechanism on the GPU was implemented with threads. The CPU implementa-
tion was not threaded and used a basic looping structure to simulate the same behavior
as the CUDA version.

The behavior of the mechanisms is illustrated in Figure 3.17. A single thread works
on three consecutive game state samples for a client: Thread one (th1l) works on samples
s0, s1, and s2, while thread two (th2) works on samples s1, s2, and s3, and so forth. A
sample is the state of the client after a tick in the artificial timeline.
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Figure 3.17: Sample reading and execution thread pattern.

A sample contains the movement of each client and a positional vector with three
values, x, y, and z, as three-dimensional axes. With three samples, the threads can
determine the client’s acceleration as a three-dimensional vector. All external forces added
by the physical model can now be subtracted by applying the calculations of the physical
engine in reverse. The resulting acceleration is the result of the forces the client applied to
the game object. If the thrust applied by the client is greater than the maximum thrust
allowed by the game, the client is most likely a cheater.

There are two main node types in our simulation: the server and the clients. They
exchange data as in real networked games. A packet is either generated by the generation
mode or read from a file in playback mode by the clients once for each game tick.

The server reads all incoming data from the clients. When a cheater reports erroneous
positional data, the cheat detection mechanisms indicate that the player’s movement does
not follow the rules and restrictions of the game’s physical parameters.

Clients act differently depending on the execution mode. During the generation of
movement files, clients write their locations and other appropriate data to file. In playback
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Figure 3.18: Nvidia GF100 compute architecture.

mode, clients read from the generated files and report the data written in generation mode
back to the server. In this way, the system allows for reproducible tests as the test data
is the same for each test run.

Experiments

In this study, we investigated both the total execution time of the cheat detection system
and the total execution time spent on the cheat detection mechanisms. All tests were run
on data generated in generation mode over 100 seconds of “game time.” The number of
clients used in the benchmarks ranges from 10 to 6000. The part of the mechanisms that
runs on the GPU in these benchmarks is the reverse physics engine.

The cheat detection mechanism we tested was implemented on the following hardware:
The CPU used in the benchmarks was an Intel Core i5-750 processor with 4.0 GB of
RAM. The GPU was an Nvidia GeForce GTX 480 with 480 processing cores and 1.5 GB
of memory. The chip used in the GeForce GTX 480 is the GF100 GPU, illustrated in
Figure 3.18. This GPU is based on the Fermi compute architecture.

Figure 3.19 shows the results of the first benchmark and the total execution time
of the cheat detection system. We can observe that, with a low number of clients, the
CPU is faster than the GPU, due to the added latency of moving data and code to the
GPU. With more than 100 clients in the game, the execution time for the CPU exceeds
that of the GPU and the performance gap steadily increases up to 6000 clients, which
is the maximum number of tested clients. This is due to the size of the memory on our
test machines. When the number of clients increases, the cheat detection processing on
the GPU scales much better than on the CPU. When the cheat detection mechanism
is processed on the GPU, the CPU is relieved of these tasks and can work on other
game-relevant computation.

To determine the offloading effect the GPU has on the CPU, we measured how much
of the total execution time was spent on processing cheat detection mechanisms. Fig-
ure 3.20 reports the results of the second benchmark. These show that, for a small
number of clients, the penalty for transferring data over the PCI Express bus to the GPU
is significant, making the CPU more effective for a small number of clients. With more
than 50 clients, the GPU implementation spends less time on cheat detection than the
CPU implementation does. As the number of clients increases, the time spent on cheat
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Figure 3.20: Percentage of time spent on cheat detection processing on a host, using the
GPU and the CPU.

detection continues to drop to below 15% for the GPU implementation. The CPU version
stabilizes around 50%. To improve the performance of the GPU implementation for a low
number of clients, it is possible to buffer more samples before executing the mechanisms

on the GPU.
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Discussion

We have seen how the CPU and GPU implementations of our cheat detection mechanism
perform differently when we increase the numbers of clients in the game. The difference
between the two is smallest when the number of checks performed on the GPU is small.
However, as the number of clients increases, the increase in the execution time of the CPU
implementation is much steeper compared to the increase in the GPU implementation.
This indicates that the GPU implementation is the more scalable of the two. This is
primarily due to the GPU’s highly parallel architecture. Physics operations for large
numbers of clients are independent of each other. They constitute an embarrassingly
parallel workload that maps well to the GPU’s multithreaded architecture. Both the
CPU and GPU implementations could be further optimized in further work. The CPU
implementation could be extended with threading and SIMD operations and the GPU
version could be extended with asynchronous transfers, optimized global memory access
and the elimination of branching in the compute kernels.

The cheat detection mechanism we implemented for our system is easy to parallelize
because the physics computations for clients are independent of each other. Similar sys-
tems with workloads that contain operations that can be performed simultaneously by a
large number of threads can benefit from using a GPU to offload the processing. When
offloading operations to a GPU, it is important to remember that the GPU is most effi-
cient if it has enough data to process. It is also important that the offloaded tasks map
well to the GPU’s multithreaded architecture.

Summary

Our results show that even a simple physical model can benefit from executing the work-
load on a GPU. The experiments also clearly show that we need a large workload or a
computationally heavy workload to benefit from a GPU. When we benchmarked our cheat
detection mechanisms with too few clients, the CPU implementation was faster, because
the computational load did not compensate for the latency involved with transferring the
data to the GPU. Another advantage of GPU implementation is the offloading effect:
While the GPU handles the cheat detection workload, the CPU can perform other tasks.

3.3.4 Case Study: MJPEG Encoding

In our MJPEG case study, we performed several experiments on the GPU architecture
and a more detailed overview of the MJPEG workload can be found in Section 3.2.1. As
described later for the Cell, several layouts are available for GPUs. However, because of
the large number of small cores, it is not feasible to assign one frame to each core. The
most time-consuming parts of the MJPEG encoding process, the DCT and quantization
steps, are well suited for GPU acceleration. In addition, the VLC step can also be partly
adapted.

Our experiments compared 14 different GPU implementations of the MJPEG encoder.
This gives a good indication that the architectures are complex to use and that achieving
high performance is not trivial. Derived from a sequential codebase, these implementa-
tions differ in terms of algorithms used, resource utilization, and coding efficiency. Fig-
ure 3.21 shows the performance results of encoding the 1080p tractor video clip in YUV
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Figure 3.21: Runtime for MJPEG implementations on a GPU (GTX 280).

4:2:0. The difference between the fastest and slowest solutions is 362 ms per frame and
the fastest solutions are disk I/O bound. To gain experience in what works and what does
not, we examined these solutions. We did not consider coding style, but revisited algorith-
mic choices, inter-core data communication (memory transfers), and architecture-specific
capabilities.

GPU Experiments

A GPU is a dedicated graphics rendering device and modern GPUs have a parallel struc-
ture, making them effective for carrying out general-purpose processing. Previously,
shaders were used for programming, but specialized languages are now available. In
this context, Nvidia released the CUDA framework with a programming language similar
to ANSI C. In CUDA, the single instruction, multiple threads (SIMT) abstraction is used
to handle thousands of threads.
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Figure 3.22: Nvidia GT200 architecture.

This case study was carried out with the first generation of programmable GPUs from
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Figure 3.23: DCT performance on a GPU.

Nvidia called Tesla. The chip has the codename GT200, which is the second generation
of GPUs in the Tesla architecture, released in 2008. A more detailed overview of the
architecture is shown in Figure 3.22. The GT200 chip presents as a highly parallel,
multithreaded, multicore processor, connected to the host computer by a PCI Express
bus. The GT200 architecture contains 10 texture processing clusters with three streaming
multiprocessors (SMs). A single SM contains eight stream processors (called cores in newer
GPUs), which are the basic arithmetic and logic units for calculations.

To find out how memory access and other optimizations affect programs such as an
MJPEG encoder, we experimented with the same DCT implementations that we used
on the x86 architecture in Section 3.2.1. Our baseline DCT algorithm is the 2D-plain
algorithm. The only optimization in this implementation is that the input frames are
read into cached texture memory and that the quantization tables are read into cached
constant memory. Cached memory spaces improve performance compared to global mem-
ory, especially when memory access is uncoalesced. The second implementation, referred
to as 2D-plain optimized, is tuned to run efficiently using principles from the CUDA Best
Practices Guide [87]. These optimizations include the use of shared memory as a buffer
for pixel values when processing a macroblock, branch avoidance by using Boolean arith-
metic, and manual loop unrolling. Our third implementation, the 1D AAN algorithm,
is based on the scalar implementation used on the x86. Every macroblock is processed
with eight threads, that is, one thread per row of eight pixels. The input image is stored
in cached texture memory and shared memory is used to temporarily store data during
processing. Finally, the 2D matrix DCT uses matrix multiplication, where each matrix
element is computed by a thread. The input image is stored in cached texture memory
and shared memory is used to store data during calculations.

We know from existing work that to achieve high instruction throughput, branch
prevention and the correct use of flow control instructions are important. If threads
on the same SM diverge, the paths are serialized, which decreases performance. Loop
unrolling is beneficial on GPU kernels and can be done automatically by the compiler
using pragma directives. To optimize frame exchange, asynchronous transfers between
the host and GPU are used. Transferring data over the PCI Express bus is expensive
and asynchronous transfers help us reuse the kernels and hide some of the PCI Express
latency by transferring data in the background.

To isolate DCT performance, we used the CUDA Visual Profiler. The profiling results
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Figure 3.24: Effect of offloading VL.C to the GPU.

of the different implementations are shown in Figure 3.23 and we note that the 2D-plain
optimized algorithm is faster than the AAN algorithm. The 2D-plain algorithm requires
significantly more computations than the others but, by optimizing it to the architecture,
we obtain almost as good performance as with the 2D matrix. The AAN algorithm,
which does the least number of computations, suffers from the low number of threads per
macroblock. A low number of threads per SM can result in stalling, where all the threads
are waiting for data from memory, which should be avoided.

This experiment shows that, for architectures with vast computational capabilities,
writing a good implementation of an algorithm adapted for the underlying hardware can
be as important as the algorithm’s theoretical complexity.

The last GPU experiment considers entropy coding on the GPU. VLC can be offloaded
to the GPU by assigning a thread to each macroblock in a frame to compress the coeffi-
cients and then store the bitstream of each macroblock and its length in global memory.
The output of each macroblock’s bitstream can then be merged either on the host or by
using atomic OR on the GPU. For these experiments, we chose the former, since the host
is responsible for the I/O and must traverse the bitstream anyway. Figure 3.24 shows the
results of an experiment that compares MJPEG with AAN DCT, with VLC performed
on the host and on the GPU, respectively. We doubled the encoding performance when
running VLC on the GPU. In this particular case, ofloading VL.C was faster than running
on the host. It is worth noting that by running VLC on the GPU, the entropy coding
scales together with the rest of the encoder with the resources available on the GPU. This
means than if the encoder runs on a machine with a slower host CPU or a faster GPU, it
will still scale.

Discussion

The GPU architecture is different from the x86 architecture used for MJPEG in Sec-
tion 3.2.1. Some algorithms may be more suited than others. This can clearly be seen
in our experiments with DCT, where the AAN algorithm performed best on the x86, but
did not achieve the highest throughput on the GPU. This was because of the relatively
low number of threads per macroblock for the AAN algorithm, which must perform the
1D DCT operation (one row of pixels within a macroblock) as a single thread. This is
only one example of achieving a shorter computation time through increased parallelity
at the price of a higher, sub-optimal total number of operations.

Porting the encoder to the GPU in a straightforward manner without significant opti-
mizations for the architecture yields very good offloading performance compared to native
x86. This indicates that the GPU is easy to use but, to reap the full potential of the ar-
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chitecture, one must have a deep level of understanding.

Summary

We see that heterogeneous multicore architectures provide the resources required for real-
time multimedia processing. However, achieving high performance is not trivial. In
general, there are similarities between the architectures, but the way of thinking must
be substantially different. The different architectures have different capabilities that
must be taken into account, both when choosing a specific algorithm and when mak-
ing implementation-specific decisions. A great deal of trust is put into the compilers of
development frameworks and new languages such as OpenCL, which are supposed to be
a “recompile-only” solution. However, to tune performance, the application must still be
hand optimized for different versions of the GPUs and x86.

3.3.5 Implications

Working with a GPU is different from working with a x86. Compared to the SIMD model,
the SIMT model seems easier for programmers to grasp. With SIMT, programmers have
to think in terms of threaded operations on intrinsic data. However, programming a
GPU has some challenges, as we saw in the case studies. First, as seen in the memory
tests, the GPU has an exclusive memory model and it is important for the programmer
to fully understand the access pattern of the GPU kernel to use the correct memory
layout and memory space. If the data pattern generates too many uncoalesced memory
accesses, it might be an idea to see if it is possible to use one of the cached memory
types. In the host—device optimization experiments, we learned that transfers from the
host CPU to the GPU over the PCI Express bus can be a slow process and it is very
important to try to overlap transfers with computations by using one of the asynchronous
APIs available to the programmers. The cheat detection studies show that computational
workloads such as physics calculations scale very well on a GPU. However, with too few
calculations, the overhead of transferring data from the CPU to the GPU is too large—
hence, the importance of efficient transfers between the host CPU and the GPU. Finally,
the MJPEG experiments on the GPU show that algorithms that are efficient on a CPU,
such as the AAN fast DCT algorithm, might not yield the best performance on a GPU. On
the GPU, the naive 2D DCT algorithm with optimizations for the architecture (with both
branching and shared memory bank conflicts removed and the correct memory layout)
performed better that the AAN fast DCT.

Revisiting with State-of-the-Market Hardware

If we were to revisit these experiments with a state-of-the-market GPU from the Kepler
family, all the experiments would have been able to run; however, to obtain optimal
performance, we would have to revisit some of the optimizations. The memory controllers
on modern GPUs such as the Kepler are more advanced and they will now detect more
access patterns, facilitating coalesced memory accesses. Nevertheless, the selection of
the different memory spaces, such as shared memory and texture memory, still has to
be done by the programmer. Later versions of CUDA also open up the possibility of
what they call managed memory [92] between the host CPU and GPU, that is, page
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faults are used to trigger transfers. The most optimal solution is still to manually use the
asynchronous API to transfer the data. Modern GPUs now also have larger caches that,
as on the x86 architecture, cannot be managed by the programmer. In many cases, this
can also speed up the computations. Another challenge of the Kepler architecture is that,
since the number of processors per SMX has been increased, compensating for decreasing
the clock frequency requires more active threads to obtain the same performance. The
numbers of registers per SMX has not been increased, meaning that each thread has less
register space, thus making it easier to run out of space. This is not a fatal problem
for the applications, since the threads have a private memory space in global memory.
However, it will have negative effects on performance. Using the latest generation of
GPUs will therefore, in most cases, provide better performance, since the number of cores
has increased many times. However, in some cases, performance can decrease and, in
many cases, the applications would have the same efficiency as on the older architectures.

3.4 Cell Broadband Engine

The Cell Broadband Engine is one of the asymmetric architectures we used for experiments
with an exclusive memory model. The primary application for the Cell was as the main
processor in Sony’s PlayStation 3 gaming console, so the processor was designed with
multimedia workloads in mind. The focus of the Cell experiments was to try to learn how
programmers need to think to efficiently utilize the platform.

In the following section, we take a closer look at a case study based on our paper
”Tips, Tricks and Troubles: Optimizing for Cell and GPU” [112]. Our analysis of 14 dif-
ferent MJPEG implementations indicates that there exists great potential for optimizing
performance with the Cell architecture, but there are also many pitfalls to avoid.

The Cell Broadband Engine was developed by Sony Computer Entertainment, Toshiba,
and IBM. The central components in the Cell are a power processing element (PPE) con-
taining a general-purpose 64-bit PowerPC RISC core and eight specialized synergistic
processing elements (SPEs). A more detailed overview of the architecture can be found
in Section 2.1.4.

3.4.1 Case Study: MJPEG Encoding

In our MJPEG case study, we conducted several experiments on the Cell architecture. A
more detailed overview of the MJPEG workload can be found in Section 3.2.1. As for the
GPU, several layouts are available for the Cell. However, because of the small number
of more capable cores (SPEs), it is feasible to assign one frame to each core. The most
time-consuming parts of the MJPEG encoding process, the DCT and quantization steps,
are well suited for Cell acceleration. In addition, the VLC step can be adapted.

We also compared 14 different implementations on the Cell. The results indicate that
the Cell is also a complex architecture to use and that achieving high performance is
not trivial. Figure 3.25 shows performance results for encoding the 1080p tractor video
clip in YUV 4:2:0. The difference between the fastest and slowest solution is 1869 ms
and the fastest solutions were disk I/O bound. To gain experience of what works and
what does not, we examined these solutions using the same criteria as with the GPU
implementations. In general, we found that the Cell architecture has great potential, but
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Figure 3.25: Runtime for MJPEG implementations on the Cell on a PlayStation 3 (six
SPEs).

also many possible pitfalls, both when choosing specific algorithms and in implementation-
specific decisions.

Cell Broadband Engine Experiments

By learning from the design choices of the implementations in Figure 3.25, we designed
experiments to investigate how performance improvements are achieved on the Cell. All
the experiments encoded HD video (1920x1080, 4:2:0) from raw YUV frames found in the
tractor video test sequence. However, we used only the first frame of the sequence and
encoded it 1000 times in each experiment to overcome the disk I/O limit. This became
apparent at the highest level of encoding performance, since we did not have a high-
bandwidth video source available. All programs were compiled with the highest level of
compiler optimizations using GCC for Cell. The Cell experiments were tested on a QS22
blade server (with eight SPEs; the results in Figure 3.25 were for a PlayStation 3 with
six SPEs)

Considering the embarrassingly parallel parts of MJPEG video encoding, a number of
different layouts are available to map the different steps of the encoding process to the
Cell. Because of the amount of work, the DCT and quantization steps should be executed
on SPEs, but the entropy coding step can also run in parallel between complete frames.
Thus, given that a few frames of encoding delay are acceptable, the approach we consider
best is to process full frames on each SPE, with every SPE running DCT and quantization
of a full frame. This minimizes synchronization between cores and allows us to perform
VLC on the SPEs.

Regardless of the placement of the encoding steps, it is important to avoid idle cores.
We resolve this situation by adding a frame queue between the frame reader and the DCT
step and another queue between the DCT and VLC steps. Since a frame is processed in
full by a single Cell processor, the AAN algorithm is well suited. It can be implemented
in a straightforward manner to run on SPEs, with VL.C coding on the PPE. We tested the
same algorithm optimized with SPE intrinsics for vector processing (SIMD), resulting in
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Figure 3.27: SPE utilization using scalar or vector DCT.

double encoding throughput, which can be seen in Figure 3.26 (scalar and vector PPE).
Another experiment involved moving the VLC step to the SPEs, offloading the PPE. This
approach left the PPE with only the task of reading and writing files to disk, in addition
to dispatching jobs to SPEs. To do so, the luma and chroma blocks of the frames had to
be transformed and quantized in interleaved order, that is, two rows of luma and a single
row of both chroma channels. The results show that the previous encoding speed was
limited by the VLC, as shown in Figure 3.26 (scalar and vector SPEs).

To gain some insight into SPE utilization, we collected a trace (using PDTR, part
of the IBM software development kit for Cell) showing how much time is spent on the
encoding parts. Figure 3.27 shows the SPE utilization when encoding HD frames for
the scalar and vector SPEs from Figure 3.26. This distinction is necessary because the
compiler does not generate SIMD code, requiring the programmer to hand-code SIMD
intrinsics to achieve high throughput. The scalar version uses about four times more SPE
time to perform the DCT and quantization steps for a frame than the vector version does
and an additional 30% of the total SPE time to pack and unpack scalar data into vectors
for SIMD operations. Our vectorized AAN implementation is nearly eight times faster
than the scalar version.

With the vector version of DCT and quantization, the VLC coding uses about 80%
of each SPE. This can possibly be optimized further, but we did not find time to pursue
this.

The Cell experiments demonstrate the necessary level of fine-grained tuning to obtain
high performance on this architecture. In particular, correctly implementing an algo-
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rithm using vector intrinsics is imperative. Of the 14 implementations for the Cell in
Figure 3.25, only one offloaded VLC to the SPEs, but this was the second fastest im-
plementation. The fastest implementation vectorized the DCT and quantization and the
vector/SPE implementation in Figure 3.26 is a combination of the two. One reason why
only one implementation offloaded the VLLC may be that it is unintuitive. An additional
communication and shift step is required in parallelizing VLC because the lack of arbi-
trary bit shifting of large fields on the Cell as well as the GPU prevents a direct port from
the sequential codes. Another reason may stem from the dominance of the DCT step
in early profiles and the awkward process of later gathering profiling data on multicore
systems. The hard part is to know what is best in advance, especially because moving an
optimized piece of code from one system to another can be significant work and may even
require rewriting the program entirely. It is therefore good practice to structure programs
in such a way that parts are loosely coupled. In that way, they can be both replaced and
moved to other processors with minimal effort.

When comparing the 14 Cell implementations of the encoder shown in Figure 3.25
to find out what differentiates the fastest from the medium-speed implementations, we
found some distinguishing features, the most prominent one being not exploiting the SPE’s
SIMD capabilities, but also in the areas of memory transfer and job distribution. Uneven
workload distribution and lack of proper frame queuing resulted in idle cores. Additionally,
some implementations suffered from small, often unconcealed DMA operations that left
SPEs in a stalled state, waiting for the memory transfer to complete. It is evident that
many pitfalls need to be avoided when writing programs for the Cell architecture and
we have only touched upon a few of them. Some of these are obvious, but not all and
achieving acceptable performance from a program running on the Cell architecture may
require multiple iterations, restructuring, and even rewrites.

Discussion

Heterogeneous architectures such as the Cell provide large amounts of processing power,
with encoding throughputs of 480 MB/s on the 1080p tractor video clip. Thus, real-time
MJPEG HD encoding may be no problem. However, an analysis of the many implemen-
tations of MJPEG available and our additional testing show that it is important to use
the right concepts and abstractions and that there may be large differences in the way a
programmer must think.

Deciding efficiently the granularity at which data should be partitioned is very hard
a priori. One approach is to try to design the programs in such a way that the cores
are seldom idle or stall. In practice, however, multiple iterations may be necessary to
determine the best approach.

Similar to data partitioning, efficient code partitioning is hard to carry out in ad-
vance. A rule of thumb is to write modular code to allow the parts to be moved to other
cores. In addition, fine granularity is beneficial, since small modules can be merged again
and also be executed repeatedly with low overhead. Offloading is by itself advantageous,
since resources on the main processor become available for other tasks. It also improves
the scalability of the program with new generations of hardware. In our MJPEG im-
plementation on the Cell, we found that offloading DCT/quantization and VLC coding
was advantageous in terms of performance, but offloading may not always provide higher
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throughput.

Summary

The programming models used on the Cell and the GPU require two different ways of
thinking in parallel. The approach of the Cell is very similar to multithreaded program-
ming on the x86, with the exception of shared memory. The SPEs are used as regular
cores with explicit caches and the vector units on the SPEs require careful data structure
consideration to achieve peak performance. The GPU model of programming is much
more rigid, with a static grid used for blocks of threads and synchronization only through
barriers. This hides the architecture complexity and provides a simpler concept to grasp
for programmers. This notion is also strengthened by the better average GPU throughput
of the implementations in Figures 3.21 and 3.25. However, to achieve the highest pos-
sible performance, the programmer must also understand the nitty-gritty details of the
architecture to avoid pitfalls such as warp divergence and uncoalesced memory access.

Heterogeneous multicore architectures such as the Cell and GPUs may provide the
resources required for real-time multimedia processing. However, achieving high perfor-
mance is not trivial and to learn how to think and use resources efficiently, we experi-
mentally evaluated several issues to discover tricks and problems. Generally, there are
similarities, but the way of thinking must be substantially different, not only compared to
an x86 architecture but also between the Cell and the GPUs. The different architectures
have different capabilities that must be taken into account when both choosing a specific
algorithm and making implementation-specific decisions.

The encoding throughput achieved on the two architectures was surprisingly similar.
Although, the engineering effort to accomplish this throughput was much greater on the
Cell, this was mainly due to the tedious process of writing an SIMD version of the encoder.

3.4.2 Implications

We learned that when working with an architecture such as the Cell, which has multiple
vector processors (SIMD), it is imperative to vectorize the application, even though this
can be a very tedious process. Our experiments have shown that the code on SPEs has
to go through vector packing if it is not vectorized. The exclusive memory architecture
of the Cell also provides very good performance, but at the cost of complexity.

With the Cell, it is also very important to choose the correct granularity for the
architecture. The SPEs have only 256 kB of local storage, for both code and data, and
multiple attempts are often required to find an optimal solution. Our MJPEG workload
also showed the importance of finding an algorithm that is optimal for the architecture.

It is very important to consider data movement on the chip itself. Since the Cell
has an exclusive memory model, the programmer has to consider the DMA transfers to
move data between main memory and the local storage on the SPEs. To obtain optimal
performance, often one has to implement double-buffering schemes to make sure that one
can overlap memory transfers and computations.
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Revisiting with State-of-the-Market Hardware

Unfortunately, IBM discontinued development of the Cell architecture and the CPU in
the PlayStation 4 uses x86 cores together with a GPU.

It is possible to use multicore x86 processors instead of the Cell. These architectures
use a shared memory model instead of exclusive memory, so it is simpler for the program-
mer. The x86 cores also have SIMD units. The closest x86 core compared to the Cell is
the Intel Xeon Phi many-core processor, with up to 61 simple x86 cores with a shared
memory model and 512-bit vector units per core. The shared memory model makes the
programmer’s life simpler; however, the SIMD version still has to be written mainly by
hand and the AltiVec SIMD code from the Cell is not portable, so a new version must be
written for the Xeon Phi. Several of these considerations for the Cell are valid for GPUs;
however, the architectures are very different, and both the granularity and numbers of
threads need to be different.

3.5 Architecture Comparison

In this chapter, we saw multiple case studies on four heterogeneous multicore architectures.
These platforms are in many ways very different; however, they all have heterogeneous
processing resources. Our experiments have revealed that, in all these architectures, code
placement, code partitioning, and data locality have a huge effect on performance.

The Intel IXP was used at the very start of our investigations. It is a shared memory
platform (i.e., all the cores can share memory), with cores with different capabilities.
As on the GPUs, the IXP has multiple memory types with different properties, such as
SRAM for storing packet headers and DRAM for storing packet payloads. However, the
IXP differs greatly from the other three architectures. Since the IXP was built to process
network traffic, it has very limited floating point support and is limited to manipulating
network traffic. The IXP lives on today as a dedicated network flow processing fast fiber
links at line speed for applications such as deep packet inspection. Programming the IXP
was also challenging, since compilers and documentation were somewhat lacking; however,
when these experiments were conducted in 2007, their performance was impressive and
most state-of-the-art desktop computers in 2007 were not able to process multiple 1-Gbps
network streams at line speed.

The three remaining architectures—the Cell, x86, and GPUs—are more suited for pro-
cessing multimedia workloads. They all have optimizations for carrying out fast floating
point operations. The GPU and Cell are built for floating point operations and the x86
architecture has been constantly extended with better floating point support since the
x87 floating point coprocessor was integrated in the 80486 CPUs and since the first vector
unit, called MMX, was added to the Pentium CPUs. One property that differentiates the
Cell and GPUs with the x86 architecture is support for a shared memory architecture
on the x86. This makes parallel programming much easier for the developer. However,
it has also proven to be a challenge when scaling the number of threads that share the
memory space: With more cores and threads, more traffic is also required on the CPU
interconnect to make sure that no parts of the cache are dirty. Another advantage and
challenge with x86 cores compared to the Cell and GPUs is that the cores on the x86 are
considered fat cores, meaning that they have many features, such as branch prediction,
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prefetching from both caches and memory, and multithreading support. This takes up
many transistors, making the CPU designs very complex, which is a challenge with regard
to power consumption in systems.

The Cell and GPUs have several things in common: They both have an exclusive
memory model, where the programmer is responsible for all the allocations. The SIMD
programming model on the Cell is the most extreme in this respect, where the programmer
must manage the transfer of code and data between main memory and local storage on
the SPEs with DMA operations. The local storage is like a user-managed cache and, since
each SPE has only 256 kB, it is a very limited resource. On modern GPU architectures,
the caches cannot be managed by the programmer. However, the GPU has multiple
memory types—on chip, off chip, and cached—which can be used for different parts of the
processing. Selecting the correct memory space can sometimes be challenging. Another
important factor for both the Cell and the GPU is the efficient transfer of data from main
memory on the general-purpose core (the PPE on the Cell and the CPU on the GPU)
and into the processing cores. To do this efficiently, asynchronous APIs such as CUDA
Streams and double buffering should be used. One important detail of how the Cell and
the GPU differ is in the programming model, as we saw in our MJPEG experiments
(Sections 3.4.1 and 3.3.4). On the Cell, we use an SIMD model, where the programmer
must use vector extensions and adapt the memory layout and algorithms to the use of
SIMD vectors and operations. Nvidia uses an abstraction called SIMT on their GPUs.
SIMT allows for code that uses only well-known intrinsic types but that can be massively
threaded. The functionalities provided by SIMD and SIMT are very similar. However, our
experience is that it is much more straightforward to port the program to the GPU and,
even without significant optimizations, the GPU architecture yielded very good offoading
performance compared to the native x86 architecture. To reap the full potential of the
GPU architecture, one must still have a thorough understanding of the architecture, just
as with the Cell. The “nail in the coffin” for the Cell architecture is, however, the fact
that Sony, Toshiba, and IBM have decided not to continue its development. IBM will
instead use GPUs for massively parallel workloads.

With our experiments on simple workloads, we learned that, of the four architectures
we experimented with, the GPU and x86 architectures are the most promising. The
GPU currently also needs a CPU as a host to run the operating system and manage the
data flow. The combination of a x86 processor and a GPU is also a true heterogeneous
multicore architecture; that is, the CPU has a few fat cores that are fast with operations
that are not very well suited for parallelization and the GPU has many “simple cores”
that are very fast at carrying out simple massively parallel operations.

3.6 Summary

In this chapter, we investigated several simple multimedia workloads running on four
different heterogeneous architectures. Of the four architectures we evaluated, we are
moving forward with the GPU and x86 multicore. The Cell has been discontinued and
the IXP network processor is limited to network processing. In the next chapter, we
take a closer look at a more complex multimedia workload, with a pipeline with different
workloads, executing on a single system in real time, where we have to optimize for both
the CPU and the GPU.
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Chapter 4

Using Heterogeneous Architectures
for Complex Workloads

The previous chapter described our experiments with offloading simple workloads to a
heterogeneous architecture. In these experiments, we mainly carried out our optimizations
on just the target architecture. Our experiments also showed that good architectural
knowledge about the target architecture is essential when optimizing programs. For the
x86 architecture, it is important to use threading and to adjust the number of threads to
the number of cores available, that is, too many threads will result in reduced performance,
and it is also important to use single instruction multiple data (SIMD) units on processors
where possible. On graphic processor units (GPUs), we have seen that it is important to
use a memory space that is optimized for one’s access pattern, as well as to make sure
to transfer the data as efficiently as possible to the GPUs and, finally, to try to prevent
branching in any code running on the GPU. We decided to focus on x86 processors and
GPUs, since the Cell has been discontinued and the IXP network processor is better suited
for video processing.

In this chapter, we investigate a more complex workload based on our research on
systems for real-time sports analysis [114]. The complex workload is defined in this thesis
as a video stitching pipeline, optimized for multiple heterogeneous architectures, which
in our case is an x86 processor and a GPU. The workload also has real-time demands,
meaning that the pipeline needs to deliver a new video frame every 33 ms to produce
video at 30 frames per second (fps).

This chapter is organized as follows: First, in Section 4.1, we introduce our scenario
and the non-real-time prototype we implemented. Then, in Section 4.2, we take a closer
look at the enhancements and optimizations to make it run in real time on a single
machine. The system presented is a large system with many contributors and we focus
on architectural optimizations carried out to run the system in real time. We also test
how different parameters and heterogeneous architectures affect the performance of the
prototype system.

4.1 Bagadus Sports Analysis System

Sports analysis has become a huge industry and a large number of (elite) sports clubs
study their athletes’ performance, spending great amounts of money. This analysis is

7
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conducted either manually or using one of many analytics tools. In soccer, several sys-
tems enable trainers and coaches to analyze the gameplay to improve performance. For
instance, at Interplay-sports [62], videostreams are manually analyzed and annotated us-
ing a soccer ontology classification scheme. ProZone [100] automates some of the manual
annotation process with video analysis software. In particular, it quantifies player move-
ment patterns and characteristics such as athlete speed, velocity, and position and has
been successfully used, for example, at Old Trafford in Manchester and Reebok Stadium
in Bolton [106] in the United Kingdom. Similarly, STATS" SportVU tracking technol-
ogy [111] uses videocameras to collect the players’ positioning data within the playing
field in real time. This information is further compiled into player statistics and per-
formance. Camargus [17] provides a very nice video technology infrastructure but lacks
other analytics tools. As an alternative to video analysis, which is often inaccurate and
resource hungry, both Cairo’s VIS.TRACK [16] and ZXY Sport Tracking [146] systems
use global positioning and radio-based systems to capture the performance measurements
of athletes. Thus, these systems can present player statistics, including speed profiles, ac-
cumulated distances, fatigue, fitness graphs, and coverage maps, in many different ways,
such as with charts, three-dimensional graphics, and animations.

To improve game analytics, video that replays real-game events has become increas-
ingly important. However, the integration of player statistics systems and video systems
still requires a large amount of manual labor. For example, events tagged by coaches or
other human expert annotators must be manually extracted from the videos, often requir-
ing hours of work in front of the computer. Furthermore, connecting the player statistics
to the video also requires manual work. One recent example is the Muithu system [67],
which integrates coach annotations with related video sequences, but the video must be
manually transferred and mapped to the game timeline.

As the above examples show, several tools for soccer analysis exist. However, to the
best of our knowledge, no system exists that fully integrates all the features stated above.
In this respect, earlier we presented [46] and demonstrated [105] a system called Bagadus.
This system integrates a camera array video capture system with the ZXY Sport Tracking
system for player statistics and a system for human expert annotation. Bagadus allows
the game analytics to automatically play back a tagged game event or extract a video of
events from the statistical player data, for example, all sprints at a given speed. Using the
exact player positions provided by sensors, a trainer can also follow individuals or groups
of players, with the videos presented either by using a stitched panorama view or by
switching cameras. Our earlier work [46,105] demonstrated the integrated concept but did
not address all operations, such as the generation of the panoramic video, in real time. We
now present enhancements providing live, real-time analysis and video playback by using
algorithms to enhance image quality, parallel processing, and offloading to heterogeneous
architectures units such as GPUs. Our prototype was deployed at Alfheim Stadium
(Tromsg IL, Norway) and we use a dataset captured at a Norwegian premier league game
for our experiments.

4.1.1 Bagadus: The Basic Idea

Interest in sports analysis systems has increased greatly recently and sports analytics are
predicted to be a real game changer, that is, “statistics keep changing the way sports are
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played—and changing minds in the industry” [29]. As described above, several systems
exist, some already providing game statistics, player movements, video highlights, and
so forth, since a long time. However, to a large degree, the existing systems are offline
systems and require a great deal of manual work to integrate information from various
computer systems and expert sport analytics. In this respect, Bagadus is a prototype
that aims to fully integrate existing systems and enable the real-time presentation of
sport events. Our system was built in cooperation with the Tromsg IL soccer club and
the ZXY Sport Tracking company. A brief overview of the architecture and interaction
of the different components is given in Figure 4.1. The Bagadus system is divided into
three different subsystems, all of which are integrated in our soccer analysis application.

The wideo subsystem consists of multiple small shutter-synchronized cameras that
record high-resolution video of the soccer field. They cover the full field with sufficient
overlap to identify common features necessary for camera calibration and image stitch-
ing. Furthermore, the video subsystem supports two different playback options. The
first allows playback of video that switches between streams from the different cameras,
either by manually selecting a camera or automatically following players based on sensor
information. The second option plays back a panorama video stitched from the different
camera feeds. The cameras are calibrated in their fixed positions and the captured video
is all processed and stored using a capture-debarrel-rotate—stitch-encode—store pipeline.
In the offline mode, Bagadus allows a user to zoom in on and mark a player(s) in the
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retrieved video on the fly, but this feature is not yet supported in the live mode used
during the game.

To identify and follow players on the field, we use a tracking (sensor) subsystem.
Tracking people through camera arrays has been an active research topic since several
years. The accuracy of such systems has improved greatly, but there are still errors.
Therefore, for stadium sports, an interesting approach is to use sensors on players to
capture their exact positions. ZXY Sport Tracking [146] employs such a sensor-based
solution to provide player position information. Bagadus uses this position information
to track players or groups of players in single camera views, stitched views, or zoomed-in
modes.

The third component of Bagadus is an analytics subsystem. Coaches have long an-
alyzed games to improve their own team’s gameplay and to understand that of their
opponents. Traditionally, this was done by taking notes using pen and paper, either dur-
ing the game or while watching hours of video. Some clubs even hire one person per
player to describe the player’s performance. To reduce the manual labor, we implemented
a subsystem that equips team members with a tablet (or even a mobile phone) with which
they could register predefined events quickly with the press of a button or provide textual
annotation. In Bagadus, the registered events are stored in an analytics database and can
later be extracted automatically and shown along with a video of the event.

The tracking and analytics subsystem does not have the same processing require-
ments as the video subsystem does and these are therefore not presented in this thesis.

More details about the tracking and analytics subsystem in Bagadus can be found in
paper VIII [114].

4.1.2 Video Subsystem

To record high-resolution video of the entire soccer field, we installed a camera array
using small industry cameras that together cover the entire field. The video subsystem
then extracts, processes, and delivers video events based on given time intervals, player
positions, and so forth.

There are two versions of the video subsystem: one non-real-time system, which is
presented in this section, and one live real-time system optimized with heterogeneous
architectures. This system is presented in Section 4.2.

Both video subsystems support two different playback modes. The first mode allows
the user to play video from the individual cameras by manually selecting a camera or by
automatically following players. The second mode plays back a panoramic video stitched
from the four camera feeds. The non—real-time system plays back recorded video stored on
disk and, because of the processing times, the video will not be available before the match
is finished. The live system, on the other hand, supports playing back video directly from
the cameras and the events are available in real time.

Camera Setup

To record high-resolution video of the entire soccer field, we installed a camera array
consisting of four Basler industry cameras with a 1/3-inch image sensor supporting 30
fps and a resolution of 1280x960. The cameras were synchronized by an external trigger
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signal to enable a video stitching process that produces a panoramic video picture. For
a minimal installation, the cameras are mounted close to the middle line under the roof
covering the spectator area, that is, approximately 10 meters from the side line and 10
meters above the ground. With a 3.5 mm wide-angle lens, each camera covered a field
of view of about 68 degrees; that is, all four cameras covered the full field with sufficient
overlap to identify common features necessary for camera calibration and stitching (see
Figure 4.2).

Figure 4.2: Camera setup at Alfheim stadium.

The cameras were managed using our own library, called Northlight, developed for the
Verdione project [126], to manage frame synchronization, storage, encoding, and so on.
We ran the system on a single computer with an Intel Core i7-3930K at 3.2 GHz, with
16 GB of memory. Northlight integrates the software development kit provided by Basler
for the cameras, video encoding using x264, and color space conversion using FFmpeg.

Stitching

Tracking game events over multiple cameras is a nice feature, but in many situations
a complete view of the field is desirable. In addition to camera selection functionality,
we therefore generated a panoramic picture by combining images from multiple trigger-
synchronized cameras. The cameras were calibrated in their fixed positions using a clas-
sical chessboard pattern [143], and the stitching operation required a more complex pro-
cessing pipeline. We used alternative implementations with respect to what to store and
process offline, but generally we had to 1) correct the images for lens distortion in the
outer parts of the frame due to the fish-eye lens effect, 2) rotate and morph the images
into panoramic perspective due to different positions covering different areas of the field,
3) correct the image brightness due to light differences, and 4) stitch the video images
into a panoramic image. Figure 4.3 shows the process of combining four warped camera
images into a single large panoramic image. The highlighted areas in the figure are the
regions of camera overlap.

After the initial steps, the overlapping areas between the frames were used to stitch the
four videos into a panoramic picture before storing it to disk. We first tried the open-source
solutions given by the computer vision library OpenCV, which are based on the automatic
panoramic image stitcher of Brown et al. [14]; that is, we used the auto-stitcher functions
using planar, cylindrical, and spherical projections. Our analysis shows that none of the
OpenCV implementations are perfect, due to large execution times and varying image
quality and resolutions [46]. The fastest algorithm is the spherical projection, but it
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Figure 4.3: The stitching process. FEach image from the four different frames is warped
and combined into a panorama.

has severe barreling effects and the execution time is 1746 ms per frame, far above our
real-time goal. Therefore, a different approach, homography stitching [48], was selected.
Non—Real-Time Processing-Loop Implementation

As a first proof-of-concept prototype [46], we implemented the stitching operation as a
single-threaded sequential processing loop, as shown in Figure 4.4, that is, processing one
frame per loop iteration.

Pre-processing Primary stitching Post-processing Storage
Read Write
frames frames
HDD HDD

Figure 4.4: The non-real-time Bagadus stitching pipeline.

As seen in the figure, the process consists of four main parts: one pre-processing part,
which reads video frames from either disk or the cameras; one part that converts the
video from YUV to RGB, which is used by the rest of the pipeline; debarreling, to remove
any barrel distortion from the cameras; and primary stitching. This system version used
the OpenCV debarreling functions and the primary stitching part used the homography-
based stitching algorithm to stitch the four individual camera frames into a 7000x960
panoramic frame. As we can see from Figure 4.5, this last part is the most resource-
demanding aspect of the system. After the stitching, post-processing is responsible for
converting the video back from RGB to YUV due to the x264 video encoder’s lack of
support for RGB. The reason for using the RGB color space is that we use OpenCV
components, which are written for RGB. The single-threaded loop means that all the
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steps are performed sequentially for one set of frames before the next set of frames is
processed.

Encoding
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Figure 4.5: Frame processing time in the non-real-time Bagadus stitching pipeline.

The system’s performance is presented in Figure 4.5 and the total execution time
per panoramic frame exceeds 1100 ms, on average. To meet our 30-fps requirement, our
next approach, optimized for heterogeneous architectures and presented in Section 4.2,
improves performance by parallelizing and offloading several steps onto a GPU.

4.2 The Real-Time Bagadus Video Pipeline

In this section, we investigate the optimized real-time pipeline shown in Figure 4.6. We
analyze the different modules in the pipeline and perform simple benchmark tests to
compare the central processing unit (CPU) and GPU performance on the main modules
(background subtraction, color correction, stitching, and conversion) running on the GPU.
There are two main parts to the real-time pipeline: one part running on the CPU and the
other running on a GPU using the CUDA framework. To implement the pipeline’s real-
time properties, we have to benchmark and load-balance the components with components
running on the CPU and others on the GPU. We have to optimize the transfers between
the CPU and GPU and try to eliminate any unnecessary transfers.

The experiments in this section were performed on an Intel Core i7-3930K six-core
processor with Hyper-Threading enabled, based on the Sandy Bridge-E architecture. The
machine had 32 GB of RAM and an Nvidia GeForce GTX 680 GPU based on the Kepler
GK104 architecture.

The Controller Module

The single-threaded controller runs on the CPU and is responsible for initializing the
pipeline, synchronizing the different modules, handling global errors and dropped frames,
and transferring data between the different modules. After initialization, it waits for
and receives the next set of frames from the camera reader (CamReader) module (see
below). Next, it controls the transfer of data from the output buffers of module N to the
input buffers of module N + 1. This is done primarily through pointer swapping to avoid
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Figure 4.6: The real-time panoramic video stitching pipeline.

unnecessary memory transfers, but with memory copies as an alternative. It then signals
all modules to process the new input and waits for them to finish processing. Next, the
controller continues looping by waiting for the next set of frames from the reader. Another
important task of the controller is to check the execution speed. If an earlier step in the
pipeline runs too slowly and one or more frames from the cameras has been lost, the
controller will tell the modules in the pipeline to skip the delayed or dropped frame and
reuse the previous frame.

The CamReader Module

The CamReader module is responsible for retrieving frames from the Ethernet cameras.
It runs on the CPU and consists of one dedicated reader thread per camera. Each of the
threads waits for the next frame and then writes the retrieved frame to an output buffer,
overwriting the previous frame. The cameras provide a single frame in YUV 4:2:2 format
and the CamReader’s frame retrieval rate determines the real-time threshold for the rest
of the pipeline. As described in Section 4.1.2, camera shutter synchronization is controlled
by an external trigger box and, in our current configuration, the cameras deliver a frame
rate of 30 fps; that is, the real-time threshold and CamReader processing time are thus
33 ms.

The Converter Module

The CamReader module outputs frames in YUV 4:2:2 format. However, the stitching
pipeline requires RGBA internally for processing and the system therefore converts frames
from YUV 4:2:2 to RGBA. This process is handled by the Converter module, using FFm-
peg and swscale. The processing time for these conversions on the CPU, as seen later in
Figure 4.13, is well below the real-time requirement, so this operation can run as a single
thread. Conversion is an embarrassingly parallel operation that can also be carried out
efficiently on a GPU; however, the transfer of data to and from the GPU for a single
operation would add too much latency to the system.
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The Debarreler Module

Due to the wide-angle lenses used in our cameras to capture the entire field, the images
delivered suffer from barrel distortion, which needs to be corrected. We found the perfor-
mance of the existing debarreling implementation in the old stitching pipeline to perform
fast enough. The Debarreler module is therefore still based on OpenCV’s debarreling
function, which is optimized for execution on CPUs with SIMD, using nearest-neighbor
interpolation, and executes as a dedicated thread per camera.

The SingleCamWriter Module

In addition to storing the stitched panoramic video, we also want to store the video
from the separate cameras. This storage operation is carried out by the SingleCamWriter
module, which runs as a dedicated thread per camera. As noted by Halvorsen et al. [46],
storing the videos as raw data proves impractical due to the size of the uncompressed
raw data. The different CamWriter modules (here SingleCamWriter) therefore encode
and compress frames into three-second H.264 files, which has proven to be very efficient.
Due to the use of H.264, every SingleCamWriter thread starts by converting from RGBA
to YUV 4:2:0, which is the input format required by the x264 encoder. The threads
then encode the frames and write the results to disk. There are not many efficient H.264
encoders that can run on GPUs without dedicated hardware encoding blocks; therefore,
we did not consider moving this step to the GPU.

The Uploader Module

Due to the great potential of parallelizing the panoramic workload and the high computing
power of modern GPUs, large parts of our pipeline run on a GPU. We therefore need to
transfer data from the CPU to the GPU, a task performed by the Uploader module.
In addition, the Uploader module is also responsible for executing the CPU part of the
BackgroundSubtractor module (see Section 4.2). The Uploader module consists of a single
CPU thread that first runs the player pixel lookup creation needed by the background
subtractor. Next, it transfers the current RGBA frames and the corresponding player
pixel maps from the CPU to the GPU. This is done by the use of double buffering and
asynchronous transfers (CUDA Streams). We use one stream for each camera and a
stream for the pixel maps for the background subtractor.

The BackgroundSubtractor Module

Background subtraction is the process of determining which pixels of a video belong to
the foreground and which belong to the background. The BackgroundSubtractor module,
running on the GPU, generates a foreground mask (for moving objects such as play-
ers) that is later used in the Stitcher module to avoid seams through the players. Our
background subtractor can run like traditional systems searching the entire image for
foreground objects. However, we can also exploit information gained by the tight inte-
gration with the player sensor system. Through the sensor system, we know the player
coordinates that can be used to improve both the performance and precision of the mod-
ule. By first retrieving player coordinates for a frame, we can then create a player pixel
lookup map, where we set only the players’ pixels, including a safety margin, to one. The
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creation of these lookup maps is executed on the CPU as part of the Uploader module.
The background subtractor on the GPU then uses this lookup map to process only pixels
close to a player, which reduces the GPU kernel processing times from 811,793 ms to
327,576 ms, on average, on a GeForce GTX 680. When run in a pipelined fashion, the
processing delay caused by the lookup map creation is also eliminated. The sensor system
coordinates are retrieved by a dedicated slave thread that continuously polls the sensor
system database for new samples.

Zivkovich - GPU - coordinate modification

Zivkovich - CPU - coordinate modification

Zivkovich - CPU - unmodified

KaewTraKulPong - CPU - unmodified

0 10 20 30 40 50 60 70 80 90 100 110
Execution time (ms)

Figure 4.7: Execution time of alternative algorithms for the BackgroundSubtractor mod-
ule (single camera stream).

Even though we enhanced the background subtraction with sensor data input, there
are several implementation alternatives. When determining which algorithm to imple-
ment, we evaluated two alternatives: Zivkovic’s [144,145] and Kaewtrakulpong and Bow-
den’s [68]. Even though the CPU implementation was slower (see Figure 4.7), Zivkovic’s
method provided the best visual results and was therefore selected for further modifica-
tion. Furthermore, the Zivkovic algorithm proved to be fast enough when modified with
input from the sensor system data. The GPU implementation, based on Zivkovic’s [98],
proved to be even faster and the final performance numbers for a single camera stream are
shown in Figure 4.7. A visual comparison of the unmodified Zivkovic implementation and
the sensor system-modified version is shown in Figure 4.8, where the sensor coordinate
modification reduces noise, as seen in the upper parts of the figures.

(a) Unmodified Zivkovic approach. (b) Player sensor data modification of Zivkovic’s ap-
proach.

Figure 4.8: Background subtraction comparison.



4.2. The Real-Time Bagadus Video Pipeline 87

The Warper Module

The Warper module is responsible for warping the camera frames to fit the stitched
panorama image. By warping we mean twisting, rotating, and skewing the images to
fit the common panoramic plane. As we saw from the old pipeline, this is necessary
because the stitcher assumes that its input images are perfectly warped and aligned to
be stitched to a large panorama. Executing on the GPU, the Warper also warps the
foreground masks provided by the BackgroundSubtractor module. This is because the
Stitcher module will later use the masks and therefore expects them to fit perfectly to the
corresponding warped camera frames. Here, we use the Nvidia Performance Primitives
(NPP) library [89] for optimized implementation.

The Color-Corrector Module

When recording frames from several different cameras pointing in different directions, it
is nearly impossible to calibrate the cameras to output the exact same colors due to the
different lighting conditions. This means that, to generate the best panoramic videos,
we need to correct the colors of all the frames to remove disparities. In our panorama
pipeline, this is done by the Color corrector module running on the GPU.

GPU (Nvidia GeForce GTX 680)
CPU (Intel Core i7-2600)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Execution time (ms)

Figure 4.9: Execution time of color correction.

We choose to carry out the color correction after warping the images. The reason for
this is that locating the overlapping regions is easier with aligned images and the overlap
is also needed when stitching the images together. This algorithm is executed on the
GPU, enabling fast color correction within our pipeline. The implementation is based
on the algorithm presented by Xiong and Pulli [136], but with minor modifications to
optimize for the GPU. We calculate the color differences between the images for every
single set of frames delivered from the cameras. We color-corrected each image in sequence,
meaning that each image was corrected according to the overlapping frame to the left.
The algorithm implemented is easy to parallelize and does not use pixel-to-pixel mapping,
which makes it well suited for our scenario. Figure 4.9 compares running the algorithm
on the CPU and on a GPU. The CPU version could be further optimized with SIMD;
however, the GPU implementation would still be much faster.

The Stitcher Module

As in the old non—real-time pipeline, we use a homography-based stitcher where we simply
create seams between the overlapping camera frames and then copy pixels from the images
based on these seams. These frames need to follow the same homography, which is why
they have to be warped two steps back in the pipeline. In our old pipeline, we used static
cuts for seams, which meant that a fixed rectangular area from each frame was copied
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directly to the output frame. Static cut panoramas are faster but can introduce graphical
errors in the seam area, especially when there is movement in the scene, as illustrated in
Figure 4.10(a).

(a) The original fixed cut stitching with a straight (b) The new dynamic stitching with color correction.
vertical seam.

——

(¢) Dynamic stitching with no color correction. (d) Dynamic stitching with color correction. The
The left image shows the seam search area between left image shows the seam search area between the
the red lines and the seam in yellow. The right im- red lines and the seam in yellow. The right image
age clearly shows the seam going outside the player, has no visible seam and no color differences.

but there are still color differences.

Figure 4.10: Stitcher comparison, improving the visual quality with dynamic seams and
color correction.

To make a seam with a better visual result, we therefore introduced a dynamic cut
stitcher instead of the old static cut. The dynamic cut stitcher creates seams by first
creating a rectangle of adjustable width over the static seam area. Then, it treats all
pixels within the seam area as graph nodes. The graph is directed from the bottom
to the top in such a way that each pixel points to the three adjacent pixels above (the
left- and right-most pixels only point to the two pixels available). These edges’ weights
are calculated by using a custom function that compares the absolute color differences
between the corresponding pixels in each of the two frames we are trying to stitch. The
weight function also checks the foreground masks from the BGS module to see if any
player is in the pixel and, if so, it adds a large weight to the node. In effect, both these
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steps create edges between nodes where the colors differ and the players present have much
larger weights. We then run the Dijkstra graph algorithm [28] on the graph to create a
minimal cost route from the start of the offset at the bottom of the image to the end at
the top. Since our path is directed upward, we can only move up or diagonally from each
node and we only obtain one node per horizontal position. By looping through the path,
we therefore obtain our new cut offsets by adding the node’s horizontal position to the
base offset. An illustration of how the final seam looks is shown in Figure 4.10(b), where
the seams without and with color correction are shown in Figures 4.10(c) and 4.10(d).

GPU (Nvidia GeForce GTX 680)
CPU (Intel Core i7-2600)
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Execution time (ms)

Figure 4.11: Execution time for dynamic stitching.

The timings for the dynamic stitching module are shown in Figure 4.11. The CPU
version is currently slightly faster than our GPU version, since this algorithm is more
serial than the other image processing algorithms. Searches and branches are also more
efficient on traditional CPUs, but further optimization of the CUDA code could improve
this GPU performance; however, this is not needed, since we are well within the real-time
requirements. The performance difference between the GPU and CPU versions is also
not large enough to justify moving the module to the CPU, which would also add delay
by transferring the data over the PCI Express bus.

The YuvConverter Module

Before storing the stitched panoramic frames, we need to convert back from RGBA to
YUV 4:2:0 for the H.264 encoder, just as in the SingleCamWriter module. However,
due to the size of the output panorama, this conversion is not fast enough on the CPU,
even with the highly optimized swscale library that uses SIMD. This module is therefore
implemented on the GPU. For the GPU version, we based the module on a function
from Nvidia’s NPP [89]. The NPP contains several conversion primitives, but no direct
conversion from RGBA to YUV 4:2:0. The GPU-based version therefore first uses the
NPP to convert from RGBA to YUV 4:4:4 and we wrote a small CUDA kernel to carry
out the final conversion from YUV 4:4:4 to YUV 4:2:0.

GPU (Nvidia GeForce GTX 680) i
CPU (Intel Core i7-2600)

0 5 10 15 20 25 30 35 40 45 50 55 60 65
Execution time (ms)

Figure 4.12: Execution time for conversion from RGBA to YUV 4:2:0.

Figure 4.12 compares the performance of the CPU-based implementation with that of
the optimized GPU-based version. These results show that the GPU version, even with
a two-step conversion, is over twice as fast as the CPU version.
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Figure 4.13: Improved real-time pipeline performance: module overview with default
setup.

The Downloader Module

Before we can write the stitched panorama frames to disk, we need to transfer them back
to the CPU, which is carried out by the Downloader module. It runs as a single CPU
thread that synchronously copies a frame to the CPU. We could have implemented the
Downloader module as an asynchronous transfer with double buffering, like the Uploader,
but since the performance, as shown in Figure 4.13, is very good, this is left as a further
optimization.

The PanoramaWriter Module

The last module, executing on the CPU, is the Writer module, which writes the panoramic
frames to disk. The conversion from RGBA to YUV was already done on the GPU, so
the only steps the PanoramaWriter needs to follow are to first encode the input frame to
H.264 and then write the result to disk as three-second H.264 video files.

4.2.1 Performance Analysis

To evaluate the performance of our pipeline, we used an off-the-shelf PC with an Intel
Core i7-3930K processor and an Nvidia GeForce GTX 680 GPU. We benchmarked each
individual component and the pipeline as a whole, capturing, processing, and storing 1000
frames from the cameras.

In the non-real-time pipeline [46], the main bottleneck was panorama creation (warp-
ing and stitching). This operation alone used 974 ms per frame. As shown by the perfor-
mance breakdown into individual components in Figure 4.13, the new pipeline was greatly
improved. Note that all the individual components run concurrently in real time on the
same set of hardware. All of these, however, add up to times far longer than 33 ms. The
reason why the pipeline still runs in real time is because several frames are processed in
parallel. Note that all CUDA kernels are executed at the same time on a single GPU,
so the performance of the GPU modules is affected by that of the other GPU modules.
On earlier GPUs from the Tesla architecture (e.g., the GTX 280), where different CUDA
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Figure 4.14: Inter-departure times of frames when running the entire pipeline. In a real-
time scenario, the output rate should follow the input rate (given here by the trigger box)
of 30 fps (33 ms).

kernels were serialized, this was not possible. However, the Fermi architecture (GTX 480
and above) introduced concurrent CUDA kernel execution [88]. Thus, since the Controller
module schedules the other modules according to an input rate of 30 fps, the resources
are sufficient for real-time execution.

For the pipeline to function in real time, the output rate should follow the input rate,
that is, deliver all output frames (both for four single cameras and for one panorama) at
30 fps. Thus, to give an idea of how often a frame is written to file, Figure 4.14 shows
individual and average frame inter-departure rates. The figures show the time differences
between consecutive writes for the generated panorama, as well as for the individual
camera streams. Operating system calls, interrupts, and disk accesses most likely cause
small spikes in the write times (as seen in the scatter plot in Figure 4.14(a), but as long as
the average times are equal to the real-time threshold, the pipeline can be considered to
run in real time. As shown in Figures 4.14(b) and 4.14(c), the average frame inter-arrival
time (Reader) is equal to the average frame inter-departure time (both SingleCamWriter
and PanoramaWriter). This is also the case when testing other CPU frequencies and
numbers of available cores. Thus, the pipeline runs in real time.

As stated above and seen in Figure 4.14(a), there is a small latency in the panorama
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pipeline compared to writing the single cameras immediately. The 33 ms are due to the
camera frame rate of 30 fps, meaning that even though a module may finish before the
threshold time, the Controller module will make it wait until the next set of frames arrives
before signaling it to re-execute.

We added a five-second input buffer to the pipeline, because the sensor system has
a latency of at least three seconds before the data are ready for use, and we added a
two-second buffer for safety and GPU processing. This means that the end-to-end time
from when a picture is recorded by the camera until it is stored on disk is 5.33 seconds
per frame, on average.

4.2.2 Discussion

The first non-real-time prototype aimed at full integration at the system level, rather
than optimization for performance. However, the challenge with the real-time pipeline
has been increased by aiming at running the system in real time on low-cost, off-the-shelf
hardware.

The new real-time capability also enables future enhancements with respect to func-
tionality. For example, several systems have already demonstrated their ability to serve
available panoramic video to the masses [53,83] and, by generating the panoramic video
live, enables the audience to mark and follow particular players and events. We can
also use this information to create video playlists [66] automatically, providing a video
summary of extracted events.
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Figure 4.15: Core count scalability.

Due to limited availability of resources during these experiments, we were not able
to test our system with more cameras or with higher-resolution cameras. However, to
still obtain an impression of the scalability capabilities of our pipeline, we performed
several benchmark tests, changing the number of available cores and, the processor clock
frequency, and experimented with GPUs from different architectures and with different
computing resources.

Figure 4.15' shows the results changing the number of available cores that can process
the many concurrent threads in the CPU part of the pipeline (Figure 4.14(b) shows that
the pipeline is still in real time). As we can observe from the figure, every component

!Note that this experiment was run on a machine with more available cores (16), each at a lower clock
frequency (2.0 GHz), compared to the machine installed at the stadium, which was used for all the other
tests.
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runs in real time, using more than four cores and the pipeline as a whole using eight or
more cores. Furthermore, the CPU pipeline contains a large but configurable number of
threads (86 in the current setup) and, due to the many threads of the embarrassingly
parallel workload, the pipeline seems to scale well with the number of available cores.
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Figure 4.16: CPU frequency scalability.

Similar conclusions can be drawn from Figure 4.16, where the processing time is re-
duced with a higher processor clock frequency; that is, the pipeline already runs in real
time at 3.2 GHz and scaling is almost linear with CPU frequency (Figure 4.14(c) shows
that the pipeline is still in real time). The H.264 encoder scales especially well when
scaling the CPU frequency.
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Figure 4.17: GPU comparison.

With respect to the GPU part of the pipeline, Figure 4.17 plots the processing times
using different GPUs. The high-end GPUs GTX 480 and above (based on the Fermi
architecture) all achieve real-time performance in the current setup. The GTX 280, based
on the Tesla architecture, does not support the concurrent CUDA kernel execution intro-
duced with the Fermi architecture [88] and performance is therefore lower than in real
time, since the kernels executing on the GPU must be serialized. As expected, more pow-
erful GPUs reduce the processing time. This is shown for the GTX 580 results. The GTX
580 is based on the same Fermi architecture as the GTX 480; however, it has 512 cores
versus 480 cores and the cores clocked at a higher frequency. We can also see that the
GTX 680 GPU, which is based on the newer Kepler architecture, performs better than
the GTX 580 in some cases and has slightly lower performance in other cases. This is due
to the fact that we developed and optimized this pipeline for the Fermi architecture, not
the Kepler architecture.

Looking at the bandwidth used on the PCI Express bus between the CPU and GPU,
we only use a small portion of the pipeline. Our Uploader module takes 737 MB/s and the
downloader takes 291 MB/s. The theoretical bandwidth of a 16-lane PCI Express 3.0 link



94 Chapter 4. Using Heterogeneous Architectures for Complex Workloads

is 16 GB/s. For now, one GPU fulfills our real-time requirement. We did therefore not
experiment with multiple GPUs, but the GPU processing power can easily be increased
by adding multiple cards. Profiling of the modules running on the GPU showed that the
pipeline uses seven kernels running concurrently on the GPU. These seven kernels have an
average compute utilization of 14.8% on the latest-generation GPU based on the Kepler
GK110 architecture. Thus, based on these results, we believe that our pipeline can be
scaled up to both higher numbers of cameras and higher-resolution cameras.

4.3 Summary

Where people earlier used a huge amount of time to analyze games manually, Bagadus
is an integrated system that automatically manages the required operations and video
synchronization. For example, in online mode, Bagadus receives expert-annotated events
from the analytics team and enables immediate playback during a game or a practice
session. To enable this feature, we distributed the workload of the video subsystem on
both the CPU and GPU. Our experiments show that the pipeline can run in real time on
a low-cost six-core machine with a commodity GPU. To achieve this, each component in
the pipeline was optimized for the target architecture, both as a standalone component
and as a part of a pipeline. We had to carefully consider which of the components we
wanted to run on the GPU and the CPU. Some of the components needed input from the
network, some needed to write to storage, and some components needed input from other
parts of the system, such as the tracking subsystem. This meant that modules such as
the camera readers and writers had to run on the CPU.

An important step in the optimizations was the benchmarking of all the separate
modules together as a complete pipeline. One of the lessons we learned was that, even
though the standalone module is faster on the CPU, we had to keep this part of the
pipeline on the GPU, since the next module in the pipeline had to be executed on the
GPU. The CPU version of this module could not meet our real-time requirements. Moving
only the dynamic stitcher module to the CPU for processing would also add extra latency
to the system because of the extra transfer over the PCI Express bus. The same lesson
also goes the other way: In some cases (i.e., with the Debarreling module) the workload
might be very well suited for offloading to the GPU; however, the next step in the pipeline
would require processing on the CPU.

Another lesson learned during our experiments was that the real-time pipeline uses
seven kernels running concurrently on the GPU and all seven kernels combined had a
average compute utilization of just 14.8% on the GPU. This means that we could po-
tentially share the GPU with other workloads. When programming a complex workload
such as the video subsystem of the Bagadus system, we had to have detailed knowledge
about both the GPU and CPU architectures in our target system. Several iterations of
optimizations are often required to make a complex workload such as the Bagadus video
pipeline run in real time. This process involves much trial and error. If we were to change
the hardware used for our system, which components to run on the GPU and on the CPU
might have to be redetermined.

To make this process easier, we therefore need a framework that is aware of an ap-
plication’s real-time requirements so that, with the help of instrumented runs of the
application, the framework can move resources between the GPU and CPU for optimal
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execution. Ideally, we would just want the programmer to express the maximum level of
parallelism in the program code and have the framework generate multiple versions for
any heterogeneous architectures that are supported. The framework would also be able
to dynamically adapt the pipeline when the hardware resources changed. A processing
framework would also be able to utilize the resources on the GPU more efficiently. Our
experiments show that the average compute utilization of the GPU when executing all our
seven kernels was 14.8%. If the real-time requirements were met, the framework would
be able to schedule a greater workload on the GPU.

The Bagadus prototype presented here supports four 1K cameras and runs on a
single computer. The next-generation camera setup use five 2K cameras. To support
this setup, the Bagadus video pipeline was extended to run on multiple machines. This
was implemented after the completion of this thesis. The latest version of the Bagadus
pipeline [40,80,97] runs in real time on multiple machines connected with a PCI Express-
based interconnect.

In the next chapter, we introduce a programming language and framework designed for
the real-time processing of multimedia workloads on heterogeneous architectures. This
system is designed to enable complex workloads such as Bagadus to run in real time
on distributed systems with heterogeneous architectures without manually tweaking the
system.



96

Chapter 4. Using Heterogeneous Architectures for Complex Workloads




Chapter 5

The P2G Framework and the Future

In the previous chapter, we saw that complex multimedia workloads with real-time con-
straints are well suited for heterogeneous architectures. However, we observed that many
optimizations were required to make sure that the processing time of all the components
was less than the real-time threshold and that the workloads were executed on the optimal
architecture for the particular workload or task.

In this chapter, we take a take a closer look at a framework called P2G that we designed
for the real-time processing of multimedia workloads on heterogeneous architectures. The
goal of this framework is to automate the parallelization of the program code and provide
programmers a unified programming abstraction for writing multimedia workloads for
heterogeneous architectures. This framework is a work in progress. At the conclusion of
this thesis, a simple prototype was running on a single multicore machine with a shared
memory architecture. We used two simple multimedia workloads to test the feasibility of
our system.

This chapter is organized as follows: First, in Section 5.1, we summarize some of the
challenges we observed in previous chapters. In Section 5.2, we present ideas for design-
ing the framework and take a closer look at other frameworks for distributed processing.
In Section 5.3, we present related work on other processing frameworks. Next, in Sec-
tion 5.4, we present the architecture and programming model of our P2G framework and
evaluate two simple multimedia workloads with the prototype implementation. Finally,
in Section 5.5, we discuss the future vision of our framework.

5.1 Summary of Challenges

In Chapters 3 and 4, we experimented with heterogeneous architectures for simple and
complex multimedia workloads. We observed that the architectures can efficiently process
the workloads. However, challenges remain, especially for the programmer.

We saw that many of our simple workloads had to be optimized for the architectures
to run efficiently. On the x86 and the Cell, single instruction multiple data (SIMD) pro-
gramming is recommended to process more data per cycle. We also saw the importance,
on the x86 architecture, of adapting the number of threads used by the workload to the
number of cores in the system. If too many threads are used, performance suffers because
of scheduling overhead. If the workload easily scales too many threads, another possibility
is to use a graphics processing unit (GPU). When using a GPU, the programmer has to

97
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be aware that it takes time to transfer data to and from the GPU, so the workload has to
be large enough to compensate for the transfer overhead. There are also several potential
pitfalls of not using the memory on the GPU correctly and not optimizing the transfers
from the host central processing unit (CPU) to the GPU.

Finally, when programmers want to process more complex multimedia workloads with
real-time constraints that execute on multiple heterogeneous architectures, a great deal of
profiling, tweaking, and optimization is required to make sure that the right components
run on the right architecture.

5.2 Design Ideas for a New Processing Framework

Our work with both simple and complex multimedia workloads led to several observations
and challenges with optimizing parts of programs and entire pipelines for different hetero-
geneous architectures. We want to use some of these ideas when designing our framework
for processing multimedia workloads on heterogeneous architectures.

One of the first observations when working with the x86, Cell, and GPUs was that
programmers tend to prefer the single instruction, multiple threads (SIMT) abstraction
used on GPUs when they have small kernels that execute on the same data over the more
rigid SIMD abstraction found on the x86 and the Cell. The main advantage with SIMT
is that the programmer can think in terms of scalar code when writing programs. All the
architectures we worked with use a C-like programming language, so we want to keep C
as the programming language when designing the framework.

Furthermore, moving data between the different architectures is a challenge for many
programmers. It is therefore important to design the framework in such a way that it
takes care of data transfers. We also want to present the data as arrays to programmers,
because this is a familiar data representation when working with multimedia workloads.
For scheduling multimedia workloads, we want to use the two-level scheduling that we ex-
perimented with on a very simple scheduling simulator [115]. Here, a high-level scheduler
(HLS) has global control of all the resources available and a low-level scheduler executes
the workloads and time slicing on the different processing cores.

It is important for the framework to track data dependencies in the pipelines. If the
dependency tracker is efficient and fine grained, the framework will be able to expose both
task parallelism and pipeline parallelism in the programs execution. Dependency tracking
is also important for the framework when moving data between different processing cores.
To efficiently carry out fine-grained dependency tracking, programmers must write their
applications in such way that they express as much parallelism as possible.

5.3 Existing Processing Frameworks

A great deal of research aims at solving challenges with parallel and distributed processing
of large quantities of data. Two of the most popular frameworks for distributed processing
are Google’s MapReduce [27] and Microsoft’s Dryad [63]. In addition, we have System S
from IBM [41], PigLatin from Yahoo [93], Cosmos [85], Scope [18], and Dryad LINQ [140].

MapReduce uses a data-parallel model and is based on keys and values. There are sev-
eral implementations of MapReduce for multicore processors [103], clusters [4], GPUs [49],



5.4. The P2G Framework 99

and even the Cell Broadband Engine [26]. To process data relations among heterogeneous
data more efficiently, which is not supported by the original MapReduce model, Map—
Reduce-Merge [138] was introduced. The Oivos project [124] addresses the same issues
but, in addition, the system provides a more expressive, declarative programming model.
Reducing the layering overhead of the software running on the top of MapReduce is
the goal of Cogset [125], where the architecture of the processing is changed to increase
performance.

The Dryad, Cosmos, and System S frameworks have several properties in common.
All three use directed graphs to model communication between the processing stages and
execute them on a cluster. System S also supports cycles in the graphs. However, since
all of these systems are closed source, many details are unknown. Compared to the data-
parallel MapReduce, which is one of the most cited paradigms for expressing parallel
workloads, both Dryad and System S use a task-parallel model.

A limitation of MapReduce, Dryad, and Cosmos is their inability to model interac-
tive algorithms. The rigid semantics of MapReduce does not map well to all types of
problems and workloads [138], which in many cases may lead to decreased performance
and unnaturally expressed solutions [127]. An alternative frameworks to MapReduce is
the Khan process network (KPN). KPNs support arbitrary communication graphs with
cycles and are deterministic. However, not many general-purpose KPN implementations
exist. Some known implementations include the Sesame project [123], YAPI [70], and
the Nornir framework [128]. These frameworks have several benefits, but for applica-
tion developers the KPN model has challenges. One of the main challenges is that the
communication channels between the processes must be specified manually and, in an
environment without a shared memory model, distributed deadlock detection must be
implemented.

An alternative is a framework based on a process network paradigm, such as Streamlt [44].
Here, we have a language and runtime for the implementation of streaming programs that
are described by a graph with computational blocks, called filters, that has a single input
and output. The filters can be combined in loops and fork/join patterns but must provide
bounds on the number of messages produced and consumed, making a Streamlt graph a
synchronous data flow process network [74]. The framework supports multiple machines
and processors. However, this must be specified at compilation time.

Processing and developing distributed multimedia applications is more complex than
for traditional sequential applications. Multimedia workloads often have strict require-
ments and deadlines. Iterative processing is also essential for live multimedia workloads,
such as Bagadus. Thus, all existing frameworks have shortcomings that are hard to
address and the traditional batch processing frameworks simply come up short in our
multimedia scenario. In the next section, we describe the design ideas and a basic imple-
mentation of our new framework for real-time multimedia processing.

5.4 The P2G Framework

The basic idea behind the P2G framework comes from the observation that most of the
frameworks for distributed processing lack support for real-time multimedia workloads.
The frameworks often also sacrifice task and data parallelism. With data parallelism,
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multiple processing cores perform the same operation over multiple disjoint data chunks.
Task parallelism uses multiple processing cores to perform different operations in parallel.

Many of the existing processing frameworks optimize for either task or data parallelism,
but not both. This means that they can potentially limit the ability to express the
parallelism of a given workload. For example, MapReduce and its related approaches
provide considerable support for parallelization but restrict runtime processing to data
parallelism [39]. Functional languages such as Haskell [52], Erlang [6], and the event-
based Specification and Description Language [65], map well to task parallelism. In
these languages, programs are expressed as communicating processes either through event
distribution or message passing. This makes it challenging to express data parallelism
without specifying a fixed number of communication channels.

For multimedia workloads, the Nornir framework improves on some of the shortcom-
ings of the traditional batch processing frameworks, such as Dryad and MapReduce. KPNs
are deterministic; each execution of a process network produces the same output given the
same input. KPNs also support arbitrary communication graphs (with cycles/iterations),
while MapReduce and Dryad restrict application developers to a parallel pipeline struc-
ture and directed acyclic graphs (DAGs). However, Nornir is only task parallel and data
parallelism must be explicitly added by the programmer. Furthermore, as a framework
for heterogeneous multicore architectures, Nornir still has challenges. For example, the
message-passing communication channels, with exactly one sender and one receiver, are
modeled as infinite first in, first out queues. In real-life heterogeneous architectures, how-
ever, queue length is limited by available memory. A heterogeneous and distributed Nornir
implementation would therefore require a distributed deadlock detection algorithm. An-
other issue is the complex programming model. The KPN model requires the application
developer to specify the communication channels between the processes manually.

P2G builds on some of the knowledge gained from Nornir and we address the require-
ments from multimedia workloads, with inherent support for deadlines. A particularly
desirable feature of processing multimedia workloads is the automatic combination of task
and data parallelism. Intra-frame prediction in H.264 or VPS8, for example, introduces
many dependencies between the sub-blocks of a frame and, together with other overlap-
ping processing stages, these operations have great potential to benefit from both types
of parallelism. Multimedia algorithms are iterative and exhibit many pipeline parallel
opportunities. It is hard to exploit them, because an intrinsic knowledge of fine-grained
dependencies is required and it is difficult to structure programs in such a way that
pipeline parallelism can be used. Thies et al. [122] wrote an analysis tool for finding
parallel pipeline opportunities by evaluating memory accesses, assuming stable behavior.
They evaluated their system on multimedia algorithms and significantly increased paral-
lelism by utilizing the complex dependencies found. In the P2G framework, application
developers model data and task dependencies explicitly, which enables the runtime sys-
tem to automatically detect and take full advantage of all parallel opportunities without
manual intervention.

The main source of non-determinism in the other languages and frameworks lies in
the arbitrary order of read and write operations from and to memory. This source of non-
deterministic behavior can be removed by using a strict write-once semantics for writing
to memory [8]. Several languages take advantage of the concept of single assignment,
including Haskell [52] and Erlang [6]. This enables the schedulers to determine when
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code depending on a memory cell is runnable. This is a key concept that we adopted for
P2G. While write-once semantics are well suited for a scheduler’s dependency analysis,
it is not straightforward to think about multimedia algorithms in the functional terms of
Erlang and Haskell. Multimedia algorithms tend to be formulated in terms of iterations
of sequential transformation steps. They act on multidimensional data arrays (e.g., the
pixels in a picture) and frequently provide very intuitive data partitioning opportunities
(e.g., 8%8 pixel macroblocks in a picture). Prominent examples are the computation-heavy
MPEG-4 Advanced Video Coding encoding [64] and scale-invariant feature transform [75]
pipelines. Both are also examples of algorithms whose subsequent steps provide data
decomposition opportunities at different granularities and along different dimensions of
input data. Consequently, P2G should allow programmers to think in terms of fields
without losing write-once semantics. In this proof-of-concept implementation of P2G, we
use multidimensional arrays to implement fields.

The ability to carry out flexible partitioning requires the processing of clearly distinct
data units without side effects. The idea in P2G is to use kernels as in stream pro-
cessing [44,92]. This is the same paradigm used by GPUs and, when we experimented
with simple workloads in Chapter 3, the preferred paradigm of programmers. A kernel
describes the transformation of multidimensional fields of data. When such a transforma-
tion is formulated as a loop of equal steps, the field should instead be partitioned and the
kernel instantiated to achieve data-parallel execution. Each of these data partitions and
tasks can then be scheduled independently by the schedulers, which analyze dependencies
and guarantee a fully deterministic output, independent of order, due to the write-once
semantics of fields.

Together these observations determine four basic ideas for the design of P2G:

The use of multidimensional fields as the central concept for storing data in P2G
to achieve straightforward implementations of simple and complex multimedia al-
gorithms.

The use of kernels that process slices of fields to achieve data decomposition.

The use of write-once semantics to such fields to achieve deterministic behavior.

The use of dependency analysis at runtime at a granularity finer than entire fields
to achieve task decomposition along with data decomposition.

The P2G framework is designed to be language independent; however, for this pro-
totype, we defined a C-like language that captures many of P2G’s central concepts. As
such, the P2G language was inspired by several other languages. Cray’s Chapel [19]
language antedates many of P2G’s features in a more complete manner. However, P2G
adds write-once semantics and support for multimedia workloads. Furthermore, P2G
programs consist of interchangeable language elements where the programmer formulates
data dependencies with fetch and store statements between implicitly instantiated ker-
nels, (currently) written in C and C++. The biggest deviation from most other modern
language designs is that the P2G kernel language makes both message passing and par-
allelism implicit and allows users to think in terms of sequential data transformations.
Furthermore, the P2G concept supports deadlines, which allows for scheduling decisions
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such as termination, branching, and the use of alternative code paths based on runtime
observations.

P2G allows programmers to focus on data transformations in a sequential manner
while simultaneously providing enough information to dynamically adapt the data and
task parallelization. The fields in P2G look mostly like global multidimensional arrays in
C, although their representation in memory may differ. They do not have to be placed
contiguously in the memory of a single node; the fields can even be distributed across
multiple execution nodes.

5.4.1 Architecture

Virtual field
Execution node Master node Execution node
N\ R {
[ Low level scheduler ] Z 0 [ High level scheduler ] Zwn [ Low level scheduler ]
g 58
Instrumentation & S Instrumentation & a Instrumentation

Daemon Qo Manager Qo Daemon
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Communication Communication Communication
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7 4
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Figure 5.1: Overview of the architecture in the P2G system.

The basic architecture of the P2G framework can be seen in Figure 5.1. The P2G
architecture consists of a master node and an arbitrary number of execution nodes. Each
of the execution nodes reports its local topology (a graph of multicore and single-core
CPUs and GPUs, connected by various kinds of buses and other networks) to the master
node, which combines this information into a global topology of available resources. This
global topology can be updated during runtime, as execution nodes are dynamically added
and removed to accommodate for changes in the global load.

To maximize throughput, P2G uses the two-level scheduling approach we investigated
in 2008 [115]. On the master node, we have an HLS and, on the execution node(s),
we use a low-level scheduler (LLS). The HLS can analyze a workload’s store and fetch
statements, from which it can generate an intermediate implicit static dependency graph.
An example of such a graph is shown in Figure 5.2(a), where the edges connecting two
kernels through a field can be merged, circumventing the need for a vertex representing
the field, which is shown in Figure 5.2(b). From the intermediate graph, the HLS can
then derive the final implicit static dependency graph shown in Figure 5.2(b). The HLS
will then use a graph partitioning [50] or search-based [42] algorithm to partition the
workload into a suitable number of components that can be distributed to and run on
the resources available in the topology. Using instrumentation data collected from the
nodes executing the workload, we can weight the final graph with this profiling data
during runtime. The weighted final graph can then be repartitioned, with the intent of
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Figure 5.2: Dependency graphs in the P2G system.

improving system throughput, accommodating for changes in the global load or adapting
to changes in available resources.

Given a partial workload such as partition A in Figure 5.2(b), an LLS at an execution
node is responsible for local scheduling decisions. Figure 5.4 shows how the LLS can
combine tasks and data to minimize overhead introduced by P2G and take advantage of
specialized hardware, such as GPUs and other coprocessors.

The distribution of data, reporting, and other communication patterns in P2G is
carried out through an event-based, distributed publish—subscribe model. Dependencies
between components in a multimedia workload are deterministically derived from the
code and the HLSs’ partitioning decisions, resulting in direct communication. As such,
the P2G framework relies on a combination of HLS and LLS instrumentation data and
the global topology to make the best use of the performance of several heterogeneous
processing architectures in a distributed system.

5.4.2 Programming Model

The programming model used in the P2G framework has two main concepts: the implicit
static dependency graph shown in Figures 5.2(a) and 5.2(b) and the dynamically created
directed acyclic dependency graph (DC-DAG) illustrated in Figure 5.4. A kernel language
was also implemented to make it easier for programmers to develop workloads using P2G.
An example workload written in the P2G kernel language is shown in Figure 5.5). The
initial C4++ version of the workload is shown in Figure 5.3.

The P2G version consists of two primary kernels: mul2 and pluss. These two kernels
form a pipeline where mul2 first multiplies a value by two and stores the data, which
plusd then fetches and increases by five; mul2 then fetches the data stored by pluss; and
so on. The print kernel runs orthogonally to these two kernels and fetches and writes the
data they produced to cout. In combination, these three kernels form a cycle. The kernel
init runs only once and writes initial data for mul2 to consume. The kernels operate on
two one-dimensional, five-element fields. The print kernel writes {10, 11, 12, 13, 14},
{20, 22, 24, 26, 28} for the first age and {25, 27, 29, 31, 33}, {50, 54, 58, 62, 66} for
the second. Since there is no termination condition, this program runs indefinitely.
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void print( int *in, int number )

{
for( int i = 0; i < number; ++i ) {
std::cout << in[i] << " ";
}
std::cout << std::endl;
}
void mul2(int *in, int *out, int number)
{
for (int i = 0; i < number; ++i)
out[i] = in[i] * 2;
}
void plus5(int *in, int *out, int number)
{
for (int i = 0; i < number; ++1i)
out[i] = in[i] + 5;
}
int main ()
{
int m_datal[5] = { 10, 11, 12, 13, 14 };
int p_datal[5];
int number = sizeof(m_data) / sizeof (m_datal[0]);
while( true )
{
mul2(m_data, p_data, number);
print ( m_data, number );
print ( p_data, number );
plus5(p_data, m_data, number);
}
return O;
}

Figure 5.3: Initial C++ version of a mul/sum example.
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Dependency Graphs

The intermediate implicit static dependency graph can be seen in Figure 5.2(a) and is
extracted from the fetch and store statements in a kernel. These statements are used
by kernels to interact with fields. This intermediate graph can be further refined by
merging the edges of kernels linked through a field vertex, resulting in a final implicit
static dependency graph, as depicted in Figure 5.2(b). This final graph can serve as input
to the HLS, which can use it to determine how best to partition the workload given a
global topology. In this proof-of-concept implementation of P2G, dependency analysis is
only carried out during runtime.

The graph can be further weighted using instrumentation data during runtime to
serve as input for repartitioning. These weighted graphs can also serve as input in static
offline analysis. For example, it could be used as input to a simulator to best determine
how to initially configure a workload. During runtime, the intermediate implicit static
dependency graph is expanded to form a dynamically created directed acyclic dependency
graph, as shown in Figure 5.4. This expansion from a cyclic graph to a DAG occurs as
a result of our write-once semantics. As such, we can see how P2G is designed to unroll
loops without introducing implicit barriers between iterations. We call each such unrolled
loop an Age. In Figure 5.4, we see how the LLS can then use the DC-DAG to combine
both tasks and data to reduce overhead introduced by the P2G framework.

When moving from Age=1 to Age=2, we can see that the LLS made a decision to
reduce data parallelity. In P2G, kernels fetch slices of data and, initially, mul2 was
defined to work on each single field entry in parallel, but in Age=2 the LLS decreased
the granularity of the fetch statement to encompass the entire field. The LLS could also
split the field in two, leading to two kernel instances of mul2, working on disparate sets
of the field. Moving from Age=2 to Age=3, we see that the LLS made the decision
to decrease task parallelity. This is possible because mul2 and plus5 effectively form a
pipeline, information that is available from the static graphs. By combining these two
tasks, the individual store operations of the tasks are deferred until the data have been
fully processed by each task. If the print kernel is not present, storage to the intermediate
field m_data could be circumvented in entirety. In the final step, moving from Age=3 to
Age=/, we can see that a decision to decrease both task and data parallelity was made.
This effectively renders this single kernel instance into a classical for loop, working on
each data element of the field, with each task (mul2, plus5) performed sequentially on the
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Field definitions:

0] int32[] m_data age;
1L int32[] p_data age;

0l init: 0l mul2
local int32[] values; age a;
index x;
%{ local int32 value;
inti=0;
for(;i <5; ++i) fetch value = m_data(a)[x];
{
put( values, i+10,i); %{
} value *= 2;
%} %}

store m_data(0) = values; store p_data(a)[1] = value;

) plus5 0 print
age a; age a;
index x; local int32[] m, p;

local int32 value;
fetch m = m_data(a);

fetch value = p_data(a)[x]; fetch p = p_data(a);

%{ %{
value +=5; for(int i=0; i < extent(m, 0);)
%} cout << get(m, ++i) << " ";

cout << endl;
store m_data(a+1)[x] = value;
for(int i=0; i < extent(p, 0);)

cout << get(p, ++i) <<" "}
cout << endl;

Figure 5.5: Kernel and field definitions.

data.
The P2G framework can make these runtime adjustments to data and task parallelism
dynamically based on the resources available at the time.

Kernel Language

In the current prototype of the framework, P2G is exposed to the developer through the
kernel language (BNF grammar of the kernel language can be found in Appendix A). An
implementation of a simple workload in kernel language is outlined in Figure 5.5. The
language can be replaced easily. However, it exposes the basic functions of the design.
The most important parts are the kernel and field definitions, which describe the code
and interaction patterns in P2G.

The main purpose of a kernel definition is to describe the required interaction of a
kernel instance with an arbitrary number of fields (holding the application data) through
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the fetch and store statements. A field in P2G serves as an interaction point for kernel
definitions, as shown in Figure 5.2(a).

An important aspect of a multimedia workload such as the Bagadus video pipeline is
the ability to express deadlines. It is unnecessary to stitch a panorama if the playback
has moved past that point in the video. We therefore implemented language support
for expressing deadlines. In principle, a deadline gives the application developer the
option of defining a global timer. This timer can then be polled and updated from within
a kernel definition. Given a condition based on a deadline, a timeout can occur and
an alternate code path can be executed. Such an alternate code path is executed by
storing to a different field then in the primary path, leading to new dependencies and
new behavior. In this proof-of-concept implementation, we did not implement support
for timers; however, we are currently reevaluating the concept of timers.

Fields in P2G have several properties, including a type and a dimensionality. An
important property mentioned earlier is aging. Aging allows kernels to be iterative while
maintaining write-once semantics in such cyclic execution. Aging enables unique storage
to the same position in a field several times, as long as the age increases for each store
operation, as shown in Figure 5.4). In essence, this adds an extra dimension to the field
and makes it possible to accommodate iterative algorithms. It is also important to note
that a field is not connected to a single execution node; it can be distributed across
multiple execution nodes, as shown in Figure 5.1).

When defining the interaction between kernels and fields, the programmer is encour-
aged to express the finest possible granularity of kernel definition and, likewise, the most
precise slices possible for the kernel within the field. The reason is because it provides
the LLS more control over the granularity of task and data decomposition. With in-
strumentation data, the framework can reduce scheduling overhead by combining several
instances of a kernel that process different data or several instances of different kernels
that process data in sequence, as shown in Figure 5.4). The scheduler in P2G makes its
decisions based on instrumentation data and the implicit static dependency graph.

Runtime

We can now extrapolate the concept of kernel definitions to kernel instances. A kernel
instance is the unit of code that is executed during runtime and the number of kernel
instances executed in parallel for a given kernel definition will depend on the fetch state-
ments.

A kernel instance works on an arbitrary number of slices of fields, depending on the
number of fetch statements in the kernel definition. If we look at the example in Figures
5.4 and 5.5, we can see how the mul2 kernel, given its fetch statement on m_data with
age=a and inder=zx, fetches only a single element of the data. Thus, since the m_data
field comsists of five data elements, this means that P2G can execute a maximum of z
kernel instances simultaneously per age, yielding a*r mul2 kernel instances.

P2G also supports the automatic resizing of fields. This is shown in the kernel defi-
nition of the print kernel in Figure 5.5. Initially, the extents of m_data and p_data are
not defined. With each iteration of the for loop in init, the local field values is resized
locally. This leads to a resizing of the global field m_data when values is stored to it.
These extents are then propagated to the respective fields impacted by this resizing, such
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as p_data.

It is important to note that a kernel instance is only dispatched when all its depen-
dencies are fulfilled, that is, all the data it fetches have been stored to the respective fields
and elements. Figures 5.4 and 5.5 also show that mul2 stores its result to p_data with
age=a and inder=x. This means that once mul2 has stored its results to p_data with
indez=2 and age=0, the kernel instance of plus5 with the fetch statement fetch(0)[2] can
be dispatched. With our write-one semantics, each kernel instance is only dispatched
once.

5.4.3 Prototype

A prototype implementation of the basic concepts of the P2G framework was imple-
mented. The prototype consisted of a compiler for the kernel language and a runtime
that could execute P2G programs on the x86 multicore architecture with a shared mem-
ory model running a Linux operating system.

Compiler

Programs written for the P2G framework are designed to be platform independent and
have native blocks of code written in C or C++. Heterogeneous systems are specifically
targeted; however, many of these require a custom compiler for the native blocks, such as
Nvidia’s NVCC compiler for GPUs with CUDA. For the prototype, instead of generating
binaries directly, we decided to compile P2G programs into C++ files, which can be
further compiled and linked with native code blocks. This approach provides us with less
control of the resulting object code, but we gain both the flexibility and optimizations of
the native compilers, resulting in a lightweight P2G compiler.

Runtime

Our prototype implementation of P2G features a basic execution node, with support
for multidimensional fields, instrumentation, the implicit resizing of fields, and parallel
execution of kernel instances on a single machine, using the implicit dependency graph
formed by kernel definitions. Support for deadline expressions was not implemented.

The target architecture for this prototype is a single machine with a shared memory
multicore x86 architecture. The system was designed as a push-based system using event
subscriptions on field operations. Kernel instances are executed in parallel and produce
events on store statements, which could require resizing operations. A kernel subscribes
to events related to the fields that it depends on, that is, fields referenced by the kernel’s
fetch statements. When such a storage event is detected, the runtime finds all new valid
combinations of age and index variables that can be processed as a result of the store
statement and places these in a per-kernel ready queue. This means that the ready
queues always contain the maximum number of parallel instances that can be executed
at any time, limited only by unfulfilled data dependencies.

The prototype uses a simple LLS that consists of a dependency analyzer and kernel
instance dispatcher. The dependency analyzer uses the implicit dependency graph to
add new kernel instances to a ready queue, which can later be executed by the worker
threads. Dependencies are analyzed in a dedicated thread that handles events emitted
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from running kernel instances that notifies upon store and resize operations performed
on fields.

When executed, kernel instances are dispatched from the ready queue. They are
scheduled in an order that prefers the execution of kernel instances with a lower age value
(older kernel instances). This ensures that no runnable kernel instance is starved by others
that have no fetch statements.

5.4.4 Workloads

To test the initial idea and the prototype, we developed a few simple workloads commonly
used in multimedia processing. The P2G kernel language is able to expose both the data
and task parallelism of the workloads to the P2G system, so that the runtime is able to
adapt the execution of the programs to suit the target architecture.
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Figure 5.6: Overview of the K-means clustering algorithm.

K-Means clustering is an iterative algorithm for cluster analysis that aims to partition
n data points into k clusters, where each data point belongs to the cluster with the nearest
mean. The basic structure of the workload is shown in Figure 5.6. Our implementation
in P2G consists of an init kernel, which generates n data points and stores them to the
data points field. Next, it randomly selects k of these data points as the initial means and
stores them to the centroids field. Then, the assign kernel fetches a slice of data, a single
data point per kernel instance, the last calculated centroids, and stores this data point
in the cluster of the closest centroids using a Euclidean distance calculation. Finally, the
refine kernel fetches a cluster, calculates its new mean, and stores this information in the
centroids field. The kernel definitions of assign and refine will form a loop that gradually
leads to a convergence in centroids, at which point the k-means algorithm is completed.

Motion JPEG

The Motion JPEG (MJPEG) workload is based on the same algorithms and code used to
test simple workloads on the x86 architecture, GPUs, and the Cell in Section 3.2.1. The
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MJPEG format provides many layers of parallelism and is well suited for illustrating the
potential of the framework. We focus on optimizing the discrete cosine transform (DCT)
and quantization part, as this is the most computationally intensive part of the codec.

The read + splitYUV kernel reads the input video in YUV format and stores the
data in three global fields: yInput, ulnput, and vinput. In this workload, the three YUV
components can be processed independently of each other and this property is exploited by
creating three kernels: yDCT, uDCT, and vDCT. In Figure 5.7, we see that the respective
DCT kernels are dependent on one of these fields.
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Figure 5.7: Overview of the MJPEG encoding process

The MJPEG encoding process splits the video frames into 8*8 macroblocks. The CIF
resolution of 352*288 pixels per frame used in our tests will generate 1584 macroblocks of
Y (luminance) data, each with 64-pixel values. The 4:2:2 chroma sub-sampling yields 396
kernel instances from both the U and V (chroma) data. Each of these kernel instances
stores the discrete cosine transformed macroblock into the global result fields yResult,
uResult, and vResult. Finally, the VLC' + write kernel stores the MJPEG bitstream to
disk.

5.4.5 FEvaluation

We ran experiments with the K-means and MJPEG workloads, as described in Sec-
tion 5.4.4. Each test was run on the following x86 multicore architectures, with the
number of worker threads ranging from one to eight:

e One Intel Core i7-860 based on the Nehalem architecture running at 2.8 GHz, with
four cores and Hyper-Threading (simultaneous multithreading) enabled.

e Four AMD Opteron 8218 processors based on the K8 architecture running at 2.6
GHz, with two cores per processor, for a total of eight cores.

In addition, we performed micro-benchmark tests for both workloads. These summa-
rize the number of kernel instances dispatched per kernel definition, dispatch overhead,
and time spent in the kernel code.



5.4. The P2G Framework 111

K-Means Clustering

The K-means workload is run with K=100, using a randomly generated data set with
2000 data points. The K-means algorithm does not run until convergence and we defined
a breakpoint after 10 iterations. Without any breakpoint, the algorithm’s convergence is
undefined and, as such, we introduce this condition to ensure that we achieve relatively
stable running times.
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Figure 5.8: Workload execution time for K-means.

As seen in Figure 5.8, the K-means workload scales well to four worker threads.
After this, the execution time increases with the number of worker threads. This can be
explained by the fine granularity of the assign kernel definition. This leads to the serial
dependency analyzer becoming a bottleneck in the system. As discussed in Section 5.4.2,
this condition could be alleviated by decreasing the granularity of data parallelism, in
effect leading to each kernel instance of assign working on larger slices of data. By doing
so, we would increase the ratio of time spent in kernel code compared to dispatch time
and reduce the workload of the dependency analyzer.

The two different test machines behave somewhat differently, in that the Opteron
suffers more than the Core i7 when the dependency analyzer saturates a core. The Core
i7 is able to increase the frequency of a single core to mitigate serial bottlenecks and the
memory architectures of Intel processors are generally more efficient than AMD processors.
We think this is why the Core i7 suffers less under the limitations dictated by Amdahl’s
law.
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Kernel | Instances | Dispatch Time | Kernel Time
init 1 58.00 pus | 9,829.00 us
assign | 2,024,251 4.07 ps 6.95 us
refine 1000 3.21 ps 9291 pus
print 11 1.09 ps 379.36 us

Table 5.1: Micro-benchmarks of K-means in P2G.

MJPEG

The MJPEG workload is run on 50 frames of the standard Foreman test sequence encoded
in CIF resolution.
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Figure 5.9: Workload execution times for MJPEG.

As we can observe in Figure 5.9, P2G is able to scale close to linearly with its available
resources. In P2G, the dependency analyzer of the LLS runs in a dedicated thread. This
affects the execution time when moving from seven to eight worker threads, where the
eighth thread shares resources with the dependency analyzer.

A native single-threaded version of the MJPEG encoder on which the P2G version is
based has a running time of 30 seconds on the Opteron machine and 19 seconds on the
Core i7 machine.

From the micro-benchmarks in Table 5.2, we can see that time spent in kernel code
is considerably greater compared to the dispatch overhead for the kernel definitions. The
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Kernel Instances | Dispatch Time | Kernel Time
init 1 69.00 us 18.00 ps
read /splityuv 51 35.50 pus | 1,641.57 us
yDCT 80,784 3.07 ps 170.30 ps
uDCT 20,196 3.14 pus 170.24 ps
vDCT 20,196 3.15 us 170.58 s
VLC/write 51 3.09 pus | 2,160.71 ps

Table 5.2: Micro-benchmarks of MJPEG encoding in P2G.

dispatch time includes the allocation or reallocation of fields as part of the timing oper-
ation. As a result, init and read/split YUV have considerably higher dispatch times then
the *DCT operations. We can also see that the majority of the CPU time is spent in the
kernel instances of yDCT, uDCT, and vDC'T, which is the most computationally intensive
part of this workload. This indicates that decreasing the data and task granularity, as
discussed in Section 5.4.2; has little impact on system throughput. This is because the
majority of the time is already spent in kernel code.

5.4.6 Summary

With the P2G framework, we proposed a new flexible system for the automatic, parallel
real-time processing of multimedia workloads. We encourage the programmer to specify
parallelism in as fine a granularity as possible along the axes of task and data decomposi-
tion. Using our kernel language, this decomposition is expressed through kernel definitions
and fetch and store statements on fields.

Given a workload that uses our kernel language and is compiled for execution in P2G,
this workload can be partitioned by the HLS in a P2G master node, which then distributes
the partitions to the P2G execution nodes, which will execute the tasks. Execution nodes
can consist of heterogeneous resources. The LLS at the execution nodes will adapt the
workload to run optimally, using the resources available. Feedback from the instrumen-
tation module at the execution node can lead to workload repartitioning.

We implemented a prototype execution node capable of running on a shared memory
multicore architecture. The results from our experiments running on this prototype ex-
ecution node show the potential of our ideas. However, many features—such as support
for agglomeration, distribution, timers, heterogeneous architectures, and so on—have yet

to be added.

5.5 The Future

Our prototype implementation of P2G is a proof-of-concept implementation of the P2G
execution node with support for shared memory x86 multicore architecture. However,
several features have yet to be implemented in the execution node, two of these being
timers and agglomeration. Timers are important for enforcing soft deadlines in multi-
media workloads and agglomeration is important to adapt the level of parallelism to the
heterogeneous architecture we want to use. A kernel running on a GPU would require
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many more threads than a kernel running on the CPU. This issue is apparent in the
K-means workload evaluated in Section 5.4.5.

The master node has also not yet been implemented. One of the reasons for targeting
the x86 multicore architecture in our prototype of the framework is the shared memory
property. When we add more machines or heterogeneous architectures with an exclusive
memory model, we need a distributed name service to manage message passing between
machines and processing nodes.

One of the next steps for the P2G framework would be to add support for using GPUs
on the same machine as the x86 multicore architecture. This would not require any master
node, since the GPUs on a single machine are managed by the host CPU.
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Papers and Author’s Contributions

6.1 Overview of Research Papers

The research conducted during the PhD period focused on system support for multime-
dia. My papers addressed a large set of challenges, ranging from scheduling mechanisms
for heterogeneous architectures to the optimization of video codecs. This research was
a cooperative effort and the contribution of this thesis is its investigation of homoge-
nous and heterogeneous computing platforms and infrastructures, an understanding of
the developer’s ability to exploit their performance, and the development of improve-
ments for processing multimedia workloads. Nine of our papers were chosen to document
this research effort and are included as the main contribution of this thesis. Five of these
papers [32,34,102,112,117] look at processing simple workloads with heterogeneous archi-
tectures. Two of the papers [113,114] investigate a complex multimedia workload. The
knowledge gained in these two Chapters is used in the previous chapter in the design of
the P2G framework [31,115].

Although the other papers [35,46,76,77,116], posters, and demonstrations [10,11,33,
101,105,120,132] we wrote are related to multimedia systems, we limited the thesis to those
nine papers that were central in forming our understanding of multicore programming and
the development of P2G from the developer’s perspective. These papers are presented
chronologically in the following.

6.2 Paper I: Transparent Protocol Translation for
Streaming

Abstract The transport of streaming media data over TCP is hindered by TCP’s prob-
ing behavior, which results in the rapid reduction and slow recovery of packet rates. On
the other hand, UDP has been criticized for being unfair to TCP connections and it is
therefore often blocked out of access networks. In this paper, we try to benefit from a
combined approach using a proxy that transparently translates the transport protocol.
We translate HT'TP requests by the client transparently into RTSP requests and translate
the corresponding RTP/UDP/AVP stream into the corresponding HTTP response. This
enables the server to use UDP on the server side and TCP on the client side. This is ben-
eficial for the server side, which scales to a higher load when it does not have to deal with

115
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TCP. On the client side, streaming over TCP has the advantage that connections can be
established from the client side and data streams can pass through firewalls. Preliminary
tests demonstrate that our protocol translation delivers a smoother stream compared to
HTTP streaming, where the TCP bandwidth oscillates heavily.

Lessons learned This paper is written as a network research paper, using the Intel IXP
network processor to translate a network protocol in real time. However, the experience
gained while working with the IXP architecture gave us experience in working with a
heterogeneous architecture with a shared memory model. The heterogeneous elements on
the IXP also have different instruction sets and compilers, which we can also find in other
heterogeneous architectures.

Author’s contributions Stensland contributed to the evaluation of the experiments.
Espeland and Lunde carried out the design and implementation of the proxy and the
experimental setup. The paper was written in collaboration with all the other authors.

Published in Proceedings of the 15th ACM International Conference on Multimedia
(MM ’07), ACM, 2007.
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6.3 Paper II: Evaluation of Multi-Core Scheduling
Mechanisms for Heterogeneous Processing Ar-
chitectures

Abstract General-purpose central processing units (CPUs) with multiple cores are es-
tablished products and new heterogeneous technology such as the Cell Broadband Engine
and general-purpose graphic processing units (GPUs) bring an even higher degree of true
multiprocessing to the market. However, the means for utilizing the processing power
are immature. Current tools typically assume that the exclusive use of these resources
is sufficient, but this assumption will soon be invalid because of interest in using their
processing power for general-purpose tasks. Among the applications that can benefit from
such technology is transcoding support for distributed media applications, where remote
participants join and leave dynamically. Transcoding consists of several clearly separated
processing operations that consume a great deal of resources, such that individual pro-
cessing units are unable to handle all the operations of a session of arbitrary size. The
individual operations can then be distributed over several processing units and data must
be moved between them according to the dependencies between operations. Many mul-
tiprocessor scheduling approaches exist but, to the best of our knowledge, the challenge
remains to find mechanisms that can schedule dynamic workloads of communicating op-
erations while taking both the processing and communication requirements into account.
For such applications, we believe that feasible scheduling can be performed at two levels,
that is, divided into the task of placing a job onto a processing unit and the task of
multitasking time slices within a single processing unit. We implemented some simple
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high-level scheduling mechanisms and simulated a videoconferencing scenario running on
topologies inspired by existing systems from Intel, AMD, IBM, and Nvidia. Our results
show the importance of using an efficient high-level scheduler.

Lessons learned In this paper, we designed a simple simulator that simulated the high-
level scheduling aspect of a multimedia workload on different multicore architectures. We
showed that a two-level scheduling approach, where the high level scheduler places jobs
onto a processing core and the low-level scheduler takes on the job of time slicing within
a single processing unit. Our results show the importance of using an efficient high-
level scheduler. Lessons learned from this paper were later used when designing the P2G
framework.

Author’s contributions Stensland contributed significantly to the design of the event-
driven simulator. He also designed the workloads for the simulator and performed the
experiments for the paper. Stensland also contributed to writing the paper.

Published in The 18th International Workshop on Network and Operating Systems
Support for Digital Audio and Video (NOSSDAV ’08), ACM, 2008.
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6.4 Paper III: Tips, Tricks and Troubles: Optimizing
for Cell and GPU

Abstract When used efficiently, modern multicore architectures, such as the Cell and
GPUs, provide the processing power required by resource-hungry multimedia workloads.
However, the diversity of resources exposed to the programmer intrinsically requires very
different mindsets to efficiently utilize these resources—not only compared to an x86 ar-
chitecture, but also between the Cell and the GPUs. In this context, our analysis of 14
different Motion JPEG (MJPEG) implementations indicate great potential for optimizing
performance, but there are also many pitfalls to avoid. By experimentally evaluating algo-
rithmic choices and inter-core data communication (memory transfers) and architecture-
specific capabilities, such as instruction sets, we present tips, tricks, and problems with
respect to the efficient utilization of available resources.

Lessons learned In the third paper, we analyze 14 different implementations of a mul-
timedia workload from a graduate level course we teach on two different heterogeneous
architectures. We learned that heterogeneous architectures such as the Cell and GPUs
are suitable for processing real-time multimedia workloads such as MJPEG video encod-
ing. However, it is not trivial for programmers to achieve high performance on either
of these architectures. There are similarities between the Cell and GPUs, but the way
programmers need to think is substantially different, not only compared to the x86 ar-
chitecture but also between the Cell and the GPU. The Cell uses a single instruction
multiple data (SIMD) programming model, which seems harder to grasp compared to the
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SIMT abstraction used by the GPUs. All three architectures have different architectural
capabilities that must be taken into account when choosing the algorithms to use.

Author’s contributions Stensland contributed significantly to the design, implemen-
tation, and evaluation of this work. Together with Espeland, he designed the experiments
and evaluated the results. The paper was written in collaboration with the other authors.

Published in The 20th International Workshop on Network and Operating Systems
Support for Digital Audio and Video (NOSSDAV 2010), ACM, 2010.
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6.5 Paper IV: Cheat Detection Processing: A GPU
versus CPU Comparison

Abstract In modern online multiplayer games, game providers have been struggling to
keep up with the many different types of cheating. Cheat detection is a task that requires
great computational resources. Advances made within the field of heterogeneous comput-
ing architectures, such as in GPUs, have given developers easier access to considerably
more computational resources, enabling a new approach to resolving this issue.

In this paper, we developed a small game simulator that includes a customizable
physics engine and a cheat detection mechanism that checks the physical model used by
the game. To make sure that the mechanisms are fair to all players, they are executed
on the server side of the game system. We investigate the advantages of implementing
physics cheat detection mechanisms on a GPU using the Nvidia CUDA framework and
we compare the GPU implementation of the cheat detection mechanism with a CPU
implementation. The results obtained from the simulations show that offloading the cheat
detection mechanisms to the GPU reduces the time spent on cheat detection, enabling
the servers to support larger numbers of clients.

Lessons learned In the fourth paper, we used a cheat detection mechanism imple-
mented on a GPU to learn about the effect of offloading workload from the CPU. The
results shows that, even with a simple physical model, the GPU is able to outperform
the CPU. However, we also observed that, with a low number of clients, the CPU im-
plementation is faster that the GPU implementation. This is due to the latency cost of
transferring the workload from CPU memory to the GPU for processing.

Author’s contributions Stensland designed the experiments for the paper. He also
used a Fermi generation GPU for the paper’s experiments and analyzed their data. The
prototype was designed and implemented as part of Myrseth’s master’s thesis, for which
Stensland was the main supervisor. The paper text was mainly written by Stensland,
with contributions from the other authors.
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6.6 Paper V: Reducing Processing Demands for Multi-
Rate Video Encoding: Implementation and Eval-
uation

Abstract Segmented adaptive HT'TP streaming has become the de facto standard for
video delivery over the Internet for its ability to scale video quality to available network re-
sources. Each video is encoded at multiple levels of quality, that is, running the expensive
encoding process for each quality layer. However, these operations consume a great deal
of both time and resources and, in this paper, the authors propose a system for reusing
redundant steps in a video encoder to improve the multilayer encoding pipeline. The idea
is to have multiple outputs for each of the target bitrates and quality levels, where the
intermediate processing steps share and reuse the computationally heavy analysis. A pro-
totype has been implemented using the VP8 reference encoder and experimental results
show that, for both low- and high-resolution videos, the proposed method can significantly
reduce processing demands and time when encoding the different quality layers.

Lessons learned The fifth paper looks at the possibility of reusing the computationally
intensive analysis part of a video encoder. We learned that the shared memory architecture
in x86 multicore processors greatly facilitates the sharing of data between multiple threads.
When running the reference VP8 encoder on four videos, we can see that serial encoding
performs better that running four instances concurrently. This shows the negative effects
of running too many threads on too few cores: The scheduling overhead in the operating
system increases and contention arises between the execution resources on the CPU.

Author’s contributions The multi-rate prototype was designed and implemented as
part of Finstad’s master’s thesis, of which Stensland was the main supervisor. Espeland
contributed with the basic idea of multi-rate encoding. The experiments were evaluated
by Stensland and Espeland. The text was also mainly written by Espeland and Stensland,
with input from the other authors.

Published in International Journal of Multimedia Data Engineering and Management
(IJMDEM), Volume 3, Issue 2, IGI Global, 2012.
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6.7 Paper VI: LEARS: A Lockless, Relaxed-Atomicity
State Model for Parallel Execution of a Game
Server Partition

Abstract Supporting thousands of interacting players in a virtual world poses huge
processing challenges. Work that addresses the challenge utilizes a variety of spatial par-
titioning algorithms to distribute the load. If, however, a large number of players need
to interact tightly across an area of the game world, spatial partitioning cannot subdi-
vide this area without incurring massive communication costs, latency, or inconsistency.
Scaling such areas to the largest number of players possible is a major challenge of game
engines. Deviating from earlier thinking, we apply parallelism on multicore architectures
to increase scalability. In this paper, we evaluate the design and implementation of our
game server architecture, called a lockless, relaxed-atomicity state, or LEARS, which
allows for lock-free parallel processing of a single spatial partition by considering every
game cycle an atomic tick. Our prototype is evaluated using traces from live game sessions
where we measure the server response time for all objects that require timely updates.
We also measure how the response time for the multithreaded implementation varies with
the number of threads used. Our results show that the challenge of scaling up a game
server can be an embarrassingly parallel problem.

Lessons learned The sixth paper describes an architecture to scale a game server
workload. We showed that resource utilization can be improved by distributing the load
over the shared memory architecture of x86 multicore CPUs. However, we learned the
importance of balancing the number of threads executing on the physical CPU. If too
many threads are executed concurrently, the performance will start to degrade because of
the increased context switching overhead. This is the opposite case from that of a GPU,
where thousands of threads are required for good performance.

Author’s contributions Stensland contributed to the discussion and evaluation of the
game server with respect to scaling on the x86 multicore architecture. He also contributed
with architectural knowledge about the evaluation system. Stensland also contributed to
writing the paper.

Published in Proceedings of the International Workshop on Scheduling and Resource
Management for Parallel and Distributed Systems (SRMPDS)—The 2012 International
Conference on Parallel Processing Workshops, IEEE, 2012.
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6.8 Paper VII: P2G: A Framework for Distributed
Real-Time Processing of Multimedia Data

Abstract The computational demands of multimedia data processing are steadily in-
creasing as consumers call for progressively more complex and intelligent multimedia
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services. New multicore hardware architectures provide the required resources, but writ-
ing parallel, distributed applications remains a labor-intensive task compared to their
sequential counterpart. For this reason, Google and Microsoft implemented their respec-
tive processing frameworks, MapReduce and Dryad, since they allow the developer to
think sequentially yet benefit from parallel and distributed execution. An inherent limi-
tation in the design of these processing frameworks is their inability to express arbitrarily
complex workloads. The dependency graphs of the frameworks are often limited to di-
rected acyclic graphs or even predetermined stages. This is particularly problematic for
video encoding and other algorithms that depend on iterative execution. With the Nornir
runtime system for parallel programs, which is a Kahn process network implementation,
we addressed and resolved several of these limitations. However, it is more difficult to
use than other frameworks are due to its complex programming model. In this paper, we
build on the knowledge gained from Nornir and present a new framework, called P2G,
designed specifically for developing and processing distributed real-time multimedia data.
P2G supports arbitrarily complex dependency graphs with cycles, branches, and deadlines
and provides both data parallelism and task parallelism. The framework is implemented
to scale transparently with available (heterogeneous) resources, a concept familiar from
the cloud computing paradigm. We implemented a (interchangeable) P2G model to ease
development. In this paper, we present a proof-of-concept implementation of a P2G exe-
cution node and some experimental examples using complex workloads, such as MJPEG
and K-means clustering. The results show that the P2G system is a feasible approach to
multimedia processing.

Lessons learned In the seventh paper, we present a prototype and framework for
the distributed real-time processing of multimedia workloads. We also implemented and
evaluated two simple multimedia workloads to verify that multimedia workloads such as
K-means and MJPEG can be expressed in the framework. Our experiments shows that
our prototype is able to scale performance with the available resources in the system, as
long as there is a large enough workload per instance.

Author’s contributions Stensland contributed to the design and implementation of
the workloads used to benchmark the framework and to the ideas behind the P2G frame-
work. Espeland and Beskow designed, implemented, and micro-benchmarked the frame-
work. The paper and discussions were written in collaboration with all of the authors.

Published in Proceedings of the International Workshop on Scheduling and Resource
Management for Parallel and Distributed Systems (SRMPDS)—The 2011 International
Conference on Parallel Processing Workshops, IEEE, 2011.
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6.9 Paper VIII: Bagadus: An Integrated Real-Time
System for Soccer Analytics

Abstract The importance of winning has increased the role of performance analysis in
the sports industry and underscores how statistics and technology keep changing the way
sports are played. Thus, this is a growing area of interest, both from a computer system
view, to manage the technical challenges, and from a sports performance view, to aid the
development of athletes. In this respect, Bagadus is a real-time prototype of a sports
analytics application using soccer as a case study. Bagadus integrates a sensor system, a
soccer analytics annotation system, and a video processing system using a videocamera
array. A prototype was recently installed at Alfheim Stadium in Norway and, in this
paper, we describe how the system can be used in real time to play back events. The
system supports both stitched panoramic video and camera switching modes and creates
video summaries based on queries to the sensor system. Moreover, we evaluate the system
from a systems point of view, benchmarking different approaches, algorithms, and trade-
offs, and show how the system runs in real time.

Lessons learned The eighth paper describes the integration of the three different sub-
systems in the Bagadus sports analysis system. The paper focuses on the optimization
of the video system, where we optimize the video pipeline for both an x86 multicore
and a GPU with the goal of running the system in real time on a single machine. The
experiments shows that we are able to process video from four cameras, stitch the video to
a panorama, and use video processing algorithms to enhance the quality of this panoramic
video.

Author’s contributions Stensland contributed to the design and evaluation of the
real-time video pipeline presented in this paper. He also analyzed the experimental results
from the GK110 GPU presented in this paper and provided insight into the heterogeneous
architecture used. Stensland was also a supervisor for all the master’s students involved
in this project. The paper was mainly written by Stensland, with contributions from the
other authors.

Published in ACM Transactions on Multimedia Computing, Communications, and
Applications (TOMM), Volume 10, Issue 1s, ACM, 2014.
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6.10 Paper IX: Processing Panorama Video in Real-
Time

Abstract There are many scenarios in which a high-resolution, wide field of view video is
useful. Such panoramic video may be generated using camera arrays, where the feeds from
multiple cameras pointing at different parts of the captured area are stitched together.
However, processing the different steps of a panoramic video pipeline in real time is
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challenging due to the high data rates and the stringent timeliness requirements. In
our research, we use panoramic video in a sports analysis system called Bagadus. This
system was deployed at Alfheim stadium in Tromsg, Norway, and, due to live usage, the
video events had to be generated in real time. In this paper, we describe our real-time
panoramic system built using a low-cost CCD HD videocamera array. We describe how we
implemented different components and evaluated alternatives. The performance results
from experiments run on commodity hardware with and without coprocessors, such as
GPUs, demonstrate that the entire pipeline is able to run in real time.

Lessons learned The ninth paper undertakes a more detailed analysis of the video
system in the Bagadus sports analysis system. The paper focuses on how we achieved
real-time performance by optimizing the video pipeline for both CPU and GPU execution.
Finally, we evaluated the performance of the complete video pipeline on different hetero-
geneous architectures and machine setups. We learned that a system such as Bagadus,
with real-time requirements, requires a GPU that can execute workloads concurrently.
The GPU utilization for a system such as Bagadus is also fairly low and the GPU can be
shared with other workloads.

Author’s contributions Stensland contributed to the design and evaluation of the
real-time video pipeline presented in this paper. He also provided insight into the different
heterogeneous architectures and the machine setup used to evaluate the video pipeline.
Stensland was also a supervisor for all the master’s students involved in this project. The
paper was mainly written by Stensland, with contributions from the other authors.

Published in International Journal of Semantic Computing (IJSC), Volume 8, Issue 2,
World Scientific, 2014.
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6.11 Supervised Master’s Students
Student: Havard Espeland
Title: Investigation of parallel programming on heterogeneous multiprocessors

Summary: This thesis investigates different parallelization strategies and performance
for real-world problems using two heterogeneous architectures, the Intel IXP2400
architecture and the Cell Broadband Engine. The tests show promising throughput
for some applications and the thesis proposes a scheme for offloading computation-
ally intensive parts of an application.

Student: Alexander Ottesen
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Title: Efficient parallelization techniques for applications running on GPUs using the

CUDA framework

Summary: This thesis investigates the GPU architecture and processing capabilities
of the first generation of Nvidia GPUs with support for the CUDA framework.
We investigate how CUDA applications can share the GPU resource and see what
challenges are connected with concurrent applications executing on the GPU.

Student: Magne Eimot
Title: Offloading an encrypted user space file system on GPUs

Summary: Modern computers often have powerful GPUs and an important use of this
technology is to assist the main CPU with computationally intensive tasks. We
investigate the challenges of using GPUs to offload the encryption operations from
the main CPU.

Student: Martin Dinses Myrseth
Title: Cheat detection in on-line multi-player games using graphics processing units

Summary: This thesis investigates the benefits of using GPUs for cheat detection mech-
anisms. We develop a framework for a game simulator that includes a simple cus-
tomizable physical engine and a cheat detection mechanism. The results shows that,
in addition to being faster, the GPU mechanism allows the CPU to perform other
game-relevant tasks while the mechanism is executing.

Student: Espen Angell Kristiansen
Title: Dynamic adaption and distribution of binaries to heterogeneous architectures

Summary: Real-time multimedia workloads require extensive processing power. Here,
we develop the foundation for network distribution in P2G and suggest a viable
solution for the execution of workloads on heterogeneous multicore architectures.

Student: Dag Haavi Finstad

Title: Multi-rate VP8 video encoding
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Summary: This thesis addresses the resource consumption issues of encoding multiple
videos by proposing a method for reusing redundant steps in a video encoder, emit-
ting multiple outputs with various bitrates and quality levels.

Student: Magnus Funder Halldal
Title: Exploring computational capabilities of GPUs using H.264 prediction algorithms

Summary: We explore the processing power of two generations of GPUs by implement-
ing H.264 prediction algorithms. We implement motion vector search and motion
vector prediction on the GPU.

Student: Kristoffer Egil Bonarjee
Title: Investigating host-device communication in a GPU-based H.264 encoder

Summary: This thesis investigates the performance pitfalls of an H.264 encoder written
for GPUs. More specifically, we look into the interaction between the host CPU
and the GPU. We do not focus on optimizing the GPU code but, rather, on how
the execution and communication are handled by the CPU. Given the large amount
of manual labor required to optimize the GPU code, it is easy to neglect the CPU
part of accelerated applications.

Student: Simen Seergrov

Title: Bagadus: Next generation sports analysis and multimedia platform using camera
array and sensor network

Summary: Bagadus, a system that integrates a sensor system, soccer analytics, and
video processing with OpenCV on a camera array, is presented. A proof-of-concept
prototype is implemented based on the system installed at Alfheim stadium in Nor-
way.

Student: Espen Oldeide Helgedagsrud

Title: Efficient implementation and processing of a real-time panorama video pipeline
with emphasis on dynamic stitching
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Summary: In this thesis, the Bagadus system is rewritten with real-time processing of
the video as one of the main goals. This thesis focuses on the implementation of
dynamic stitching and offloading this operation to a GPU.

Student: Marius Tennge

Title: Efficient implementation and processing of a real-time panorama video pipeline
with emphasis on background subtraction

Summary: In this thesis, the Bagadus system is rewritten with real-time processing of
the video as one of the main goals. This thesis focuses on different implementations
of background subtraction and offloading those algorithms to a GPU.

Student: Mikkel Naess

Title: Efficient implementation and processing of a real-time panorama video pipeline
with emphasis on color correction

Summary: In this thesis, the Bagadus system is rewritten with real-time processing of
the video as one of the main goals. This thesis focuses on the implementation of
the color correction module and offloading this operation to a GPU.

Student: Ragnar Langseth

Title: Implementation of a distributed real-time video panorama pipeline for creating
high quality virtual views

Summary: The Bagadus video pipeline with an updated camera array is redesigned with
distributed processing in mind. Features such as HDR and the demosaicing of raw
Bayer data from the new cameras are added to the GPU pipeline in Bagadus. A
virtual camera is also extracted from the panoramic video.

Student: Vegard Aalbu

Title: MovieCutter: A system to make personalized video summaries from archived video
content
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Summary: This thesis investigates how adaptive streaming can be used to create a

montage from events in a video archive. With metadata such as subtitles and
chapters, users can search and generate customized video playlists from movies.

Student: Sigurd Ljgdal

Title: Implementation of a real-time distributed video processing pipeline

Summary: The Bagadus video pipeline with an updated camera array is redesigned with

distributed processing in mind. To do so, we use a PCI Express-based interconnect
from Dolphin Interconnect Solutions and a low-level application programming in-
terface for message passing called SISCI. We also investigate different techniques of
moving data as efficiently as possible from cameras connected to a capture machine
to GPU memory on the processing machine.

Student: Martin Alexander Wilhelmsen

Title: Real-time interactive cloud applications

Summary: This thesis investigates commodity hardware H.264 encoders and uses the

NVENC hardware encoder found on modern GPUs from Nvidia to offload encoding
in the Bagadus pipeline. We also implement support for streaming in Quake III to
test the feasibility of using the hardware encoder in cloud gaming.

6.12 Other Publications

Several other papers were published in conferences during the PhD period. We did not
include all the papers to limit the scope of this thesis. Instead, we provide a short summary
of their contributions.

Disk input/output (I/0O) We worked on I/O performance optimizations by improving

file tree traversal performance by scheduling in user space [76,77]. The technique
proposed in these papers orders directory tree requests by logical block order on the
physical disk. This optimization significantly improves the performance of file tree
traversal operations; however, this is not possible in kernel space, since too few 1/0O
operations are issued at a time for the scheduler to react efficiently. With a dirty
file system, we were able to obtain up to four times the performance compared to
that of a normal file tree traversal. This work clearly demonstrates the advantage of
having several levels of schedulers and it can be adapted to the scheduling approach
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used by the P2G framework, where a high-level scheduler issues the workload to the
different processing cores and low-level schedulers on the different processing cores
carry out time slicing.

Fault Tolerant Routing We implemented dynamic fault-tolerant routing in an scalable
coherent interconnect (SCI) network [116]. We implemented support for dynamic
fault tolerance in an SCI network on hardware produced by Dolphin Interconnect
Solutions. By dynamic fault tolerance, we mean that the interconnection network
reroutes affected packets around a fault in the network, while the rest of the net-
work remains fully functional. Our implementation focuses on a two-dimensional
torus topology and is compatible with the existing hardware and software stack.
The routing algorithm is tested in clusters with real hardware and our tests show
that distributed databases such as MySQL are able to run uninterrupted while the
network reacts to faults.
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Conclusion

Processing multimedia workloads with heterogeneous architectures is not a trivial task.
The abstractions to program these architectures can be different and programmers often
have to manually tune and optimize their applications on multiple heterogeneous archi-
tectures to achieve the desired performance. In many cases, these optimizations are not
portable; for example, if the hardware is changed, the applications have to be optimized
or even rewritten for the new architecture. Several languages and processing frameworks
exist; however, they are typically designed to support batch processing and making them
support real-time multimedia workloads is not a trivial task. Our main research ques-
tion, stated in Section 1.2, states that we want to investigate how to develop and process
multimedia workloads for modern heterogeneous multicore architectures. In this the-
sis, we addressed this issue from a low-level standpoint, learning about the behavior of
heterogeneous architectures with simple multimedia workloads and how to use multiple
heterogeneous architectures for a complex pipeline with several multimedia workloads. We
also addressed the problem statement from a high-level standpoint, where we presented
the design and evaluated the prototype of P2G, a framework for processing multimedia
workloads on heterogeneous architectures.

7.1 Summary

In this thesis, we looked at heterogeneous multicore architectures and their ability to
process multimedia workloads. First, we selected four different architectures. To learn
more about their behavior, we first conducted several case studies with simple multimedia
workloads, where we only performed optimizations for one architecture. The first archi-
tecture we experimented with was the Intel IXP network processor. This architecture was
used for experiments involving network protocol translation [32]. The next architecture
was the x86 processor architecture. The first case study was the efficient implementa-
tion of Motion JPEG (MJPEG) encoding [112]. We also conducted case studies on using
multiple x86 cores for multi-rate video encoding [34] and running a multithreaded game
server prototype [102]. For the GPU architecture, we carried out case studies on the
memory architecture of GPUs [94], optimization of host-device communication [13], and
cheat detection [117], and we also revisited the MJPEG workload with both a GPU [112]
and Cell architecture.

The knowledge obtained from investigating the simple multimedia workloads was used
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to investigate a more complex multimedia workload, namely, the video processing pipeline
of the Bagadus soccer analysis system [114]. We optimized the workload for multiple
heterogeneous architectures to achieve the real-time capture, pre-processing, stitching,
and encoding of a panoramic videostream from the soccer stadium on a single commodity
gaming computer [113].

Using the knowledge gained from processing both simple and complex multimedia
workloads on heterogeneous systems and also from our evaluation of multi-core scheduling
mechanisms [115], we proposed a programming language and framework that exposes
the parallelization opportunities of multimedia workloads for a runtime that allows for
efficient execution on the available heterogeneous hardware [31]. A running prototype of
this system, called P2G, running on a single machine with x86 multicore processors was
developed together with two simple multimedia workloads. These workloads were used
as proof of concept to show that we can express and run multimedia workloads in our
framework.

7.2 Concluding Remarks

In the beginning of this thesis, we asked how a programmer efficiently develops multimedia
workloads for modern heterogeneous multicore architectures. To answer this question, we
further decomposed the question into three steps.

To learn about the behavior of heterogeneous architectures, we selected four archi-
tectures and looked at case studies with simple multimedia workloads optimized for only
one architecture. From our evaluations, we observed that, for all the architectures, it is
important to select algorithms that are suited to the architecture. To obtain optimal per-
formance, especially on the Cell and x86, programmers must use architecture-specific vec-
tor extensions and rewrite their programs to use single instruction multiple data (SIMD)
intrinsics. On the x86, we also noted the importance of balancing the number of threads
used by the workloads to the available number of cores in the system. Too many threads
executing on too few cores results in decreased performance due to contention and context
switching overhead. On the GPU architecture, we noted the importance of using the cor-
rect memory space and also the importance of efficiently moving the data to and from the
GPU. If the workload that is offloaded to the GPU is too small, performance can decrease
compared to that of a CPU implementation. Our MJPEG experiments also suggest that
programmers prefer the single instruction, multiple threads (SIMT) programming model
exposed by the GPU compared to the SIMD model exposed by the Cell and the vector
unit on the x86.

Next, we selected the two most promising heterogeneous architectures from our eval-
uation of simple multimedia workloads and evaluated a complex multimedia workload.
One of the main requirements for this workload was for it to run in real time. We ac-
complished this by optimizing the workload for both heterogeneous architectures. The
complex workload was the video subsystem of the Bagadus sports analysis system. Here,
we learned that, in addition to making every module run separately in real time, we also
had to make sure all the modules were running together in real time, as a pipeline. This
required a great deal of manual tuning to decide which parts of the pipeline had to run
on the CPU and which parts could be offloaded to a GPU. One of our observations was
that the GPU’s overall utilization was fairly low (only 14.8%). This finding, together
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with the manual labor required to optimize the pipeline to run in real time, highlighted
the importance of having a processing framework supporting real-time multimedia work-
loads to fully utilize available resources and ease the development of future cross-platform
systems.

Using all the knowledge gained from our studies of simple and complex workloads, we
designed and proposed a framework for processing real-time multimedia workloads on het-
erogeneous architectures, called P2G. P2G allows the programmer to use a programming
model similar to the SIMT model used in CUDA and to express as much parallelism as
possible in the code. The framework will then use the workload’s data, task, and pipeline
parallelism to optimize the granularity of the programs, either at compilation time or at
runtime. The framework is designed to support distributed processing and uses a two-
level scheduling approach. A high-level scheduler maps the workloads to processing nodes
and a low-level scheduler manages the time slices of the available processing cores in a
node. The fundamental ideas of the P2G framework were implemented in a prototype
of the framework running on an x86 multicore architecture. To test the prototype im-
plementation, we used two simple multimedia workloads. Developing workloads in the
P2G Kernel Language is effective compared to working with low-level abstractions such
as SIMD intrinsics and threads. Kernel Language provides good abstractions and helps
developers to express both data parallelism and task parallelism.

Even though we did not implement all the concepts in the P2G framework, we showed
that we are able to express multimedia workloads in the P2G programming model and to
scale performance when more processing resources are added to the system. However, a
great deal of work remains before the processing efficiencies of multimedia workloads in the
P2G framework are anywhere near what can be achieved for workloads written natively
for the architecture. We believe we have made significant contributions in expressing
workloads and designing a framework that supports some of the different heterogeneous
architectures available today.

7.3 Future Work

Several areas have potential for further work and we highlight a few potential next steps.

e An interesting heterogeneous architecture that is not explored in this thesis is the
Intel Xeon Phi many-core processor [21]. This coprocessor uses many simple x86
cores on a shared memory architecture with a 512-bit vector unit per core. We did
not test any simple multimedia workloads on this architecture. It would therefore be
very interesting to see how it performs compared to a GPU, as well as investigate how
programmers have to think to program multimedia workloads for this architecture.

e The P2G prototype presented in this thesis runs on a single machine with x86
multicore processors and a shared memory architecture. An interesting research
opportunity could be to rewrite and extend P2G to take advantage of GPUs using
the Nvidia CUDA framework or the Intel Xeon Phi many-core architecture.

e In the current version of P2G, only the execution node is implemented. Another
potential area for further work is to extend P2G to run on multiple machines. This
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is crucial for working with large data sets. The distribution of the framework would
also introduce a new level of complexity in the scheduling and the design of efficient
two-level schedulers presents several interesting research opportunities.

e The video pipeline of the Bagadus sports analysis system can run on a single x86
multicore machine with a high-end Nvidia GPU. If the P2G framework is extended
with support for GPUs, it would be interesting to port parts of the Bagadus video
pipeline to P2G. The feedback-based scheduling using instrumentation in P2G and
the support for real-time workloads should be able to adapt and distribute the
Bagadus video workload automatically on the CPU and GPU and make it run in
real time, given sufficient processing resources in the system without the manual
tuning required today.

It is also possible for new hardware to be developed that will open up interesting
research topics within this field.
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using a video camera array. A prototype is currently installed at Alfheim Stadium
in Norway, and in this paper, we describe how the system can follow and zoom in
on particular player(s). Next, the system will playout events from the games using
stitched panorama video or camera switching mode and create video summaries
based on queries to the sensor system. Further- more, we evaluate the system from
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Abstract: Adaptive HTTP streaming is frequently used for both live and on-Demand
video delivery over the Internet. Adaptiveness is often achieved by encoding the
video stream in multiple qualities (and thus bitrates), and then transparently switch-
ing between the qualities according to the bandwidth fluctuations and the amount
of resources available for decoding the video content on the end device. For this
kind of video delivery over the Internet, H.264 is currently the most used codec,
but VP8 is an emerging open-source codec expected to compete with H.264 in the
streaming scenario. The challenge is that, when encoding video for adaptive video
streaming, both VP8 and H.264 run once for each quality layer, i.e., consuming
both time and resources, especially important in a live video delivery scenario. In
this paper, we address the resource consumption issues by proposing a method for
reusing redundant steps in a video encoder, emitting multiple outputs with varying
bitrates and qualities. It shares and reuses the computational heavy analysis step,
notably macro-block mode decision, intra prediction and inter prediction between
the instances, and outputs video in several rates. The method has been implemented
in the VP8 reference encoder, and experimental results show that we can encode
the different quality layers at the same rates and qualities compared to the VP8
reference encoder, while reducing the encoding time significantly.
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Authors: C. H. Lunde, H. Espeland, H. K. Stensland, and P. Halvorsen.

Published: Proceedings of the 28th IEEE International Performance Computing and
Communications Conference (IPCCC), IEEE, 2009.

Abstract: Current in-kernel disk schedulers provide efficient means to optimize the order
(and minimize disk seeks) of issued, in-queue I/O requests. However, they fail to
optimize sequential multi-file operations, like traversing a large file tree, because
only requests from one file are available in the scheduling queue at a time. We
have therefore investigated a user-level, I/O request sorting approach to reduce
inter-file disk arm movements. This is achieved by allowing applications to utilize
the placement of inodes and disk blocks to make a one sweep schedule for all file
I/Os requested by a process, i.e., data placement information is read first before
issuing the low-level I/O requests to the storage system. Our experiments with a
modified version of tar show reduced disk arm movements and large performance
improvements.

Improving Disk I/O Performance on Linux
Title: Improving Disk I/O Performance on Linux [77].
Authors: C. H. Lunde, H. Espeland, H. K. Stensland, A. Petlund, and P. Halvorsen.

Published: UpTimes - Proceedings of Linux-Kongress and OpenSolaris Developer Con-
ference, GUUG, 2009.

Abstract: The existing Linux disk schedulers are in general efficient, but we have iden-
tified two scenarios where we have observed a non-optimal behavior. The first is
when an application requires a fixed bandwidth, and the second is when an oper-
ation performs a file tree traversal. In this paper, we address both these scenarios
and propose solutions which both increase performance.

Making an SCI Fabric Dynamically Fault Tolerant
Title: Making an SCI Fabric Dynamically Fault Tolerant [116].

Authors: H. K. Stensland, O. Lysne, R. Nordstroem, and H. Kohmann.
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Published: Proceedings of the IEEE International Symposium on Parallel and Dis-
tributed Processing (IPDPS), 2008.

Abstract: In this paper we present a method for dynamic fault tolerant routing for SCI
networks implemented on Dolphin Interconnect Solutions hardware. By dynamic
fault tolerance, we mean that the interconnection network reroutes affected packets
around a fault, while the rest of the network is fully functional. To the best of our
knowledge this is the first reported case of dynamic fault tolerant routing available
on commercial off the shelf interconnection network technology without duplicating
hardware resources. The development is focused around a 2-D torus topology, and is
compatible with the existing hardware, and software stack. We look into the existing
mechanisms for routing in SCI. We describe how to make the nodes that detect the
faulty component do routing decisions, and what changes are needed in the existing
routing to enable support for local rerouting. The new routing algorithm is tested on
clusters with real hardware. Our tests show that distributed databases like MySQL
can run uninterruptedly while the network reacts to faults. The solution is now part
of Dolphin Interconnect Solutions SCI driver, and hardware development to further
decrease the reaction time is underway.



Appendix A

BNF Grammar of the P2G Kernel

Language

%token <n> IDENTIFIER
%token <n> INTEGER
%token <n> VECTOR
%token <n> INTRINSIC
%token <s> NATIVE
%token TYPE

%token INDEX
%token LOCAL
%token AGE
%token LAST
%token SIZE
%token ORDERED
%token INT
%token INCR
%token WRAP
%token FETCH
%token STORE
%token DEF
%token NEXT
%token TOPHEADER
%token TOP_-CODE
%token HEADER
%token CODE
%token BIND
%token IF
%token THEN
%token ELSE
%token END
%token DOTDOT
%token EQ
%token LE
%token GE
%token HOUR
Y%token MIN
%token SEC
%token US
%token MS
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%token FINAL

%token FINALIZE

%token FINALIZE_ON_ALL
%token FINALIZE_ON_ONE
%token TIMER

%token SET

%token NOW

%token DEADLINE

Y%right "=’

%left ’<’ >’ GE LE EQ
%left DOIDOT ’:°

%left 47 7=’

Gleft 'x° '/7 ‘%’

%left UNARYMINUSPRECEDENCE

Th

start: statements

)

statements: statements statement

)

statement: field_definition
| timer_definition
| kernel_definition
| TOPHEADER ’:’ NATIVE /% top of generated header file x/
|

TOP_CODE ;7 NATIVE /+ top of generated code file x/

HEADER 7.7 NATIVE /+ after field definitions in generated
header file x/

| CODE ;7 NATIVE /% after field declarations in generated

code file x/

IET:

x % BEach field is a virtual multi—dimensional array of data.

x* % It is virtual because the kermel program forbids to write to
* % the same field in more than one unique kernel, which does

* % naturally not make sense in reality.

* % The data cannot be stored contiguously in memory, either ,

* % because parallel architecture will encourage pipelining of
* % data through several kernels before writing it to a

* % contiguous location in memory (if ever).

* % In the process of mapping, many of these fields will be

* % identified with each other or be optimized out.

x* % A field should not be considered a bunch of memory cells ,

* % but a bunch of memory cells at the time of a kernel’s run.

x % Example field definitions:

* %  float128 f;

* % int32[4] array;

* %  vector3<float64 >[3] three_coordinates, three_more, and_three_more;
* % vector8 complex128[][8][][][256] weird_stuff;

*
~
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field_definition: datatype define_global_field_names field_attributes

) )

| intrinsic_datatype error ’;

)

datatype: intrinsic_datatype field_dimensions
| VECIOR intrinsic_datatype field_dimensions

i

intrinsic_datatype: INTRINSIC
| TYPE type_name

type-name: IDENTIFIER

)

field_dimensions: field_dimensions ’[’ INTEGER ']’
| field_dimensions [’ ’]’

| /+ empty =/

field_attributes: field_attributes AGE ’(’ FINALIZE.ON_ALL ')’
| field_attributes AGE ’(’ FINALIZE.ON.ONE ')’
| field_attributes AGE
| field_attributes ORDERED
|

/* empty */
define_global_field_names: define_global_field_names ’,’
define_global_field_name
| define_global_field_name

b

) 9

timer_definition: TIMER def_timer_names timer_attributes ’;
def_timer_names: def_timer_names ’,’ define_timer_name

| define_timer_name
timer_attributes: timer_attributes AGE

| /x empty =/

3

) 9

define_local_field _names: define_local_field_names 7,
define_local_field_name
| define_local_field_name

)

7.

kernel_definition: kernel_-name kernel_native_attributes ’':’ kernel_head

NATIVE kernel_tail kernel_deadline

| kernel_ name kernel_native_attributes ’:’ kernel_head

kernel_tail kernel_deadline

Y

)

| kernel_name kernel_native_attributes ’:’ kernel_head IF

NATIVE THEN kernel_tail END opt_semicolon
kernel_deadline

| kernel_name kernel_native_attributes ’:’ kernel_head IF

NATIVE THEN kernel_tail ELSE kernel_tail END
opt_semicolon kernel_deadline
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) )

opt_semicolon: 7;
| /* empty x/

b

Native attributes will be used to give the dependency
analyser hints about special kernels.

In principle, a kernel can be placed anywhere, but if

the native code requires user input, disk access and so on,
it should be expressed by a list of identifiers

(commas strictly optional and without semantic meaning).

* X KX X X ¥ X

*/
kernel_native_attributes: BIND kernel_native_attrlist
| "%’ error
| /* empty x/
kernel_native_attrlist: kermel_native_attrlist IDENTIFIER
| IDENTIFIER

kernel_head: kernel_head fetch_statement
| kernel_head index_var_declaration
| kernel_head field_size_expression
| kernel_head DEF error ’;’
|

/* empty */

kernel_tail: kernel_tail store_statement
kernel_tail next_statement
kernel_tail timer_set_statement

\
\
| /% empty x/

kernel_deadline: kernel_deadline deadline_statement
| /+ empty =/

field_size_expression: SIZE field_size '=’ field_size_expr 7;’

field_size_expr: field_size_expr ’x’ field_size_expr
field_size_expr '/’ field_size_expr
field_size_expr %’ field_size_expr
field_size_expr '+’ field_size_expr

field_size_expr ’—’ field_size_expr
(7 field_size_expr ')’
INTEGER

'—’ INTEGER %prec UNARY_MINUS PRECEDENCE
'+’ INTEGER %prec UNARY_MINUS_ PRECEDENCE
field_size

field_size: use_field_.name field_ages ’.’ INTEGER

field _ages: field_ages .7 AGE ’(’ age_expr ')’
|

?
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index_var_declaration: INDEX index_var_int_or_not index_var_wrap_or_not
index_var_increment index_vars 7;’

| LOCAL index_var_int_or_not index_var_wrap_or_not
index_var_increment index_vars 7;’

| INT index_var_wrap_or_not index_var_increment
index_vars ’;’

AGE index_vars ’;’

LOCAL datatype define_local_field_names ’;’

) )

|
|
| INDEX intrinsic_.datatype error ’;
|
|

)

LOCAL intrinsic_datatype error ’;

) )

AGE intrinsic_datatype error ’;

b
index_var_int_or_not: INT
| /* empty */

index_var_wrap_or_not: WRAP
| /+ empty =/
index_var_increment: INCR ’(’ INTEGER ')’
| /% empty x/

)

index_vars: index_vars ’,’ index_name

| index_name

) )

fetch_statement: FETCH use_field_name index_use =’ use_field_name

index_use ’;’

store_statement: store_final_prefix STORE use_field_.name index_use ’'=’

) 9

use_field_name index_use ’;

store_final _prefix: FINAL
|

finalize_statement: FINALIZE use_field_name index_use ’;’

)
next_statement: NEXT index_name 7;’

) ) )

)
timer_set_statement: SET use_timer_name age_list =’ timer_expr ’;

i

deadline_statement: DEADLINE ’(’ deadline_condition ’)’ deadline_actions
END opt_semicolon

)

deadline_condition: timer_expr expr_cond_cmp timer_expr

deadline_actions: deadline_actions store_statement
| deadline_actions finalize_statement
| /* empty x/

)

[ #%

* % Expression lists allow fetch and store operations with indices
% that are computed statically when dependencies are evaluated.

% It would be nice if they could be evaluated statically , but that
% would require constant field sizes and we don’t want to limit

% ourselves to that.

*

* % ¥
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* % As a very simple example consider the following kernel head:

* % int64[10] a,b;

* % def x;

x % fetch i=a(x);

x* %  fetch j=b(9—x);

* % This initiates 10 kermels, because the fields are C-indexed and
* % both have 10 fields.

* % The fetch statements

x % fetch i=a(x);

x %  fetch j=b(10—x);

* % on the other hand, would initiate only 9 kernels, because the
* % case x==0 is outside the range of field b.

* %

x % However, it is also possible to use larger blocks of memory

* % in a single kernel. Consider:

x % float64 [32][32] field;

* % fetch v = field [x:8][y:8];

¥ % This avoids that 32x32=1024 kernels are started. Instead,

* % it starts 16 kernels, where v is interpreted as double v[8][8].
x % However, if you want to start 1024 kernel and make all possible
x % 8x8 sub—blocks available to the native code, you have to

* % do the following:

* % float64[32][32] field;

x % fetch v00 = field [x][y];

* % fetch v0l1 = field [x][y+1];

* %

x %  fetch v77 = field [x+7][y+7];

x* % If people want this, we can create a better syntax for this later.
* % It might make sense, for example to parallelize motion vector
* % search at a super—fine granularity and let the dependency

* % analysis take care of efficiency.

*/

index_use: expr_list

i

expr_list: expr_list ’[’ exprs ’]’
| expr_list ’[’ exprs ’|’ expr._cond.a ’]’
| expr_list [’ ']’
| age_list
i

age_list: age_list ’'(’ age_expr )’

age_expr: age_expr ’x

| age_list .7 AGE ’(’ age_expr ')’
| /* empty x/

i

age_expr
| age_expr '/’ age_expr

| age_expr %’ age_expr

| age_expr '+’ age_expr

| age_expr ’'—’ age_expr

| INTEGER

| 7=’ INTEGER %prec UNARY MINUS PRECEDENCE
| '+’ INTEGER %prec UNARY MINUS PRECEDENCE
| LAST

| index_name
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9 9

exprs: exprs ',  expr
| expr

b

/xx Note: Originally I used BNF for explicit precedence.
* Changed to bison extensions %right and %left to
* declare precedence to make the code more compact.

expr: expr DOIDOT expr
| expr ’:’ INTEGER
| expr ’x’ expr

| expr ’/’ expr

| expr %’ expr

| expr '+’ expr
|

|

|

|

expr '—’ expr
7( ) expr 7) )
INTEGER

’—’ INTEGER %prec UNARYMINUSPRECEDENCE /* %prec overrides
precedence of %left x/
| '+’ INTEGER %prec UNARY MINUS PRECEDENCE

| index_name

) )

expr_cond_a: expr_cond_a ’,’ expr_cond_b
| expr_cond_b
expr_cond_b: expr expr_cond_cmp expr

bl

timer_expr: timer_expr '+’ timer_expr
| timer_expr '/’ timer_expr

| timer_expr %’ timer_expr

| timer_expr '+’ timer_expr

| timer_expr '—’ timer_expr

| INTEGER timer_unit

| =’ INTEGER timer_unit %prec UNARY MINUS PRECEDENCE
| '+’ INTEGER timer_unit %prec UNARY MINUS_PRECEDENCE
| NOW

|

use_timer_name age_list

timer_unit : HOUR
| MIN
| SEC
| MS
| US
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IET:

* % Kernel names have their own namespace.

kZﬁnelnamef IDENTIFIER
define,global,field,namef field _name
define,local,field,namef field_name
use,field,namef field_name
define_timer_name: IDENTIFIER

use_timer_name: IDENTIFIER

IET:

* % Field names have their own namespace.

*/
field_name: IDENTIFIER

)

*

% The only meaning of an index name is as a placeholder

% for one dimension needed for accessing a cell in a field.
% It is similar to a variable in a C for—loop, but the

% body can’t change it. An index name can be used for

% computations in several dimensions (e.g. required for

% transposing matrices). Using a name index in a fetch

% operation is similar to the creation of an implicit

% foreach loop. One kernel should be started for every

% possible combination of indices. It is impossible to

% prevent this from happening without programming a special
% kernel that cuts a sub—field out of a larger field.

% It is expected that the evaluation of the dependency

% graph makes it possible to transform such mapping

% operations into no—ops.

%

% Index names have their own namespace.

¥ OK K K X K X X X X X X X X ¥ ¥

*

*/
index_name: IDENTIFIER

b



	I Overview
	Introduction
	Background and Motivation
	Heterogeneous Architectures
	Multimedia Workloads

	Problem Statement
	Limitations
	Research Method
	Main Contributions
	Outline

	Heterogeneous Computing
	Hardware Architectures
	Intel x86 Processor Architecture
	Intel IXP Network Processor
	Nvidia Graphics Processing Units
	STI Cell Broadband Engine
	Other Hardware Architectures
	Summary

	Hardware Abstractions and Programming Models
	SMT
	SIMD
	SIMT
	Summary

	Summary

	Using Heterogeneous Architectures for Simple Tasks
	Intel IXP Network Processor
	Case Study: Network Protocol Translation
	Implications

	x86 Processor Architecture
	Case study: Motion JPEG Encoding
	Case Study: Multi-Rate Video Encoding with VP8
	Case Study: Parallel Execution of a Game Server
	Implications

	Graphics Processing Units
	Case Study: GPU Memory Spaces and Access Patterns
	Case Study: Host–Device Communication Optimization
	Case Study: Cheat Detection
	Case Study: MJPEG Encoding
	Implications

	Cell Broadband Engine
	Case Study: MJPEG Encoding
	Implications

	Architecture Comparison
	Summary

	Using Heterogeneous Architectures for Complex Workloads
	Bagadus Sports Analysis System
	Bagadus: The Basic Idea
	Video Subsystem

	The Real-Time Bagadus Video Pipeline
	Performance Analysis
	Discussion

	Summary

	The P2G Framework and the Future
	Summary of Challenges
	Design Ideas for a New Processing Framework
	Existing Processing Frameworks
	The P2G Framework
	Architecture
	Programming Model
	Prototype
	Workloads
	Evaluation
	Summary

	The Future

	Papers and Author's Contributions
	Overview of Research Papers
	Paper I: Transparent Protocol Translation for  Streaming
	Paper II: Evaluation of Multi-Core Scheduling Mechanisms for Heterogeneous Processing Architectures
	Paper III: Tips, Tricks and Troubles: Optimizing for Cell and GPU
	Paper IV: Cheat Detection Processing: A GPU versus CPU Comparison
	Paper V: Reducing Processing Demands for Multi-Rate Video Encoding: Implementation and Evaluation
	Paper VI: LEARS: A Lockless, Relaxed-Atomicity State Model for Parallel Execution of a Game Server Partition
	Paper VII: P2G: A Framework for Distributed Real-Time Processing of Multimedia Data
	Paper VIII: Bagadus: An Integrated Real-Time System for Soccer Analytics
	Paper IX: Processing Panorama Video in Real-Time
	Supervised Master's Students
	Other Publications

	Conclusion
	Summary
	Concluding Remarks
	Future Work


	II Research Papers
	Paper I: Transparent Protocol Translation for Streaming
	Paper II: Evaluation of Multi-Core Scheduling Mechanisms for Heterogeneous Processing Architectures
	Paper III: Tips, Tricks and Troubles: Optimizing for Cell and GPU
	Paper IV: Cheat Detection Processing: A GPU versus CPU Comparison
	Paper V: Reducing Processing Demands for Multi-Rate Video Encoding: Implementation and Evaluation
	Paper VI: LEARS: A Lockless, Relaxed-Atomicity State Model for Parallel Execution of a Game Server Partition
	Paper VII: P2G: A Framework for Distributed Real-Time Processing of Multimedia Data
	Paper VIII: Bagadus: An Integrated Real-Time System for Soccer Analytics
	Paper IX: Processing Panorama Video in Real-Time
	Posters and live demonstrations
	Other research papers
	BNF Grammar of the P2G Kernel Language


