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Quantization of entropy in a quasi-two-dimensional electron gas
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We demonstrate that the entropy per electron of a two-dimensional electron gas (2DEG) exhibits quantized
peaks at resonances between the chemical potential and electron levels of size quantization. In the limit of no
scattering, the peaks depend only on the subband quantization number and are independent of material parameters,
shape of the confining potential, electron effective mass, and temperature. The quantization of entropy per electron
is a signature of a Lifshitz phase transition in a 2DEG. In the presence of stationary disorder, the magnitude of
peaks decreases. Its deviation from the quantized values is a direct measure of the disorder induced smearing of
the electronic density of states.
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Introduction. Low-dimensional electronic devices are im-
portant building blocks for quantum electronics. This is one
of the reasons for great interest in these systems. Another
reason is that size quantization of the electronic states in
low-dimensional systems leads to quantization of their thermal
and transport properties. The most famous are the integer [1]
and fractional [2] quantum Hall effect in two-dimensional
electron gas (2DEG) and conductance quantization of quasi-
one-dimensional channels [3].

In this paper, we address the major thermodynamic
quantity—entropy—of a quasi-two-dimensional electron gas.
An elegant way to measure directly the entropy per electron,
s ≡ (∂S/∂n)T , was recently demonstrated [4]. Here T is
temperature. We will show that the quantization of the energy
spectrum of quasi-2DEG into subbands leads to a very specific
quantization of the entropy: s exhibits sharp maxima as the
chemical potential μ passes through the bottoms of size
quantization subbands (Ei). The value of the entropy per
electron at the intersection of the chemical potential with the
N th size quantization level depends only on the number of the
maximum N :

s|μ=En
≡

(
∂S

∂n

)
T , μ=En

= ln 2

N − 1/2
. (1)

In the absence of scattering this result is independent of the
shape of the transversal potential that confines 2DEG and of
the material parameters including the electron effective mass
and dielectric constant.

The universality of the above quantization rule can be
broken both by disorder and by electron-electron interactions.
Using a simple model of Lorentzian smearing of the electronic
spectrum we show that it leads to the relative correction of
∼ �/T τ , where τ is the electron lifetime. For the case of a
single-band 2DEG the role of the electron-electron interaction
in the entropy per electron was investigated in Ref. [4], see
references therein for a review. We believe that Eq. (1) can
be used as a benchmark allowing us to judge the importance
of the disorder and interactions. In this paper we report on
the analytical dependence of the entropy per electron on

the chemical potential accounting for the smeared density of
states of 2DEG at the electron quantization levels. We reveal
the quantization of entropy per electron at resonances of the
chemical potential and electron quantization levels and discuss
the accuracy of the obtained expression for the quantized
entropy in the presence of disorder and electron-electron
interactions.

General expressions. In the absence of scattering, the
density of electronic states (DOS) in a noninteracting 2DEG
has a staircaselike shape [5],

g(μ) = m∗

π�2

∞∑
i=1

θ (μ − Ei),x (2)

with m∗ being the electron effective mass and θ (x) being the
Heaviside theta function. Elastic scattering of electrons on
defects and impurities that is necessarily present in realistic
systems leads to the smearing of the steps of the density of
states. A simple way to account for this smearing is to introduce
a finite lifetime τ of an electron. That results in the replacement
of a Dirac delta function by a Lorentzian in the derivative of
the density of states: θ ′(E) = δ(E) → �τ−1/π (E2 + �

2τ−2).
Integration of the latter expression leads to the replacement
θ (E) → θ̃ (E), where

θ̃ (E) = 1

2
+ 1

π
arctan

(
Eτ

�

)
. (3)

We will focus on a case where T � �/τ , that corresponds to
a relatively clean sample. At the same time, temperatures are
supposed to be not too high, T 	 �Nj = |EN − Ej |,∀j �= N .
In addition, we assume that the transport is adiabatic [6], i.e.,
there are no elastic interband transitions due to backscattering.

To find the entropy per electron s we use the Maxwell
relation

s =
(

∂S

∂n

)
T

= −
(

∂μ

∂T

)
n

=
(

∂n

∂T

)
μ

(
∂n

∂μ

)−1

T

. (4)

The relationship between the electron concentration n, chem-
ical potential μ, and temperature T can be found integrating
Eq. (2) over energies with the Fermi-Dirac distribution and
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accounting for the renormalization (3):

n(μ,T ) = m∗

π�2

∞∑
i=1

∫ +∞

0

θ̃ (E − Ei)

exp
(

E−μ

T

) + 1
dE. (5)

Calculating the partial derivatives of the electron concentration
over temperature and chemical potential one can express them
in the form of sums over the subband levels averaged over
energy with temperature and impurities smearing factors:

(
∂n

∂T

)
μ

= m∗

π2�2

∞∑
j=1

∫ +∞

−∞

fn(z)

cosh2 z
dz, (6)

(
∂n

∂μ

)
T

= m∗

2π2�2

∞∑
j=1

∫ +∞

−∞

fμ(z)

cosh2 z
dz,

fn(z) ≡ z arctan[(2T z +δN + �Nj )τ ], (7)

fμ(z) ≡ π/2 + arctan[(2T z +δN + �Nj )τ ].

Here δN = μ − EN (we assume |δN | 	 �NN±1). We have
also taken into account that μ → EN � T and extended the
lower limit of integration up to −∞.

Noninteracting 2DEG in the absence of disorder. We
start the analysis with the case of a clean material, where
one can neglect the smearing of electron states and replace
arctan z → (π/2) sign z. In this case the principal contribution
to the derivative (6) gives the level closest to the chemical
potential:(

∂n

∂T

)
μ→EN

= m∗

π�2

[
ln

(
2 cosh

δN

2T

)
− δN

2T
tanh

δN

2T

]
.

The contributions of other levels are exponentially small; they
turn out to be of the order of exp(−�N,N±1/T ). In Eq. (7), the
lowest N − 1 levels provide the same universal, independent
on chemical potential and temperature, contributions, while the
shape of the line is determined by the N th level. We obtain:(

∂n

∂μ

)
μ→EN

= m∗

π�2

(
N − 1

2

)
+ m∗

2π�2
tanh

δN

2T
.

The contributions of the higher levels (j > N) are exponen-
tially small.

Finally, the expression for the entropy per electron Eq. (4),
valid for any spectrum of size quantization Ej , takes the form:

sμ→EN
= ln

(
2 cosh δN

2T

) − δN

2T
tanh δN

2T

(N − 1/2) + 1
2 tanh δN

2T

(8)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

|δN |
T

exp
(
− |δN |

T

)
N−1+exp

(
− |δN |

T

) , δN 	 −T ,

ln 2
N−1/2 , 0 � δN 	 T ,

δN

T N
exp(−δN/T ), δN � T .

(9)

This expression predicts the existence of quantized peaks
of the partial entropy s at μ = EN , their magnitudes being
dependent only on the subband number. The dependence of
s on the chemical potential is schematically shown in Fig. 1,
lower panel. The quantized peaks of the entropy per electron
correspond to the steps of the density of states shown in the
upper panel of the same figure.

FIG. 1. Schematic representation of the dependencies of the
electronic density of states (upper panel) and the entropy per electron
(lower panel) as functions of the chemical potential.

The shape of the peaks in Eq. (8) is asymmetric; that
corresponds to the steplike changes in the density of electronic
states as a function of the chemical potential of the 2DEG.

Effect of scattering. Equations (6) and (7) allow one to
estimate the effect of scattering on the heights of the peaks.
A straightforward analysis shows that the contribution of the

lower subbands is of the order of
∞∑

j=1,j �=N

O[(�Njτ/�)−n].

Here n = 1 for (∂n/∂μ)T and n = 2 for (∂n/∂T )μ. These
sums are cut off at jmax ∼ �/T τ. For the equidistant spectrum
(parabolic potential), or EN ∼ N2/3 (eigenvalues of the Airy
functions, in the case of the linear potential) they give
small contributions of the order (�τ/�)−n(T/�)n−1(� is the
characteristics scale of interlevel distances).

The contribution of the N th subband to (∂n/∂μ)T can be
calculated exactly leading to the replacement

tanh
δN

2T
→ Re

[
tanh

δN

2T
− i

�

2τT

]

in Eq. (8), i.e., to appearance of the corrections of the order
O[(�/T τ )2]. Yet, the dominant effect of impurities is due
to (∂n/∂T )μ. The asymptotic analysis of Eq. (6) shows that
the magnitude of the peak in s is suppressed by the elastic
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scattering of electrons as

sμ=EN
= ln 2 − (�/πT τ )

N − 1/2
.

This simple relation allows us to characterize the degree of
disorder in a 2DEG.

Discussion. The dependence of the entropy per electron s

on the chemical potential can be interpreted in the following
way. At low temperatures, the main contribution to the entropy
is provided by the electrons having energies in the vicinity of
the Fermi level, the width of the ‘active’ layer being ∼T . If the
electron DOS is constant within the layer then by adding an
electron one does not change the entropy. Hence, the entropy
is independent of the chemical potential, (∂S/∂n)T → 0.
However, if the bottom of one of the subbands falls into the
active layer, the number of ‘active’ states becomes strongly
dependent on the chemical potential. In this case, adding an
electron to the system, one changes the number of ‘active’
states in the vicinity of the Fermi surface. Consequently,
the entropy per electron strongly increases. The peaks of
the entropy per electron correspond to the resonances of the
chemical potential and electron size quantization levels. The
further increase of the chemical potential brings the system to
the region of the constant density of states, where the entropy
per electron vanishes again.

The intersections by the chemical potential of the levels of
electron size quantization, δN = 0, can be considered as the
points of Lifshitz phase transitions in a 2DEG, where the Fermi
surface acquires a new component of topological connectivity.
Corresponding anomalies in the thermodynamic and transport
characteristics, in particular, thermoelectric coefficient related
to the peculiarities of the energy dependence of the electron
momentum relaxation time have been studied experimentally
and theoretically in Refs. [7,8] and Ref. [9], respectively.
Here we present an analytical theory of purely thermodynamic
anomalies.

In the asymptotic expression (9) for strongly negative δN

(but |δN | � T ), the term exp(−|δN |/T ) in the denominator can
be neglected for all N > 1. However, it becomes important for
N = 1. Indeed, at μ < E1 the entropy per electron increases
as |μ − E1|/T with decreasing μ. This is a manifestation of
the crossover from the Fermi distribution to the Boltzmann one
when the chemical potential falls into the gap in the spectrum.
The region μ < E1 is not shown in Fig. 1 in order to keep the
peaks for N = 2,3 visible.

At T → 0 (yet T � �/τ ) the peaks of s are located at μ →
EN , N > 1, the maximal values being smax(N ) = ln 2/(N −
1/2). At finite T the peaks acquire finite widths of the order
of T and shift toward negative values of μ − EN .

The peaks of s for N = 2 and 3 are shown in Fig. 2;
their characteristics are given in Table I. The reason of the
peaks’ asymmetry is the difference in partial densities of states
above and below the chemical potential. The relative difference
between the DOSs decreases with increase of N , therefore the
peaks become more symmetric.

Interestingly, our result for (∂μ/∂T )n ≡ −s at μ = E1 and
τ → ∞ coincides with the expression for the same derivative
obtained in Refs. [10,11] for a two-dimensional superconduc-
tor. The quantized dip in this derivative is associated with the
step in the density of electronic states which changes from zero

FIG. 2. Dependence s(μ − EN ) for N = 2,3.

inside the superconducting gap to m∗/π�
2 above the gap. A

remarkable fact is that the value of the effective mass m∗ does
not enter the result. Note that the variation of the chemical
potential as a function of temperature can be measured by
resonant optical transmission spectroscopy of the fundamental
absorption edge in modulation doped semiconductor quantum
wells, see, e.g., Ref. [12].

Now let us briefly discuss the role of electron-electron
(e-e) interactions, which are neglected in the above formal-
ism. Electron-electron interactions become noticeable for the
electronic states sufficiently close to the subbands’ bottoms.
In particular, they can significantly change the compressibility
of the electron gas, see, e.g., Ref. [13]. Characterizing the
importance of e-e interaction by the parameter rs [14] we
conclude that rs ≈ 1 for the upper filled subband at

√
2δN

m∗ ≈ e2

κ�
→ δN ≈ m∗

2

(
e2

κ�

)2

,

with κ being a dielectric constant. Putting m∗ = 0.1m0 and
κ = 10 we get δN � 2 × 10−14 erg. If δN is less than this value
one can expect a Fermi-liquid renormalization of the electron
spectrum, in particular, of the effective mass m∗. Fortunately,
m∗ doesn’t enter the expressions for the peaks of s. However,
additional correction proportional to (∂m∗/∂n) can appear
in the expression (7) for the thermodynamic DOS. These
corrections for N = 1 are discussed in Ref. [4] and references
therein. Another possibility of evidencing the interaction
effects is establishing a special regime of a correlated 2D
charged plasma [15] also explored in Ref. [4]. Here we do
not consider this particular case. In general, comparing the

TABLE I. Peaks in the entropy per electron.

N δmax/2T smax/2 ln 2 s|μ=EN
/2 ln 2

2 −0.24 0.347 1/3
3 −0.14 0.203 1/5
4 −0.01 0.144 1/7
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experimental results with the universal expression obtained
here (8) allows one to judge on the role of electron-electron
correlations in a system under study.

Finally, we would like to emphasize that the peak values
of entropy per particle are not quantized, strictly speaking,
as one can clearly see from Figure 2. The peaks are shifted
from the topological transition points, and their magnitudes
are sensitive to the thermal broadening, elastic scattering, and
electron-electron interactions. On the other hand, according to
our model, the entropy per particle measured at the 2D Lifshitz
transition points is quantized. Its value is independent of any
structure parameter: of the effective mass, dielectric constant,
shape of the confining potential, temperature. This makes us
hope that this quantization rule is universal and quite robust
against disorder, interaction effects, and temperature.

In conclusion, we have analytically derived the entropy
per electron (∂S/∂n)T in a noninteracting quasi-2DEG in the
vicinity of electron quantization levels. At the resonances of
the chemical potential with the electron quantization levels (2D
Lifshitz transition points), (∂S/∂n)T appears to be independent
of the effective mass, dielectric constant, and other material
parameters. The entropy per electron may be directly measured
either by temperature modulation [4], or by the optical
transmission measurements [12].
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