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Abstract

In recent years the theory of rough paths has become increasingly popular. The theory
gives simple and “free of probability” way of looking at random noise. In this thesis we will
give existence and uniqueness results of a differential equation of the form

dYt = f(Yt)dXt, Y0 = y

Where Xt is a rough signal in the sense that |Xt �Xs| . |t� s|↵ where ↵ 2 (

1
4 ,

1
3 ]. Further

we will use rough path theory to study fractional and multifractional Brownian motion, and
construct two Itô formulas for different regularities of the respective processes. At last we
will apply this theory to a square root process (as used in Heston[8] and CIR[12]), and show
existence of solutions to the square root process driven by a multifractional brownian motion
with a regularity function h, when h : [0, T ] ! [a, b] ⇢ (0, 1) .
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Organization of this thesis

We have divided this thesis in to three parts, the first part introduces rough path theory, and
extend essential theorems from the book by Hairer and Friz [16] to the case when the ↵-Hölder
regularity is such that ↵ 2 (

1
4 ,

1
3 ]. The second part will take a closer look at fractional Brownian

motion and multifractional Brownian motion as rough paths. We will study their regularity, and
introduce two new Itô formula’s; one describing the behavior of multifractional Brownian motion
with regularity function h : [0, T ] ! [a, b] ⇢ (0, 1) and one for fractional Brownian motion with
H 2 (

1
4 ,

1
2 ] . The last part will contain a discussion of rough path theory in financial applications,

and will show existence of solutions to a “square root process” driven by a multifractional Brownian
motion by a simple Wong-Zakai type approximation.
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1 Introduction

Integration theory is one of the pillars in mathematical analysis. We know that for sufficiently
smooth functions (C1

) we may define the line integral

ˆ t

0
x(r)dy(r) :=

ˆ t

0
x(r)ẏ(r)dr.

However, for functions x and y which is not C1, the integral is not well defined in the same way.
L. C. Young showed that the integral still exists if x 2 C↵ and y 2 C� , as long as ↵ + � > 1. In
probability theory, one can do even better. If we let {Bt}t�0 be a Brownian motion on a probability
space (⌦,F , P ), then the iterated integral with respect to the Brownian motion, given by

B0,t :=

ˆ t

0
BrdBr t

X

[u,v]2P

Bu (Bv �Bu)

for some partition P of [0, t], and is well defined in a probability sense. That is, the integral
is constructed as a limit of simple functions in L2

(⌦). Actually, the iterated integral B0,t may
be defined in different ways, but the two most common definitions are the Itô integral or the
Stratonovich integral. The relationship between the two is given by the following equation,

BItó
0,t = BStrat

0,t +

1

2

t.

Therefore, the difference is equal to half the variance of the Brownian motion Bt. This stems from
the choice of evaluation point in the Riemann sum that constructs the integral.

Probability theory has long been the “go-to” tool for handling random paths of low regularity.
However, in recent years rough path theory has risen significantly as it gives an alternative view
on how to analyze differential equations, and stochastic processes driven by noise of low Hölder
regularity. In the late 1990’s Terry Lyons published a paper introducing differential equations
driven by rough signals [14], that is he studied equations on the form

dYt = f(Yt)dXt, Y0 = y,

where f is a sufficiently smooth function and X is the rough signal controlling Yt. In this seminal
paper, Lyons discusses the importance of rough path theory and develops framework for the treat-
ment of such differential equations. He shows that if X 2 C↵, with ↵ 2 (

1
3 ,

1
2 ], and there exists an

iterated integral with respect to the rough noise X, i.e some object

Xs,t =

ˆ t

s
Xs,rdXr,

a solution to the differential equation exists. This is not always easy to find, depending on the
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choice of X. The rough path theory is therefore centered around the construction of the iterated
integrals, and how they affect solutions to differential equations. Although the theory he uses in his
treatment of rough signals is completely without probability theory, he points out the significance
of this alternative view on stochastic differential equations as follows,

“A probabilist, interested in stochastic differential equations, might be tempted to
believe that this article has little interest for him (except as a theoretical curiosity)
because he can do everything that he wanted to do using Itô calculus. So we briefly
mention a few situations where we believe that the results we develop here have conse-
quences. The first is conceptual, until now the probabilist’s notion of a solution to an
SDE has been as a function defined on path space and lying in some measure class or in-
finite dimensional Sobolev space. As such, the solution is only defined on an unspecified
set of paths of capacity or measure zero. It is never defined at a given path. Given the
results below, the solutions to all differential equations can be computed simultaneously
for a path with an area satisfying certain Hölder conditions. The set of Brownian paths
with their Lévy area satisfying this condition has full measure. Therefore and with
probability one, one may simultaneously solve all differential equations over a given
driving noise (the content of this remark is in the fact that there are uncountably many
different differential equations).” [14] sec. 1.1.7.

Although rough path theory gives an alternative angle on the solution methods of SDE’s, it seems
to require higher regularity on the function f to show existence and uniqueness of solutions than
what regular probability theory does. In particular, the lower regularity on Xt you have, the more
regularity you need in the function f.

In recent years Martin Hairer and Peter Friz has given significant contributions to rough path
Theory. With their book first released in 2013 they developed a slightly different and more accessible
introduction to, and treatment of, rough path theory. The book covers most subjects relating to
rough path theory, including rough differential equations, change of variable formula (Itô formula),
and some regularity concepts, but with a ↵-Hölder regularity restriction on ↵ 2 (

1
3 ,

1
2 ]. Although

Rough Path theory seem to generalize the concept to all paths with some ↵�Hölder regularity, such
that ↵ 2 (0, 1), the most simple applications (and maybe most useful) is the fractional Brownian
motion. Fractional Brownian motion (fBm) is a stationary centered gaussian process with long
range dependence. With long range dependence, or long memory, we mean that the process has
some positive/negative autocorrelation, in contrast with the usual Brownian motion. The behavior
of the process is determined by what is called a Hurst parameter describing the dependence on the
past. The hurst parameter H lies in (0, 1), and one can show that the ↵� Hölder regularity of a
fBm BH

t is such that ↵ = H�. It also has the property that when H < 1
2 , the autocorrelation

is negative, and when H > 1
2 the autocorrelation is positive. When H =

1
2 , the process is just a

regular Brownian motion with zero autocorrelation. The standard theory to treat fBm’s has so far
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been by the white noise approach. More recently the concept of fBm’s has been generalized to a
class of processes called multifractional processes. These processes have a hurst parameter function
h(t) which is dependent on time, that makes the process non stationary. However there are a lot
of applications which shows evidence of such behavior. For example, when modeling a synthesized
mountain one would expect the landscape to have some rougher parts and some smoother parts.

In financial applications the rough path approach to SDE’s driven by low regularity noise has
become more popular. There has long been a discussion on whether or not log prices and/or log
volatility tend to have long memory. If we let prices be driven by long memory processes, arbitrage
will arise (see [19]). There have been proposed volatility models driven by fractional Brownian
motions (see [7, 5, 9]), which can be argued to still be consistent with the no-arbitrage restrictions,
as long as the price process still is a semi-martingale. However, if we model the volatility or log
prices with an fBm we are implicitly saying that it has dependence on the past is constant in
time. Still there seem to be strong empirical evidence that this assumption is not compatible with
financial markets, see [18, 21, 23].

1.1 Frequently used notation

Most notation in this thesis, when unclear, will be specified. However, we want to point out that due
to sometimes rather lengthy computations when discovering inequalities, we let the multiplicative
constant C(a, b, c) depending on a, b and c vary trough the computations. That is, it will sometimes
depend on different variables, or combination of different variables through out proofs.

We often make use of the symbol . , in the context of |Xt �Xs| .| t � s |↵. This means
that the left hand side is bounded by the right hand side multiplied by some constant. We define
increments of a function f : [0, T ] ! V as fs,t := f(t)� f(s). This is not to be confused with the
two variable function f : [0, T ]2 ! V defined as fs,t := f(t, s). We denote the space of ↵�Hölder
continuous functions with ↵ 2 (0, 1) by,

C↵
:=

n

f | f : [0, T ] ! V and sups,t2[0,T ],s 6=t
|ft�fs|
|t�s|↵ < 1

o

.

The space C2↵
2 is defined similarly as follows

C2↵
2 :=

n

f | f : [0, T ]2 ! V and sups,t2[0,T ],s 6=t
|fs,t|

|t�s|2↵ < 1
o

.

The ↵�Hölder semi-norm of f is denoted by

kfk↵ = sup

s,t2[0,T ],s 6=t

|fs,t|
|t� s|↵ .

We often makes use of functions F 2 C3, such that F : Rd ! Rn. Then, the derivative of the
function DF : Rd ! L

�

Rd,Rn
�

, where L
�

Rd,Rn
�

is defined as the space of linear functionals from
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Rd ! Rn. The second derivative D2F : Rd ! L
�

Rd,L
�

Rd,Rn
��

w L
�

Rd⇥d,Rn
�

. We will only
discuss finite dimensional Banach spaces, and mostly the real d-dimensional space Rd.

We frequently use Taylor approximations, and the remainder terms from Taylor approximations.
We use the following notation; Let F be given as above, and x, y 2 Rd , then

F (x)� F (y) = DF (y)(x� y) +
1

2

D2F (y)(x� y)⌦2
+

¯RF
x,y.

By the Lagrange remainder term formula, we know that ¯RF
x,y =

1
6D

3F (y⇤)(x � y)⌦3 for some
y⇤ 2 (y, x).

We sometimes write that |fs,t| = o (|t� s|) . This implies that |fs,t| . |t� s|� for some � > 1.
If the factor � is of significance for further calculation, we will write |fs,t| = o (|t� s|�) .
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Part I

Rough path theory
In this part, we will give a short introduction to Rough Path theory, following both the notation
and arguments from the book of P. Friz and M. Hairer [16]. Although following the book closely,
we will extend their results to lower regularity processes. We are interested in the construction of
iterated integrals of a process X 2 C↵. We will show some natural requirements to expect of a
iterated integral and how these can be approximated by smooth paths. We will also look at how
to construct the integral

´
Y dX , and how to find processes Y such that the respective integral

exists. Then we will investigate differential equations driven by rough signals.
We begin with a basic introduction to the case when the ↵�Hölder regularity of the process X

is ↵ 2 (

1
3 ,

1
2 ].

2 Basic introduction to Rough paths

Let X(1) be a ↵�Hölder regular process, i.e X(1) 2 C↵. An essential question in the theory of
rough paths is how to give meaning to integrals of the form

X(2)
s,t :=

´ t
s X

(1)
s,r dX

(1)
r , (1)

where X(1)
s,t := X(1)

t � X(1)
s , and when X(1)

s,t is of Hölder regularity < 1
2 . When X(1) 2 C1 then

X(2)
s,t is well defined by reading (1) from left to right. If X(1) 2 C↵ , ↵ 2 (

1
2 , 1] then

´ t
s X

(1)
s,r dX

(1)
r

is called a Young integral and can be shown to be well defined, and hence, the definition can be
read from left to right. The problem arises when X(1) 2 C� , � <1

2 , then the integral is not, in
general, well defined, and we therefore need to construct an object X(2)

s,t such that the definition
in (1) can be read from the right to left. In this first section we will give the proper framework to
be able to construct such integrals, and analyze them. To give some intuition we will start with a
construction when the ↵�Hölder regularity of the path X(1) is in [

1
3 ,

1
2). In section 2 we will show

how we can extend the theory to the case when ↵ 2 [

1
4 ,

1
3).

2.1 The space of ↵�Hölder rough paths

Let ↵ 2 (

1
3 ,

1
2 ] and let the ↵-Hölder semi norm be given by k f k↵:= sups 6=t2[0,T ]

|fs,t|
|t�s|↵ . We

define the space of ↵- Hölder rough paths as the pairs (1, X(1), X(2)
) where X(1)

: [0, T ] ! V and
X(2)

: [0, T ]2 ! V ⌦ V , and such that

k X(1) k↵= sups 6=t2[0,T ]
|X(1)

s,t |
|t�s|↵ < 1, k X(2) k2↵= sups 6=t2[0,T ]

|X(2)
s,t |

|t�s|↵ < 1

and
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X(2)
s,t �X(2)

s,u �X(2)
u,t = X(1)

s,u ⌦X(1)
u,t , (Chen�s relation) (2.1)

holds for all s, u, t 2 [0, T ] . For short we write X := (1, X(1), X(2)
) 2 C ↵

([0, T ] , V ) for a Banach
space V . As we can see the space C ↵

([0, T ] , V ) ⇢ C↵ � C2↵
2 . We say that if a path X(1) 2 C↵,

the path X(1) can be lifted (or there exists a lift) to an element (1, X(1), X(2)
) 2 C ↵, if and only

if there exists an object X(2) 2 C2↵
2 , such that Chen’s relation is satisfied.

The space C ↵
([0, T ] , V ) is not a Banach space, as it is not a linear space due to restrictions

from Chen�s relation.
Chen�s relation is an essential piece in the construction of the second iterated integrals, and

we will later generalize this to the third iterated integral. We will in general only consider finite
dimensional Banach spaces V , and the tensor product can be thought of as a kind of vector
multiplication in the way that, for two vectors a, b 2 V , a ⌦ b := abT . Next we will introduce a
suitable metric on the space of rough paths.
Definition 2.1. Let X,Y 2 C ↵

([0, T ] , V ). We define the metric on C ↵
([0, T ] , V ) by

d↵ (X,Y) =k X(1) � Y (1) k↵ + k X(2) � Y (2) k2↵ .

The metric does not make the space C ↵
([0, T ] , V ) complete, but introducing the initial values

of the paths X and Y to d↵(X,Y) will. That is, by introducing X0 and Y0 we can make the space
C ↵

([0, T ] , V ) complete under the metric | X(1)
0 � Y (1)

0 | +d↵(X,Y). To show convergence in this
metric, we will in this thesis focus on interpolation, described and proved later. Next we will define
the notion of a geometric rough path.

2.1.1 The space of geometric rough paths.

From “regular” calculus we are familiar with the fact that if x is a sufficiently smooth path,
then

sym

⇣´ t
s xs,rdxr

⌘

=

1
2xs,t ⌦ xs,t. (2)

We want to define a space of ↵-Hölder rough paths who satisfy (2). That is, for a rough path
�

1, X(1), X(2)
�

, define X(1)(i)
s,t = ei

⇣

X(1)
s,t

⌘

and X(2)(i,j)
s,t = ei ⌦ ej(X

(2)
s,t ) . If X(2) is such that

X(2)(i,j)
s,t +X(2)(j,i)

s,t ” = ”

ˆ t

s
X(1),i

s,r dX(1),j
r +

ˆ t

s
X(1),j

s,r dX(1),i
r

=

ˆ t

s
X(1),i

r dX(1),j
r +

ˆ t

s
X(1),j

r dX(1),i
r �X(1),i

s X(1),j
s,t �X(1),j

s X(1),i
s,t

=

ˆ t

s
d(X(1),iX(1),j

)r �X(1),i
s X(1),j

s,t �X(1),j
s X(1),i

s,t = X(1),i
s,t X(1),j

s,t ,
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we call the path
�

1, X(1), X(2)
�

a geometric rough path, and we say that sym
⇣

X(2)
s,t

⌘

=

1
2X

(1)
s,t ⌦X(1)

s,t .
Here, sym represents the symmetry operator given by sym (A) =

1
2(A + AT

) for A 2 V ⌦ V . We
will give a more formal definition of geometric paths as follows.

Definition 2.2. We say that a path
�

1, X(1), X(2)
�

2 C ↵ is geometric if it satisfy the following
relation,

sym

⇣

X(2)
s,t

⌘

=

1

2

X(1)
s,t ⌦X(1)

s,t .

Formally we write
�

1, X(1), X(2)
�

2 C ↵
g .

There are to ways to define the space of geometric rough paths. One way is to define the space
C ↵
g as the space with ↵�Hölder rough paths, which also satisfy the relation X(2)(i,j)

s,t +X(2)(j,i)
s,t =

X(1)(i)
s,t ⌦X(1)(j)

s,t as we did above, or we could define C 0,↵
g as the closure of lifts of smooth paths in

C ↵. We therefore have the relation
C 0,↵
g ⇢ C ↵

g ⇢ C ↵

In fact, one can show that the two definitions are equal, see [16] chp. 2.
As one may expect, the rough paths which are geometric can be approximated by smooth paths.

Let � 2 (

1
3 ,

1
2 ]. For every

�

1, X(1), X(2)
�

2 C �
g

�

[0, T ] ,Rd
�

there exist a sequence of smooth paths
X(1),n

: [0, T ] ! Rd such that

⇣

1, X(1),n, X(2),n
⌘

:=

0

@

1, X(1),n,

·ˆ

0

X(1),n
0,r dX(1),n

r

1

A !
⇣

1, X(1), X(2)
⌘

,

uniformly on [0, T ], and with uniform rough bounds supn k X(1),n k� +supn k X(2),n k2�< 1. By
interpolation convergence holds in ↵� Hölder rough paths, with ↵ 2

�

1
3 ,�

�

, namely that

lim

n!1
d↵ (X

n,X) = 0.

We will give a lemma where the proof shows a method for interpolation, which will become
useful in the rest of this thesis.

Lemma 2.3. Let
�

X(1),n, X(2),n
�

2 C � , for 1
3 < ↵ < � such that the uniform bounds

supn k X(1),n k�< 1 supn k X(2),n k2�< 1,

and with convergence X(1),n
s,t ! X(1)

s,t and X(2),n
s,t ! X(2)

s,t uniformly on [0, T ]. Then
�

X(1), X(2)
�

2
C �, and we have convergence in the d↵ metric, that is

d↵ (X
n,X) =k X(1),n �X(1) k↵ + k X(2),n

s,t �X(2)
s,t k2↵! 0.
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Proof. Using the uniform convergence and uniform bounds we have that

| X(1)
s,t |:= lim | X(1),n

s,t |.| t� s |� | X(2)
s,t |:= lim | X(2),n

s,t |.| t� s |2�

and there exist a sequence "n such that

| X(1)
s,t �X(1),n

s,t | K | t� s |� and | X(1)
s,t �X(1),n

s,t |< "n

| X(2)
s,t �X(2),n

s,t | K | t� s |2� and | X(2)
s,t �X(2),n

s,t |< "n

uniformly over s, t 2 [0, T ] . Using the inequality a ^ b  a1�✓b✓, where ✓ 2 (0, 1), we combine the
two expressions above with ✓ = ↵

� and find

| X(1)
s,t �X(1),n

s,t |. "
1�↵

�
n | t� s |↵

| X(2)
s,t �X(2),n

s,t |. "
1�↵

�
n | t� s |2↵

and the desired d↵ convergence follows.

Remark 2.4. Given uniform convergence of the paths above, and the fact that both paths is in C �

, we only get convergence in the d↵ metric, due to the restrictions on the inequality used, still we
can choose ↵ as close to � as we want.

It turns out that a nice way to view the space C ↵
�

[0, T ] ,Rd
�

is to look at a truncated tensor
algebra. The definition is also very suitable for higher order iterated integrals, and will be essential
in the construction of Chen�s relation in higher order tensor products. We sum it up in the following
definition.

Definition 2.5. Let the Banach space V = Rd , X(1)
: [0, T ] ! Rd and X(2)

: [0, T ]2 ! Rd ⌦ Rd

which satisfy Chen�s relation 2.1. Then we define

Xs,t =

⇣

1, X(1)
s,t , X

(2)
s,t

⌘

2 R� Rd �
⇣

Rd ⌦ Rd
⌘

=: T (2)
⇣

Rd
⌘

. (2.2)

And we define the truncated tensor algebra multiplication for two elements (a, b, c), (ã,˜b, c̃) 2
T (2)

�

Rd
�

by,
(1, a, b)⌦ (1, ã,˜b, ) =

⇣

1, a+ ã, b+˜b+ a⌦ ã
⌘

.

We may therefore look at rough paths under this multiplication, and find

Xs,u ⌦Xu,t =

⇣

1, X(1)
s,u +X(1)

u,t , X
(2)
s,u +X(2)

u,t +X(1)
s,u ⌦X(1)

u,t

⌘

=: Xs,t.

We see the definition corresponds very nicely to Chen�s relation. We also see that Xs,t =

X�1
s ⌦Xt, where X�1

s :=

⇣

1,�X(1)
s ,�X(2)

0,s +X(1)
0,s ⌦X(1)

0,s

⌘

. The space T (2)
(Rd

) can be generalized
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to contain n+ 1-tuples of iterated integrals, in the way that

T (n)
⇣

Rd
⌘

:= R�
n
M

i=1

⇣

Rd
⌘⌦i

.

One would then expect the higher order iterated integrals to obey some kind of Chen’s relation in
the same way as for rough path tuples. It turns out that given X 2 T (n)

�

Rd
�

, we find a Chen’s
relation by postulating that

Xs,t := Xs,u ⌦Xu,t

Where the tensor multiplication represents multiplication in the truncated algebra sense. In the
next section we will take a closer look at the space T (3)

�

Rd
�

, which will contain the four-tuples
necessary to look at regularity problems when ↵ 2 (

1
4 ,

1
3 ].
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3 Rough paths of low regularity.

In this thesis, we want to construct a space for geometric rough paths with ↵�Hölder coefficient
↵ 2 (

1
4 ,

1
3 ]. We therefore want to define the space T (3)

�

Rd
�

by

T (3)
⇣

Rd
⌘

= R�
3
M

n=1

⇣

Rd
⌘⌦n

.

An element of T (3)
�

Rd
�

is of the form x = (1, a, b, c) 2 T (3)
�

Rd
�

, and multiplication of two elements
x, and y = (1, a�, b�, c�) 2 T (3)

�

Rd
�

yields

x⌦ y := (1, a+ a�, b+ b� + a⌦ a�, c+ c� + a⌦ b� + b⌦ a�) .

Therefore, for a rough path X we have the following relation

Xs,t = Xs,u ⌦Xu,t

=

⇣

1, X(1)
s,u +X(1)

u,t , X
(2)
s,u +X(2)

u,t +X(1)
s,u ⌦X(1)

u,t , X
(3)
s,u +X(3)

u,t +X(1)
s,u ⌦X(2)

u,t +X(2)
s,u ⌦X(1)

u,t

⌘

, (3.1)

This is what defines a Chen�s relation on T (3)
�

Rd
�

. We see that in addition to the Chen�s relation
on the second iterated integral, we will require that the third iterated integral satisfy the relation

X(3)
s,t �X(3)

s,u �X(3)
u,t = X(1)

s,u ⌦X(2)
u,t +X(2)

s,u ⌦X(1)
u,t .

Let ↵ 2 (

1
4 ,

1
3 ], then Xs,t =

⇣

X(1)
s,t , X

(2)
s,t , X

(3)
s,t

⌘

2 C ↵
([0, T ] , V ), where

X(1)
s,t = X(1)

t �X(1)
s

X(2)
s,t =

´ t
s X

(1)
s,r dX

(1)
r

X(3)
s,t =

´ t
s X

(2)
s,r dX

(1)
r

As we know, if X(1)
s,t 2 V then X(2)

s,t 2 V ⌦V , and therefore the third iterated integral X(3) will
take values in V ⌦3. Again, remember that the definitions is read from the right to the left; a-priori,
we do not have any information about what kind of path X(1) is, and we have not defined what
the second iterated integral should be. One of our goals in rough path theory is to find processes
X(2) and X(3) such that the Chen’s relation and the regularity conditions holds, and then we may
define the iterated integrals to be the objects X(2) and X(3).

We introduce the metric on C ↵
([0, T ] , V ) by

d↵(X, ˜X) :=k X(1) � ˜X(1) k↵ + k X(2) � ˜X(2) k2↵ + k X(3) � ˜X(3) k3↵
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Further, we denote the homogenous ↵-Hölder norm by

9X9↵ :=k X(1) k +

q

k X(2) k2↵ +

3

q

k X(3) k3↵.

In the next section, we will introduce the concept of geometric rough paths. These are the
paths where the second and third iterated integrals satisfy basic rules of ordinary calculus, and will
play an important part especially in applications, and in rough path theory in general.
3.1 Geometric rough paths of lower regularity

The space of geometric rough paths C ↵
g are defined such that all rough paths in C ↵

g can be ap-
proximated by smooth paths. we would therefore require that the iterated integrals would behave
such that they satisfy some basic calculus rules, i.e,

sym

⇣

X(2)
s,t

⌘

=

1

2

X(1)
s,t ⌦X(1)

s,t

and

sym

⇣

X(3)
s,t

⌘

=

1

6

X⌦3
s,t .

If the rough path obeys the above two conditions, we say that X =

�

1, X(1), X(2), X(3)
�

2 C ↵
g . The

space C ↵
g may be defined in the way done above; by the two conditions, or as a closure of smooth

paths in C ↵. As we have seen before, we can always interpolate smooth paths into the rough path
space C ↵, but naturally they would still satisfy their regular “rules of calculus”.

Remark 3.1. A relationship worth noting before we move on is that for ↵ < � , C� ⇢ C↵. Indeed,
by interpolation, we know that all paths in C� can be approximated in C↵. And we have the
relationship

k X k↵= sup

s,t2[0,T ],s 6=t

|Xs,t|
|t� s|↵ = sup

s,t2[0,T ],s 6=t

|Xs,t|
|t� s|�

1

|t� s|↵��
k X k� T ��↵,

therefore, if k X k�< 1, then X 2 C↵, but the converse is not in general true. This can of course
be extended to the space C ↵, in the sense that C � ⇢ C ↵ for � > ↵.

3.2 Integration against rough paths

In this section we study chapter four in the book by Hairer, and Friz [16], and extend the results
to the case when the ↵�Hölder regularity is such that ↵ 2 (

1
4 ,

1
3 ]. The difference between the

rough path theory when ↵ 2 (

1
3 ,

1
4 ] and when ↵ 2 (

1
3 ,

1
2 ] is that we need to introduce higher order

derivatives of the integrand and higher order iterated integrals from rough paths to be able to define
a suitable integral. With suitable integrals we mean integrals of the form

´ ·
0 YrdXr where Y can

17



be a function of X or some other path which is integrable with respect to X. When introducing
the higher order derivatives of the integrand Y , we will get more expressions to handle in our
(in)equalities, but we will be able to tractate rougher integrals than shown in the first section.

3.2.1 The Sewing Lemma

Now we move on to one of the most important results in the theory of rough paths, namely the
Sewing lemma. Before we state the theorem, we will motivate it by an example when ↵ > 1

2 .
From the theory of Young integration, we want to construct an abstract integration map I, which
works in a way like Rieman-Stieltjes sums. That is, we want to find the function Zs,t which fully
determines the integral of Y with respect to X, i.e Zs,t =

´ t
s YrdXr. If X 2 C↵ and Y 2 C� such

that ↵+ � > 1 ,Young found that

Zs,t = YsXs,t + o (| t� s |) .

That is, the function YsXs,t fully determines Zs,t. Therefore we want to find  , such that Zs,t =

I ( )s,t is a well defined image of  under an abstract integration map I.

Definition 3.2. We define the space C↵,�
2

⇣

[0, T ]2 ,W
⌘

as functions  from [0, T ]2 into W s.t
 t,t = 0 and,

k  k↵,� :=k  k↵ + k � k�< 1,

where � s,u,t :=  s,t �  s,u �  u,t .

This space becomes handy in the proof of the Sewing lemma, and in further applications.

Lemma 3.3. (Sewing Lemma) Let ↵ and � be such that 0 < ↵  1 < � Then there exist a (unique)
continuos map I : C↵,�

2

⇣

[0, T ]2 ,W
⌘

! C↵
⇣

[0, T ]2 ,W
⌘

such that (I )0 = 0 and

| (I )s,t �  s,t | C | t� s |� .

Where C only depends on � and k � k�. (The ↵�Hölder norm of I also depends on k  k↵, and
hence on k  k↵,� ).

Proof. We note that I will be built as a linear map, so that its continuity is a consequence of its
boundedness. Uniqueness is immediate; assume, by contradiction that for given  there are two
candidates F1 and F2 for I . Define F = F1 � F2. We have that F0 = 0 and |Fs,t| .| t� s |� for
� > 1, and we know that the only function which satisfy this (i.e higher than Lipschitz regularity),
is the function F = 0 . It remains to find the integration map I. We could guess it would be on
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the form
(I )s,t = lim

|P|!0

X

[u,v]2P

 u,v

Where P denotes a partition on [s, t] and | P |:= max | u � v |, u, v 2 P . Friz and Hairer
offers two arguments for the proof of the sewing lemma in [16] chp. 4. We will follow the second
argument here. The argument that follows is essentially due to Young, which finds that convergence
is immediate as | P |! 0 , i.e the same limit is obtained along any sequence Pn with | Pn |! 0 .
Consider a partition P of [s, t] and let r � 1 be the number of intervals in P. When r � 2 there
exist a u 2 [s, t] such that [u�, u] , [u, u+] 2 P and

| u+ � u� | 2

r � 1

| t� s |

Since, if we assume otherwise gives the contradiction 2 | t � s |<
P

u2P0 | u+ � u� | 2 | t � s |.
Hence, by removing the point u 2 P in one integral and look at the difference between the two, we
find

|
ˆ

P\{u}

 �
ˆ

P

 |=| � u�,u,u+ |k � k�
✓

2

r � 1

| t� s |
◆�

.

Further, we can see that, if there are more than 3 elements in P, i.e r � 3,there exist two points
u, v0 2 P, such that

|  s,t �
ˆ

P

 |

�

�

�

�

�

 s,t �
ˆ
P\{u}

�

�

�

�

�

+ |
ˆ

P\{u}

 �
ˆ

P

 |



�

�

�

�

�

 s,t �
ˆ
P\{u,v}

�

�

�

�

�

+ |
ˆ

P\{v,v}

 �
ˆ

P\{u}

 | + |
ˆ

P\{u}

 �
ˆ

P

 | .

By iterating this procedure, selecting a new point u to remove each time, we get that the difference
between  s,t and

´
P  biggest, we see that,

sup

P⇢[s,t]
|  s,t �

ˆ

P

 s,t |k � k�
r
X

i=2

✓

2

i� 1

| t� s |
◆�

 2

� k � k� ⇣(�) | t� s |� ,

where ⇣(�) =
P1

r=1
1
r�

is the Riemann zeta function. It then remains to show that

supP_P�<" |
´
P  s,t �

´
P�  s,t |! 0 as "& 0

.

Which implies the existence of I as the limit lim|P|!0

´
P  . We may assume without loss of
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generality that P� refines P and therefore | P | _| P� |= | P | and

ˆ

P

 �
ˆ

P�

 =

X

[u,v]2P

0

B

@

 u,v �
ˆ

P�\[u,v]

 

1

C

A

.

Then, for | P |< " we can use the maximal inequality to see that

|
ˆ

P

 �
ˆ

P�

 | 2

� k � k� ⇣(�)
X

[u,v]2P

| u� v |�= O
⇣

| P |�
⌘

 O
⇣

| " |�
⌘

,

since � > 1 , which concludes the argument.

To clarify the impact of the sewing lemma, we will emphasize on the fact that this lemma holds
regardless of ↵- regularity and construction of  , as long as we choose  such that k � k�< 1 for
� > 1. Hence, it only depend on the choice of the function  .

We will show the use of the sewing lemma in the context of Young integration. As we discussed
earlier, we want to define an integral of the form

´ t
s YrdXr = I( )s,t , then if we choose  s,t = YsXs,t

where |Xs,t| . |t� s|↵ and |Ys,t| . |t� s|� , we can see that

� s,u,t = �Ys,uXu,t,

and that |Ys,uXu,t| . |t� s|↵+� . Now, let ↵ + � > 1. We know from the sewing lemma that
|I( )s,t �  s,t| .k � k� |t� s|�for � > 1. Hence, we need to check that k � k�< 1. This follows
directly from the fact that |Ys,uXu,t| . |t� s|↵+� , define � = ↵ + �, and we see that the sewing
lemma holds, and that  s,t “determines” the integral on small time intervals, in the sense that

|I( )s,t|  | s,t|+ o(|t� s|�).

One would expect that when the regularity of X and Y is lower, we need to expand the function
 to contain higher derivatives on Y and higher iterated integrals of X. As we will see, we can
construct a function  in the case when ↵ 2 (

1
4 ,

1
3 ] by introducing the first and second derivative

of Y and the rough path (1, X(1), X(2), X(3)
) 2 C ↵. Acctually, the meaning of derivative in this

setting is a bit ambigous, the derivative of Y is not necceseraly unique, we only require that the
remainder terms from a Taylor type approximation is finite in the Hölder norm. We shall elaborate
on this in definition 3.4.

The sewing lemma naturally leads to a desire for a space of integrable processes Y and their
derivatives, such that we easily can construct integrals. To motivate the coming definition of such
a space, we will discuss the case when ↵ 2 (

1
3 ,

1
2 ] and we want to define the integral of a function

f(X) with respect to X. If we look at a function f 2 C3
b and X 2 C ↵

g , ↵ 2 (

1
3 ,

1
2 ], we have a taylor
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expansion of f in X(1) as follows,

f(X(1)
t )� f(X(1)

s ) = Df(X(1)
s )X(1)

s,t +Rf(X(1))
s,t ,

where Rf(X)
s,t is the remainder term of the Taylor series. The question then becomes what regularity

the remainder term Rf(X)
s,t inherits. From the Lagrange remainder thm. we have that | Rf(X(1))

s,t ||
D2f |1| X(1)

s,t ⌦X(1)
s,t |.| t � s |2↵. Now, if we look at the integral of f(X(1)

) with respect to the
path (1, X(1), X(2)

), we see that

ˆ t

s
f(X(1)

r )dX(1)
r =

ˆ t

s
f(X(1)

s )dX(1)
r +

ˆ t

s
Df(X(1)

s )X(1)
s,r dX

(1)
r +

ˆ t

s
Rf(X(1))

s,t dXr.

If we can prove that
´ t
s R

f(X(1))
s,t dXr goes to zero when s ! t then the integrals

´ t
s f(X

(1)
s )dXr +´ t

s Df(X(1)
s )X(1)

s,r dXr fully determines the integral
´ t
s f(X

(1)
r )dX(1)

r in the limit as s ! t. Actually,
we may calculate these integrals more explicit, as we may move out parts of the integrands as
follows,

ˆ t

s
f(X(1)

s )dXr +

ˆ t

s
Df(X(1)

s )X(1)
s,r dXr = f(X(1)

s )

ˆ t

s
dX(1)

r +Df(X(1)
s )

ˆ t

s
X(1)

s,r dX
(1)
r .

We have already defined the two integrals on the right hand side of the equation above as follows,´ t
s dX

(1)
r := X(1)

s,t and
´ t
s X

(1)
s,r dX

(1)
r := X(2)

s,t . We are therefore left with the approximation

ˆ t

s
f(X(1)

r )dX(1)
r ⇡ f(X(1)

s )X(1)
s,t +Df(X(1)

s )X(2)
s,t ,

under the assumption that
´ t
s R

f(X(1))
s,r dXr ! 0 as s ! t. Going back to the sewing lemma, if we

choose  s,t := f(X(1)
s )X(1)

s,t +Df(X(1)
s )X(2)

s,t , we can obtain that

� s,u,t = f(X(1)
s )X(1)

s,t +Df(X(1)
s )X(2)

s,t �f(X(1)
s )X(1)

s,u�Df(X(1)
s )X(2)

s,u�f(X(1)
u )X(1)

u,t �Df(X(1)
u )X(2)

u,t

= �f(X(1)
)s,uX

(1)
u,t +Df(X(1)

s )

⇣

X(2)
u,t +X(1)

s,u ⌦X(1)
u,t

⌘

�Df(X(1)
u )X(2)

u,t

= �Df(X(1)
)s,uX

(2)
u,t �Rf(X(1))

s,u X(1)
u,t

and we se that | � s,u,t |.| t � s |3↵. Therefore, by the sewing lemma we have that the integral
given by, ˆ t

s
f(Xr)dXr := lim

|P|!0

X

[u,v]2P

 u,v,

exists, and is well defined. To accommodate lower regularities, it seems necessary to do higher order
Taylor approximations to get the sufficient regularity on the remainder term Rf(X). It therefore
seem natural to construct the space of integrable processes as functions Y : [0, T ] ! Rm such
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that the remainder term of a “Taylor-type” expansion is of a certain regularity, depending on the
regularity of the rough path. The next definition will propose such a space when ↵ 2 (

1
4 ,

1
3 ].

3.3 The space of controlled rough paths

Definition 3.4. Let X 2 C ↵
([0, T ] , V ), we say that Y 2 C↵

([0, T ] ,W ) is controlled by X if
there exists two functions Y 0

: [0, T ] ! L (V,W ) and Y 00
: [0, T ] ! L (V,L (V,W )) such that the

remainder terms RY (1) , RY (2) , and RY (3) , given implicitly by the relations

Ys,t = Y 0
sX

(1)
s,t + Y 00

s X
(2)
s,t +RY (3)

s,t

Y 0
s,t = Y 00

s X
(1)
s,t +RY (2)

s,t

Y 00
s,t = RY (1)

s,t ,

satisfies k RY (3) k3↵< 1, k RY (2) k2↵< 1 and k RY (1) k↵< 1. This defines the space of controlled
rough paths, which we write formally as

D↵
X :=

n

�

Y, Y 0, Y 00�2 C↵
([0, T ] ,W ) :

P3
i=1 k RY (i) ki↵< 1

o

.

We equip this space with a semi-norm

k
�

Y, Y 0, Y 00� kD↵
X
:=k RY (1) k↵ + k RY (2) k2↵ + k RY (3) k3↵ .

By including the initial values of Y and its derivatives, we get the norm

�

Y, Y 0, Y 00� !| Y0 | + | Y 0
0 | + | Y 00

0 | + k
�

Y, Y 0, Y 00� kD↵
X .

Under this norm the space D↵
X becomes a regular Banach space.

Remark 3.5. As a consequence of how we have defined our space, if (Y, Y 0, Y 00
) 2 D↵

X we obtain
the following bounds

k Y 00 k↵=k RY (1) k↵
k Y 0 k↵.k RY (1) k↵ + k RY (2) k2↵

k Y k↵.k RY (1) k↵ + k RY (2) k2↵ + k RY (3) k3↵ .

Next, we will present some useful estimates.

Proposition 3.6. Let (Y, Y 0, Y 00
) 2 D↵

X for some fixed path X 2 C ↵
([0, T ] , V ), then we have the

following three estimate

k Y k↵| Y 0 |1k X(1) k↵ + | Y 00 |1k X(2) k↵ + k RY (3) k3↵ T 2↵
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 CT,↵

⇣

1+ k X(1) k↵ + k X(2) k2↵
⌘

�

| Y 0
0 | + | Y 00

0 | + k
�

Y, Y 0, Y 00� kD↵
X

�

,

(2) k Y 0 k↵ DT,↵

�

1+ k X(1) k↵
� �

| Y 00
0 | + k (Y, Y 0, Y 00

) kD↵
X

�

and
(3) k Y k↵ + k Y 0 k↵

 KT,↵

⇣

1+ k X(1) k↵ + k X(2) k2↵
⌘

�

| Y 0
0 | + | Y 00

0 | + k
�

Y, Y 0, Y 00� kD↵
X

�

.

Where CT,↵ is a constant depending only on T and ↵ and can be chosen uniformly over T for
T 2 (0, 1].

Proof. The results follows directly by considering that Ys,t = Y 0
sX

(1)
s,t + Y 00

s X
(2)
s,t + RY (3)

s,t , and |
Y 0 |1| Y 0

0 | + k Y 0 k↵ T↵, where the same holds for the second derivative of Y .

Knowing this, it is easy to also show that for some suitable constant D depending on T and ↵.
In the next theorem we will use the sewing lemma and the space of controlled paths defined above
to show how we can construct the a rough integral when ↵ 2 (

1
4 ,

1
3 ].

Theorem 3.7. (Lyon’s Theorem) Let X =

�

1, X(1), X(2), X(3)
�

2 C ↵
�

[0, T ] ,Rd
�

for T > 0 and
↵ 2 (

1
4 ,

1
3 ], and let (Y, Y 0, Y 00

) 2 D↵
X . Then the rough integral defined by

tˆ
s

YrdXr = lim

|P|!0

X

[u,v]2P

⇣

YuX
(1)
u,v + Y 0

uX
(2)
u,v + Y 00

u X
(3)
u,v

⌘

exist and has the bound

|
tˆ

s

YrdXr � YsX
(1)
s,t � Y 0

sX
(2)
s,t � Y 00

s X
(3)
s,t |.

 

3
X

i=1

k X(4�i) k(4�i)↵k RY (i) ki↵

!

| t� s |4↵ (3.2)

Proof. We want to find a function  such that k� k� < 1 for some � > 1. If we define the function
 such that

 s,t = YsX
(1)
s,t + Y 0

sX
(2)
s,t + Y 00

s X
(3)
s,t ,

then
� s,u,t = �

⇣

Ys,u � Y 0
sX

(1)
s,u � Y 00

s X
(2)
s,u

⌘

X(1)
u,t �

⇣

Y 0
s,u � Y 00

s X
(1)
s,u

⌘

X(2)
u,t � Y ”s,uX

(3)
u,t

= �
3
X

i=1

RY (i)

s,u X(4�i)
u,t .
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Now, by the sewing lemma, we see that

|
tˆ

s

YrdXr � YsX
(1)
s,t � Y 0

sX
(2)
s,t � Y 00

s X
(3)
s,t |.

 

3
X

i=1

k X(4�i) k(4�i)↵k RY (i) ki↵

!

| t� s |4↵,

which imply that the rough integral exists.

Remark 3.8. The simplest way of looking at the rough integral is when we look at
ˆ ·

0
F (Xs)dXs

when F is sufficiently regular. We will give a short argument for how to construct this integral. Let
F : V ! L (V,W ) be a C3

b function and let X 2 C ↵
g , ↵ 2 (

1
4 ,

1
2 ]. Set Ys = F (Xs), Y 0

s = DF (Xs) and
Y 00
s = D2F (Xs) . The remainder functions are given in the usual manner, RY (3)

s,t = Ys,t � Y 0
sXs,t �

Y 00
s X

(1)
s,t , RY (2)

s,t = Y 0
s,t � Y 00

s X
(1)
s,t , and RY (1)

s,t = Y 00
s,t. Then we have that

k RY (1) k↵k D3F k1k X k↵
k RY (2) k2↵ 1

2 k D3F k1k X k2↵
k RY (3) k3↵ 1

6 k D3F k1k X k3↵ .

Indeed, We know that F is three times continuously differentiable and bounded, and hence Lips-
chitz. Therefore, the Three first inequalities can be found the same way; by looking at the Lagrange
remainder of a Taylor expansion. To find the bounds for RY (3)

s,t we look at a Taylor expansion with
respect to the Lagrange remainder term,

RY (3)

s,t = Ys,t � Y 0
sX

(1)
s,t � Y 00X(2)

s,t = Ys,t � Y 0
sX

(1)
s,t � 1

2

Y ”X(1)
s,t ⌦X(1)

s,t

=

1

6

D3F
⇣

X(1)
s + ⇠X(1)

s,t

⌘

X(1)⌦3
s,t ,

where ⇠ 2 (0, 1), and by the regularity of F we know that D2F is a symmetric operator and since
Sym(X(2)

s,t ) =
1
2X

(1)
s,t ⌦ X(1)

s,t the above holds. Now, the ↵-Hölder estimate follow directly, and we
see that | RY (3)

s,t |.| t� s |3↵. The same argument goes for RY (2) and RY (1)
. And hence, by theorem

3.7 the integral
´ ·
0 F (Xs)dXs is well defined.

⇤

Remark 3.9. We want to point out that the bounds found in theorem 3.7 implies that there exist
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a continuous map from D↵
X([0, T ] ,L(Rd,Rn

)) into D↵
X([0, T ] ,Rn

) such that

�

Y, Y 0, Y 00� 2 D↵
X([0, T ] ,L(Rd,Rn

)) 7!
✓ˆ ·

0
YrdXr, Y, Y

0
◆

2 D↵
X([0, T ] ,Rn

).

Indeed, if we define (Z,Z 0, Z 00
) =

�´ ·
0 YrdXr, Y, Y 0� , and then define the remainder functions

RZ(i) for i = 1, 2, 3 similar as before,

RZ(3)

s,t =

´ t
s YrdXr � YsX

(1)
s,t � Y 0

sX
(2)
s,t

RZ(2)

s,t = Ys,t � Y 0
sX

(1)
s,t

RZ(1)

s,t = Y 0
s,t.

Then from eq. 3.2 we know that

�

�

�

RZ(3)

s,t

�

�

�

=|
tˆ

s

YrdXr � YsX
(1)
s,t � Y 0

sX
(2)
s,t |

.
�

�Y 00�
�

1 k X(3) k3↵ |t� s|3↵ +

 

3
X

i=1

k X(4�i) k(4�i)↵k RY (i) ki↵

!

| t� s |4↵ .

Further, we know k RZ(2) k2↵=k Y � Y 0X(1) k2↵ |Y 00|1
�

�X(2)
�

�

2↵
+

�

�

�

RY (3)
�

�

�

3↵
< 1 and

k RZ(1) k↵=k Y k↵ |Y 00|1
�

�X(1)
�

�

↵
+

�

�

�

RY (2)
�

�

�

2↵
< 1 due to the fact that (Y, Y 0, Y 00

) 2
D↵

X([0, T ] ,L(Rd,Rn
)), and hence,

�´ ·
0 YrdXr, Y, Y 0� 2 D↵

X([0, T ] ,Rn
). That the mapping is contin-

uous will become evident in the next subsection.
The last topic of this section will be on the stability of rough integrals, and we will give some

essential bounds which we will use in later sections.

3.4 Stability of Rough integration

We will investigate the difference of two controlled paths (Y, Y 0, Y 00
) 2 D↵

X and
⇣

˜Y , ˜Y 0, ˜Y 00
⌘

2 D↵
X̃

.
This could look a little strange, as the spaces D↵

X and D↵
X̃

are two different spaces (because the
elements of the spaces are controlled by two different paths). Still, if we are able to define a type
of “distance” function between the elements of these spaces, we could use this in, for example
approximation. This type of approximation will be elaborated on in part III where we look at
financial applications of the rough path theory. We will start this section with a definition of a
distance function.

Definition 3.10. Let (Y, Y 0, Y 00
) 2 D↵

X , and
⇣

˜Y , ˜Y 0, ˜Y 00
⌘

2 D↵
X̃

, then we define a distance function
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between the paths as,

dX,X̃,↵

⇣

Y, Y 0, Y 00
;

˜Y , ˜Y 0, ˜Y 00
⌘

:=

3
X

i=1

k RY (i) �RỸ (i) ki↵ .

We will follow up with a lemma giving an estimate on the difference between two paths.

Lemma 3.11. Let X, ˜X 2 C ↵ and (Y, Y 0, Y 00
) 2 D↵

X ,
⇣

˜Y , ˜Y 0, ˜Y 00
⌘

2 D↵
X̃

with the property that

| Y0 | + | Y 0
0 | + | Y 00

0 | + k Y, Y 0, Y 00 kD↵
X
 M 2 R and

d↵(0,X) :=k X(1) k↵ + k X(2) k2↵ + k X(3) k3↵ M

With the same bounds for
⇣

˜Y , ˜Y 0, ˜Y 00
⌘

and ˜X. As described in remark 3.9, we can define

�

Z,Z 0, Z 00�
=

✓ˆ .

0
YsdXs, Y, Y

0
◆

,

and in the same way we define
⇣

˜Z, ˜Z 0, ˜Z 00
⌘

. Then we have the following local Lipschitz estimates,

dX,X̃,↵

⇣

Z,Z 0, Z 00
;

˜Z, ˜Z 0, ˜Z 0
⌘

 CM (d↵
⇣

X, ˜X
⌘

+ | Y 00
0 � ˜Y 00

0 | +dX,X̃,↵

⇣

Y, Y 0, Y 00
;

˜Y , ˜Y 0, ˜Y 00
⌘

T↵
).

Where CM := C(T,↵,M) is uniform in T  1.

Proof. We will use the simple inequality | xy � x̃ỹ || x || y � ỹ | + | x � x̃ || ỹ | (⇤) extensively
through the proof. We look at the difference

RZ(3)

s,t �RZ̃(3)

s,t =

ˆ t

s
YrdXr � YsX

(1)
s,t � Y 0

sX
(2)
s,t �

✓ˆ t

s

˜Yrd ˜Xr � ˜Ys ˜X
(1)
s,t � ˜Y 0

s
˜X(2)
s,t

◆

and define  s,t = YsX
(1)
s,t + Y 0

sX
(2)
s,t + Y 00

s X
(3)
s,t and 4s,t :=  s,t � ˜ s,t . We find

| RZ(3)

s,t �RZ̃(3)

s,t |=| (I4)s,t �4s,t + Y 00
s X

(3)
s,t � ˜Y 00

s
˜X(3)
s,t |

 C k �4 k4↵| t� s |4↵ + | Y 00
s X

(3)
s,t � ˜Y 00

s
˜X(3)
s,t |,

where

�4s,u,t = �
3
X

i=1

RY (i)

s,u X(4�i)
u,t +

3
X

i=1

RỸ (i)

s,u
˜X(4�i)
u,t .

Using the inequality (⇤) , we obtain the following estimate

| Y 00
s X

(3)
s,t � ˜Y 00

s
˜X(3)
s,t |

�

�Y 00
s

�

�

�

�

�

X(3)
s,t � ˜X(3)

s,t

�

�

�

+

�

�

�

Y 00
s � ˜Y 00

s

�

�

�

�

�

�

˜X(3)
s,t

�

�

�

.
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This implies that

k RZ(3) �RZ̃(3) k3↵ C k �4 k4↵ T↵
+ CM k X(3) � ˜X(3) k3↵

+CM

⇣

�

�

�

Y 00
0 � ˜Y 00

0

�

�

�

+ T↵ k RY (1) �RỸ (1) k↵
⌘

.

Similarly we find that

k RZ(2) �RZ̃(2) k2↵k RY (3) �RỸ (3) k3↵ T↵
+ CM k X(2) � ˜X(2) k2↵

+CM

⇣

�

�

�

Y 00
0 � ˜Y 00

0

�

�

�

+ T↵ k RY (1) �RỸ (1) k↵
⌘

.

At last, we look at RZ(1) �RZ̃(1) and find,

k RZ(1) �RZ̃(1) k↵=k Y 0 � ˜Y 0 k↵=k Y 00X(1) � ˜Y 00
˜X(1)

+RY (2) �RỸ (2) k↵

 CM k X(2) � ˜X(2) k↵ +CM

⇣

�

�

�

Y 00
0 � ˜Y 00

0

�

�

�

+ T↵ k RY (1) �RỸ (1) k↵
⌘

+ k RY (2) �RỸ (2) k↵ T↵.

Notice that all the terms k RY (i) � RỸ (i) ki↵ for i = 1, 2, 3 is multiplied by T↵. Collecting these
terms, we obtain the following estimate,

dX,X̃,↵

⇣

Z,Z 0, Z 00
;

˜Z, ˜Z 0, ˜Z 0
⌘

 CM

⇣

d↵
⇣

X, ˜X
⌘

+ | Y 00
0 � ˜Y 00

0 | +dX,X̃,↵

⇣

Y, Y 0, Y 00
;

˜Y , ˜Y 0, ˜Y 00
⌘

T↵
⌘

,

and we are done.
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4 Composition of controlled rough paths with regular functions.

An important result for proving existence and uniqueness of rough differential equations is the
composition of regular functions with controlled rough paths, we will in this section give some
important estimates, and look at stability of regular functions composed with controlled rough
paths.
4.1 Composition with regular functions

Let f 2 C3
b (Rm,Rn

). We want to show that if (Y, Y 0, Y 00
) 2 D↵

X ([0, T ] ,Rm
) such that Y : [0, T ] !

Rm, Y 0
: [0, T ] ! L(Rd,Rm

) and Y 00
: [0, T ] ! L(Rd,L(Rd,Rm

)) ' L
�

Rd⇥d,Rm
�

for some
X 2C ↵

g

�

Rd
�

, then (f(Y ), f(Y )

0, f(Y )

00
) 2 D↵

X . We therefore need to find suitable derivatives of
f to obtain the regularity needed on the remainder terms Rf(Y )(i) , i = 1, 2, 3. That is, we are
interested in finding derivatives f 0

: Rm ! L
�

Rd,Rn
�

and f 00
: Rm ! L

�

Rd⇥d,Rn
�

such that the
remainder term Rf(Y )(3)

s,t given by the relation

f(Y )s,t = f(Ys)
0X(1)

s,t + f(Ys)
00X(2)

s,t +Rf(Y )(3)

s,t ,

is finite in the 3↵ norm, and similar for the two other remainder terms. If we do a Taylor approxi-
mation of f(Yt) , we find

f(Yt)� f(Ys) = Df(Ys)Ys,t +
1

2

D2f(Ys)Y
⌦2
s,t +

¯Rf
s,t.

We know by the Lagrange remainder term theorem and f 2 C3
b , that

�

�

�

¯Rf
s,t

�

�

�

3↵
< 1. Further, we

know that Ys,t = Y 0
sX

(1)
s,t + Y 00

s X
(2)
s,t +RY (3)

s,t , and we can insert this in the above equation, and find

f(Yt)� f(Ys) = Df(Ys)
⇣

Y 0
sX

(1)
s,t + Y 00

s X
(2)
s,t +RY (3)

s,t

⌘

+

1

2

D2f(Ys)
⇣

Y 0
sX

(1)
s,t + Y 00

s X
(2)
s,t +RY (3)

s,t

⌘⌦2
+

¯Rf
s,t.

From that equation, we can calculate that

f(Yt)� f(Ys) = Df(Ys)Y
0
sX

(1)
s,t +Df(Ys)Y

00
s X

(2)
s,t

1

2

D2f(Ys)
⇣

Y 0
sX

(1)
s,t

⌘⌦2
+RY (3)

s,t +

¯Rf
s,t + o(|t� s|).

As we know
�

�

�

RY (3)

s,t +

¯Rf
s,t + o(|t� s|)

�

�

�

. |t� s|3↵, we want to construct the derivatives of f from

the remaining terms when we remove RY (3)

s,t +

¯Rf
s,t + o(|t� s|). It seems natural to choose f(Ys)0 =

Df(Ys)Y 0
s . Then we are left with the terms

Df(Ys)Y
00
s X

(2)
s,t +

1

2

D2f(Ys)
⇣

Y 0
sX

(1)
s,t

⌘⌦2
.
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Notice here that
⇣

Y 0
sX

(1)
s,t

⌘⌦2
2 Rm⇥m, and D2f 2 L (Rm⇥m,Rn

) and symmetric. Therefore

if sym(Y 0
sX

(2)
s,t Y

0
s ) =

1
2

⇣

Y 0
sX

(1)
s,t

⌘⌦2
, we would have a suitable candidate for the second deriva-

tive, namely f(Y )

00
= Df(Y )Y 00

+ D2f(Y ) (Y 0
)

⌦2 where for any x 2 Rd⇥d, x 7�! Df(Y )Y 00x +

D2f(Y )Y 0xY 0, and f(Y )

00
: Rm ! L

�

Rd⇥d,Rn
�

. It is not difficult to show that sym(Y 0
sX

(2)
s,t Y

0
s ) =

1
2

⇣

Y 0
sX

(1)
s,t

⌘⌦2
. Indeed, by the fact that X is geometric, we can check that

sym(Y 0
sX

(2)
s,t Y

0
s ) =

1

2

✓

Y 0
sX

(2)
s,t Y

0
s +

⇣

Y 0
sX

(2)
s,t Y

0
s

⌘T
◆

= Y 0
sSym(X(2)

s,t )Y
0
s

= Y 0
s

1

2

X(1)
s,t ⌦X(1)

s,t Y
0
s =

1

2

⇣

Y 0
sX

(1)
s,t

⌘⌦2
.

Therefore, the candidates f(Y )

0
= Df(Y )Y 0 and f(Y )

00
= Df(Y )Y 00

+D2f(Y ) (Y 0
)

⌦2 seems to be
suitable. We get that Rf(Y )(3) is given implicitly by the relation

f(Y )s,t = Df(Ys)Y
0
sX

(1)
s,t + (D2f(Ys)

�

Y 0
s

�⌦2
+Df(Ys)Y

00
s )X

(2)
s,t +Rf(Y )(3)

s,t ,

as this choice satisfy
�

�

�

Rf(Y )(3)
�

�

�

3↵
< 1. This follows from the fact that Rf(Y )(3)

= f(Y )s,t �

f(Y )

0
sX

(1)
s,t �f(Y )

00
sX

(2)
s,t , therefore by inserting the derivatives we have chosen above in this relation,

and the calculations we have done, we find that

Rf(Y )(3)
= RY (3)

s,t +

¯Rf
s,t + o(|t� s|)

Then we use the Lagrange remainder term formula to find
�

�

�

¯Rf
s,t

�

�

�

 C |Ys,t|3.

k Rf(Y )(3) k3↵ C
⇣

k Y k3↵ + k RY (3) k3↵
⌘

,

where C depends on | f |C3
b
, T , and ↵ from calculations above.

Now we need to check that the terms Rf(Y )(1) and Rf(Y )(2) are bounded in the ↵ and 2↵ norm
respectively, under the choice of f(Y )

0 and f(Y )

00. Let us start to look at Rf(Y )(2) ,

Rf(Y )(2)

s,t =

�

Df(Y )Y 0�
s,t

�
⇣

Df(Ys)Y
00
s +D2f(Ys)

�

Y 0
s

�⌦2
⌘

X(1)
s,t .

Through some calculation, we can find,

Rf(Y )(2)

s,t = Df(Yt)Y
0
s,t +Df(Y )s,tY

0
s �

�

D2f(Ys)(Y
0
s )

⌦2
+Df(Ys)Y

00
s

�

X(1)
s,t .

Using the fact that Y 0
s,t = Y 00

s X
(1)
s,t +RY (2)

s,t , we get the following expression,

Rf(Y )(2)

s,t = Df(Y )s,tY
00
s X

(1)
s,t + (Df(Y )s,t �D2f(Ys)Y

0
sX

(1)
s,t )Y

0
s +Df(Ys)R

Y (2)

s,t .
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Where we have used the fact that the second derivative of f we constructed is such that X(1)
s,t 7�!

Df(Ys)Y 00
s X

(1)
s,t +D2f(Ys)Y 0

sX
(1)
s,t Y

0
s . If we now do a first order Taylor approximation of Df(Y ), i.e

Df(Y )s,t = D2f(Ys)Ys,t+ ¯RDf
s,t . Then we know by the Lagrange reminder thm. that

�

�

�

¯RDf(Y )
s,t

�

�

�

2↵
<

1 since |Ys,t| . |t� s|↵ . Substituting this above, we find

Rf(Y )(2)

s,t = Df(Y )s,tY
00
s X

(1)
s,t +D2f(Y )s(Ys,t � Y 0

sX
(1)
s,t )Y

0
s +Df(Ys)R

Y (2)

s,t +

¯RDf
s,t Y

0
s

= Df(Y )s,tY
00
s X

(1)
s,t +D2f(Y )s(Y

00
s X

(2)
s,t +RY (3)

s,t +

¯RDf
s,t )Y

0
s +Df(Ys)R

Y (2)

s,t .

Now, all these terms are bounded in the 2↵ norm. That is, We can see that

�

�

�

Df(Y )s,tY
00
s X

(1)
s,t

�

�

�

 |Df |1
�

�Y 00�
�

1 |Ys,t|
�

�

�

X(1)
s,t

�

�

�

. |t� s|2↵ ,

and

�

�

�

D2f(Y )s(Y
00
s X

(2)
s,t +RY (3)

s,t )Y 0
s

�

�

�


�

�D2f
�

�

1
�

�Y 0�
�

1

⇣

�

�Y 00�
�

1

�

�

�

X(2)
s,t

�

�

�

+

�

�

�

RY (3)

s,t

�

�

�

+

�

�

�

¯RDf
s,t

�

�

�

⌘

. |t� s|2↵ ,

and lastly, of course
�

�

�

Df(Ys)RY (2)

s,t

�

�

�

 |Df(Y )|1
�

�

�

RY (2)

s,t

�

�

�

. |t� s|2↵. Therefore, if we choose the
first and second derivative of f to be such that

f(Y )t = f(Yt), f(Y )

0
t = Df(Yt)Y 0

t , f(Y )

00
t = D2f(Yt)(Y 0

t )
⌦2

+Df(Yt)Y 00
t ,

we have that all remainder terms, given implicitly by the usual relations (see definition 3.4) are
bounded in their respective ↵ metric. Next, we will give a theorem giving a suitable bound for the
D↵

X semi-norm of a regular function composed with a controlled path, which we will later use in
showing existence of RDE’s.

Theorem 4.1. Let f 2 C3
b (Rm,Rn

) , (Y, Y 0, Y 00
) 2 D↵

X ([0, T ] ,Rm
) for some X 2 C ↵

g

�

[0, T ] ,Rd
�

,
with ↵ 2 (

1
4 ,

1
3 ] . Then the controlled rough path (f(Y ), f(Y )

0, f(Y )

00
) 2 D↵

X([0, T ] ,Rn
) where f(Y )

0

and f(Y )

00 is given by the derivatives above. Assume that

| Y0 | + | Y 0
0 | + | Y 00

0 | + k Y, Y 0, Y 00 kD↵
X
 M 2 [1,1),

and the same bound for d↵(0,X). Then there exists a constant CM depending on T > 0 , M ,
k f kC3

b
, and ↵, such that

k f(Y ), f(Y )

0, f(Y )

00 kD↵
X
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 CM

⇣

1+ k X(1) k↵ + k X(2) k2↵
⌘

�

1+ | Y 0
0 | + | Y 00

0 | + k Y, Y 0, Y 00 kD↵
X

�

.

Proof. We have established bounds for the three remainder terms above theorem 4.1. We therefore
only need to combine them to find a suitable bound. We start to look at Rf(Y )(3) . By adding
positive terms, and make use of the bound | Y0 | + | Y 0

0 | + | Y 00
0 | + k Y, Y 0, Y 00 kD↵

X
 M 2 [1,1),

and find that
k Rf(Y )(3) k3↵ C

⇣

1+ k Y k3↵ + k RY (3) k3↵
⌘

 CM

⇣

1+ k X(1) k↵ + k X(2) k2↵
⌘

�

1+ | Y 0
0 | + | Y 00

0 | + k Y, Y 0, Y 00 kD↵
X

�

.

Where we have used that

k Y k↵
⇣

1+ k X(1) k↵ + k X(2) k2↵
⌘

�

| Y 0
0 | + | Y 00

0 | + k Y, Y 0, Y 00 kD↵
X

�

.

Next we see that Rf(Y )(2) can be bounded the same way. From the calculations done above the
theorem, we can see that,

k Rf(Y )(2) k2↵ CM (k Y k↵k Y 0 k↵ + k RY (2) k2↵

+

⇣

k RY (3) k3↵ T↵
+

⇣

| Y 00
0 | + k RY (1) k↵ T↵

⌘

k X(2) k2↵ + k ¯RDf(Y ) k2↵
⌘

�

| Y 0
0 | + k Y 0 k↵ T↵

�

).

Where ¯RDf(Y ) is the remainder term from a first order taylor expansion of Df(Y ). Then by using
the bounds established in proposition 3.6 we see that,

k Rf(Y )(2) k2↵ CM

⇣

1+ k X(1) k↵ + k X(2) k2↵
⌘

�

1+ | Y 0
0 | + | Y 00

0 | + k Y, Y 0, Y 00 kD↵
X

�

.

And at last, using the estimate above for Rf(Y )(1) and proposition 3.6, we find

k Rf(Y )(1) k↵k f kC3
b

⇣

k Y 0 k↵
�

| Y 0
0 | + k Y 0 k↵ T↵

�

+ k RY (1) k↵
⌘

 CM

⇣

1+ k X(1) k↵ + k X(2) k2↵
⌘

�

1+ | Y 0
0 | + | Y 00

0 | + k Y, Y 0, Y 00 kD↵
X

�

.

Combining the above estimates, we get

k f(Y ), f(Y )

0, f(Y )

00 kD↵
X
=

3
X

i=1

�

�

�

Rf(Y )(i)
�

�

�

i↵

 CM

⇣

1+ k X(1) k↵ + k X(2) k2↵
⌘

�

1+ | Y 0
0 | + | Y 00

0 | + k Y, Y 0, Y 00 kD↵
X

�

,

and we are done.
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In the next section, we will take a closer look on how the functions composed with controlled
paths behave, and show an estimate for the distance between a function composed with two different
controlled paths.

4.2 Stability of regular functions of controlled paths.

We will present a stability result for regular functions composed with controlled rough paths similar
to the one given in lemma 3.11. The idea is the same, namely to be able to say something about
how far a apart two controlled paths are, when composed with a regular function.

Lemma 4.2. Let X, ˜X 2 C ↵
g

�

[0, T ] ,Rd
�

,and (Y, Y 0, Y 00
) 2 D↵

X ([0, T ] ,Rm
),

⇣

˜Y , ˜Y 0, ˜Y 00
⌘

2
D↵

X̃
([0, T ] ,Rm

) respectively. For a function f 2 C4
b (Rm,Rn

), define

�

Z,Z 0, Z 00�
:=

⇣

f(Y ), Df(Y )Y 0, D2f(Y )

�

Y 0�⌦2
+Df(Y )Y 00

⌘

2 D↵
X

is such that | Y0 | + | Y 0
0 | + | Y 00

0 | + k Y, Y 0, Y 00 kD↵
X
 M < 1 and �↵(X, 0)  M . The

triple
⇣

˜Z, ˜Z 0, ˜Z 00
⌘

2 D↵
X̃

is constructed the same way. Then we have the following local Lipschitz
estimates,

dX.X̃,↵

⇣

Z,Z 0, Z 00
;

˜Z, ˜Z 0, ˜Z 00
⌘

 CM

⇣

d↵
⇣

X, ˜X
⌘

+ | Y 0 � ˜Y 0 | + | Y 0
0 � ˜Y 0

0 | + | Y 00
0 � ˜Y 00

0 | +dX.X̃,↵

⇣

Y, Y 0, Y 00
;

˜Y , ˜Y 0, ˜Y 00
⌘⌘

Where CM := C(T,↵, f,M, Y0) .

Proof. Following the proof from Friz and Hairer[16] and modifying it to the lower regularity, we
need to find a bound for the expression,

dX.X̃,↵

⇣

Z,Z 0, Z 00
;

˜Z, ˜Z 0, ˜Z 00
⌘

=

+ k RZ(1) �RZ̃(1) k↵ + k RZ(2) �RZ̃(2) k2↵ + k RZ(3) �RZ̃(3) k3↵ .

To shorten notation, we will define the following variables "X = d↵
⇣

X, ˜X
⌘

, "0 =| Y 0 � ˜Y 0 |, "00 =|

Y 0
0 � ˜Y 0

0 |, "000 =| Y 00
0 � ˜Y 00

0 |, and " = dX.X̃,↵

⇣

Y, Y 0, Y 00
;

˜Y , ˜Y 0, ˜Y 00
⌘

such that

dX.X̃,↵

⇣

Z,Z 0, Z 00
;

˜Z, ˜Z 0, ˜Z 00
⌘

. "X + "0 + "00 + "000 + ".

We will use the inequality
�

�

�

ab� ã˜b
�

�

�

 |a|
�

�

�

b� ˜b
�

�

�

+ |a� ã|
�

�

�

˜b
�

�

�

(⇤) extensively through out the proof,
and refer to as (⇤). We will also consider three inequalities, based on the (in)equalities established
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in proposition 3.6,

k Y 00 � ˜Y 00 k↵=
�

�

�

RY (1) �RỸ (1)
�

�

�

↵

k Y 0 � ˜Y 0 k↵ CM

⇣

d↵
⇣

X, ˜X
⌘

+ | Y 00
0 � ˜Y 00

0 | +dX.X̃,↵

⇣

Y, Y 0, Y 00
;

˜Y , ˜Y 0, ˜Y 00
⌘⌘

k Y � ˜Y k↵ CM

⇣

d↵
⇣

X, ˜X
⌘

+ | Y 0
0 � ˜Y 0

0 | + | Y 00
0 � ˜Y 00

0 | +dX.X̃,↵

⇣

Y, Y 0, Y 00
;

˜Y , ˜Y 0, ˜Y 00
⌘⌘

.

We will start to investigate RZ(1)

s,t �RZ̃(1)

s,t = f(Y )

00
s,t � f( ˜Y )

00
s,t . We look at

�

�

�

RZ(1)

s,t �RZ̃(1)

s,t

�

�

�

| D2f(Y )

�

Y 0�⌦2
s,t

�D2f( ˜Y )

⇣

˜Y 0
⌘⌦2

s,t
| + | Df(Y )Y 00

s,t �Df( ˜Y )

˜Y 00
s,t | .

We take a closer look at the first term, and point out that

D2f(Y )

�

Y 0�⌦2
s,t

= D2f(Yt)
�

Y 0
t

�⌦2 �D2f(Ys)
�

Y 0
s

�⌦2
,

and the same for ˜Y . Therefore, by adding and subtracting D2f(Yt) (Y 0
s )

⌦2 (and the same for ˜Y )
and use inequality (⇤), we see that

| D2f(Y )

�

Y 0�⌦2
s,t

�D2f( ˜Y )

⇣

˜Y 0
⌘⌦2

s,t
|| D2f(Yt) ||

�

Y 0�⌦2
s,t

�
⇣

˜Y 0
⌘⌦2

s,t
|

+ | D2f(Yt)�D2f( ˜Yt) ||
⇣

˜Y 0
⌘⌦2

s,t
| + | D2f(Y )s,t �D2f( ˜Y )s,t |

�

�

�

�

Y 0
s

�⌦2
�

�

�

+ |
�

Y 0
s

�⌦2 �
⇣

˜Y 0
s

⌘⌦2
|
�

�

�

D2f( ˜Y )s,t

�

�

�

.

Using the fact that
�

�

�

D2f( ˜Y )s,t

�

�

�


�

�D2f
�

�

1

�

�

�

˜Ys,t
�

�

�

, and by adding and subtracting Y 0
t ⌦Y 0

s and similar

for ˜Y 0, and by using (⇤) we find
�

�

�

�

�

Y 0�⌦2 �
⇣

˜Y 0
⌘⌦2

�

�

�

�

↵

 CM

⇣

�

�

�

Y 0
0 � ˜Y 0

0

�

�

�

+

�

�

�

Y 0 � ˜Y 0
�

�

�

↵

⌘

,

and
|
�

Y 0
s

�⌦2 �
⇣

˜Y 0
s

⌘⌦2
||

�

Y 0
0

�⌦2 �
⇣

˜Y 0
0

⌘⌦2
| +CM

⇣

�

�

�

Y 0
0 � ˜Y 0

0

�

�

�

+

�

�

�

Y 0 � ˜Y 0
�

�

�

↵

⌘

,

where CM depends on M , T , and ↵. Combining the expressions above and using the inequalities
established in the beginning of the proof, we find,

k D2f(Y )

�

Y 0�⌦2 �D2f( ˜Y )

⇣

˜Y 0
⌘⌦2

k↵ CM

�

"X + "0 + "00 + "000 + "
�

,

where CM depends on T,↵, k f kC2
b
, and

�

�

�

�

⇣

˜Y 0
.

⌘⌦2
�

�

�

�

1
= sups2[0,T ]

�

�

�

�

⇣

˜Y 0
s

⌘⌦2
�

�

�

�

. Next by using (⇤) and
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the estimates from the beginning of the proof, we find,

k Df(Y )Y 00 �Df( ˜Y )

˜Y 00 k↵ CM

�

"X + "0 + "00 + "000 + "
�

.

Combining the two inequalities above, we get that

k RZ(1) �RZ̃(1) k↵ CM

�

"X + "0 + "00 + "000 + "
�

.

Further we want to look at the difference

RZ(2)

s,t �RZ̃(2)

s,t =

�

Df(Y )Y 0�
s,t

�
⇣

D2f(Ys)
�

Y 0
s

�⌦2
+Df(Ys)Y

00
s

⌘

X(1)
s,t

�
✓

⇣

Df( ˜Y )

˜Y 0
⌘

s,t
�
✓

D2f( ˜Ys)
⇣

˜Y 0
s

⌘⌦2
+Df( ˜Ys) ˜Y

00
s

◆

X(1)
s,t

◆

.

We want to show that

| RZ(2)

s,t �RZ̃(2)

s,t || P1 | + | P2 | + | P3 |.
�

"X + "0 + "00 + "000 + "
�

|t� s|2↵ .

First, for P1 = (Df(Y )Y 0
)s,t �

⇣

Df( ˜Y )

˜Y 0
⌘

s,t
we add and subtract Df(Yt)Y 0

s and the same for ˜Y ,
and look at the bounds for P1,

�

�

�

�

�

Df(Y )Y 0�
s,t

�
⇣

Df( ˜Y )

˜Y 0
⌘

s,t

�

�

�

�

| Df(Yt) || Y 0
s,t � ˜Y 0

s,t | + | Df(Yt)�Df( ˜Yt) || ˜Y 0
s,t |

+ | Df(Y )s,t || Y 0
s � ˜Y 0

s | + | Df(Y )s,t �Df( ˜Y )s,t || ˜Y 0
s | .

We know that | Y 0
s � ˜Y 0

s || Y 0
0 � ˜Y 0

0 | + k Y 0 � ˜Y 0 k↵ T↵ and | Df(Yt) �Df( ˜Yt) |k D2f k1|
Yt � ˜Yt |, and therefore, just like in above calculations,

| P1 |.
�

"X + "0 + "00 + "000 + "
�

|t� s|2↵

Secondly, we look at P2,

P2 = D2f(Ys)
�

Y 0
s

�⌦2
X(1)

s,t �D2f( ˜Ys)
⇣

˜Y 0
s

⌘⌦2
˜X(1)
s,t .

Using the inequality (⇤) twice, and the previously stated estimates, we find that

| P2 |.
�

"X + "0 + "00 + "000 + "
�

|t� s|2↵ .
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Next, P3 is given as follows,

P3 = Df(Ys)Y
00
s X

(1)
s,t �Df( ˜Ys) ˜Y

00
s X

(1)
s,t .

We use the same inequality as before, and obtain the same type of results,

| P3 |.
�

"X + "0 + "00 + "000 + "
�

|t� s|2↵ .

Therefore we have that

| RZ(2)

s,t �RZ̃(2)

s,t |.
�

"X + "0 + "00 + "000 + "
�

|t� s|2↵ .

At last we need to look at RZ(3) �RZ̃(3) , which we know is given by

RZ(3)

s,t �RZ̃(3)

s,t

= f(Y )s,t �Df(Ys)Y
0
sX

(1)
s,t �

⇣

D2f(Ys)
�

Y 0
s

�⌦2
+Df(Ys)Y

00
s

⌘

X(2)
s,t

�
✓

f( ˜Y )s,t �Df( ˜Ys) ˜Y
0
sX

(1)
s,t �

✓

D2f( ˜Ys)
⇣

˜Y 0
s

⌘⌦2
�Df(Ys)Y

00
s

◆

X(2)
s,t

◆

In section 4.1 we found an equality for RZ(3) such that

RZ(3)

s,t = RY (3)

s,t +

¯Rf(Y )
s,t + o (|t� s|) ,

and then same relation with respect to ˜Z, where ¯Rf(Y )
s,t is the remainder of a third degree taylor

approximation of f(Yt) around Ys. Therefore, RZ(3)

s,t �RZ̃(3)

s,t can be expressed as follows,

RZ(3)

s,t �RZ̃(3)

s,t = RY (3)

s,t �RY (3)

s,t +

¯Rf(Y )
s,t � ¯Rf(Ỹ )

s,t + o (|t� s|) .

We can find explicit representation of the expression ¯Rf(Y )
s,t � ¯Rf(Ỹ )

s,t by using the Lagrange remainder

term formula, we have for ✓ 2 [0, 1] that ¯Rf(Y )
s,t =

1
6D

3f(Ys + ✓Ys,t) (Ys,t)
⌦3 and similar for ¯Rf(Ỹ )

s,t .
Looking at the difference of the two, we find

�

�

�

¯Rf(Y )
s,t � ¯Rf(Ỹ )

s,t

�

�

�

3↵
 1

6

�

�D3f
�

�

1

�

�

�

�

(Ys,t)
⌦3 �

⇣

˜Ys,t
⌘⌦3

�

�

�

�

3↵

 C2M3

We can therefore see that

�

�

�

RZ(3)

s,t �RZ̃(3)

s,t

�

�

�

3↵
 C

�

�

�

RY (3)

s,t �RY (3)

s,t

�

�

�

↵
.
�

"X + "0 + "00 + "000 + "
�
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Combining all these inequalities, we obtain our desired bound, namely that

dX.X̃,↵

⇣

Z,Z 0, Z 00
;

˜Z, ˜Z 0, ˜Z 00
⌘

 CM

⇣

d↵
⇣

X, ˜X
⌘

+ | Y 0 � ˜Y 0 | + | Y 0
0 � ˜Y 0

0 | + | Y 00
0 � ˜Y 00

0 | +dX.X̃,↵

⇣

Y, Y 0, Y 00
;

˜Y , ˜Y 0, ˜Y 00
⌘⌘

.

Remark 4.3. The observant reader may notice that we now have obtained two local Lipschitz
estimates (lemma 3.11 and 4.2) which may be somewhat used in a circle. If we look at a path
(Y, Y 0, Y 00

) 2 D↵
X , and let (f(Y ), f(Y )

0, f(Y )

00
) 2 D↵

X be composed from Y . Then, by remark
3.9 we know that (Z,Z 0, Z 00

) :=

�´ ·
0 f(Y )dX, f(Y ), f(Y )

0� 2 D↵
X . Define the same relations for

⇣

˜Y , ˜Y 0, ˜Y 00
⌘

2 D↵
X̃

, and let Y0 = ˜Y0, Y 0
0 =

˜Y 0
0 , and Y 00

0 =

˜Y 00
0 . Then we know from lemma 3.11 and

lemma 4.2 that

dX,X̃,↵

⇣

Z,Z 0, Z 00
:

˜Z, ˜Z 0, ˜Z 00
⌘

. d↵
⇣

X, ˜X
⌘

+ dX,X̃,↵

⇣

f(Y ), f(Y )

0, f(Y )

00
: f( ˜Y ), f( ˜Y )

0, f( ˜Y )

00
⌘

T↵

. d↵
⇣

X, ˜X
⌘

(1 + T↵
) + dX,X̃,↵

⇣

Y, Y 0, Y 00
:

˜Y , ˜Y 0, ˜Y 00
⌘

T↵.

Now, in light of differential equations, what if (Y, Y 0, Y 00
) =

�

Y0 +
´ ·
0 f(Y )dX, f(Y ), f(Y )

0� then
we would have an estimate stating

dX,X̃,↵

⇣

Y, Y 0, Y 00
:

˜Y , ˜Y 0, ˜Y 00
⌘

. d↵
⇣

X, ˜X
⌘

(1 + T↵
) + dX,X̃,↵

⇣

Y, Y 0, Y 00
:

˜Y , ˜Y 0, ˜Y 00
⌘

T↵.

As we understand the two stability results, will come in handy when proving stability of differential
equations. The next section will show existence and uniqueness of differential equations driven by
rough paths, and then give a more rigorous proof of the stability of the solutions.
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5 Solutions to rough differential equations driven by rough paths.

This section extends chapter 8 in the book by Friz and Hairer [16] to the case when the ↵-Hölder
regularity on the rough paths is such that ↵ 2 (

1
4 ,

1
3 ]. Our goal is to establish a method to prove

existence of solutions of differential equations on the form

dYt = f(Yt)dXt Y0 = x 2 Rd ,

where X : [0, T ] ! Rd is ↵-Hölder rough, with ↵ 2 (

1
4 ,

1
3 ] , and Y : [0, T ] ! Rn is the “output” of

the system, and f is a sufficiently nice function. From the theory of classical ODE’s we are familiar
with such equations when X 2 C1 and we can write

dYt = f(Yt) ˙Xtdt Y0 = x 2 Rd ,

and a solution is easily found. However, when X is rough, it is not trivial to find such solutions, or
even to prove existence. The solution method used in this section is based on a Picard iteration,
and our proof is similar to that of [16], but the lower regularity requires some extra computations.

5.1 Existence of solutions to geometric RDE’s with ↵ 2 (14 ,
1
3 ].

The aim of this section is to prove the existence and uniqueness of solutions to geometric RDE’s
of the form

dYt = f(Y )dXt,

where X 2 C ↵
g

�

[0, T ] ,Rd
�

and f is a sufficiently smooth function f : Rm ! L
�

Rd,Rm
�

. We will
establish the result by showing that there exist a fixed point Y on a small enough interval [0, T0],
then one can iterate the procedure on the interval [T0, 2T0] and let Y0 = f(T0) on that interval,
and so on.

Theorem 5.1. Let 1
4 < ↵ < � < 1

3 and [0, T ] ⇢ [0, 1], and let X =

�

X(1), X(2), X(3)
�

2
C �
g

�

[0, T ] ,Rd
�

, with d�(0,X)  M . Further, Let f 2 C4
b

�

Rm,L
�

Rd,Rm
��

and x 2 Rm. Then
there exist a unique element (Y, Y 0, Y 00

) 2 D↵
X ([0, T ] ,Rm

) such that

Yt = x+

ˆ t

0
f(Ys)dXs.

Where t < T , and the integral
´ t
0 f(Ys)dXs is interpreted as a rough integral, in the sense of theorem

3.7 and (f(Y ), f(Y )

0, f(Y )

00
) 2 D↵

X is built from Y in the sense of section 4.1.
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Proof. We will construct the solution as a fixed point of in the space D↵
X where X 2 C �

g . The
reason is that this will simplify the proof quite a bit, and it turns out that the solution actually is
in D�

X , due to the fact that | Ys,t || Y 0 |1| X(1)
s,t | + | Y 00 |1| X(2)

s,t | +
�

�RY
s,t

�

�. From section 4.1 we
know that for all Y, such that (Y, Y 0, Y 00

) 2 D↵
X and some function f 2 C4

b

�

Rm,L
�

Rd,Rm
��

, we
can define a controlled path

�

f(Y ), f(Y )

0, f(Y )

00� 2 D↵
X

where f(Y )

0
= Df(Y )Y 0 and f(Y )

00
= D2f(Y ) (Y 0

)

⌦2
+Df(Y )Y 00, as we discussed in section 4.1.

We then define the map

MT

�

Y, Y 0, Y 0�
=

0

@x+

·ˆ

0

f(Y )sdXs, f(Y ), f(Y )

0

1

A 2 D↵
X

Which is called the Itô-Lyons map. We want to construct a unit ball BT in D↵
X such that, when

choosing T small enough we leave the unit ball invariant under the mapping MT . To do this, we
need to define a center of such a ball BT . The intuitive point (x, f(x), f(x)0) is not in general in
D↵

X , and we therefore need to pick another point as our center which is in some sense dependent
on the path X(1). It is straight forward to check that

t 7!
⇣

x+ f(x)X(1)
0,t , f(x), 0

⌘

2 D↵
X .

Indeed, we can see that
P3

i=1

�

�

�

Rx+f(x)X(1)
�

�

�

i↵
< 1 as all the remainder terms is essentially zero.

And therefore this seems to be a good center of the ball BT . Remember here that the path above
is a path evaluated in one variable, i.e we may define ˆYs = x + f(x)X(1)

0,s , and the increments of
ˆY is given by ˆYs,t = f(x)X(1)

s,t , further ˆY 0
s = f(x),and therefore ˆY 0

s,t = 0,.To shorten notation, we
define the center

⇣

ˆY·, ˆY
0
· , ˆY

00
·

⌘

=

⇣

x+ f(x)X(1)
0,· , f(x), 0

⌘

.

Considering the norm | Y0 | + | Y 0
0 | + | Y 00

0 | + k Y, Y 0, Y 00 kD↵
X

, and (Y, Y 0, Y 00
), such that

Y0 = x =

ˆY0, Y 0
0 = f(x) = ˆY 0

0 and Y 00
0 = 0 =

ˆY 00
0 . Then the unit ball BT is defined such that

| Y0 � x | + | Y 0
0 � f(x) | + | Y 00

0 � 0 | + k Y � ˆY , Y 0 � ˆY 0, Y 00 � ˆY 00 kD↵
X

=k Y � ˆY , Y 0 � ˆY 0, Y 00 � ˆY 00 kD↵
X
 1.

Actually, we can show that

k Y � ˆY , Y 0 � ˆY 0, Y 00 � ˆY 00 kD↵
X
=k Y, Y 0, Y 00 kD↵

X
.
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Which is due to the fact that

R(Y�Ŷ )(3)

s,t = Ys,t � ˆYs,t �
⇣

Y 0
sX

(1)
s,t � ˆY 0

sX
(1)
s,t

⌘

�
⇣

Y 00
s X

(2)
s,t � ˆY 00

s X
(2)
s,t

⌘

= Ys,t � Y 0
sX

(1)
s,t � Y 00

s X
(2)
s,t = RY (3)

s,t

and hence k R(Y�Ŷ )(3) k3↵k RY (3) k3↵ . Next, looking at R(Y�Ŷ )(2) we see that

R(Y�Ŷ )(2)

s,t = Y 0
s,t � ˆY 0

s,t �
⇣

Y 00
s X

(1)
s,t � ˆY 00

s X
(1)
s,t

⌘

= Y 0
s,t � Y 00

s X
(1)
s,t .

And therefore k R(Y�Ŷ )(2) k2↵=k RY (2) k2↵. The last to check is R(Y�Ŷ )(1) , where it is easy to see
that k R(Y�Ŷ )(1) k↵=k RY (1) k↵. The ball BT is thefore defined as follows,

BT =

��

Y, Y 0, Y 00� 2 D↵
X : Y0 = x, Y 0

0 = f(x), Y 00
0 = Df(x)f(x); k Y, Y 0, Y 00 kD↵

X
 1

 

.

We also have for all (Y, Y 0, Y 00
) 2 BT ,

| Y 0
0 | + | Y 00

0 | + k Y, Y 0, Y 00 kD↵
X
k f kC3

b
+1.

Our goal is now to find a T such that the ball BT is left invariant under the the mapping
(Y, Y 0, Y 00

) 7! MT (Y, Y 0, Y 00
). From theorem 4.1 we have that

k f(Y ), f(Y )

0, f(Y )

00 kD↵
X
 CM

⇣

1+ k X(1) k↵ + k X(2) k2↵
⌘

�

1+ | Y 0
0 | + | Y 00

0 | + k Y, Y 0, Y 00 kD↵
X

�

To simplify the calculations, we are letting the constant C vary and depend on T,↵,�, k f kC3
b
,

X(1) and X(2), and we find

k
·ˆ

0

f(Y )dXs, f(Y ), f(Y )

0 kD↵
X
k f(Y )

0 k↵ + k f(Y )� f(Y·)
0X(1)

·, k2↵

+ k
·ˆ

0

f(Y )dXs � f(Y )X(1) � f(Y )

0X(2) k3↵


⇣

| f(Y0)00 | + k Rf(Y )(1) k↵ T↵
⌘

 

3
X

i=1

k X(i) ki↵

!

+ k Rf(Y )(2) k2↵ T↵
+ k Rf(Y )(3) k3↵ T↵

+CT↵

 

3
X

i=1

k X(4�i) k(4�i)↵k Rf(Y )(i) ki↵

!

Where we have used inequalities we have established in 3.7 and 4.1. calculating further, we find
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that

 T↵
�

| f(Y0)0 | + | f(Y0)00 | + k f(Y ), f(Y )

0, f(Y )

00 kD↵
X

�

 

1 +

3
X

i=1

k X(i) ki↵

!

+C
�

| f(Y0)0 | + | f(Y0)00 | + k f(Y ), f(Y )

0, f(Y )

00 kD↵
X

�

 

3
X

i=1

k X(i) ki↵

!

.

We then use that k X(i) ki↵k X(i) ki� T i(��↵) for i = 1, 2, 3, and see that

k
·ˆ

0

f(Y )dXs, f(Y ), f(Y )

0 kD↵
X
 C

�

| f(Y0)0 | + | f(Y0)00 | + k f(Y ), f(Y )

0, f(Y )

00 kD↵
X

�

⇥ T ��↵,

where C = C
⇣

T,↵ k X k(1)� , k X k(2)2�

⌘

. The next step is to look at the Itô-Lyons map in the D↵
X

norm, and find sufficient bounds. We want the bounds to be multiplied by a factor T � , for � 2 R+,
such that when T gets smaller, the whole right hand side of our inequalities will get smaller. In
that way, we can obtain a T0 such that k MT (Y, Y 0, Y 00

) kD↵
X
 1.

k MT

�

Y, Y 0, Y 00� kD↵
X
=k

·ˆ

0

f(Ys)dXs, f(Y ), f(Y )

0 kD↵
X

 C
�

| f(Y0)0 | + | f(Y0)00 | + k f(Y ), f(Y )

0, f(Y )

00 kD↵
X

�

⇥ T ��↵

 C
⇣

| f(Y0)0 | + | f(Y0)00 | +CM

⇣

1+ k X(1) k↵ + k X(2) k2↵
⌘

�

1+ | Y 0
0 | + | Y 00

0 | + k Y, Y 0, Y 00 kD↵
X

�

⌘

⇥T ��↵

Using the fact that | Y 0
0 | + | Y 00

0 | + k Y, Y 0, Y 00 kD↵
X
k f kC3

b
+1 , we find that

 C
⇣

k f kC3
b
+C (M + 1) (k f kC3

b
+2)

⌘

⇥ T ��↵

= o
⇣

T ��↵
⌘

Hence, we have found that

k MT

�

Y, Y 0, Y 00� kD↵
X ;[0,T ] o(T ��↵

)

therefore, we can find a small enough T0 such that

k MT0

�

Y, Y 0, Y 00� kD↵
X ;[0,T0] 1

which shows that MT0 (BT0) ⇢ BT0 , and therefore leaves BT0 invariant .
Now we continue by showing the contraction property of MT which let us know there exist a

fixed point, and therefore uniqueness of the solution from Banach’s fixed point theorem. We are
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interested in looking at two different controlled rough paths (Y, Y 0, Y 00
) and

⇣

˜Y , ˜Y 0, ˜Y 00
⌘

controlled

by same X, which have the same initial values, i.e Y0 = ˜Y0 = x, and so on. We define an increment
function 4s = f(Ys)� f( ˜Ys) and 40

s = f(Ys)0 � f( ˜Ys)0 and 400
s = f(Ys)00 � f( ˜Ys)00, and look at the

difference in the Itô-Lyons map evaluated in the two different controlled paths,

k MT

�

Y, Y 0, Y 00��MT

⇣

˜Y , ˜Y 0, ˜Y 00
⌘

kD↵
X

=k
·ˆ

0

4sdXs,4,40 kD↵
X
 C

�

| 40
0 | + | 400

0 | + k 4,40,400 kD↵
X

�

⇥ T ��↵.

Therefore we want to show that k 4,40,400 kD↵
X
.k Y � ˜Y , Y 0 � ˜Y 0, Y 00 � ˜Y 00 kD↵

X
. Using that

f 2 C4
b , there exists functions

Gs := g(Ys, ˜Ys)

Hs := Ys � ˜Ys

such that 4s = GsHs, where the function g is given by,

g(x, y) :=

ˆ 1

0
Df(xt+ (1� t)y)dt

We see that g 2 C3
b in both the x and y variable, with k g kC3

b
 C k f kC4

b
. Further, we see that,

Dxg(x, y) =
´ 1
0 D2f(xt+ (1� t)y)tdt and Dyg(x, y) =

´ 1
0 D2f(xt+ (1� t)y)(1� t)dt .

From the section about composition of controlled paths with regular functions 4.1, we know that

�

G,G0, G00�
=

(G,DxGY 0
+DyG ˜Y 0,

⇣

D2
xG

�

Y 0�⌦2
+DxGY 00

⌘

+

✓

D2
yG

⇣

˜Y 0
⌘⌦2

+DyG ˜Y 00
◆

) 2 D↵
X .

From there, we easily obtain the bound

k G,G0, G00 kD↵
X
 C k f kC4

b
,

where C = C(T,↵ k X k(1)↵ , k X k(2)2↵ ) which is uniform over (Y, Y 0, Y 00
) ,
⇣

˜Y , ˜Y 0, ˜Y 00
⌘

2 BT for T 
1. We continue by looking at the path constructed by G and H as follows,

�

GH, (GH)

0 , (GH)

00� 2
D↵

X . Where the derivatives is defined as follows (GH)

0
= G0H+GH 0 and (GH)

00
= G00H+2G0H 0

+
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GH 00. We find the estimate, which is a long calculation, but quite straight forward,

k GH, (GH)

0 , (GH)

00 kD↵
X


C
�

| G0 | + | G0
0 | + | G00

0 | + k G,G0, G00 kD↵
X

�

⇥
�

| H0 | + | H 0
0 | + | H 00

0 | + k H,H 0, H 00 kD↵
X

�

.

The calculations are obtained, knowing the fact that G0 is a symmetric operator. Further, knowing
that for all (Y, Y 0, Y 00

) ,
⇣

˜Y , ˜Y 0, ˜Y
⌘

2 BT , we have H0 = Y0� ˜Y0 = 0 , H 0
0 = 0 and H 00

0 = 0 it follows
that

k 4,40,400 kD↵
X

 C
�

| G0 | + | G0
0 | + | G00

0 | + k G,G0, G00 kD↵
X

� �

k H,H 0, H 00 kD↵
X

�

 D(| g |1 + | g0 |1
⇣

| Y 0
0 | + | ˜Y 0

0 |
⌘

+ k g00 kC2
b

✓

|
�

Y 0
0

�⌦2 | + | Y 00
0 | + | ˜Y 00

0 | + |
⇣

˜Y 0
0

⌘⌦2
|
◆

+ C k f kC4
b
)

⇥
⇣

k Y � ˜Y , Y 0 � ˜Y 0, Y 00 � ˜Y 00 kD↵
X

⌘

Using previously stated estimates, we can see that | g |1, | g0 |1, k g00 kC2
b
 K k f kC4

b
and

| (Y 0
0)

⌦2 | + | Y 00
0 | + | ˜Y 00

0 | + |
⇣

˜Y 0
0

⌘⌦2
| K2

⇣

k f kC4
b
+ k f k2C4

b

⌘

, and hence we see that

k 4,40,400 kD2↵,3↵
X

 C k Y � ˜Y , Y 0 � ˜Y 0, Y 00 � ˜Y 00 kD↵
X
.

Therefore, we have that

k MT

�

Y, Y 0, Y 00��MT

⇣

˜Y , ˜Y 0, ˜Y 00
⌘

kD↵
X

 C
⇣

k Y � ˜Y , Y 0 � ˜Y 0, Y 00 � ˜Y 00 kD↵
X

⌘

⇥ T ��↵

Hence, by the inequalities obtained here, and the results obtained when proving invariance of the
ball BT0 i.e M(BT0) ⇢ BT0 for small enough T0, there exist a q 2 [0, 1) such that

k MT0

�

Y, Y 0, Y 00��MT0

⇣

˜Y , ˜Y 0, ˜Y 00
⌘

kD↵
X
 q k Y � ˜Y , Y 0 � ˜Y 0, Y 00 � ˜Y 00 kD↵

X
.

The result now follow from Banach�s fixed point theorem, and we can construct the solution
iteratively on [0, 1] as described earlier.

We are often interested in rough differential equations with a drift term, as we come across this
in the theory of stochastic differential equations, and financial mathematics. That is, we want to
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look at differential equations of the form

dYt = b(Yt)dt+ �(Yt)dXt

Where b is a sufficiently smooth function. It turns out that to do this, we can define a space-time
extension of X, and let f = (b,�). We will give a proposition for the construction of such solutions.

Proposition 5.2. Assume b 2 C4
b (Rm,L (R,Rm

)) , and � 2 C4
b

�

Rm,L
�

Rd,Rm
��

, and let (Y, Y 0, Y 00
) 2

D↵
X ([0, T ] ,Rm

), s.t. Y0 = x. Let X 2 C ↵
g

�

[0, T ] ,Rd
�

, then the differential equation given by

dYt = b(Yt)dt+ �(Yt)dXt, Y0 = x

exists and is unique.

Proof. Define f : Rm ! L
�

Rk,Rm
�

by f(Yt) = (b(Yt),�(Yt)) where k = d+ 1, and it’s derivatives
is constructed in the familiar way, and define the space time extension ˜X of X such that ˜X is built
from the function ˜X(1)

=

�

t� s,X(1)
�

2 Rk. In this way, we see that ˜X(1)
: [0, T ] ! Rk . The

second iterated integral ˜X(2) would be a k ⇥ k dimmensional matrix, containing the four elements
1
2 (t� s)2, X(2)

s,t ,
´ t
s Xs,rdr and

´ t
s (r � s)dXr. In a way, one may visualize the matrix to look like

˜X(2)
s,t =

0

B

B

B

B

B

@

1
2 (t� s)2

´ t
s X

(1),1
s,r dr . . .

´ t
s X

(1),d
s,r dr´ t

s (r � s)dX(1),1
r X(2),1,1

s,t · · · X(2),1,d
s,t

...
... . . . ...´ t

s (r � s)dX(1),d
r X(2),d,1

s,t · · · X(2),d,d
s,t

1

C

C

C

C

C

A

.

The “cross-integrals” comes naturally as a consequence of the requirement of Chen’s relation, i.e
X̃s,u ⌦ X̃u,t = X̃s,t. The third iterated integral ˜X(3)

s,t will be a cube with dimmension k ⇥ k ⇥ k .
That is ˜X(3)

: [0, T ]2 ! Rk⇥k⇥k, and will contain 6 different integral elements, namely 1
6 (t� s)3 ,

X(3)i,j,k
s,t ,

´ t
s

´ t1
s X(1),i

s,r drdt1,
´ t
s

´ t1
s (r � s) dX(1),i

r dt1,
´ t
s X

(2),i,j
s,r dr, , and

´ t
s

´ t1
s (r � s) drdX(1),i

t1
where

i, j, k 2 {1, 2, ..., d}. What is important is that when f acts on ˜X(3), the operator b00 acts on the
terms 1

6 (t� s)3,
´ t
s

´ t1
s X(1),i

s,r drdt1,
´ t
s

´ t1
s (r � s) dX(1),i

r dt1 again for i 2 {1, 2, ..., d}, and �00 acts
on the rest of the integral terms in the cube ˜X(3). Then ˜X 2 C ↵

g

�

[0, T ] ,Rd+1
�

, and then the
solution

Yt = x+

ˆ t

0
f(Ys)dX̃s

exists and are unique for 0  t < T . The integral is interpreted as the rough integral

ˆ t

0
f(Ys)dX̃s = lim

|P|!0

X

[u,v]2P

f(Yu) ˜X
(1)
u,v + f(Yu)

0
˜X(2)
u,v + f(Yu) ˜X

(3)
u,v

= lim

|P|!0

X

[u,v]2P

b(Yu)(v � u) + �(Yu)X
(1)
u,v +

1

2

b(Yu)
0
(v � u)2 + �(Yu)

0X(2)
u,v+
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+b(Yu)
0
ˆ v

u
X(1)

u,rdr + �(Yu)
0
ˆ v

u
(r � u)dX(1)

r +

1

6

b(Yu)
00
(u� v)3 + b(Yu)

00
ˆ v

u

ˆ t1

u
Xs,rdrdt1

+b(Yu)
00
ˆ v

u

ˆ t1

u
(u� r)dX(1)

r dt1 + �(Yu)
00
ˆ v

u

ˆ t1

u
(u� r)dX(1)

r dt1 + �(Yu)
00
ˆ v

u
X(2)

u,rdr

+�(Yu)
00X(3)

u,v.

We will show that all the higher order cross integration terms will disapear as the length of the
intervals in the partition goes to zero, and therefore we will be left with

dYt = b(Yt)dt+ �(Yt)dXt.

We have three different types of integrals in the sum we have shown above. We have the integrals
which are well defined from regular calculus, i.e

´ t
s (r � s)dr and

´ t
s

´ t1
s (r � s)drdt1 which are of

order o
⇣

|v � u|2
⌘

and o
⇣

|v � u|3
⌘

respectivly. We also have the rough path integrals from the path
(X(1), X(2), X(3)

) 2 C ↵
g which are well defined by assumption. At last we have the cross integrals´ t

s Xs,rdr,
´ t
s (r � s)dXr,

´ t
s

´ t1
s Xs,rdrdt1 and so on, which are well defined from Young theory.

Indeed, as the cross integral terms can be expressed as an integral where either the integrand is C1

or the the function we integrate against is C1, then the Sewing lemma 3.2.1 tells us that the cross
integrals are of order o

⇣

|u� v|1+↵
⌘

. Therefore if we let ˜Zi
u,v where i = 1, 2, .., 8 represent all the

integrals of order o
⇣

|v � u|�
⌘

for � > 1, we may write,

ˆ t

0
f(Ys)dX̃s = lim

|P|!0

X

[u,v]2P

f(Yu) ˜X
(1)
u,v + f(Yu)

0
˜X(2)
u,v + f(Yu)

00
˜X(3)
u,v

= lim

|P|!0

X

[u,v]2P

b(Yu)(v � u) + �(Yu)X
(1)
u,v + �(Yu)X

(2)
u,v + �(Yu)X

(3)
u,v

+

8
X

i=1

lim

|P|!0

X

[u,v]2P

f(Yu)
k
˜Zi
u,v

=

ˆ t

0
b(Ys)ds+

ˆ t

0
�(Ys)dXs +

8
X

i=1

lim

|P|!0

X

[u,v]2P

f(Yu)
k
˜Zi
u,v,

where
´ t
0 b(Ys)ds is well defined as a Young integral. Looking at the last sum, we find

�

�

�

�

�

�

8
X

i=1

lim

|P|!0

X

[u,v]2P

f(Yu)
k
˜Zi
u,v

�

�

�

�

�

�


X

i

lim

|P|!0

X

[u,v]2P

�

�

�

f(Yu)
k
�

�

�

1

�

�

�

˜Zi
u,v

�

�

�

,
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where we know that
�

�

�

˜Zi
u,v

�

�

�

 C |v � u|� , for � > 1. From this, we conclude that

X

i

lim

|P|!0

X

[u,v]2P

f(Yu)
k
˜Zi
u,v ! 0,

and hence that
Yt = x+

ˆ t

0
f(Ys)dX̃s = x+

ˆ t

0
b(Ys)ds+

ˆ t

0
�(Ys)dXs.

In the rest of this thesis, we will for simplicity look at differential equations of the form

dYt = f(Yt)dXt,

if not stated otherwise. We may still think of this as an equation with drift, as shown above.

5.2 Stability of solutions to RDE�s

In previous sections, we have established stability results with respect to rough integration, and
composition of controlled paths with regular functions. In this subsection we will look closer at the
stability of solutions to RDE�s on the form

dYt = f(Yt)dXt, Y0 = x

when f is sufficiently smooth. We have already shown in a way how we may use the stability
results we have already established, to look at the stability of differential equations, see remark 4.3.
However, we will in the next theorem give a more rigorous proof of the result.

Theorem 5.3. Let f 2 C4
b (R,R) and ˜X,X 2 C �

g , and 1
4 < ↵ < �  1

3 . Let (Y, f(Y ), f(Y )

0
) 2 D↵

X

be the unique RDE solution to

dYt = f(Yt)dXt Y0 = x 2 R ,

and let
⇣

˜Y , f( ˜Y ), f( ˜Y )

0
⌘

2 D↵
X̃

be a solution driven by ˜X and started at y 2 R. Assuming that

| f(Y0)0 | + | f(Y0)00 | + k f(Y ), f(Y )

0, f(Y )

00 kD↵
X
 M 2 R and

d↵(0,X) =k X(1) k↵ + k X(2) k2↵ + k X(3) k3↵ M

With the same bounds for
⇣

˜Y , ˜Y 0, ˜Y 00
⌘

and ˜X. Then, there exist a constant CM depending on
T,↵,� and f such that

dX,X̃,↵

⇣

Y, f(Y ), f(Y )

0
;

˜Y , f( ˜Y ), f( ˜Y )

0
⌘
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 CM

⇣

d�
⇣

X, ˜X
⌘

+ | Y 0 � ˜Y 0 | + | Y 0
0 � ˜Y 0

0 | + | Y 00
0 � ˜Y 00

0 |
⌘

.

Proof. In section 5 we established that for a given X 2 C �
g the RDE solution (Y, f(Y ), f(Y )

0
) was

constructed as a fixed point of the map

MT

�

Y, f(Y ), f(Y )

0�
:=

�

Z,Z 0, Z 00�
:=

✓ˆ ·

0
f(Ys)dXs, f(Y ), Df(Y )Y 0

◆

2 D↵
X

and in the same way for MT

⇣

˜Y , f( ˜Y ), f( ˜Y )

0
⌘

2 D↵
X̃

. Then, by the fixed point property, we may
write

�

Y, f(Y ), f(Y )

0�
=

�

Y, Y 0, Y 00�
=

�

Z,Z 0, Z 00�
=

�

Z, f(Y ), f(Y )

0�

and in the same way for
⇣

˜Y , f( ˜Y ), f( ˜Y )

0
⌘

. From the section about rough integration, lemma 3.11,
and lemma 4.2 (Where the results are uniform in T  1) we have obtained inequalities dealing with
stability of regular functions composed with controlled paths and stability of rough integration. One
would think that combining the two inequalities would get us far in proving the desired inequality
for RDE’s. We start to use the result from lemma 3.11, we have that

dX,X̃,↵

⇣

Z, f(Y ), f(Y )

0
;

˜Z, f( ˜Y ), f( ˜Y )

0
⌘



CM (d↵
⇣

X, ˜X
⌘

+ | Y 00
0 � ˜Y 00

0 | +dX,X̃,↵

⇣

f(Y ), f(Y )

0, f(Y )

00
; f( ˜Y ), f( ˜Y )

0, f( ˜Y )

00
⌘

T↵
)

Further, we know from stability of composition of regular functions with controlled rough paths
lemma 4.2 that

dX,X̃,↵

⇣

f(Y ), f(Y )

0, f(Y )

00
; f( ˜Y ), f( ˜Y )

0, f( ˜Y )

00
⌘

 CM

⇣

d↵
⇣

X, ˜X
⌘

+ | Y 0 � ˜Y 0 | + | Y 0
0 � ˜Y 0

0 | + | Y 00
0 � ˜Y 00

0 | +dX.X̃,↵

⇣

Y, Y 0, Y 00
;

˜Y , ˜Y 0, ˜Y 00
⌘⌘

.

Combining the two inequalities, we see that

dX,X̃,↵

⇣

Y, Y 0, Y 00
;

˜Y , ˜Y 0, ˜Y 00
⌘

 CM

⇣

d↵
⇣

X, ˜X
⌘

+ | Y 0 � ˜Y 0 | + | Y 0
0 � ˜Y 0

0 | + | Y 00
0 � ˜Y 00

0 | +dX.X̃,↵

⇣

Y, Y 0, Y 00
;

˜Y , ˜Y 0, ˜Y 00
⌘

T↵
⌘

.

As we see that T↵ is multiplied by dX.X̃,↵

⇣

Y, Y 0, Y 00
;

˜Y , ˜Y 0, ˜Y 00
⌘

on the right hand side of the
inequality, we may choose T0 = T (CM ,↵) small enough, such that CMT0  1

2 . Then we obtain our
desired result,

dX,X̃,↵

⇣

Y, Y 0, Y 00
;

˜Y , ˜Y 0, ˜Y 00
⌘

 2CM

⇣

d↵
⇣

X, ˜X
⌘

+ | Y 0 � ˜Y 0 | + | Y 0
0 � ˜Y 0

0 | + | Y 00
0 � ˜Y 00

0 |
⌘

.

And we are done.

This concludes the part directly concerning the rough path theory. However, the results will
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become very useful in treatment of fractional and multifractional Brownian motions, as well as in
financial applications. As we have seen, to prove existence and uniqueness of RDE’s , we require
relatively high regularity of the function f in dYt = f(Yt)dXt (i.e ,f 2 C4

b ) . As we are familiar with,
the theory of SDE’s or regular ODE’s require only Lipschitz function, and we may conclude that
with lower regularity on the driving signal require more regularity on the integrand function, at least
from a rough-path-point of view. Next we will take a closer look at fractional and multifractional
Brownian motions in a rough path setting, and show two Itô formulas for the respective rough
processes.
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Part II

Fractional brownian motion and Multifractional
Brownian motion as Rough paths.
In this part we will take a closer look on the construction of fractional and multifractional brownian
motion (fBm and mBm, respectively) as rough paths. In particular, we will study fractional and
multifractional brownian motion as a geometric rough path, and then perturbate it with a function
to be able to look at more general classes of fractional and multifractional brownian motions.

Essential for this section is the ability to split iterated integrals into a symmetric and an anti
symmetric part, in the sense that

B(2)
s,t = sym(B(2)

s,t ) + anti(B(2)
s,t ) := S(2)

s,t +A(2)
s,t and

B(3)
s,t = sym(B(3)

s,t ) + anti(B(3)
s,t ) := S(3)

s,t +A(3)
s,t .

Where the symmetry operator sym on a matrix X 2 Rd⇥d is given by sym(X) =

1
2

�

X +XT
�

and
the anti symmetric operator anti is given by anti(X) =

1
2

�

X �XT
�

. The symmetry operators
for a cube, i.e for an element X 2 Rd⇥d⇥d, is found in a similar way, by adding the transposition
of the six sides of the cube, and divide by 6. The concept is difficult to visualize, but it will
become more evident in the comming sections how we use this operation. Further, we can quite
easily see that if we perturbate the second iterated integral from a rough path in T (2)

�

Rd
�

, i.e
fs,t 7!

⇣

B(1)
s,t , B

(2)
s,t + fs,t

⌘

with a 2↵ regular function f, such that fs,t = f(t)� f(s), we get a new
rough path, satisfying Chen�s relation. This follows from the fact that fs,t � fs,u � fu,t = 0. We
will show how to continue this idea to higher order iterated integrals, and show how to choose the
third iterated integral, when the second iterated integral is perturbated with a function f .

6 Fractional and multifractional Brownian motion

Fractional Brownian motion was first introduced - in its modern sense - in 1968 by Mandelbrot
and Van Ness [3]. They proposed a modification of the brownian motion where the sample path
was self similar. That is, if we let BH

t be a fBm with Hürst parameter H, then
�

BH
t ; 0  t  T

 

⇠
�

a�HBH
at ; 0  t  T

 

. Mandelbrot later argued the use of this kind of process in finance and
economics, arguing as financial practitioners long before him, that financial markets are trending.

6.1 Fractional brownian motion.

We will introduce some essential concepts from the theory of fractional brownian motion. The
focus will be on fBm�s with H < 1

2 , to best accommodate later sections. In this thesis, the choice
of representation of the fBm is irrelevant. We will use a rough path method to construct iterated
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integrals, which turns out to only depend on the covariance function of the fBm, which by definition
is equal regardless of representation. We start with a formal definition of the fBm.

Definition 6.1. A d- dimmensional fractional Brownian motion
�

BH
t ; t � 0

 

with hurst parameter
H 2 (0, 1) is centered Gaussian process with the covariance function

E
⇥

BH
t BH

s

⇤

=

1

2

�

t2H + s2H� | t� s |2H
�

Id⇥d.

It follows that
�

a�HBH
t ; t � 0

 

and
�

BH
t ; t � 0

 

has the same distribution. Further, we define the
covariance of increments of fractional Brownian motions by a function R : [0, T ]4 ! Rd⇥d by

R

 

s, t

u, v

!

= E
⇥

BH
s,tB

H
u,v

⇤

.

There are three very different scenarios to consider with respect to fractional Brownian motion,
one is when H > 1

2 , one when H =

1
2 , and one where H < 1

2 . When H > 1
2 the previously

mentioned Young theory lets us integrate functions of sufficient regularity, or the fBm itself, with
respect to an fBm. In the case that H =

1
2 , B

H
t is just a regular brownian motion, and the integral

may be constructed using probability theory. When H < 1
2 it is more difficult to define an integral

with respect to BH
t , but it seems that rough path theory can help us with that respect. As we have

seen, to be able to define the rough integral with respect to a controlled function, we need to have
existing iterated integrals.

Before moving on to the construction of the iterated integrals, we want to show some nice prop-
erties of the covariance of the fBm. Let 1

3 < H  1
2 , we define the function �2(u) := E

h

�

BH
t,t+u

�2
i

=

u2H , then �2(u) is concave on an interval [0, p], p > 0. Indeed, we may look at the second deriva-
tive and see if d�2(u)

du  0 for all u 2 (0, p]. We see that d�2(u)
du = 2H(2H � 1)u2H�2  0 for all

1
3 < H  1

2 . We can also see that �2 is non-decreasing, since we have that �2(t)  �2(s) for
all t  s. Using these properties, we can find some interesting results regarding the covariance
function of the fBm.

Theorem 6.2. Let �2(u) := E
h

�

BH
t,t+u

�2
i

. Then one has non-positive correlation of non-overlapping
increments of the BH , in the sense that for 0  s  t  u  v  p,

E
⇥

BH
s,tB

H
u,v

⇤

 0.

In addition, for overlapping increments such that 0  s  u  v  t  p, we have that,

0  E
⇥

BH
s,tB

H
u,v

⇤

=

�

�E
⇥

BH
s,tB

H
u,v

⇤

�

�  E
h

�

BH
u,v

�2
i

= �2(u� v).

Proof. We prove the first claim first. By using the identity2ac = (a+b+c)2+b2�(b+c)2�(a+b)2,and
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set a = BH
s,t,b = BH

t,u, c = BH
u,v, and we find that

2E
⇥

BH
s,tB

H
u,v

⇤

= E
h

�

BH
s,v

�2
i

+ E
h

�

BH
t,u

�2
i

� E
h

�

BH
t,v

�2
i

� E
h

�

BH
s,u

�2
i

=

1

2

�

(v � s)2H + (u� t)2H � (v � t)2H � (u� s)2H
�

 0.

This follows as we see that v � s � v � t and u� t  u� s , and the midpoint of the line interval
⇥

(v � t)2H , (v � s)2H
⇤

has the same coordinate as the midpoint of the interval
⇥

(u� t)2H , (u� s)2H
⇤

,
then the result follow from concavity (see [15] lemma 7.2.7) .

Now we want to show that for 0  s  u  v  t  p,

0  E
⇥

BH
s,tB

H
u,v

⇤

=

�

�E
⇥

BH
s,tB

H
u,v

⇤

�

�  E
h

�

BH
u,v

�2
i

= �2(u� v).

We start by considering the identity 2(a+ b+ c)b = (a+ b)2 � a2 + (c+ b)2 � c2, an let a = BH
s,u,

b = BH
u,v and c = BH

v,t , then

2E
⇥

BH
s,tB

H
u,v

⇤

= E
h

�

BH
s,v

�2
i

� E
h

�

BH
s,u

�2
i

+ E
h

�

BH
u,t

�2
i

� E
h

�

BH
v,t

�2
i

=

⇣

(v � s)2H � (u� s)2H
⌘

+

�

(t� u)2H � (t� v)2H
�

� 0.

Now, using the identity (a + b + c)b = ab + b2 + cb, with the same choice for a,b, and c as above,
we see

E
⇥

BH
s,tB

H
u,v

⇤

= E [Bs,uBu,v] + E
h

�

BH
u,v

�2
i

+ E
⇥

BH
v,tB

H
u,v

⇤

 E
h

�

BH
u,v

�2
i

= (v � u)2H .

Where we have used that the non-overlapping increments has  0 covariance, as proved in the
beginning.

The properties of the covariance function for fBm’s allows for a nice construction of the iterated
integrals using rough path theory.

To simplify notation, we will let X be a d�dimensional fractional Brownian motion of Hürst
parameter H 2 (

1
3 ,

1
2 ], with independent components, i.e E

h

Xi
s,tX

j
s,t

i

= 0. By the covariance
function R of X we are able to construct the iterated integrals of an fBm. From the properties

discovered in the last lemma, we see that R

 

s, t

u, v

!

 R

 

u, v

u, v

!

for all 0  s  u  v 

t  p for some p > 0. In [16] chp. 10, the authors shows that under some assumptions on R, we
are able to construct the iterated integral for a general centered Gaussian process with stationary
increments. We will apply this method to fBm’s and show existence of the second iterated integral
X(2)

s,t . We start with a definition of the variation norm of the covariance R.

Definition 6.3. Let X be a d�dimensional fBm with covariance function R as defined above. We
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define the ⇢ variation norm of the covariance function as follows,

k R kI⇥I0;⇢:=

0

B

B

B

B

B

B

B

B

@

sup

P ⇢ I

P 0 ⇢ I 0

X

[u, v] 2 I

[u0, v0] 2 I 0

�

�

�

�

�

R

 

u, v

u0, v0

!

�

�

�

�

�

⇢

1

C

C

C

C

C

C

C

C

A

1
⇢

.

Where I and I 0 is intervals of [0, T ].

The ⇢ variation norm plays an important role, and we will later see that if the ⇢ variation norm
is finite, we are able to show that the iterated integrals of X is bounded by this norm. We will
therefore show that the fBm has a covariance function of finite ⇢ variation.

Lemma 6.4. Let X be a fBm with H 2 (

1
3 ,

1
2 ], and let R be the covariance function of X defined

above. Let ⇢ =

1
2H , then

k R k[s,t]2;⇢ M |t� s|
1
⇢

for t� s  p , and p > 0, and M := M(⇢).

Proof. Let [s, t] be some interval such that t� s  p, for p > 0. We then construct two dissections
of [s, t] , such that D1 = {ti}ni=1 and D2 = {tj}mj=1. For a fixed i, 1  i  n, we have that

X

tj2D2

�

�E
⇥

Xti,ti+1Xtj ,tj+1

⇤

�

�

⇢ 
�

�E
⇥

Xti,ti+1X·,·
⇤

�

�

⇢

[s,t];⇢

 3

⇢�1
⇣

�

�E
⇥

Xti,ti+1X·,·
⇤

�

�

⇢

[s,ti];⇢
+

�

�E
⇥

Xti,ti+1X·,·
⇤

�

�

⇢

[ti,ti+1];⇢
+

�

�E
⇥

Xti,ti+1X·,·
⇤

�

�

⇢

[ti+1,t];⇢

⌘

,

where we have used that (a + b + c)⇢  3

⇢�1
(a⇢ + b⇢ + c⇢), for ⇢ � 1. Let us first look at

�

�E
⇥

Xti,ti+1X·,·
⇤

�

�

[s,ti];⇢
. We see that

�

�E
⇥

Xti,ti+1X·,·
⇤

�

�

⇢

[s,ti];⇢

�

�E
⇥

Xti,ti+1Xs,ti

⇤

�

�

⇢ 
⇣

�

�E
⇥

Xti,ti+1Xs,ti+1

⇤

�

�

+

�

�

�

E
h

�

Xti,ti+1

�2
i

�

�

�

⌘⇢

 (ti+1 � ti)
2H⇢

= (ti+1 � ti).

Where we have used the properties of the fBm from theorem 6.2 and ⇢ =

1
2H . The same way as

above we will find that
�

�E
⇥

Xti,ti+1X·,·
⇤

�

�

⇢

[ti+1,t];⇢
 (ti+1 � ti).

Next, we look at
�

�E
⇥

Xti,ti+1X·,·
⇤

�

�

⇢

[ti,ti+1];⇢
. Let D3 be the dissection D2 \ [ti, ti+1], then

�

�E
⇥

Xti,ti+1X·,·
⇤

�

�

⇢

[ti,ti+1];⇢
 sup

D3

X

tj2D3

�

�E
⇥

Xti,ti+1Xtj ,tj+1

⇤

�

�

⇢
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 sup

D3

X

tj2D3

�

�

�

(tj+1 � tj)
2H
�

�

�

⇢
 (ti+1 � ti) .

Where we have used the result of the covariance of overlapping increments in theorem 6.2, and
⇢ =

1
2H . Putting the three estimates together, we see that

sup

D2

X

tj2D2

�

�E
⇥

Xti,ti+1Xtj ,tj+1

⇤

�

�

⇢  M(ti+1 � ti).

Then by taking the supremum over partitions of {ti} ,we find that

sup

D1,D2

X

ti2D1,tj2D2

�

�E
⇥

Xti,ti+1Xtj ,tj+1

⇤

�

�

⇢  M |t� s| .

Hence, k R k[s,t]2;⇢ M |t� s|
1
⇢ with ⇢ =

1
2H .

As we can see, k R k[s,t]2;⇢. |t� s|2H due to the concavity and non decreasing nature of the
covariance of the fBm. Using this, we are able to define an iterated integral. In the sense that if
we let X and ˜X be two independent fBm’s, define the integral over a partition P of [0, T ] by

ˆ
P
X0,rd ˜Xr :=

X

[u,v]2P

X0,u
˜Xu,v,

then the L2 norm of this object is conveniently bounded by the variation norm of the covariance
function. We will prove this in the next lemma.

Lemma 6.5. Let X and ˜X be two fBm’s with H 2 (

1
3 ,

1
2 ], with respective covariance functions R

and ˜R of finite ⇢ variation. We define the integral of X with respect to ˜X as
ˆ
P
X0,rd ˜Xr :=

X

[s,t]2P

X0,s
˜Xs,t.

Then,

sup

P⇢[0,1]
E

"

✓ˆ
P
X0,rd ˜Xr

◆2
#

 C k R k⇢;[0,1]2k ˜R k⇢;[0,1]2

Where C is a constant depending on ⇢.

Proof. We see that

E

"

✓ˆ
P
X0,rd ˜Xr

◆2
#

= E

2

4

0

@

X

[s,t]2P

X0,s
˜Xs,t

1

A

23

5

= E

2

4

X

[s,t],[s0,t0]2P

X0,sX0,s0
˜Xs,t

˜Xs0,t0

3

5

=

X

[s,t],[s0,t0]2P

E
⇥

X0,sX0,s0
⇤

E
h

˜Xs,t
˜Xs0,t0

i

=

X

[s,t],[s0,t0]2P

R

 

0, s

0, s0

!

˜R

 

s, t

s0, t0

!

.
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By the generalization of Young’s inequality to multidimensional processes given in [25], we have
that

sup

P⇢[0,1]

�

�

�

�

�

�

X

[s,t],[s0,t0]2P

R

 

0, s

0, s0

!

˜R

 

s, t

s0, t0

!

�

�

�

�

�

�

 C k R k⇢;[0,1]2k ˜R k⇢;[0,1]2 .

And we are done.

Now that we have a sense of an integral over a partition, we want to see if this converges as the
length of the intervals in P tends to 0. Under the construction from the lemma above, we are able
to define a iterated integral of the process in the following way, on an interval [0, T ] ⇢ [0, 1].

Proposition 6.6. Under the same assumptions as in lemma 6.5 and assume ⇢ =

1
2H , we have that

lim

"!0
sup

P,P 0 ⇢ [0, 1]

| P | _ | P 0 |< "

E

"

✓ˆ
P
X0,rd ˜Xr �

ˆ
P 0

X0,rd ˜Xr

◆2
#

= 0.

Therefore,
´ 1
0 X0,rd ˜Xr exists as the L2 limit of

´
P X0,rd ˜Xr as | P |# 0, and

E

"

✓ˆ 1

0
X0,rd ˜Xr

◆2
#

 C k R k⇢;[0,1]2k ˜R k⇢;[0,1]2 .

Proof. Let P1 and P2 be two partitions on [0, 1] and assume P1 refines P2. Then for an interval
[u, v] ⇢ [0, 1], define P \ [u, v] =

n

[u, v] \ [u0, v0] : [u0, v0] 2 P and [u, v] \ [u0, v0] 6= Ø
o

. We have
that ˆ

P1

X0,rd ˜Xr �
ˆ
P2

X0,rd ˜Xr =

X

[u,v]2P2

ˆ
P\[u,v]

Xu,rd ˜Xr =: I

We want to show that I ! 0 in L2 as | P2 |=| P1 | _ | P2 |! 0 . We look at I in the L2 norm,

E
h

(I)2
i

=

X

[u, v] 2 P2

[u0, v0] 2 P2

E

"ˆ
P\[u,v]

Xu,rd ˜Xr

ˆ
P\[u0,v0]

Xu0,rd ˜Xr

#

=

X

[u, v] 2 P2

[u0, v0] 2 P2

X

[s, t] 2 P1 \ [u, v]

[s0, t0] 2 P1 \ [u0, v0]

R

 

u, s

u0 s0

!

˜R

 

s, t

s, t

!


X

[u, v] 2 P2

[u0, v0] 2 P2

C(⇢) kRk[u,v]⇥[u0,v0];⇢

�

�

�

˜R
�

�

�

[u,v]⇥[u0,v0];⇢
.
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Where we have used the generalization of Young’s maximal inequality due to Towghi [25] in the
last inequality. Since X and ˜X are fBm’s we know that k R k[s,t]2;⇢ M |t� s|

1
⇢ . Assume, without

loss of generality, that |v � u| � |v0 � u0| . Then kRk[u,v]⇥[u0,v0];⇢  kRk[u,v]2;⇢, and we find that

X

[u, v] 2 P2

[u0, v0] 2 P2

kRk[u,v]⇥[u0,v0];⇢

�

�

�

˜R
�

�

�

[u,v]⇥[u0,v0];⇢


X

[u, v] 2 P2

[u0, v0] 2 P2

kRk[u,v]2;⇢
�

�

�

˜R
�

�

�

[u,v]2;⇢


X

[u, v] 2 P2

[u0, v0] 2 P2

M2
(v � u)

2
⇢ .

Now, by assumption we know ⇢ =

1
2H ,and hence,

lim

"!0
sup

P1,P2 ⇢ [0, 1]

| P1 | _ | P2 |< "

E
h

(I)2
i

 lim

"!0
sup

P1,P2 ⇢ [0, 1]

| P1 | _ | P2 |< "

X

[u, v] 2 P2

[u0, v0] 2 P2

M2
(v � u)4H = 0,

as long as H > 1
4 . The last inequality in the theorem follows from the results in lemma 6.5.

Proposition 6.6 shows that the integral of a fractional Brownian motion with respect to another
fractional Brownian motion exists on [0, 1] and is equal regardless of the chosen partition P of [0, 1].
The same result holds for an fBm on [s, t] with t� s  1 , since by reparametrization of the fBm,
we see that (Bs : 0  s  1) ⇠

�

Bs+✓(t�s) : 0  ✓  1

�

. As lemma 6.5 shows, we have chosen the
left point evaluation in our Riemann sum, but the same result would hold for right point or mid
point evaluation. The result gives rise to the next theorem, which will give us a canonical way of
determining the second iterated integral of a fBm.

Theorem 6.7. Let {Xt}0tT be a d-dimmensional fBm with H 2 (

1
3 ,

1
2 ], such that each component

Xi
t and Xj

t are independent. Define, for 1  i  j  d and 0  s  t  T , in L2 sense

X(2),i,j
s,t = lim

|P|!0

ˆ
P

�

Xi
r �Xi

s

�

dXj
r .

Then
X(2),i,i

s,t =

1
2(X

i
s,t)

2 X(2)i,j
= �X(2),j,i

+Xi
s,tX

j
s,t ,

and the following properties hold: a) for every q 2 [1,1) there exists C1 = C1(q, ⇢, d, T ) such that
for all 0  s  t  T

E
h

|Xs,t|2q +
�

�

�

X(2)
s,t

�

�

�

qi

 C1M
q |t� s|

q
⇢ .
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b) There exists a continuous modification of X(2),and for any ↵ < 1
2⇢ and q 2 [1,1) there exists a

C2 = C2(q, ⇢, d,↵) s.t
E
h

k X k2q↵ + k X(2) kq2↵
i

 C2M
q.

We will always consider this continuos version of X(2).

c) For any ↵ < 1
2⇢ , with probability one, the pair (X(1), X(2)

) satisfies Chen’s relation 2.1, the
analytical conditions, and geometric conditions. In particular, for ⇢ 2 [1, 32) and any ↵ 2 (

1
3 ,

1
2⇢)

we have (X(1), X(2)
) 2 C ↵

g almost surely.

Proof. We know that the definition X(2),i,j
s,t = lim|P|!0

´
P
�

Xi
r �Xi

s

�

dXj
r is well defined by propo-

sition 6.6. Then, the choice X(2),i,i
s,t =

1
2(X

i
s,t)

2 and X(2),i,j
s,t = �X(2),j,i

s,t + Xi
s,tX

j
s,t is the only

(canonical) choice that satisfies Chen’s relation. Point a) and b) now follows naturally from the
fact that E

h

(Xs,t)
2
i

=

1
2(t� s)2H and

E

"

✓ˆ t

s
Xs,rdXr

◆2
#

 C k R k2
⇢;[s,t]2

 CM(t� s)4H ,

and by the L2 -Lq equivalence of norm on the second Wiener-Itô chaos, and then Kolmogorov’s
continuity theorem. The lift to a geometric path follows from the definition of the second iterated
integral, and the fact that this choice satisfies Chen’s relation, and the analytical bounds. We see
that Sym

⇣

X(2)
s,t

⌘

=

1
2Xs,t ⌦Xs,t, and hence Geometric.

Remark 6.8. It now follows that we have a canonical construction of the second iterated integral of
a fractional Brownian motion. The construction is done under the fact that BH

s,t is of H� regularity
when H 2 (

1
3 ,

1
2 ]. When H 2 (

1
4 ,

1
3 ] there exists a canonical choice of X(2) and X(3) such that the

lift (X(1), X(2), X(3)
) 2 C ↵

g , see the book by P. Friz, And N.Victoir, [17] chp. 15.3. In later sections
when developing an Itô formula for fBm’s with H 2 (

1
4 ,

1
3 ] we will use this geometric lift.

We will now move on to construction of a multifractional Brownian motion, which is similar to
the fBm, but with a Hürst parameter which is dependent on time.

6.2 Multifractional Brownian motion

We will construct the multifractional brownian motion a little different than how we constructed
the fBm. The reason is that we desire the mBm to be a kind of fBm which need to be continuous
with respect to H on the compact interval [a, b] ⇢ (0, 1). As there exist many representations of
fBm’s where this is not the case, we need to be more careful with the choice of representation. We
will base this introduction on the pioneering works of Lévy Véhel and Peltier [20]. However, we
have observed that in [10] the authors use a Volterra type of fBm representation and claims result
is valid for all H in a compact subinterval [a, b] ⇢ (0, 1), but the representation used seem to be
tend to infinity as H goes below 1

2 . Therefore, we will use the representation first introduced by
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Mandelbrot and Van Ness (1968) [3] for fractional Brownian motion,

BH(t) :=

1

�
�

H +

1
2

�

⇢ˆ 0

�1

h

(t� s)H� 1
2 � (�s)H� 1

2

i

dW (s) +

ˆ t

0
(t� s)H� 1

2dW (s)

�

,

where W represents a Wiener process on Rd, and � represents the gamma function. We extend this,
and let h : [0, T ] ! [a, b] ⇢ (0, 1) be a � regular function, i.e h 2 C� . We denote the multifractional
Brownian motion by

Bh
t = B(t, h(t)) :=

1

�
�

h(t) + 1
2

�

⇢ˆ 0

�1

h

(t� s)h(t)�
1
2 � (�s)h(t)�

1
2

i

dW (s) +

ˆ t

0
(t� s)h(t)�

1
2dW (s)

�

.

For applications, we are also interested in the covariance of a multifractional Brownian motion.
In the paper by Ayache et.al. [1], the authors gives an explicit expression for this function. We will
sum it up in a proposition as follows.

Proposition 6.9. Let Bh
t be a standard multifractional Brownian motion (i,e s.t. V ar(Bh

1 ) = 1)
with time varying hurst parameter h : [0, T ] ! [a, b] ⇢ (0, 1). Then the covariance is given by

E
h

Bh
t B

h
s

i

= D(t, s)
⇣

| t |h(t)+h(s)
+ | s |h(t)+h(s) � |t� s|h(t)+h(s)

⌘

.

Where D : [0, T ]2 ! R is a deterministic function.

Proof. The proof from [1] is given by a complex representation of the mBm. That is, we may
represent an mBm Bh(t)

t as

˜Bh(t)
t :=

1

C(h(t))

ˆ
R

eit⇠�1

| ⇠ |h(t)+
1
2

dB(⇠),

where B(⇠) is a complex valued Brownian motion and C(h(t)) =
q

⇡
h(t)� (2h(t)+1) sin(⇡h(t)) . The two

representations Bh
t and ˜Bh

t are equal in law up to a multiplicative deterministic function, see [6]
Thm. 1. Therefore, we may conduct the proof under the complex-representation given by ˜Bh(t)

t

and scale our result by a deterministic function. By definition of the covariance, we have that

E
h

˜Bh(t)
t

˜Bh(s)
s

i

=

1

C(h(t))C(h(s))
E

"ˆ
R

eit⇠�1

| ⇠ |h(t)+
1
2

dB(⇠)

ˆ
R

eis⇠�1

| ⇠ |h(s)+
1
2

dB(⇠)

#

=

1

C(h(t))C(h(s))

ˆ
R
E

"

�

eit⇠�1
� �

eis⇠�1
�

| ⇠ |h(t)+h(s)+1

#

d⇠.

Fix t, s and let BH
t be a standard fractional brownian motion with complex representation, as above.
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Then we know

E
⇥

BH
t BH

s

⇤

=

1

C(H)C(H)

ˆ
R
E

"

�

eit⇠�1
� �

eis⇠�1
�

| ⇠ |2H+1

#

d⇠

=

1

2

�

| t |2H + | s |2H � | t� s |2H
�

.

Now, if we choose H =

1
2(h(t) + h(s)) we see that,

C(

1

2

(h(t) + h(s))2E
⇥

BH
t BH

s

⇤

=

ˆ
R
E

"

�

eit⇠�1
� �

eis⇠�1
�

| ⇠ |h(t)+h(s)+1

#

d⇠

= C(h(t))C(h(s))E
h

˜Bh(t)
t

˜Bh(s)
s

i

which implies that

E
h

˜Bh(t)
t

˜Bh(s)
s

i

=

C(

1
2(h(t) + h(s))2

C(h(t))C(h(s))

⇣

| t |h(t)+h(s)
+ | s |h(t)+h(s) � |t� s|h(t)+h(s)

⌘

.

Then, as already mentioned, there exists a deterministic function g(t, s) such that

E
h

Bh
t B

h
s

i

= g(t, s)E
h

˜Bh(t)
t

˜Bh(s)
s

i

,

therefore D(t, s) = g(t, s)
C( 12 (h(t)+h(s))2

C(h(t))C(h(s)) , and we are done.

The mBm is a non-stationary process, as the Hürst parameter, describing the auto covariance
is dependent on time. We are interested in finding the regularity of the mBm, such that we can
use rough path theory. The next lemma will give a regularity estimate, and is based on the proof
of Peltier and Lévy Vehél in [20], where we use the Mandelbrot- Van ness representation.

Lemma 6.10. Let Bh
t be given as defined above. Let [a, b] ⇢ (0, 1), s.t b � a < 1, and let

h : [0, T ] ! [a, b] be a ��Hölder continuous function for all two times (t, t0) 2 [0, T ]2, i.e
|h(t)� h(t0)| . |t� t0|�. Let Bh

t =

1
� (h(t)+ 1

2 )
{P1(t) + P2(t)} , where P1(t) =

´ 0
�1 f(t, s)dW (s),

and P2(t) =

´ t
0 g(t, s)dW (s), for g(t, s) = (t � s)h(t)�

1
2 . Define f(t, s) = g(t, s) � (�s)h(t)�

1
2 for

each s < 0 < t . Then there exist �1, �2 > 0 such that

E [(P1(t)� P1(t0))
p
]  �1 |t� s|p� for p > 1

�

E [(P2(t)� P2(t0))
p
]  �2 |t� s|pmin( 12 ,�,a) for p > 1

min( 12 ,�,a)
,

and hence, Bh
t 2 Cmin( 12 ,�,a)� .

Proof. We present here just the main ideas behind the rather long proof from [20]. The crucial
elements lies in the following facts: We have that P1(t) ⇠ N(µ,�2) and P2(t) ⇠ N(µ̃, �̃2). Let X

be centered normal random variable i.e X ⇠ N(µ,�2), Then for 1  n 2 N, the following inequality
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holds:

E [|X|n]  �n
2

n/2
�

�

n+1
2

�

p
⇡

�

✓

�n

2

,
1

2

;� µ2

2�2

◆

Where � denotes Kummer’s confluent hypergeometric functions

�(x, y, z) :=
1
X

n=0

� (x+n)
�(x)

�(y+n)
� (y)

zn

n!
.

(see [26] for full proof). From this, we may use Kolmogorov’s continuity theorem, and therefore
the continuos version exists.

As we know that the process has a Hürst parameter which is changing in time,we are not only
interested in the global regularity of the mBm, but locally we may obtain a regularity estimate,
and see that the regularity is a function in time. We give the following definition, and proposition.

Definition 6.11. We define the local Hölder exponent of a stochastic process Xt(!) at time t is
given by

✓X(s,!) = sup

(

✓ : lim
h!0

|Xt+h(!)�Xt(!)|
|h|✓

= 0

)

.

Proposition 6.12. Let h be of � regularity, and h : [0, T ] ! [a, b] ⇢ (0,min(1,�)), and Bh
t be a

mBm. For each t0 2 [0, T ] we have with probability one that

✓Bh(t0,!) = h(t0).

Proof. See [20] for proof.

This tells us that at each point the mBm is of a certain regularity. If ✓Bh(t0,!) is above 1
2

then the mBm behaves more regular than a usual Brownian motion, and positively autocorre-
lated sample paths. The opposite is true when ✓Bh(t0,!) is less than 1

2 . We clearly see that the
regularity of the function ✓Bh is equal to the regularity of the function h. Indeed, we have that
|✓Bh(t,!)� ✓Bh(s,!)| = |h(t)� h(s)| . |t� s|� .

A note on the construction of iterated integrals of mBm’s.

There is currently no straight forward way to construct iterated integrals of mBm’s in higher
dimmensions. However, in this note we will present an idea on how one may go forth to construct
these integrals.If we let the mBm Bh

t be given by a simple function of fractional Brownian motions,
in the sense that, if {ti}ni=1 is a dissection of [0, T ], let ˜B(t,H) be a fBm, then

B(n)
(t, h(t)) :=

n
X

i=1

1[ti,ti+1)(t)
˜B(t, h(ti)).
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One would then investigate if B(n)
(t, h(t)) converges to Bh

t in L2 as n ! 1 for any dissection
{ti}ni=1 such that the length of all intervals [ti, ti+1) converges to 0 as n ! 1 . We see that each
term ˜B(t, h(ti)) is a fBm on the interval [ti, ti+1). If it converges, we could try to construct the
iterated integral as

ˆ T

0
Bh

0,rdB
h
r := lim

n!1

n
X

i=1

ˆ T

0
1[ti,ti+1)(t)

˜B(r, h(ti))� ˜B(0, h(0))d ˜B(r, h(ti)).

As we want h to vary around 1
2 , we would encounter to different types of integrals depending on

the Hürst parameter h(ti) of the fBm is below or above 1
2 . A way to deal with this, would be to

introduce stopping times in the following way.

Definition 6.13. Let h 2 C� for � > supt2[0,T ] h(t), and h(0) > 1
2 . Define the stopping times

{⌫n}Nn=1 and {⌧n}Nn=1 such that ,

⌧1 := inf

�

t > 0 : h(t) > 1
2

 

⌫1 := inf

�

t > 0 : h(t)  1
2

 

,

and then iteratively,
⌧n = inf

�

t > ⌧n�1 : h(t) >
1
2

 

^ T

⌫n = inf

�

t > ⌫n�1 : h(t)  1
2

 

^ T.

And define ⌧N+1 := T . We can see that ⌫N , ⌧N ! T as N ! 1 . Then the partitions

Ph> 1
2

N =

n

[⌧1, ⌫1] , [⌧2, ⌫2] , [⌧3, ⌫3] , ..., [⌧N , ⌫N ]

o

Ph 1
2

N =

n

[⌫1, ⌧2] , [⌫2, ⌧3] , [⌫3, ⌧4] , .., [⌫N�1, ⌧N ] , [⌫N , ⌧N+1]

o

,

are well defined partitions of [0, T ].

We assumed h(0) > 1
2 , this is just to keep the right order on the intervals in the partition. If

h(0) < 1
2 ,we just need to re-arrange the order of the partitions, and the problem is solved.

From the proposition we see that N can be a random number, depending on the function
h, and how many times it “crosses” 1

2 . We say random number, as we may choose h to be a
stochastic process. Now we have three partitions on [0, T ] to deal with. One partition Dn =

{[ti, ti+1] : i = 1, 2, .., n}, and the two partitions Ph 1
2

N and Ph> 1
2

N . Combining these, we see that,

n
X

i=1

ˆ T

0
1[ti,ti+1)(t)

˜B(r, h(ti))� ˜B(0, h(0))d ˜B(r, h(ti))

=

N
X

k=1

n
X

i=1

ˆ T

0
1[⌧k,⌫k]\[ti,ti+1)(t)

˜B(r, h(ti))� ˜B(0, h(0))d ˜B(r, h(ti))
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+

N
X

k=1

n
X

i=1

ˆ T

0
1[⌫k,⌧k+1]\[ti,ti+1)(t)

˜B(r, h(ti))� ˜B(0, h(0))d ˜B(r, h(ti)).

Now, the integrals in the first double sum are integrals where the hurst parameter h(ti) > 1
2 on the

whole interval [ti, ti+1), and hence Young’s integral theory will be used to construct the integrals. In
the second double sum h(ti)  1

2 , and fortunately, as the process on the interval [⌫k, ⌧k+1]\ [ti, ti+1)

is a fBm with h(ti) as regularity parameter, we are able to construct the iterated integrals from
the covariance function of B(t, h(ti)) on the respective interval. Therefore both integrals exist, and
the “discrete” mBm integral then exist. Now, if one is able to show that this converges in L2 to the
the mBm integral, one would have constructed the iterated integrals for mBm’s. We believe that
this is possible, And hope to write another article later on the possibility.

In this thesis we are mostly concerned with rough path theory, and we want to construct an Itô
formula for fBm’s and mBm’s. In the case of mBm’s, we really don’t need the iterated integral of
the process, we will only deal with the symmetric part of the geometric choice of iterated integral.
The symmetric part of the iterated integral of a geometric path, as we have seen before, is given
by the increment of the first order process to the second power. Therefore, as long as we have a
proper construction of the mBm process itself, the Itô formula will hold.
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7 Itô formula for reduced multifractional rough paths when ↵ 2
(1
3

, 1
2

].

As we have discussed in previous sections, the geometric choice for the iterated integrals, is the one
which obeys the usual rules of simple calculus. Therefore we will give a definition of what we call
a reduced rough path, and soon see the link to geometric rough paths. We begin by introducing
the concept on paths in the space C ↵ , ↵ 2 (

1
3 ,

1
2 ] and show the Itô formula of Friz and Hairer

[16] applied to fractional Brownian motion. Next, we develop an Itô formula for mBm’s with
h : [0, T ] ! [

1
3 + ", 1 � "], h 2 C1 for some small " > 0. First we will define the space of reduced

rough paths. A reduced rough path is a rough path where we ignore the anti symmetric part of
the iterated integrals. Formally, a definition is given as follows.

Definition 7.1. We define the tuple
�

X(1), S(2)
�

to be a reduced rough path if S(2) takes values
in Sym

�

Rd⇥d
�

and the following conditions holds: a) A reduced Chen relation

S(2)
s,t � S(2)

s,u � S(2)
u,t = Sym

⇣

X(1)
s,u ⌦X(1)

u,t

⌘

and b) The usual regularity conditions holds,
�

�

�

X(1)
s,t

�

�

�

. |t� s|↵ and
�

�

�

S(2)
s,t

�

�

�

. |t� s|2↵ for ↵ 2 (

1
3 ,

1
2 ].

We formally write that
�

X(1), S(2)
�

2 C ↵
r .

Naturally, the simplest choice of reduced iterated integral, i.e S(2)
s,t :=

1
2X

(1)
s,t ⌦X(1)

s,t = Sym(X(2)
s,t )

where X(2)
s,t is geometric, yields a reduced rough path. If we perturbate this choice by a 2↵ regular

path f 2 Sym

�

Rd⇥d
�

, the perturbated path will again yield a reduced rough path.
From stochastic calculus of regular Brownian motion, we have the relation between the second

iterated integral from Stratonovich and Itô calculus as follows

B(2)Itô
s,t = B(2)Strat

s,t +

1

2

(t� s) Id⇥d.

Where Id⇥d is a d ⇥ d identity matrix. As we know, the Stratonovich iterated integral is the
geometric choice of iterated integrals of brownian motion, and we obtain the Itô integral from
perturbation of the Itô integral by a function 1

2(t � s)Id⇥d. We are interested in extending this
kind of relation to fBm�s, and one could think the relation

¯B(2)Itô
s,t =

¯B(2)Strat
s,t +

1

2

�

t2H � s2H
�

Id⇥d

should hold, when ¯B(2),.
s,t is the iterated integral of a the fBm B(1)

s,t . In a rough path setting, we can
clearly see that the choice
✓

B(1)
s,t ,

1

2

B(1)
s,t ⌦B(1)

s,t +

�

t2H � s2H
�

Id⇥d

◆

=

⇣

B(1)
s,t , Sym(

¯B(2)Strat
s,t ) +

�

t2H � s2H
�

Id⇥d
⌘

2 C ↵
r ,
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and we will from now on denote S(2)Strat
s,t = Sym

⇣

¯B(2)Strat
s,t

⌘

=

1
2B

(1)
s,t ⌦ B(1)

s,t and in the same way

for Itô, and the relation S(2)Itô
s,t = S(2)Strat

s,t +

1
2

�

t2H � s2H
�

Id⇥d. We now present an Itô formula
to describe the behavior of a sufficiently smooth function evaluated in a fBm, by using the relation
between Stratonovich and Itô Calculus. A more general result for reduced rough paths was first
presented in [16].

Lemma 7.2. Let F : Rd ! Rn be C3
b and let BItô

s,t =

⇣

B(1)
s,t , S

(2)Itô
s,t

⌘

2 C ↵
r , ↵ 2 (

1
3 ,

1
2 ], Then

F (B(1)
t )� F (B(1)

0 ) =

ˆ t

0
DF (B(1)

s )dBItô
s +H

ˆ t

0
D2F (Bs)s

2H�1ds

Where the rough integral is given by

ˆ t

0
DF (B(1)

s )dBItô
s := lim

|P|!0

X

[u,v]2P

DF (B(1)
s )B(1)

s,t +D2F (B(1)
s )S(2)Itó

s,t ,

here, P is a partition of [0, t], and the second integral is well defined as a Young integral.

Proof. Following the proof from chp. 5 in [16], we start by considering a taylor approximation of
F ,

F (B(1)
t )� F (B(1)

0 ) =

X

[u,v]2P

F (B(1)
v )� F (B(1)

u )

=

X

[u,v]2P

DF (B(1)
u )B(1)

u,v +
1

2

D2F (B(1)
u )B(1)

u,v ⌦B(1)
u,v + o (|u� s|)

Now, using the fact that S(2)Strat
s,t :=

1
2B

(1)
u,v ⌦ B(1)

u,v = S(2)Itô
s,t +

�

t2H � s2H
�

Id⇥d we see that last
equality above

=

X

[u,v]2P

DF (B(1)
u )B(1)

u,v +
1

2

D2F (B(1)
u )

⇣

S(2)Itô
u,v +

�

v2H � u2H
�

Id⇥d
⌘

+ o (|u� s|)

Splitting the second derivative part in two, we recognize the Rough integral, and a sum of equal to
P

[u,v]2P D2F (B(1)
u )

�

v2H � u2H
�

Id⇥d. Let P be a partition of [0, t]. We will prove that

X

[u,v]⇢P

1

2

D2F (Bu)
�

v2H � u2H
�

! H

ˆ t

0
D2F (Bs)s

2H�1ds.

Let us write

lim

|P|!0

X

[u,v]⇢P

1

2

D2F (Bu)
�

v2H � u2H
�

= lim

|P|!0

ˆ T

0

X

[u,v]⇢P

D2F (Bu)1[u,v](s)Hs2H�1ds

We define the measure � such that d�(s) = Hs2H�1ds. We can rewrite the integral with respect
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to �

lim

|P|!0

ˆ T

0

X

[u,v]⇢P

D2F (Bu)1[u,v](s)d�(s)

We recognize the integrand as a simple function f |P| in this way

f |P|
(s) :=

X

[u,v]⇢P

D2F (Bu)1[u,v](s) ! f(s) := D2F (Bs)1[0,t](s)

We will continue with a simple dominated convergence argument. Since F 2 C4
b , we know

�

�f |P|
(s)

�

�  D. Therefore define g(s) = D1[0,t](s) s.t g 2 L1
([0, T ] ,�) and | f |P|

(s) | g(s),
and therefore by the DCT,

lim

|P|!0

ˆ T

0

X

[u,v]⇢P

D2F (Bu)1[u,v](s)Hs2H�1ds = H

ˆ t

0
D2F (Bs)s

2H�1ds.

And our proof is done.

We now move on to look at multifractional Brownian motions, and how we can construct the Itô
formula for such processes. As we have discussed earlier, we do not have a canonical construction
of the iterated integral with respect to an mBm. However, as we have seen in the formula for fBm’s
above, the second iterated integral will be appear in the second derivative of the function. The
second derivative of this function is a symmetric operator, and hence, one only uses the symmetric
part of the iterated integral. We are, in a sense, stating that the Stratonovich iterated integral is
the geometric choice of the iterated integral, and we know that the symmetric part of a geometric
iterated integral is the increments of the first-order process squared. Therefore, we do not need to
have a canonical construction of the iterated integral, or a lift to a geometric rough path to find an
Itô formula, we only need the concept of reduced rough paths. As we have seen, all rough paths
induces a reduced rough path, but the converse is in general not true. We will first define the mBm
in a reduced rough path sense.

Lemma 7.3. Let Bh
· be a d-dimmensional mBm on [0, T ]. Let 0 < " be small such that, h :

[0, T ] !
⇥

1
3 + ", 1� "

⇤

⇢ (

1
3 , 1), and be such that h 2 C1. Then, Bh

s,t = Bh(t)
t � Bh(s)

s can be lifted

canonically to a reduced rough path by choosing Bh
s,t =

�

Bh
s,t,

1
2B

h
s,t ⌦Bh

s,t

�

2 C
1
3+
r

�

[0, T ] ,Rd
�

. We
call this a reduced multifractional rough path.

Proof. We know there exist a canonical lift of Bh
s,t to a reduced rough path by choosing the iterated

integral to be 1
2B

h
s,t ⌦Bh

s,t. Indeed, we see that

1

2

Bh
s,t ⌦Bh

s,t �
1

2

Bh
s,u ⌦Bh

s,u � 1

2

Bh
u,t ⌦Bh

u,t

=

1

2

⇣

Bh
s,u +Bh

u,t

⌘

⌦
⇣

Bh
s,u +Bh

u,t

⌘

� 1

2

Bh
s,u ⌦Bh

s,u � 1

2

Bh
u,t ⌦Bh

u,t
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=

1

2

⇣

Bh
s,u ⌦Bh

u,t +Bh
u,t ⌦Bh

s,u

⌘

= Sym

⇣

Bh
s,u ⌦Bh

u,t

⌘

.

Choosing " small enough, we see that the path Bh
s,t :=

�

Bh
s,t,

1
2B

h
s,t ⌦Bh

s,t

�

2 C
1
3+
r

�

[0, T ] ,Rd
�

, since
it satisfies the reduced Chen’s relation and the analytical conditions. The analytical conditions
follows trivially from lemma 6.10.

Remember that mBm’s are just generalizations of fBm’s, and hence, in the case of h(t) = H

where H is a constant in (0, 1) , we obtain a fBm.
We assume the relation between the iterated Itô integral and iterated Stratonovich integral are

as follows, let " > 0 and h : [0, T ] !
⇥

1
3 + ", 1� "

⇤

⇢ (

1
3 , 1), where h 2 C1

b , then

Bh,Itô
s,t = Bh,Strat

s,t + (t2h(t) � s2h(s))Id⌦d,

The stratonovich integral is the geometric choice of iterated integral, and we therefore see that,

Sym

⇣

Bh,Strat
s,t

⌘

=

1

2

Bh
s,t ⌦Bh

s,t.

We will follow up with an Itô formula for reduced mBm’s.

Lemma 7.4. Let h : [0, T ] !
⇥

1
3 + ", 1� "

⇤

⇢ (

1
3 , 1), for some small " > 0 , be a C1

b function, and
let

Bh,Itô
s,t =

⇣

Bh
s,t, S

h,Itô
s,t

⌘

=

⇣

Bh
s,t, Sym(Bh,Strat

s,t ) + (t2h(t) � s2h(s))
⌘

2 C
1
3+
r

⇣

[0, T ] ,Rd
⌘

,

and F : Rd ! Rm be a C3
b function. Then

F (Bh
t )� F (Bh

0 ) =

ˆ t

0
DF (Bh

s )dB
h,Itô
s +

1

2

ˆ t

0
D2F (Bh

s )2s
2h(s)�1

�

s ln(s)h0(s) + h(s)
�

ds.

Where the rough integral is given by

ˆ t

0
DF (Bh

s )dB
h,Itô
s := lim

|P|!0

X

[u,v]2P

DF (Bh
s )B

h
s,t +D2F (Bh

s )S
h,Itó
s,t ,

and the second integral is well defined as a Young integral.

Proof. The proof is very similar to the proof of lemma 7.2, but the difference is the convergence of
the young integral. We will take a closer look at this part. We obtain a sum of the form

X

[u,v]2P

D2F (Bu)

⇣

v2h(v) � u2h(u)
⌘

We know that since h 2 C1
b , the existence is assured from Young theory. Further, we have d

(

u2h(u)
)

du =
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2u2h(u)�1
(u ln(u)h0(u) + h(u)), and therefore since F 2 C3

b we have that
�

�D2F (Bu)
�

�  K, and we

know that
�

�

2u2h(u)�1
(u ln(u)h0(u) + h(u))

�

�  D as a consequence of the continuity of d
(

u2h(u)
)

du on
[0, T ] for h : [0, T ] !

⇥

1
3 + ", 1� "

⇤

. Since the lebesgue meassure of [0, T ] is finite, and

f |P|
(s) =

X

[u,v]2P

D2F (Bu)2u
2h(u)�1

�

u ln(u)h0(u) + h(u)
�

1[u,v](s)

! D2F (Bs)2s
2h(s)�1

�

s ln(s)h0(s) + h(s)
�

1[0,t](s) =: f(s)

pointwise. We use the bounded convergence theorem, to find that

lim

|P|!0

X

[u,v]2P

D2F (Bu)

⇣

v2h(v) � u2h(u)
⌘

= lim

|P|!0

ˆ t

0

X

[u,v]2P

D2F (Bu)2u
2h(u)�1

�

u ln(u)h0(u) + h(u)
�

1[u,v](s)ds

=

ˆ t

0
D2F (Bs)2s

2h(s)�1
�

s ln(s)h0(s) + h(s)
�

ds.

Which concludes the proof.

Remark 7.5. The Itô formulas obtained in this section for mBm’s with h(t) restricted to
⇥

1
3 + ", 1� "

⇤

for each t 2 [0, T ] are based on reduced mBm’s. However, as the second derivative of F ,
D2F : Rd ! L

�

Rd,L
�

Rd,Rm
��

is symmetric, the Itô formula will hold for any geometric multi-
fractional Brownian rough path. We have assumed that h 2 C1. However, the result will hold for
h 2 C� as long as �+ 1

3 + " > 1, such that the Young theory may be applied to the second integral.
This imply, that we may let h be a reflected fractional Brownian motion, or a similar process which
is stochastic.

Remark 7.6. Interestingly, the Itô formula above corresponds very well to the one proved by C.
Bender [2] in the case of fractional Brownian motion, i.e for a constant a, h(t) = a 2 (

1
3 ,

1
2 ]. Bender

proved this by using white noise theory. The formula stated above for fBm was first proved by
Hairer and Friz in [16] and uses (of course) Rough path theory, which is a path-wise approach, in
contrast to the white noise approach. The white noise approach in finance have received critics
for admitting arbitrage opportunities under Wick-Itô products (see [24]), while The authors of this
thesis has yet to investigate for arbitrage opportunities in a multifractional “Black-Scholes” model
in a rough path setting, the rough path based Itô formula for mBm’s will hopefully become useful.
An Itô formula has previously been constructed by Lebovits et.al. for mBm’s using white noise
theory [11], and the Itô formula presented here corresponds very well with this formula. The only
difference is actually the choice of integral, i.e Skorohod vs rough integral. As far as the authors
of this thesis know, the Ito formula presented for mBm�s in a rough path setting is new.
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The next section will deal with fractional Brownian rough paths in a lower regularity setting.
We have yet to generalize this to Multifractional Brownian motions, but we will look at this for
future work.
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8 Itô formula for reduced fractional rough paths when ↵ 2 (1
4

, 1
3

].

In this subsection we will show how we may perturbate the second iterated integral in the Itô vs.
Stratonovich sense, and how this affects the third iterated integral. We will then develop a similar
formula for fractional Brownian rough paths, as the one developed in the previous section. As in
the previous section, we have the relation between the stratonovich and Itô integral as follows,

B(2),Strat
s,t = B(2),Itô

s,t +

�

t2H � s2H
�

Id⌦d.

If we define a function f : [0, T ] ! Rd⇥d by f(t) = t2HId⇥d, where Id⇥d is the identity opertator
in Rd⇥d, as we did in the previous section, we see that this is the function perturbating the
Stratonovich integral to obtain the itô integral. When we are considering lower regularities, we
need to check how this perturbation affects the third iterated integral. To give some intuition,
let us first have a look at typical stochastic calculus with a regular brownian motion, to see how
the third iterated Itô integral relates to the Stratonovich integral. For simplicity, let Bt be a one
dimensional Brownian motion on a probability space (⌦, P,F) . We know from Itô calculus that

ˆ t

s
Bs,rdBr =

1

2

B2
s,t �

1

2

(t� s) .

The Stratonovich calculus will follow the regular rules of calculus, and hence
´ t
s Bs,r �dBr =

1
2B

2
s,t,

where � denotes the Stratonovich integration. Therefore, we have the relation

ˆ t

s
Bs,r � dBr =

ˆ t

s
Bs,rdBr +

1

2

(t� s) .

We may also calculate the third iterated Itô integral. It is straight forward to check that,

ˆ t

s

ˆ t1

s
Bs,rdBrdBt1 =

1

6

B3
s,t �

ˆ t

s
Bs,t1dt1 �

ˆ t

s
(t1 � s)dBt1 .

As usual will the third iterated Stratonovich integral be given by
´ t
s

´ t1
s Bs,r � dBr � dBt1 =

1
6B

3
s,t.

Let us define a new variable ˜Ys,t =
´ t
s Bs,t1dt1 +

´ t
s (t1 � s)dBt1 . Then the following relation occur

between the third iterated Stratonovich and Itô integral,

ˆ t

s

ˆ t1

s
Bs,r � dBr � dBt1 =

ˆ t

s

ˆ t1

s
Bs,rdBrdBt1 +

˜Ys,t.

We clearly see that the perturbation of the second iterated integral affects the third iterated integrals
with a function ˜Ys,t consisting of two cross integrals. We will see that this also must be the case for
fBm’s. The next lemma will give a way to construct the third integral in the case of a perturbation
of the second integral.
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Lemma 8.1. Let B =

�

B(1), B(2), B(3)
�

2 C ↵
�

[0, T ] ,Rd
�

and let f 2 C2↵, with f 2 Sym

�

Rd ⌦ Rd
�

.
Assume the integrals

´ t
s B

(1)
s,r dfr and

´ t
s fs,rdB

(1)
r are well defined for all s, t 2 [0, T ] , and assume

they are such that |
´ t
s Xs,rdfr |.| t � s |3↵ and |

´ t
s fs,rdB

(1)
r |.| t � s |3↵. Now, define the

perturbated iterated integrals as follows

B(1)
s,t = B(1)

s,t

B(2),f
s,t = B(2)

s,t + fs,t

B(3),f
s,t = B(3)

s,t +

´ t
s fs,rdBr +

´ t
s Bs,rdfr

Then
�

B(1), B(2),f , B(3),f
�

is a rough path in C ↵
([0, T ] , V )

Proof. It is straight forward to check that B(2),f
s,t satisfies the second order Chen’s relation, the trick

is to prove it for the third iterated integral. We have seen that the third iterated integral need to
satisfy

B(3)
s,t �B(3)

s,u �B(3)
u,t = B(1)

s,uB
(2)
u,t +B(2)

s,uB
(1)
u,t .

Let us first look at the left hand side of the above equation, and insert B(3),f ,

B(3),f
s,t �B(3),f

s,u �B(3),f
u,t = B(3)

s,t �B(3)
s,u �B(3)

u,t

+

ˆ t

s
fs,rdBr +

ˆ t

s
Bs,rdfr �

✓ˆ u

s
fs,rdBr +

ˆ u

s
Bs,rdfr

◆

�
✓ˆ t

u
fu,rdBr +

ˆ t

u
Bu,rdfr

◆

.

We know B(3) satisfy the relation, and hence, our objective is to look at the three additive pertur-
bating terms. We see that,

ˆ t

s
fs,rdBr +

ˆ t

s
Bs,rdfr �

✓ˆ u

s
fs,rdBr +

ˆ u

s
Bs,rdfr

◆

�
✓ˆ t

u
fu,rdBr +

ˆ t

u
Bu,rdfr

◆

= fs,uB
(1)
u,t +B(1)

s,ufu,t.

Inserting this in the equation two above, and using the fact that the path B(3) is following the
usual Chen’s relation, we find that

B(3),f
s,t �B(3),f

s,u �B(3),f
u,t = B(3)

s,t �B(3)
s,u �B(3)

u,t + fs,uB
(1)
u,t +B(1)

s,ufu,t

= B(2)
s,uB

(1)
u,t +B(1)

s,uB
(2)
u,t + fs,uB

(1)
u,t +B(1)

s,ufu,t

= B(2),f
s,u B(1)

u,t +B(1)
s,uB

(2),f
u,t ,

and then we see that the Chen’s relation holds.

We see by the previous lemma that we need to perturbate the third integral by two integrals,
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similar to the case of the third iterated integral of a regular Brownian motion.
The next definition will show how we construct the space of reduced rough paths in a lower

regularity setting.

Definition 8.2. We call the triple B = (B(1), S(2), S(3)
) a reduced rough path , formally B 2

C ↵
r ([0, T ] , V ), if B(1) takes values in Rd, S(2)takes values in Sym

�

Rd ⌦ Rd
�

, and S(3) takes values
in Sym(

�

Rd
�⌦3

), and the following hold.

1. The reduced Chen relation

S(2)
s,t � S(2)

s,u � S(2)
u,t = Sym

⇣

B(1)
s,u ⌦B(1)

u,t

⌘

S(3)
s,t � S(3)

s,u � S(3)
u,t = Sym

⇣

B(1)
s,u ⌦B(2)

u,t

⌘

+ Sym

⇣

B(1)
s,u ⌦B(1)

u,t

⌘

.

2. The usual analytical conditions ,
�

�

�

B(1)
s,t

�

�

�

.| t� s |↵,
�

�

�

B(2)
s,t

�

�

�

.| t� s |2↵ and
�

�

�

B(3)
s,t

�

�

�

.| t� s |3↵

holds.

Now, one can see that all paths B 2C ↵
g induces a reduced rough path, by ignoring its anti-symmetric

parts of the second and third iterated integrals. The lift of a rough path to a reduced rough path
i essentially trivial by setting S(2)

s,t :=

1
2B

(1)
s,t ⌦ B(1)

s,t and S(3)
s,t :=

1
6B

(1)
s,t ⌦ B(1)

s,t ⌦ B(1)
s,t . We will now

give two results, showing that the integrals
´ t
s fs,rdBr and

´ t
s Bs,rdfr from lemma 8.1 exists for a

particular choice of f , namely f(t) = t2HId⇥d where H is the Hürst parameter of the fBm. First,
we will prove a nice inequality.

Lemma 8.3. Let 0  s  t 2 [0, T ] , and 0  a  1. then the following inequality holds

(ta � sa)  C(a) (t� s)a

For some constant C(a) 2 R.

Proof. If a = 1 or 0, then the statement is obvious, therefore fix a 2 (0, 1),and C := C(a). We
reformulate the inequality and find that

(ta � sa)  C (t� s)a ()
(1�

�

s
t

�a
)

(1� s
t )

a
 C.

Define a function f : [0, 1] ! R by f(x) = (1�xa)
(1�x)a . Now, if we can prove f is continuous, then it is

bounded. We need to check what happens with f(x) when x " 1, as this is the possible singularity.
We can easily check that limx"1 f(x) = 0. For all other values of x the function is well defined and
continuos on the compact interval [0, 1], hence, bounded. This concludes the proof.
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We will use this inequality to prove the existence of the perturbating integrals.

Theorem 8.4. Let f(t) = t2HId⇥d, and Bs,t be a fBm with H 2 (

1
4 ,

1
3 ]. Let the partition integral

over a partition P ⇢ [s, t] be given by
´
P fs,rdBr :=

P

[u,v]2P fs,uBu,v. Then the integral

ˆ t

s
fs,rdBr := lim

|P|!0

ˆ
P
fs,rdBr

are well defined, and
�

�

�

´ t
s fs,rdBr

�

�

�

. |t� s|3H� .

Proof. We will start to prove existence of the integral
´ t
s fs,rdBr. We will use a rough path method-

ology similar to the one we used for proving the iterated integral for fBm’s. We define the integral
over a partition P ⇢ [0, 1] by ˆ

P
f0,rdBr :=

X

[u,v]2P

f0,uBu,v.

We then look at the L2
(⌦) norm of the integral, and notice that

E

"

✓ˆ
P
f0,rdBr

◆2
#

=

X

[u0,v0],[u,v]2P

f0,uf0,u0E
⇥

Bu,vBu0,v0
⇤

.

We know that the covariance function R

 

u, v

u0, v0

!

is defined by R

 

u, v

u0, v0

!

:= E
⇥

Bu,vBu0,v0
⇤

.

As we have seen in the previous sections, we know that kRk⇢;[s,t]2  M |t� s|
1
⇢ when ⇢ =

1
2H for

a fBm. We then define a new four variable function ¯R : [0, T ]4 ! Rd such that ¯R

 

u, v

u0, v0

!

:=

fu,vfu0,v0 =
�

v2H � u2H
� �

v02H � u02H
�

. Now, we see that

k ¯R k⇢̄;[s,t]2=

0

@

sup

P⇢[s,t]

X

[u,v],[u0,v]2P

�

�fu,vfu0,v0
�

�

⇢̄

1

A

1
⇢̄



0

@

sup

P⇢[s,t]

X

[u,v],[u0,v]2P

|v � u|2H⇢̄
�

�v0 � u0
�

�

2H⇢̄

1

A

1
⇢̄



0

@

sup

P⇢[s,t]

0

@

X

[u,v]2P

|v � u|2H⇢̄

1

A

21

A

1
⇢̄

.

Let ⇢̄ =

1
2H , then we find that

k ¯R k⇢̄;[s,t]2 |t� s|
2
⇢ .

Knowing that k ¯R k⇢̄;[s,t]2 , kRk⇢;[s,t]2 < 1, and ✓ = 1
⇢ +

1
⇢̄ > 1, we use Young’s maximal inequality,
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by Towghi [25], and find that

sup

P⇢[0,1]

�

�

�

�

�

�

X

[u0,v0],[u,v]2P

¯R

 

0, u

0, u0

!

R

 

u, v

u0, v0

!

�

�

�

�

�

�

 C (✓) k ¯R k⇢̄;[0,1]2 kRk⇢;[0,1]2 .

Therefore we have that

sup

P⇢[0,1]
E

"

✓ˆ
P
f0,rdBr

◆2
#

 C (✓) k ¯R k⇢̄;[0,1]2 kRk⇢;[0,1]2 .

Now, the rest of the proof is essentially equal to that of proposition 6.6. Indeed, just look at two
partitions, and check that

lim

"!0
sup

P,P 0 ⇢ [0, 1]

| P | _ | P 0 |< "

E

"

✓ˆ
P
f0,rdBr �

ˆ
P 0

f0,rdBr

◆2
#

= 0,

by the same argument as in proposition 6.6. We conclude that the integral is invariant under
different partitions. Therefore, we may define

ˆ 1

0
f0,rdBr := lim

|P|!0

ˆ
P
f0,rdBr.

Then we have that,

E

"

✓ˆ 1

0
f0,rdBr

◆2
#

 C (✓) k ¯R k⇢̄;[0,1]2 kRk⇢;[0,1]2 .

We have looked at the interval [0, 1], but we can extend this to any interval [s, t] by reparametriza-
tion of {Bt; 0  t  1} ⇠

�

Bs+(t�s)⇥; 0  ⇥  1

 

as the variation norm are invariant under reparametriza-
tion. We therefore get the bounds,

E

"

✓ˆ t

s
fs,rdBr

◆2
#

 C (✓) k ¯R k⇢̄;[s,t]2 kRk⇢;[s,t]2  M(✓) |t� s|
2
⇢̄ |t� s|

1
⇢

where ⇢ = ⇢̄ =

1
2H , and hence

E

"

✓ˆ t

s
fs,rdBr

◆2
#

 M(✓) |t� s|6H .

By Lp- L2 equivalence, and by Kolmogorov’s continuity theorem, we know there exist a continuous
version of

´ t
s fs,rdBr such that

´ t
s fs,rdBr 2 C3H�.
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Next we will show that the “opposite” cross-integral exist and is of sufficient regularity.

Lemma 8.5. Let f : [0, T ] ! Rd , and f(t) = t2H . Let Bt be a fractional brownian motion with
H 2 (0, 1), Define ˆ t

s
Bs,rdfr := lim

|P|!0

X

[u,v]2P

Bufu,v �Bsfs,t.

Then the integral ˆ t

s
Bs,rdfr = 2H

ˆ t

s
Bs,rr

2H�1dr

is well defined, and

|
ˆ t

s
Bs,rdfr |. |t� s|3H .

Proof. We look at

|
ˆ t

s
Bs,rdfr | sup

u,v2[s,t]
|Bu,v|

ˆ t

s
2Hr2H�1dr . |t� s|3H .

Where we have used that (t2H � s2H)  C (t� s)2H , and H 2 (

1
4 ,

1
3 ]. This implies that the integral

exists, and is of sufficient regularity. Next, we see that if we consider the Lebesgue Stieltjes integral,
and know that f is of finite variation since f is differnetiable, and hence,

ˆ t

s
Bs,rdfr = 2H

ˆ t

s
Bs,rr

2H�1dr.

Which concludes the proof.

We now want to use the integrals we just showed to define a reduced rough path. To simplify
notation, we will define the function Y : [0, T ]⌦2 ! Rd⌦3 by Ys,t := Sym(

´ t
s fs,rdBr +

´ t
s Bs,rdfr),

where f(t) = t2H . We will use Ys,t in the rest of this section.

Proposition 8.6. The path
�

B(1), B(2),f , B(3),f
�

2 CH�
([0, T ] , V ), f(t) = t2H , induces a reduced

rough path
�

B(1), S(2),f , S(3),f
�

2 CH�
r ([0, T ] , V ) by considering the map

⇣

B(1), B(2),f , B(3),f
⌘

7�!
⇣

B(1), Sym
⇣

B(2)
s,t

⌘

+ fs,t, Sym(B(3),f
s,t ) + Ys,t

⌘

.

Proof. As we know the symmetry operator is linear, and therefore the reduced Chen’s relation is
easy to check. the regularity of the objects remains unchanged by the symmetry operator.

Next, we will give a proposition relating the reduced Brownian rough path the iterated integrals
given by exponents of B(1)

s,t . As we know, the relation we have stated between the Itô integral and
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Stratonovich is given by
B(2),Itó

s,t = B(2),Strat
s,t +

�

t2H � s2H
�

Id⇥d.

We know Sym

⇣

B(2),Strat
s,t

⌘

= B(1)
s,t ⌦B(1)

s.t , therefore, the next proposition will become useful for the
proof of the Itô formula.

Proposition 8.7. Let B(1) 2 C↵, ↵ > 1
4 . Consider the geometric choice ¯S(2)

s,t =

1
2B

(1)
s,t ⌦ B(1)

s,t

and ¯S(3)
s,t =

1
3!B

(1)
s,t ⌦ B(1)

s,t ⌦ B(1)
s,t . Let f 2 C2↵ , then the reduced path induced by perturbating the

geometric choice of S(2) and S(3) is again a reduced rough path,

⇣

B(1)
s,t , S

(2)
s,t , S

(3)
s,t

⌘

=

⇣

B(1)
s,t , ¯S

(2)
s,t + fs,t, ¯S

(3)
s,t + Ys,t

⌘

2 C ↵
r

⇣

[0, T ] ,Rd
⌘

Proof. This follows directly from proposition 8.6.

Just as with the second iterated integral, we need a relation between the third iterated Itô
integral and Stratonovich integral. We will define

S(3),Strat
s,t = S(3),Itô

s,t +

1

6

Ys,t.

Where Ys,t is the function described above. In the next theorem we present an Itô formula for
reduced fractional rough paths with ↵ 2 (

1
4 ,

1
3 ].

Theorem 8.8. Let F : V ! W be in C4
b and let Ys,t be given by

Ys,t = Sym

✓ˆ t

s
fs,rdBr +

ˆ t

s
Bs,rdfr

◆

.| t� s |3H .

Let
BItô

=

⇣

B(1)
s,t , S

(2),Itô
s,t , S(2),Itô

s,t

⌘

=

✓

Bs,t, S
(2),Strat
s,t +

1

2

�

t2H � s2H
�

Id⌦d, S(3),Strat
s,t +

1

6

Ys,t

◆

2 CH�
r ([0, T ] , V ) ,

with H 2 [

1
4 ,

1
3). Then

F (Bt)� F (B0) =

ˆ t

0
DF (Bs)dB

Itó
s +H

ˆ t

0
D2F (Bs)s

2H�1ds+

ˆ t

0
D3F (Bs)dYs

for 0  t  T . Where the integral
´ t
0 DF (Bs)dBItó

s is understood as the rough integral in the
following way; Let P be a partition on [0, t],

ˆ t

0
DF (Bs)dB

Itó
s := lim

|P|!0

X

[u,v]⇢P

DF (Bu)B
(1)
u,v +D2F (Bu)S

(2),Itó
u,v +D3F (Bu)S

(3),Itó
u,v .
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The second integral H
´ t
0 D

2F (Bs)s2H�1ds is well defined as a Young integral, and the third integral

ˆ t

0
D3F (Bs)dYs := lim

|P|!0

X

[u,v]⇢P

D3F (Bu)Yu,v

Which exists, as all other terms in the equation, is finite.

Proof. When B is a perturbated geometric path, we know that it can be reduced, by considering
the symmetric choice. hence looking at the taylor expansion of F (B) we see that

F (Bt)� F (B0) =
X

[u,v]⇢P

F (Bv)� F (Bu)

=

X

[u,v]⇢P

DF (Bu)Bu,v +
1

2

D2F (Bu)B
⌦2
u,v +

1

6

D3F (Bu)B
⌦3
u,v + o(| v � u |4H)

=

X

[u,v]⇢P

DF (Bu)Bu,v +D2F (Bu)S
(2),Strat
u,v +D3F (Bu)S

(3),Strat
u,v + o(| P |).

Now, knowing that S(2),Strat
s,t = S(2),Itó

s,t +

1
2

�

t2H � s2H
�

Id⌦d and S(3),Strat
s,t = S(3),Itó

s,t +

1
6Ys,t we

substitute in the above equations and find

=

X

[u,v]⇢P

DF (Bu)Bu,v +D2F (Bu)

✓

S(2),Itó
u,v +

1

2

�

u2H � v2H
�

Id⌦d

◆

+D3F (Bu)

✓

S(3),Itó
u,v +

1

6

Yu,v

◆

+ o(| v � u |4H).

We rearrange the terms, and get the expression

=

X

[u,v]⇢P

DF (Bu)Bu,v +D2F (Bu)S
(2),Itó
u,v +D3F (Bu)S

(3),Itó
u,v

+

X

[u,v]⇢P

1

2

D2F (Bu)
�

v2H � u2H
�

+

1

6

D3F (Bu)Yu,v + o(| v � u |4H).

The first line in the last equality we recognize as the rough path integral
´ t
0 DF (Bs)dBs . We

need to prove the last two objects in the last sum. Let P be a partition of [0, t]. We know from
lemma7.2 that,

X

[u,v]⇢P

1

2

D2F (Bu)
�

v2H � u2H
�

! H

ˆ t

0
D2F (Bs)s

2H�1ds.
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The last sum is defined to be such that

lim

|P|!0

X

[u,v]⇢P

D3F (Bu)Yu,v =

ˆ t

0
D3F (Bs)dYs.

Although one would expect Young theory to apply to this integral as well, since |Ys,t| . |t� s|3↵

and
�

�D3F (B)s,t

�

� . |t� s|↵, the Although we do not have an explicit expression for the last integral,
we know it exists, as all other terms in the formula exists, and is finite.

The connection here seen between rough path theory and stochastic analysis is very interesting.
We want to conduct further research to gain knowledge about how to define a proper integral with
respect to the integral process Y such that the Itô Lemma for reduced fBm’s is explicit and gives
a translation from Stratonovich calculus to Itô calculus for fractional brownian motion with low
regularity. We have not extended this result to multifractional Brownian motions, as we have to
little knowledge of the explicit form of the process Y .
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Part III

Financial applications of Rough Path theory,
and the Heston model.
Recent research done by Jim Gatheral, Peter Friz, and others, suggest that volatility as a stochastic
process, is driven by a fractional brownian motion with Hürst exponent somewhere in the interval
(0.1, 0.2), see [9] ,[5]. This is highly interesting findings, which directly translates to negative
autocorrelation in the volatility process. To model the phenomena, we will have use for a theory
to handle noise of low regularity. In the paper “volatility is rough” by J. Gatheral et.al. [9] the
authors look at an exponential Ornstein-Uhlenbeck model driven by a fractional brownian motion,
i.e if vt is the solution to

dvt = k (µ� vt) dt+ dBH
t ,

then take the exponential of vt,
Vt = exp (vt) .

The existence of such a model is essentially trivial, as the brownian motion is additive, but as we
have seen in part I of this thesis, the existence of such solutions in the case where the differntial
equation is given by

dXt = b(Xt)dt+ �(Xt)dB
H
t ,

can be more tricky to prove. Given some regularity conditions on �(i.e � 2 C4
b ) we have shown

the existence of such equation when H 2 (

1
4 ,

1
3 ]. Still if we consider a general square root model,

where �(Xt) =
p
Xt, We do not have the desired regularity on � to show existence of a solution

by established theory. However, we will show that we are able to prove existence of a solution
to a square root process, based on a type of “ Wong-Zakai” approximation of smooth paths, and
choosing the geometric lift of a fractional brownian motion. Or even better, of a multifractional
Brownian motion. When considering financial applications of such noise, it is important to be
aware of the lack of market completeness, from the use of fractional brownian motion. The process
itself gets, in some sense, predictable and arbitrage will arise. We will discuss some recent empirical
findings relating to fBm’s and mBm’s and suggest some ideas for future research into how one can
remove arbitrage in a multifractional Black-Scholes universe.

9 A discussion of the use of multifractional Brownian motions in

Finance

We discussed in section 6.2 the construction of multifractional Brownian motions when the function
h : [0, T ] ! [a, b] ⇢ (0, 1), and used the Mandelbrot Van Ness representation. In applications, there
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have been a lot of discussion on whether or not the market (be it prices, volatility, etc.) behaves
like a fractional Brownian motion, see [3] and [13]. In the article by Morales et.al. [18] the
authors investigate financial time series of prices and observe that the Hürst parameter change
over time. They show that the Hürst parameter in various blue-chip companies fluctuates around
H =

1
2 and up/down to approximately ⇠ 0.3, 0.7 over time. This could shed some light on the

debate of existence of long memory in prices, as it seem to be depending on the time frame of
observation. This is very interesting from a rough path point of view. As we have shown, we
can use rough path theory to give meaning to SDE’s etc. driven by multifractional brownian
motions of low regularity. As the mBm capture fluctuations of the Hürst parameter in time, we
believe that this could appropriately model these financial time series. The difficulty will still be
to construct a proper function h, and making a “multifractional Black-Scholes” market arbitrage
free. As shown by t. Björk et .al. [24] and L. C. G. Rogers [19], fractional brownian motion admits
for arbitrage, both in the regular probability, and white noise sense. However, if one restricts
admissible trading strategies, there is possible to show no arbitrage with fBm’s (at least when
H > 1

2), see C. Bender et. al [4]. Although there has not been a lot of research into arbitrage
opportunities in the case of price/volatility processes driven by multifractional Brownian motions,
it seem to be reasonable to believe that there exist arbitrage opportunities in such models as well.
At least if h : [0, T ] ! [", 1� "] for small " > 0, is a deterministic function.

9.1 A Wong-Zakai type approximations of a rough square root process driven
by a mBm.

The square root process (SRP) has many applications in finance. Introduced by Cox-Ingersoll-Ross
in the infamous paper [12], where the process was used to model interest rates, it quickly became a
standard model in financial business. In 1993 Steven L. Heston used SRP to model volatility and
proved a closed form solutions to options with stochastic volatility [8]. However, in recent years,
especially the Heston model has gained critics from both practitioners and for example J. Gatheral
(see [9]) for its lack of accuracy to the observed volatility surface. Still the model has some very
interesting mathematical properties, as the square root has a derivative which is singular in 0. In
stochastic analysis we can still show existence, as proved by Yamada and Watanabe, see [22] page
291.

We will in this section use a simple Wong-Zakai type of approximation of a SRP given by

dYt = �↵Ytdt+
p
YtdBh

t ,

where Bh is a one-dimensional multifractional brownian rough path with h : [0, T ] ! [a, b] ⇢ (0, 1)

for 0 < a < b < �  1 such that h 2 C� , to show the existence of a solution. When we consider
one-dimensional geometric processes, the iterated integrals is essentially given by powers of the
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increment of the first order process. That is, the n’th iterated integral in one dimension of a mBm
Bh

s,t is given by B(n),h
s,t =

1
n!

�

Bh
s,t

�n . If we now define the N ’th order lift by

SN (Bh
s,t) =

⇣

1, Bh
s,t, B

(2),h
s,t , ..., B(N�1),h

s,t

⌘

=

✓

1, Bh
s,t,

1

2

⇣

Bh
s,t

⌘2
, ...,

1

(N � 1)!

⇣

Bh
s,t

⌘N�1
◆

.

This rough path satisfies a higher order Chen’s relation by considering the truncated algebra mul-
tiplication in the space T (N)

(R) (see section 3), such that SN (Bh
s,u) ⌦ SN (Bh

u,t) = SN (Bh
s,t), and

the regularity conditions holds. When considering rough integration, and differential equations
in previous sections, we have seen that we need 4 elements in the rough path, i.e S4(X) =

(1, X(1), X(2), X(3)
) when we where dealing with paths with regularity in 1

4 < ↵  1
3 . One would be-

lieve that we need more iterated integrals, the lower regularity we have on the process we integrate.
Actually, we need N = inf

�

n 2 N :

1
a < n

 

iterated integrals, where a = inf {h(t) : 0  t  T} for
a mBm Bh

s,t with h : [0, T ] ! [a, b] ⇢ (0, 1) for 0 < a < b < �  1 such that h 2 C� . We may define
a space of such one dimensional geometric multifractional rough paths of arbitrary regularity, by
letting

SN (Bh
) 2 C a

g ([0, T ] ,R) ()
N�1
X

i=0

�

�

�

B(i),h
�

�

�

ia
< 1, and Chen0s relation .

Where, a = inf {h(t) : 0  t  T} and B(0),h
:= 1. Further we could define a metric for two

elements SN (Bh
) and SN (

˜Bh
) of C a

g by

da
⇣

SN (

˜Bh
);SN (Bh

)

⌘

:=

N�1
X

i=0

�

�

�

˜B(i),h �B(i),h
�

�

�

ia

We will use this rough path to show existence of square root processes driven by a mBm with
arbitrary regularity.

Theorem 9.1. Let Bh
s,t be a one-dimensional multifractional Brownian motion with h : [0, T ] !

[a, b], for 0 < a < b < �  1 such that h 2 C�. Let SN (Bh
) 2 C a

g (R) denote the geometric lift to a
multifractional rough path as described above, with N = inf

�

n 2 N :

1
a < n

 

. Then there exists a
solution Yt to the differential equation given by

dYt = �↵Ytdt+
p

YtdB
h
t , Y0 = y.

Where Bh
s,t = SN (Bh

s,t).

Proof. From proposition 2.3 we know that if SN (Bh
) 2 C a

g , where Bh
s,t is constructed according

to section 6.2, there exist a smooth path SN (Bh,"
) 2 C 1

g such that

da
�

SN (Bh,"
);SN (Bh

)

�

! 0 as "! 0

.

78



Indeed, due to the geometric nature of SN (Bh
), and the fact that SN (Bh,"

) behaves by the rules
of regular calculus, we may use the interpolation lemma 2.3 (extended to more integrals). Define
Bh,"

s,t = SN (Bh,"
s,t ) and Bh

s,t = SN (Bh
s,t). We start to study the smooth version of the square root

process,
˙Y "
t = �↵Y "

t dt+
p

Y "
t
˙Bh,"
t Y "

0 = y

We can solve this by looking at the derivative of Xt :=
p

Y "
t , i.e

˙Xt =

˙Y "
t

2Xt
= �1

2

↵
q

˙Y "
t +

1

2

˙Bh,"
t

Using the integrating factor exp(

1
2↵t) , we find that

p

Y "
t =

p
y exp

✓

�1

2

↵t

◆

+

1

2

ˆ t

0
exp(�1

2

↵(t� s)) ˙Bh,"
t ds

and hence

Y "
t =

✓

p
y exp

✓

�1

2

↵t

◆

+

1

2

ˆ t

0
exp(�1

2

↵(t� s)) ˙Bh,"
s ds

◆2

.

We know that the integral containing the approximation of the fBm converges to the fBm integral,
as desired

lim

"!0

ˆ t

0
exp(�1

2

↵(t� s)) ˙Bh,"
s ds =

ˆ t

0
exp(�1

2

↵(t� s))dBh
s .

Indeed, we know that the exponential function in s is smooth, and hence, Young’s integral the-
ory assures us that both integrals exists, and are well defined. Actually, we could as well write´ t
0 exp(�

1
2↵(t� s))dBh

s =

´ t
0 exp(�

1
2↵(t� s))dBh

s and
´ t
0 exp(�

1
2↵(t� s))dBh,"

s =

´ t
0 exp(�

1
2↵(t�

s))dBh,"
s as these are not a rough integrals in the sense of theorem 3.7. We therefore see that by

boundedness of the exponential function on [0, T ] we see that,

�

�

�

´ t
0 exp(�

1
2↵(t� s))Ḃh,"

s ds�
´ t
0 exp(�

1
2↵(t� s))dBh

s

�

�

�

 Kd↵(Bh,Bh,"
) ! 0 as "! 0.

Therefore, we define a solution Yt := lim"!0 Y "
t , and see that this solution will solve the differential

equation we started with, i.e

dYt = d

 

✓

p
y exp

✓

�1

2

↵t

◆

+

1

2

ˆ t

0
exp(�1

2

↵(t� s))dBh
s

◆2
!

= 2

✓

p
y exp

✓

�1

2

↵t

◆

+

1

2

ˆ t

0
exp(�1

2

↵(t� s))dBh
s

◆

⇥
✓

�1

2

↵ exp

✓

�1

2

↵t

◆

p
y � ↵

1

4

exp(�1

2

↵t)

ˆ t

0
exp(

1

2

↵s)dBh
t +

1

2

dBh
t

◆
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=

✓

p
y exp

✓

�1

2

↵t

◆

+

1

2

ˆ t

0
exp(�1

2

↵(t� s))dBh
s

◆

⇥
✓

�↵py exp

✓

�1

2

↵t

◆

� ↵
1

2

exp(�1

2

↵t)

ˆ t

0
exp(

1

2

↵s)dBh
t

◆

+

✓

p
y exp

✓

�1

2

↵t

◆

+

1

2

ˆ t

0
exp(�1

2

↵(t� s))dBh
s

◆

dBh
t

= �↵Yt +
p

YtdB
h
t

and we are done.

The result here is, of course, just a generalization of an SRP driven by a fractional Brownian
motion, we can just choose h, such that for fixed a 2 (0, 1), then h(t) = a, for all t 2 [0, T ]. We
can use this model for the regularity that J. Gatheral et.al [9] claims the volatility inherits. A
square root process, has of course other properties than an exponential O-U model, but may in
some occasions seem fitting to the volatility surface. One may also use this model for interest
rates, where one could easily believe that the market should trend as well, but maybe with a hurst
parameter more frequently around one half, to signify that there, with more volumes, should be
less trends.

We used in the construction of the solution a function h of � regularity such that � >

sup {h(t) : 0  t  T} . This suggest that we may model the function h by a stochastic process
itself.
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10 Conclusion

We have in this thesis studied the theory of rough paths, and shown applications of the theory
both to stochastic processes, such as fractional and multifractional Brownian motion, and further
to finance. The authors find the subject very promising. The theory of multifractional Brownian
motions is, in our opinion, an important tool in financial applications, as we think the markets could
be modeled more accurately with a Hürst parameter (either deterministic or stochastic) depending
on time. However, it is important to remeber that one would need to observe the Hürst function
to apply the mBm to financial markets. As this is done by observing price data, one could get
significant errors when estimating the function. Therefore, it would be suitable to conduct studies
on how much more accurate one are able to model stock prices compared to a usual Brownian
motion, and study the error relative to the estimation error of the Hürst fiunction. For future
research we also want to study how multifractional Brownian motions behave when h is stochastic,
and how it behaves under no-arbitrage restrictions.
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