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Abstract

Lending money has been one of the basic activities of banks for centuries.
However, credit evaluation and pricing of loans are still not well understood,
since the assessment of the impact of credit risk on prices in bond markets,
which is one of the most challenging types of �nancial risk, is in general
di�cult and subject to the complex interplay of factors as e.g. recovery
risk and market risk. Roughly speaking, credit risk describes the exposure
of losses due to changes of the vanity of borrowers as e.g. the issuer of a
corporate bond. The severe global crisis of 2008, which was signi�cantly
caused by the sudden occurrence of illiquidity of credit markets, has shown
the urgent need for a better understanding this sort of risk. In this thesis
we will present a new quantitative model which is developed to control these
kind of risk. We will estimate the parameters of the new model by using non-
linear �ltering techniques. Based on these estimations future stock prices will
be computed.

This thesis consists of 7 chapters, where chapter 1 is an introduction to the
mathematical notation and de�nitions which provide us with a foundation
throughout this thesis. In chapter 2 an overview of Lévy process is given.
Chapter 3 and 4 de�nes �nancial derivatives and discuss the challenges of
the modelling of credit risk and basic approaches to such risk. We introduce
the most common credit models, focusing on the Merton model which will be
the reference model in a later chapter. In chapter 5 the theory of non-linear
�ltering will be given. In Chapter 6 we introduce a new model and we �t this
model to empirical data. We emphasize that we focus on the simulations in
this context. Concluding comments will be given in the last section. Chapter
7 suggests possible extensions to this thesis.

R code is given in the Appendix.
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Chapter 1

Basic mathematical tools

In this chapter we will introduce the mathematical framework and notation
which we will use throughout the thesis. This gives us a summary of the
basic concepts concerning stochastic analysis. We will relate the concepts to
applications in �nance, which will give us a toolbox for the theory discussed
in this thesis.

This chapter is based on [Sch03], [Ben04], [CT04], [App09], [Øks95] and the
lecture notes of [Kie08].

1.0.1 Measure theory

We start with some measure theory. Let Ω represent the sample space. This
is a set Ω 6= ∅, 1 representing the collection of all possible outcomes of a
random experiment.

We are often interested in �nding the probability of an event to occur in an
experiment, and for this purpose we need the following de�nitions:

1The notation ∅ represents the empty set.
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4 1. BASIC MATHEMATICAL TOOLS

De�nition 1.1. σ-algebra
A family F of subsets of Ω is called a σ-algebra (on Ω), if

(i) ∅ ∈ F

(ii) for A ∈ F ⇒ Ac ∈ F where Ac := Ω− A

(iii) A1, A2, . . . ∈ F ⇒ ∪i≥1Ai ∈ F .

De�nition 1.2. Probability measure
A function

P : F → [0, 1]

is called probability measure on (Ω,F), if

(i) P(∅) = 0, P(Ω) = 1

(ii) A1, · · · , An, · · · ,∈ F with Ai ∩ Aj = ∅, i 6= j(disjoint).
This implies that P(∪i≥1Ai) =

∑
i≥1 P(Ai).

Elements of F are called events and and the triple (Ω,F ,P) is called the
probability space.

We say that the probability space if complete is N ∈ F is a null set, i.e.
P(N) = 0, then subsets A of N are null sets too.

Example 1.3. Lebesgue(-Borel) measure
The Lebesgue(-Borel) measure on [0,1] is an example of a probability mea-
sure. Set Ω = [0,1], F = B(R) ∩ [0, 1] = {A ∩ [0, 1] : A ∈ B(R)}.
It can be shown that there exist a unique probability measure

λ : F → [0, 1]
s.t.

λ([a, b)) = b− a (length of the interval [a,b)).

Characteristic function

In chapter 2 we will look at characteristic functions of Lévy processes, which
motivates us to give the following de�nition:

De�nition 1.4. Characteristic function
If X is a random variable with cumulative distribution function F , then its
characteristic function φX is de�ned as

φX(t) = E[eitX ] =
∫∞
−∞ e

itxF (dx), t ∈ R, i =
√
−1.
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This implies that the characteristic function always exits since |eitX | = 1, 0 ≤
t ≤ T .

Characteristic functions of random variables characterize the distribution.
This means that if two random variables have the same characteristic func-
tion, it implies that they also have the same distribution.

1.0.2 Stochastic processes and martingales

De�nition 1.5. Stochastic process
A Stochastic process Xt, 0 ≤ t ≤ T is a family of random variables parametrized
by time t. That is, for each given time t ∈ [0, T ], Xt is a random variable.

Example 1.6. Stock prices
Let St denote the price of a stock at time t, 0 ≤ t ≤ T . For each t ∈ [0, T ] ,
St is modelled by a random variable and hence the process St, 0 ≤ t ≤ T is
a stochastic process.

De�nition 1.7. Filtration, Ft.
Let Ft, 0 ≤ t ≤ T be a family of σ-algebras on (Ω,F ,P) such that

Ft1 ⊂ Ft2
for all 0 ≤ t1 ≤ t2 ≤ T .
Then Ft, 0 ≤ t ≤ T is called a �ltration on (Ω,F ,P).

The σ-algebra Ft can be interpreted as a collection of information up to time
t. More information is available when time passes by and hence the chances
of determining the events we are looking for are more certain.

A process Xt, 0 ≤ t ≤ T is said to be a Ft-adapted process if the value at
time t is revealed by the information Ft.

De�nition 1.8. Ft-adapted
A stochastic process Xt, 0 ≤ t ≤ T is said to be Ft-adapted if, for each
t, 0 ≤ t ≤ T , the value of Xt is revealed at time t: the random variable Xt is
Ft-measurable.
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De�nition 1.9. Stopping time, optional time A random variable τ :
Ω→ [0,∞] is

1. a stopping time if the set {τ ≤ t} ∈ Ft,∀t.

2. a optional time if {τ < t} ∈ Ft, ∀t.

De�nition 1.10. σ-algebra at a stopping time, Martingale

1 For all cádlág processes, we de�ne the stopping time σ-algebra Fτ
as

Fτ = {A ∈ F : A ∩ {τ ≤ t} ∈ Ft,∀t ≥ 0}.

2 X is a (sub-/super-) martingale (with respect to F and P) if

E[Xt|Fs]


≤ Xs(super −martingale)
= Xs(martingale)

≥ Xs(sub−martingale)

a.s. for all 0 ≤ s ≤ t, provided E[|Xt|] <∞ for all t.

In other words, when looking at a (super-)martingale we look at the present
value to predict the future value.

A cádlág process Xt, 0 ≤ t ≤ T , that is a process with right-continuous
paths and existing left limits is called a local martingale if there exists an
increasing sequence of stopping times Tn with Tn →∞ for n→∞ a.e. such
that Xt∧Tn1Tn>0 is an uniformly integrable martingale. This means that
any martingale is a local martingale, but not necessarily vice versa. A local
martingale is a martingale up to some stopping time Tn.

De�nition 1.11. Equivalent martingale measure
A measure Q ∼ P such that the normalized process Si(t) = Si(t)

S0(t)
, 0 ≤ t ≤

T, 1 ≤ i ≤ N , is a (local) martingale measure w.r.t. Q is called an equivalent
(local) martingale measure.

If there exists an equivalent (local) martingale measure, then the market has
no arbitrage. In other words the possibility of earning money from a zero
investment without taking any risk does no exist.

1.0.3 Brownian motion, Itô integration and Itôs formula

De�nition 1.12. Brownian motion
B = {Bt}t≥0 is called a Brownian motion on (Ω,F ,F,P) if
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� B0 = 0 a.e.

� B has independent increments.
For 0 ≤ t1 < . . . < tn gives Bt1 , Bt2 − Bt1 , ..., Btn − Btn−1 are indepen-
dent.

� B has stationary and Gaussian distributed increments.
For t1 ≤ t2, Bt2−Bt1 has the same distribution as Bt2−t1, with Bt2−t1 ∼
N (0, t2 − t1).

Figure 1.1: Three sample paths of Brownian motion.

The Brownian motion turns out to be a Markov process. This is because of
its independence and stationary property.

From one day to another, the price of a stock or the credibility of a �rm
either stay the same, or move up or down by jumps. Brownian motion is
a continuous stochastic process, which means that it does not capture this
scenario. In reality, this economical behaviour of jumps causes unpredictable
results when only taking into account continuous movements in the case of
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Brownian motion. For this purpose we will later in this thesis look at Lévy
processes.

De�nition 1.13. Itô Processes
Let Bt be Brownian motion on (Ω,F ,P). A Itô Process is a stochastic process
Xt, 0 ≤ t ≤ T on (Ω,F ,P) of the form:

Xt = X0 +

∫ t

0

u(s, ω)ds+

∫ t

0

v(s, ω)dBs, 0 ≤ t ≤ T, (1.1)

where u and v satis�es:

P[

∫ t

0

u(s, ω)2ds <∞ for all t ≥ 0] = 1 (1.2)

P[

∫ t

0

|u(s, ω)|ds <∞ for all t ≥ 0] = 1. (1.3)

We usually write equation (1.1) on the shorter di�erential form:

dXt = udt+ vdBt, 0 ≤ t ≤ T. (1.4)

De�nition 1.14. Itô integrable
Let Bs, 0 ≤ s ≤ t be a Brownian motion with respect to a usual �ltration
Fs, 0 ≤ s ≤ t. A stochastic process Xs, 0 ≤ s ≤ t is called Itô integrable on
the interval [0, t] if:

� Xs, 0 ≤ s ≤ t is adapted.

�

∫ t
0

E[X2
s ]ds <∞.

The Itô integral for e.g. bounded continuous adapted X is de�ned as the
random variable∫ t

0
X(s, ω)dB(s, ω) = limn→∞

∑n−1
i=1 X(si, ω)(B(si+1, ω)−B(si, ω)),

where the limit is in the sense of variance.

Theorem 1.15. Expectation and variance of the Itô integral
The expectation and variance of the Itô integral are

E[

∫ t

0

XsdBs] = 0, Var[

∫ t

0

XsdBs] =

∫ t

0

E[X2
s ]ds, 0 ≤ t ≤ T. (1.5)

The relation for the variance is known as the Itô isometry.
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De�nition 1.16. Itôs formula (Short hand version):

df(t,Xt) =
∂f(t,Xt)

∂t
dt+

∂f(t,Xt)

∂x
dXt +

1

2

∂2f(t,Xt)

∂x2
(dXt)

2, 0 ≤ t ≤ T.

(1.6)

1.0.4 Change of measure and numeraire

Radon-Nikodym theorem

The Radon-Nikodym theorem states that the change of probability measure
Q to another measure P << Q is uniquely characterized by the corresponding
Radon-Nikodym density L with expectation EQ[L] = 1, L ≥ 0. In other
words, for all measurable X the expected values under the new probability
measure P is given by:

EP[X] = EQ[LX]. (1.7)

This relation is, in literature, usually denoted by:

dP
dQ

= L. (1.8)

Hence an interpretation of the Radon-Nikodym density is a likelihood ratio
between the two probability measures.

When we change the measure, we change the probability but the random vari-
ables remain unchanged. A Brownian motion under the probability measure
Q is not necessarily a Brownian motion under the new probability measure P.
Girsanov's theorem determines which processes are Brownian motion under
P.

Theorem 1.17. The Girsanov theorem
Let Yt ∈ Rn be a Itô process of the form

dYt = a(t, ω)dt+ dBt, 0 ≤ t ≤ T, Y0 = 0,

where T ≤ ∞ is a given constant and Bt is a n-dimensional Brownian-
motion. Put

Mt = exp(−
∫ t

0

a(s, ω)dBs −
1

2

∫ t

0

a2(s, ω)ds), 0 ≤ t ≤ T. (1.9)
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Assume that Mt is martingale w.r.t. F (n)
t and Q, that is a(t, ω), 0 ≤ t ≤ T

satis�es Novikov's condition

E[exp(
1

2

∫ T

0

a2(s, ω)ds)] <∞, (1.10)

where E = EQ is the expectation w.r.t. Q. De�ne the measure P on F (n)
T by

dP(ω) = MT (ω)dQ(ω). (1.11)

Then P is a probability measure on F (n)
T and Yt is a n-dimensional Brownian

motion w.r.t. P, for 0 ≤ t ≤ T .

Proof. See [Øks95].

In other words, Girsanov's theorem tells us that if we change the drift co-
e�cient of a given Itô process, then the law of the process will not change.
By applying Girsanov's theorem one can move from the original measure Q
to an equivalent measure P, e.g. pricing assets as stocks in an arbitrage free
market.

Example 1.18. Geometric Brownian motion
Geometric Brownian motion is a dynamical model which describes the price
St of a underlying stock at times t, 0 ≤ t ≤ T .
The model is given by the following:

St = S0 exp(µt+ σBt), 0 ≤ t ≤ T, S0 = x (1.12)

where µ is the drift, σ represents the volatility and Bt, 0 ≤ t ≤ T is Brownian
motion.

The dynamics of the Geometric Brownian motion is given by:

dSt = αStdt+ σStdBt. (1.13)

Here α = (µ+ 1
2
σ2). 2

We de�ne the dynamics:

dWt = dBt + α−r
σ
dt.

2for further calculation see Appendix.
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By substituting the expression in the dynamics of equation (1.13) which gives:

dSt = αStdt+ σStdBt

= rStdt+ (α− r)Stdt+ σStdBt

= rStdt+ σSt(dBt +
α− r
σ

dt)

= rStdt+ σStdWt.

(1.14)

By looking at the expectation:

E[Wt] = E[λt+Bt]

= E[λt] + E[Bt]

=
α− r
σ

t

6= 0

from de�nition (1.12) we know that Wt is not a Brownian motion under the
probability Q.

If we now set a(t, ω) = α−r
σ

in theorem 1.17 gives:

Wt = Bt + α−r
σ
t.

Hence we have Brownian motion under the probability P.
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Chapter 2

Lévy Processes

In �nance we are often interested in modelling the dynamics of the underlying
asset. A popular model used for this purpose is the Black-Scholes model
which describes di�usion.

However, observed asset returns certain empirical properties which are not
captured by the Black-Scholes model. When we look at how the price behaves
over time we see jumps. This has led to a development of a large number
of jump di�usion models and a widely studied class is the exponential Lévy
process. Lévy processes have become an extremely popular and important
tool in mathematical �nance. This is so because it describes the �nancial
market in a more accurate and realistic way than models based on continuous
processes. In the real world we observe price processes with sudden changes,
which are captured by jumps and this is something price analysts have to
take into consideration.

The aim of this chapter is to provide an overview of Lévy processes and
their application to mathematical �nance. Most of the material is borrowed
from [CT04]. We begin with the de�nition of Lévy processes and some ba-
sic concepts. We will then introduce non-negative Lévy processes, namely
subordinators and α-stable distributions.

13



14 2. LÉVY PROCESSES

Figure 2.1: Sample path of Brownian motion (grey) where α = 2 and a Lévy
process (black) where α = 1.9.

2.0.5 Theory about Lévy processes

Let us begin with the de�nition of Lévy processes:

De�nition 2.1. Lévy Process
A cádlág 1 stochastic process Xt, 0 ≤ t ≤ T on (Ω,F ,P) with values in
Rd such that X0 = 0 is called a Lévy process if it possesses the following
properties:

1. Independent increments: for every increasing sequence of times t0, · · · , tn,
the random variables Xt0 , Xt1 −Xt0 , · · · , Xtn −Xtn−1 are independent.

2. Stationary increments: the law of Xt+h −Xt does not depend on t.

1A cádlág has the property of being right continuous and has left limits. In some
literature the term RCLL (right continuous left limits)is often used.
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3. Stochastic continuity: ∀ε > 0, limh→0 P(|Xt+h −Xt| ≥ ε) = 0.

The third condition entails that for a given time t, 0 ≤ t ≤ T the probability
of observing a jump is zero. In other words, discontinuity can only occur at
random times.

De�nition 2.2. In�nite divisibility
A probability distribution F on Rd is said to be in�nitely divisible if for any
integer n ≥ 2, there exist n i.i.d. random variables X1, · · · , Xn such that the
sum X1 + · · ·+Xn has distribution F .

There is a strong interplay between in�nite divisible distributions and Lévy
processes. In fact, for every t ≥ 0 a Lévy process Xt has an in�nitely divisible
distribution. And if F is an in�nitely divisible distribution, then it exists a
Lévy process such that the distribution of X1 is given by F .

Example 2.3. Normally distributed variables
A simple example is where X1, · · · , Xn are independent, identically normally
distributed with mean µ

n
and variance σ2

n
. Then Y =

∑n
i=1Xi is also normally

distributed, but with mean µ and variance σ2. In other words the distribution
is the same but the parameters are modi�ed.

De�nition 2.4. Characteristic function
The characteristic function of the Rd-valued random variable X is the func-
tion ΦX : Rd → R de�ned by

∀z ∈ Rd,ΦX(z) = E[exp(iz.X)] =

∫
Rd
eiz.xdµX(x). (2.1)

The characteristic function of a Lévy process, Xt, 0 ≤ t ≤ T is given by

E[eiz.Xt ] = etψ(z), z ∈ Rd, (2.2)

where the continuous function ψ : Rd 7→ R is called the characteristic expo-
nent of X.

Since Xt, 0 ≤ t ≤ T is a Lévy process we know that it has a in�nitely divisible
distribution. This gives Ψ = ΨX1 and by linearity we have ΨX1 = tΨX1 = tΨ.
This entails that if we know the distribution of X1, we can say something
about the whole process.
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De�nition 2.5. Compound Poisson Process
A compounded Poisson process with intensity λ>0 and jump size distribution
f is a stochastic process Xt de�ned as

Xt =
Nt∑
i=1

Yi, (2.3)

where jump sizes Yi are i.i.d. with distribution f and (Nt) is a Poisson process
with intensity λ, independent from (Yi)i≥1.

Proposition 2.6. Characteristic function of a compound Poisson
process
Let Xt, 0 ≤ t ≤ T be a compounded Poisson process on Rd. Its characteristic
function has the following representation:

E[exp(iu.Xt)] = exp(tλ

∫
Rd

(eiu.x − 1)f(dx)), (2.4)

where λ denotes the jump intensity and f the jump size distribution.

De�nition 2.7. Lévy measure
Let Xt, 0 ≤ t ≤ T be a Lévy process on Rd. The measure ν on Rd de�ned by:

ν(A) = E[#{t ∈ [0, 1] : ∆Xt 6= 0,∆Xt ∈ A}], A ∈ B(Rd) (2.5)

is called the Lévy measure of X : ν(A).

As we can see, the Lévy measure describes the expected number of jumps
per unit of time.

Proposition 2.8. Lévy-Itô decomposition
Let Xt, 0 ≤ t ≤ T be a Lévy process on Rd and ν its Lévy measure.

1. ν is a Radon measure on Rd\0 and veri�es:∫
|x|≤1

|x|2ν(dx) <∞
∫
|x|≥1

ν(dx) <∞. (2.6)

2. The jump measure of X, denoted by JX , is a Poisson random measure
on [0,∞[×Rd with intensity measure ν(dx)dt.
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3. There exist a vector γ and a d-dimensional Brownian motion Bt, 0 ≤
t ≤ T with covariance matrix A such that:

Xt = γt+Bt +X l
t + lim

ε↓0
X̃ε
t , (2.7)

where:

X l
t =

∫
|x|≥1,s∈[0,t]

xJX(ds× dx) (2.8)

and:

X̃ε
t =

∫
ε≤|x|<1,s∈[0,t]

xJX(ds× dx)− ν(dx)ds (2.9)

=

∫
ε≤|x|<1,s∈[0,t]

xJ̃X(ds× dx). (2.10)

The so-called Lévy-Itô decomposition (2.7) entails that all Lévy processes
can be decomposed into three parts X = X1 +X2 +X3, where X1 = γt+Bt

is a Brownian motion with drift, X2 = X l
t is a compounded Poisson process

with jumps with size bigger or equal to one, and X3 = X̃ε
t is a compensated

sum of jumps smaller than one.

The reason why we can not set ε = 0 immediately in X3 is because it may
have in�nitely many small jumps. And by letting ε go to zero we avoid this
problem.

The characteristic triplet (A, ν, γ) of the Lévy process characterizes the dis-
tribution through its characteristic function.

Theorem 2.9. Lévy-Khinchin representation
Let Xt, 0 ≤ t ≤ T be a Lévy process on Rd with characteristic triplet (A, ν, γ).
Then

E[eiz.Xt ] = etψ(z), z ∈ Rd (2.11)

with ψ(z) = −1
2
z.Az + iγ.z +

∫
Rd (eiz.x − 1− iz.x1|x|≤1)ν(dx).

From the Lévy-Itô decomposition we know that the Lévy process can be
decomposed into three parts X = X1 + X2 + X3, where X i, i = 1, 2, 3
are independent processes. This gives us the characteristic exponent of a
Lévy process given by equation (2.11). The Lévy-Khinchin representation
combined with the Itô decomposition actually tells us that the small jumps
are independent of the big jumps.
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2.0.6 Increasing Lévy processes

Subordinators are Lévy processes with increasing increments, in other
words they do not have any negative jumps. This means that µ is de�ned
in (0,∞) and has no mass in (−∞, 0). Mathematically, a Lévy process is
a subordinator if and only if one of the equivalent conditions of following
proposition is satis�ed.

Proposition 2.10. Subordinator
Let Xt, 0 ≤ t ≤ T be a Lévy process on R. The following conditions are
equivalent:

i. Xt ≥ 0 a.s. for some t > 0.

ii. Xt ≥ 0 a.s. for every t > 0.

iii. Sample paths of Xt, 0 ≤ t ≤ T are almost surely non-decreasing: t ≥
s⇒ Xt ≥ Xs a.s.

iv. The characteristic triplet of Xt, 0 ≤ t ≤ T satis�es A = 0, ν((−∞, 0]) =
0,
∫∞

0
(x ∧ 1)ν(dx) < ∞ and b ≥ 0. That is, Xt, 0 ≤ t ≤ T has no

di�usion component, only positive jumps of �nite variation.

A subordinator is often used as a building block, as time changes, to built
other Lévy processes. This property is especially convenient when we con-
struct Lévy-based models in �nance.

Theorem 2.11. Subordination of a Lévy process
Fix a probability space (Ω,F ,P). Let Xt, 0 ≤ t ≤ T be a Lévy process on Rd

with characteristic exponent Ψ(u) and triplet (A, ν, γ) and let St, 0 ≤ t ≤ T
be a subordinator with Laplace exponent l(u) and triplet (0, ρ, b). Then the
process Yt, 0 ≤ t ≤ T de�ned for each ω ∈ Ω by Y (t, ω) = X(S(t, ω), ω) is a
Lévy process. Its characteristic function is

E[eiuYt ] = etl(Ψ(u)). (2.12)

I.e., the characteristic exponent of Y is obtained by composition of the Laplace
exponent of S with the characteristic exponent of X. The triplet (AY , νY , γY )
of Y is given by:

AY = bA (2.13)

νY (B) = bν(B) +

∫ ∞
0

pXs (B)ρ(ds), ∀B ∈ B(Rd), (2.14)
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γY = bγ +

∫ ∞
0

ρ(ds)

∫
|x|≤1

xpXs (dx), (2.15)

where pXt is the probability distribution of Xt, 0 ≤ t ≤ T .

Proof. The proof is carried out in [CT04].

If St, 0 ≤ t ≤ T is a subordinator, its trajectories are increasing:

St ≥ 0, ∀t ≥ 0

and hence we can use it as a time change of other Lévy processes.

2.0.7 Stable distributions and processes

Self-similarity is a remarkable property of Brownian motion. This entails
that: if B is Brownian motion on R then

(Bat√
a

) d
=(Bt), 0 ≤ t ≤ T. (2.16)

More generally, a Lévy process has the property of being self-similar if:

∀a > 0, ∃b(a) < 0 :
(
Xat
b(a)

) d
=(Xt), 0 ≤ t ≤ T .

The characteristic function of Xt is given by ΦXt(z) = e−tΨ(z), which leads
to the following de�nition:

De�nition 2.12. Stable distribution
A Random variable X ∈ Rd is said to have stable distribution if for every
a > 0 there exists b(a) and c(a) ∈ Rd such that

ΦX(z)a = ΦX(zb(a))eic.z, ∀z ∈ Rd. (2.17)

It is said to have a strictly stable distribution if

ΦX(z)a = ΦX(zb(a)), ∀z ∈ Rd. (2.18)

For every stable distribution there exists a constant α ∈ (0, 2], called the
index of stability, such that b(a) = a1/α in equation (2.17). A stable distri-
bution with index α is also referred to as α-stable distribution.
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Figure 2.2: α-stable processes with α-values equal to 0.5,1.0,1.5 and 1.9

An example of an α-stable distribution is where we set α = 2. In this case
we have a Gaussian distribution. In fact, the Gaussian distribution is the
only 2-stable distribution, proposition 2.13. As we can see by Figure 2.2 the
sample paths begin to look like the trajectory of a Brownian motion as α
increases.
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Proposition 2.13. Stable distributions and Lévy processes
A distribution on Rd is α-stable with 0 < α < 2 if and only if it is in�nitely
divisible with characteristic triplet (0, ν, γ) and there exists a �nite measure
λ on S, a unit sphere of Rd, such that

ν(B) =

∫
S

λ(dξ)

∫ ∞
0

1B(rξ)
dr

r1+α
. (2.19)

A distribution on Rd is α-stable with α = 2 if and only if it is Gaussian.

2.0.8 Lévy processes as Markov processes and martin-
gales

Lévy processes have the Markov property because of its independent incre-
ments. We know that, for time s, 0 ≤ s ≤ t the Lévy process satis�es

Xs+t −Xs
d
=Xt.

Its transition kernel is given by:

Ps,t(x,B) = P (Xt ∈ B|Xs) ∀B ∈ B.

If we now consider a stopping time τ , 0 ≤ τ ≤ t then the process Yt =
Xτ+t − Xτ is again a Lévy process, independent from the �ltration Fτ =
A ⊂ F : τ ∩ A ∈ Ft, t ≥ 0 and with the same distribution as Xt, 0 ≤ t ≤ T .
This implies that the Lévy process has the strong Markov property.

Lévy processes have independent increments which entails that we can con-
struct di�erent martingales.

Proposition 2.14. Lévy processes as Martingales
Let Xt, 0 ≤ t ≤ T be a real-valued process with independent increments. Then

1.
(

eiuXt

E[eiuXt ]

)
, t ≥ 0 is a martingale ∀u ∈ R

2. If for some u ∈ R,E[euXt ] <∞, ∀t ≥ 0 then
(

eiuXt

E[eiuXt ]

)
is a martingale.

3. If E[Xt] < ∞,∀t ≥ 0 then Mt = Xt − E[Xt] is a martingale (and also
a process with independent increments).

4. If Var[Xt] < ∞,∀t ≥ 0 then (Mt)
2 − E[(Mt)

2] is a martingale, where
M is the martingale de�ned above.
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If Xt is a Lévy process, for all of the processes of this proposition to be
martingales it su�ces that the corresponding moments be �nite for one value
of t.

In �nance we are often interested in whether the Lévy process itself or its
exponential is a martingale. We can verify this by checking the following
proposition:

Proposition 2.15. Martingale condition for Lévy process
Let Xt, 0 ≤ t ≤ T be a Lévy process on R with characteristic triplet (A, ν, γ).

1. Xt is a martingale if and only if∫
|x|≥1
|x|ν(dx) <∞

and

γ +
∫
|x|≥1

xν(dx) = 0

2. eXt is a martingale if and only if
∫
|x|≥1

exν(dx) <∞ and

A
2

+ γ +
∫∞
−∞ (ex − 1− x1|x|≤1)ν(dx) = 0



Chapter 3

Credit risk and credit derivatives

In this chapter we will de�ne credit risk and discuss pricing methods of a
traditional credit derivative. This will give us a brief introduction to the
�nancial notation, which we will use throughout this thesis.

The material of this chapter are mainly borrowed from [WHD99], [Sch03],
[BR02] and [Kie08].

3.1 What is credit risk?

[Sch03], de�nes credit risk as
De�nition 3.1. Credit risk
The risk that an obligor does not honour his payment obligations.

In other words, credit risk 1 describes the risk that an obligor does not manage
to pay o� interest or a principle of a loan. E.g. a bank lending out money
with the risk of not getting it back by the time of maturity of the contract.
Intuitively with longer time to maturity comes greater risk.

There are commercial rating agencies ranking creditworthiness of companies.
A �rm's credit rating is a measure of the �rm's probability to default. Ex-
ample of such agencies are Moody's Investors Service and Standard & Poor's
Corporation. In Moody's, the gradations of creditworthiness are indicated

1The terms "credit risk" and "default risk" has the same meaning, unless otherwise
stated.
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by rating symbols from Aaa to C (lowest to highest risk)2.

However, many major �nancial institutions use their own internal rating
systems.

3.2 Credit derivatives

De�nition 3.2. Credit derivatives

� A credit derivative is a derivative security that is primarily used to
transfer, hedge or manage credit risk.

� A credit risk derivative is a derivative security whose payo� is materi-
ally a�ected by credit risk.

Secondary (or derived) products where values and pay-o� are channelled
through contract clauses set up in advanced, are called derivatives in �nance.
A credit derivative is a contract between two or more parties which allows
the participants to manage their exposure to credit risk. Options, swaps and
forward contracts are examples of such �nancial assets. These agreements
make it possible to trade credit risk. Credit derivatives are often traded over-
the-counter(OTC), this means that the trading is done directly between the
parties, without any supervision.

A popular type of credit derivative is the Credit Default Swap (CDS) which
will be explained later on in this chapter.

3.3 Bonds and Zero-Coupon Bonds

Bonds are investment in debt and help government and private companies to
raise capital. The borrower makes �xed payments to the investor at certain
times 0 = t0 ≤ t1 ≤ . . . ≤ tn = T , where T is the time of maturity of
the contract. The last payment at time of maturity is usually larger than
the others and is known as the face value or face of the bond. The time to
maturity of a bond varies from a year to a century (or sometimes longer).
A special case of a bond is the zero-coupon bond (ZCB), where there are no
(coupon) payments in addition to the face value paid at maturity

2for more information see https://www.moodys.com/ratings-process/

Ratings-Definitions/002002.
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Figure 3.1: Price of a ZCB with �xed interest rate, r = 0.03.

De�nition 3.3. Zero Coupon Bond (ZCB) A T-maturity ZCB (pure
discount bond) is a contract that guarantees its holder the payment of one
unit of currency at time T, with no intermediate payments. The contract
value at time t < T is denoted by P (t, T ). Clearly P (T, T ) = 1 for all T .

The borrower of the ZCB gains/loses on the di�erence between the payment
at time zero and the amount they receive at maturity. A monetary unit
today is not worth the same tomorrow and to relate the di�erent time values
of currencies, we simply compare the ZCB prices with di�erent maturity
times T. E.g. we want to answer: how much do we need to pay today to get
a dollar back in 10 years?

3.3.1 Corporate bonds

A corporate bond is an investment in debt security issued by a corporation.
In other words, the investors are lending money to the company issuing the
bond, e.g. the company promises today (at time t = 0) a payment of one
unit at the time of maturity of the contract (= T ). The investors do not own
equity by the company and hence do not receive any dividends declared and
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paid in the company. The investors receive interest and principal of the bond,
regardless of how pro�table the company becomes. By issuing the bonds a
corporation commits itself to make speci�ed payments to the bondholders at
some future date (�xed maturity), and the corporation charges a fee for this
commitment.

The backing for the bond, is the payment ability of the company. There is a
chance the company may fail to pay back the debt and default of payment
may occur at a random time τ, 0 ≤ τ ≤ T . This default risk makes the
creditworthiness of the company. Hence corporate bonds are more risky than
government bonds, which are considered to be risk-free, commonly referred
to as treasury bonds.

There will always be a probability that the company defaults. As a result of
this the bondholders are exposed to risk and hence the implied interest rates
of corporate bonds are usually higher than for treasury bonds. Measures
of the excess return on a corporate bond on an equivalent treasury bond is
referred to as the credit spread3.

The price of a zero-coupon corporate bond at time t, 0 ≤ t ≤ T is given by:

p(t, T )d = E[e−r(T−t)1{τ>T}︸ ︷︷ ︸
no default

+ e−r(T−t)R1{τ≤T}︸ ︷︷ ︸
default

|Ft],

under some pricing measure, where R is the recovery rate and recovery pay-
ments are done at time of default, τ < T . In the �nancial jargon, it is common
to use the generic term loss given default (LGD) to describe the loss of value
in case of default. When the face value of a zero-coupon corporate bond is
one, LDG equals (1−R).

At time zero, the price of a zero-coupon corporate bond is given by:

pd(0, T ) = E[e−rT1{τ>T}︸ ︷︷ ︸
no default

+ e−rTR1{τ≤T}︸ ︷︷ ︸
default

|Ft]

= e−rTP(τ > T ) + E[e−rtR1{0≤τ≤T}]

= e−rTP(τ > T ) +Re−rT
∫ T

0

dP(τ ≤ t),

where we need a model which speci�es the probability of default, P(τ ≤ t).

3The main goal of many credit models is to determine the credit spread.
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3.4 Credit Default Swap(CDS)

De�nition 3.4. Credit Default Swap (CDS).
Exchange of a periodic payment against a one-o� contingent payment if some
credit event occurs on a reference asset.

Credit default swaps, also known as default insurances, are basic protec-
tion contracts, which have become quite popular in the last few years. The
contract ensures protection against default.

In these agreements, periodic �xed payments from the protection buyer are
exchanged for the promise of some speci�ed payment from the protection
seller to be made only if a particular, pre-speci�ed credit event occurs (typ-
ically a default at time τ). If a credit event occurs during the life time of
the default swap, t ≤ τ and 0 ≤ t ≤ T , the seller pays the buyer an amount
to cover the loss, and the contract then terminates. If no credit event has
occurred prior to maturity of the contract, T > τ , both sides end their obli-
gation to each other.

3.4.1 Pricing CDS

We look at the payment schedule 0 < t1 < . . . < tn = T . The expected
discounted cash �ows, with a deterministic interest rate r can then be rep-
resented as:

EDbuyer = E[
n∑
i=1

e−rtik1τ>ti ]

EDSseller = E[e−rτ (1−R)1τ≤T ].
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To obtain a fair spread we set EDbuyer = EDSseller and solve the equation
for k. This gives:

k =
E[e−rτ (1−R)1{τ≤T}]∑n
i=1 e

−rtiE[1{τ>ti}]

and by modelling the default probabilities the premium k can be evaluated.

3.5 Portfolio credit derivatives

Derivatives on credit portfolios are products with a payment stream which
depends on credit-risky assets. The value of such a portfolio depends on
the individual default probabilities of the assets in the portfolio, and the
dependence structure within the portfolio (such as macro-economic variables,
industry sector and geographic location).

3.5.1 Index (Portfolio) CDS

Assuming a portfolio consist of l assets, and the nominal of each asset is
denoted by Ni, the portfolio has the face value: N = N1 + . . .+Nl.

The portfolio loss process is given by:

Lt =
l∑

i=1

(1−Ri)1τi≤t (3.1)

for t ∈ [0, T ]. Given the loss of the portfolio we can calculate the remaining
notional of the portfolio as the initial value minus the loss:

Nt = N0 − Lt. (3.2)

The expected discounted cash �ows for the protection seller and the protec-
tion buyer, with a deterministic interest rate r becomes:

EDbuyer = E[
n∑
i=1

e−rtik∆tiNti ]

EDSseller = E[
n∑
i=1

e−rti(Lti − Lti−1
)],
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where ∆ti = ti − ti−1, for i = 1, . . . , n.

To obtain a fair spread we set EDbuyer = EDSseller and solve the equation
for k.
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Chapter 4

Modelling Credit Risk

Models to describe default processes for defaultable �nancial instruments are
primarily divided into two models: structural and reduced form.

Structural modelling (also referred to as the �rm value modelling).
By using the structural modelling approach we consider the credit risk that
is speci�c to a particular �rm. That is, the credit event is moved by the
�rm's value relative to some threshold τ .

Reduced form modelling (also referred to as the intensity based mod-
elling).
By using the reduced form modelling approach we do not consider the rela-
tion between default and the value of the �rm. In contrast to the structural
approach, the default is de�ned as the �rst jump of an exogenously given
jump process. E.g. the default time τ, 0 ≤ τ ≤ T is the �rst jump of
typically a Poisson process.

In this chapter we will focus on the structural modelling approach, especially
the Merton model (with extension), since we will later on compare a new
model with this particular model.

The theory of this chapter is mainly borrowed from [Mer75], [Ben04],[BM01]
and [BR02].
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4.1 The Merton model

The Merton model is an application of the Black & Scholes option pricing
model to the �rm's debt. The Merton model considers a company to default
if it does not have the ability to pay back its debt by the time of maturity
T . That is, at the maturity data T default is de�ned when the value of
the liabilities exceeds the value of the assets in the balance sheet. In other
words, if the obligations of the �rm is less than the liabilities we de�ne it as
a default.

The Merton model makes the following assumptions [Mer75]:

1 Frictionless market. There are no transaction costs, bankruptcy costs
or taxes. Assets are divisible and trading takes place continuously in
time with no restrictions on short selling of all assets. Borrowing and
lending is possible at the same, constant interest r.

2 There are su�cient investors in the market place with comparable
wealth levels, such that each investor can buy as much of an asset
he wants at the market price. And the stock pays no dividends or
other distributions during the life of the option.

3 The risk-free interest rate r is constant and known with certainty. This
means that the discount factor is given by:

B(t, T ) = e−r(T−t)

4 The option is European, which means that it only can be exercised at
the time of maturity T .

5 The evolution of the �rm's value Vt follows the dynamics:

dVt = (µV − γ)Vtdt+ σV VtdBt (4.1)

where µV is the expected return on the �rm's assets per unit time,
γ > 0 is the payout of the �rm per unit time, which means that if
γ < 0 then there is an in�ow of capital. σV is the volatility (constant)
of the �rm's assets per unit time, and Bt is a Brownian motion.
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We use Itô's formula on equation (4.1):

Introduce the function:

f(t, x) = V0 exp((µV − γ −
1

2
σ2
V )t+ σV x)

and calculate:

∂f(t, x)

∂t
= (µV − γ −

1

2
σ2
V )f(t, x)

∂f(t, x)

∂x
= σV f(t, x)

∂2f(t, x)

∂x2
= σ2

V f(t, x).

We �nd from Itô's formula with Xt = Bt that:

df(t, Bt) = (µV − γ −
1

2
σ2
V )f(t, Bt)dt+ σV f(t, Bt)dBt +

1

2
σ2
V f(t, Bt)(dBt)

2

Since (dBt)
2 = dt we are left with the dynamics of equation (4.1).

From these calculations we �nd that the �rms value at time t, 0 ≤ t ≤ T can
be written as:

Vt = V0 exp((µV − γ −
1

2
σV )t+ σVBt), (4.2)

where V0 is the value of the �rm today.

Figure 4.1 and 4.2 exhibit simulated paths of the �rm's value given by equa-
tion (4.2). As we can see from Figure 4.2 the sample paths increase in the
case where γ < 0. As we know this is when there is an in�ow of capital
(payout in Figure 4.1 with γ > 0).
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Figure 4.1: Three sample paths of the Merton model with parameters µV =
0.02, γ = 0.01 and σV = 0.09

Figure 4.2: Three sample paths of the Merton model with parameters µV =
0.02, γ = −0.01 and σV = 0.09
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4.1.1 Finding the value of the �rm with Merton

Under the assumptions of the Merton model, the �rm's value can be found
by the following equation:

Vt = Et +Dt, (4.3)

where Et is the notation for the �rm's equity and Dt denotes the �rm's debt
at time t, 0 ≤ t ≤ T .

Let us now consider the debt Dt to be a defaultable ZCB with face value D.

This means that:

Firm's value < Value of D

implies that the �rm defaults. And similarly

Firm's value > Value of D

implies that the assets of the �rm exceed the liabilities and hence there are
no default.

The replicating portfolio at maturity T for the payo� to the bondholder can
be expressed as:

Debt

DT = min(D, VT )

= D −max(D − VT , 0)︸ ︷︷ ︸
Put option

,

where the put option represents the loss given default (LGD). And as we can
see the bond can be hedged by buying a put.

Similarly:
Equity

ET = VT −min(VT , D)

= max(VT −D, 0).︸ ︷︷ ︸
Call option
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The value of the debt for all t, 0 ≤ t ≤ T is given by:

Dt = e−r(T−t)D − Pt, (4.4)

where Pt denotes the price of the put option at time t and r is the determin-
istic interest rate.

By the put-call parity1 we have that:

Et = Vt −Dt

= Vt −De−r(T−t) + Pt

= Ct,

where Ct denotes the price of the call option.

Theorem 4.1. Black & Scholes Option pricing formula, [Ben04]
The price of a call option with strike D and exercise time T is

Ct = VtΦ(d1)−De−(µV −γ)(T−t)Φ(d2), (4.5)

where

d1 = d2 + σV
√
T − t

d2 =
ln(

Vt
D

)+(µV −γ−σ2
V /2)(T−t)

σV
√
T−t

and

Φ(x) =
∫ x
−∞

1√
2π
e−

y2

2 dy.

Since we are needing the Black & Scholes formula this also means that we
will work under the risk neutral measure Q and hence by solving the risk
neutral expected discount payo�, it is simply straight forward by applying
Theorem 4.1, we �nd that the equity value at time t, 0 ≤ t ≤ T is given by:

Et = Ct

= VtΦ(d1)−De−(µV −γ)(T−t)Φ(d2),

where Φ(d2) denotes the probability of exercising the call option. In other
words the probability of no default.

1See Appendix
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4.1.2 Maximum likelihood estimation

We know that the �rm's value at time t, 0 ≤ t ≤ T is given by:

Vt = V0 exp((µV − γ −
1

2
σV )︸ ︷︷ ︸

=α

t+ σVBt). (4.6)

We now set ti − ti−1 = ∆t and look at the logarithmic transformation of Vt:

Xti = log(
Vti
Vti−1

) = α∆t+ σV (Bti −Bti−1
)

for i = 1, 2, . . .

From the de�nition of Brownian motion we know that the increments Bti −
Bti−1

for i = 1, 2, . . ., are independent and normally distributed random
variables with zero expectation and variance ∆t. This means that

Xti ∼ N (α∆t, σ2
V ∆t).

Further, the Xti 's are i.i.d. and by using the maximum likelihood technique
we can estimate α and σV .

Having N logarithmic transformations of Vt, the maximum likelihood esti-
mators of α and σ2

V are given by

α̂ =
1

N∆t

N∑
i=1

xi, (4.7)

σ̂2
V =

1

N∆t

∑
i = 1N(xi −∆α̂)2. (4.8)

Remark: We can choose which time scale we may prefer e.g. days, months
or years.
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4.1.3 Merton's jump di�usion model

As we have mentioned earlier in the chapter of Lévy processes, the market
may have sudden changes and this will a�ect the �rm's value. Zhou (1996)
extended the Merton approach by modelling the �rms value process Vt as a
geometric jump-di�usion process [BR02]. By including a jump component
to equation (4.1):

dVt = (µV − γ)Vtdt+ σV VtdBt + VtdYt, (4.9)

where Yt denotes a compound Poisson process.

Figure 4.3: Three sample paths of the jump di�usion Merton model (also
called the Zhou model) with parameters µV = 0.02, γ = 0.01, σV = 0.09 and
a compounded Poisson process Yt =

∑N(λ)
i=1 Xi with exponential distributed

Xi.

From Figure 4.3 we see the jumps are causing sudden changes in the trajec-
tories compared to Figure 4.1 and Figure 4.2.
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4.2 First-passage modelling

As we have seen in this chapter the Merton model only concludes that a
�rm has (not) defaulted by the time of maturity, T . This is not a realistic
assumption since the �rm can default at any time. In response to this, within
the structural framework, is to model the default as the �rst passage time
that the �rm's asset value falls below a certain threshold, d.2

The �rst-passage time is then modelled by:

τ = inf{t > 0 : Vt ≤ d}. (4.10)

4.3 Challenges of the modelling of credit risk

We have in this chapter focused on the structural modelling approach, rep-
resented by the Merton model.

By using the Merton model we can directly use the Black & Scholes option
pricing formula. This is clearly an advantage but as we stated earlier in
this chapter the model requires many and some unrealistic assumptions to
be ful�lled, e.g. the �rm has a single issue of zero-coupon debt. Hence the
question becomes does the purpose of the model disappears by requiring all
these assumptions?

Another challenge of the Merton model is the restrictions of the default time.
That is, a default can only be de�ned at the time of maturity of the debt and
hence a default can not occur at an earlier stage during the period. However,
this can be captured by extended models such as the �rst-passage time. On
the other hand, by using the Merton approach we avoid to determine a default
in the case where the �rm's value falls to a minimum level before maturity
but manages to recover and meet the payment of the debt by maturity.

2This idea was introduced by Black and Cox (1976), for more information of such
models we refer to the book [BM01],page 702-704.
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Chapter 5

Non-linear �ltering theory

Estimating unobservable variables from empirical data is a familiar problem
in mathematical �nance. An important issue in pricing and risk analysis
is to estimate the dynamics of the underlying assets. Non-linear �ltering
has been studied in literature since the 1960's and by introducing some of
these techniques, we can extract information from the observed process and
estimate an unobserved process.

This chapter will give a summary of the basic concepts concerning non-
linear �ltering theory, which give us the mathematics we need for solving our
problem in the following chapter.

The material in this chapter are mainly borrowed from [MBP03], [BDP15]
and [MPMB09].

5.1 What is non-linear �ltering?

In non-linear �ltering theory we consider a partially observable process (X, Y ) =
(Xt, Yt)0≤t≤T ∈ R2 de�ned on a probability space (Ω,Ft,P).

Yt, 0 ≤ t ≤ T is the observed process which we extract information from into
the process Xt, 0 ≤ t ≤ T that we want to estimate. This means that the
unobserved process is partially observed by the observable process.

1. The process Yt, 0 ≤ t ≤ T where we have the information is called the
observation process.

2. The process Xt, 0 ≤ t ≤ T that we estimate by extracting information
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from the observation process Yt, 0 ≤ t ≤ T is referred to as the signal
process.

5.1.1 Filtering problem

Let the parametrization process Xt, 0 ≤ t ≤ T be the signal process, in the
non-linear �ltering problem. The process follows the dynamics given by the
stochastic di�erential equation(SDE):

dXt = b(Xt)dt+ σ(Xt)dB
X
t , 0 ≤ t ≤ T, (5.1)

where b, σ are Borel functions and BX
t , 0 ≤ t ≤ T is a Brownian motion.

Since this is a �ltering problem it means that we can extract some information
about Xt, 0 ≤ t ≤ T out of the observation process Yt, 0 ≤ t ≤ T , which is
described by the equation:

dYt = h(t,Xt)dt+ σdBY
t +

∫
R0

ζNλ(dt, dζ) , 0 ≤ t ≤ T, (5.2)

where h is the (non-linear) observation function, σ is a constant, BY
t , 0 ≤ t ≤

T is a Brownian motion process and Nλ is an integer-valued random measure
with the predictable compensator:

µ̂(dt, dξ, ω) = λ(t,Xt, ξ)dtν(dξ) (5.3)

for a Lévy measure ν and a function λ1.

As we can see from equation (5.2) the dynamics of the observation process
consists of an information drift dependent on the signal process. The two
other components are some Gaussian noise plus a pure jump part, whose
jump intensity depends on the signal. The pure jump part is independent of
the Brownian motion part.

The aim of this thesis is to obtain a least square estimate of f(Xt) given the
observations up to time t, 0 ≤ t ≤ T . In other words, evaluate the optimal
�lter, given by the following conditional expectation:

EP[f(Xt)|FYt ], (5.4)

1For further restriction of the λ-function we refer to the book [Sch03].
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where EP denotes the expectation w.r.t. P and f is a suitable real-valued,
Borel measurable function and FYt is a σ-algebra generated by the observa-
tions Ys, 0 ≤ s ≤ t ≤ T .

This estimate depends, in general, non-linearly on the observations and is
known as the non-linear �lter.

In order to have a strong solution to the system (5.1) and (5.2), we require
that the coe�cients b, σ, h and λ ful�ll a linear growth and Lipschitz condi-
tion, that is:

||b(x)||+ ||σ(x)||+ ||h(t, x)||+
∫
R0

|λ(t, x, ζ)|ν(dζ) ≤ C(1 + ||x||) (5.5)

and

||b(x)− b(y)||+ ||σ(x)− σ(y)||+ ||h(t, x)− h(t, y)||

+

∫
R0

|λ(t, x, ζ)− λ(t, y, ζ)|ν(dζ)

≤ C||x− y||

(5.6)

for all x, y, t and a constant C <∞, where || · || stands for a vector or matrix
norm.

5.1.2 Non-linear �ltering techniques and theory

To solve the non-linear �ltering problem we need some techniques as well as
theory.

From the paper [BDP15] we consider the density process:

Λt = exp
(∫ t

0

h(s,Xs)dBs −
1

2

∫ t

0

h2(s,Xs)ds−
∫ t

0

∫
R0

log(λ(s,Xs, z)N(ds, dz))

−
∫ t

0

∫
R0

(1− λ(s,Xs, z))dsν(dz)
)

, 0 ≤ t ≤ T

and assume that

EP[ΛT ] = 1
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as well as ∫
R0
|z|ν(dz) <∞.

Lemma 5.1. De�ne

dQ = ΛtdP.

Then Q is a probability measure, and under Q we have that:

Yt = Bt + Lt,

where Bt = BY
t −

∫ t
0

(−h(s,Xs))ds, 0 ≤ t ≤ T is a Brownian motion part,

Lt =
∫ t

0

∫
R0
ζN(ds, dζ), 0 ≤ t ≤ T is a pure jump Lévy process with respect to

the Poisson random measure N with compensator dsν(dξ). Here we assume
that σ = 1 in equation (5.2).

Further, the process B,L and X are independent under Q and Λt is a mar-
tingale.

The inverse Radon-Nikodym derivative is denoted by:

dP
dQ = (Λt)

−1 = Mt, 0 ≤ t ≤ T ,

where

Mt := Λ−1
t

= exp(

∫ t

0

h(s,Xs)dBs −
1

2

∫ t

0

||h(s,Xs)||2ds)

+

∫ t

0

∫
Rm0

log λ(s,Xs, ζ)N(ds, dζ)

+

∫ t

0

∫
Rm0

(1− λ(s,Xs, ζ))dsν(dζ), 0 ≤ t ≤ T.

(5.7)

Then by [BDP15] and Girsanov's theorem the observation process Yt, 0 ≤ t ≤
T becomes a Lévy process being independent of the signal process Xt, 0 ≤
t ≤ T under the new probability measure Q.

In other words, the system of (5.1) and (5.2) has the following representation
under Q:
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dXt = b(Xt)dt+ σ(Xt)dB
X
t , 0 ≤ t ≤ T (5.8)

dYt = dBt + dLt, 0 ≤ t ≤ T. (5.9)

For any FXT -integrable function f , the Kallianpur-Striebel formula (which is
a consequence of Bayes formula for conditional expectation) is given by:

EP[f(Xt)|FYt ] =
EQ[Mtf(Xt)|FYt ]

EQ[Mt|FYt ]
(5.10)

where Mt, 0 ≤ t ≤ T is given by (5.7).

In fact, in the case of Lipschitz continuous coe�cients2 b, σ, h and λ we have
the following proposition:

Proposition 5.2. Assume that the functions b, σ, h and λ are bounded and
satisfy conditions (5.5) and (5.6). Let X i

t , 0 ≤ t ≤ T, i ≥ 1 be a sequence of
i.i.d. copies of the solution of the signal process Xt, 0 ≤ t ≤ T :

dXt = b(Xt)dt+ σ(Xt)dB
X
t

on our probability space, being independent of the observation process Yt, 0 ≤
t ≤ T . Denote by Mt, 0 ≤ t ≤ T the stochastic exponential:

Mt = (Λt)
−1

= exp
(∫ t

0

h(s,Xs)dBs −
1

2

∫ t

0

h2(s,Xs)ds

+

∫ t

0

∫
R0

log(λ(s,Xs, ζ)N(ds, dζ))

+

∫ t

0

∫
R0

(1− λ(s,Xs, ζ))dsν(dζ)
)

(5.11)

based on Xt, 0 ≤ t ≤ T . Let f be a bounded, continuous function. Then:

Z l(f) =
1

l

l∑
i=1

M i
tf(X i

t)
l→∞−−−→ EQ[Mtf(Xt)|FYt ] a.e. (5.12)

2for de�nition of Lipschitz continuous coe�cients see Appendix.
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for all t. Moreover, for all t there exists a constant C such that:

EQ[(Z l(f)− EQ[Mtf(Xt)|FYt ])2] ≤ 1

l
C ‖ f ‖2 (5.13)

for all l ≥ 1.

Proof. For a proof see [BDP15].



Chapter 6

Non-linear �ltering applied to our

new model

As we have seen earlier in this thesis, the �rms value can be modelled by
using the Merton model. In this chapter we introduce a new model, which
can be considered as a generalization of the Merton model. The new model
is simulated by using non-linear �ltering techniques and empirical market
data.

In the following sections we will solve a non-linear �ltering problem numeri-
cally. In other words, we will estimate unobservable variables from observed
data.

When the new simulation approach is implemented we will compare our new
model with the Merton model by using US market data.

In the last section a summary of the results and a conclusion is given.

6.1 Our new model

The signal process in the new model is given by:

dXt = b(Xt)dt+ σ(Xt)dB
X
t , 0 ≤ t ≤ T, (6.1)

where BX
t , 0 ≤ t ≤ T is Brownian motion and in our model we will set the

functions b and σ to be
b(x̃) = ξ2(ξ3 − x)
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σ(x̃) = ξ4.

As we can see the signal process, Xt, 0 ≤ t ≤ T , is now described by the
Vasicek model, where ξ2 is the speed of reversion, ξ3 is the long term mean
level and ξ4 is the instantaneous volatility.

The observation process, which is our new model for the observed price pro-
cess St, takes the form:

Yt = log(St)− log(S0)

= at+ σBt +

∫ t

0

∫
R4
0

ζNλ(dt, dζ) , 0 ≤ t ≤ T,
(6.2)

where St is the stock price at time t, 0 ≤ t ≤ T , Bt, 0 ≤ t ≤ T is Brownian
motion and Nλ(ds, dζ) is the jump measure with compensator of the form

µ̂(dt, dζ) = λ(t,Xt, ζ)dtν(dζ).

Further we assume that a = σ = 0, hence the observation process is given by
a pure jump process.

6.2 Estimation of the parameters of the signal

process

Let us consider a λ-function with respect to the compensator given by

λ(t,Xt, ζ) =
Nζ(X(1)

t , X
(4)
t )

Nζ(0, 1)
, 0 ≤ t ≤ T, (6.3)

where Nζ(µ, σ) = 1√
2πσ2

exp(−1
2
( ζ−µ

σ
)2), is the Gaussian density with mean

µ and standard deviation σ and Xt, 0 ≤ t ≤ T is a multidimensional signal
process given by (6.5).

Our main goal is to determine the conditional expectation

EP[f(Xt)|FYt ] (6.4)

where f is a measurable function and FYt is the σ-algebra, generated by
Ys, 0 ≤ s ≤ t.
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To simulate the observation process we need to determine a prior distribution
for i.i.d. ξi and we choose this to be ξi ∼ N (0, 1) ∀i.

The corresponding �lter problem results in the following four-dimensional
signal process:

dXt =


dX

(1)
t = X

(2)
t (X

(3)
t −X

(1)
t )dt+X

(4)
t dBX

t

dX
(2)
t = 0

dX
(3)
t = 0

dX
(4)
t = 0 , 0 ≤ t ≤ T,

(6.5)

and the observation process is given by equation (6.2).

The start values X(1)
t0 = ξ1, X

(2)
t0 = ξ2, X

(3)
t0 = ξ3, X

(4)
t0 = ξ4 are drawn from a

normal distribution with mean zero and variance equal to one.

Further we assume that the Lévy-measure, ν, is given by:

ν(A) =
∫
A
Nz(0, 1)dz.

That is, the Lévy-measure is represented by the integral of a Gaussian density.

The aim is to determine the estimates of the signal process, Xt, 0 ≤ t ≤ T .
That is, to �nd ξ̂2, ξ̂3 and ξ̂4.

The inverse of the Radon-Nikodym density Λt, 0 ≤ t ≤ T under the change
of measure Q is given by:

Mt = exp
(∫ t

0

h(s,Xs)dBs︸ ︷︷ ︸
I1

− 1

2

∫ t

0

h2(s,Xs)ds︸ ︷︷ ︸
I2

+

∫ t

0

∫
R0

log(λ(s,Xs, ζ)N(ds, dζ))︸ ︷︷ ︸
I3

+

∫ t

0

∫
R0

(1− λ(s,Xs, ζ))dsν(dζ)︸ ︷︷ ︸
I4

)
, 0 ≤ t ≤ T.

(6.6)

6.2.1 Simulation approach

To estimate the signal process Xt, 0 ≤ t ≤ T we start by considering a
discrete-time analogue of (6.5):
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Xti+1
=


X

(1)
ti+1

= X
(1)
ti +X

(2)
ti (X

(3)
ti −X

(1)
ti )(ti+1 − ti) +X

(4)
ti (BX

ti+1
−BX

ti
)

X
(2)
ti = ξ2

X
(3)
ti = ξ3

X
(4)
ti = ξ4,

(6.7)

where

∆t = ti+1 − ti, 0 = t0 ≤ t1 ≤ . . . ≤ tn = T (= maturity)

Xi = Xti

(Bti+1
−Bti) =

√
ti+1 − tiηi, ηi ∼ N (0, 1).

Further de�ne

∆Yt = Yti+1
− Yt0

= log(Sti+1
)− log(St0)

= log(
Sti+1

St0
).

We have the observation process given by Yt = log(St) − log(S0), 0 ≤ t ≤ T
and we say a jump occur if:

|Ys| > Ȳ = 1
N

∑N
i=1 |Yi|,

where N is the number of observations in the dataset.

We want to simulate Mt, 0 ≤ t ≤ T and for simplifying the calculation we
set the function h = 1 in equation (6.6) , which gives for 0 ≤ t ≤ T :

1. I1 = Bt

2. I2 = 1
2
t

3. I3 =
∑

0<s≤t log(λ(s,Xs,∆Ys))1|∆Ys|>Ȳ
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4.

I4 =

∫ t

0

∫
R0

(1− λ(s,Xs, ζ))
1√
2π
e−

1
2
ζ2dζds

=

∫ t

0

∫
R0

(
1− Nζ(X

(1)
s , X

(4)
s )

Nζ(0, 1)

)
Nζ(0, 1)dζds

=

∫ t

0

∫
R0

(Nζ(0, 1)−Nζ(X(1)
s , X(4)

s ))dζ︸ ︷︷ ︸ ds=0, since we intergrate densities

= 0.

We can extend Proposition 5.2 to hold for λ given by (6.3)1. Hence we have
by the strong law of large numbers 2 and Proposition 5.2, the following result:

1

n

n∑
i=1

M i
tf(X

(i)
t )→ EQ[Mtf(Xt)|FYt ] (6.8)

as n→∞.

Further we calculate the conditional expectation, EP[f(Xt)|FYt ], by applying
the Kallianpur-Striebel formula:

EP[f(Xt)|FYt ] =
EQ[Mtf(Xt)|FYt ]

EQ[Mt|FYt ]
, 0 ≤ t ≤ T. (6.9)

6.2.2 Numerical results

We use daily US Market data of the closing price for General Electric Com-
pany from January 2006 to December 2010, taken from Yahoo Finance 3. By
using these data , plotted in Figure 6.1, we will try to estimate the parameters
of the signal process.

As we can see by Figure 6.2 the estimates converge, and take the following

1The same proof given by [MPMB09] can be used.
2De�nition is given in Appendix.
3http://finance.yahoo.com/q/hp?s=GE&a=00&b=1&c=2006&d=11&e=31&f=2010&g=

d&z=66&y=0



52 6. NON-LINEAR FILTERING APPLIED TO OUR NEW MODEL

Figure 6.1: General Electric Company closing prices from January 2006 to
December 2010.

Figure 6.2: Plot of the estimates of the signal process (with General Electrics
Company data), where the blue graph represents ξ2, the red is ξ3 and the
green ξ4.
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values:

ξ2 → ξ̂2 = 0.262893

ξ3 → ξ̂3 = −1.376566

ξ4 → ξ̂4 = 0.9725912.

By using λ as given in equation (6.3) the compensator is given by:

µ̂(dt, dζ) = λ(t,Xt, ζ)dtν/(dζ)

=
Nζ(X(1)

t , X
(4)
t )

Nζ(0, 1)
dtNζ(0, 1)dζ

= Nζ(X(1)
t , X

(4)
t )dtdζ.

(6.10)

Unfortunately we are not able to �nd any literature that captures a λ given
by equation (6.3) and a compensator given by equation (6.10), which provides
us with an e�cient tool to simulate our new model (6.2).

6.2.3 Choosing λ to be di�erent

Using λ as is equation (6.3) we get some complications concerning further
simulations. We now look at another λ-function, which will hopefully enable
us to simulate our new model.

We choose

λ(t,Xt) = (‖ Xt ‖ +1) (6.11)

= (
√
|X1

t |2 + |X2
t |2 + |X3

t |2 + |X4
t |2 + 1). (6.12)

We now have a λ-function which does not depend on the spatial variable
coming from the jumps, and by letting λ be of this form we avoid the com-
plications we get in equation (6.10).

The following expression determines the times when jumps occur

µ(t) =

∫ t

0

λ(s,Xs)ds, 0 ≤ t ≤ T. (6.13)
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Figure 6.3: Plot of the estimates of the signal process (with General Electrics
Company data and λ as is equation (6.11)), where the blue graph represents
ξ2, the red is ξ3 and the green ξ4

As we can see by Figure 6.3 the estimates stabilize, and takes the following
values:

ξ2 → ξ̂2 = 0.01440555

ξ3 → ξ̂3 = −0.01900694

ξ4 → ξ̂4 = 0.05796884.

We want to predict future closing prices of General Electrics Company. By
equation (5.2) with h = σ = 0 we have the price process given by:

St = S0 exp(Yt), 0 ≤ t ≤ T, (6.14)

where the observation process is given by a pure jump Lévy process, Yt =∫ t
0

∫
R0
ζNλ(ds, dζ), 0 ≤ t ≤ T .
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6.3 Simulations of the price process

We simulate the price process by conducting the following steps:

Step 1: Simulation of the Vasicek model.
Take the values ξ̂2,ξ̂3 and ξ̂4 into the signal process (6.5). Simulate
ten di�erent paths of the signal process , see Figure 6.4, where the
red path illustrates the average. We now have ten di�erent paths,
(X

(1)
t , X

(2)
t , . . . , X

(10)
t ), 0 ≤ t ≤ T .

Step 2: Simulation of the jump times.
Take the ten paths of the signal process into the integral given by (6.13).

Step 3: The modi�ed Cramer Lundberg model.4

Look at a compound Poisson process with

Zs =
∑N(s)

i=1 Xi,

where N(s) is a standard Poisson process with parameter λ = 1 and
the jump sizes Xi are i.i.d. with Xi ∼ N (0, 1) for i = 1, . . . , 10.

This gives us the following ten paths: Z(1)
s , Z

(2)
s , . . . , Z

(10)
s where 0 ≤

s ≤ T̃ ,

T̃ = max1≤i≤10,0≤s≤T µ
(i)(s),

where

µ(i)(t) =
∫ t

0
λ(s,X

(i)
s )ds.

Step 4: The �nal simulation
Set:

Y
(1)
t = Z

(1)

µ
(1)
t

, . . . , Y
(10)
t = Z

(10)

µ
(10)
t

.

We now have ten paths of the observation process Yt, 0 ≤ t ≤ T . And
we can �nally simulate paths of the closing price St = S0 exp(Yt), 0 ≤
t ≤ T .

4The jump size can be negative, hence we are looking at a modi�ed Cramer Lundberg
model.
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Figure 6.4: Ten paths of the signal process Xt, 0 ≤ t ≤ T , with ξ̂2 =
0.01440555, ξ̂3 = −0.01900694 and ξ̂4 = 0.05796884, the red path is the
average.

Figure 6.5: A single path of the S(1)
t = S0 exp(Y

(1)
t ), 0 ≤ t ≤ T .
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Figure 6.6: Ten paths of S(i)
t = S0 exp(Y

(i)
t ), 0 ≤ t ≤ T , for i = 1, . . . , 10.

Figure 6.7: Ten paths of our estimated price process versus the observed
price process of General Electrics Company from January 2011 to December
2011 (red path).



58 6. NON-LINEAR FILTERING APPLIED TO OUR NEW MODEL

Intuitively, the uncertainty of prediction of the stock price comes greater with
time. Figure 6.8 shows that this is also the case when trying to estimate the
closing prices of General Electrics Company with the new model.

6.3.1 Comparing the model with the classical Merton
model

Figure 6.8: Ten simulation paths of the Merton model with calculated es-
timates from MLE. The red path shows the actual closing price of General
Electrics Company from January 2011 to December 2011.

We have simulated the Merton model, presented in chapter 5, and the new
model based on the same data set. As we can see from Figure 6.9 the pre-
dictions of the closing prices for General Electrics Company based on the
Merton model is more volatile and this increases with time.
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Figure 6.9: Simulation of the Merton model versus the new model. The
black path is the new model, the blue path represents the Merton model and
the red path is the actual closing price of General Electrics Company from
January 2011 to December 2011.

6.4 Conclusion

In this thesis we have discussed the challenges of the modelling of credit risk
and basic approaches concerning modelling of such risk.

We have introduced a new model and estimated parameters of this model by
using non-linear �ltering techniques and a new simulation method. Based on
this estimation we manage to simulate closing prices of stocks of US market
data. We then compared the new model with a classical credit risk model,
the Merton model.

As we have seen by the result, our new model is adaptable and makes a good
�t to the empirical market data. The model is quite complex, and with this
comes great �exibility in the sense that we can adapt underlying densities
and parameters within the model to �t the dataset. On the other hand, with
the complexity comes the chance of over�tting.

However, at this point we can not state that our new model will give a closer
match to the statistical properties of observed market data than the classical
Merton model. As a conclusion we can state that we have manage to simulate
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a new model which �ts market data in a good way.



Chapter 7

Extensions

In this chapter we will share ideas of further constructions and extensions of
the new model presented in chapter 6. By extending the model we will try to
make it more realistic in the sense that it can capture more of the economical
information in the market.

7.1 The signal process

We assumed that the signal process was given by the Vasicek model, that is:

dXt = b(Xt)dt+ σ(Xt)dB
X
t , 0 ≤ t ≤ T (7.1)

where BX
t is Brownian motion and where b and σ is given by

b(x̃) = ξ2(ξ3 − x)

σ(x̃) = ξ4.

The Vasicek model is easy to work with and it is mean reverting. One could
have used another Ornstein-Uhlenbeck process as e.g. the CIR model.

Hence, the functions b and σ would have been given by:

b(x̃) = ξ2(ξ3 − x)
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σ(x̃) =
√
xξ4.

Regime switching

When looking at economic time series we often see dramatic breaks caused by
events like a �nancial crisis or changes in government policy. In our model this
phenomena may be captured by a Regime switching mean-reversion model
where the function b in the signal process (7.1) is given by:

b(x̃) =

{
a(b1 − x) x ≥ τ

a(b2 − x) else,
(7.2)

for mean reversion coe�cient a ≥ 0 and the long-run average levels b1, b2 ≥ 0
depending on a critical threshold τ > 0.

The same algorithm and recursion as in chapter 6 can be used for this pur-
pose.

N-dimensional signal process

An idea is to extend the signal processXt, 0 ≤ t ≤ T to a n-dimension process
with n > 4, as we have estimated the signal process with 4-dimensions. In
this way we can capture more of the economical impacts.

However, with more parameters to estimate the chance of over�tting comes
greater, we might experience unstable parameter estimates and the simula-
tions get more complicated.

Research of the convergence in the signal process

The simulations of the signal process Xt, 0 ≤ t ≤ T showed convergence of ξ2,
ξ3 and ξ4. To explain this result we have to look further into the mathematics
of the non-linear �ltering theory [MPMB09]. This is beyond the scope of this
thesis, but for further studies of the model this would have been interesting
to address.
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7.2 The observation process

In our new model given by (6.2) the observation process is given by a pure
jump Lévy process. We could extend the model by looking at a jump di�usion
process by adding a drift term and Brownian motion:

Yt = log(
St
S0

) =

∫ t

0

h(s,Xs)ds+ σBY
t +

∫ t

0

∫
R0

ζNλ(ds, dζ), 0 ≤ t ≤ T (7.3)

where BY
t is Brownian motion, h a function and σ 6= 0. This may give the

model a better �t to the dataset we are looking at.

7.3 Intensity based credit models

We have in this thesis focused on the structural modelling approach. As men-
tioned there is also an approach called Intensity based modelling. We could
extend this thesis by considering an alternative to the structural framework.

In intensity-based credit risk models the default time τ, 0 ≤ τ < T of a
defaultable bond can be modelled by a Hazard rate process γt, 0 ≤ t ≤ T of
the (Ft)-intensity of τ given by

P (τ > t|Ft) = exp(−
∫ t

0
γudu).

The dynamics of γt, 0 ≤ t ≤ T can be described by e.g. the Vasicek model,
such that:

dγt = k(θ − γt)dt+ σdLt, (7.4)

where k, θ, σ are constants and Lt, 0 ≤ t ≤ T is a square integrable Lévy
martingale with Lévy measure ν.

In order to estimate "time-dependent Lévy measures" of more realistic mod-
els for γt, 0 ≤ t ≤ T one could assume that the compensator µ of the jump
measure of Lt, 0 ≤ t ≤ T can be parametrized by a compensator of the form
(as in the structural approach):

µ̂(dt, dζ) = λ(t,Xt, ζ)dtν(dζ).
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We may also replace the Lévy process Lt, 0 ≤ t ≤ T in equation (7.4) by a
process Lλt given by:

Lλt = Bt +

∫ t

0

∫
R0

ζ(Nλ(ds, dζ)− µ̂(dt, dζ)), 0 ≤ t ≤ T, (7.5)

where Nλ is an integer-valued random measure with predictable compensator
µ̂ and Bt, 0 ≤ t ≤ T Brownian motion.



Chapter 8

Appendix

8.0.1 Appendix: chapter 2

Itôs formula applied of the Geometric Brownian motion
Let:

St = S0 exp(µt+ σBt). (8.1)

set:

f(t, x) = S0 exp(µt+ σx)

Having:

∂f(t,x)
∂t

= µf(t, x), ∂f(t,x)
∂x

= σf(t, x) and ∂2f(t,x)
∂x2

= σ2f(t, x).

By Itôs formula we get:

df(t, x) = µf(t, x)dt+ σf(t, x)dx+ 1
2
f(t, x)(dx)2

By letting f(t, x) = f(t, Bt) = St and having that (dBt)
2 = dt:

dSt = (µ+
1

2
σ2)Stdt+ σStdBt (8.2)

This gives:

St = S0 +

∫ t

0

(µ+
1

2
σ2)Sudu+

∫ t

0

σSudBu. (8.3)

65
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8.0.2 Appendix: chapter 5

Put-Call Parity[Ben04]
The put-call parity is given by:

P c
t − P

p
t = St −Ke−r(T−t) (8.4)

where P c
t is the price of a call option and P p

t is the price of a put option.

The prices of a call and put is, respectively,

P c
t = e−r(T−t)EQ[max(0, ST −K)]

P p
t = e−r(T−t)EQ[max(0, K − ST )].

Using the fact that:

max(x−K, 0) = (x−K) + max(K − x, 0)

we �nd:

P c
t = e−r(T−t)EQ[max(0, ST −K)|Ft]

= e−r(T−t)EQ[(ST −K)|Ft] + EQ[max(0, K − ST )|Ft]
= ertEQ[e−rTST |Ft]− e−r(T−t)K + P p

t

= erte−rtSt − e−r(T−t)K + P p
t

= St − e−r(T−t)K + P p
t .

Where the third equality follows from the martingale property of e−rtSt w.r.t.
Q.

8.0.3 Appendix: chapter 6

Vasicek model

The dynamics of the stochastic signal process Xt is expressed by the Vasicek
model and hence given by the stochastic di�erential equation (SDE):

dXt = k(θ −Xt)dt+ σdBt , X0 = x0,
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where θ is the long term mean, k is the speed of reversion, σ is the volatility
and Bt is Brownian motion.

Remark: observe that in this case Xt can be negative.

The equation in (8.0.3) can be solved by using It̂′os formula with

f(t, x) = xekt, where f(t, γt) = γte
kt.

We obtain:

d(f(t,Xt) = kXte
ktdt+ ektdXt

= kXte
ktdt+ ekt(k(θ −Xt)dt+ σdBt)

= kXte
ktdt+ ekt(k(θ −Xt)dt+ ektσdBt)

= ektkθdt+ ektσdBt.

(8.5)

Integrating from 0 to t we get:

ektXt = X0 + kθ

∫ t

0

eksds+ +σ

∫ t

0

eksdBs. (8.6)

Solving for Xt we obtain:

Xt = e−ktX0 + kθ

∫ t

0

e−k(t−s)ds+ σ

∫ t

0

e−k(t−s)dBs

= e−ktX0 + e−ktθk
[1

k
eks
]t
s=0

+ σ

∫ t

0

e−k(t−s)dBs

= e−ktX0 + θ(1− e−kt) + σ

∫ t

0

e−k(t−s)dBs.

(8.7)

The mean of Xt, 0 ≤ t ≤ T is given by:

E[Xt|F0] = E[e−ktX0 + θ(1− e−kt)︸ ︷︷ ︸
deterministic

+σ

∫ t

0

e−k(t−s)dBs︸ ︷︷ ︸
Stochastic

|F0]

= e−ktX0 + θ(1− e−kt) + E[σ

∫ t

0

e−k(t−s)dBs|F0]
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Having that: σ
∫ t

0
e−k(t−s)dBs ∼ N (0,

(
σ
∫ t

0
e−k(t−s)dBs

)2

), and using the

fact that: (dBs)
2 = ds gives:

σ
∫ t

0
e−k(t−s)dBs ∼ N (0, σ

2

2k
(1− e−2kt))

The distribution of Xt is then given by:

Xt ∼ N (X0e
−kt + θ(1− e−kt), σ2

2k
(1− e−2kt)).

We look at at the case where t goes to in�nity and get the stationary distri-
bution:

lim
t→∞

Xt ∼ N (θ,
σ2

2k
). (8.8)

As one can see the limited distribution is constant and independent of the
time, t. Also notice that the process is mean reverting, where θ is the long
term mean level.

De�nition 8.1. Lipschitz continuity [Lin14].
A function f : X → Y between metric spaces is said to be Lipschitz continu-
ous with Lipschitz constant K if dY (f(x), f(y)) ≤ KdX(x, y). Where dX(x, y)
(similarly dY (f(x), f(y)))denotes the metric on X, that is the distance be-
tween two points x and y in X.
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8.1 R-code: Chapter 1

Listing 8.1: Simulation of Brownian motion
#Brownian motion
setwd("C:/Users/maja/Desktop/MO2015")

png("BM.png", width=15, height =15, units='cm', res =1500)

T = 10#maturity
n = 100 #steps from today to maturity
dt = 1/n #step
t = seq(0,T,dt)

dBt_1 = rnorm(length(t) ,0,1)*sqrt(dt)
dBt_2 = rnorm(length(t) ,0,1)*sqrt(dt)
dBt_3 = rnorm(length(t) ,0,1)*sqrt(dt)
Bt_1 = rep(0,length(t))
Bt_2 = rep(0,length(t))
Bt_3 = rep(0,length(t))

for (i in 1:( length(t) -1))
{

Bt_1[i+1] = Bt_1[i] + dBt_1[i]
Bt_2[i+1] = Bt_2[i] + dBt_2[i]
Bt_3[i+1] = Bt_3[i] + dBt_3[i]

}

plot(t,Bt_1 ,type = 'l', xlab = 'time', ylab = 'Brownian
motion ',xlim =c(0,max(t)) ,ylim=c(min(Bt_1,Bt_2,Bt_3),
max(Bt_1,Bt_2,Bt_3)) )

lines(t,Bt_2, type = 'l', col = 'red')
lines(t,Bt_3, type = 'l', col = 'blue')
dev.off()
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8.2 R-code: Chapter 2

Listing 8.2: Sample paths of Brownian motion and Lévy processes.
#Simulating Brownian motion and a Levy process
setwd("C:/Users/maja/Desktop/MO2015")

png("alphastabilevsbm.png", width=15, height =15, units='
cm', res =1500)

n = 2000
dt = 1/n
t = seq(0,1,dt)

#Brownian motion:
dBt = rnorm(length(t) ,0,1)*sqrt(dt)
Bt = rep(0,length(t))

for (i in 1:( length(t) -1))
{

Bt[i+1] = Bt[i] + dBt[i]
}

#alpha -stable distributions
lambda = 0.7
#n independent ,random variables uniformly distributed on

(-pi/2,pi/2)
gamma = runif(n,-pi/2,pi/2)

#n independent standard exponential random variables ,
with parameter lambda

W = rexp(n,lambda)

#set alpha -value
alpha = 1.9

#computing delta X:

delta_X = c()
delta_X[1] = 0
for (i in 2:n)
{

delta_X[i] = ((t[i]-t[i-1]) ^(1/alpha))*(sin(alpha*gamma
[i])/(cos(gamma[i])^(1/alpha)))*(cos((1-alpha)*gamma
[i])/W[i])^((1- alpha)/alpha)

}

X= c()
X[1] = delta_X[1]
for (k in 2:n)
{

X[k] = X[k-1] + delta_X[k]
}

plot(t[1:n], X,cex = 0.3,ylim = c(min(X,Bt),max(X,Bt)),
xlab='time', ylab='sample paths')

lines(t,Bt ,type = 'l', col='grey')
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dev.off()

Listing 8.3: α-stable processes.

#alpha -stable distributions
setwd("C:/Users/maja/Desktop/MO2015")

png("alphastabileproc.png", width=15, height =15, units='
cm', res =1500)

n = 1000
dt = 1/n
lambda = 0.1
t = seq(0,1,dt)
#n independent ,random variables uniformly distributed on

(-pi/2,pi/2)
gamma = runif(n,-pi/2,pi/2)

#n independent standard exponential random variables ,
with parameter lambda

W = rexp(n,lambda)

#set alpha -value
alpha = c(0.5 ,1 ,1.5 ,1.9)
delta_X = matrix(0,length(alpha),n)
X= matrix(0,length(alpha),n)
for (j in 1: length(alpha))
{
#computing delta X:

for (i in 2:n)
{

delta_X[j,i] = ((t[i]-t[i-1]) ^(1/alpha[j]))*(sin(alpha[
j]*gamma[i])/(cos(gamma[i])^(1/alpha[j])))*(cos((1-
alpha[j])*gamma[i])/W[i])^((1- alpha[j])/alpha[j])

}

X[j,1] = delta_X[j,1]
for (k in 2:n)
{

X[j,k] = X[j,k-1] + delta_X[j,k]
}

}

par(mfrow=c(2,2))
plot(t[1:n], X[1,],cex = 0.3, ylab = 'X(t)', xlab='time',

main='alpha = 0.5')
plot(t[1:n], X[2,],cex = 0.3, ylab = 'X(t)', xlab='time',

main='alpha = 1.0')
plot(t[1:n], X[3,],cex = 0.3, ylab = 'X(t)', xlab='time',

main='alpha = 1.5')
plot(t[1:n], X[4,],cex = 0.3, ylab = 'X(t)', xlab='time',

main='alpha = 1.9')

dev.off()
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8.3 R-code: Chapter 3

Listing 8.4: Illustration of the price of a ZCB.
#ZCB
setwd("C:/Users/maja/Desktop/MO2015")
png("ZCB.png", width=15, height =15, units='cm', res =1500)

#constant interest rate
r_constant = 0.03
time = seq (0 ,100)
price = exp(-r_constant*time)
plot(time ,price ,type = 'l',ylim = c(0,1),xlim = c(0 ,100),

main = 'Price of ZCB',xlab='Time to maturity ', ylab='
Price')

dev.off()
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8.4 R-code: Chapter 4

Listing 8.5: Simulation of the Merton model
#The Merton model.
setwd("C:/Users/maja/Desktop/MO2015")
png("merton.png", width=15, height =15, units='cm', res

=1500)

mu_V = 0.02
gamma = 0.01
sigma_V= 0.09
dt = 1
#Time steps:
m = 100
#Simulations:
n = 1000
Vm = matrix(0,n,m+1)
t = seq(0,m-1,1)

for (j in 1:n)
{

dBt = rnorm(length(t) ,0,1)*sqrt(dt)
Bt = rep(0,length(t))
V = c()
V[1] = 100
for (i in 1:m)
{

Bt[i+1] = Bt[i] + dBt[i]
dV = (mu_V - gamma)*V[i]*dt + sigma_V*V[i]*(Bt[i+1] -

Bt[i])
V[i+1] = V[i] + dV
Vm[j,1] = V[1]
Vm[j,i+1] = V[i+1]

}

}

#Average:
av = c()
for (k in 1:m)
{

av[k] = 1/(length(Vm[,k]))*sum(Vm[,k])
}

Vm = Vm[,-(m+1)]

plot(t,Vm[1,], type = 'l', col = 'blue', main = '
Simuation of the Merton model with positive gamma',
xlab = 'time',ylab = 'V_t', ylim = c(0 ,500) )

lines(t,Vm[2,], type = 'l',col = 'red')
lines(t,Vm[3,], type = 'l', col = 'green')

dev.off()

#Using the same code with gamma = -0.01 in "Merton model
with negative gamma".
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Listing 8.6: Simulation of the Merton jump di�usion model

#Merton jump diffusion model.
setwd("C:/Users/maja/Desktop/MO2015")

png("mertonjumpdiff.png", width=15, height =15, units='cm'
, res =1500)

#Set parameters:
mu_V = 0.02
gamma = 0.01
sigma_V= 0.09
dt = 1
#Time steps:
m = 100
#Simulations:
n = 100
Vm = matrix(0,n,m+1)
t = seq(0,m-1,1)

#Parameters in the jump component:
lambda_T = 0.2*m
mu = 0.3

for (j in 1:n)
{

dBt = rnorm(m,0,1)*sqrt(dt)
Bt = rep(0,m)
Yt = rep(0,m)
V = c()
V[1] = 100
N = c()
xi = rep(0,m)
dYt = rep(0,m)

for (k in 1:m)
{
N[k] = rpois(1,lambda_T)
xi[k] = rexp(length(N[k]),mu)
if (N[k]>30)
{

dYt[k] = sum(xi[k])
}
}

for (i in 1:m)
{
Yt[i+1] = Yt[i] + dYt[i]
Bt[i+1] = Bt[i] + dBt[i]
dV = (mu_V - gamma)*V[i]*dt + sigma_V*V[i]*(Bt[i+1] -

Bt[i]) + V[i]*(Yt[i+1]-Yt[i])
V[i+1] = V[i] + dV
Vm[j,1] = V[1]
Vm[j,i+1] = V[i+1]

}

}

Vm = Vm[,-(m+1)]

plot(t,Vm[1,], type = 'l', col = 'blue', main = '
Simuation of the Merton jump diffusion model', xlab =
'time',ylab = 'V_t', ylim = c(min(Vm[1,],Vm[2,],Vm
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[3,]),max(Vm[1,],Vm[2,],Vm[3,])))
lines(t,Vm[2,], type = 'l',col = 'red')
lines(t,Vm[3,], type = 'l', col = 'green')

dev.off()
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8.5 R-code: Chapter 6

Listing 8.7: Simulation with the �rst λ
#simulation with the model with General Electrics Company

data.
#Data from yahoo -finance:
data_GM = read.csv("C:/Users/maja/Desktop/MO2015/datasett

/GE General Electric2006 -2010. csv", sep=";")
Y = data_GM[,2] #Closing price.
#Simulations:
n= 100
#Timesteps:
T = length(Y) #Maturity
dt = 1 #steps from today to maturity
t = seq(0,(T-1),dt) #interval
Delta_Y = c()
Delta_Y[1] = Y[1]
for (i in 1:( length(Y) -1))
{

Delta_Y[i+1] = log(Y[i+1])-log(Y[1])
}

#Brownian motion
Bt = matrix(0,length(t),n)
for (j in 1:n)
{

dBt = rnorm(length(t) ,0,1)*sqrt(dt)
for (i in 1:( length(t) -1))
{

Bt[i+1,j] = Bt[i,j] + dBt[i]
}

}

#Draw random numbers from Normal distr.(a priori distr.)
for xi-values:

xi = matrix(0,4,n)
for (j in 1:4)
{

xi[j,] =rnorm(n,0,1)
}

#X-Matix , creating an array:
X = array(0,dim = c(4,length(t),n))

#Start values:
for (j in 1:n)
{

X[1,1,j] = xi[1,j]
X[2,1,j] = xi[2,j]
X[3,1,j] = xi[3,j]
X[4,1,j] = xi[4,j]

}

for (j in 1:n)
{

for (i in 1:( length(t) -1))
{

X[1,i+1,j] = X[1,i,j] + xi[2,j]*(xi[3,j]-X[1,i,j])*dt
+ xi[4,j]*rnorm (1,0,1)*sqrt(dt)

X[2,i+1,j] = xi[2,j]
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X[3,i+1,j] = xi[3,j]
X[4,i+1,j] = xi[4,j]

}
}

#lambda function
epsilon = 1
lambda = function(t,x,y,z)
{

epsilon*(((1/sqrt(2*pi*(y^2)))*exp(-(1/2)*((z-x)/y)^2))
/((1/sqrt(2*pi*1))*exp(-(1/2)*(z)^2)))

}

#jump function
normz = function(z)
{

((1/sqrt(2*pi))*exp(-(1/2)*(z)^2))
}

#Projection:
f = function(x)
{

x
}

#I_3:
jump = abs(mean(Delta_Y))
#Make matix:
I3 = matrix(0,length(t),n)
for (j in 1:n)
{

for (i in 1: length(t))
{
if (abs(Delta_Y[i]) > jump)
{

I3[i,j] = log(lambda(i,X[1,i,j],X[4,i,j],Delta_Y[i
]))

}
else
{

I3[i,j] = 0
}

}
}

#Trapez method.
I_3 = matrix(0,length(t)-1,n)
for (j in 1:n)
{

for (i in 1:( length(t) -1))
{

I_3[i,j] = (((i+1)-i)*((I3[i+1,j] + I3[i,j])/2))
}

}

I_t3 = matrix(0,length(t)-1,n)
for (j in 1:n)
{

for (i in 1:( length(t) -2))
{

I_t3[1,j] = I_3[1,j]
I_t3[i+1,j] = I_t3[i,j] + I_3[i+1,j]
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}
}

#I_4=0
I_1 = Bt
I_2 = matrix(0,length(t),n)
for (i in 1: length(t))
{

I_2[i,] = (1/2)*t[i]
}

#M_t:
M_t = matrix(0,length(t)-1,n)
for (j in 1:n)
{

for (i in 1:( length(t) -1))
{

M_t[i,j] = exp(I_1[i+1,j] - I_2[i+1,j] +I_3[i,j])
}

}

#Sum over diff. times:
expect_Mtf = matrix(0,4,length(t) -1)
for (j in 1:4)
{

for (i in 1:( length(t) -1))
{

expect_Mtf[j,i] = (1/length(M_t[i,]))*sum(M_t[i,]*f(X
[j,i,]))

}
}

expect_Mt = matrix(0,4,length(t) -1)
for (j in 1:4)
{

for (i in 1:( length(t) -1))
{

expect_Mt[j,i] = (1/length(M_t[i,]))*sum(M_t[i,])
}

}

X_tilde = expect_Mtf/expect_Mt
time = seq(0,(T-2),dt)
#plot
plot(time ,X_tilde[2,], type = 'l', col = 'blue', xlab='

time', ylab='X_tilde',main= 'estimates ', ylim = c(min(
X_tilde[2,],X_tilde[3,],X_tilde[4,] ),max(X_tilde[2,],
X_tilde[3,],X_tilde [4,])) )

lines(time ,X_tilde[3,], type = 'l',col = 'red')
lines(time ,X_tilde[4,], type = 'l', col = 'green')

#xi-values(last):
#xi_2=0.262893
#xi_3= -1.376566
#xi_4=0.9725912
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Listing 8.8: Simulation with a di�erent λ

#simulation with the model with General Electrics company
data.

#Data from yahoo -finance:
data_GM = read.csv("C:/Users/maja/Desktop/MO2015/datasett

/GE General Electric2006 -2010. csv", sep=";")
Y = data_GM[,2] #Closing price.
#Simulations:
n= 100
#Timesteps:
T = length(Y) #Maturity
dt = 1 #steps from today to maturity
t = seq(0,(T-1),dt) #interval
#Plot of the closing price:
plot(t, Y, type = 'l', main = 'Closing price of GE', ylab

= 'price', xlab = 'time')
Delta_Y = c()
Delta_Y[1] = Y[1]
for (i in 1: length(Y))
{

Delta_Y[i] = log(Y[i])-log(Y[1])
}

#Plot of log -return:
plot(t, Delta_Y, type = 'l', main = 'log -return ', ylab =

'log -return ', xlab = 'time')

#Brownian motion
Bt = matrix(0,length(t),n)
for (j in 1:n)
{

dBt = rnorm(length(t) ,0,1)*sqrt(dt)
for (i in 1:( length(t) -1))
{

Bt[i+1,j] = Bt[i,j] + dBt[i]
}

}

#Draw random numbers from Normal distr.(a priori distr.)
for xi-values:

xi = matrix(0,4,n)
for (j in 1:4)
{

xi[j,] =rnorm(n,0 ,0.1)
}

#X-Matix , creating an array:
X = array(0,dim = c(4,length(t),n))
#Startvalues;
for (j in 1:n)
{

X[1,1,j] = xi[1,j]
X[2,1,j] = xi[2,j]
X[3,1,j] = xi[3,j]
X[4,1,j] = xi[4,j]

}
for (j in 1:n)
{

for (i in 1:( length(t) -1))
{

X[1,i+1,j] = X[1,i,j] + xi[2,j]*(xi[3,j]-X[1,i,j])*dt
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+ xi[4,j]*rnorm (1,0,1)*sqrt(dt)
X[2,i+1,j] = xi[2,j]
X[3,i+1,j] = xi[3,j]
X[4,i+1,j] = xi[4,j]

}
}

#lambda function
lambda = function(t,x_1,x_2,x_3,x_4)
{

(sqrt(x_1^2 + x_2^2 + x_3^2 +x_4^2) + 1)
}

#jump function
normz = function(z)
{

((1/sqrt(2*pi))*exp(-(1/2)*(z)^2))
}

#Projection:
f = function(x)
{

x
}

#I_3:
jump = abs(mean(Delta_Y))

#Make matix:
I3 = matrix(0,length(t),n)
for (j in 1:n)
{

for (i in 1: length(t))
{

if (abs(Delta_Y[i]) > jump)
{

I3[i,j] = log(lambda(i,X[1,i,j],X[2,i,j],X[3,i,j],X
[4,i,j]))

}
else
{

I3[i,j] = 0
}

}
}

I4 = matrix(0,length(t),n)
for (j in 1:n)
{

for (i in 1: length(t))
{

I4[i,j] = (1-lambda(i,X[1,i,j],X[2,i,j],X[3,i,j],X[4,
i,j]))

}
}

#Trapez method.
I_3 = matrix(0,length(t)-1,n)
I_4 = matrix(0,length(t)-1,n)
for (j in 1:n)
{

for (i in 1:( length(t) -1))
{
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I_3[i,j] = (((i+1)-i)*((I3[i+1,j] + I3[i,j])/2))
I_4[i,j] = (((i+1)-i)*((I4[i+1,j] + I4[i,j])/2))

}
}
I_t3 = matrix(0,length(t)-1,n)
I_t4 = matrix(0,length(t)-1,n)
for (j in 1:n)
{

for (i in 1:( length(t) -2))
{

I_t3[1,j] = I_3[1,j]
I_t3[i+1,j] = I_t3[i,j] + I_3[i+1,j]
I_t4[1,j] = I_4[1,j]
I_t4[i+1,j] = I_t4[i,j] + I_4[i+1,j]

}
}

I_1 = Bt
I_2 = matrix(0,length(t),n)
for (i in 1: length(t))
{

I_2[i,] = (1/2)*t[i]
}

#M_t:
M_t = matrix(0,length(t)-1,n)
for (j in 1:n)
{

for (i in 1:( length(t) -1))
{

M_t[i,j] = exp(I_1[i+1,j] - I_2[i+1,j] + I_3[i,j] + I
_4[i,j])

}
}

#Sum over diff. times:
expect_Mtf = matrix(0,4,length(t) -1)
for (j in 1:4)
{

for (i in 1:( length(t) -1))
{

expect_Mtf[j,i] = (1/length(M_t[i,]))*sum(M_t[i,]*f(X
[j,i,]))

}
}

expect_Mt = matrix(0,4,length(t) -1)
for (j in 1:4)
{

for (i in 1:( length(t) -1))
{

expect_Mt[j,i] = (1/length(M_t[i,]))*sum(M_t[i,])
}

}

X_tilde = expect_Mtf/expect_Mt
time = seq(0,(T-2),dt)
#plot:
plot(time ,X_tilde[2,], type = 'l', col = 'blue', xlab='

time', ylab='X_tilde',main= 'estimates ', ylim = c
( -0.3 ,0.4))
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lines(time ,X_tilde[3,], type = 'l',col = 'red')
lines(time ,X_tilde[4,], type = 'l', col = 'green')

#xi-values (converges):
xi_2 = X_tilde[2,T-1] #=0.01440555
xi_3 = X_tilde[3,T-1] #= -0.01900694
xi_4 = X_tilde[4,T-1] #=0.05796884
#Data from January 2011 to December 2011:
data_GM2011 = read.csv("C:/Users/maja/Desktop/MO2015/

datasett/GE General Electric2011.csv", sep=";")
obs_2011 = data_GM2011 [,2]
T = length(obs_2011)
#Startvalue:
xi_1 =rnorm (1,0,0.1)
#timestep:
m=T
#paths:
n = 10
xm = matrix(0,n,T+1)
#Signal process
for (j in 1:n)
{

dBt = rnorm(length(t) ,0,1)*sqrt(dt)
Bt = rep(0,length(t))
x = c()
x[1] = xi_1
for (i in 1:T)
{

Bt[i+1] = Bt[i] + dBt[i]
dx = xi_2*(xi_3-x[i])*dt + xi_4*(Bt[i+1] - Bt[i])
x[i+1] = x[i] + dx
xm[j,1] = x[1]
xm[j,i+1] = x[i+1]

}

}
#average:
av = c()
for (k in 1:T)
{

av[k] = 1/(length(xm[,k]))*sum(xm[,k])
}

xm = xm[,-(T+1)]

#plot signal process
time_1 =seq(0,T-1,1)
plot(time_1,xm[1,], type = 'l',xlab = 'time', ylab = '

Signal process ', main = 'Simuation of the Signal
process ',ylim = c(-1,1))

for (i in 2:10)
{

lines(time_1,xm[i,], type = 'l')
}
#and the average:
lines(time_1,av, type = 'l', col = 'red', lwd= 2)

mu = matrix(0,n,T)
for(j in 1:T)
{

for (i in 1:n)
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{
mu[i,j] = lambda(j,xm[i,j],xi_2,xi_3,xi_4)

}
}

#Trapez method.
mu_1 = matrix(0,n,T-1)
for (j in 1:(T-1))
{

for (i in 1:n)
{

mu_1[i,j] = (((i+1)-i)*((mu[i,j+1] + mu[i,j])/2))
}

}
mu1 = matrix(0,n,T-1)
for (j in 1:(T-2))
{

for (i in 1:n)
{

mu1[i,1] = mu_1[i,1]
mu1[i,j+1] = mu1[i,j] + mu_1[i,j+1]

}
}
#Step 3.:
L = matrix(0,n,T-1)
for (i in 1:n)
{

for (j in 1:(T-1))
{

L[i,j] = sum(runif(rpois(1,mu1[i,j]) ,-0.01,0.01))
}

}
S_0 = data_GM[length(data_GM[,2]) ,2]
time = seq(0,T-2,1)
dataGM2011 = data_GM2011 [,2]
dataGM2011 = dataGM2011 [-(length(dataGM2011))]
#Plot:
plot(time ,S_0*exp(L[1,]), type = 'l', ylab = 'S_t', ylim

= c(12, 25) )
for (i in 2:10)
{

lines(time ,S_0*exp(L[i,]), type = 'l')
}
lines(time , dataGM2011 , type = 'l', col = 'red', lwd = 2)

#To compare the models:
plot(time ,S_0*exp(L[1,]), type = 'l', ylab = 'S_t', ylim

= c(5, 40), main='Merton vs. the new model' )
lines(time ,Vt[,1],type = 'l', col = 'blue')
lines(time , dataGM2011 , type = 'l', col = 'red', lwd = 2)
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Listing 8.9: Simulation with the Merton model
#GE data from Jan 2006 to Dec 2010
data_GM = read.csv("C:/Users/maja/Desktop/MO2015/datasett

/GE General Electric2006 -2010. csv", sep=";")
Y = data_GM[,2] #Closing price.
#Timesteps:
N = length(Y) #Maturity
dt = 1 #steps from today to maturity
Delta_Y = c()
Delta_Y[1] = Y[1]
#log -return
for (i in 1:( length(Y) -1))
{

Delta_Y[i+1] = log(Y[i+1]/Y[i])
}
N= length(Delta_Y)
delta_t = 24
#MLE estimates
alpha_hat = (1/(delta_t*N))*sum(Delta_Y)
var_hat = c()
for (i in 1:(N-1))
{

var_hat[i] = (Delta_Y[i]-delta_t*alpha_hat)^2
}

sigma_hat = sqrt(1/(delta_t*N-1)*sum(var_hat))

#GE data from Jan 2011 to Dec 2011
data_GM2011 = read.csv("C:/Users/maja/Desktop/MO2015/

datasett/GE General Electric2011.csv", sep=";")
obs_2011 = data_GM2011 [,2]
T = length(obs_2011)
Vt = c()
dBt = rnorm(T,0,1)*sqrt(dt)
Bt = rep(0,T)
Vt[1] =data_GM[length(data_GM[,2]) ,2]
V_0 = 18.29 #last value of december 2010
Vt[1] = V_0
Xt = matrix(0,T-1,10)
for (j in 1:10)
{
for (i in 1:(T-1))
{

Xt[i,j] = alpha_hat*i + sigma_hat*rnorm (1,0,1)
}
}

Vt = V_0*exp(Xt)
t = seq(0,(T-1) ,1) #time interval
plot(t,Vt[,1], type='l', ylab = 'price', xlab = 'time',

main = 'Simulation with the Merton model' )
for (j in 2:10)
{

lines(t,Vt[,j], type = 'l')
}
lines(t,obs_2011, type = 'l', col = 'red', lwd=2)
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