
On the non-linear stability of a liquid 

film flowing down an inclined plane. 

B. Gjevik 

Lin (1969, 1970a) and Gjevik (1970a, 1970b) have by different 

methods demonstrated that steady surface waves on a thin liquid film 

flo~ling down an inclined plane can exist under certain flow condi­

tions. In this study we discuss more thoroughly the special features 

of the non-linear stability analysis for a parallel flow with a free 

surface, The similarities and differences between the two different 

approaches mentioned above ~re emphasized and the difficulties 

encounter by applying expansion methods developed for the study of 

parallel flows between rigid planes to the present problem are clearly 

revealed, Moreover we study analytically the stability of the steady 

~~ave solutions obtained by Gjevik (1970a, 1970b) 1qith respect to a 

certain class of perturbations. This analysis supports the experimen­

tal findings that finite-amplitude waves with a certain wavelength 

appear to be steady under certain flow conditions. 

~le also study the mechanism of energy conversion during the 

development of steady finite-amplitude waves on falling liquid films. 

The negligible effect 1·1hich the Re~molds stress and the corresponding 

distortion of the mean velocity profile have on the finite-amplitude 

energy balance, is pointed out. 
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1. Introduction, 

Since falling liquid films are ~ridely used in different 

technological processes as in cooling and absorbtion systeme, 

the flow characteristics of a liquid film have been a subject 

of many studies. Especially the occurrence of surface waves, 

which significantly affects the rate of heat or mass transfer 

into the bulk of fluid has received much interest. A survey 

of the literature on this topic is given by Levich (1962) and 

also by Levich and Krylov (1969). Despite all efforts the 

development of finite amplitude waves on falling liquid films 

has not been satisfactorily explained. Recent independent 

studies by Lin (1969, l970a) and Gjevik (l970a, l970b), the 

latter worlcs will hereafter be referred to as (I) and (II) re­

spect! vely, h01qever, clearly demonstrate the existence of steady 

waves under certain flow conditions. Moreover, these studies 

show that the problem can be formulated as a non-linear stability 

problem for a parallel flow. It should, however, be noticed that 

the linear stability problem for a parallel flow with a free sur­

face presents some special features which make the non-linear 

stability analysis different from that for parallel flows between 

rigid planes. Therefore the methods developed by Stuart (1960), 

Watson (1960) and Eckhaus (1965) cannot generally be applied to 

the present problem. In two worlcs by Lin (1969) and (l970a), a 

modification of Stuart's (1960) amplitude expansion technique, 

originally proposed for the non-linear stability study of parallel 

flow between rigid planes, has been applied for stability studies 

of a parallel flow ~lith a free surface. For this problem the 
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method leads to rather cumbersome calculations, and the limitations 

of the approach are not discussed by the author. On the other hand, 

the method used in (I) and (II), which consists of a long wave 

expansion combined ~lith a Fourier expansion, is analytically more 

attractive, This method provides a more general formulation of 

the problem and enables us to discuss more thoroughly the validity 

of the expansions. Such a discussion is included in the present 

study. The connection between the method used in (I) and (II) and 

the method used by Lin (1969, 1970a) ~ms only briefly discussed in 

(I) and (II). \·le will now demonstrate that under certain specified 

conditions 11e also are lead to the same type of governing equation 

for the amplitude of the basic wave component as discussed by Lin. 

This, however, only applies to the spatially periodic waves studied 

in (I). This analysis shows that some of the numerical results given 

in Lin (1970a) are erroneous. We have also in this study discussed 

analytically the stability of the steady wave solutions, derived 

in (I) and (II). Although the analysis includes both space and time 

periodic perturbations it must be admitted that the analysis is still 

quite restricted. 

Moreover in this study we discuss the mechanism of energy 

conversion during the development of finite-amplitude waves on 

falling liquid films. One of the results obtained, namely the 

explanation of the role of the Reynolds stress on the finite-ampli­

tude stability is already described in Lin's work (1970a). However, 

since this result was derived independently and by a different 

method by us it is also presented here. In experiments or techno­

logical processes involving film flows it is difficult to attain a 
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a completely clean surface and the presence of surface active 

agents will in some cases modify the wave motion, Levich (1962). 

Models taking these effects into account for film flows have been 

studied by Benjamin (1964) and also by Lin (1970b), Of course 

the method used in (I) and (II) can easily be extended to include 

the effect of surface active agents. This analysis is certainly 

necessary if more precise comparisons bet11een theoretical and ex-

perimental results are required, For the time being we have, 

ho11ever, completely discarded the effect of surface active agents 

and focused our interest on the non-linear processes involved in 

surface wave motion on falling liquid films. 

2. Derivation of the Landau eguation and some further comments 

on the validity of the expansions used in (I) and (II). 

In order to study plane ~laves we have in (I) and (II) intro­

duced a Fourier expansion of the surface deflection 1;; which for 

two-dimensional ~laves is a function of the distance along the 

plane, x, and of time, t, Thereby the partial differential equa­

tion for I;; was reduced to sets of ordinary differential equations. 

For the sake of the following discussion ~1e will recapitulate the 

procedure for the spatially periodic waves studied in (I). We 

scale 1;; by the mean thickness of the fluid film, h, and write 

l;;(x,t) = 1 + n(x,t) 
' 

(la) 

where 
k=N 

A ( t) ikx n(x,t) = ~ (lb) 
k=-N 

k e 

According to the scaling introduced in (I) the dimensional wave 
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number of the fundamental harmonic in (lb) is a/h, where a << 1, 

* Moreover A_k(t) = A1{(t) where asterisk denotes complex conjugate 

and by our scaling of r;, A
0 

= 0, \1e assume IAkl to be of order 

E:<\ with the understanding that e: « 1 and o1 = l. Initially 

e: and ok depend on the initial conditions, However, when a 

steady finite-amplitude wave has developed e: and ok are deter­

mined by the flow parameters namely; the Reynolds number and the 

Weber number which are defined in equation (9) below, For steady 

waves these parameters therefore determine the rate of convergence 

of the expansion (lb), 

We shall attempt to solve the equation for 1; correct to terms 

of order e: 2 in the expansion (lb), Hence if <\ is assumed to be 

of order e: l.k-ll this leads to a simplified set of amplitude 

equations 

* = f\1A1 + qA2A1 + miAII 2A1 + O(e: 5
), (2a) 

(2b) 

where the complex valued coefficients have the same values as in 

the Appendix in (II). 

Under certain conditions (2a) and (2b) can be combined to an 

equation for I A1 1. This equation 11ill be of the Landau type which 

is referred to frequently in non-linear stability theory (Eckhaus 

1965), However, as known from non-linear stability theory of 

parallel flows between rigid planes, conditions under which a 

Landau equation for the wave amplitude ca.n be derived, is 
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restricted (Ellingsen et al. 1970). In order to discuss the 

restrictions for the free surface case we write the solution of 

( 2b) as 
t 

A2 = eBzt[pJAl 2e-B 2tdt + Az(t:o)]+ O(E~). 
0 

(3) 

where A
2

(t=o) denotes the initial value of A
2

• Let the indices 

r or i denote respectively the real or imaginary part of a 

complex number. Under two conditions the integral in (3) can be 

evaluated and expressed by A1 2
; 

i) ~~~ ~ B1A1 • A condition which is valid during the initial 

growth of a sufficiently small disturbance I A1 I • 

ii) dA1 ~ iB A 
dt d 1 

A condition ~lhich is valid for a steady wave 

propagating approximately with the velocity eli' 

If we moreover assume B
2
r < 0 then regardless of the initial 

value of Az the resulting equation for A1, valid for 

and as long as terms of order e: 6 can be neglected, will be 

(4) 

Where p is the r real part of the socalled second Landau coefficient. 

The conditions i) and ii) lead to different values of Pr. However, 

if le 1rl << IB
2
rl the difference will be negligibly small. The 

steady wave amplitudes obtained in (I) and (II) correspond to the 

stationary solution of (4) for the case ii) above. Therefore an 

expression for Pr for this case is already defined in (II) and 
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need not be recapitulated, It should be noticed that in order to 

have steady finite-amplitude waves we found in (II) that Q > 0 
"'1r 

and Pr < 0, for small values of a the latter condition implies 

that fl
2
r < 0. These conditions are in agreement with (4). Due to the 

special features of the linear stability diagram the essential require-

ment for the derivation of (4), fl < 0, can only be satisfied for 2r 
1~ave numbers in the neighbourhood of the neutral curve in the linear 

stability diagram. In either of the oases i) or ii) a Landau type 

equation valid for t > fl -l can therefore be derived only in a 2r 
certain range of 1qave numbers. On the other hand, for all values 

of the wave number satisfying the requirements of the long wave 

expansion the set of equation (2) as 1~ell as the more general set 

treated in (I) are valid in a certain time span as long as the dis-

carded higher harmonics can be neglected, 

For the steady wave solutions, discussed in (I) and (II) the 

peculiarities of the linear stability diagram in the present problem 

are also crucial for the rate of convergence of the expansion (lb), 

The assumption that ok is of order Elk-ll, is only satisfied close to 

the neutral curve in the linear stability diagram and then only 

within certain ranges of the flo1·1 parameters. This can easily be seen 

from the numerical result given in (I) and (II). For example for values 

of the flow parameters such 

lk-11 order £ .An estimate of 

that fl
2
r tends to zero ok 1~ill not be of 

the rate of convergence is then obtained by 

retaininG higher order terms in (lb) as we have done in (I) and (II), 

lk-11 If we assume ok to be of order £ and attempt to determine 

the steady wave amplitude correct to order £ 3 Ne are lead to the set 

of amplitude equations given in (I) (equation 15). These equations 

were solved numerically in (I) and (II). The accuracy obtained in this 

way corresponds to that obtained by the evaluation of the terms of 

order £ 6 in equation (4), 

Lin's analysis (1969) lead to a similar type of equation for the 

amplitude of the basic harmonic as given in (4), but there is, 
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independent of scaling procedures, some discrepancy between the 

values of the coefficients given by Lin and those given above, Our 

numerical results for the steady 1·1ave amplitudes in the neighbourhood 

of the line 

given by Lin 

13 = 0 2r 
(1970a), 

in the stability diagram contradict these 

According to these results the second Landau 

coefficient becomes zero in this range of the flow parameters, 

ho~1ever, his analysis for steady waves seems to imply that the second 

Landau coefficient is derived for a similar condition as stated in i) 

above. On the other hand, our analysis, which correspond to the 

more realistic condition ii), implies that Pr becomes of order 

1/a when a result which also is supported by numerical 

results. Also for other wave numbers there is a discrepancy 

between the va:;_ue of the steady wave amplitudes given by Lin (1969) and 

and those given in (II). For example our data for the steady wave 

amplitudes at flow rates corresponding to Kapitza & Kapitza (1949) 

observations are about 20% higher than those given by Lin. Although 

the data are not quite comparable since the perturbation methods are 

different and besides that in our computation the effect of the a 2 

terms as ~lell as the effect of the non-linear correction to the 

volume flux are taken into account, these effects cannot fully 

explain this large discrepancy which we so far have found no reason 

for. 

The long wave expansion applied in (I) and (II) can only be 

expected to give a reasonable approximation as long as a << 1 and 

also aR « 1, where R is the Reynolds number of the flow. In the 

range of wave numbers corresponding to steady waves (13 > 0, tr 
B < 0) the requirement aR « 1 soon becomes invalid for R > 1. 2r 
Since the long wave expansion used in (I) and (II) also leads to 
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extremely involved algebra when it is carried out to higher order 

approximations, numerical methods might be the only way to investi­

gate the problem in these cases. For example a Taylor series 

expansion of the stream function for the wave motion in terms of 

the coordinate normal to the plane, where the coefficients are 

functions of x and t, combined with a Fourier expansion of these 

coefficients in x will reduce the problem to a set of ordinary 

differential equations. I'Jith a suitable truncation these equations 

might be solved numerically. 

There is also another restriction which should be noted, 

Although the numerical results in (II) indicate that the scaling 

in (I) is valid for steady wave solutions even at an inclination 

angle down to 7.5°, the scaling will obviously become invalid at 

sufficiently small angles of inclination. In these cases a similar 

scaling as used by Gjevik (1970c) would be more appropriate. 

3. Stability of the steady wave solution. 

Since the equations (2a) and (2b) in a certain range of the 

flow parameters can be reduced to a Landau type equation for,IA
1
I, 

it follows immediately from previous results (Eckhaus 1960) that 

.the steady solution of equation (4), for B > 0 1r 
is stable for perturbations in IA 1 1. The stability 

and P < 0, 
r 

of the steady 

wave solution to perturbations which have a more general x-depenclence 

is obviously a difficult problem, VIe will, however, study some 

types of perturbations which are to be expected under experimental 

conditions. Consider no11 the case where the steady waves are 
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generated by a wave generator (idealized), This situation can be 

modelled by the analysis in (II) which we briefly will recapitulate, 

The surface deflection is described by (la) where 

n(x,t) 
k=N N ik( ) 

= 2 Ak(x)e x+ct 
k=-N 

(5) 

N N 

In (5) c denotes the dimensionless frequency and Ak = A_k(x). 

For 1·1eakly non-linear waves the Ak are slowly varying functions 

of x, If (5) is introduced in the equation for the surface de-

flection, v1e obtain a set of equations for A1 and A2 while A0 

is determined by the rate of volume flux. (For details see II)*) 

With much the same analysis as that leading to (4) we find, 

approximately: 
N N ~ N 

bfA1f 2 =f\rfA1f 2 + PrfA1f 4 + hrfA1f 2 Ao, (6) 

where 
~ N 

A
0 

= k Qo- t- 2fA1 f 2 (7) 

Equation (7) expresses that the mean volume flux (with respect to 

time) is constant and equal to Qo. The coefficient rr in (6) 

will be proportional to a and need not be recapitulated here, 

For f3 > 0 and p < o, by a proper choice of h, Ao can be 1r r 
set equal zero at values of X where the steady wave has developed 

fully. Therefore the steady wave solution of (6) corresponds to 

*) Note that for the temporally periodic waves,(5),the scaling 
length h for ~ must be interpreted as the mean film thickness 
with respect to time at a certain position x along the plane. 
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that of equation (4). Suppose that the wave generator is vibrating 

with an amplitude corresponding to a steady wave amplitude and that 
N 

a small perturbation in IA 1 1 is introduced such that the mean 

volume flux is kept constant. According to (7) this latter condition 

requires a pertUl'bation of the mean layer thickness. For sufficiently 

small values of lr I, and it follows from (6) that in this 
r 

N 

equation the perturbation in Ao can·be neglected compared to the 
N 

perturbation in I At I. Therefore 1~e conclude, with the same arguments 

as for the spatially periodic perturbation referred to above, that 
N 

the steady wave solution is stable for a perturbation in IA 1 1. The 

stability analysis for the steady 11ave train does not directly apply 

to cases with spatially varying wave trains do~mstream from the wave 

generator. Nevertheless, for a finite amplitude wave train with 

spatial variation it is reasonable to expect that this motion will 

have a similar although weaker, stabilizing effect on a perturbation 
N 

of IA 1 1 as the steady wave motion is found to have. 

Perturbations with a slightly different frequency than that of 

a steady 1mve motion will, according to the linear stability analysis, 

be unstable, Therefore this type of perturbation might grow and over-

shadow the basic steady motion. However, v1e will argue that the 

basic steady motion will also have a stabilizing effect on this type 

of perturbation. Consider, for example, two spatially periodic per­

turbations, PP, with wave numbers a' = a + o and a" = a - 6 

respectively, where a is the wave number of the steady finite-

amplitude 11ave and the parameter 6 is much less than a. Then 

by non-linear interaction between the PP and the steady wave, 11ave 

components, s, with wave numbers close to that of the higher harmo-

nics for the steady wave as well as a 11ave component, Q,with wave 
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number o will be generated, \!/hen the wave number of the steady wave 

is chosen so that B > 0 B < 0 then according to linear stability 
II' ' 2I' 

analysis the S components are stable while the Q component will 

be unstable. If we assume Q to be small initially, it might be 

neglected for a certain time span. The weak coupling between the Q 

and the PP components suggests that this time span might be large 

compared to the time it takes for the steady wave pattern to travel 

a distance equal to its own wavelength. Some estimates which we 

have done support this suggestion. As long as the Q component can 

be neglected the stability analysis for the PP component will be 

very similar to that already given for the same type of perturba­

tions to a steady wave motion in parallel flows between rigid planes. 

(Eckhaus 1965, Chp. 8). Therefore the result obtained by Eckhaus 

that the PP components will be damped also applies here, but then 

only for a certain limited time span. 

Under experimental conditions where the steady waves are ini-

tiated artificially it is reasonable to expect that the most domi­

nant two-dimensional perturbations occurring are contained among the 

types of perturbations investigated above, Our analysis can, 

however, only indicate what experiments show, namely that finite­

amplitude waves with a certain wavelength will appear steady under 

certain flow conditions. 

Finally we add some remarks on Kapitza's (1948) analysis of 

the present non-linear stability problem. It follo11s from ( 7) that 

among the steady wave motions having the same mean volume flux, the 

wave with maximum amplitude of the fundamental harmonic will 

correspond to the lowest value of the mean thickness of the fluid 

layer. Kapitza (1948), stated without proof that only this wave 
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motion would correspond to a stable motion and consequently used 

this assumption to determine the flow uniquely. Our results 

obtained in (I) and (II), that the steady flow depends strongly 

on the initial orboundary condition imposed, together with the 

results of the stability analysis above indicate, however,that 

Kapitza's assumption is inappropriate and that only the wave 

motion having approximately the largest amplitude for a given 

mean volume flux can be determined by the method suggested by 

Kapitza. 

4. The energy conversion during the development of steady finite­

amplitude waves on falling liquid films. 

~/e shall consider two-dimensional motion down an inclined 

plane. The basic parabolic flow we denote u, while the velocity 

components of the wave motion, along the plane and normal to the 

plane respectively, we denote u and 11, The velocity components 

of the total motion are then: 

u = u + u 
(8) 

Otherwise 11e shall adopt the same notation and scaling procedure as 

introduced in (I) and (II). The motion will then be characterized 

by a Reynolds number and a Heber number which can be written: 

R .• 
' 

(9) 
T 

H = pgh. 2 sine • 
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where a is the inclination angle of the plane, g is the 

acceleration of gravity, v is the kinematic viscosity, p ia the 

density of the fluid and T denotes the surface tension. The 

scaling length h is a characteristic thickness of the fluid layer 

and is defined differently for spatially periodic wave motion 

and for temporally periodic wave motion (See § 2 and 3 above). 

Consider the case where the wave motion is spatially periodic, 

The temporal rate of change of the !cine tic energy, E, per wave­

length and per unit span of the plane, is caused by the foll01~ing 

effects. The work done by the component of gravity along the 

inclined plane which we denote N, the rate of energy dissipation 

which ~Te denote M, the \~ork done against the surface tension which 

we denote L and finally the work done to deform the free surface 

in the gravity field which we denote P, If all these different 

contributions per wavelength and per unit span of the flow are 

scaled according to (I) and (II) by 

the equation of motion and the corresponding boundary conditions 

given in (I): 

dE = N 
dt ~l+L+P, (10) 

where the right hand side is defined in Appendix A. Obviously for 

the parabolic flow, u, the energy balance in (10) is L = P = 0 

and N = ~1. For steady finite-amplitude waves z; is a periodic 

function of x+ct, where c is the dimensionless wave velocity 

and consequently, in this case, a similar equilibrium energy 

balance exists. The different constraints on the spatially periodic 

and the temporally periodic wave motion are clearly illustrated by 

energy considerations. Consider an infinitesimal amplitude surface 
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perturbation of the form 

~ = 1 + A(t)ei(x+ct) + complex conjugate, (11) 

where A(t) is an exponential growing or decaying function of time 

and c is determined by linear theory. Since L and P are 

negative for a temporally growing wave, i.e. energy is converted to 

both surface energy and to potential energy, the gravity component 

along the inclined plane is the only energy source for an unstable 

wave component. Since N depends on A an eventual finite­

amplitude balance for this wave component can only be established 

by a proper adjustment of N, i.e. by an adjustment of the rate of 

volume flow in the x-direction, A temporally periodic surface per-

turbation with infinitesimal amplitude is also given by (11) where 

A now is an exponential function of x. For weakly stable or un­

stable waves A(x) is a slowly varying function. If we follow 

one individual wave the energy equation (10) \~ill also apply 

(approximately) in this case. Since the mean volume flux is kept 

constant, N will also be independent of x. This is achieved 

by an adjustment of the mean layer thiclmess. Therefore for the 

temporally periodic wave an eventual finite-amplitude balance in 

(10) can only be established by a non-linear modification of the 

energy dissipation. 

The special features of non-linear stability analysis of a 

parallel flo~/ with a free surface can be demonstrated clearly by 

energy considerations. Let us examine the energy conversion between 

the wave motion and the basic parabolic flow. The temporal rate of 

change of ldnetic energy, E, in the perturbation motion is caused 

by: The work done by the Reynolds sllear stresses which we denote 
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K, the rate of energy dissipation in the perturbation motion which 

we denote ~i. (This expression is defined similar to M in 

equation (10), and the work done by the pressure and the viscous 

stresses set up by the perturbation motion. This latter contribu-

tion can as well be interpreted as work done at the deformed free 

surface, namely i) 1qork done against the surface tension which 

we denote L, ii) work done against the hydrostatic pressure 

deviation in the steady flow, which ~1e denote P, iii) the 1qork 

done against the component of the viscous stress deviation in the 

steady flow normal to the free surface, which we denote sn, and 

finally iv) the work done against the component of viscous stress 

deviation in the steady flo11 tangential to the free surface, which 

we denote St. It is pertinent to mention that the contributions 

ii)-iv) arise from the assumed analytical continuation of the basic 

parabolic velocity profile and the corresponding.· pressure distri­

bution at the deformed surface. If we assume spatially periodic 

wave motion and evaluate all these different contributions per wave­

length and per unit span of the flow, we find 

~~ = K - M + L + P + sn + st, (12) 

where the right hand side of (12) is defined in Appendix B and the 

scaling is as for the terms in equation (10). For parallel flows 

between rigid planes L, P, Sn and St vanish and the only energy 

source (in the mean) is through the action of the Reynolds stress, 

uw. \>lith a deformable surface, hm1ever, the situation becomes 

more involved, Let us now estimate the relative importance of 

the different terms on the right hand side of (12), 1</e first ob­

serve that for waves of the type (11) L and P are negative for 
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temporally growing waves and positive for temporally decaying 

waves. If we assume a wave motion with amplitude e: then it follows 
<XES from Appendix B and Appendix C that Sn is of order ~ , 

of order £~, and K = aRe: 2 .~)It is therefore obvious that 

main energy source for the perturbation motion is St• while the 

effect of the Reynolds stress is negligible for the surface mode 

treated in (I) and (II), It is pertinent to mention here that 

by using the results in Appendix C ~1e easily show that for the 

disturbance (11) the Reynolds stress is stabilizing if 

is 

a 
2 

< ( * R - cot e ) /\v. (13) 

The requirement (13) can be satisfied even for disturbances which 

are unstable according to linear stability theory. 

For a steady finite-amplitude wave, obviously L = P = 0. 

Therefore for the steady ~1eakly non-linear waves studied in (I) 

and (II), the equilibrium energy balance is mainly established by 

the non-linear modification of the terms St and M. It follows 

from the results in (I) and (II) that this modification is attained 

mainly by the generation of higher harmonics through non-linear 

interactions while the mean distortion of the basic parabolic 

velocity profile, given in equation (4C),Appendix C, is a negligible 

effect. This situation is quite different for high Reynolds number 

par•allel flo11s between rigid planes where the distortion of the 

mean velocity profile has an important effect on the finite­

amplitude equilibrium energy balance. For plane Couette flow for 

example this is discussed in the work by Ellingsen et al. (1970). 

~) a 2 \v and cot e is assumed to be of order unity. 
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Appendix A. 

If z denotes the coordinate normal to the inclined plane 

and a bar denotes integration over one wavelength in x-direction, 

we have: 

N 

1 +a 2w)dz E ::: '(N2 2 u 

0 
1; 

N 2 f 
N 

N ::: (iR udz 
0 

2a 2 \v 
a~; a2~; 

N at ax2 
L ::: rr 

(l+a2 (l£) 
2 3 
)2 

ax 

1; 

p 2cote 
f wdz cote az/ ::: ::: -R R at 
0 

Appendix B. 

Hith the same notation as in Appendix A, we have 
1; 

K ::: - J dU uw dz dz 
0 -,.--

a21; 
<P rxz 
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q, dU a<;; 
s 2a dz ax at <;;, = If l+a2(a1;)2 

z = n 
ax 

1 (u+a2wll) 
dU(l-a2(ll)2) 

st 
dz ax at :: - aR z = 1; ' ax l+a2(ll)2 

ax 

1·1here 

q, :: 2.£ + u 2.£ 
at ax 

and 

u = 2z - z 2 , 

Appendix c. 

The Reynolds stress uw in the case of spatially periodic 

motion is easily obtained, correct to terms of order a, from the 

results in (I), namely: 

(lC) 

where z is the coordinate normal to the plane and a bar denotes 

the mean with respect to x. 

For steady two-dimensional motion, the distortion of the mean 

velocity profile is given by 

The boundary conditions for u are 

- du u::-=0 dz for z = 0. 

(2C) 

( 3c) 

The latter condition follows immediately from the fact that the mean 

layer thickness is used as the scaling length in the Reynolds number. 

From (2C) and (3C), we find 

u = aR J uwdz 
0 

< 4 c) 
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