Vertical wall effects on a fluid

heated from below: linear theory.

Torbjgdrn Ellingsen

.The convective motion of a fluid 1In a container heated from
below 1s consldered. Exact solutions of the linearized Bousslnesq
equations are found when the contalner is elther a circular dish
or a rectangular channel, and when the horizontal boundaries are
free boundaries. Solubions which are weakly stable or weakly un-
stable when the Raylelgh number has a value near 1lts critical value,
are dlscussed 1n some details. The stabllizing effect of the walls
dh different cell forms 1s also consldered. While the linear theory
predicts the orientation of the cells in a channel in accordance
with experiments, it does not predict the azimuthal varlation of
the motion in a circular dish., The azxisymmetric cell pattern seen
in experiments 1s thought to be determined by non-linear terms as

well as wall effects.



1. Introductlon.

In most investigatlons on the convective motion In a fluld
heated from below, the fluld layer 1s assumed to be of infinite
horizontal extent. In many respects the solutlons thus obtained,
have the characteristic features of the convective motion in a
~container of finite size. Among the well known results for the
model of infinite extent, we mention that the linearized equations
determine the critiecal Rayleigh number for which the convective
motion is set up, and also determine the size of the convectlion
cells which are formed. The form of the cells can not be predicted
from the linearlzed equatlons. However, a stability analysls of
the non-linear solutlons glves the ranges of the Rayleigh number R
above its critlcal value RC, where the different cell pattern
(hexagons and rolls) may occur. This was investigated in several
papers, notably by Schliter, Lortz & Busse (1965) and by Palm,

Ellingsen & Gjevik (1967).

It is found from experiments, however, that the cell pattern
under certain conditions strongly depend on the form of the con-
talner in whilch the motion tekes place. Some attention was paid to
such phenomena in papers by Koschmieder (1966, 1967) and by
Sommerscales & Dougherty (1970). The most characteristic features
in this respect are (1) 1in a rectangular dish, the rolls are most
likely to develop with thneir axils parallel to the short side of the
dish (reported in the former of the papers cited above), and
(11) 1in a clrcular dish, there is a tendency %o a formation of
concentric circular cells when R exceeds R, VWhen R 1s further

Increased, these clrcular cells tend to break up and develop into



other cell forms, for instance hexagons.

Theoretical investlgations of the Influence of the vertical
walls were undertaken by Davis (1967, 1968), Segel (1969) and Joseph
(1970). Both Davis and Segel considered a set of rolls in a rec-
tangular contalner. While Davis determined stationary solutilons of
the linear and non-linear equations applylng a Galerkin procedure,
the work of Segel is based on the i1dea that an amplitude modulation
of a roll solution 1s sufficient to form a solution satisfying the
boundary condlitions, Furthermore, a stability analysls of a non-
linear solution turns out to flt into thils scheme. Joseph's paper
is mainly concerned with the dlscreteness of the stationary linear
solutlons and how thils may affect the non-linear branching problem.
But he also points out that when the horizontal boundaries of a
circular dish are free and the motion is axisymmetric, the linear
equations can be solved by separation of the varliables and the
boundary conditions can be satisfied. A similar separation of
varlables is applled by Miller (1966) for the problem of two-dimensional
convection in a channel with a glven temperature difference between |

the vertical walls.

In the present paper the possibility of solving the equatilons
by separatlion of the variables 1s discussed further. It is found
that this can be done not only for the axisymmetric solutlion in a
clrcular dish, but also for solutions with an arbitrary azimuthal
wavenumber. The sgolution for an infinite channel with arbitrary
channel wldth is also determined in a similar way. The elgensolutions
thus obtalned are discussed in some detalls and the growth rates o

are found 1In terms of R, It 1s also polnted out that the solution



of the non-linear equation can be solved by a series expansion

by means of these elgensolutions.

2. Baglic equations and boundary conditions.

The fluld layer under consideration 1s bounded by ftwo
horizontal planes a distance H apart, and some vertical walls
to be specified below. With U denoting the velocity vector, K
a vertical unilt vector, and © and p the deviations of temperature
and pressure from those of the purely heat conducting (motionless)

case, the governing equations can be written

= -
(2.1) V2% + Rok = Vp + PTM(U + Vi),
+
(2.2) V2@ + keu = 6, *+ Ueve,
(2.3) Vel = 0 .

Here the Boussinesq approximations are used, and the equations are
wrltten in dimensionless form with the scaling length, time, velocity,
temperature and pressure chosen as H, H%¢ ', H 'k, AT and H_szpo,
repsectively., «k 1is the thermal diffusivity, v the kinematic
viscosity, AT +the temperature difference between the lower and the
upper boundary and Po is a standard density. The density p 1s
assumed to be a linear function of the temperature T with the
coefficient of expansion o, o = -p 'dp/dT. R 1is the Rayleigh

0
number and P the Prandtl number defined by
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Considering now the boundary conditlons, we shall assume
that the horizontal boundaries are free boundaries. Thils aSsumption
1s necessary to obtaln the scolutions in a tractable form when the
lateral walls are taken into account. The regtriction is not thought
to be severe since 1t 1s known from any investigatlons that the
solutions for different boundary conditions show many of the same
features. In the paper by Palm et al. (1967) it 1s well demonstrated
how the effect of different boundary conditions is mainly to change

the ranges of R where heXxagons or rolls are stable.

Wwith 7 denotlng the viscous stress vector, we therefore write

the conditions

(2.5) KxT = o0, W= o0, 0= 0,

at the horizontal boundaries. The vertical boundaries are assumed
to be rigid and perfectly conducting walls whose temperatures are
kept with the same linear decrease with height as 1n the purely heat

conducting case., Accordingly we can write
(2.6) U= 0, 6 = 0,

at the vertiecal boundaries.

We shall find 1t convenient to rewrlte (2.1) in the following

way. Letting w and r denote the vertical components of veloclty

and vorticity

(2,7) w = kel , g = Kevxd ,



we can write

(2,8) V% + RV, %0 = P“%vzwt + V2(Qovu) - Vo(ﬁ-vﬁ)z),
(2.9) vig = BTl (gy + UeVr + (VXu)oVw).

Here 2z 1is the vertical coordinate and V:? 1s the two-dimensional
Laplacian Vi? = V% - 3%/92%, As our intentlon is to investigate
how the lateral walls affect the onset of convection, only the linear
equations will be considered., The linearized version of (2.1) to
(2.3) together with the boundary conditions defined above constitute
a self-adjoint elgenvalue problem for the time factor, as shown by
Schldter et al, (1965). The critical Rayleigh number R, will
therefore be assoclated with a steady solution. But we shall also
be interested In the spectrum of stable and unstable solutions for

R near Rc’ and the eqguations we are going to discuss are therefore

1

(2.10) V% + RV;2%6 = P~ Vzwt,
(2.11) vie + w = 0.,
(2.12) v = Pz,

together with (2.3) and the boundary conditions (2.5) and (2.6).
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3. Solutions for a cireular dish,

In this section we consider the convective motion of a fluid
in a clrcular dish with depth H and dlameter D, such that the

dimenslionless radius a 1is
(3.1) a = D/2H.

A coordinate gystem 18 chosen such that the free boundaries are
located at 2z = 0 and 2 = 1, and the rigid walls at r = a 1n
terms of the cylindrical coordinates (r,¢,z). The veloclty compo-

nents (u,v,w) are glven by

(3.2) u = zru + I¢v + ﬁw,

and the boundary condltions discussed above may be written

(3.3) u, +w_ =r'w, tv zw=8z=0,

(3.4) u=v=w=2606=0, at r = a.

In addition %o fthis, we require the solution to be regular
at r = 0., Analogous to the stationary and axisymmetrlc solution
of Joseph (1970), ocur solutions are assumed to be separable in

the following way

(3.5) w = exp(ot)sinwzcos nef(r),
(3.6) 8 = exp(ot)sinmzcosnog(r),
(3.7) r = exp(ot)cos wzsin nék(r),



Introducing these expressions into (2.10) to (2.12), we obtaln
three equations for the determination of f£(r), g(r) and k(r).
Once these equations are solved and w and & are known, u

and v can be determined from the equation of contlnuity and the

definition of ¢,

(3.8) (ru)r + Ve = = YW,

(3.9) (rv), - u, = rg.

The regular solutions of (2.10) and (2.11) are

(3.10) £(r) = AT (q,r) + AT (a,r) + A,T (q,7)

g(r) = (q,% + 7% + 0)"1*“13n(q1r)
(3.11)
+ (q,2 + m* 4 6)”1A2Jn(q2r) - (g 2 - 7%~ o)"IAaIn(qsr).

J, éand In denote Bessel functions, In belng defined by

In(z) = (mi)an(iz), and q,, ¢, and q are chosen such that
q=9q,% q-= q22 and q = -—qs2 are the roots of the third order

equation
(3.12) (q + n2+0)(q + 7% + UP"I)(qd-wz) - gR = 0,

In the solutlons we are golng to discuss, q,, q, and q, are

real and positive. From (3.7) and (2.12) we find

(3.13) k(r) = A,T (q,7) , q,2 = w2 + oP7',



and by writing

(3.14) u
(3.15) v

exp(ot)cos mz cos noh, (r) ,

exp(ot)cos nz sinn¢h,(r) ,

i

for the horizontal veloclty components, h,(r) and h,(r) are

found from (3.8) and (3.9) to be

-1 -1
hy(r) = nq,” A, 3 (q,r) + @q,” A,J'(q,r)

n
(3.16)
-1 . - -
- Tq, Asiﬁ(qar) - ngy 2ALT 1In(qur) .
h (r) = - nng, 24 r~'J (g v) - nmg ~*A »"'J_(q 1)
2 A S ¢ DS | 2 2 N T2
(3.17)

- w1 -
+ nng, CA,r In(qar) +q, 1AHIA(qqr) .

The solutions obtalned in thils way satisfy the boundary

conditiong at z = 0 and % = 1, The conditions at »r = a congti-

tute a homogenous set of equations for the constants A, Az, As
and A, , and vhen the determinant for this set of equations is
put equal to zZero, a relationship between 4, 9,5 4,, o and a
i1s obtained. Since 9,5 q, and q, are given functions of R
and o© through (3.12), this relationship determines the growth
rate o¢ for the various modes as a function of R and a. By
putting o = 0, we also obtain the values of R for marginal
instabllities as a function of a.

By introducing

(3.18) Q1 = ql—z(qlz + ﬂz + G)(ng + Q32)s
(3.19) Q = g2 2(q,2 + 2 + o)(aa? + q4?),
(3.20) Q, = a,” (q,2 - 7* - 0)(q,? - q,?),
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the characteristic equation may be wriltten

Jl(q,a) J!(q,a) I'(q,a)
Q, == . q,Q, = - QR
RERS EETHTET 272 EETEZET 3 3l;Ta:gT
(3.21) ‘
- Biiq, - Q, - Q) E”r—-—(q“a) = 0
quaz 1 2 3 I-;; q!’a) - *
y, Solutions for a channel.

Rectangular containers are frequently used in experilments on
convection. Our method of obtaining solutions by separation of the
varlables 1s not applicable 1n such cases. But 1f the length of
the rectangle is so large, compared to the width, that the effect of
the distant walls may be neglected and the contalner can be treated
as a channel, some exact solutions are easily found. In comparison
to the works of Davis (1967, 1968) and Segel (1969), this model is
simpler than thelrs since only two of the side walls are assumed to
affect the motion, but the analytic solutlons obtained here will be

valid for any value of the channel width.

The channel 1s taken to be of depth H and width B. A in
cartesian coordinate system (x,y,2z) 1s applled to the channel such
that the horizontal boundaries coincide with the planes 2z = 0 and
z = 1, and the vertical walls coincide wlth the planes x = #b.

With the scaling defined in section 2, b 1is then glven by
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(4.1) b = B/2H ,

(u,v,w) are the velocity components in thils coordinate system,

and the boundary conditions (2.5) and (2.6) take the form

it

(4.2) v, two=Fu tw =w=06=0, at 2z = 0 and z = 1,
(4.3) u=zvz=ws==906=20, at % = *b.

The motlon is assumed to be perlodic In the y-directlon

(along the channel) and we seek a solution of the form

(4.4) w = exp(ot)sinwz cosky f£(x) ,
(4.5) 6 = exp(ot)sinm s cosky g(x) ,
(4.6) ¢ = exp(ot)cosnz sinky k(x) .

The functions f(x), g(x) and k(x) are determined from (2,10) to
(2.12), and the horizontal velocilty components are determined from
the equation of contlnulty and the definition of ¢. There are two
cases to be treated separately, the symmetric case 1in which

f(-x) = f£(x), and the antisymmetric one with f£(-x) = -f(x). The
solutions are guite analogous to those for the circular dish
discussed in the last section and i1t should be sufficientAJust to
write down the result of the calculatlions+. The characteristic
equatlons are found to be.as follows

(1) For the symmetric case :

1 T 1 i

(q,% - k*)*Q tan(q,® - k*)%b ~ (g, - k?)%q,tan(q,*~x?) "D
. 1 i —d
(4.7) + (q,% +k?)%q, tanh(q,?+c?*)%b +k?(q, 2 +k?)7?

1
¢ (Q, -Q, -Qa)tanh(q42+x2)2b = 0,
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(11) For the anti-symmetric case :

1 i 1 X
(g,%~ x?)7Q,cot(q, 2= k?)* - (q,2 ~«?)7Q,cot{q,? ~ ?)"b

o=

]

1 1 _
(4.8) - (qaz'FKZ)zQacoth(qSZ-+K2)2b k2 (q, 2+ K?)
> (@, -Q, - Q,)coth(q,? +k2)* = 0,

4, 9,5 4, and g, have the same meaning as above, such that
Q=4q%* q=g,” and g = - q,* are solutions of (3.12). gq,
1s defined in (3.13) and @, Q, and Q_ are glven in (3.18) to

(3.20).

5. solutions of the characterigtic equations,

When the contalner in which the motion takes place is of
large horlzontal extent, the critical Rayleigh number willl exceed
that for an unbounded fluid layer by a small amount, In the case
of free horizontal boundaries this critical value 1s 27xn*/4, and
by putting R = 27n*/4 and o = 0 in (3.12), the solutions are
m*/2, ©%/2 and -4n®, The numbers gq,, ¢, and q, eare in this case
q, = q, = ®/¥2 and q, = 27, We shall be interested in the
solutions of the characteristic equations in the case of such large
containers, consldering only those solutions which have a slow

growth rate when R is given a value near Rc.

To discuss the characteristlc equations, we first need the

solutions of (3.12). q,, q, and q, introduced above arc given by
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l -
(5.1) q,? = 2a”cos(y+ Y - Wt - %(l*-? Y,
1 .
(5.2) q,” = 2a2005(¥-=1;-) - 7% - 93—(1+P Y,
1
(5.3) a,% = 2a%cos y+ n? + %(1*-P“1),
where
_2
(5.4) cos 3y = o 28 s
and
(5.5) o = IR + do2((14p71)2 - 3P7Y) |
(5.6) B = 3uR + Jo(1+P7) (R+ Zo%(1+ 3P0 )(1-2P7)),

Introducing n by

(5.7) R = 2000 (14 1)

and seeklug the approximate sclutions for n and o small, we

obtain ‘
(5.8) q, = 7/V2(1l-¢) + 0(n,0) ,
(5.9) q, = 1//2Z(L +¢) + 0(n,a)
(5.10) q, = 2m + 0(n,0) ,

where € 1s given by

(5.11) g? = %{1 - ;;%;(HP‘"") .
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With the use of these approximations the characteristlic equations
can be discussed in some detalls. The effect of finlte P compared
to P infinite is to lower o by a factor (1+P"%), anda P’

is therefore set equal to zero in the followlng.

a) The circular dish.
The characteristic equation (3.22) takes the asymptotic form

Jtlq,a) Jl(g,a)

J'(q,a) J'(q,a)
n-ti n -2 2
(5-12) Jn(qla) - Jn(qza)

T (@8 T T (q,a) "

+ %f( gg) = 0(n,o) .

By using the asymptotlc expanslions for the Bessel functions, we fing

the first approximation to pgive
(5.13) q,a2 - q,a = k7 + 0(¢),

Since q, - q, = ¥Y271e + O(e?) and accordingly e = o(a™'), the
solutions of (5.12) may be written

(5.18) ¢ = == (1 + 2 + 0(a™®)

X
V2 a
where k 1s an integer and X 1is determined by the second approxi-

mation in the asymptotic expansions. The result 1is

Im

(1+ (-1)n+k(sin/§wa--ji cosv2ma)).

(5.15) A= & =

\Ve;

By means of (5.14) and (5.11) we therefore obtain

2
(5.16) o = 3n%(n - $5p(1 + I+ 0(a™).
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This equation defines the growth rates for the modes belonging to

that part of the spectrum for which ¢ 1s small. By choosing

g = 0 it also gives the values of R where the modes become unstable,
the least of these values 1s RC as a function of the given dish

radius a. RC 1s obtained for k = 1 and ls found to be

4
(5.17) R = 2 (14 2p (1 + 2) v 0@,

From (5.16) and (5.17) 1t is seen that the azimuthal wave number

n plays a minor role in the determination of ¢ and Rc. In the
first approximation (neglecting terms of order a-a) the conclusicon
is that for a given k, all the modes n = 1,2,°++ become unstable
at the same value of R, and they also have the same value of ¢

for R near Rc. When the terms of order a~° are considered, 1t
1s found that the difference between the o-values for two different
values of n 1s proportional to (sinv2ma - 5/v2 cos/2ma), Since
this factor is elther positive or negative, depending on the value

of a, the conclusion seems to be that the azimuthal wave number

n {(and thus the form) of the solution which first becomes unstable

may be different for different values of a.

b) The infinite channel.
The asymptotic forms of the characteristic equations (4.7) and

(4.8) are found to be

1 )
(qlz-Kz)atan(qlz—Ka)%b —(qzz-Kz)%tan(qza—Kz)ﬁb = 0(n,o) ,

for the symmetric case ang
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: 1 1 1
(5.19) (qlzmmg) cot (g, *=k*)%p n(qzmez)dcot(qzzwxz)ab = 0(n,o0),

for the antisymmetric case. If w?/2-«k® 1s positive and not small

of order e, both (5.18) and (5.19) glve
1 1
(5.20) (q,%~x2)%b -~ (q,%-k*)%b = ka + 0(e),

where k 1is an integer. By means of (5.8), (5.9) and (5.1ll1l) we

derive

2 2
(5.21) o= 3n%(n - shpr(G —k®) + 0077),

An inerease in « clearly has a destabllizing effect, and the
value of k? for the solution which first becomes unstable will

differ from n2/2 by an amount of order €. We therefore write
2 w?
(5.22) 2% = 1;(1-*266),
and obtain the solution
4"

(5.23) o = 3n%(n ~ grapw) + 0(7T).

Here ) 1s any solution of

1 1 1 2
(5.24) (1+ 8)%2tanh(1+8)3A + (1 -6)%tan(1~68)3A = O
for the symmetrlc case and

3 3 % 3
(5.25) (1 +68)°coth{1+8)°2 - (1 -8)%cot(1l=8)%N = O

for the antisymmetrlc case.
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The values of XA found from (5.25) are seen to be larger
than those found from (5.24)., We therefore conclude that for these
solutions the symmetric modes are more unstable than the corresponding
antisymmetric modes. TFrom (5.24) 1t is found that the least value
of A 1is obtained for § = - 0.69. This value, A = 2.153,

determlnes the critical Raylelgh number,

27" 4

(5.26) R, = =—(1 + 0,294 b

)s

and 1t also defines the wave number (along the channel) of the mode

which flrst becomes unstable. This wave number 1s given by

(5.27) k% = Lo(1 - 0,648 b%)

and the channel walls therefore tend to increase the wave length

of the most unstable mode.

6, Discussion.

The results of the last section for the motion in a channel are
in agreement with those of Davis (1967, 1968) and Segel (1969) as
far as they can be compared. Since in those papers, only motions
in contalners of finite extensions are considered, a comparison
wlth the results for a channel can be made only for the qualitative
features of the solutlons,

For a given «, the solutions discussed in secction 4 are

modified rectangular cells, the sides parallel to the channel walls

being of length wk . (5.21) then expresses that the effect of the
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channel walls are to decrease the growth rate and to increase the
Rayleigh number for marginal lnstability, the correction terms
belng proportional to (H/B)? whe H is the depth and B the
width of the chamnel, But the effect of the walls will decrease

as the cells become more stretched in the x-dlrection, and when the
length of cells across the channel become equal to B, the
correction terms wlll be proportional to (H/B)*. While the
eritical Rayleigh number is raised by a term of order (H/B)%, the
corresponding wave number is lowered by a term of order (H/B)?,

as seen from (5.26) and (5.27). The order of magnitude of these
corrections agree partly with those of Segel (1969), (leaving aside
the corrections due to the length of the dish) when his results are
carefully interpreted. In his paper, a solution satisfylng the
boundary condltions 1is coﬁstructed by an amplitude modulation of

a set of roll sclutions with a given wavenumber wa. However,

the solution obtained in this way (given by (3.1) in his paper)
turns out to be a set of rectanguiar cells with wave numbers moa'

B/H) along the longer and shorter side of the

11

and w8”' (S
rectangel, and slowly varying amplitudes. The difference o - af

is found to be a(H/B)%, this reduction leaves the overall wave
number unchanged compared to that for an infinite layer, and Segel's
result 1s therefore that the size ¢f the cells are affected by the
walls through terms of order (H/B)*. If our solution is interpreted
as a set of rectangular cells, we find by means of (5.27) that the
overall wave number is #/v/2 (1 - 0.296(H/B)?), giving an increase

in the cell size for the most unstable mode of order (H/B)?,

It should be pointed out that the solutions found in section b
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are valid for any value of B while they are discussed in detail
only for B/H >> 1. A solution for a rectangular dish with sides

B and L, L >> B should possibly be found by means of a
multiple-scale analysis lilke that used by Segel., Some difficulty
would certainly arise in such analysis since the modulation necessary
to satisfy the boundary conditions must depend on x, the direction

in which B 18 measured.

For the motion in a circular dish 1t is found that the growth
rate 1s lowered and the Rayleigh number for marginal 1lnstability is
raised by an amount proportional to (H/D)?, where H 1s the depth
of the fluid layer and D 1s the dlameter of the dish, It also
appears that the azimuthal wave number has virtually no effect on
the stability of the motion when H/D 1s small. In thls respect
the linear theory does not explalin the experimental evidence that
concentric circular rolls are the preferred cell forms in a circular
dish for values of R Just above Rc. In the papers by Koschmieder
(1966, 1967) and Sommerscales & Dougherty (1970) this is found to be
the case, they also find that by further increase of R thils symmetry
wlll break down and the motion tends to develop into other cell forms
like hexagons or approximate rolls. In the experiments of these
papers the ratio H/D ranges from 2.1 to 3.4 per cent, and the
asymptotlic solutions found in secetion 5 above should be adequate as
far as the linear theory is considered. It is therefore clear that
the form of the cell pattern to be realized in a circular dish must -
be determined from non-linear terms as well as from the wall effects.
This is 1in contrast to the case of a rectangular dish where the linear

solutions predict the preferred orientation of the rolls.



As a demonstration of how the vertical walls affect the
velocity fleld, let us consider the expressions for the vertilcal

velocity. It is found that
J,(air)
w = Aexp(ot)sin wz cosn ¢(q,2Q, F—Tu-—y

(6.1)
I (q,r) I (qr)
- q22Q, jhra““y + q3%Q, T_ 3,8 )

for the eilrcular dish and

;
2,242
w = Aexp(ot)sin mzcosky (q,2Q cos(gy "=K") X
cos(q;2-x?)%b
(6.2)
,
¢ 2-x2)® cosh(qs®+k?)°x
- q,%q, os({qz 2)%x + q32Q3 (qs Kz)a )
cos(q,?=k?)%b cosh(q32+x )°b

for the symmetric motion in a channel. The terms proportional to

q32Q3 are approximately

exp{-q,{a-r)} and exp{—(q32+K2)%(b-x)},

respectively, and represent boundary layer solutiocns. The boundary
layer thicknesses are of order H and are nearly independent of the
size of the contalner. When the horizontal veloclty components are
considered, they are found to contain other boundary layer terms like
exp{-(ﬁ2+0P"1)%(a-r)} and exp{-(ﬂ2+K2+0P“1)%(b—x)}. The boundary
layer thicknesses and the amplitudes are of the same order as those
consldered above. But these boundary layers have another origin

since they are due to the vertiecal vorticity component which has to
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be imposed upon the fluid to get the boundary conditlons satisfiled.

The interpretation of the terms in the parantheses in (6.1)
and (6.2) will be different for the different modes. From (5.12) and

(5.18) 1t follows

(6.3) J,(a,a) = (—l)kJn(qla) + 0(e) ,
(6.4) cos(Q2&K2)%b = (wl)kcos(qlz—mz)%b + 0(e) .

When k i1s an odd integer the dominating terms in (6.1) and (6.2)
are proportional to the amplitude modulation terms Jn(qlr) + Jn(qzr)
for the circular dish and cos(q12+K2)%x + cos(q22+x2)%x for the
channel. The rest of the solutlions tend to zero when the extent of
the containers is increased. When k 1s an even integer, however,
none of the terms in (6.1) and (6.2) are dominating. The boundary
layer terms now have the same amplitudes as the amplitude modulation

terms, and can not be neglected, however large the contalners are,.

T Conclusion,

The main result of the present paper 1s the derivation of a three
parameter family of solutions satisfying the glven boundary conditions
for any given Rayleigh number. There is a two parameter famlly for
each z-dependence of the form sinwz, sin 2wz ,c°¢, only the first
of these 1s consldered here. The solutions having a small growth
rate when the Rayleigh number is near its critlcal value are discussed

in some detaills above. In the case of a circular dish the spectrum



1s discrete, the eligenvalue ¢ are dependent on two integers,

n and Xk, n being the azimuthal wave number, In the solutlons

for a channel there are also two parameters, «k and k, where

Kk 1s a wave number measured along the channel and k 1s an integer.
Since the channel is consldered to be of infinite length, there 1s no
restriction on «k, and the spectrum 1s therefore discrete in k

but continuous in k.

Due to the self-adjointness of the four dimensional, second
order operator defined by the left hand sides of (2.1) and (2.2)
the elgensolutions are orthogonal to each other. If (u ',6') and
(K“,e") are two different elgensolutions, the orthogonality con-
dition can be written

-]

(7.1) f(P urey" + RG'O™)AV = O ,
v

V  being the fluid volume,

The completeness of the set of eigensolutions obtained 1n
this way is not so obvious, but assuming this to be the case, we are
able to obtain also the non-=linear solutions satisfying the boundary
conditions by an expansion in a series of the elgengolutions for
the linearized equations. For a glven Rayleigh number not far above
its critical value, the eilgensolutions discussed above are by far the
most important in such series expansion, since the rest of the

spectrum will be more rapidly damped out.
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