
Vertical 11all effects on a fluid 

heated f!'om belo~1: linear theory. 

TOrbj¢rn Ellingsen 

The convective motion of a fluid in a container heated from 

below is considered. Exact solutions of the linearized Boussinesq 

equations are found when the container is either a circular dish 

or a rectangular chann-=1, and when the horizontal boundaries are 

free boundaries. Solutions ~1hich are weakly stable or weakly un­

stable ~1hen the Rayleigh number has a value near its critical value, 

are discussed in some details, The stabilizing effect of the walls 

on different cell forms is also considered, While the linear theory 

predicts the orientation of the cells in a channel in accordance 

with experiments, it does not predict the azimuthal variation of 

the motion in a circular dish. The azisymmetric cell pattern seen 

in experiments is thought to be determined by non-linear terms as 

well as wall effects. 
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1. Introduction. 

In most investigations on the convective motion in a fluid 

heated from below, the fluid layer is assumed to be of infinite 

horizontal extent. In many respects the solutions thus obtained, 

have the characteristic features of the convective motion in a 

container of finite size. Among the 11ell known results for the 

model of infinite extent, l•/e mention that the linearized equations 

determlne the critical Rayleigh number for which the convective 

motion is set up, and also determine the size of the convection 

cells which are formed. The form of the cells can not be predicted 

from the linearized equations. Hov1ever, a stabillty analysis of 

the non-linear solutions gives the ranges of the Rayleigh number R 

above its critical value Rc, where the different cell pattern 

(hexagons and rolls) may occur. This was investigated in several 

papers, notably by Schluter, Lortz & Busse (1965) and by Palm, 

Ellingsen & Gjevik (1967). 

It is found from experiments, ho~1ever, that the cell pattern 

under certain conditions strongly depend on the form of the con­

tainer in 1·1hich the motion takes place. Some attention was paid to 

such phenomena in papers by Koschmieder (1966, 1967) and by 

Sommerscales & Dougherty (1970). The most characteristic features 

in this respect are (i) in a rectangular dish, the rolls are most 

likely to develop with their axis parallel to the short side of the 

dish (reported in the former of the papers cited above), and 

(ii) in a circular dish, there is a tendency to a formation of 

concentric circular cells 1·1hen R exceeds Rc. When R is further 

increased, these circular cells tend to break up and develop into 
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other cell forms, for instance hexagons. 

Theoretical investigations of the influence of the vertical 

walls were undertalcen by Davis (1967, 1968), Segel (1969) and Joseph 

(1970), Both Davis and Segel considered a set of rolls in a rec­

tangular container. \•lhile Davis determined stationary solutions of 

the linear and non-linear equations applying a Galerkin procedure, 

the work of Segel is based on the idea that an amplitude modulation 

of a roll solution is sufficient to form a solution satisfying the 

boundary conditions, Furthermore, a stability analysis of a non­

linear solution turns out to fit into this scheme, J.oseph 's paper 

is mainly concerned with the discreteness .,f the stationary linear 

solutions and how this may affect the non-linear branching problem. 

But he also points out that when the horizontal boundaries of a 

circular dish are free and the motion is axisymmetric, the linear 

equations can be solved by separation of the variables and the 

boundary conditions can be satisfied. A similar separation of 

variables is applied by Muller (1966) for the problem of two-dimensional 

convection in a channel with a given temperature difference between 

the vertical walls. 

In the present paper the possibility of solving the equations 

by separation of the variables is discussed further. It is found 

that this can be done not only for the axisymmetric solution in a 

circular dish, but also for solutions with an arbitrary azimuthal 

wavenumber. The solution for an infinite channel 11ith arbitrary 

channel width is also determined in a similar ~my. The eigensolutions 

thus obtained are discussed in some details and the growth rates a 

are found in terms of R. It is also pointed out that the solution 
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of the non-linear equation can be solved by a series expansion 

by means of these eigensolutions. 

2. Basic equations and boundary conditions. 

The fluid layer under consideration is bounded by two 

horizontal planes a distance H apart, and some vertical walls 

to be specified be lo~/. \Hth 
... 
u denoting the velocity vector, 

a vertical unit vector, and e and p the deviations of temperature 

and pressure from those of the purely heat conducting (motionless) 

case, the governing equations can be written 

v2i! + 
... 

+ p-lci!t ... ... (2.1) R8k = Vp + u • \lu) , 

(2.2) v2e + 
... ~ .... 
l<•U = et + u•ve, 

(2.3) 
... 

V•u = 0 • 

Here the Boussinesq approximations are used, and the equations are 

written in dimensionless form ~lith the scaling length,_ time, velocity, 

temperature and pressure chosen as H, H2 K- 1
, H- 1 K, fiT and H- 2Kvp

0
, 

repsectively. K is the thermal diffusivity, v the kinematic 

viscosity, fiT the temperature difference between the lower and the 

upper boundary and p
0 

is a standard density, The density p is 

assumed to be a linear function of the temperature T with the 

coefficient of expansion a, -I 
a = -p

0 
dp/dT. R is the Rayleigh 

number and P the Prandtl number defined by 
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\) 
p = 

K 

Considering now the boundary conditions, we shall assume 

that the horizontal boundaries are free boundaries. This assumption 

is necessary to obtain the solutions in a tractable form when the 

lateral walls are taken into account. The restriction is not thought 

to be severe since it is known from any investigations that the 

_solutions for different boundary conditions show many of the same 

features. In the paper by Palm et al. (1967) it is well demonstrated 

h01~ the effect of different boundary conditions is mainly to change 

the ranges of R 11here hexagons or rolls are stable. 

With 
-I-
T denoting the viscous stress vector, we therefore write 

the conditions 

(2.5) 
-)- -l-
k X T •· 0, w :: o, e = o, 

at the horizontal boundarles. The vertical boundaries are assumed 

to be rigid and perfectly conducting walls whose temperatures are 

kept with the same linear decrease with height as in the purely heat 

conducting case. Accordingly \'le can write 

(2.6) -l-
u = o, e = o, 

at the vertical boundaries. 

\ve shall find it convenient .to rewrite (2 .1) in the following 

way. Letting ~~ and !; denote the vertical components of velocity 

and vorticity 

+ + + + 
w = k•u , !; = k•Vxu , 
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we can write 

(2.8) 

(2.9) 

Here z is the vertical coordinate and 'V 1 
2 is the t1w-dimens ional 

As our intention is to investigate 

how the lateral walls affect the onset of convection, only the linear 

equations will be considered, The linearized version of (2.1) to 

( 2. 3) together 1qith the boundary conditions defined above constitute 

a self-adjoint eigenvalue problem for the time factor, as shown by 

Schlllter et al, (1965). The critical Rayleigh number Rc 1qill 

therefore be associated 1qith a steady solution. But we shall also 

be interested in the spectrum of stable and unstable solutions for 

R near Rc, and the equations we a1'e going to discuss are therefore 

(2.10) V4w + RV 1 
2 6 = -1 2 

P 'V wt' 

(2.11) V26 + w = et' 

(2.12) V21; -I 
:: p l;t. 

together with (2.3) and the boundar·y conditions (2.5) and (2,6). 
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3. Solutions for a circular dish. 

In this section we consider the convective motion of a fluid 

in a circular dish with depth H and diameter D, such that the 

dimensionless radius a is 

(3.1) a = D/2H, 

A coordinate system is chosen such that the free boundaries are 

located at z = 0 and z = 1, and the rigid walls at r = a in 

terms of the cylindrical coordinates (r,~,z). The velocity compo­

nents (u,v,w) are given by 

(3. 2) 

and the boundary conditions discussed above may be written 

(3. 3) e = o, 

at z = 0 and z = 1, 

(3. 4) u = v = w = e = o, at r = a. 

In addition to this, we require the solution to be regular 

at r = 0, Analogous to the stationary and axisymmetric solution 

of Joseph (1970), our solutions are assumed to be separable in 

the following 1qay 

(3.5) w = exp(crt)sin1TZ cos n~f(r), 

(3.6) e = exp(crt)sinTizcos n~g(r), 

(3. 7) 1; = exp(crt)cos 11Zsin n~k(r). 
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Introducing these expressions into (2.10) to (2.12), we obtain 

three equations for the determination of f(r), g(r) and k(r). 

Once these equations are solved and w and 1; are known, u 

and v can be determined from the equation of continuity and the 

definition of 1;, 

(3. 8) 

(3. 9) 

(ru)r + v<j> = 

(rv)r - u<j> = 

- rw , z 

The regular solutions of (2.10) and (2.11) are 

(3. 10) 

(3.11) 

Jn and 

In ( z) = 

q - q 2 
- I > 

equation 

(3.12) 

g(r) = (ql2 + 112 + cr) .. ~ Jn(q r) 
I I 

In denote Bessel functions, In 
n and (-i) Jn(iz), and ql. q2 q3 

q = q22 and q = -q3 2 are the 

being defined by 

are chosen such that 

roots of the third order 

In the solutions we are going to discuss, q
1

, q2 and q3 are 

real and positive. From (3.7) and (2.12) we find 

(3 .13) 2 2 P
-1 

q4 = 1T + (J • 



and by writing 

(3 .14) 

(3 .15) 

u = exp(crt)cos 71Z cos n<j>h 1 (r) , 

v :: exp(crt)cos 71Z sin n<j>h
2 
(r) , 

for the horizontal velocity components, h 1 (r) and h 2(r) are 

found from (3.8) and (3.9) to be 

(3 .16) 

(3.17) 

The solutions obtained in this way satisfy the boundary 

condition::! at z = 0 and z = l. The conditions at r = a consti-

tute a homogenous set of equations for the constants A
1

, A
2

, A3 

and A~, and ~1hen the determinant for this set of equations is 

put equal to zero, a relationship between q
1

, q
2

, q 3, cr and a 

is obtained. Since 

and a through (3.12), this 

and q 3 are given functions of R 

relationship determines the grm~th 

rate a for the various modes as a function of R and a. By 

putting cr = 0, we also obtain the values of R for marginal 

instabilities as a function of a. 

By introducing 

(3 .18) Ql = -2( 2 ql ql + 712 + a)(q22 + q3 2)' 

(3 .19) Q2 = -2( 2 q2 q2 + 712 +cr)(ql 2 + q32)' 

(3,20) Q3 = -2( 2 qa qa 712 cr)(q22 q 1 2) ' 
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the characteristic equation may be written 

(3.21) 

4. §£lutions for a channel. 

J~(q2a) 

Jn(q2a) 

0 • 

Rectangular containers are frequently used in expet'iments on 

convection. Our method of obtaining solutions by separation of the 

variables is not applicable in such cases. But if the length of 

the rectangle is so large, compared to the width, that the effect of 

the distant 1'/alls may be neglected and the container can be treated 

as a channel, some exact solutions are easily found. In comparison 

to the works of Davis (1967, 1968) and Segel (1969), this model is 

simpler than theirs since only tl'/o of the side walls are assumed to 

affect the motlon, but the analytic solutions obtained here \1ill be 

valid for any value of the channel width. 

The channel is ta!{en to be of depth H and width B. A 

cartesian coordinate system (x,y,z) is applied to the channel such 

that the horizontal boundarles coincide with the planes z = 0 and 

z = 1, and the vertical walls coincide with the planes x = ±b. 

With the scaling defined in section 2, b is then given by 
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(4,1) b :: B/2H , 

(u,v,w) are the velocity components in this coordinate system, 

and the boundary conditions (2.5) and (2.6) take the form 

(4.2) vz + w = u + ~1 = w :: e y z X = 0 • at z = 0 and z = 1, 

(4.3) u :: v - w = e = 0 • at X :: ±b. 

The motion is assumed to be periodic in the y-direction 

(along the channel) and we seek a solution of the form 

(4.4) w = exp(at)sin 7T z cos K y f(x) , 

(4.5) e = exp(at)sin7T z cos K y g(x) , 

( 4 • 6 ) 1; = e xp (at ) cos 1f z sin K y }{ ( x) • 

The functions f(x), g(x) and k(x) are determined from (2.10) to 

(2.12), and the horizontal velocity components are determined from 

the equation of continuity and the definition of l;o There are two 

cases to be treated separately, the symmetric case in l~hich 

f(-x) = f(x), and the antisymmetric one with f(-x) = -f(x) o The 

solutions are quite analogous to those for the circular dish 

discussed in the last section and it should be sufficient just to 

write down the result of the calculations• The characteristic 

equations are found to be as follows 

(i) For the symmetric case 
1 1 1 1 

(ql 2 - K2) 2Ql tan(q I 2 - K2) 2b- (q2 2 - K2) 2Q2 tan(q2 2_K2) 2b 

( 4 0 7) 
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( ii) For the anti-symmetrlc case : 

(4.8) 

q I > q2, q3 and q4 have the same meaning as above, such that 

q :: ql 2 q :: q 2 and q = - q3 2 are solutions of (3.12). q4 ' 2 

is defined in (3 .13) and Ql, Q2 and Q3 are given in (3 .18) to 

(3.20). 

5. Solutions of the characteristic equations, 

\~hen the container in which the motion takes place is of 

large hor:1.zontal extent, the critical Rayleigh number will exceed 

that for an unbounded fluid layer by a small amount. In the case 

of free horizontal boundaries this critical value is 27n 4/4, and 

by putting R = 27n 4 /4 and a = 0 in (3.12), the solutions are 

n2 /2, n2 /2 and -4n2, The numbers q 1 , q
2 

and q 3 are in this case 

q 1 = q 2 = n//2 and q 3 = 2n, He shall be interested in the 

solutions of the characteristic equations in the case of such large 

containers, considering only those solutions which have a slow 

growth rate when R is given a value·near Rc. 

To discuss the characteristic equations, we first need the 

solutions of (3.12). q
1

, q
2 

and q 3 introduced above arc given by 
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(5.1) 2 1 11 
11

2 ~(l+P- 1 ) q1 ~ 2ct 2 cos(y+ a> • 

(5.2) 2 1 11 112 a(l+P-1) q2 = 2a2 cos(y- 3 ) - 3 • 

(5.3) q3 2 
~ 

_t 
2ct 2 cos y + 112 + ~(l+P- 1 ), 

where 
3 

(5.4) cos 3 y = a- 2 B , 

and 

(5.5) 

(5.6) 

Introducing n by 

(5.7) R = ~ (1+ n) 

and seeking the approximate solutions for n and a small, we 

obtain 

(5.8) q1 = 11//2(1- e:) +o(n,a) ' 

(5.9) q2 = 11/-12"(1 + E:) + O <n.a) ' 

(5.10) q3 ~ 211 +O(n,cr) • 
where E: is given by 

(5.11) e:2 _ 3n a (l+P-1) - T - "lf1i2 • 
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\•lith the use of these approximations the characteristic equations 

can be discussed in some details. 'rhe effect of finite P compared 

to P infinite is to lower a by a factor (1 + P- 1.), and P-
1 

is therefore set equal to zero in the following. 

a) The circular dish, 

The characteristic equation (3,22) takes the asymptotic form 

(5.12) 
J~(q1a) 

Jn(q1a) -
J~(q2a) 
3n(q2a) 

J~(q2a) 
3n(q2a) -

2/2") = 
5 O(n,o). 

By using the asymptotic expansions for the Bessel functions, we find 

the first approximation to give 

(5.13) 

Since q2 -q 1 =12'1Te+O(e 2) andaccordingly e=O(a-1), the 

solutions of (5.12) may be written 

(5.14) 

where k is an integer and /. is determined by the second approxi­

mation in the asymptotic expansions. The result is 

(5.15) 2 n+k /7'; 5 = !.= 9'11(1 + (-1) (sinv2'1Ta- f2 cosv2'1Ta)), 

By means of ( 5 .14) and ( 5 .11) v1e therefore obtain 

(5.16) 
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This equation defines the growth rates for the modes belonging to 

that part of the spectrum for which cr is small. By choosing 

cr = 0 it also gives the values of R where the modes become unstable, 

the least of these values is Rc as a function of the given dish 

radius a. Rc is obtained for k = 1 and is found to be 

(5.17) 

From (5.16) and (5.17) it is seen that the azimuthal 1·1ave number 

n plays a minor role in tho determination of cr and Rc. In the 

first approximation (neglecting terms of order a -a) the conclusion 

is that for a given k, all the modes n = 1,2,o•• become unstable 

at the same value of R, and they also have the same value of (J 

for R R • vlhen the terms of order -a considered, it near a are c 
is found that the difference between the cr-values for tv1o different 

values of n is proportional to (sini2Tia - 5//:2 cosi:2Tia). Since 

this factor is either positive or negative, depending on the value 

of a, the conclusion seems to be that the azimuthal wave number 

n (and thus the form) of the solution which first becomes unstable 

may be different for different values of a. 

b) The infinite channel. 

The asymptotic forms of the characteristic equations (4.7) and 

(4.8) are found to be 

for the symmetric case and 
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(5.19) 

for the antisymmetric case. If 1f
2 /2 - K

2 is positive and not small 

of order E, both (5.18) and (5.19) give 

(5.20) 

where k is an integer. By means of (5.8), (5.9) and (5.11) we 

derive 

( 5.21) 

An increase in K clearly has a destabilizing effect, and the 

value of K 2 for the solution which first becomes unstable will 

differ from 7r 2/2 by an amount of order E. We therefore write 

(5.22) 

and obtain the solution 

(5.23) 

Here A is any solution of 

(5.24) 

for the symmetric case and 

(5.25) 

for the antisymmetvic case. 
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The values of A found from (5.25) are seen to be larger 

than those found from (5.24). Vle therefore conclude that for these 

solutions the symmetric modes are more unstable than the corresponding 

antisymmetric modes, From (5.24) it is found that the least value 

of A is obtained for o = - 0.69. This value, A = 2.153, 

determines the critical Rayleigh number, 

(5.26) 

and it also defines the wave number (along the channel) of the mode 

which first becomes unstable, This wave number is given by 

(5.27) 

and the channel walls therefore tend to increase the wave length 

of the most unstable mode. 

6, Discussion, 

The results of the last section for the motion :Ln a channel are 

in agreement with those of Davis (1967, 1968) and Segel (1969) as 

far as they can be compared. Since in those papers, only motions 

in containers of finite extensions are considered, a comparison 

with the results for a channel can be made only for the qualitative 

features of the solutions. 

For a given K, the solutions discussed in section 4 are 

modified rectangular cells, the sides parallel to the channel walls 

being of length -1 
Tf K , (5.21) then expresses that the effect of the 
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channel v1alls are to decrease the growth rate and to increase the 

Rayleigh number for marginal instability, the correction terms 

being proportional to (H/B) 2 whe H is the depth and B the 

width of the channel, But the effect of the walls will decrease 

as the cells become more stretched in the x-direction, and when the 

length of cells across the channel become equal to B, the 

correction terms will be proportional to (H/B)~. While the 

critical Rayleigh number is raised by a term of order (H/B) ~, the 

corresponding wave number is lowered by a term of order (H/B) 2
, 

as seen from ( 5. 26) and ( 5. 2'(). The order of magnitude of these 

corrections agree partly with those of Segel (1969), (leaving aside 

the corrections due to the length of the dish) when his results are 

carefully interpreted. In his paper, a solution satisfying the 

boundary conditions is constructed by an amplitude modulation of 

a set of roll solutions with a given wavenumber na. However, 

the solution obtained in this way (given by (3.1) in his paper) 

turns out to be a set of rectangular cells with wave numbers na' 

and nS- 1 (S = B/H) along the longer and shorter side of the 

rectangel, and slo1~ly varying amplitudes. The difference a - a 1 

is found to be a(H/B) 2 , this reduction leaves the overall wave 

number unchanged compared to that for an infinite layer, and Segel's 

result is therefore that the size of the cells are affected by the 

~mlls through terms of order (H/B) ~. If our solution is interpreted 

as a set of rectangular cells, we find by means of (5.27) that the 

overall ~mve number is TI I /2 ( 1 - 0, 296 (H/B) 2 ) , giving an increase 

in the cell size for the most unstable mode of order (H/B) 2
• 

It should be pointed out that the solutions found in section 4 
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are valid for any value of B 1qhile they are discussed in detail 

only for B/H >> 1. A solution i'or a rectangular dish with sides 

B and L, L >> B should possibly be found by means of a 

multiple-scale analysis like that used by Segel. Some difficulty 

would certainly arise in such analysis since the modulation necessary 

to satisfy the boundary conditions must depend on x, the direction 

in which B is measured. 

For the motion in a circular dish it is found that the growth 

rate is lowered and the Rayleigh number for marginal instability is 

raised by an amount proportional to (HID) 2 , 1qhere H is the depth 

of the fluid layer and D is the diameter of the dish. It also 

appears that the azimuthal wave number has virtually no effect on 

the stability of' the motion when H/D is small. In this respect 

the linear theory does not explain the experimental evidence that 

concentric circular rolls are the preferred cell forms in a circular 

dish for values of R just ab0ve Rc' In the papers by Koschmieder 

(1966, 1967) and Sommerscales & Dougherty (1970) this is found to be 

the case, they also find that by further increase of R this symmetry 

will break down and the motion tends to develop into other cell forms 

like hexagons or approximate rolls. In the experim<mts of these 

papers the ratio H/D ranges from 2.1 to 3.4 per cent, and the 

asymptotic solutions found in section 5 above should be adequate as 

far as the linear theory :l.s considered. It is therefore clear that 

the form of the cell pattern to be realized in a circular dish must 

be determined from non-lillear terms as well as from the wall effects. 

This is in contrast to the case of a rectangular dish where the linear 

solutions predict the preferred orientation of the rolls. 
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As a demonstration of how the vertical walls affect the 

veloclty field, let us consider the expressions for the vertical 

velocity. It is found that 

w = Aexp(crt)sin nz cos n 4>(q1 2Q1 

(6.1) 

for the circular dish and 

(6.2) 

, 

1 
cos(ql 2-K 2) 2x --· ,. 
cos(ql2-K2)2b 

1 
cosh(qs 2 +K 2 )~x) , 
cosh(q 3

2+K 2) 2b 

for the symmetric motion in a channel. The terms proportional to 

q 3 
2Q

3 
are approximately 

exp{-q 3 (a-r)} and 

respectively, and represent boundary layer solutio;1s. The boundary 

layer thicknesses are of order H and are nearly independent of the 

size of the container, When the horizontal velocity components are 

considered, they are found to contain other boundary layer terms like 
2 l 1 1 1 

exp{-(n +<JP- ) 2 (a-r)} and exp{-(n 2 +K 2 +crP- ) 2 (b-x)}, The boundary 

layer thicknesses and the amplitudes are of the same order as those 

considered above. But these boundary layers have another origin 

since they are due to the vertical vorticity component which has to 
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be imposed upon the fluid to get the boundary conditions satisfied, 

The interpretation of the terms in the parantheses in (6.1) 

and (6.2) l~ill be different for the different modes. From (5.12) and 

(5.18) it follows 

(6.3) 

(6.4) 

\~hen k is an odd integer the dominating terms in (6.1) and (6.2) 

are proportional to the amplitude modulation terms Jn(q 1r) + Jn(q 2 r) 
1 1 

for the circular dish and cos(q 1
2 +K 2 ) 2 x + cos(q 2

2 +K 2 ) 2 x for the 

channel. The rest of the solutions tend to zero when the extent of 

the containers is increased. vlhen k is an even integer, however, 

none of the terms in ( 6 ,1) and ( 6. 2) are dominating. The boundary 

layer terms now have the same amplitudes as the amplitude modulation 

terms, and can not be neglected, however large the containers are. 

7. Conclusion. 

The main result of the present paper is the derivation of a three 

parameter family of solutions satisfying the given boundary conditions 

for any given Rayleigh number. There is a t~10 parameter family for 

each z-dependence of the form sin 11 z , sin 211 z , • • • , only the first 

of these is considered here. The solutions having a small growth 

rate when the Rayleigh number is near its critical value are discussed 

in so;ne details above. In the case of a circular dish the spectrum 
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is discrete, the eigenvalue a are dependent on two integers, 

n and k, n bei.ng the azimuthal wave number, In the solutions 

for a channel there are also two parameters, K and k, where 

K is a wave number measured along the channel and k is an integer. 

Since the channel is considered to be of infinite length, there is no 

restriction on K, and the spectrum is therefore discrete in k 

but continuous in K. 

Due to the self-adjointness of the four dimensional, second 

order opel'ator de fined by the left hand sides of ( 2 .1) and ( 2. 2) 

the eigensolutions are orthogonal to each other. If (~ 1 ,8') and 

(u",e") are two different eigensolutions, the orthogonality con­

dition can be written 

(7.1) f <P- 1u'·u" + Ra •e")dv = o , 
v 

V being the fluid volume, 

The completen8ss of the set of eigensolutions obtained in 

this 11ay is not so obvious, but assuming this to be the case, ~Te are 

able to obtain also the non-linear solutions satisfying the boundary 

conditions by an expansion in a series of the eigensolutions for 

the linearized equations. For a given Rayleigh number not far above 

its critical value, the eigensolutions discussed above are by far the 

most important in such series expansion, since the rest of the 

spectrum will be more rapidly damped out. 
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