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Abstract 

Redundant boundary conditions are shown to perm1t the 

identification of an unknown, spatially varying coefficient 

in the diffusion equation. The solution to this "inverse" 

problem of mathematical physics is applied to the interpre­

tation of magnetotelluric observations. 
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1, Introduction. 

The inverse problem of mathematical physics is encountered 

in the study of diffusion through a medium 11ith unknown property 

p(z), Consider the diffusion equation 

U (z,t) - p(z)Ut(z,t) = 0 zz 

subject to the boundary conditions 

U(o,t) = f(t) 

U(oo,t) = 0 

(1) 

(2) 

(3) 

(4) 

The boundary conditions (2) and (4) are sufficient for the 

solution of the direct problem, That is, given p(z), U(z,t) 

can be found from the system (1), (2) and (4). The additional 

requirement, (3), while redundant in the solution of the direct 

problem, provides the additional information necessary for the 

synthesis of the unknown property p(z) in the inverse problem, 

In the case of magnetotelluric method of geophysical exploration 

the unknown function p(z) describes the electrical conductivity 

profile of the earth, A similar need for inversion of boundary 

data occurs in the interpretation of continental heat flow and 

temperature data to determine the earth's thermal conductivity 

(Minster, 1970), 
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2. The magnetotelluric method, 

Natural fluctuations in the magnetic field of the earth 

induce currents in the earth known as telluric currents. The 

magnetotelluric method employs observations of the fields 

generated by the combined system of ionospheric and telluric 

currents to determine the electrical characteristics of the 

earth. 

Tikhonov (1950) first recognized that the electrical 

properties of the earth could be identified through observations 

of the tangential electric and magnetic fields at the earth's 

surface, His work, which treated an essentially homogeneous 

medium, was followed by Cagniard's (1953) in which the conducting 

medium was allowed to be horizontally stratified. Cagniard 

showed that variations 1•1i th frequency of the tangential components 

of the electric and magnetic fields at the surface could be 

diagnostic of the medium as a whole. An important assumption 

of Cagniard's work was that the incident electromagnetic excita­

tion was represented by a plane wave. Following a large number 

of investigations, both theoretical and experimental, Tikhonov 

(1965) has shown that the electrical characteristics of a layered 

medium are uniquely determined as a function of depth by the 

complete spectrum of tangential electrical and magnetic fields 

at the surface of the medium. 
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3. Maxwell's equations in a one-dimensionally inhomogeneous medium. 

Consider a medium of arbitrarily varying conductivity in the 

z-direction above a homogeneously conducting basement. This 

medium will be represented by the conductivity profile 

o(z) 0 < z < H 

(j = (5) 

z > H 

The electric and magnetic fields in this inhomogeneously conducting 

medium are described by the relations 

Taking the 

l]xE aff 
=-\13t 

" X R = oE + E 

curl of (6) 

IJ(IJ•E) - v2if = 

(6) 

a'E 
3t (7) 

() -; a 'E) - l.to 3t(oE + E at (8) 

where \1 = l1o for all z. If displacement currents are small 

(7) requires that 

IJ• (oE) = 0 

and consequently 

3E 3E 
o(z){axx + a/-+ (9) 

For the horizontally stratified medium treated in this study the 

currents induced by a time varying external magnetic field 
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necessarily flow parallel to the layers of equal conductivity 

(Price, 1950), Thus, in this example 

Ez = 0 

and from (9) 

oEx +<lEY = 0 
ax ay 

or 

V•E = 0 

Neglecting displacement currents (8) and (10) are combined to 

yield 

(10) 

(11) 

At this point the plane wave assumption, fundamental to Cagniard's 

analysis is made, Suppose that a plane wave 

(12) 

(13) 

is vertically incident upon the semi-infinite half space described 

by the properties of (5), Then Ex satisfies the scalar form of 

(11) in both the inhomogeneous region, 0 ~ z ~ H, and the conducting 

basement, Thus 

d 2 E 
X iOJIJoo(z)Ex 0 

dx 2 - = 0 < z < H (14) 

d 2E 
X iw11 o o8 Ex = 0 

dx 2 - z > H (15) 

where eiwt time dependence has been assumed, 
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The general solution to (15) which satisfies the condition 

that the fields remain finite for all z is 

At z = H 

E I (H) 
X 

/
W\J CJ I 

= -(l+i) ~ B Ex(H) 

and consequently 

where 

E'(H) + (l+i) E = 0 
X (ljB X 

OB = I 2 I 

W\JoCJB 

(16) 

Normalizing the electric field to its value at the surface, 

we substitute 

u = z 

E (z) 
X 

into (14) and (16) to obtain 

u(o) = 1 

u'(H) + (l+i) u(H) - 0 
oB 

(17) 

(18a) 

(18b) 

Solution of equations (17) and (18) will describe the diffusion of 

a plane electromagnetic wave into an inhomogeneously conducting, 

horizontally stra.tified medium, 
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4. A Green's function and associated integral form for the 

diffusion equation, 

The diffusion of electromagnetic energy into an inhomo­

geneously conducting medium has been sh01m to be governed by 

the equation 

subject to the boundary conditions 

u(o) = 1 

u 1 (H) + (l+i) u(H) = 0 
(SB 

(17) 

(18a) 

(18b) 

Let F be a twice differentiable function satisfying the boundary 

conditions 

F(o) = 1 

F'(H) + (l+i) F(H) = 0 
oB 

If F is chosen so that 

F 11 = 0 

the substitution of 

U = u- F 

in (17) and (18) will result in the inhomogeneous equation 

U'' - iwp 0 a(z)U(z) = iwp 0a(z)F(z) 

with homogeneous boundary conditions 

U(o) = 1 

U' (H) + (l+i) U(H) = 0 
oB 

(19) 

(20) 

(21) 

(22) 

(23) 
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Rewriting (22) 

U" ( z) = iW\.1 0 0' ( z) (F ( z) + U ( z) J 

and substitution of (21) yields 

U''(z) = iw1J 0 cr(z)u(z) 

A function F(z) which satisfies (19) and (20) is 

F(z) 
= c

8 
+(l+i) (H-z) 

o8 +(Hi)H 

In employing the Green's function to cast (24) into integral 

form we must look for a solution to the homogeneous equation 

G11 (x;z) = 0 

subject to the follm1ing conditions 

and 

G(o) = o 

G'(H) + (l+i) G(H) = 0 
CB 

With these conditions satisfied, 

H 

U(z) = iw1J 0 J cr(x)u(x)G(x;z)dx 
0 

(24) 

(25) 

(26) 

(27) 

(28) 

(29) 

(30) 

(31) 
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One such solution to (25) is 

G(x;z) = 
oB+(l+i) (H-z) 

oB+ ( l+i )H 

(l+i)z x+z 
oB+(l+i)H 

and the solution to (26) becomes 

oB+(l+i) (H-z) 
U(z) - - iWIJo{('i +(l+i)H 

B 
H 

+ I (z-x)o(x)u(x)dx} 
z 

Substituting (22) in (34) 

u(z) 

H H 

0 < X < Z 

z < X < H 

H 

I xo(x)u(x)dx 
0 

x I xo(x)u(x)dx + 
0 

I (z-x)o(x)u(x)dx} 
z 

The method of successive substitutions can be applied to (34) 

to yield a series solution for the normalized electric field 

within an inhomogeneously conducting medium (Dmitriev, 1970), 

(32) 

(33) 

(34) 
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5. The inverse problem, 

Having obtained a solution for the electric field within 

an inhomogeneously conducting medium we return to the inverse 

or identification problem, Application of Ampere's law to a 

semi-infinite medium indicates that 

Hy(o;w) = J a(x)Ex(z;w)dz 
0 

(35) 

where the parameter w has been introduced to indicate the 

particular frequence for which Ex(z;w) is a solution to (17). 

Recalling that 

u(z;w) 

(35) is written 

H~(o;w) 
00 

Y(w) = = f a(z)u(z;w)dz Ex(o;w) 
0 

If a(z) is approximated by a piecewise constant profile 

for i = 1,2,•••,N, (36) becomes 

XI 

Y( w) = a 1 I u(z;w)dz + a 2 

0 

+ ooo 

00 

+••• aN I u(z;w)dz 

XN-1 

(36) 

(37) 

(38) 

Equation (38) relates the surface impedance of a stratified 

medium to the conductivity and normalized electric field within 
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the medium, If observations of Y(w) are made at the N 

frequnncies 001 ,w20 ... • , wN' (38) can be written in matrix 

form 

v =A a 

where 

J
1

u(z:w 1 )dz•••J u(z;wl)dz Y(wl) 
• • 
• o • XN-1 • 
• • • 

"l= • A.= 0 cr = • 
• • • 
• • • 
• • 

Y(wN) 
0 

(39) 

With a profile assumed initially, is determined from 

the solution of (34), Thus, if an initial profile is assumed, 

(34) can be solved for u(z) at each frequency for which boundary 

data is observed and the results integrated to determine A. 
Equation (39) can then be solved for an improved approximation 

to cr. 

It remains to show that the resulting sequence of approxima-

tions, cr:l.' will converge to the true profile cr. Tikhonov 1 s 

demonstration of uniqueness indicates that there is only one solu­

tion to (39) so that convergence, if it occurs, will necessarily 

be to cr. 
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