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An inverse problem of mathematical physlces with application

to the magnetotellurlc method of geophysical exploration

James N, Towle

Abstract

Redundant boundary conditions are shown to permit the
Jdentiflication of an unknown, épatially varyling coefficient
in the diffusion equation, The solution to thig "inverse
problem of mathematlical physics 1is applled to the interpre-

tatlon of magnetotelluric observatlions.



1, Introduction.

The inverse problem of mathematical physics is encountered
in the study of diffuslon through a medium with unknown property

p(z). Consider the diffusion equation
U, (2:6) = p(2)0 (z,8) = 0 (1)

subject to the boundary conditions

Uo,t) = f(t) (2)
U,(0,t) = g(t) (3)
Ulw,t) = O (4)

The boundary conditions (2) and (U) are sufficient for the
golution of the direct problem, That is, given p(z), ﬁ(z,t)
can be found from the system (1), (2) and (#4). The additional
requirement, (3), while redundant in the solutlon of the direct
problem, provides the additional information necessary for the
synthesis of the unknown property p(z) 1in the inverse problem,
In the case of magnetotelluric method of geophysical exploration
the unknown function p(z) describes the electrical conductivity
proflle of the ecarth., A simllar need for inversion of boundary
data occurs in the interpretation of continental heat flow and
temperature data to determine the earth's thermal conductlvity

(Minster, 1970).
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2, The magnetotelluric method,

Natural fluctuations in the magnetilec field of the earth
induce currents in the earth known as telluric currents. The
magnetotelluric method employs observations of the fields
generated by the combined system of lonospheric and tellurié
currents to determine the electrical characteristlcs of the

earth.

Tikhonov (1950) first recognized that the electrical
properties of the earth could be 1dentified through observations
of the tangentlal electrlc and magnetic flelds at the earth's
surface. His work, which treated an essentially homogeneous
medlum, was followed by Cagniard's (1953) in which the conducting
medlium was allowed to be horizZontally stratified. Cagniard
showed that variations with frequency of the tangential components
of the electric and magnetic flelds at the surface could be
diagnostic of the medium as a whole, An lmportant assumption
of Cagniard's work was that the incident electromagnetlic excita-
tlon was represented by a plane wave, Following a large number
of investigations, both theoretical and experimental, Tlikhonov
(1965) has shown that the electrical characteristics of a layered
medium are unlquely determined as a function of depth by the
complete spectrum of tangential electrical and magnetic flelds

at the surface of the medium.



3. Maxwell's equations In a one-dimensionzlly inhomogeneous medium.

Consider a medium of arbltrarily varying conductivity in the
z-dlrection above a homogeneously conducting basement. This
medium will be represented by the conductivity profile
o(z) 0 <z <H

¢ =3 (5)

The electrilc and magnetic fields in this inhomogeneously conducting

medium are descrlbed by the relations

_ oT
VXE-—H-B—E ' (6)
va=o'E'+s-g-E (7)

Taking the curl of (6)
EY - V2E = -y, & _(oF 3E
V(VeE) - VPE = ~ 11, o (0E + & =%) (8)
where u = y, for all z. If displacement currents are small

(7) requires that

Ve(oE) = 0

and consequently

oE B OE
X y Z 30 _
U(Z){Bx ¥ oy tagd Y E gy =0 (9)

For the horizontally stratified medlum treated in this study the

currents induced by a time varying external magnetic field
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necessarily flow parallel to the layers of equal conductivity

(Price, 1950)., Thus, in this example

Ez = 0
and from (9)
B 3E,
......-?E--!-......L = 0
ax 3y
or
- Vet = 0 (10)

Neglecting displacement currents (8) and (10) arec combined to

yleld
27 VQ-E— -
VB - UgC -a-E' =0 (11)

At this point the plane wave assumption, fundamental to Cagniard's

analysis 18 made., Suppose that a plane wave

E

{E,,0,0} (12)

5 {O,Hy,O} (13)

o
31

1s vertically incldent upon the seml-infinilite half space described
by the properties of (5). Then E; satisfles the scalar form of
(11} in both the inhomogeneous region, 0 < 2z < H, and the conducting

basement., Thus

dzEx
Pl iwuoc(z)Ex = 0 0 <z <H (14)
d2EX
7 - lwweog By =0 z > H (15)

where eiwt time dependence has been assumed.
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The general solution to (15) which satisfies the condition

that the fields remain finite for all =z 1s

TP A
—(1+i)z// ; B
Ex(z) = A e
At 2z = H
Y]
E!(H) = -(1+1)/-m§~§ E_(H)

and consequently

(1+1) -
EY(H) + e E, = 0 (16)
where
by = Wi op

Normalizing the electric fileld to its value at the surface,

we substitute
E (z)
n, = e
z E_(o)

X

into (14) and (16) %o obtaln

u, . (2) + lwuge(z)u(z) = 0 (17)

u(o) = 1 (18a)

ut (H) + i%iil u(H) = 0 (18b)
B .

Solution of equations (17) and (18) will describe the diffusion of
a plane electromagnetic wave into an inhomogeneously conducting,

horizontally stratified medium,
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4, A Green's function and associated integral form for the

diffusion equation,

The diffusion of electromagnetic energy into an inhomo-
geneously conducting medium has been shown %o be governed by

the equation
u,,(z) + twpgo(z)ulz) = 0 (17

subject to the boundary conditions

u(o) = 1 (18a)
(1+1) -
ut(H) + S5 u(H) = 0 (18b)
- 1h ]

Let F be a twice differentiable function satisfying the boundary

conditions
Flo) = 1
(19)
rran + 4 pm) = o
B
If F 41s chosen so that
F" = 0 (20)
the substitution of
U=u-F (21)
in (17) and (18) will result in the inhomogeneous equation
U" - twp,o(z)0(z) = lwu,0(z)F(z) (22)
with homogeneous boundary conditions
U(o) = 1
(23)

U'(H) + i%ill U(H) = O
B



Rewriting (22)
Ut (z) = don,0(2)[F(z) + U(z)]
and substitution of (21) yields

U"(z) = tlwu,o(z)u(z)

A function ¥(z) which satisfies (19) and (20) is

6B+(1+1)(an)

F(z) = .2
SoF(IFIH

In employing the Green's function to cast (24) into integral

form we must look for a solution to the homogenecus eguation

G"(x;z) = 0

subject to the following conditions
G(o) = 0

ar(m) + ) qm) = o
SB
and

G(x;z+) = G(x3z")

G'(x;z+) - @' (x3z") = -1

With these conditions satisfled,

H
U(z) = dlop, I o(x)u(x)G(x;z)dx
e

(24)

(25)

(26)

(27)

(28)

(29)

(30)

(31)
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One such sclution to (25) is

SB+(1+1)(H—Z)

G{x;z) = 0 <x <z
5 5B+(1+17H —
(32)
- -éf;iitifﬂ-ﬂ x+z z2 <x <H
and the solution to (26) becomes
GB+(1+1)(H—Z) i
U(z) = - imp0{3—4(1+17H I xo(x)u(x)dx
B
H © (33)
+ f (z-x)o(x)u(x)dx}
4
Substituting (22) in (34)
6B+(1+1)(H-z) 6B+(1+i)(H—z)
w@) = sy - e e
(34)

H H
X f xo{x)ul{x)ax + I (z-=x)o(x)u(x)dax}
o 7

The method of successive substitutlions can be applied to (34)
to yleld a series solutlon for the normalized electrlc fleld

within an inhomogeneously conducting medium (Dmitriev, 1970).
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5. The inverse problem,

Having obtained a solutlion for the electric fleld within
an inhomogeneously conducting medium we return to the inverse
or identificatlion problem., Application of Ampere's law to a

seml-infinite medium indilcates that

Hy(o;w) = J o (x)E, (z;0)dz (35)
0

where the parameter w has been introduced to indicate the
particular frequence for which Ex(z;w) is a solution to (17).

Recalling that

Ex(z;w)

u(zgw) = D]
X L}

(35) is written

H (o;w)

Y(w) = EﬁTE?GT = J o(z)u(z;w)dz (36)

0

If o(z) 1is approximated by a plecewlse constant profile
o(z) = o4 Xy 1 £ 2% <%y (37)

for 1 = 1,2,eee,N, (36) becomes

xl F
Y(w) = o, J u(z;w)dz + 0, I u(z w)dz + e
0 X,
o0
+oe0 %y J u(z;w)dz (38)
*N-1

Equation (38) relates the surface impedance of a stratified
medium to the conductivity and normallzed electric field within



the medium,

frequnncies
form
Y=1
where ~
Y(w,)
T=| o
Y(wN)

al

=

With a profile

the solution of (34).

(34) can be solved for u(z)

data 1is observed and the results integrated to determilne

wl,wz’QDOO

r——

3 (DN,

T

If observations of Y(w)

(38)

are made at the

can be written in matrix

1
T u(zyw;)dzeee

0

:

4]

L]

® & © © © o

u(z;wN)dz

X

I

-1

assumed initially,

u(z;w,)dz

v

a

(39

—

o o ¢ o o o * Q

Q
=

K is determined from

Thus, 1f an inlitiagl profile is assumed,

A.

at each frequency for which boundary

Equation (39) can then be solved for an improved approximation

to o.

It remains to show that the resulting sequence of approxima-

tions, Sj, will converge to the true profile o. Tikhonov's

demonstration of uniqueness indicates that there is only one solu-

tion to (39) so that convergence, if it occurs, will necessarily

be to

O
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