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Introduction

Heart failure, diastolic dysfunction and myocardial stiffness 

The pumping action of the heart generates the pressure needed to transport blood 

throughout the circulation, allowing exchange of nutrients for metabolic waste products. It 

is no surprise that dysfunction of this vital organ has serious consequences for physical 

performance and well-being. Regardless the reason, severe dysfunction of the heart results 

in heart failure, a condition defined by failure of the heart to pump blood at a rate 

commensurate with the requirements of the metabolizing tissues.2 Despite advanced 

medical treatment, the 5-year survival rate is merely 40-60%3,4 and although prevalence of 

heart failure is high, it is projected to further increase with the growing elderly population.  

Heart failure is a result of dysfunction during systole and/or diastole. Whereas 

systolic dysfunction, involving compromised contraction of the heart, has been heavily 

studied, diastolic dysfunction has only recently become recognised as a major cause of 

heart failure5,6,7,8 and has thus gained increasing amount of attention in the cardiovascular 

research community. Defined by abnormal relaxation and/or decreased compliance of the 

ventricles,9 diastolic dysfunction results in impaired filling of the heart in diastole. In 

healthy individuals, the major risk factor for diastolic dysfunction is age. However, any 

condition that leads to stiffening of the ventricles can result in diastolic dysfunction, e.g. 

pressure overload as in hypertensive and aortic stenosis patients. Myocardial stiffness is 

largely determined by the structure and composition of the extracellular matrix (ECM), and 

diastolic dysfunction is often a result of myocardial fibrosis. There is currently no effective 

medical treatment for myocardial fibrosis, reflecting the need for a better understanding of 

its molecular basis. This comprises the background for the overall motivation of the work 

summarised in this thesis. 

All cells in all tissues are constantly affected by the mechanical properties of the 

extracellular environment, while these same cells are generating forces that regulate the 

extracellular environment. In this way, equilibrium is achieved thereby maintaining tissue 

structure and function and enabling physiological adaption to signals that result in normal 

growth and development. In the heart, the extracellular environment is mainly regulated by 

cardiac fibroblasts. These are major producers and organisers of ECM and are highly 

plastic cells that adjust their phenotype and function to meet the challenges of the 
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mechanical load that is constantly inflicted upon the heart. When the balance between 

mechanical stress and cellular response is disturbed, pathological remodelling may occur 

compromising cardiac function and ultimately causing heart failure. In this thesis, we have 

investigated the role of the transmembrane proteoglycan syndecan-4 in transducing 

mechanical stress into cellular changes in cardiac fibroblast function and phenotype, and 

studied the consequence of these changes on ECM remodelling and myocardial stiffness.

Cardiac fibroblasts and myofibroblasts

Cardiac fibroblasts comprise more than 50% of the total cell population in the human 

heart10,11 and up to 30% of the total cells in the murine heart.12 These plastic cells are 

responsible for a balanced production and turnover of ECM. In response to pressure 

overload of the heart, cardiac fibroblasts proliferate, boost ECM synthesis and develop 

contractile forces that act on the freshly produced ECM thereby remodelling tissue 

structure to meet the increased mechanical burden.13 Hence, they are smooth muscle cell-

like in terms of expressing markers defining smooth muscle cells such as smooth muscle -

actin (SMA)14 and SM22, but at the same time retain typical fibroblast features such as the 

ability to produce large amounts of ECM. Cells with this phenotype are therefore referred 

to as myofibroblasts.15

Of particular relevance for myocardial stiffness is the high expression of fibrillar 

collagen I that is maturated into large collagen fibers through extensive cross-linking 

mediated by the enzyme lysyl oxidase, providing tensile strength to the ECM. In the 

normal adaptive response, myofibroblasts will undergo apoptosis16 as ECM tension is 

restored and again takes over the mechanical load. However in situations where 

mechanical load continues to be elevated such as in patients with chronic hypertension, 

persistent myofibroblast activity and development of myocardial fibrosis is observed.17

Also of interest and in agreement with these results, a recent report suggests that cardiac 

myofibroblasts may dedifferentiate back into fibroblasts when mechanical tension is 

decreased or in the presence of a transforming growth factor ( )-receptor-I kinase 

blocker.18 Whether one or both of these interventions were needed to accomplish 

dedifferentiation, depended on the proliferative status of the myofibroblasts indicating the 

presence of multiple degrees of differentiation. It will be important to determine whether

these findings also apply to myofibroblasts in vivo. 
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The fibroblast-myofibroblast phenotypes do not reflect one single cell type but 

rather a continuum of functional statuses, and to date no markers exclusively expressed in 

myofibroblast have been identified. Myofibroblasts are most commonly defined by the 

high expression of collagen I and de novo expression of SMA and the extradomain A (ED-

A) splice variant of fibronectin.19 Also, platelet-

recently arisen as a promising myofibroblast marker in several tissues.20,21

The heterogeneity of myofibroblasts may also reflect their many potential cellular origins. 

This issue has been debated over several years and has been deluded by the observation 

that many cell types will adopt a myofibroblastic phenotype in vitro when stimulated with 

TGF . The traditional view is that myofibroblasts in the heart derive from resident cardiac 

fibroblasts, but endothelial cells,22 bone-marrow-derived circulating progenitor cells23,24

and pericytes25 surrounding blood vessels may also contribute. 

TGF cardiac myofibroblast differentiation.26,27 A

requirement for TGF -induced myofibroblast differentiation is the expression of ED-A19

and mechanical stress.28 This may indicate that TGF chanical stress-

induced changes, emphasizing the importance of studying mechanosensing of cardiac 

fibroblasts. Although it is well-established that mechanical stress induces differentiation of 

cardiac fibroblasts into myofibroblasts,29 the underlying mechanisms are largely unknown. 
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Figure 1. The mechanical loop of cardiac myofibroblast differentiation.

1) Quiescent fibroblasts residing in the cardiac tissue have low extracellular matrix (ECM) producing 

activity and regulate the basic turnover of ECM. 2) In response to mechanical stress, such as in the 

pressure-overloaded heart, cardiac fibroblasts start producing ECM and forming actin stress fibers and 

focal adhesions (FA) that apply traction forces on the ECM thereby increasing matrix stiffness. 3) This 

further promotes myofibroblast differentiation increasing FA size and initiating expression of ED-A splice 

variant of fibronectin (FN). Transforming growth factor (TGF ) is produced or released from the 

ECM20,30 and works in a paracrine and autocrine fash -smooth muscle actin 

(SMA) and increase ECM production. Again, all these properties promote ECM stiffening. 4) FAs will keep 

growing in size and become “super mature”, and SMA molecules will incorporate into functional SMA 

stress fibers with high contraction force, hence marking the completion of the myofibroblast phenotype.

Myofibroblasts persist as long as mechanical stress continues to be elevated, producing more and more 

ECM in a viscous cycle until cardiac fibrosis finally compromises cardiac function to a degree where 

transition to heart failure is unavoidable. 5) Alternatively, myofibroblasts may ultimately undergo apoptosis 

when the ECM maturates and takes over the mechanical load. Whether myofibroblasts may 

dedifferentiate back into quiescent resting cardiac fibroblast when mechanical stress in alleviated in vivo,

is not entirely clear. Modified with permission from Hinz, 2007.31
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Syndecan-4 in cardiac fibroblasts: one protein, multiple roles 

Syndecans are a family of evolutionary ancient transmembrane heperan sulfate

proteoglycans which consists of four family members (syndecan-1-4) in mammals.32 The 

core proteins of syndecans have a cytoplasmic part, a transmembrane region and an 

extracellular domain (ectodomain). The intracellular cytoplasmic part consists of two 

constant regions (C1 and C2) that are conserved among the syndecan family, and a 

variable (V) region that is unique to each syndecan.33 Multiple interaction partners 

including cytoskeletal proteins, adaptor proteins and signalling molecules have been 

identified as being essential for syndecan structure and function.34,32 In conjunction with 

the cytoplasmic domain of syndecan-4, the transmembrane domain is responsible for 

syndecan-4 dimerization35,36 by forming strong twisted clamp dimers as shown by NMR 

structural studies.37 These dimers may occur during synthesis, implying that the dimeric 

state of syndecans is the native one. The ectodomains of syndecan-1,38 -2 and -439 have 

been found to promote integrin-mediated adhesion of mesenchymal cells although the 

mode of interaction is not known. The extracellular domains of syndecans display little 

homology but have in common that they are all substituted with glycosaminoglycan 

(GAG) chains, mainly heparan sulfate (HS). These GAG chains may vary in length, 

charge, sugar composition and degree of sulfation and may therefore also display a wide 

array of functions. HS can interact with numerous and different types of ligands including 

growth factors,40 chemokines41 and matricellular proteins,42,43 and thereby possibly act as 

co-receptors for other cell surface receptors.44,45,46 HS GAG chains also interact with 

extracellular structural proteins such as collagen I47 and fibronectin48 and are highly 

hygroscopic due to their negative charge.  
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Figure 2. Summary of syndecan 
structure and interactions. 

All four syndecans share this basic 

structure containing an extracellular 

domain (ectodomain), transmembrane 

domain, and a cytoplasmic domain 

consisting of constant regions and a 

variable region specific for each 

syndecan. Heparan sulfate GAG chains 

are attached to the ectodomain. The 

domains have different functions and 

interaction partners enabling syndecans to 

hold multiple roles in cellular function and 

phenotype.

Since the first description of syndecans in 198849 the importance of syndecans in 

health and disease has been a riddle. Although profound effects of syndecan-4 activation or 

inhibition on cell behavior are observed, mice lacking syndecan-1, -3 or -4 have only mild 

defects upon initial observation, suggesting some degree of redundancy among syndecans 

or HS-proteoglycans in general. On the other hand, syndecan-specific effects are clear 

when syndecan knockout mice are subjected to injury or disease.50,51,52 The first hint that 

syndecans played a role in connective tissue remodelling and fibroblast function was the 

detection of syndecan-1 expression in granulation tissue around growing capillaries.53 Both 

syndecan-1 and syndecan-4 knockout mice have since confirmed this initial observation,

having delayed wound healing in skin50 and adverse matrix remodelling after myocardial 

infarction increasing susceptibility to cardiac rupture.54,55 The myocardial ECM defects of 

syndecan-4 knockout (syndecan-4-/-) mice were largely attributed impaired fibroblast 

responses; however the exact mechanisms were not determined.54

Mechanical stress sensor

The existence of mechanosensing molecules in the plasma membrane of cardiac cells has 

long been a focus of attention. Such a mechanosensor is likely attached to the ECM as well 

as to the cytoskeleton, forming a physical link between extra- and intracellular structures. 

Transmembrane proteins with such properties are found in focal adhesions (FAs). FAs are 

points in the cell membrane that constitute the binding sites to the ECM and are likely to 
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be involved in mechanosensing and mechanotransduction.56,57 FAs consist of cell binding 

receptors such as integrins, cytoskeletal proteins, and signalling molecules, many of which 

are known to interact with syndecan-4. These include syntenin,58 CASK59, synectin,60 focal 

adhesion kinase (FAK)61 and protein kinase C (PKC).62,36 During myofibroblast 

differentiation FA size and strength increase, developing into “super mature” FAs63 which 

may affect downstream signalling molecules.

Located in FAs, and being attached both extracellularly to fibronectin64 and 

-actinin,65,66 syndecan-4 is an attractive 

candidate for a mechanosensor.67 In a previous study by our group,51 syndecan-4 was 

found to play such a role in cardiomyocytes inducing concentric hypertrophic remodelling

of the left ventricle in response to pressure overload. The underlying mechanism for this 

effect involved activation of the transcription factor nuclear factor of activated T cells 

(NFAT) which is a well-known inducer of hypertrophy in the pressure-overloaded 

heart.68,69 NFAT is heavily phosphorylated in its inactive state and changes conformation 

following dephosphorylation thereby revealing a nuclear localisation signal causing

nuclear translocation and transcription of target genes.70,71 Although NFAT has been 

extensively studied in cardiomyocytes, the role of NFAT in cardiac fibroblasts is highly 

elusive. There are four calcium-regulated NFAT isoforms (NFATc1-4), all expressed in 

cardiac fibroblasts at the mRNA level, NFATc3 having the highest expression, followed by 

NFATc1, NFATc4 and NFATc2.  

Dephosphorylation of NFAT is performed by the Ca2+-sensitive phosphatase 

calcineurin.72 The intracellular part of syndecan-4 was found to bind to the autoinhibitory 

domain of calcineurin when syndecan-4 was dephosphorylated at serine179, and 

experiments assessing NFAT activation suggested that this binding activated calcineurin

and subsequently NFAT. Indeed, activation of this syndecan-4/calcineurin/NFAT 

signalling pathway was present in the pressure-overloaded hypertrophic heart and in 

mechanically stressed cardiomyocytes,51 but its presence in cardiac fibroblasts was not 

examined. In Paper 1 we examined a possible mechanosensing role for syndecan-

4/calcineurin/NFAT in cardiac fibroblasts, inducing myofibroblast differentiation and 

ECM production. Since these are important for regulating mechanical properties of the 

heart, we examined the consequence of syndecan-4 deletion on myocardial stiffness in 

Paper 2.
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Organiser of cytoskeleton and extracellular matrix assembly 

Syndecan-4 plays a central role in cytoskeletal organization and focal adhesion assembly 

and turnover,44,73 having profound effects on migration,74 adhesion75 and cell spreading.64

The mechanism for this involves PKC activation76 in response to a conformational 

change of syndecan-4 that occurs upon binding of phosphatidylinositol 4,5-bisphosphate 

(PIP2) to the cytoplasmic domain of syndecan-4. This also leads to clustering of syndecan-

4, coordinated by PDZ domain-containing scaffold proteins, and interaction of syndecan-4 

-actinin.77 the small GTPase RhoA73 and its 

kinases leading to focal adhesion assembly and stress fiber formation through their 

phosphorylation of myosin phosphatase and myosin II.78 Fibroblasts lacking syndecan-4 

have smaller focal adhesions and defect cytoskeleton substantiating the role of syndecan-4 

in organizing these structures.  

Many ECM structural proteins are assembled into fibers at the cell surface after 

secretion where cell surface receptors bind and initiate fibrillogenesis. Although focal 

adhesions are thought to be important matrix assembly points, the exact role of syndecan-4 

in matrix assembly is not known. The heparin-binding domains of fibronectin are required 

for fibrillognesis79 and studies manipulating syndecan-2 structure or expression reveal 

impaired assembly of laminin and fibronectin at the cell surface.80,81 Syndecan-4 may also 

interact with collagen I through its GAG chains,47 although the effect of this interaction of 

collagen fibrillogenesis is unknown. In Paper 2 we extend our findings on the regulatory 

role of syndecan-4 cytoplasmic domain, to explore the role of the extracellular domain of 

syndecan-4 in regulating collagen fibril assembly and cross-linking.

Expression and shedding 

Cardiac syndecan-4 expression has been shown to be increased in the hypertrophic 

myocardium of mice after myocardial infarction82 and in human aortic stenosis.51 Reports 

from other cell types indicate a role for mechanical stress,83 tumor necrosis factor 

(TNF )84,85,86 and interleukin 1 (IL-1 )85 in regulating syndecan-4 expression. TNF  and 

IL-1 are cytokines associated with the innate immune system which is activated upon 

tissue injury and exposure to pathogens.87 and IL-  were initially discovered in 

cells of the immune system88,89 but have since proven to be present in a wide variety of cell 

types, including cardiac cells.90,91,92,93 Importantly, and IL-  are rapidly (within 2h) 
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upregulated after inducing left ventricular pressure overload by aortic banding (AB;

unpublished results). 

 The ectodomain of syndecan-4 can be shed by proteolytic cleavage. This is a highly 

regulated process involving the direct action of “sheddase” enzymes.94 In the heart, 

syndecan-4 shedding is elevated in response to myocardial injury and disease as indicated 

by increased plasma levels after myocardial infarction in humans95 and in serum from 

patients with chronic heart failure.96 Syndecan-4 shedding may play several roles in the 

cardiac response to mechanical stress such as decrease mechanosensing by syndecan-4 and

disrupt cellular attachment to ECM thus abrogating down-stream signalling of syndecan-4 

and promoting migration, respectively. In addition, the shed ectodomain may itself act as a 

soluble effector or antagonist,94 or create a chemotactic gradient for leukocyte infiltration 

of the myocardium.97

The question whether syndecan-4 shedding is good or bad for cardiac function 

remains to be answered. In studies of myocardial infarction, overexpression of the 

extracellular shed part of syndecan-4 increased mortality,54 whereas overexpression of full-

length syndecan-4, showed reduced mortality and improvement of cardiac function.98 The 

role of shedding in the pressure-overloaded heart is not known. However, syndecan-4 

shedding was induced by stretch of vascular smooth muscle cells,99 indicating regulation in 

response to mechanical stress. In Paper 3 we investigate the regulation of syndecan-4 

expression and shedding, and examine its effect on inflammation and focal adhesion 

assembly.  
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Figure 3. Multiple proposed roles for syndecan-4.

The location of syndecan-4 in focal adhesions (FAs) suggests that it plays a role in sensing and 

transducing mechanical stress. B) Heparan sulfate chains of syndecan-4 interact with extracellular matrix 

(ECM) molecules promoting assembly into higher order ECM structures. C) Syndecan-4 acts as a co-

receptor enhancing signalling by soluble factors such as growth factors. D) Enzymatic shedding of 

syndecan-4 ectodomain may enable the creation of a chemotactic gradient by binding and thereby 

increasing the concentration of chemokines in the ECM. E) The deprived attachment to ECM after 

shedding abrogates intracellular signalling and may enhance cell migration.
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Aims of the thesis

The overall aim of this thesis was to investigate the role of syndecan-4 in cardiac fibroblast 

function and phenotype, ECM remodelling and myocardial stiffening of the pressure-

overloaded heart.

The specific aims of the separate studies were: 

1. To study whether syndecan-4 signals via calcineurin/NFAT to regulate 

myofibroblast differentiation and ECM production in response to mechanical stress

2. To examine the role of syndecan-4 in regulating myocardial stiffness and explore if 

syndecan-4 may be important for collagen cross-linking 

3. To investigate the signals and mechanisms that induce cardiac syndecan-4 

expression and shedding 
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Methodological considerations

To study the role of syndecan-4 in mechanical stress-induced changes we use model 

systems of mechanical stress in vivo and in vitro, as well as “gain and loss of function” 

approaches where we manipulate the expression of syndecan-4 in mice and in fibroblast 

cultures. This enables us to study the consequence of lacking syndecan-4 on the 

mechanical stress response of the heart and study molecular mechanisms by use of cell 

biology techniques such as syndecan-4 overexpression.  

 

Models of mechanical stress

Animal model of left ventricular pressure overload
Mechanical stress is elevated in patients with pressure overload of the left ventricle, i.e. 

hypertension or aortic stenosis. To mimic aortic stenosis, AB of the ascending aorta was

performed. As controls, sham-operated animals underwent an identical operation but 

without tightening the suture around the aorta. To ensure successful AB, flow velocity 

across the aortic stenosis was determined with echocardiography 24h after AB. Animals 

with an aortic flow velocity > 4 m/s after AB were included in the study. After 24h or 7 

days, echocardiography was performed as previously described,51,100 obtaining left 

ventricular dimensions and parameters of cardiac function. Animals were sacrificed 24h, 3 

days or 7 days after AB, and lung and left ventricular weight were obtained as an 

indication of congestive heart failure and hypertrophy, respectively. Left ventricular tissue 

was snap frozen or fixed for further analysis. Although using mouse models to study 

human disease have obvious limitations such as body size, heart rhythm, mode of left 

ventricular pressure overload onset (immediate pressure overload in AB mouse model v.s. 

gradual increase in humans) and time frame for development of disease (days and weeks in 

AB mouse model v.s. several years in humans), the AB mouse model of left ventricular 

pressure overload is considered a valid model of concentric hypertrophy of the heart.101

Mechanical stress in vitro
To study mechanisms involved in mechanotransduction and cardiac myofibroblast 

differentiation in vitro, we isolated primary cardiac fibroblasts from left ventricles of 

neonatal and adult mice.51 The mechanical tension of the culturing conditions will itself 

induce myofibroblast differentiation of primary cardiac fibroblasts.28 In addition, 
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fibronectin enhances attachment of cardiac fibroblasts and drives myofibroblast 

differentiation.102 Although this makes studies on cardiac fibroblasts challenging, we took 

advantage of these two properties and studied the process of myofibroblast differentiation 

by examining cardiac fibroblasts at different time points after culturing them on 

fibronectin. Although SMA protein amount reflects myofibroblast phenotype, it is not 

always coherent with fiber formation. Thus, myofibroblast differentiation was determined 

by the appearance of SMA stress fibers by immunocytochemistry. The limitations of this 

myofibroblast differentiation model are mainly associated with the type of mechanical 

stress induced by the culturing conditions which is unlike the cyclic mechanical stretch that 

cardiac fibroblasts experience in vivo. Also, the ECM in vivo is composed of a wide variety 

of proteins and not just fibronectin as studied here. That said, highly controlled culturing 

conditions are needed to get reliable and consistent results in vitro, since the cardiac 

fibroblast exhibit high plasticity. The myofibroblast differentiation model used here was

simple, consistent and, in our opinion, appropriate for the purpose.  

Although immortalised cell lines such as the fibrosarcoma human cell line HT1080 

are cultured for long periods of time and for several passages, they have fewer features of

myofibroblasts than primary cardiac fibroblasts in culture. To induce myofibroblast 

differentiation of this cell line, we subjected them to 10% cyclic (1 Hz) mechanical stress 

by using the FlexCell tension system, thereby mimicking the mechanical stress present in 

the heart.103 Since FlexCell stretch membranes are unsuitable for immunocytochemistry, 

myofibroblast differentiation was determined by upregulation of the early myofibroblast 

marker ED-A FN.19

Gain and loss of function studies

Genetically modified mice
Genetically modified mouse models have enabled huge progress in understanding the 

importance of specific proteins in vivo, and are widely used in basic research. We have 

used syndecan-4-/- mice to study the role of syndecan-4 in the pressure-overloaded heart. 

To study the regulation of NFAT transcriptional activity, we utilised NFAT-luciferase 

reporter mice69 that express the luciferase enzyme when NFAT is activated. Luciferase 

enzymatic activity can then be measured as luminescence when luciferin (the substrate of 

luciferase) is added to the protein lysate of homogenised tissue or cell cultures. To study 
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the role of syndecan-4 in NFAT activation, syndecan-4-/--NFAT-luciferase reporter mice 

(generated in our laboratory) were used.  

The syndecan-4-/- mouse is a complete knockout, meaning that syndecan-4 protein 

is lacking in all cells of the body which may complicate interpretation of in vivo data 

regarding cell-specific functions of syndecan-4.50 Also, syndecan-4 protein will be absent 

from the time of birth. Thus, compensatory mechanisms may have emerged or 

developmental processes may have been disturbed, thereby affecting the phenotype of the 

adult mouse. Regardless, “loss of function” mouse models comprise powerful tools in 

medical research.  

Manipulating gene expression in vitro
The use of primary cells in culture enables discrimination of responses in cardiac 

fibroblasts and cardiomyocytes, which are both present in tissue homogenates harvested 

directly from the left ventricle. In the studies included in this thesis, primary neonatal 

cardiomyocytes and cardiac fibroblasts from neonatal and adult syndecan-4-/- mice have 

been isolated to examine changes in cellular responses when syndecan-4 is lacking. 

Although cardiac cell types are in constant interaction within the heart, cell-specific in 

vitro studies provide valuable insight into cell function, phenotype and molecular 

signalling mechanisms.  

“Loss of function” studies in the primary cells from syndecan-4-/- mice can be

complimented by “gain of function” experiments. Plasmids containing full-length 

syndecan-4 cDNA under the control of a strong promoter were transfected into fibroblasts 

and thereby caused syndecan-4 overexpression. Since primary cell lines are difficult to 

transfect, we used a fibroblast cell line for this purpose. Often such “gain of function” 

studies strengthen findings from “loss of function” experiments showing opposite effects,

but sometimes results are conflicting and interpretation becomes a challenge. The biology 

of living cells harbors a plethora of regulatory mechanisms that fine tune cell behavior and 

activity. Thus, the amount of protein does not always translate into effect. Transfection 

with plasmids also enables introduction of genes encoding modified proteins, e.g. carrying 

fluorescent tags such as enhanced green fluorescent protein (EGFP). In Paper 1, we utilised

EGFP-NFAT fusion proteins which allowed us to determine cellular localization of EGFP-

NFATc1-4 and thereby examine which NFAT isoforms were activated (determined by 

nuclear translocation) in response to mechanical stress. 
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Myocardial stiffness 

The combined passive mechanical properties of the myocardium such as viscosity and 

elasticity constitute the myocardial stiffness. Viscous stress reflects the stretch velocity 

sensitive component of the muscle, and is highly determined by the amount of water 

present in the tissue. On the other hand, passive tension is dependent on the amplitude of 

stretch and reflects the elastic properties of the muscle. In the heart, passive tension is 

largely determined by the cytoskeletal spring-like protein of cardiomyocytes called titin, 

and the composition and structure of ECM. In response to changes in mechanical load such 

as in the pressure-overloaded heart, modifications in all these properties may take place 

and thereby increase myocardial stiffness.

 In Paper 2 we determined the passive tension of myocardial tissue strips isolated 

from the left ventricular wall. The strips, about 2 mm in length and 0.5 mm in width, were 

dissected parallel to muscle fiber bundle orientation. To eliminate the active component of 

myocardial stiffness, skinning of the preparations was performed using 0.5% triton in 

calcium free solution. To eliminate the contribution of titin to passive tension, salt 

extraction of actin and myosin filaments was performed by treatment with 0.6 M KCl for 

20 min and 1 M KI for 20 min.104

Passive tension was measured by mounting the strips between two stainless steel 

clips attached to a micromotor and force transducer. It is essential for accuracy to 

standardise the initial length from where stretching is started (L0). Slack length was used as 

L0 in this study and strips were stretched in equal steps to 30% of L0. Ideally L0 is set by 

measuring sarcomere length of the cardiomyocytes in the preparation. By using laser 

diffraction105,106 we were able to verify in three muscle strips that the applied range of 

stretch corresponded to a sarcomere length of 1.8 – 2.3 μm. Passive tension was obtained 

by dividing force with the cross-sectional area at the thinnest point of the strip. Disruption 

of sarcomere structure was verified by subsequent examination of muscle strips with

electron microscopy. Viscous stress was determined as peak force upon stretching minus 

steady-state force, divided by cross-sectional area.
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Collagen expression and maturation 

Fibrous collagens are macromolecules that have a high content of hydroxyproline. Hence, 

a standard procedure for quantifying total collagen is to measure hydroxyproline content 

with high-performance liquid chromatography (HPLC). However, not only the amount of 

protein but also the degree of collagen cross-linking is important for tensile strength of the 

collagen matrix. 

Collagen cross-linking can be assessed both quantitatively and qualitatively by 

staining with picrosirius red. Picrosirius red stains all collagen a deep red colour and can be 

visualised in tissue sections of the heart using standard light microscopy. Also, this linear 

molecule binds parallel to the long axes of collagen fibers, thereby enhancing birefringence 

of collagen that can be visualised when the sample is illuminated with polarised light.107

To quantify collagen cross-linking, we stained thick (20 μm) tissue sections of the left 

ventricle with two different dyes: Picrosirius red to stain total collagen and fast green to 

stain total non-collagen protein. These dyes are readily extracted from the stained tissue 

and the amount of collagen relative to total protein can be calculated based on absorbance 

(for picrosirius)  (for fast green). To assess the amount of soluble collagen 

(not cross-linked), tissue sections were incubated with pepsin overnight. The amount of 

pepsin-solubilised collagen was determined by a colorimetric assay that is also based on 

picrosirius red staining. Finally, cross-linked collagen could be determined by subtracting 

soluble collagen from total collagen. This protocol for quantitating cross-linked collagen 

was adapted from the Diez group in Pamplona108 after a research visit by members of our 

group.  

To study the role of the extracellular domain of syndecan-4 in collagen fiber 

assembly in vitro, recombinant syndecan-4 consisting of the extracellular part of syndecan-

4 fused with the Fc region of human IgG1 was mixed with collagen I in a test tube. The 

effect of adding recombinant human lysyl oxidase homolog 2 was also examined. 

Turbidity of the solution served as a measure of collagen fibrillogenesis and samples were 

further examined with electron microscopy after negative staining with 2% aqueous uranyl.

Although this is a highly artificial and non-physiological method, it does shed light on the 

ability of the ectodomain of syndecan-4 to facilitate collagen I fiber formation and how it 

may play a role in matrix assembly in vivo.  
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Molecular biology techniques

Additional molecular biology techniques used in this thesis include: quantitative real-time 

PCR, LOX activity assay, migration scratch assay, ELISA for syndecan-4 in plasma, 

adenoviral transduction of primary cardiac fibroblasts, western blot, proximity ligation 

assay and immunocytochemistry. A challenge with several of these methods is the 

dependency on antibodies, where specificity will always be a question. To increase the 

soundness of our antibody-based results we have complemented with other methods, used 

antibodies with verified specificity (such as pNFATc4/NFATc4109), and used blocking 

peptides (for the proximity ligation assay) and multiple negative controls when applicable. 
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Summary of Results 

Paper 1 

In this study we demonstrated the importance of syndecan-4 in differentiation of cardiac 

fibroblasts into myofibroblasts. Mechanically-stressed cardiac fibroblasts from  

syndecan-4-/- mice had impaired SMA production and fiber formation in vitro, and markers 

of myofibroblasts were reduced in vivo following AB. Furthermore, mRNA of central 

ECM genes such as collagen I, III and fibronectin were upregulated in a syndecan-4-

dependent manner in response to pressure overload. We also showed that NFAT is 

activated in cardiac fibroblasts in response to mechanical stress. This activation was 

dependent on syndecan-4 and calcineurin, demonstrated by reduced NFAT activity in 

cardiac fibroblasts from syndecan-4-/- mice and in the presence of the calcineurin inhibitor 

cyclosporine, respectively. By utilizing EGFP-NFAT fusion proteins, NFATc4 was found 

to be the NFAT isoform that was activated by mechanical stress. Accordingly, over-

expression of NFATc4 upregulated collagen III and myocardin-related transcription factor 

A (MRTF-A), the latter being a transcriptional regulator of SMA. Syndecan-4 and 

calcineurin were localised closely together suggesting interaction between the two 

molecules. This possible interaction may be promoted when syndecan-4 is 

dephosphorylated at serine179, which has previously been shown to be critical for 

interaction between calcineurin and syndecan-4 cytoplasmic domain in response to 

mechanical stress.51 We concluded from this study that syndecan-4 engages the 

calcineurin/NFAT pathway to induce differentiation of cardiac fibroblasts into 

myofibroblasts and ECM production in response to mechanical stress.  

Paper 2 

In this study we found that passive tension increased in response to AB (7 days AB), but 

the response was blunted in syndecan-4-/- mice. Disruption of titin anchoring by salt 

extraction of actin and myosin filaments revealed that the effect of syndecan-4 on passive 

tension was due to ECM remodelling. Expression and activity of the cross-linking enzyme 

lysyl oxidase (LOX) increased with mechanical stress and was lower in left ventricles and 

cardiac fibroblasts from syndecan-4-/- mice, which exhibited less collagen cross-linking 

after 7 days AB. Expression of osteopontin (OPN), a matricellular protein able to induce 
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LOX protein in cardiac fibroblasts, was upregulated in hearts after AB, mechanically-

stressed fibroblasts and fibroblasts overexpressing syndecan-4, calcineurin or NFAT, but 

downregulated in fibroblasts lacking syndecan-4 or after NFAT inhibition. Interestingly, 

the extracellular domain of syndecan-4 facilitated LOX-mediated collagen cross-linking.

Hence, syndecan-4 appears to exert a dual role in collagen cross-linking, one involving its 

cytosolic domain and NFAT signalling leading to collagen, OPN and LOX induction in 

cardiac fibroblasts; the other involving the extracellular domain promoting LOX-

dependent cross-linking. 

Paper 3 

In vivo, syndecan-4 mRNA expression was upregulated by 24h and 1 week AB-induced 

pressure overload. In vitro, TNF , IL-1 , and lipopolysaccharide (LPS), induced syndecan-

4 mRNA in both cardiac myocytes and fibroblasts. Bioinformatical and mutational 

analyses in human embryonic kidney 293 (HEK293) cells identified a functional site for 

the pro-inflammatory transcription factor nuclear factor kappa B (NF- B) in the syndecan-

4 promoter and indeed, NF- B regulated syndecan-4 mRNA in cardiac cells. Interestingly, 

TNF , IL-1 and LPS also induced NF- B-dependent shedding of the syndecan-4 

ectodomain from cardiac cells. To examine the specific cleavage site of syndecan-4, 

overexpression experiments of syndecan-4 with mutated enzyme-interacting domains were 

performed and suggested enzymes dependent on binding to heparan sulfate to regulate 

shedding. LPS-induced shedding reduced FA size of cardiac fibroblasts, suggesting that 

inflammation-induced shedding affects cardiac fibroblast function. After AB, a time-

dependent cardiac recruitment of T lymphocytes was observed by measuring CD3, CD4 

and CD8 mRNA, which was reduced in syndecan-4-/- hearts. Finally, syndecan-4 mRNA 

and shedding were upregulated in failing human hearts. Conclusively, our data suggest that 

syndecan-4 plays an important role in the immune response of the heart to increased 

pressure, influencing cardiac remodelling and failure progression. 
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Discussion 

Mechanosensing by syndecan-4 in cardiac fibroblasts induces myofibroblast 

differentiation

Syndecan-4 is located in focal adhesions, sites known to be important for 

mechanotransduction in adherent cells.110 Here, transmembrane proteins enable bi-

directional signalling between the cytoskeleton and ECM. In response to pressure overload 

of the left ventricle, syndecan-4 is rapidly upregulated as demonstrated in Paper 1 and 3. 

Similar to vascular smooth muscle cells,83 mechanical stress induced syndecan-4 

expression in cardiomyocytes, but the in vitro mechanical stress applied for these 

experiments (10% stretch, 1 Hz, 24h) had no effect on syndecan-4 expression in cardiac 

fibroblasts. The proinflammatory cytokines IL-1  and TNF caused upregulation 

syndecan-4 in both cardiomyocytes and cardiac fibroblasts through activation of NF- .

Thus, upregulation of syndecan-4 in cardiac fibroblasts seems to be triggered by autocrine 

and paracrine signalling induced by pressure overload more than mechanical stress per se.

Left ventricular syndecan-4 expression peaks at 6h post AB (unpublished data) and 

declines back to initial levels 3 weeks after AB. In light of the rapid upregulation in the 

pressure-overloaded heart, it seemed likely that syndecan-4 might play a pivotal role in the 

immediate response to mechanical stress and possibly trigger other signalling pathways 

that take over at later time points. Based on previous findings by others67 and us51,82 and 

the work presented in Paper 1 and 2, we propose syndecan-4 to be a transducer of 

mechanical stress in cardiac fibroblasts that is active in initial stages of the pressure 

overload response.  

Bellin and collegues were the first to show a direct role for syndecan-4 in 

mechanotransduction.67 By using antibodies directed toward the ectodomain of syndecan-4 

they were able to specifically study extracellular binding properties of syndecan-4. 

Application of mechanical stress exclusively to syndecan-4 caused activation of specific 

mechanosensitive signalling pathways in NIH 3T3 fibroblasts.111 This 

mechanotransduction was dependent on intact actin filaments. In Paper 1 we found 

impaired SMA fiber formation and others have reported reduced RhoA activity in cardiac 

fibroblasts from syndecan-4-/- mice,54 suggesting altered cytoskeletal dynamics in cells 

lacking syndecan-4, thus contributing to the blunted fibroblast response to mechanical 

stress. 
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In Paper 1 and 2 we demonstrated impaired cardiac myofibroblast differentiation in 

response to mechanical stress in vitro (SMA fiber formation) and in vivo

(immunohistochemistry for SMA and PDGFR ) when syndecan-4 was lacking. Results 

from Paper 1 indicated that the mechanism for syndecan-4–dependent myofibroblast 

differentiation involved dephosphorylation of serine179 in the cytoplasmic domain of 

syndecan-4 thereby possibly functioning as a mechanical stress-sensitive switch for

activation of the calcineurin/NFAT signalling pathway. Overexpression of NFATc4 

enhanced the expression of collagen III, MRTF-A (Paper 1) and OPN (Paper 2). Apart 

from a few studies showing that NFAT can regulate collagen I,112,113 SMA114 and OPN115

expression in other tissues, syndecan-4/calcineurin/NFAT regulation of myofibroblast 

differentiation and ECM production was a novel finding in this study.  

Although little is known regarding the role of NFAT in cardiac fibroblasts, studies 

manipulating cardiac calcineurin and NFAT activity in vivo have indicated a role for 

NFAT in cardiac fibrosis,116,117,118,119 and blocking NFAT in vivo and in vitro reduced

fibrosis and expression of matricellular proteins, respectively, in response to mechanical 

stress.120 Furthermore, recent publications have examined a potential role for NFAT in 

regulating cardiac fibroblast phenotype. In primary cardiac fibroblasts isolated from the 

left atria of dogs subjected to atrial fibrillation, NFAT activity was increased leading to

proliferation of cardiac fibroblasts and upregulation of ECM gene expression. The 

mechanism was attributed upregulation of transient receptor potential canonical (TRPC) 

channel 3, a cation channel permissive to calcium.121 TRPC channels are known to activate

calcineurin/NFAT signalling in the heart122 and in a study by the Molkentin group123 mice 

lacking TRPC6 had impaired myofibroblast differentiation and cardiac wound healing after 

injury due to reduced calcineurin/NFAT signalling. In contrast, NFAT activity in response 

to endothelin-1 (ET-1)-induced upregulation of TRPC6 was found to suppress 

myofibroblast differentiation in rat neonatal cardiac fibroblasts124 despite ET-1 being a 

profibrotic ligand. In these studies, TRPC6 was upregulated by TGF  and ET-1, 

respectively, suggesting that calcineurin/NFAT signalling is secondary to these mediators.

In Paper 1 we suggest a direct activation of calcineurin/NFAT via syndecan-4 by 

mechanical stress, that is independent of and ET-1 signalling.  

Results from Paper 1 suggested that syndecan-4 could regulate MRTF-A expression 

by activating NFAT. Being an essential cofactor for the transcription factor serum response 

factor (SRF), MRTF-A is well-established from studies in vascular smooth muscle cells to 
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be central for SMA expression by binding to CArG boxes in the promoter region of the 

SMA gene (ACTA2),125,126 and was also recently found to be necessary for myofibroblast 

differentiation.127 The collagen 1a2 promoter has been identified as a target of MRTF-

A/SRF, and MRTF-A knockout mice have diminished fibrosis and scar formation 

following MI or angiotensin II treatment.128 Interestingly, MRTF-A activity is known to be 

regulated by actin polymerization which is involved in its nuclear translocation.127,129 Since 

syndecan-4 was found to regulate both transcription of MRTF-A through NFAT and actin 

polymerization, it seems likely that this signalling pathway also will be affected by loss of 

syndecan-4 and may in part be responsible for the impaired myofibroblast differentiation 

of cardiac fibroblasts lacking syndecan-4.  

OPN expression was regulated by syndecan-4 and NFAT (Paper 2). Although OPN 

was traditionally considered an extracellular protein that plays a role in structure and 

function of the extracellular matrix as well as inflammation,130 it may also exist as an 

intracellular variant (iOPN) derived from alternative translation.131 It is worth noting that 

i -induced myofibroblast differention.132

Thus the impaired myofibroblast differentiation of cardiac fibroblasts from syndecan-4-/-

mice could be suspected to result from reduced expression of iOPN. However, iOPN did 

not seem necessary for mechanical stress-induced myofibroblast differentiation132 nor have 

we or others54 detected any ef -induced myofibroblast differentiation by the 

presence or absence of syndecan-4. 

myofibroblast differentiation and fibrosis.27,133,26 -

binding motif and has been shown to bind syndecan-4 on macrophages.134 However to our 

knowledge, no interaction between syndecan- so far been shown in cardiac 

fibroblasts. It has previously been suggested135 and was recently confirmed20

acts as a mechanosensitive factor. T a biologically 

v 8 v 3 exert traction 

forces on the ECM and LLC the aper 1, there was no 

-4-/- mice. 

Hence, it is unlikely that impaired myofibroblast differentiation of cardiac fibroblasts 

lacking syndecan-4 was caused by diminished . However,

“stored” in the ECM as proposed20,136 in 

vivo simply because traction forces are lower (due to impaired myofibroblast 
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differentiation) when syndecan-4 is lacking. Also, syndecan-4 has been found to promote 
39

Whether this mechanism takes place in our in vitro models of myofibroblast differentiation 

is not known. 

 There are several pathways independent of syndecan-4 that are important for 

myofibroblast differentiation,27,137,128,132,138 and myofibroblast differentiation will 

eventually occur even in the absence of syndecan-4. However, syndecan-4 may be one of 

the initial mediators of a mechanical stress-induced response enabling rapid adaptation to 

the surrounding environment. 

Syndecan-4 regulates collagen production and maturation 

Since myofibroblasts are efficient collagen producing cells, impaired cardiac myofibroblast 

differentiation will likely affect collagen amount and composition. Tensile strength and 

structure of the ECM is mainly provided by fibrillar collagens. In the heart, the main 

fibrillar collagen is collagen I (comprising up to 85% of the total amount of collagen) 

followed by collagen III. Indeed, whereas collagen I and III mRNA levels were markedly 

increased in left ventricles of WT mice following 24h AB, this response was absent in 

syndecan-4-/- mice (Paper 1). Thus, we considered it likely that this would translate into 

altered fibrosis at later time points. However, to our surprise total collagen protein amount 

and collagen I and III mRNA levels were similar in WT and syndecan-4-/- mice 7 days 

after AB, suggesting that other pro-fibrotic signaling pathways had taken over collagen 

production in syndecan-4-/- mice.

Traditionally, the increase in myocardial stiffness in the pressure overloaded heart 

has alone been attributed to accumulation of collagen I causing myocardial fibrosis. Also, a 

shift in the ratio of collagen I and III was thought to influence myocardial stiffness.139,140

This view has since been challenged by reports suggesting that the amount of total collagen 

and the collagen I:III ratio does not necessarily translate into changes in myocardial 

stiffness.141 Even though collagen amounts are similar, collagen quality and structure may 

be altered and accumulating data suggest collagen cross-linking to be a determining factor 

for myocardial stiffness.142,143 Cross-linked collagen was in fact reduced in pressure-

overloaded ventricles of mice lacking syndecan-4, indicating impaired maturation of newly 

synthesised collagen. 
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Collagen cross-linking can occur either enzymatically or non-enzymatically. While 

non-enzymatic cross-linking (i.e. of glycated lysine and hydroxylysine collagen residues) 

is generally associated with myocardial stiffening due to age or diabetes,144 collagen cross-

linking induced by mechanical stress seems to be largely attributed enzymatic cross-

linking by the enzyme lysyl oxidase (LOX). LOX is upregulated in the pressure-

overloaded heart,142 and pharmacologically inhibiting LOX decreases collagen cross-

linking and myocardial stiffness.145 Cross-linked collagen is less susceptible to degradation 

by ECM proteases thereby reducing overall collagen turnover. Thus, although no 

difference in MMP2, 9 and 13 mRNA was detected in ventricles from syndecan-4-/- and 

WT mice, collagen degradation may be altered in syndecan-4-/- mice due to less collagen 

cross-linking. This may also partly constitute a possible explanation for the premature left 

ventricular dilatation observed in syndecan-4-/- mice 3 weeks after AB.51

Despite its potentially central role in myocardial stiffening and diastolic 

dysfunction, there are few studies on the mechanisms regulating LOX in the heart. Among 

the identified LOX-inducing factors are TGF 146 and angiotensin II.147 Also of interest, 

another proteoglycan called lumican was recently found to upregulate LOX mRNA in 

cardiac fibroblasts in vitro.148 In Paper 2, LOX mRNA and activity was reduced in left 

ventricles from syndecan-4-/- mice 24h and 3 days after AB, respectively, indicating a role 

for syndecan-4 in regulating this enzyme. Syndecan-4-/- mice had substantially reduced 

production of OPN which was recently found to induce LOX expression and activity in 

human cardiac fibroblasts.149 In agreement, we demonstrated in Paper 2 that incubation of 

mouse cardiac fibroblasts with exogenous OPN increased LOX protein. Interestingly, the 

effects of OPN on LOX protein expression were only evident in highly differentiated 

myofibroblasts, suggesting differential effects of OPN depending on cardiac 

fibroblast/myofibroblast phenotype. Although OPN is sparsely expressed in the healthy 

heart, it is rapidly and markedly upregulated in the pressure overloaded heart150 with a 

peak in mRNA levels 24h after AB (Paper 2). At this time point myofibroblast 

differentiation is taking place, but highly differentiated myofibroblasts are most likely not 

present at this early time point. Thus OPN may have other effects on cardiac fibroblasts in 

the initial phase (such as proliferation and survival130) whereas induce LOX expression in 

later stages of the pressure overload response when highly differentiated myofibroblasts 

are present.  
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Our data indicate that collagen cross-linking was enhanced in vitro in the presence 

of the extracellular domain of syndecan-4. Indeed, proteoglycans of the small leucine-rich 

proteoglycan (SLRP) family such as decorin and biglycan are known to bind to and 

stabilise collagen fibrils, and lack of these proteoglycans leads to deranged collagen 

matrices in skin, tendon and elsewhere in the musculoskeletal system.151,152,153,154,155

Collagen cross-linking by LOX was also promoted in the presence of the extracellular 

domain of syndecan-4. In agreement with these results, it has previously been suggested 

that SLRPs156 and cellular fibronectin157 may act as co-receptors for LOX, thereby 

facilitating collagen cross-linking. Moreover, syndecan-4 has been found to regulate the 

cell surface trafficking, localization and activity of another cross-linking enzyme called 

tissue transglutaminase (TG2)158 and the beneficial effect of syndecan-4 deletion on kidney 

fibrosis has been attributed altered function of this enzyme.159  

Myocardial stiffness is determined by syndecan-4 

In Paper 2 we determined the passive tension of the myocardium. An important question is 

how this relates to diastolic function. Although intuitively rather simple, diastolic 

dysfunction is a multi-facetted concept. In general, it can be divided into an active and a 

passive component. The active component (Figure 4, orange box) is associated with

relaxation of cardiomyocytes and involves removal of calcium from the cytoplasm into the 

sarcoplasmic reticulum and extracellular space. This process is carried out mainly by 

energy consuming ion pumps in the sarcoplasmic reticulum membrane and plasma 

membrane, hence the term active phase or component. The passive component (Figure 4, 

green box) manifests itself in later phases of diastole and is determined by mechanical 

properties of the myocardium such as viscosity (viscous stress) and elasticity (passive 

tension) and constitutes the myocardial stiffness. In the heart, viscosity is mainly 

determined by the amount of water present in the myocardium, whereas passive tension is 

largely determined by the cytoskeletal spring-like protein of cardiomyocytes called titin,160

and the composition and structure of ECM.  
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Figure 4. Factors contributing to myocardial diastolic dysfunction.

Diastolic dysfunction involves changes in both the active process i.e. relaxation, and passive forces

(myocardial stiffness) including viscous stress and passive tension of the myocardium. Increased passive 

tension can mainly be attributed modifications of the spring-like protein titin of cardiomyocytes and altered 

amount and composition of the extracellular matrix (ECM), particularly fibrillar collagen.

Diastolic function can be determined from pressure-volume loops (P-V loops). P-V loops 

are difficult to acquire from the AB hearts as the aortic constriction is too tight to allow for 

retrograde insertion of the catheter. Doppler echocardiography also provides information 

about diastolic function in vivo. In Paper 2 we measured early mitral inflow velocity (E) / 

early mitral annular velocity (E´) as an indication of early diastolic function. However, 

E/E´ reflects mainly the active relaxation of cardiomyocytes and may thereby mask or 

prevent an accurate determination of passive myocardial stiffness.161 Thus, even though 

E/E´ was increased (indicating impaired relaxation) in both genotypes following AB, no 

significant differences were observed between WT and syndecan-4-/- mice. 

An important finding in Paper 2 was that passive tension, reflecting intrinsic 

myocardial stiffness, was reduced in myocardial strips from mice lacking syndecan-4. This 

was mainly attributed altered ECM stiffness. In contrast, increased passive myocardial 

stiffness of patients with diastolic dysfunction can often also be attributed modifications of 

the giant spring-like cardiomyocyte protein, titin.162 In the AB mouse model used in this 

study, we did not observe changes in titin isoforms and no major effect of eliminating titin 

function by salt extraction on passive tension, possibly reflecting variability between 

species and etiologies of disease. Moreover, since calcium handling was never addressed in 

these mice and is central for determining the active component of diastole, we cannot draw 
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final conclusions regarding in vivo diastolic function in syndecan-4-/- mice. Regardless, our 

results on intrinsic myocardial passive tension theoretically imply that interfering with 

syndecan-4 function in cardiac fibroblasts would be beneficial with respect to ECM 

stiffness. 

Apart from regulating collagen, syndecan-4 might also affect myocardial stiffness 

through intrinsic properties of the syndecan-4 molecule. The GAG chains of proteoglycans 

have high affinity for water and may thus affect viscoelasticity.163,164 This is especially 

important in cartilage where shock-absorbing properties can be assigned large 

proteoglycans of the hyalectin family. Although we observed significantly increased 

viscous stress of muscle strips from ventricles subjected to 7 days AB (Paper 2) along with 

increased water content (unpublished data), there was no difference in these properties 

between WT and syndecan-4-/- mice, supporting instead a regulatory role for syndecan-4 in 

determining ECM structure and composition.  

Syndecan-4 shedding and inflammation in the pressure-overloaded heart 

Enzymatic shedding of syndecan-4 has been implicated as part of the innate immune 

response which is involved in heart failure development.165,166 The innate immune system 

is the first line of defense against pathogens and becomes activated when cell surface toll-

like receptors (TLRs) recognise unspecific highly conserved structural motifs of pathogens 

called pathogen-associated molecular patterns (PAMPs; eg. LPS) and thereby induce an 

inflammatory response. An innate immune response is also triggered during tissue injury 

by specific danger-associated molecular patterns (DAMPs), often comprising fragments of 

ECM components (e.g. hyaluronic acid) that are released from the host.167 In Paper 3,

triggering innate immunity by stimulation with LPS upregulated syndecan-4 in a TLR4-

dependent manner both cardiomyocytes and fibroblasts and enhanced syndecan-4 

- ed by 

pressure overload had a similar effect on syndecan-4 in vitro to that of LPS, suggesting 

activation of signalling pathways of the innate immune system. Thus, although LPS is not 

present in the pressure-overloaded heart, it serves well as a model system when studying 

the innate immune response.  

As demonstrated in Paper 3, left ventricular pressure overload caused T cell 

infiltration 1-3 weeks after AB in WT mice indicating that T cell recruitment is a part of 
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the late, rather than the early response to pressure overload. At these time points, T cell 

infiltration was reduced in mice lacking syndecan-4 indicating a defective innate immune 

response in the absence of syndecan-4. In agreement, syndecan-4-/- mice have higher 

mortality to LPS when compared to WT mice.134 Considering that syndecan-4 is widely 

expressed,168,169 there are several possible explanations for reduced T cell infiltration in 

syndecan-4-deficient mice: lack of the chemotactic gradient provided by shed syndecan-4 

in the myocardial tissue; lack of full-length syndecan-4 on endothelial cells thus reducing 

immune cell adherence and infiltration, or lack of full-length syndecan-4 on T cells thus 

affecting migration. Regardless, results obtained from the syndecan-4-/- mouse provide 

evidence that syndecan-4 expression and shedding are involved the immune response of 

the pressure-overloaded heart.  

The regulation of syndecan-4 shedding involves extracellular proteases, many of 

which are produced by cardiac fibroblasts and myofibroblasts and are upregulated in the 

pressure-overloaded heart.170 These include matrix metalloproteases (MMPs) and 

ADAMTSs (a disintegrin and metalloproteinase with thrombospondin motifs).94 Syndecan-

4 shedding was to some degree dependent on intact HS GAG attachment sites, indicating 

that syndecan-4 shedding is primarily regulated by enzymes dependent on interacting with 

HS GAG chains. Of interest, activation of pro-MMP2 by thrombin has been found to 

depend on heparan sulfate171 and as shown in Paper 2, MMP2 was upregulated in response 

to pressure overload. In Paper 3, cardiac fibroblasts treated with a NF- B blocker had 

reduced expression and shedding of syndecan-4. This might suggest that proteases that 

shed syndecan-4 are transcribed by NF- In vascular smooth muscle cells syndecan-4 

shedding has been found to be regulated by MAP kinases (ERK1/2 and JNK).99 However, 

the responsible proteases were not identified.  

Syndecan-4 ectodomain is not found in normal plasma but appears in fluids 

surrounding injured tissue, suggesting a role in the wound healing response.172

Furthermore, it has been detected in plasma of patients after myocardial infarction95 and 

heart failure.96 Due to the increased syndecan-4 shedding in the patients with end-stage 

heart failure studied in Paper 3, we suspect that the increased syndecan-4 ectodomain 

plasma levels could originate from the heart. However, the source of this shedding might

also be endothelial cells considering that plasmin and thrombin (proteases involved in 

coagulation and fibrinolysis during tissue injury) are also known syndecan-4 

“sheddases”.173 At least during early stages of left ventricular pressure overload (24h, 
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Paper 1), shed syndecan-4 was not detected in blood. In Paper 3, syndecan-4 shedding was 

increased in the myocardium 1 week after AB, and further enhanced 3 weeks after AB, 

indicating that syndecan-4 shedding is a process taking place at progressed stages of 

cardiac remodelling where also inflammation is more prominent, compared to syndecan-4 

expression which is a rapid response occurring within the first 24h of pressure overload.  

Interestingly, T helper lymphocytes have recently been implicated in the regulation 

of ECM remodelling of the pressure-overloaded heart, inducing collagen cross-linking and 

diastolic dysfunction174,175 through activation of lysyl oxidase.176 Accompanying the 

increased myocardial stiffness, was an increase in T helper cell marker CD4 7 days after 

AB. Hence, the reduced collagen cross-linking and LOX activity observed in Paper 2 

might also partly be explained by less T helper cell infiltration. Similar to what has been 

found for the cross-linking enzyme TG2, syndecan-4 shedding might also promote 

collagen cross-linking by transporting LOX into the ECM in response to injury or 

mechanical stress.177,178,179

In Paper 3 we show that LPS-induced shedding of syndecan-4 reduced focal-

adhesion size. Based on our results in Paper 1 and 2, this will likely interfere with 

downstream signalling of syndecan-4 hence reducing LOX expression via OPN. Reduced 

focal adhesion size and stability will most likely also affect migration properties and 

reduce myofibroblast differentiation of cardiac fibroblasts which is somewhat 

contradictory to the role of full-length syndecan-4.  

The role of syndecan-4 during the sequence of events occurring in response to left 

ventricular pressure overload.

In attempt to clarify the role of syndecan-4 in the pressure-overloaded heart and based on 

the results obtained in this thesis, the following section will deal with placing syndecan-4 

and its multiple roles in a timely context following induction of pressure overload (Figure 

5), with particular focus on cardiac fibroblasts and ECM remodelling.  

Pressure overload of the left ventricle due to aortic stenosis or hypertension, is 

mimicked by aortic banding (AB). This triggers a rapid increase in IL-

mRNA (2h post AB, unpublished data), cytokines involved in a so-called “sterile” immune 

response of the innate immune system. Although the source of this cytokine production is 

not entirely clear, it is likely that both cardiomyocytes and cardiac fibroblasts contribute.  
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Cardiac fibroblasts start proliferating (proliferating cell nuclear antigen mRNA upregulated 

6h post AB, unpublished results) and increase syndecan-4 expression (6h post AB, 

unpublished data) in response to stimulation with IL-

The presence of more syndecan-4 in cardiac fibroblasts increases attachment to the 

ECM, thereby enhancing the overall mechanosensing by syndecan-4. Mechanical stress 

leads to dephosphorylation of the cytoplasmic domain of syndecan-4 thereby enabling 

binding and activation of calcineurin. Calcineurin dephosphorylates NFAT which can then 

translocate to the nucleus and transcribe target genes involved in myofibroblast 

differentiation such as MRTF-A, and production of ECM molecules including collagen III 

and OPN.  

OPN is markedly increased in the pressure-overloaded heart of WT mice and was 

found to induce LOX production in cardiac myofibroblasts which are prevalent in the 

myocardium 3 days after AB. At this time point myocardial LOX activity was increased, 

hence inducing collagen cross-linking which was clear 7 days after AB. In vitro

experiments with the extracellular domain of syndecan-4 suggest a role in collagen fiber 

assembly and cross-linking by LOX at the cell surface. Hence syndecan-4 may have a dual 

role in regulating collagen structure and tensile strength. Importantly myocardial passive 

tension of the ECM is markedly increased after 7 days with pressure overload. This 

increased myocardial stiffness (and the accompanied hypertrophic remodelling of 

cardiomyocytes) enables the heart to perform under conditions of increased myocardial 

pressure but will eventually compromise diastolic function.  

At this stage, syndecan-4 shedding is initiated. This may serve to abrogate 

syndecan-4-induced myofibroblast differentiation, causing reduction in focal adhesion size 

and loss of syndecan-4 mechanosensing activity. However, the shed ectodomain of 

syndecan-4 seems also to have activities of its own, possibly creating a chemotactic 

gradient enhancing the T cell infiltration of the myocardium observed 21 days after AB 

which may further affect ECM remodelling.175  

This is a coarse and somewhat speculative summary of our results in order to 

simplify the confusing (and to some extent contradicting) roles of syndecan-4. Syndecan-4 

is here put in the center of events leading to heart failure. However, it is clear that 

numerous factors are involved and supplement the proposed model.  
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Syndecan-4 as a therapeutic target

The novel finding of Paper 2 that syndecan-4 has profound effects on myocardial stiffness 

renders it an attractive drug target for treatment of diastolic dysfunction. However, as with 

most signalling pathways, syndecan-4 signalling does not seem to work as a simple “on-

off” switch. As such, complete deletion of syndecan-4 may inhibit myocardial stiffening,

but also accelerates heart failure development and left ventricular dilatation.51 This clearly 

underscores the need for more knowledge regarding syndecan-4 in the heart, including 

identification of binding partners, monitoring spatial and temporal dynamics of syndecan-4 

signalling and understanding the role of syndecan-4 shedding. Another future challenge 

will be to identify differential traits between syndecan-4-dependent signalling in cardiac 

fibroblasts and cardiomyocytes to specifically target processes leading to changes in 

passive tension and limit an exacerbated fibrosis while keeping the critical adaptive 

hypertrophic response of cardiomyocytes to pressure overload intact. Thus, although 

syndecan-4 is merging as an attractive target in anti-fibrotic180 and cardiac therapy,1 further 

studies are necessary to determine when and where to intervene to achieve beneficial 

outcome of a potential future treatment. 
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Conclusions

The results presented in this thesis demonstrate a role for syndecan-4 in determining 

cardiac fibroblast function and phenotype, ECM remodelling and myocardial stiffening of 

the pressure overloaded heart. 

In Paper 1 we show that syndecan-4 regulates myofibroblast differentiation of 

cardiac fibroblasts in response to mechanical stress, as seen by impaired organisation of 

SMA stress fibers and reduced FA size. The cytoplasmic domain of syndecan-4 was 

dephosphorylated in response to mechanical stress leading to activation of 

calcineurin/NFAT signalling and upregulation of genes defining the myofibroblast 

phenotype such as MRTF-A, and involved in ECM remodelling such as collagen.  

Using syndecan-4-/- mice, we show in Paper 2 that ECM production is blunted and 

collagen cross-linking reduced when syndecan-4 is lacking. Our data suggested a dual role

for syndecan-4 in collagen cross-linking: promoting lysyl oxidase expression by 

upregulating OPN in response to mechanical stress, and by direct interaction of syndecan-4 

ectodomain with collagen I, thereby facilitating LOX cross-linking activity. Importantly, 

these effects translated into reduced myocardial passive stiffness in syndecan-4-/- mice 

which may have consequences for diastolic function of the heart.  

Finally, in Paper 3 we show that IL- , which are rapidly increased in 

the pressure-overloaded heart, regulated syndecan-4 expression via NF- . At 

more advanced stages of cardiac remodelling, syndecan-4 shedding occurred, possibly 

affecting myofibroblast function and T cell infiltration of the pressure-overloaded heart. 

Importantly, syndecan-4 shedding was elevated in failing human hearts, supporting 

syndecan-4 as a potential target for treatment of heart failure patients.  



45

 

Reference list

1.  Samarel AM. Syndecan-4: a component of the mechanosensory apparatus of cardiac 
fibroblasts. J Mol Cell Cardiol 2013;56:19-21. 

2.  Braunwald E. Heart Disease. In: Textbook of Cardiovascular Medicine. Philadelphia: 
WB Saunders, 1980; 

3.  Bui AL, Horwich TB, Fonarow GC. Epidemiology and risk profile of heart failure. 
Nat Rev Cardiol 2011;8:30-41. 

4.  Levy D, Kenchaiah S, Larson MG, Benjamin EJ, Kupka MJ, Ho KK, Murabito JM, 
Vasan RS. Long-term trends in the incidence of and survival with heart failure. N 
Engl J Med 2002;347:1397-1402. 

5.  Soufer R, Wohlgelernter D, Vita NA, Amuchestegui M, Sostman HD, Berger HJ, 
Zaret BL. Intact systolic left ventricular function in clinical congestive heart failure. 
Am J Cardiol 1985;55:1032-1036. 

6.  Topol EJ, Traill TA, Fortuin NJ. Hypertensive hypertrophic cardiomyopathy of the 
elderly. N Engl J Med 1985;312:277-283. 

7.  Phillip B, Pastor D, Bellows W, Leung JM. The prevalence of preoperative diastolic 
filling abnormalities in geriatric surgical patients. Anesth Analg 2003;97:1214-1221. 

8.  Owan TE, Hodge DO, Herges RM, Jacobsen SJ, Roger VL, Redfield MM. Trends in 
prevalence and outcome of heart failure with preserved ejection fraction. N Engl J 
Med 2006;355:251-259. 

9. Zile MR, Baicu CF, Bonnema DD. Diastolic heart failure: definitions and 
terminology. Prog Cardiovasc Dis 2005;47:307-313. 

10.  Vliegen HW, van der Laarse A, Cornelisse CJ, Eulderink F. Myocardial changes in 
pressure overload-induced left ventricular hypertrophy. A study on tissue 
composition, polyploidization and multinucleation. Eur Heart J 1991;12:488-494. 

11.  Souders CA, Bowers SL, Baudino TA. Cardiac fibroblast: the renaissance cell. Circ 
Res 2009;105:1164-1176. 

12.  Banerjee I, Fuseler JW, Price RL, Borg TK, Baudino TA. Determination of cell types 
and numbers during cardiac development in the neonatal and adult rat and mouse. 
Am J Physiol Heart Circ Physiol 2007;293:H1883-H1891. 

13.  Hinz B, Phan SH, Thannickal VJ, Galli A, Bochaton-Piallat ML, Gabbiani G. The 
myofibroblast: one function, multiple origins. Am J Pathol 2007;170:1807-1816. 

14.  Darby I, Skalli O, Gabbiani G. Alpha-smooth muscle actin is transiently expressed by 
myofibroblasts during experimental wound healing. Lab Invest 1990;63:21-29. 



46

 

15.  Porter KE, Turner NA. Cardiac fibroblasts: at the heart of myocardial remodeling. 
Pharmacol Ther 2009;123:255-278. 

16.  Grinnell F, Zhu M, Carlson MA, Abrams JM. Release of mechanical tension triggers 
apoptosis of human fibroblasts in a model of regressing granulation tissue. Exp Cell 
Res 1999;248:608-619. 

17. MacKenna D, Summerour SR, Villarreal FJ. Role of mechanical factors in 
modulating cardiac fibroblast function and extracellular matrix synthesis. Cardiovasc 
Res 2000;46:257-263. 

18.  Driesen RB, Nagaraju CK, Abi-Char J, Coenen T, Lijnen PJ, Fagard RH, Sipido KR, 
Petrov VV. Reversible and irreversible differentiation of cardiac fibroblasts. 
Cardiovasc Res 2014;101:411-422. 

19.  Serini G, Bochaton-Piallat ML, Ropraz P, Geinoz A, Borsi L, Zardi L, Gabbiani G. 
The fibronectin domain ED-A is crucial for myofibroblastic phenotype induction by 
transforming growth factor-beta1. J Cell Biol 1998;142:873-881. 

20.  Henderson NC, Arnold TD, Katamura Y, Giacomini MM, Rodriguez JD, McCarty 
JH, Pellicoro A, Raschperger E, Betsholtz C, Ruminski PG, Griggs DW, Prinsen MJ, 
Maher JJ, Iredale JP, Lacy-Hulbert A, Adams RH, Sheppard D. Targeting of alphav 
integrin identifies a core molecular pathway that regulates fibrosis in several organs. 
Nat Med 2013;19:1617-1624. 

21.  Humphreys BD, Lin SL, Kobayashi A, Hudson TE, Nowlin BT, Bonventre JV, 
Valerius MT, McMahon AP, Duffield JS. Fate tracing reveals the pericyte and not 
epithelial origin of myofibroblasts in kidney fibrosis. Am J Pathol 2010;176:85-97. 

22.  Zeisberg EM, Tarnavski O, Zeisberg M, Dorfman AL, McMullen JR, Gustafsson E, 
Chandraker A, Yuan X, Pu WT, Roberts AB, Neilson EG, Sayegh MH, Izumo S, 
Kalluri R. Endothelial-to-mesenchymal transition contributes to cardiac fibrosis. Nat 
Med 2007;13:952-961. 

23.  van Amerongen MJ, Bou-Gharios G, Popa E, van Ark J, Petersen AH, van Dam GM, 
van Luyn MJ, Harmsen MC. Bone marrow-derived myofibroblasts contribute 
functionally to scar formation after myocardial infarction. J Pathol 2008;214:377-
386.

24.  Endo J, Sano M, Fujita J, Hayashida K, Yuasa S, Aoyama N, Takehara Y, Kato O, 
Makino S, Ogawa S, Fukuda K. Bone marrow derived cells are involved in the 
pathogenesis of cardiac hypertrophy in response to pressure overload. Circulation 
2007;116:1176-1184. 

25. Diaz-Flores L, Gutierrez R, Madrid JF, Varela H, Valladares F, Acosta E, Martin-
Vasallo P, Diaz-Flores L, Jr. Pericytes. Morphofunction, interactions and pathology 
in a quiescent and activated mesenchymal cell niche. Histol Histopathol 
2009;24:909-969. 

26.  Dobaczewski M, Chen W, Frangogiannis NG. Transforming growth factor (TGF)-
beta signaling in cardiac remodeling. J Mol Cell Cardiol 2011;51:600-606. 



47

 

27.  Petrov VV, Fagard RH, Lijnen PJ. Stimulation of collagen production by 
transforming growth factor-beta1 during differentiation of cardiac fibroblasts to 
myofibroblasts. Hypertension 2002;39:258-263. 

28.  Chan MW, Hinz B, McCulloch CA. Mechanical induction of gene expression in 
connective tissue cells. Methods Cell Biol 2010;98:178-205. 

29.  Hinz B, Mastrangelo D, Iselin CE, Chaponnier C, Gabbiani G. Mechanical tension 
controls granulation tissue contractile activity and myofibroblast differentiation. Am 
J Pathol 2001;159:1009-1020. 

30.  Hinz B. It has to be the alphav: myofibroblast integrins activate latent TGF-beta1. 
Nat Med 2013;19:1567-1568. 

31.  Hinz B. Formation and function of the myofibroblast during tissue repair. J Invest 
Dermatol 2007;127:526-537. 

32.  Couchman JR. Transmembrane signaling proteoglycans. Annu Rev Cell Dev Biol 
2010;26:89-114. 

33.  Couchman JR, Chen L, Woods A. Syndecans and cell adhesion. Int Rev Cytol 
2001;207:113-50.:113-150. 

34.  Lee D, Oh ES, Woods A, Couchman JR, Lee W. Solution structure of a syndecan-4 
cytoplasmic domain and its interaction with phosphatidylinositol 4,5-bisphosphate. J 
Biol Chem 1998;273:13022-13029. 

35. Dews IC, Mackenzie KR. Transmembrane domains of the syndecan family of growth 
factor coreceptors display a hierarchy of homotypic and heterotypic interactions. Proc 
Natl Acad Sci U S A 2007;104:20782-20787. 

36.  Oh ES, Woods A, Lim ST, Theibert AW, Couchman JR. Syndecan-4 proteoglycan 
cytoplasmic domain and phosphatidylinositol 4,5-bisphosphate coordinately regulate 
protein kinase C activity. J Biol Chem 1998;273:10624-10629. 

37.  Shin J, Lee W, Lee D, Koo BK, Han I, Lim Y, Woods A, Couchman JR, Oh ES. 
Solution structure of the dimeric cytoplasmic domain of syndecan-4. Biochemistry 
2001;40:8471-8478. 

38. McQuade KJ, Beauvais DM, Burbach BJ, Rapraeger AC. Syndecan-1 regulates 
alphavbeta5 integrin activity in B82L fibroblasts. J Cell Sci 2006;119:2445-2456. 

39.  Whiteford JR, Behrends V, Kirby H, Kusche-Gullberg M, Muramatsu T, Couchman 
JR. Syndecans promote integrin-mediated adhesion of mesenchymal cells in two 
distinct pathways. Exp Cell Res 2007;313:3902-3913. 

40.  Rapraeger AC, Krufka A, Olwin BB. Requirement of heparan sulfate for bFGF-
mediated fibroblast growth and myoblast differentiation. Science 1991;252:1705-
1708.



48

 

41.  Slimani H, Charnaux N, Mbemba E, Saffar L, Vassy R, Vita C, Gattegno L. 
Interaction of RANTES with syndecan-1 and syndecan-4 expressed by human 
primary macrophages. Biochim Biophys Acta 2003;1617:80-88. 

42.  Kon S, Ikesue M, Kimura C, Aoki M, Nakayama Y, Saito Y, Kurotaki D, Diao H, 
Matsui Y, Segawa T, Maeda M, Kojima T, Uede T. Syndecan-4 protects against 
osteopontin-mediated acute hepatic injury by masking functional domains of 
osteopontin. J Exp Med 2008;205:25-33. 

43.  Xian X, Gopal S, Couchman JR. Syndecans as receptors and organizers of the 
extracellular matrix. Cell Tissue Res 2010;339:31-46. 

44.  Saoncella S, Echtermeyer F, Denhez F, Nowlen JK, Mosher DF, Robinson SD, 
Hynes RO, Goetinck PF. Syndecan-4 signals cooperatively with integrins in a Rho-
dependent manner in the assembly of focal adhesions and actin stress fibers. Proc 
Natl Acad Sci U S A 1999;96:2805-2810. 

45.  Yayon A, Klagsbrun M, Esko JD, Leder P, Ornitz DM. Cell surface, heparin-like 
molecules are required for binding of basic fibroblast growth factor to its high 
affinity receptor. Cell 1991;64:841-848. 

46.  Osterholm C, Barczyk MM, Busse M, Gronning M, Reed RK, Kusche-Gullberg M. 
Mutation in the heparan sulfate biosynthesis enzyme EXT1 influences growth factor 
signaling and fibroblast interactions with the extracellular matrix. J Biol Chem 
2009;284:34935-34943. 

47.  Sweeney SM, Orgel JP, Fertala A, McAuliffe JD, Turner KR, Di Lullo GA, Chen S, 
Antipova O, Perumal S, Ala-Kokko L, Forlino A, Cabral WA, Barnes AM, Marini 
JC, San Antonio JD. Candidate cell and matrix interaction domains on the collagen 
fibril, the predominant protein of vertebrates. J Biol Chem 2008;283:21187-21197. 

48. Barkalow FJ, Schwarzbauer JE. Localization of the major heparin-binding site in 
fibronectin. J Biol Chem 1991;266:7812-7818. 

49.  Sanderson RD, Bernfield M. Molecular polymorphism of a cell surface proteoglycan: 
distinct structures on simple and stratified epithelia. Proc Natl Acad Sci U S A 
1988;85:9562-9566. 

50. Echtermeyer F, Streit M, Wilcox-Adelman S, Saoncella S, Denhez F, Detmar M, 
Goetinck P. Delayed wound repair and impaired angiogenesis in mice lacking 
syndecan-4. J Clin Invest 2001;107:R9-R14. 

51.  Finsen AV, Lunde IG, Sjaastad I, Østli EK, Lyngra M, Jarstadmarken HO, Hasic A, 
Nygard S, Wilcox-Adelman SA, Goetinck PF, Lyberg T, Skrbic B, Florholmen G, 
Tønnessen T, Louch WE, Djurovic S, Carlson CR, Christensen G. Syndecan-4 Is 
Essential for Development of Concentric Myocardial Hypertrophy via Stretch-
Induced Activation of the Calcineurin-NFAT Pathway. PLoS One 2011;6:e28302- 

52.  Matsui Y, Iwasaki N, Kon S, Takahashi D, Morimoto J, Matsui Y, Denhardt DT, 
Rittling S, Minami A, Uede T. Accelerated development of aging-associated and 



49

 

instability-induced osteoarthritis in osteopontin-deficient mice. Arthritis Rheum 
2009;60:2362-2371. 

53.  Elenius K, Vainio S, Laato M, Salmivirta M, Thesleff I, Jalkanen M. Induced 
expression of syndecan in healing wounds. J Cell Biol 1991;114:585-595. 

54.  Matsui Y, Ikesue M, Danzaki K, Morimoto J, Sato M, Tanaka S, Kojima T, Tsutsui 
H, Uede T. Syndecan-4 prevents cardiac rupture and dysfunction after myocardial 
infarction. Circ Res 2011;108:1328-1339. 

55.  Vanhoutte D, Schellings MW, Gotte M, Swinnen M, Herias V, Wild MK, Vestweber 
D, Chorianopoulos E, Cortes V, Rigotti A, Stepp MA, Van de Werf F, Carmeliet P, 
Pinto YM, Heymans S. Increased expression of syndecan-1 protects against cardiac 
dilatation and dysfunction after myocardial infarction. Circulation 2007;115:475-482. 

56.  Byron A, Morgan MR, Humphries MJ. Adhesion signalling complexes. Curr Biol 
2010;20:R1063-R1067. 

57.  Geiger B, Bershadsky A. Exploring the neighborhood: adhesion-coupled cell 
mechanosensors. Cell 2002;110:139-142. 

58.  Grootjans JJ, Zimmermann P, Reekmans G, Smets A, Degeest G, Durr J, David G. 
Syntenin, a PDZ protein that binds syndecan cytoplasmic domains. Proc Natl Acad 
Sci U S A 1997;94:13683-13688. 

59.  Cohen AR, Woods DF, Marfatia SM, Walther Z, Chishti AH, Anderson JM. Human 
CASK/LIN-2 binds syndecan-2 and protein 4.1 and localizes to the basolateral 
membrane of epithelial cells. J Cell Biol 1998;142:129-138. 

60.  Gao Y, Li M, Chen W, Simons M. Synectin, syndecan-4 cytoplasmic domain binding 
PDZ protein, inhibits cell migration. J Cell Physiol 2000;184:373-379. 

61. Wilcox-Adelman SA, Denhez F, Goetinck PF. Syndecan-4 modulates focal adhesion 
kinase phosphorylation. J Biol Chem 2002;277:32970-32977. 

62.  Horowitz A, Simons M. Phosphorylation of the cytoplasmic tail of syndecan-4 
regulates activation of protein kinase Calpha. J Biol Chem 1998;273:25548-25551. 

63.  Dugina V, Fontao L, Chaponnier C, Vasiliev J, Gabbiani G. Focal adhesion features 
during myofibroblastic differentiation are controlled by intracellular and extracellular 
factors. J Cell Sci 2001;114:3285-3296. 

64.  Woods A, Longley RL, Tumova S, Couchman JR. Syndecan-4 binding to the high 
affinity heparin-binding domain of fibronectin drives focal adhesion formation in 
fibroblasts. Arch Biochem Biophys 2000;374:66-72. 

65.  Okina E, Grossi A, Gopal S, Multhaupt HA, Couchman JR. Alpha-actinin 
interactions with syndecan-4 are integral to fibroblast-matrix adhesion and regulate 
cytoskeletal architecture. Int J Biochem Cell Biol 2012;44:2161-2174. 



50

 

66.  Greene DK, Tumova S, Couchman JR, Woods A. Syndecan-4 associates with alpha-
actinin. J Biol Chem 2003;278:7617-7623. 

67.  Bellin RM, Kubicek JD, Frigault MJ, Kamien AJ, Steward RL, Jr., Barnes HM, 
Digiacomo MB, Duncan LJ, Edgerly CK, Morse EM, Park CY, Fredberg JJ, Cheng 
CM, LeDuc PR. Defining the role of syndecan-4 in mechanotransduction using 
surface-modification approaches. Proc Natl Acad Sci U S A 2009;106:22102-22107. 

68.  van Rooij E, Doevendans PA, de Theije CC, Babiker FA, Molkentin JD, De Windt 
LJ. Requirement of nuclear factor of activated T-cells in calcineurin-mediated 
cardiomyocyte hypertrophy. J Biol Chem 2002;277:48617-48626. 

69.  Wilkins BJ, Dai YS, Bueno OF, Parsons SA, Xu J, Plank DM, Jones F, Kimball TR, 
Molkentin JD. Calcineurin/NFAT coupling participates in pathological, but not 
physiological, cardiac hypertrophy. Circ Res 2004;94:110-118. 

70.  Beals CR, Clipstone NA, Ho SN, Crabtree GR. Nuclear localization of NF-ATc by a 
calcineurin-dependent, cyclosporin-sensitive intramolecular interaction. Genes Dev 
1997;11:824-834. 

71.  Rao A, Luo C, Hogan PG. Transcription factors of the NFAT family: regulation and 
function. Annu Rev Immunol 1997;15:707-747. 

72.  Crabtree GR. Generic signals and specific outcomes: signaling through Ca2+, 
calcineurin, and NF-AT. Cell 1999;96:611-614. 

73.  Dovas A, Yoneda A, Couchman JR. PKCbeta-dependent activation of RhoA by 
syndecan-4 during focal adhesion formation. J Cell Sci 2006;119:2837-2846. 

74.  Longley RL, Woods A, Fleetwood A, Cowling GJ, Gallagher JT, Couchman JR. 
Control of morphology, cytoskeleton and migration by syndecan-4. J Cell Sci 
1999;112:3421-3431. 

75.  Gopal S, Bober A, Whiteford JR, Multhaupt HA, Yoneda A, Couchman JR. Heparan 
sulfate chain valency controls syndecan-4 function in cell adhesion. J Biol Chem 
2010;285:14247-14258. 

76.  Keum E, Kim Y, Kim J, Kwon S, Lim Y, Han I, Oh ES. Syndecan-4 regulates 
localization, activity and stability of protein kinase C-alpha. Biochem J 
2004;378:1007-1014. 

77.  Choi Y, Kim S, Lee J, Ko SG, Lee W, Han IO, Woods A, Oh ES. The oligomeric 
status of syndecan-4 regulates syndecan-4 interaction with alpha-actinin. Eur J Cell 
Biol 2008;87:807-815. 

78. Pellegrin S, Mellor H. Actin stress fibres. J Cell Sci 2007;120:3491-3499. 

79.  Dzamba BJ, Bultmann H, Akiyama SK, Peters DM. Substrate-specific binding of the 
amino terminus of fibronectin to an integrin complex in focal adhesions. J Biol Chem 
1994;269:19646-19652. 



51

 

80.  Klass CM, Couchman JR, Woods A. Control of extracellular matrix assembly by 
syndecan-2 proteoglycan. J Cell Sci 2000;113:493-506. 

81.  Galante LL, Schwarzbauer JE. Requirements for sulfate transport and the diastrophic 
dysplasia sulfate transporter in fibronectin matrix assembly. J Cell Biol 
2007;179:999-1009. 

82.  Finsen AV, Woldbaek PR, Li J, Wu J, Lyberg T, Tonnessen T, Christensen G. 
Increased syndecan expression following myocardial infarction indicates a role in 
cardiac remodeling. Physiol Genomics 2004;16:301-308. 

83. Li L, Chaikof EL. Mechanical stress regulates syndecan-4 expression and 
redistribution in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 
2002;22:61-68. 

84.  Okuyama E, Suzuki A, Murata M, Ando Y, Kato I, Takagi Y, Takagi A, Murate T, 
Saito H, Kojima T. Molecular mechanisms of syndecan-4 upregulation by TNF-alpha 
in the endothelium-like EAhy926 cells. J Biochem 2013;154:41-50. 

85.  Wang J, Markova D, Anderson DG, Zheng Z, Shapiro IM, Risbud MV. TNF-alpha 
and IL-1beta promote a disintegrin-like and metalloprotease with thrombospondin 
type I motif-5-mediated aggrecan degradation through syndecan-4 in intervertebral 
disc. J Biol Chem 2011;286:39738-39749. 

86.  Zhang Y, Pasparakis M, Kollias G, Simons M. Myocyte-dependent regulation of 
endothelial cell syndecan-4 expression. Role of TNF-alpha. J Biol Chem 
1999;274:14786-14790. 

87. Newton K, Dixit VM. Signaling in innate immunity and inflammation. Cold Spring 
Harb Perspect Biol 2012;4:a006049- 

88.  Kolb WP, Granger GA. Lymphocyte in vitro cytotoxicity: characterization of human 
lymphotoxin. Proc Natl Acad Sci U S A 1968;61:1250-1255. 

89.  Gery I, Waksman BH. Potentiation of the T-lymphocyte response to mitogens. II. 
The cellular source of potentiating mediator(s). J Exp Med 1972;136:143-155. 

90.  Peng T, Lu X, Lei M, Feng Q. Endothelial nitric-oxide synthase enhances 
lipopolysaccharide-stimulated tumor necrosis factor-alpha expression via cAMP-
mediated p38 MAPK pathway in cardiomyocytes. J Biol Chem 2003;278:8099-8105. 

91. Torre-Amione G, Kapadia S, Lee J, Bies RD, Lebovitz R, Mann DL. Expression and 
functional significance of tumor necrosis factor receptors in human myocardium. 
Circulation 1995;92:1487-1493. 

92.  Bujak M, Frangogiannis NG. The role of IL-1 in the pathogenesis of heart disease. 
Arch Immunol Ther Exp (Warsz ) 2009;57:165-176. 

93.  Fallach R, Shainberg A, Avlas O, Fainblut M, Chepurko Y, Porat E, Hochhauser E. 
Cardiomyocyte Toll-like receptor 4 is involved in heart dysfunction following septic 
shock or myocardial ischemia. J Mol Cell Cardiol 2010;48:1236-1244. 



52

 

94.  Manon-Jensen T, Itoh Y, Couchman JR. Proteoglycans in health and disease: the 
multiple roles of syndecan shedding. FEBS J 2010;277:3876-3889. 

95.  Kojima T, Takagi A, Maeda M, Segawa T, Shimizu A, Yamamoto K, Matsushita T, 
Saito H. Plasma levels of syndecan-4 (ryudocan) are elevated in patients with acute 
myocardial infarction. Thromb Haemost 2001;85:793-799. 

96.  Takahashi R, Negishi K, Watanabe A, Arai M, Naganuma F, Ohyama Y, 
Kurabayashi M. Serum syndecan-4 is a novel biomarker for patients with chronic 
heart failure. J Cardiol 2011;57:325-332. 

97. Gotte M. Syndecans in inflammation. FASEB J 2003;17:575-591. 

98.  Xie J, Wang J, Li R, Dai Q, Yong Y, Zong B, Xu Y, Li E, Ferro A, Xu B. Syndecan-
4 over-expression preserves cardiac function in a rat model of myocardial infarction. 
J Mol Cell Cardiol 2012;53:250-258. 

99.  Julien MA, Wang P, Haller CA, Wen J, Chaikof EL. Mechanical strain regulates 
syndecan-4 expression and shedding in smooth muscle cells through differential 
activation of MAP kinase signaling pathways. Am J Physiol Cell Physiol 
2007;292:C517-C525. 

100.  Finsen AV, Christensen G, Sjaastad I. Echocardiographic parameters discriminating 
myocardial infarction with pulmonary congestion from myocardial infarction without 
congestion in the mouse. J Appl Physiol 2005;98:680-689. 

101.  Christensen G, Wang Y, Chien KR. Physiological assessment of complex cardiac 
phenotypes in genetically engineered mice. Am J Physiol 1997;272:H2513-H2524. 

102.  Ishiguro K, Kadomatsu K, Kojima T, Muramatsu H, Tsuzuki S, Nakamura E, 
Kusugami K, Saito H, Muramatsu T. Syndecan-4 deficiency impairs focal adhesion 
formation only under restricted conditions. J Biol Chem 2000;275:5249-5252. 

103.  Banes AJ, Gilbert J, Taylor D, Monbureau O. A new vacuum-operated stress-
providing instrument that applies static or variable duration cyclic tension or 
compression to cells in vitro. J Cell Sci 1985;75:35-42.:35-42. 

104.  Granzier HL, Irving TC. Passive tension in cardiac muscle: contribution of collagen, 
titin, microtubules, and intermediate filaments. Biophys J 1995;68:1027-1044. 

105. Neagoe C, Kulke M, del MF, Gwathmey JK, de Tombe PP, Hajjar RJ, Linke WA. 
Titin isoform switch in ischemic human heart disease. Circulation 2002;106:1333-
1341.

106.  Opitz CA, Kulke M, Leake MC, Neagoe C, Hinssen H, Hajjar RJ, Linke WA. 
Damped elastic recoil of the titin spring in myofibrils of human myocardium. Proc 
Natl Acad Sci U S A 2003;100:12688-12693. 

107.  Junqueira LC, Bignolas G, Brentani RR. Picrosirius staining plus polarization 
microscopy, a specific method for collagen detection in tissue sections. Histochem J 
1979;11:447-455. 



53

 

108.  Querejeta R, Lopez B, Gonzalez A, Sanchez E, Larman M, Martinez Ubago JL, Diez 
J. Increased collagen type I synthesis in patients with heart failure of hypertensive 
origin: relation to myocardial fibrosis. Circulation 2004;110:1263-1268. 

109.  Lunde IG, Kvaløy H, Austbø B, Christensen G, Carlson CR. Angiotensin II and 
norepinephrine activate specific calcineurin-dependent NFAT transcription factor 
isoforms in cardiomyocytes. J Appl Physiol 2011;111:1278-1289. 

110.  Dubash AD, Menold MM, Samson T, Boulter E, Garcia-Mata R, Doughman R, 
Burridge K. Chapter 1. Focal adhesions: new angles on an old structure. Int Rev Cell 
Mol Biol 2009;277:7. 

111.  Ebisuya M, Kondoh K, Nishida E. The duration, magnitude and 
compartmentalization of ERK MAP kinase activity: mechanisms for providing 
signaling specificity. J Cell Sci 2005;118:2997-3002. 

112.  Lejard V, Brideau G, Blais F, Salingcarnboriboon R, Wagner G, Roehrl MH, Noda 
M, Duprez D, Houillier P, Rossert J. Scleraxis and NFATc regulate the expression of 
the pro-alpha1(I) collagen gene in tendon fibroblasts. J Biol Chem 2007;282:17665-
17675.

113.  Koga T, Matsui Y, Asagiri M, Kodama T, de CB, Nakashima K, Takayanagi H. 
NFAT and Osterix cooperatively regulate bone formation. Nat Med 2005;11:880-
885.

114.  Gonzalez Bosc LV, Layne JJ, Nelson MT, Hill-Eubanks DC. Nuclear factor of 
activated T cells and serum response factor cooperatively regulate the activity of an 
alpha-actin intronic enhancer. J Biol Chem 2005;280:26113-26120. 

115. Nilsson-Berglund LM, Zetterqvist AV, Nilsson-Ohman J, Sigvardsson M, Gonzalez 
Bosc LV, Smith ML, Salehi A, Agardh E, Fredrikson GN, Agardh CD, Nilsson J, 
Wamhoff BR, Hultgardh-Nilsson A, Gomez MF. Nuclear factor of activated T cells 
regulates osteopontin expression in arterial smooth muscle in response to diabetes-
induced hyperglycemia. Arterioscler Thromb Vasc Biol 2010;30:218-224. 

116.  Molkentin JD, Lu JR, Antos CL, Markham B, Richardson J, Robbins J, Grant SR, 
Olson EN. A calcineurin-dependent transcriptional pathway for cardiac hypertrophy. 
Cell 1998;93:215-228. 

117.  Berry JM, Le V, Rotter D, Battiprolu PK, Grinsfelder B, Tannous P, Burchfield JS, 
Czubryt M, Backs J, Olson EN, Rothermel BA, Hill JA. Reversibility of adverse, 
calcineurin-dependent cardiac remodeling. Circ Res 2011;109:407-417. 

118.  Shimoyama M, Hayashi D, Takimoto E, Zou Y, Oka T, Uozumi H, Kudoh S, 
Shibasaki F, Yazaki Y, Nagai R, Komuro I. Calcineurin plays a critical role in 
pressure overload-induced cardiac hypertrophy. Circulation 1999;100:2449-2454. 

119.  Bourajjaj M, Armand AS, da Costa Martins PA, Weijts B, van der Nagel R, 
Heeneman S, Wehrens XH, De Windt LJ. NFATc2 is a necessary mediator of 
calcineurin-dependent cardiac hypertrophy and heart failure. J Biol Chem 
2008;283:22295-22303. 



54

 

120.  Liu W, Zi M, Tsui H, Chowdhury SK, Zeef L, Meng QJ, Travis M, Prehar S, Berry 
A, Hanley NA, Neyses L, Xiao RP, Oceandy D, Ke Y, Solaro RJ, Cartwright EJ, Lei 
M, Wang X. A novel immunomodulator, FTY-720 reverses existing cardiac 
hypertrophy and fibrosis from pressure overload by targeting NFAT (nuclear factor 
of activated T-cells) signaling and periostin. Circ Heart Fail 2013;6:833-844. 

121.  Harada M, Luo X, Qi XY, Tadevosyan A, Maguy A, Ordog B, Ledoux J, Kato T, 
Naud P, Voigt N, Shi Y, Kamiya K, Murohara T, Kodama I, Tardif JC, Schotten U, 
Van Wagoner DR, Dobrev D, Nattel S. Transient receptor potential canonical-3 
channel-dependent fibroblast regulation in atrial fibrillation. Circulation 
2012;126:2051-2064. 

122.  Wu X, Eder P, Chang B, Molkentin JD. TRPC channels are necessary mediators of 
pathologic cardiac hypertrophy. Proc Natl Acad Sci U S A 2010;107:7000-7005. 

123.  Davis J, Burr AR, Davis GF, Birnbaumer L, Molkentin JD. A TRPC6-dependent 
pathway for myofibroblast transdifferentiation and wound healing in vivo. Dev Cell 
2012;23:705-715. 

124.  Nishida M, Onohara N, Sato Y, Suda R, Ogushi M, Tanabe S, Inoue R, Mori Y, 
Kurose H. Galpha12/13-mediated up-regulation of TRPC6 negatively regulates 
endothelin-1-induced cardiac myofibroblast formation and collagen synthesis through 
nuclear factor of activated T cells activation. J Biol Chem 2007;282:23117-23128. 

125.  Yoshida T, Sinha S, Dandre F, Wamhoff BR, Hoofnagle MH, Kremer BE, Wang DZ, 
Olson EN, Owens GK. Myocardin is a key regulator of CArG-dependent 
transcription of multiple smooth muscle marker genes. Circ Res 2003;92:856-864. 

126. Wamhoff BR, Bowles DK, Owens GK. Excitation-transcription coupling in arterial 
smooth muscle. Circ Res 2006;98:868-878. 

127. Velasquez LS, Sutherland LB, Liu Z, Grinnell F, Kamm KE, Schneider JW, Olson 
EN, Small EM. Activation of MRTF-A-dependent gene expression with a small 
molecule promotes myofibroblast differentiation and wound healing. Proc Natl Acad 
Sci U S A 2013;110:16850-16855. 

128. Small EM, Thatcher JE, Sutherland LB, Kinoshita H, Gerard RD, Richardson JA, 
Dimaio JM, Sadek H, Kuwahara K, Olson EN. Myocardin-related transcription 
factor-a controls myofibroblast activation and fibrosis in response to myocardial 
infarction. Circ Res 2010;107:294-304. 

129.  Mack CP, Somlyo AV, Hautmann M, Somlyo AP, Owens GK. Smooth muscle 
differentiation marker gene expression is regulated by RhoA-mediated actin 
polymerization. J Biol Chem 2001;276:341-347. 

130.  Frangogiannis NG. Matricellular proteins in cardiac adaptation and disease. Physiol 
Rev 2012;92:635-688. 

131.  Shinohara ML, Kim HJ, Kim JH, Garcia VA, Cantor H. Alternative translation of 
osteopontin generates intracellular and secreted isoforms that mediate distinct 
biological activities in dendritic cells. Proc Natl Acad Sci U S A 2008;20:7235-7239.



55

 

132.  Lenga Y, Koh A, Perera AS, McCulloch CA, Sodek J, Zohar R. Osteopontin 
expression is required for myofibroblast differentiation. Circ Res 2008;102:319-327. 

133.  Bujak M, Frangogiannis NG. The role of TGF-beta signaling in myocardial infarction 
and cardiac remodeling. Cardiovasc Res 2007;74:184-195. 

134.  Ishiguro K, Kadomatsu K, Kojima T, Muramatsu H, Iwase M, Yoshikai Y, Yanada 
M, Yamamoto K, Matsushita T, Nishimura M, Kusugami K, Saito H, Muramatsu T. 
Syndecan-4 deficiency leads to high mortality of lipopolysaccharide-injected mice. J 
Biol Chem 2001;276:47483-47488. 

135.  Hinz B, Gabbiani G. Mechanisms of force generation and transmission by 
myofibroblasts. Curr Opin Biotechnol 2003;14:538-546. 

136. Sarrazy V, Koehler A, Chow ML, Zimina E, Li CX, Kato H, Caldarone CA, Hinz B. 
Integrins alphavbeta5 and alphavbeta3 promote latent TGF-beta1 activation by 
human cardiac fibroblast contraction. Cardiovasc Res 2014;102:407-417. 

137.  Carracedo S, Lu N, Popova SN, Jonsson R, Eckes B, Gullberg D. The fibroblast 
integrin alpha11beta1 is induced in a mechanosensitive manner involving activin A 
and regulates myofibroblast differentiation. J Biol Chem 2010;285:10434-10445. 

138.  Davis J, Molkentin JD. Myofibroblasts: trust your heart and let fate decide. J Mol 
Cell Cardiol 2014;70:9-18. 

139.  Thiedemann KU, Holubarsch C, Medugorac I, Jacob R. Connective tissue content 
and myocardial stiffness in pressure overload hypertrophy. A combined study of 
morphologic, morphometric, biochemical, and mechanical parameters. Basic Res 
Cardiol 1983;78:140-155. 

140.  Mukherjee D, Sen S. Collagen phenotypes during development and regression of 
myocardial hypertrophy in spontaneously hypertensive rats. Circ Res 1990;67:1474-
1480.

141. Weber KT, Janicki JS, Shroff SG, Pick R, Chen RM, Bashey RI. Collagen 
remodeling of the pressure-overloaded, hypertrophied nonhuman primate 
myocardium. Circ Res 1988;62:757-765. 

142.  Lopez B, Querejeta R, Gonzalez A, Larman M, Diez J. Collagen cross-linking but 
not collagen amount associates with elevated filling pressures in hypertensive 
patients with stage C heart failure: potential role of lysyl oxidase. Hypertension 
2012;60:677-683. 

143.  Kasner M, Westermann D, Lopez B, Gaub R, Escher F, Kuhl U, Schultheiss HP, 
Tschope C. Diastolic tissue Doppler indexes correlate with the degree of collagen 
expression and cross-linking in heart failure and normal ejection fraction. J Am Coll 
Cardiol 2011;57:977-985. 

144.  Aronson D. Cross-linking of glycated collagen in the pathogenesis of arterial and 
myocardial stiffening of aging and diabetes. J Hypertens 2003;21:3-12. 



56

 

145.  Kato S, Spinale FG, Tanaka R, Johnson W, Cooper G, Zile MR. Inhibition of 
collagen cross-linking: effects on fibrillar collagen and ventricular diastolic function. 
Am J Physiol 1995;269:H863-H868. 

146.  Voloshenyuk TG, Landesman ES, Khoutorova E, Hart AD, Gardner JD. Induction of 
cardiac fibroblast lysyl oxidase by TGF-beta1 requires PI3K/Akt, Smad3, and MAPK 
signaling. Cytokine 2011;55:90-97. 

147. Adam O, Theobald K, Lavall D, Grube M, Kroemer HK, Ameling S, Schafers HJ, 
Bohm M, Laufs U. Increased lysyl oxidase expression and collagen cross-linking 
during atrial fibrillation. J Mol Cell Cardiol 2011;50:678-685. 

148.  Engebretsen KV, Lunde IG, Strand ME, Waehre A, Sjaastad I, Marstein HS, Skrbic 
B, Dahl CP, Askevold ET, Christensen G, Bjornstad JL, Tonnessen T. Lumican is 
increased in experimental and clinical heart failure, and its production by cardiac 
fibroblasts is induced by mechanical and proinflammatory stimuli. FEBS J 
2013;280:2382-2398. 

149.  Lopez B, Gonzalez A, Lindner D, Westermann D, Ravassa S, Beaumont J, Gallego I, 
Zudaire A, Brugnolaro C, Querejeta R, Larman M, Tschope C, Diez J. Osteopontin-
mediated myocardial fibrosis in heart failure: a role for lysyl oxidase? Cardiovasc 
Res 2013;99:111-120. 

150.  Graf K, Do YS, Ashizawa N, Meehan WP, Giachelli CM, Marboe CC, Fleck E, 
Hsueh WA. Myocardial osteopontin expression is associated with left ventricular 
hypertrophy. Circulation 1997;96:3063-3071. 

151.  Waehre A, Halvorsen B, Yndestad A, Husberg C, Sjaastad I, Nygard S, Dahl CP, 
Ahmed MS, Finsen AV, Reims H, Louch WE, Hilfiker-Kleiner D, Vinge LE, Roald 
B, Attramadal H, Lipp M, Gullestad L, Aukrust P, Christensen G. Lack of chemokine 
signaling through CXCR5 causes increased mortality, ventricular dilatation and 
deranged matrix during cardiac pressure overload. PLoS One 2011;6:e18668- 

152.  Svensson L, Aszodi A, Reinholt FP, Fassler R, Heinegard D, Oldberg A. 
Fibromodulin-null mice have abnormal collagen fibrils, tissue organization, and 
altered lumican deposition in tendon. J Biol Chem 1999;274:9636-9647. 

153.  Danielson KG, Baribault H, Holmes DF, Graham H, Kadler KE, Iozzo RV. Targeted 
disruption of decorin leads to abnormal collagen fibril morphology and skin fragility. 
J Cell Biol 1997;136:729-743. 

154.  Weis SM, Zimmerman SD, Shah M, Covell JW, Omens JH, Ross J, Jr., Dalton N, 
Jones Y, Reed CC, Iozzo RV, McCulloch AD. A role for decorin in the remodeling 
of myocardial infarction. Matrix Biol 2005;24:313-324. 

155.  Westermann D, Mersmann J, Melchior A, Freudenberger T, Petrik C, Schaefer L, 
Lullmann-Rauch R, Lettau O, Jacoby C, Schrader J, Brand-Herrmann SM, Young 
MF, Schultheiss HP, Levkau B, Baba HA, Unger T, Zacharowski K, Tschope C, 
Fischer JW. Biglycan is required for adaptive remodeling after myocardial infarction. 
Circulation 2008;117:1269-1276. 



57

 

156. Kalamajski S, Oldberg A. The role of small leucine-rich proteoglycans in collagen 
fibrillogenesis. Matrix Biol 2010;29:248-253. 

157. Fogelgren B, Polgar N, Szauter KM, Ujfaludi Z, Laczko R, Fong KS, Csiszar K. 
Cellular fibronectin binds to lysyl oxidase with high affinity and is critical for its 
proteolytic activation. J Biol Chem 2005;280:24690-24697. 

158. Scarpellini A, Germack R, Lortat-Jacob H, Muramatsu T, Billett E, Johnson T, 
Verderio EA. Heparan sulfate proteoglycans are receptors for the cell-surface 
trafficking and biological activity of transglutaminase-2. J Biol Chem 
2009;284:18411-18423. 

159.  Scarpellini A, Huang L, Burhan I, Schroeder N, Funck M, Johnson TS, Verderio EA. 
Syndecan-4 Knockout Leads to Reduced Extracellular Transglutaminase-2 and 
Protects against Tubulointerstitial Fibrosis. J Am Soc Nephrol 2014;25:1013-1027. 

160. Linke WA. Titin stiffness in heart disease. Circulation 2003;107:e73- 

161.  Maurer MS, Spevack D, Burkhoff D, Kronzon I. Diastolic dysfunction: can it be 
diagnosed by Doppler echocardiography? J Am Coll Cardiol 2004;44:1543-1549. 

162.  van Heerebeek L, Franssen CP, Hamdani N, Verheugt FW, Somsen GA, Paulus WJ. 
Molecular and cellular basis for diastolic dysfunction. Curr Heart Fail Rep 
2012;9:293-302. 

163.  Armstrong CG, Mow VC. Variations in the intrinsic mechanical properties of human 
articular cartilage with age, degeneration, and water content. J Bone Joint Surg Am 
1982;64:88-94. 

164.  Kempson GE, Muir H, Swanson SA, Freeman MA. Correlations between stiffness 
and the chemical constituents of cartilage on the human femoral head. Biochim 
Biophys Acta 1970;215:70-77. 

165.  Yndestad A, Damas JK, Oie E, Ueland T, Gullestad L, Aukrust P. Role of 
inflammation in the progression of heart failure. Curr Cardiol Rep 2007;9:236-241. 

166.  Mann DL. Stress-activated cytokines and the heart: from adaptation to maladaptation. 
Annu Rev Physiol 2003;65:81-101. 

167. Arslan F, de Kleijn DP, Pasterkamp G. Innate immune signaling in cardiac ischemia. 
Nat Rev Cardiol 2011;8:292-300. 

168.  Woods A, Couchman JR. Syndecan 4 heparan sulfate proteoglycan is a selectively 
enriched and widespread focal adhesion component. Mol Biol Cell 1994;5:183-192. 

169.  Fadnes B, Husebekk A, Svineng G, Rekdal O, Yanagishita M, Kolset SO, Uhlin-
Hansen L. The proteoglycan repertoire of lymphoid cells. Glycoconj J 2012;29:513-
523.

170.  Turner NA, Porter KE. Regulation of myocardial matrix metalloproteinase 
expression and activity by cardiac fibroblasts. IUBMB Life 2012;64:143-150. 



58

 

171.  Koo BH, Han JH, Yeom YI, Kim DS. Thrombin-dependent MMP-2 activity is 
regulated by heparan sulfate. J Biol Chem 2010;285:41270-41279. 

172.  Subramanian SV, Fitzgerald ML, Bernfield M. Regulated shedding of syndecan-1 
and -4 ectodomains by thrombin and growth factor receptor activation. J Biol Chem 
1997;272:14713-14720. 

173.  Schmidt A, Echtermeyer F, Alozie A, Brands K, Buddecke E. Plasmin- and 
thrombin-accelerated shedding of syndecan-4 ectodomain generates cleavage sites at 
Lys(114)-Arg(115) and Lys(129)-Val(130) bonds. J Biol Chem 2005;280:34441-
34446.

174.  Yu Q, Watson RR, Marchalonis JJ, Larson DF. A role for T lymphocytes in 
mediating cardiac diastolic function. Am J Physiol Heart Circ Physiol 
2005;289:H643-H651. 

175.  Yu Q, Horak K, Larson DF. Role of T lymphocytes in hypertension-induced cardiac 
extracellular matrix remodeling. Hypertension 2006;48:98-104. 

176.  Yu Q, Vazquez R, Zabadi S, Watson RR, Larson DF. T-lymphocytes mediate left 
ventricular fibrillar collagen cross-linking and diastolic dysfunction in mice. Matrix 
Biol 2010;29:511-518. 

177.  Nicholas B, Smethurst P, Verderio E, Jones R, Griffin M. Cross-linking of cellular 
proteins by tissue transglutaminase during necrotic cell death: a mechanism for 
maintaining tissue integrity. Biochem J 2003;371:413-422. 

178.  Pinkas DM, Strop P, Brunger AT, Khosla C. Transglutaminase 2 undergoes a large 
conformational change upon activation. PLoS Biol 2007;5:e327- 

179.  Wang Z, Collighan RJ, Pytel K, Rathbone DL, Li X, Griffin M. Characterization of 
heparin-binding site of tissue transglutaminase: its importance in cell surface 
targeting, matrix deposition, and cell signaling. J Biol Chem 2012;287:13063-13083. 

180. Leask A. Potential therapeutic targets for cardiac fibrosis: TGFbeta, angiotensin, 
endothelin, CCN2, and PDGF, partners in fibroblast activation. Circ Res 
2010;106:1675-1680. 



59

 

Appendix: Papers 1-3 
 

 





1





 2





1 

 

Syndecan-4 is a key determinant of collagen cross-linking and passive myocardial 
stiffness in the pressure-overloaded heart

Kate M. Herum1,2, , Ida G. Lunde1,2,3, Biljana Skrbic1,2,4, William E. Louch1,2, Almira 
Hasic1,2, Sigurd Boye5, Andreas Unger6, Sverre-Henning Brorson7, Ivar Sjaastad1,2, Theis 
Tønnessen1,2,4, Wolfgang A. Linke6, Maria F. Gomez8*, Geir Christensen1,2* 

1Institute for Experimental Medical Research, Oslo University Hospital and University of 
Oslo, Oslo, Norway 
2KG Jebsen Cardiac Research Centre and Center for Heart Failure Research, University of 
Oslo, Oslo, Norway 
3Department of Genetics, Harvard Medical School, Boston, MA 
4Department of Cardiothoracic Surgery, Oslo University Hospital Ullevål, Oslo, Norway
5Clinical and Biomedical Engineering, Oslo University Hospital Ullevål, Oslo, Norway 
6Department of Cardiovascular Physiology, Ruhr University Bochum, Bochum, Germany 
7Department of Pathology, Oslo University Hospital Rikshospitalet, Oslo, Norway 
8Department of Clinical Sciences, Lund University, Malmö, Sweden

*Authors contributed equally

Corresponding author: Kate Møller Herum,  
Institute for Experimental Medical Research, Oslo University Hospital Ullevål, 
Kirkeveien 166, Building 7, 4th floor, 0450 Oslo, Norway. 
Phone: +47 23016785,
Fax: +47 23016799,  
k.l.m.herum@medisin.uio.no

Word count: 6844 



2 

 

Abstract

Aim: Diastolic dysfunction is central to the development of heart failure. To date, there is no 
effective treatment and only limited understanding of its molecular basis. Recently we 
showed that the transmembrane proteoglycan syndecan-4 increases in the left ventricle after 
pressure overload in mice and man; and that syndecan-4 via calcineurin/NFAT promotes 
myofibroblast differentiation and collagen production upon mechanical stress. The aim of this 
study was to investigate if syndecan-4 affects collagen cross-linking and myocardial 
stiffening in the pressure-overloaded heart.

Methods and Results: Aortic banding (AB) caused concentric hypertrophy and increased 
passive tension of left ventricular muscle strips, responses that were blunted in syndecan-4-/-

mice. Disruption of titin anchoring by salt extraction of actin and myosin filaments revealed 
that the effect of syndecan-4 on passive tension was due to extracellular matrix remodeling. 
Expression and activity of the cross-linking enzyme lysyl oxidase (LOX) increased with 
mechanical stress and was lower in left ventricles and cardiac fibroblasts from syndecan-4-/-

mice, which exhibited less collagen cross-linking after AB. Expression of osteopontin (OPN), 
a matricellular protein able to induce LOX in cardiac fibroblasts, was upregulated in hearts 
after AB, in mechanically-stressed fibroblasts and in fibroblasts overexpressing syndecan-4, 
calcineurin or NFAT, but downregulated in fibroblasts lacking syndecan-4 or after NFAT 
inhibition. Interestingly, the extracellular domain of syndecan-4 facilitated LOX-mediated 
collagen cross-linking.  

Conclusions: Syndecan-4 exerts a dual role in collagen cross-linking, one involving its 
cytosolic domain and NFAT signaling leading to collagen, OPN and LOX induction in 
cardiac fibroblasts; the other involving the extracellular domain promoting LOX-dependent 
cross-linking. 
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1. Introduction
Diastolic dysfunction is central to the development of heart failure, a common and fatal 
disease.1 Defined by abnormal relaxation and/or decreased compliance of the ventricles, 
diastolic dysfunction results in impaired filling of the heart. While, in healthy individuals, the 
major risk factor for diastolic dysfunction is age, any condition that leads to stiffening of the 
ventricles can result in diastolic dysfunction, e.g. pressure overload as in hypertensive and
aortic stenosis patients, or diabetes. Despite improved medical options for cardiovascular 
disease, there is currently no effective treatment for diastolic dysfunction, reflecting the need 
for a better understanding of its molecular basis. Next to modifications of the elastic titin 
springs of cardiomyocytes2, changes in extracellular matrix (ECM) composition and structure 
are important determinants of myocardial stiffening3.

Cardiac fibroblasts are the major non-muscle cells of the ventricular myocardium and 
are key players in myocardial stiffening. During ventricular remodeling following sustained 
periods of pressure overload, cardiac fibroblasts become activated and start producing 
excessive amounts of ECM proteins, such as fibrillar collagens, eventually resulting in 
increased myocardial fibrosis.4 The activated fibroblast acquires smooth muscle-like features 
including expression of smooth muscle -actin (SMA) and SM22 and is therefore referred to 
as myofibroblast,5 as well as increases expression of platelet-

6,7  
Recent clinical studies have questioned whether overexpression of collagen can alone 

explain the increased myocardial stiffness, and collagen cross-linking has been suggested as 
an additional contributing factor.8,9 While non-enzymatic cross-linking (i.e. of glycated lysine 
and hydroxylysine collagen residues) is generally associated with myocardial stiffening due 
to age or diabetes,10 collagen cross-linking induced by mechanical stress seems to be largely 
attributed to enzymatic cross-linking by the enzyme lysyl oxidase (LOX), which is 
upregulated in the pressure-overloaded heart.8 Despite its potentially central role in 
myocardial stiffening, little is known regarding mechanisms regulating LOX in the heart. 
Interestingly, the matricellular protein OPN was recently found to induce LOX expression 
and activity in cardiac fibroblasts.11 Although sparsely expressed in the healthy heart, OPN is
dramatically increased in mice subjected to pressure overload by aortic banding (AB).12

Recent work in our laboratory demonstrated that expression of the transmembrane 
heparan sulphate proteoglycan syndecan-4 increases in the left ventricle after pressure 
overload in mice5 and man,13 through inflammatory mediators such as tumor necrosis factor 

and interleukin (IL)- 14 Also, that in response to mechanical stress, syndecan-4 
engages the calcineurin/NFAT (Nuclear Factor of Activated T-cells) signaling pathway in 
cardiac fibroblasts to promote ECM production and differentiation into activated 
myofibroblasts.5 Thus, one specific aim of this study was to examine whether syndecan-4 
expression and/or signaling has a direct impact on myocardial stiffness. A second aim of this 
study was to explore if syndecan-4 may be important for collagen cross-linking. Previous 
work has shown that NFAT activation leads to the induction of OPN expression in vascular 
smooth muscle cells.15 We therefore hypothesized that OPN might be a down-stream target of 
syndecan-4/NFAT signaling in cardiac fibroblasts and that enhanced OPN expression after 
pressure overload, by virtue of an increase in LOX expression and activity, may promote 
collagen cross-linking and myocardial stiffening of the heart. 
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2. Methods
A detailed description of the methods is provided in supplementary material online.

2.1 Mouse Model of Pressure Overload
AB or sham operations followed by echocardiography were performed on adult wild-type 
(WT) and syndecan-4 knockout (syndecan-4-/-) mice16 as previously described13,17 and mice
were sacrificed by cervical dislocation after 24h, 3 days or 7 days after AB. Animals were 
handled according to the National Regulation on Animal Experimentation in accordance with 
approved protocol (ID#2845) and the Norwegian Animal Welfare Act, and conform the NIH 
guidelines (2011).  

2.2 Mechanical measurements
Left ventricular muscle strips were skinned and passive tension, reflecting the elastic 
components of the muscle, was determined by stretching from slack length (L0) to 30% L0
while measuring force. Salt extraction was performed as previously described.18 Viscous 
stress, reflecting the stretch velocity sensitive component of the muscle, was determined as 
peak force upon stretching minus steady-state force, divided with cross-sectional area.

2.3 Titin gels
Samples prepared from snap frozen left ventricular tissue were loaded on agarose-
strengthened 2% SDS-polyacrylamid gels19 and titin N2B and N2BA isoforms detected at 
3000kDa and 3200kDa, respectively, by coomassie brilliant-blue staining.  

2.4 Electron microscopy
Mouse hearts were fixed in 3.5% glutaraldehyde (Sigma) in 0.1 M cacodylate buffer (pH 7.2; 
Sigma) by perfusion and small pieces of the left ventricular wall were prepared for electron 
microscopy. For quantification, 5 images (x440) per section were analyzed to determine non-
cardiomyocyte fractions, and 24-30 images (x2900) per section of the non-cardiomyocyte 
fraction to determine the areas of fibroblast nuclei (reflecting number of fibroblasts) and 
blood vessels. Two-three sections per animal were inspected.  

2.5 Collagen cross-linking and quantification
Total collagen was determined by hydroxyproline content measured by HPLC. Insoluble 
cross-linked collagen was quantified as previously described.20 Briefly, soluble collagen 
assessed using colorimetric and enzymatic procedures was subtracted from total collagen 
determined by staining with picrosirius red and normalized to total protein content 
determined by fast green staining. For visualization of total and cross-linked collagen, 
sections from formalin-fixed left ventricles were stained with picrosirius red and examined 
using non-polarized and circularly polarized light, respectively.

2.6 Fibroblast Cell Culture
Cardiac fibroblasts were isolated as previously described5 and used at passage 2 to limit in 
vitro effects on fibroblast phenotype. For overexpression, an adenoviral vector containing 
mouse syndecan-4 (Applied Biological Materials Inc, Richmond, Canada) was used. The 
NFAT blocker A-285222 was kindly provided by Abbott Laboratories (1μmol/L; Abbott 
Park, IL). Cel
Germany) and 250 ng/ml OPN (Cat. no.120-35; Peprotech, Hamburg, Germany). 

2.7 Gene Expression Analysis 
RNA was extracted, cDNA synthesized and real-time performed as previously described.5
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2.8 Immunoblotting
Immunoblotting was performed on left ventricle homogenates as previously described.21

Anti-osteopontin (IBL, Hamburg, Germany) and anti-LOX (NB100-2527, Novus Biologicals, 
Littleton, CO) were used as primary antibodies.  

2.9 Immunocytochemistry and immunohistochemistry
Cells grown on fibronectin-coated glass cover slips were fixed in 4% paraformaldehyde and 
stained using mouse-anti-SMA (Sigma, Schnelldorf, Germany) and alexa fluor 488-
secondary anti-mouse antibodies (Invitrogen, Paisley, UK). Formalin-fixed myocardial tissue 
sections (4 μm) were stained for SMA (DAKO, Glostrup, Denmark) and platelet-derived 
growth factor receptor 
secondary antibodies conjugated to horseradish peroxidase (HRP). 

2.10 Lysyl oxidase activity assay 
LOX activity was measured in left ventricular tissue and cardiac fibroblasts with a 
fluorometric LOX activity assay (Abcam, Cambridge, UK) according to the manufacturer’s 
instructions. 

2.11 In vitro collagen fiber formation assay 
The extracellular domain of syndecan-4 (1-4μg, Sino Biological Inc., Beijing, China) was
mixed with 10μg collagen I with or without recombinant human lysyl oxidase homolog 2 
(0.1μg, LOXL2 with activity > 2pmol/min/μg, R&D systems, Abingdon, UK). The mixture 
was incubated at 37ºC for 24-72h before performing turbidimetry and electron microscopy.  

2.12 Statistics
Data are expressed as means ± standard deviation (S.D.) unless otherwise specified in the 
figure legends. Statistical analysis was performed using GraphPad software (Prism 5). The 
use of parametric or non-parametric tests was based on results from analyses of distributions. 
Statistical significance was determined using Mann-Whitney test and Kruskal-Wallis 
followed by Dunn’s multiple comparison test for non-parametric data; or Student’s t-test and
two-way ANOVA followed by Bonferroni post hoc tests for normally distributed data. 
Pearson’s test was used for correlation analyses. ***P<0.005, **P<0.01, *P<0.05. 
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3. Results

3.1 Myocardial stiffness is reduced in mice lacking syndecan-4 
AB caused hypertrophic remodeling as determined by echocardiography (Supplementary 
Table 1) which was accompanied by an increase in passive tension (Figure 1A). Along with 
reduced concentric hypertrophic remodeling in syndecan-4-/- mice (Supplementary Table 1), 
which is in accordance with our previous findings,13 passive tension was significantly lower 
in myocardial tissue from syndecan-4-/- mice (Figure 1A). Another factor contributing to 
myocardial stiffness is the viscosity of the tissue. Viscous stress was increased following AB 
(Figure 1B) but it was not affected by the genotype of the mice. Cardiomyocytes and ECM 
both contribute to passive tension. In cardiomyocytes, passive tension is mainly determined 
by the sarcomeric “spring-like protein” titin.2 To investigate the cardiomyocyte contribution 
to the observed reduction of passive tension in syndecan-4-/- mice after pressure overload, we 
measured the ratios between the longer and more compliant titin isoform N2BA and the 
shorter and stiffer N2B isoform. N2BA:N2B ratios were unchanged by AB or lack of 
syndecan-4 (Figure 1C). To study whether the reduced passive tension in syndecan-4-/- mice 
could be due to changes in the ECM, we performed salt extraction of actin and myosin 
filaments, a treatment that destroys the anchoring points of titin leaving the ECM to account 
for the remaining passive tension.18 Indeed, ECM-dependent passive tension was 
significantly lower in muscle strips from syndecan-4-/- mice compared to WT (Figure 1D). 
The complete disruption of sarcomere structure by salt extraction was verified using electron 
microscopy (Figure 1E). The area of myocardial tissue consisting of cardiomyocytes vs. non-
cardiomyocyte (non-CM) fraction seemed unaltered by AB or lack of syndecan-4 
(Supplementary Table 2).

3.2 Increased expression of syndecan-4 promotes cardiac myofibroblast differentiation  
As we showed in neonatale cardiac fibroblasts,5 lack of syndecan-4 had profound effects in 
adult cardiac fibroblasts. While adult syndecan-4 deficient cardiac fibroblasts exhibited 
virtually no SMA fiber formation after 48h on fibronectin, fibroblasts from WT mice had 
clear SMA fibers (Figure 2A). This impaired ability to undergo myofibroblast differentiation 
of cells lacking syndecan-4 was restored by adenoviral-transduction of syndecan-4 (Figure 
2A). Further, overexpression of syndecan-4 in WT cardiac fibroblasts resulted in enhanced 
SMA fiber formation (Figure 2A). Myofibroblast differentiation was also impaired in vivo as

ive controls 
are included in Supplementary Figure 1.

We also examined whether changes in fibroblast proliferative capacity and 
consequently a larger number of fibroblasts in the non-CM fraction could account for the 
reduced myocardial passive tension observed in syndecan-4-/- mice after pressure overload. 
However, as shown in figures 2C and D (24h and 7 days after AB, respectively), expression 
of the cell cycle S-phase marker PCNA (proliferating cell nuclear antigen) was not different 
in cardiac homogenates from WT and syndecan-4 deficient mice. Given the limited capacity 
of cardiomyocytes to re-enter the cell-cycle22,23 most of the PCNA signal could be attributed 
to cell proliferation in the non-CM fraction. Further, lack of syndecan-4 did not affect the 
proliferative capacity of cardiac fibroblasts in vitro, as assessed after 48h or 72h after culture 
on fibronectin coated plates (Figure 2E). This was consistent with EM data suggesting no 
differences in the number of cardiac fibroblasts in the non-CM fraction between genotypes 
(Supplementary Table 2).  
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3.3 Collagen cross-linking is impaired in left ventricles of syndecan-4-/- mice following 
pressure overload
Total collagen contents as determined by HPLC were significantly increased 7 days after AB,
but this response was unaffected in syndecan-4-/- mice (Figure 3A). A similar pattern was 
observed for the expression of collagen I and III mRNA at this time-point (Figure 3D-E). 
This is in contrast with recent data from our group showing that absence of syndecan-
4/CaN/NFAT signaling impairs collagen I and III mRNA expression 24h after AB,5
suggesting a delayed induction of collagen mRNA in the syndecan-4 null mice, which is no 
longer apparent at later time-points. While AB caused dramatic changes in the expression of 
several of the main enzymes that regulate collagen degradation (MMP2, MMP13, TIMP1 and 
TIMP2), these and also levels of MMP9 were not affected by the genotype of the mice 
(Supplementary Figure 1). To investigate if altered collagen cross-linking could contribute to 
the observed differences in passive tension, we measured soluble collagen content and 
calculated the amount of insoluble cross-linked collagen. Indeed, insoluble collagen was 
increased in left ventricles after AB, but this response was blunted in syndecan-4-/- mice 
(Figure 3C). For visualization purposes, left ventricular tissue sections 7 days after AB were 
stained with picrosirius red and examined using polarized light. Images show increased total 
and cross-linked collagen after AB in WT mice, while less apparent responses in sections 
from syndecan-4 deficient mice (Figure 3B and D). Other structural matrix proteins may also 
be altered in syndecan-4-/- mice and thereby, contribute to changes in compliance, such as 
elastin. However, mRNA and protein levels of elastin, despite being increased after AB, they 
were not affected by the genotype of the animals (Supplementary Figure 3A-B). Moreover, 
elastin levels decreased during myofibroblast differentiation (Supplementary Figure 3C). 

3.4 Lysyl oxidase expression and activity are reduced in left ventricles and cardiac 
fibroblasts from syndecan-4-/- mice
AB resulted in significantly increased LOX mRNA levels in the left ventricles of syndecan-4 
competent mice 24h after surgery (Figure 4A). This response was blunted in the ventricles of 
syndecan-4 deficient mice. Culture of cardiac fibroblasts from WT mice on fibronectin-
coated plates also resulted in a time-dependent increase in LOX mRNA expression, while 
culture of fibroblasts from syndecan-4 deficient mice failed to induce any changes in LOX 
mRNA expression (Figure 4B). Myocardial LOX activity was also increased after AB in WT 
mice, but the same was not observed in tissue from syndecan-4 deficient mice (Figure 4C).

3.5 Pressure overload and mechanical stress induce OPN expression in a syndecan-
4/calcineurin/NFAT-dependent manner  
Pressure overload resulted in a rapid and dramatic induction of OPN expression 24h after 
AB, both at the mRNA (>600-fold) and protein (6.9-fold) level (Figure 5A-B). OPN mRNA 
remained significantly elevated 7 days after AB, although levels were lower than those at 24h 
(Figure 5C). In mice lacking syndecan-4, the induction of OPN by pressure-overload was 
clearly blunted both at 24h and 7 days (Figure 5A-C). OPN mRNA levels were positively 
correlated to LOX mRNA levels in left ventricular tissue of WT mice (Figure 5D). A similar 
induction of OPN was observed when cardiac fibroblasts from WT mice were mechanically 
stressed by culture on fibronectin coated plates, while this response was absent in cardiac 
fibroblasts from syndecan-4-/- mice (Figure 5E). Conversely, overexpression of syndecan-4 in 
HT1080 fibroblasts increased OPN mRNA levels (Figure 5F). We have previously 
demonstrated that upon mechanical stress, syndecan-4 engages the calcineurin-dependent 
transcription factor NFAT5 and that NFAT activation regulates OPN expression in vascular 
smooth muscle cells.15 Here we found that OPN mRNA levels were elevated in HT1080 
fibroblasts overexpressing calcineurin (Figure 5F), but reduced in cardiac fibroblasts treated 
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with the NFAT blocker A-285222 (Figure 5G). Furthermore, overexpression of NFATc4, 
clearly increased OPN mRNA expression in HT1080 fibroblasts and this effect was more 
pronounced after mechanical stress (Figure 5H). 

Stimulation with exogenous OPN for 24h has recently been shown to increase pro-
LOX protein expression and LOX activity in cardiac human fibroblasts.11 Here we 
demonstrate increased LOX protein expression after OPN stimulation in mouse cardiac 

Figure 4A-B), a protocol that promotes myofibroblast differentiation.5 Lack of syndecan-4 
had no impact on OPN-induced LOX (Supplementary Figure 4A-B), confirming that the 
effects are downstream of OPN and do not involve signaling via syndecan-4. Interestingly, 
myofibroblast differentiation also yielded significantly increased expression of known OPN 
receptors including v and 1, and CD44 (Supplementary Figure 4C). 

3.6 The extracellular domain of syndecan-4 interacts with collagen fibrils and promotes 
collagen cross-linking by LOX
We next examined the effect of the extracellular domain of syndecan-4 (ECsyn4) on collagen 
I fiber formation in a test tube. Incubation of collagen I at 37ºC for 72h with increasing 
concentrations of ECsyn4 resulted in a dose-dependent increase in turbidity measured as 
optical density at 340nm (Figure 6A). Incubation of the highest concentration of ECsyn4 
alone (4μg) failed to increase optical density. At the electron microscopy level, collagen 
fibrils appear similar in thickness and structure in samples containing the mix of collagen and 
ECsyn4, and collagen alone (Figure 6B). However, only the samples containing the mix of 
collagen and ECsyn4 exhibited extensive dense networks surrounding the collagen fibrils 
(marked with asterisks in Figure 4B). Addition of LOX to samples containing collagen 
caused formation of large insoluble protein aggregates after 48h due to collagen cross-linking 
and formation of extensive collagen fiber networks as observed by electron microscopy 
(Figure 6D). Turbidity of these samples after 24h, when the collagen was still in solution, 
further increased with the addition of ECsyn4 (Figure 6C) and resulted in the appearance of 
structures resembling small collagen fibers between the thicker collagen fibers (Figure 6D; 
arrows). In samples containing collagen and LOX, similar dense structures to those seen in 
samples without LOX but with ECsyn4, where observed (Figure 6D; asterisks). Taken 
together, these results suggest that the extracellular domain of syndecan-4 promotes collagen 
fiber formation, possibly facilitating collagen cross-linking by LOX. 
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4. Discussion
Since the recognition of diastolic dysfunction as a common and prominent feature of the 
failing heart, there has been an increased focus on understanding the molecular mechanisms 
underlying myocardial stiffening as a cause of diastolic dysfunction. With this study we 
demonstrate the importance of syndecan-4 in determining passive tension of the myocardium 
following pressure overload. Our understanding of how this is achieved in the mouse model 
used here is schematically presented in Figure 7: Within the first 24h after AB, a rapid 
upregulation of syndecan-4 takes place in the left ventricle of the heart. In this context of 
abundant syndecan-4 expression, cardiac fibroblasts will more readily sense the increased 
mechanical stress and engage the calcineurin/NFAT signaling pathway to promote 
myofibroblast differentiation.5 While syndecan-4 levels will eventually return to normal 
levels 3 weeks after AB (this study and 14), a series of events triggered by mechanical stress-
induced syndecan-4 signaling will contribute to increased myocardial stiffness of the left 
ventricle. Activated myofibroblasts will produce excessive amounts of ECM proteins, 
including collagen I and III, and OPN. A concomitant increase in the expression and activity 
of LOX will result in increased collagen cross-linking and hence, increased passive tension 
(stiffness) 7 days after AB. In our previous work, we demonstrated that phosphorylation of 
serine 179 in the cytoplasmic part of syndecan-4 was required for calcineurin/NFAT 
activation.5 Here we show that the extracellular domain of syndecan-4 seems also to be 
involved in determining ECM stiffness by interacting with collagen fibers and facilitating 
collagen cross-linking by LOX. 

Deletion of syndecan-4 had a striking effect on myocardial stiffness, with passive 
tension being clearly lower in myocardial muscle strips from mice lacking syndecan-4 after 
AB. There are two main contributors to passive tension in the left ventricle: the giant “spring-
like” protein of the cardiomyocyte sarcomere, titin,24 and the ECM. Considering the location 
of syndecan-4 in the costameres overlaying the Z-disc of cardiomyocytes,25 a site to which 
titin is attached, we might expect an effect of syndecan-4 deletion on titin function. To 
examine this, we eliminated the contribution of titin to passive tension by performing 
myofilament extraction of muscle strips. In agreement with a previous report26 titin accounted 
for about one third of the total passive tension of left ventricular tissue from sham-operated 
mice. In contrast, passive tension of pressure-overloaded left ventricles was almost entirely 
accounted for by the ECM. Importantly, the relative decrease in passive tension following 
titin disruption was similar in muscle strips from WT and syndecan-4-/- mice, suggesting 
intact titin function in mice lacking syndecan-4, and that the observed difference in passive 
tension was caused by altered ECM remodeling. 

Although results gained in vitro from muscle strips do not translate directly into the 
mechanical properties of the whole heart, they strongly support an important role for the 
ECM in myocardial stiffening in response to elevated pressure. In patients with congenital 
heart disease, elevated end-diastolic pressure is accounted for by higher stiffness of both 
myocytes and ECM.27 Although increased myocyte stiffness did not prevail in the AB mouse 
model used in this study (reflecting variability between species and etiologies of disease), the 
molecular processes of ECM remodeling investigated here are likely to apply also in humans 
with pressure-overloaded ventricles. 

One exciting finding in this study was the effect of syndecan-4 deletion on collagen 
cross-linking. In addition to collagen amount, the structure of collagen has a major impact on 
the tensile strength of the ECM and passive tension of the left ventricle. This is demonstrated 
in muscle strips from pressure-overloaded and volume-overloaded congenital heart failure 
patients where, despite equal levels of collagen, ECM stiffness was higher in patients with 
pressure-overloaded ventricles due to differences in collagen cross-linking.27 Also in 
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hypertensive patients, collagen cross-linking correlated with elevated left ventricular filling 
pressures, whereas collagen amount did not.8 We here found that mice lacking syndecan-4 
have reduced LOX expression and activity in vivo and lower degree of collagen cross-linking, 
suggesting a regulatory role for syndecan-4 of this enzyme. A similar link has been found 
between syndecan and another ECM-crosslinking enzyme, tissue transglutaminase, which 
exhibited decreased activity in syndecan-1-/- mice following myocardial infarction28 and in 
syndecan-4-/- mice during kidney tissue remodeling.29

Despite its apparently critical role in myocardial stiffening little is known regarding 
mechanisms regulating LOX in the heart. Recently, OPN was found to induce LOX 
expression and activity in human cardiac fibroblasts.11 Here we demonstrate that OPN 
induces LOX also in mouse cardiac fibroblasts and that the effects are potentiated under 
conditions leading to myofibroblast differentiation (i.e. culture on fibronectin coated plates or 
pre- Increasing evidence also suggest an important role for OPN in 
the development of cardiac fibrosis.30,31,11,32 OPN correlates to cross-linked collagen in 
hypertensive heart disease patients and to left ventricular chamber stiffness in pressure-
overloaded rats. OPN-deficient mice fail to develop fibrosis in response to AngII treatment33

and have reduced collagen accumulation after acute myocardial infarction.32 Cardiac OPN 
expression can be triggered by mechanical stress as demonstrated in this study, which also
suggests that syndecan-4/NFAT signaling is involved in the regulation of OPN in the context 
of pressure overload.  

Recently, syndecan-4 signaling was shown to inhibit apoptosis and regulate NFAT 
activity after myocardial infarction,34 but in this context, syndecan-4-/- mice exhibited 
increased NFAT activity, as opposed to the reduced activity we report in syndecan-4-/- mice 
after pressure overload. This discrepancy is intriguing and may be at least in part be 
explained by the different nature of the experimental models. While the cardiac remodeling 
process is predominantly triggered by inflammation and apoptosis in MI, it is in the pressure-
overloaded heart initiated by mechanical stress. It is possible that syndecan-4 may act as a 
negative regulator of inflammation, which is in line with previous work35 also in the context 
of MI36 and heart failure.14  

We also demonstrated that collagen fiber formation was enhanced in vitro in the 
presence of ECsyn4, suggesting a novel role for syndecan-4 in facilitating collagen cross-
linking. Coincidentally, heparan sulfate GAG chains have been shown to interact with 
extracellular structural proteins such as collagen I37 and fibronectin.38 Other proteoglycans 
such as decorin and fibromodulin are known to bind to and stabilize collagen fibrils,39 and 
have been suggested40 to act as co-receptors for LOX. Indeed, collagen cross-linking by LOX 
appeared to be promoted in the presence of ECsyn4. Taken together, our results suggest a 
dual role for syndecan-4 in collagen cross-linking, inducing collagen and LOX expression by 
cardiac fibroblasts, and facilitating LOX cross-linking. In light of recent work reporting 
shedding of the extracellular domain of syndecan-4 in the failing human heart14 further 
studies are encouraged to determine the exact details of the syndecam-4-collagen interaction 
and its physiological significance. 

The limited number of therapeutic targets in cardiac fibrosis is a major problem for 
heart failure treatment. Syndecan-4 is upregulated in the pressure-overloaded left ventricle of 
mice14,5 and man,13 and based on recent research regarding the role of syndecan-4 in ECM 
remodeling we speculate that targeting syndecan-4 may be an effective anti-fibrotic 
approach.41,42 Supporting this, we here demonstrate for the first time that syndecan-4 
regulates passive tension in the pressure-overloaded myocardium by regulation of OPN and 
LOX expression, LOX activity and collagen cross-linking. Given that syndecan-4 is not only 
expressed in cardiac fibroblasts but also in cardiomyocytes, where it is necessary for the 
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development of concentric left ventricular hypertrophy in response to pressure overload,13 the 
next challenge will be to identify differential molecular traits between syndecan-4-dependent 
signaling in these two cell types (i.e. using cell specific knockouts of syndecan-4). This will 
allow to specifically target processes leading to changes in passive tension and to limit 
exacerbated fibrosis while maintaining intact the critical adaptive hypertrophic response of 
cardiomyocytes to pressure overload.
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Figure Legends

Figure 1. Myocardial passive tension is lower in mice lacking syndecan-4 due to altered 
ECM. Passive tension (A) and viscous stress (B) at 1.0- to 1.3-fold slack length (L0) of left 
ventricular muscle strips from wild-type (WT) and syndecan-4-/- (syn4-/-) mice 7 days after 
sham operation (sham) or aortic banding (AB). C, representative titin protein gel and 
summarized data showing left ventricular N2BA:N2B ratio. D, passive tension after salt 
extraction. E, electron microscope images of untreated (control) and salt extracted muscle 
strips. Scale bar 2μm. Two-way ANOVA analyses showed effect of genotype on passive 
tension before and after salt extraction. No difference in N2BA:N2B ratio (C) was found by 
using Kruskal-Wallis with Dunn's multiple comparison test. Data are presented as mean ± 
S.E.M. (A, B and D) for clearer visualization, and as mean ± S.D. (C). N=5-8. 

Figure 2. Increased syndecan-4 expression induces myofibroblast differentiation. A, 
-actin (green) in cardiac fibroblasts from 

wild-type (WT) and syndecan-4-/- (syn4-/-) mice transduced with an empty adenoviral vector 
(adeno-null) or containing full-length syndecan-4 (adeno-syndecan-4). Scale bar 50μm. B, 

-actin (SMA) and platelet-

Relative mRNA levels of proliferating cell nuclear antigen (PCNA) normalized to GAPDH in 
left ventricles 24h (C) and 7 days (D) after AB, and cardiac fibroblasts plated on fibronectin 
for 48h and 72h (E). Statistical significance was determined by two-way ANOVA with 
Bonferroni post-hoc test (C-D) and Kruskal-Wallis with Dunn's multiple comparison test (E). 
n.s., not significant. Data are presented as mean ± S.D. N=8-10 (C-D); 4 (E).

Figure 3. Collagen cross-linking is reduced in the myocardium of syndecan-4-/- mice. A, 
total collagen determined by HPLC in left ventricles from wild-type (WT) and syndecan-4-/-

(syn4-/-) mice following sham operation (sham) or 7 days aortic banding (AB); B, cross-
linked collagen content in left ventricles from mice as in A; C, visualization of total collagen 
and cross-linked collagen using unpolarized and circularly polarized light, respectively, after 
picrosirius red staining of left ventricular sections from WT and syn4-/- mice; Scale bar 
100μm for total collagen and 50μm for cross-linked collagen. D and E, mRNA levels of 
collagen I and collagen III 7 days after AB. Statistical significance was determined by two-
way ANOVA with Bonferroni post-hoc tests (A, D and E) and Kruskal-Wallis with Dunn's 
multiple comparison test (B). Data are normalized to WT sham and presented as mean ± S.D. 
N=5-9 (A and B), 14-16 (D and E). 

Figure 4. Lysyl oxidase expression and activity is reduced in syndecan-4-/- mice. A, lysyl 
oxidase (LOX) mRNA levels in left ventricular tissue from wild-type (WT) and syndecan-4-/-

(syn4-/-) mice 24h after sham operation (sham) or aortic banding (AB). B, LOX mRNA in 
cardiac fibroblasts from WT and syn4-/- mice plated on fibronectin for 72h to induce 
myofibroblast differentiation. C, LOX activity in left ventricular tissue from WT and syn4-/-

mice subjected to sham operation or 3 days AB. Two-way ANOVA with Bonferroni post-hoc 
test (A), Mann-Whitney test (B) and Kruskal-Wallis with Dunn's multiple comparison test 
(C) were applied. Data are relative to WT sham (A and C) or WT (B) and presented as mean 
± S.D. N=10 (A), 5 (B), 7-8 (C).  

Figure 5. Osteopontin is regulated by syndecan-4. Osteopontin (OPN) mRNA (A and C) 
and protein (B) in left ventricular tissue from wild-type (WT) and syndecan-4-/- (syn4-/-) mice 
24h (A and B) and 7 days (C) after sham operation (sham) or aortic banding (AB). D, 
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correlation of cardiac lysyl oxidase (LOX) and OPN mRNA 3 and 7 days after sham or AB 
determined by Pearson regression analysis. E, OPN mRNA levels in cardiac fibroblasts from 
WT and syn4-/- mice 6, 24, 48 and 72h after plating on fibronectin. HT1080 fibroblasts 
control (ctrl) and overexpressing syndecan-4 (syn4) and calcineurin (CaN; F) and H, 
NFATc4. G, cardiac fibroblasts treated with an NFAT blocker. Significant differences were 
determined by two-way ANOVA with Bonferroni post-hoc test (A-C, E), Mann-Whitney test 
(F and H) and Student’s paired t-test (G). Data are relative to WT sham (A-D), WT 6h (E) 
and ctrl (F-H) and presented as mean ± S.D. N=8-10 (A-C), 5-6 (E-H)

Figure 6. Syndecan-4 facilitates collagen cross-linking by LOX. A and C, turbidity 
measured as optical density at 340nm of solutions containing collagen, extracellular 
syndecan-4 (ECsyn4) and lysyl oxidase (LOX). B and D, electron microscopy images of 
collagen alone or mixed with ECsyn4 with and without LOX, or ECsyn4 alone. Asterisks 
denote structures only present in solutions containing both collagen and ECsyn4 (B) or 
collagen and LOX (D). Arrows indicate inter-fibrillar structures (D). Scale bars: 1μm (upper 
panel in B, and in D) and 200nm (lower panel in B). Comparisons are made by Mann-
Whitney to the ctrl in A and C and significance denoted with * or n.s. for non significant 
comparisons. Data are relative to collagen (A) and collagen with LOX (B) and presented as 
mean ± S.D. N=3-6. 

Figure 7. Syndecan-4 regulates cardiac fibroblast phenotype and function, collagen 
cross-linking and myocardial stiffness in response to mechanical stress. Schematic model 
showing syndecan-4 expression (green) during the sequence of events taking place in 
response to left ventricular pressure overload in mice. Syndecan-4 expression is based on 
previously published data14 for 0, 24h, 7 and 21 days; as well as data for 0 and 3 days in this 
study. AB, aortic banding; mech. stress, mechanical stress; syn4, syndecan-4; CaN, 
calcineurin.

















Supplementary Material

Detailed Methods

Mouse Model of Pressure Overload 
AB of the ascending aorta or sham operations were performed on 8-12 week old male 
C57Bl/6JBomTac wild-type (WT) and syndecan-4 knockout (syndecan-4-/-) mice1 on 
C57BL/6J background (000664, The Jackson Laboratory, Bar Harbor, ME) as previously 
described.2 Mice were initially anesthetized with 5% isoflurane and 95% oxygen in a chamber. 
Subsequently, mice were intubated and ventilated with 3% isoflurane and 97% oxygen. For 
post-operative analgesia, animals were given 0.02 ml buprenorphine (0.3 mg/ml) 
subcutaneously and allowed to recover at 35ºC. Animals with an aortic flow velocity > 4 m/s, 
as determined by echocardiography were included in the study. Before euthanizing the mice 
by cervical dislocation 24h, 3 days or 7 days after AB, echocardiography was performed as 
previously described.2,3

Mechanical measurements
Muscle strips from snap frozen left ventricular tissue were skinned in 0.5% Triton X-100 in 
relaxing solution containing (in mM): ATP 7.8; creatine phosphate 20; imidazole 20; EGTA 
4; Mg-propionate 12; K-propionate 97.6 (pH 7.1), and passive force was measured at room 
temperature after mounting the strips between two stainless steel clips attached to a 
micromotor and a force transducer (Scientific Instruments, Heidelberg, Germany). L0 was set 
by determining slack length, verified in three muscle strips by laser diffraction.4,5 to 
correspond to a sarcomere length of 1.8 μm. Muscle strips were stretched in several equal 
steps, each followed by a 1-minute hold period,to a maximum of 30 % L0, corresponding to a 
sarcomere length of ~2.3 μm. Quasi steady-state passive force at the end of the hold period 
was determined as a measure of the elastic component of the muscle strip, and was related to
the cross-sectional area at the thinnest point of the strip at slack length, to obtain passive 
tension. Viscous stress, reflecting the stretch velocity sensitive component of the muscle, was 
determined as peak force upon stretching minus steady-state force, divided by cross-sectional 
area. Salt extraction of actin and myosin filaments was performed by treatment with 0.6 M 
KCl (Sigma, Schnelldorf, Germany) for 20 min, followed by 1 M KI (Sigma) for 20 min.6
After passive tension measurements, muscle strips were fixed and disruption of sarcomere 
structure verified by electron microscopy. Mean passive tension/viscous stress values were 
plotted against L0 and best fits to mean data points were made using exponential growth 
equations.  

Collagen cross-linking and quantification 
For visualization of cross-linked collagen, left ventricles were fixed in 4 % neutral buffered 
formalin, dehydrated, cleared and embedded in paraffin. Transverse sections (4 μm) were 
stained with picrosirius red and examined by light microscopy with polarized light. For 
collagen quantification, thick transverse sections (20 μm) were stained with picrosirius red 
(Sigma) and normalized to total protein content determined by fast green (Sigma) staining.7
The amount of soluble collagen was assessed using colorimetric and enzymatic procedures as 
previously described7,8 and by using Sircol Collagen Assay from Biocolor (Carrickfergus, 
UK). 

Fibroblast Cell Culture
Neonatal mice were sacrificed by decapitation and cardiac fibroblasts isolated as previously 
described9 and used at passage 2 to limit in vitro effects on fibroblast phenotype. Cells were 
seeded on fibronectin-coated plates to induce myofibroblast differentiation, as previously 
shown to mimic the phenotypic modulation that takes place in vivo during pressure overload 



of the left ventricle.9 LOX expression was measured in cardiac fibroblasts from neonatal WT 
and syndecan-4-/- after 24, 48 and 72h on fibronectin. Also, cardiac fibroblasts from 6-12 
week old mice (sacrificed by decapitation after anesthesia with isoflurane in a chamber) were 
isolated using collagenase2 and transduced with adenoviral vector containing mouse 
syndecan-4 (196608A; Applied Biological Materials Inc, Richmond, Canada). Cardiac 
fibroblasts were stimulated with 10 GF111, Merck Millipore, Darmstadt, 
Germany) and 250 ng/ml OPN (Cat. no.120-35; Peprotech, Hamburg, Germany). Human 
fibrosarcoma HT1080 fibroblasts were transfected with mouse syndecan-4 (NP_035651.1; 
HA-tagged), mouse calcineurin (A000420; His-tagged) NFATc3 (NP 035031; GFP-tagged) 
or NFATc4 (NP_076188; GFP-tagged) custom made by Genscript (Piscataway, NJ) using 
lipofectamine 2000 (Invitrogen, Paisley, UK) according to the manufacturer’s protocol. 
Successful transfection was determined by real-time PCR on syndecan-4 (Mm00488527_m1), 
calcineurin (Mm01317678_m1) and NFATc4 (Mm00452373_g1). Cells were cultured in 
Dulbecco’s Modified Eagles Medium (41965 GIBCO-BRL, Invitrogen, Paisley, UK) 
supplemented with 10% fetal calf serum (14-701E, Bio-Whittaker, Lonza, Basel, Switzerland) 
and penicillin/streptomycin (G6784, Sigma, St. Louis, MO). The NFAT blocker A-285222 
was kindly provided by Abbott Laboratories (1μmol/L; Abbott Park, IL).  

Gene Expression Analysis  
RNA was extracted from frozen left ventricles and cell cultures using the RNeasy Mini Kit 
(Qiagen, Hilden, Germany). Only samples with RNA integrity number (RIN) > 6, assessed 
using the 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA) were accepted. cDNA 
synthesis was performed using the iScript cDNA Synthesis Kit (BIO-RAD, Hercules, CA). 
Quantitative real-time PCR with predesigned TaqMan assays (Applied Biosystems, Foster 
City, CA) was used to assess the expression of proliferating cell nuclear antigen (PCNA; 
Mm00448100_m1) collagen I (Mm00483888_m1) and collagen III (Mm00802331_m1), 
OPN (Mm00436767_m1, Hs00959010_m1), LOX (Mm00495386_m1) and glyceraldehydes 
3-phosphate dehydrogenase (GAPDH; Mm03302249_g1, Hs99999905_m1), MMP2 
(Mm00439506_m1), MMP9 (Mm00442991_m1), MMP13 (Mm00439491_m1), TIMP1 
(Mm00441818_m1), TIMP2 (Mm00441825_m1), fibronectin (Mm01256744_m1), elastin 
(Mm00514670_m1), CD44 (Mm01277163_m1), Itgav (Mm00434486_m1) and Itgb1
(Mm01253230_m1). Data were normalized to GAPDH.

Immunoblotting 
Immunoblotting was performed on left ventricle homogenates as previously described.10 Anti-
osteopontin (IBL, Hamburg, Germany) and anti-LOX (NB100-2527, Novus Biologicals, 
Littleton, CO) were used as primary antibodies. 

Immunocytochemistry 
Cells grown on fibronectin-coated glass cover slips were fixed in 4% paraformaldehyde
(Sigma) and stained using mouse-anti-SMA (1:300, Sigma) and alexa fluor 488- secondary 
anti-mouse antibodies (Invitrogen). Images were obtained a LSM 710 confocal microscope 
(Zeiss). Nuclei were stained with sytox orange (Invitrogen). Staining with IgG2a or omitting 
primary antibodies served as negative controls.  

Immunohistochemistry 
Formalin-fixed myocardial tissue sections (4 μm) were stained for SMA (1:250, M0851, 
DAKO, Glostrup, Denmark) and platelet-derived growth factor receptor 
#4564, Cell Signaling, Danvers, MA) and visualized by the use of secondary antibodies 
conjugated to horseradish peroxidase (HRP). Positive controls were obtained by staining 
tissue from appendix and lung cancer for SMA and PDGFR, respectively. 



In vitro collagen fiber formation assay 
A recombinant protein (1-4 μg) consisting of the extracellular domain of syndecan-4 fused 
with the Fc region of human IgG1 (syndecan-4 homodimer; Sino Biological Inc., Beijing, 
China) was mixed with 10 μg collagen I (BD Biosciences, Bedford, MA) in 25 μl TES buffer, 
2 μL 10 mM ZnSO4 and distilled water to a total volume of 50 μl, with or without 
recombinant human lysyl oxidase homolog 2 (0,1μg, LOXL2 with activity > 2 pmol/min/μg, 
R&D systems, Abingdon, UK). The mixture was incubated at 37 ºC for 24-72 h. After mixing 
vigorously, turbidity of the solution was measured as optical density at 340 nm and content 
examined with electron microscopy by performing negative staining with 2% aqueous uranyl 
acetate directly on the grids. 
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Supplementary Table 1. Mice lacking syndecan-4 have reduced left ventricular 
concentric hypertrophy after 7 days of pressure overload. Echocardiography revealed 
significant differences between wild-type (WT) and syndecan-4-/- (syn4-/-) mice subjected to 
aortic banding (AB) as indicated with * and significant difference between sham operated 
animals (sham) and those subjected to 7 days AB as denoted with # as determined by two-way 
ANOVA with Bonferroni post-hoc test. LV, left ventricular; LAD, left atrial diameter; IVSd, 
end diastolic interventricular septum thickness; LVPWd, end diastolic left ventricular 
posterior wall thickness; LVIDd, end diastolic left ventricular internal diameter; LVFS, left 
ventricular fractional shortening; E, early mitral inflow velocity; E´, early mitral annular 
velocity. Data are presented as mean ± S.D.

Sham AB 

WT syn4-/- WT syn4-/-

N 14-16 14-15 15-16 13-17

Body weight, g 26.41 ± 1.72 25.30 ± 2.45 25.83 ± 1.52 23.70 ± 2.38*

Tibia length (TL), mm 17.69 ± 0.62 17.17 ± 0.47 17.54 ± 0.53 17.52 ± 0.30

LV weight/TL, mg/mm 4.99 ± 0.26 5.07 ± 0.69 8.28 ± 0.73### 8.15 ± 1.04###

Lung weight/TL, mg/mm 8.51 ± 0.81 8.58 ± 0.92 17.47 ± 4.99### 14.82 ± 3.52###

LAD, mm 1.80 ± 0.10 1.76 ± 0.13 3.14 ± 0.35### 3.16 ± 0.36###

IVSd, mm 0.53 ± 0.06 0.53 ± 0.08 1.03 ± 0.18### 0.81 ± 0.17***###

LVPWd, mm 0.52 ± 0.08 0.58 ± 0.09 1.15 ± 0.19### 0.90 ± 0.12***###

LVIDd, mm 4.33 ± 0.29 4.18 ± 0.34 3.91 ± 0.40## 4.24 ± 0.38*

LVFS, % 19.46 ± 3.51 17.03 ± 4.28 11.59 ± 4.67### 11.29 ± 3.66###

E/E´ 37.58 ± 9.65 34.34 ± 5.90 50.48 ± 12.54## 47.82 ± 11.92##

(IVSd + LVPWd) / LVID 0.25 ± 0.04 0.27 ± 0.04 0.57 ± 0.12### 0.41 ± 0.06***###

LV weight/LVID (mg/mm) 20.71 ± 1.32 20.39 ± 1.95 37.33 ± 3.72### 33.90 ± 5.11*###



Supplementary Table 2. Non-cardiomyocyte, blood vessel and fibroblast fraction in left 
ventricular tissue. Quantitative analysis of electron micrographs of left ventricular tissue 
sections. Comparisons between sham operated (sham) and aortic banded (AB) animals were 
made using Mann-Whitney test as indicated with #. No significant differences were found 
between wild-type (WT) and syndecan-4-/- (syn4-/-) mice. Non-CM, non-cardiomyocyte; WT, 
wild-type; syn4-/-, syndecan-4-/-; sham. Data are presented as mean ± S.D. N=6-10 tissue 
sections.

Sham 7 days after AB 

WT syn4-/- WT syn4-/-

N 6 10 6 8

Non-CM fraction, % 29.6 ± 4.0 31.5 ± 8.2 26.3 ± 6.1 24.6 ± 0.9

Area occupied by fibroblast nuclei in 

non-CM fraction, % 
2.52 ± 0.8 2.65 ± 2.5 6.73 ± 2.1## 5.28 ± 2.2#

Area occupied by blood vessels in 

non-CM fraction, %
46.2 ± 15.2 29.1 ± 8.8 35.8 ± 11.4 35.7 ± 7.4 
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